WorldWideScience

Sample records for center dot cl

  1. Cold white light generation through the simultaneous emission from Ce{sup 3+}, Dy{sup 3+} and Mn{sup 2+} in 90Al{sub 2}O{sub 3}{center_dot}2CeCl{sub 3}{center_dot}3DyCl{sub 3}{center_dot}5MnCl{sub 2} thin film

    Gonzalez, W. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Alvarez, E. [Departamento de Fisica, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000 (Mexico); Martinez-Martinez, R.; Yescas-Mendoza, E. [Instituto de Fisica y Matematicas, Universidad Tecnologica de la Mixteca, Carretera a Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca 69000 (Mexico); Camarillo, I. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Caldino, U., E-mail: cald@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico)

    2012-08-15

    The photoluminescence of a CeCl{sub 3}, DyCl{sub 3} and MnCl{sub 2} doped aluminum oxide film deposited by ultrasonic spray pyrolysis was characterized by excitation, emission and decay time spectroscopy. A nonradiative energy transfer from Ce{sup 3+} to Dy{sup 3+} and Mn{sup 2+} is observed upon UV excitation at 278 nm (peak emission wavelength of AlGaN-based LEDs). Such energy transfer leads to a simultaneous emission of these ions in the blue, green, yellow and red regions, resulting in white light emission with CIE1931 chromaticity coordinates, x=0.34 and y=0.23, which correspond to cold white light with a color temperature of 4900 K. - Highlights: Black-Right-Pointing-Pointer 90Al{sub 2}O{sub 3}{center_dot}2CeCl{sub 3}{center_dot}3DyCl{sub 3}{center_dot}5MnCl{sub 2} thin film (AOCDM) could be prepared by spray pyrolysis. Black-Right-Pointing-Pointer Non-radiative energy transfer from Ce{sup 3+} to Dy{sup 3+} and Mn{sup 2+} takes place in AOCDM. Black-Right-Pointing-Pointer AOCDM (pumped with 278 nm-UV light) can generate 4900 K cold white light.

  2. Diphosphine- and CO-Induced Fragmentation of Chloride-bridged Dinuclear Complex and Cp*Ir(mu-Cl)(3)Re(CO)(3) and Attempted Synthesis of Cp*Ir(mu-Cl)(3)Mn(CO)(3): Spectroscopic Data and X-ray Diffraction Structures of the Pentamethylcyclopentadienyl Compounds [Cp*IrCl{(Z)-Ph2PCH = CHPPh2}][Cl]center dot 2CHCl(3) and Cp*Ir(CO)Cl-2

    Hammons, Casey [University of North Texas; Wang, Xiaoping [ORNL; Nesterov, Vladimir [University of North Texas; Richmond, Michael G. [University of North Texas

    2010-01-01

    The confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (1) undergoes rapid fragmentation in the presence of the unsaturated diphosphine ligand (Z)-Ph2PCH = CHPPh2 to give the mononuclear compounds [Cp*IrCl {(Z)-Ph2PCH = CHPPh2}][Cl] (2) and fac-ClRe(CO)(3)[(Z)-Ph2PCH = CHPPh2] (3). 2 has been characterized by H-1 and P-31 NMR spectroscopy and X-ray diffraction analysis. 2 center dot 2CHCl(3) crystallizes in the monoclinic space group C2/c, a = 35.023 (8) angstrom, b = 10.189 (2) angstrom, c = 24.003 (6) angstrom, b = 103.340 (3), V = 8,335 (3) angstrom 3, Z = 8, and d(calc) = 1.647 Mg/m(3); R = 0.0383, R-w = 0.1135 for 8,178 reflections with I> 2 sigma(I). The Ir(III) center in 2 exhibits a six-coordinate geometry and displays a chelating diphosphine group. Compound 1 reacts with added CO with fragmentation to yield the known compounds Cp*Ir(CO)Cl-2 (4) and ClRe(CO)(5) (5) in near quantitative yield by IR spectroscopy. Using the protocol established by our groups for the synthesis of 1, we have explored the reaction of [Cp*IrCl2](2) with ClMn(CO)(5) as a potential route to Cp*Ir(mu-Cl)(3)Mn(CO)(3); unfortunately, 4 was the only product isolated from this reaction. The solid-state structure of 4 was determined by X-ray diffraction analysis. 4 crystallizes in the triclinic space group P-1, a = 7.4059 (4) angstrom, b = 7.8940 (4) angstrom, c = 11.8488 (7) angstrom, alpha = 80.020 (1), beta = 79.758 (1), gamma = 68.631 (1), V = 630.34 (6) angstrom(3), Z = 2, and d(calc) = 2.246 Mg/m(3); R = 0.0126, R-w = 0.0329 for 2,754 reflections with I> 2 sigma(I). The expected three-legged piano-stool geometry in 4 has been crystallographically confirmed.

  3. Photoinduced electric dipole in CuCl quantum dots

    Masumoto, Yasuaki; Naruse, Fumitaka; Kanno, Atsushi

    2003-01-01

    Electromodulated absorption spectra of CuCl quantum dots modulated at twice the modulation frequency of electric field, 2f, show prominent structure around persistently burned hole. It grows in proportion to square of the electric field in the same manner as the 2f component of electromodulated absorption spectra of the dots without the laser exposure. Even the f component of electromodulated signal was observed around the burned hole position. These observations are explained by considering electric dipole formed in hole burned and photoionized quantum dots. Photoionization not only produces persistent spectral hole burning but also the local built-in electric field and photoinduced dipole moment in quantum dots. The dipole moment is estimated to be about 5 debye for 3.2-nm-radius quantum dots. The dipole moments are randomly oriented but 1% anisotropy is deduced from the electromodulated signal at f

  4. Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution

    Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering

    1995-01-01

    The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.

  5. A Study of F-center in the Ionic Crystal by Using The Quantum Dot Model Potential

    Hashem Abood Kassim

    2018-02-01

    Full Text Available This work presents a study of the electronic structure of F-center in the crystal of NaCl, CsCl and fluorite structure by using quantum dot model potential. This model employs the semi-continuum method due to Simpson and specifies the F-center as a quantum dot partially confined within finite potential. The energy levels and transition energy of the F-center are calculated analytically by using this new model potential and including the effect of continuum medium due to the coulomb tail and using the strong perturbation approach

  6. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  7. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    Wang Yuchi; Mao Hua; Wong, Lid B

    2010-01-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl - ] i ) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl - ] i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl - ] i . Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl - ] i . These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  8. TxDOT can help pave the way for distribution centers.

    2010-05-01

    TxDOT supports economic development in Texas. : Working through its district offices, TxDOT can help : developers avoid common transportation-related : problems associated with selected center sites. TxDOT : may also be able to help distribution cent...

  9. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  10. Aurophilic Interactions in [(L)AuCl](center dot center dot center dot)[(L')AuCl] Dimers: Calibration by Experiment and Theory

    Andris, E.; Andrikopoulos, Prokopis C.; Schulz, J.; Turek, J.; Růžička, A.; Roithová, J.; Rulíšek, Lubomír

    2018-01-01

    Roč. 140, č. 6 (2018), s. 2316-2325 ISSN 0002-7863 R&D Projects: GA ČR(CZ) GA17-24155S Institutional support: RVO:61388963 Keywords : N-heterocyclic carbenes * approximate coulomb potentials * auxiliary basis sets Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 13.858, year: 2016

  11. Thermal And Gamma-Radiation Annealing Of The Iridium-192 Recoil Species In Crystalline Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O; Recuit Thermique et par Rayonnement Gamma de l'espece {sup 192}Ir de Recul dans des Cristaux de Na{sub 2}IrCl{sub 6} * 6H{sub 2}O; 0422 0415 041f 041b 041e 0412 041e 0419 0418 0413 0410 041c 041c 0410 - 041e 0422 0416 0418 0413 041f 0420 041e 0414 0423 041a 0422 041e 0412 041e 0422 0414 0410 0427 0418 0418 0420 0418 0414 0418 042f -192 0412 041a 0420 0418 0421 0422 0410 041b 041b 0418 0427 0415 0421 041a 041e 041c Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O; Regeneracion Termica y por Irradiacion Gamma de las Especies de Retroceso del Iridio-192 en Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O Cristalino

    Bell, Rita; Herr, W. [Kernforschungsanlage Juelich, Institut fuer Kernchemie der Universitaet Koeln, Cologne, Federal Republic of Germany (Germany)

    1965-04-15

    Ii is possible to separate by means of paper electrophoresis as many as 13 different recoil compounds from Na{sub 2}IrCl{sub 6}H{sub 2}O {center_dot} 6H{sub 2}O as a result of the nuclear reaction Ir{sup 191} (n, {gamma}) Ir{sup 192}. While most of them have anionic character, two of them act as Irwz-labelled cations. These carrier-free compounds have been studied as regards their behaviour towards reducing and oxidizing agents and aging in solution. Independently the hydrolysis of the hexachloro complexes of ter- and quadrivalent iridium, which had been labelled with Cl{sup 36} and Ir{sup 192}, was investigated. A comparison between these two series of results supported by further results from neutron activation analysis enables the recoil products to be identified mostly as octahedral complexes of Ir-III containing Cl{sup -}, H{sub 2}O and OH{sup -} ligands to a different extent. Evidently the water of crystallization plays an important role in the formation of the recoil species. The thermal annealing of these products at 120 Degree-Sign C shows a rapid decrease in the yields of the aquochloro, hydroxochloro and aquohydroxochloro complexes towards formation of the mother compound with the exception of the pentachloro complex. This complex decreases only after an initial increase, indicating that it is involved as an intermediate from other accompanying products during their annealing. Gamma-radiation annealing reveals many single steps whose general trend is a transition from lesser Cl-containing species to a higher Cl content leading finally to the hexachloro complex. This shows that the annealing process consists in the re-entering of Cl atoms (or ions) into the ligand sphere with the accompanying displacement of H{sub 2}O as well as OH (OH{sup -}). (author) [French] Il est possible de separer de Na{sub 2}IrCl{sub 6}(6H{sub 2}O), au moyen de l'electrophorese sur papier, jusqu'a 13 composes de recul resultant de la reaction nucleaire {sup 191}Ir(n, {gamma

  12. Alternative Fuels Data Center: Connecting Dots and Bridging Gaps:

    access to fueling stations, AFV corridor signage on highways increases public awareness. Intra-State of 55 designated corridors covers 35 states. DOT categorized corridors as "signage ready," ; or "signage pending." Corridors are designated "signage ready" if there are

  13. Modifications of center-surround, spot detection and dot-pattern selective operators

    Petkov, Nicolai; Visser, Wicher T.

    2005-01-01

    This paper describes modifications of the models of center-surround and dot-pattern selective cells proposed previously. These modifications concern mainly the normalization of the difference of Gaussians (DoG) function used to model center-surround receptive fields, the normalization of

  14. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Somera, L.; Cruz Z, E.; Roman L, J.; Hernandez A, J. M.; Murrieta S, H.

    2015-10-01

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl 2 ) impurity were grown by using the Czochralski method. The emission characteristic of Mn 2+ was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from 60 Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  15. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Somera, L.; Cruz Z, E.; Roman L, J. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Hernandez A, J. M.; Murrieta S, H., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2015-10-15

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl{sub 2}) impurity were grown by using the Czochralski method. The emission characteristic of Mn{sup 2+} was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from {sup 60}Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  16. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, A|info:eu-repo/dai/nl/075044986

    2017-01-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control

  17. Dependence of {beta} {center_dot} {tau} on plasma shape in DIII-D

    Lazarus, E.A. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    In this paper we discuss the observed variation in plasma performance with plasma shape, in particular, we shall compare single and double null diverted plasmas. The product {beta} {center_dot} {tau} has been used as a figure-of-merit for comparing different toroidal magnetic configurations. Here we shall use it as the figure-of-merit for comparing differing configurations within the DIII-D tokamak. (author) 5 refs., 5 figs.

  18. Radiation induced color center and colloid formation in synthetic NaCl and natural rock salt

    Levy, P.W.; Swyler, K.J.; Klaffky, R.W.

    1979-01-01

    F-center and colloid particle formation has been studied in synthetic NaCl and natural rock salt crystals with apparatus for making optical absorption measurements during irradiation. F-center and colloid formation are functions of temperature, dose, dose rate, strain applied prior to irradiation and numerous other factors. Many of the observed properties are in accord with the Jain-Lidiard theory for radiation induced F-center and colloid growth above room temperature

  19. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  20. Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire

    Safarpour, Gh.; Barati, M.; Zamani, A.; Niknam, E.

    2014-01-01

    The binding energy as well as the linear, third-order nonlinear and total optical absorption coefficient and refractive index changes of an off-center hydrogenic donor impurity in an InAs spherical quantum dot placed at the center of a GaAs cylindrical nano-wire have been investigated. In this regard, the effective-mass approximation approach is considered and eigenvalues and corresponding eigenfunctions are calculated via the finite element method. The binding energy is plotted as a function of the dot size and impurity position along with optical properties as a function of photon energy. In this study two different directions have been considered for impurity position, along the nano-wire axis and perpendicular to it. It has been found that the binding energy, absorption coefficient and refractive index changes are impressively affected not only by the dot radius but also by the position of the impurity and its direction. Additionally, the optical saturation can be tuned by the direction of the impurity and incident optical intensity. -- Highlights: • We consider spherical quantum dot located at the center of a cylindrical nano-wire. • An off-center hydrogenic donor impurity is considered in the system. • Binding energy is affected by orientation of impurity and its distance from center. • Saturation depends on the orientation of impurity position. • By shifting impurity position, orientation and dot radius blue- and red-shifts appear

  1. Assessing the occurrence of the dibromide radical (Br{sub 2}{sup -{center_dot}}) in natural waters: Measures of triplet-sensitised formation, reactivity, and modelling

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Mailhot, Gilles; Sarakha, Mohamed [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Brigante, Marcello, E-mail: marcello.brigante@univ-bpclermont.fr [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Vione, Davide, E-mail: davide.vione@unito.it [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Universita degli Studi di Torino, Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-11-15

    The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br{sup {center_dot}}/Br{sub 2}{sup -{center_dot}}, with rate constant (2-4) Dot-Operator 10{sup 9} M{sup -1} s{sup -1} that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ({sup 3}CDOM*). The brominating agent Br{sub 2}{sup -{center_dot}} could thus be formed in natural waters upon oxidation of bromide by both {sup {center_dot}}OH and {sup 3}CDOM*. Br{sub 2}{sup -{center_dot}} would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of {approx} 3 Dot-Operator 10{sup 2} L (mg C){sup -1} s{sup -1} was measured between Br{sub 2}{sup -{center_dot}} and DOM. It was thus possible to model the formation and reactivity of Br{sub 2}{sup -{center_dot}} in natural waters, assessing the steady-state [Br{sub 2}{sup -{center_dot}}] Almost-Equal-To 10{sup -13}-10{sup -12} M. It is concluded that bromide oxidation by {sup 3}CDOM* would be significant compared to oxidation by {sup {center_dot}}OH. The {sup 3}CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge {sup {center_dot}}OH. Under such conditions, {sup {center_dot}}OH-assisted formation of Br{sub 2}{sup -{center_dot}} would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of {sup 3}CDOM* is much higher compared to that of {sup {center_dot}}OH in most surface waters and would provide a large {sup 3}CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br{sub 2}{sup -{center_dot}} could be an important source of the nitrating agent {sup {center_dot

  2. Electric conductivity of PCl{sub 5}-ZrCl{sub 4}, PCl{sub 5}-TaCl{sub 5}, and PCl{sub 5}-MoCl{sub 5} molten mixtures; Ehlektroprovodnost` rasplavlennykh sistem PCl{sub 5}-ZrCl{sub 4}, PCl{sub 5}-TaCl{sub 5}, i PCl{sub 5}-MoCl{sub 5}

    Salyulev, A B; Red` kin, A A; Moskalenko, N I [Inst. Vysokotemperaturnoj Ehlektrokhimii UrO RAN, Ekaterinburg (Russian Federation)

    1997-05-01

    When mixing individual molecular melts of PCl{sub 5} with ZrCl{sub 4}, TaCl{sub 5} or with MoCl{sub 5}, an essential (by several orders) increase in electric conductivity (up to 0.02-0.1 Ohm{sup -1}{center_dot}cm{sup -1}), which stems, in all probability, from the appearance of complex ions PCl{sub 4}{sup +}, ZrCl{sub 5}{sup -}, ZrCl{sub 6}{sup 2-}, TaCl{sub 5}{sup -} and MoCl{sub 6}{sup -} in the molten mixtures as a result of chemical interaction. 12 refs., 3 figs., 1 tab.

  3. Microscopic Structure of DX Centers in Cd0.8Zn0.2Te:Cl

    Shan, Y.Y.; Lynn, K.G.; Szeles, C.; Asoka-Kumar, P.; Thio, T.; Bennett, J.W.; Beling, C.B.; Fung, S.; Becla, P.

    1997-01-01

    Photoexcitation of chlorine DX centers induces a transition of the Cl atoms to the shallow-donor state and persistent photoconductivity at low temperature in Cd 0.8 Zn 0.2 Te:Cl. The relaxation of the substitutional Cl atoms to the DX state at 140K is coincident with a decrease of the positron line-shape parameter and an increase of annihilation with high-momentum core electrons. The results indicate positron trapping and annihilation at DX centers and at chlorine A centers. The data support the bond breaking model of the DX centers and the outward relaxation of the Cl and Cd(Zn) atoms along the [111] direction. The thermal barrier for the shallow-deep transition was found to be 0.44eV. copyright 1997 The American Physical Society

  4. Two-center three-electron bonding in ClNH{sub 3} revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH{sub 3} → ClNH{sub 2} + H reaction

    Moradi, Christopher P.; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 (United States); Xie, Changjian; Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Kaufmann, Matin [Department of Physical Chemistry II, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-04-28

    Pyrolytic dissociation of Cl{sub 2} is employed to dope helium droplets with single Cl atoms. Sequential addition of NH{sub 3} to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH{sub 3} → ClNH{sub 2} + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C{sub 3v} symmetric top. Frequency shifts from NH{sub 3} and dipole moment measurements are consistent with a ClNH{sub 3} complex containing a relatively strong two-center three-electron (2c–3e) bond. The nature of the 2c–3e bonding in ClNH{sub 3} is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH{sub 3}Cl and Cl–HNH{sub 2}, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH{sub 3} → HCl + NH{sub 2}.

  5. Proton production from Si+Au collisions at 14.5 A/center dot/GeV

    Sarabura, M.; Abbott, T.; Akiba, Y.

    1988-01-01

    Recent results are presented from the study of central Si+Au → p+X, Si+Au → π/sup +-/+X, and Si+Cu → p+X at 14.5 A/center dot/GeV. The distribution of protons in rapidity indicates that many target protons are found above 0.5 units. The variation of the slope parameter in rapidity is consistent with a thermal source of protons at the geometric center-of-mass rapidity. 4 refs., 4 figs

  6. Clustering and percolation threshold in diphase systems of random centered quantum dots of ZnSe

    Bondar', N.V.

    2009-01-01

    A characteristic feature due to the formation of a percolation phase transition of carriers has been observed in a two-phase system consisting of borosilicate glass with ZnSe quantum dots. For near-threshold quantum-dot concentrations, changes due to microscopic fluctuations of the quantum-dot density have been observed in the intensities of radiation emission bands. This phenomenon is reminiscent of critical opalescence, where similar fluctuations of the density of a pure substance arise near a phase transition. It is proposed that the dielectric mismatch between the matrix and ZnSe plays a large role in the carrier (exciton) delocalization, resulting in the appearance of a 'dielectric trap' on the interface and the formation there of surface states of excitons. The spatial overlapping of states which occurs at the critical concentration of quantum dots results in carrier tunneling and the appearance of a percolation transition in such a system

  7. Reversible conversion between AgCl and Ag in AgCl-doped RSiO{sub 3/2}-TiO{sub 2} films prepared by a sol-gel technique

    Kawamura, Go, E-mail: gokawamura@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Tsurumi, Yuuki [Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Sakai, Mototsugu; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2011-10-17

    Highlights: {center_dot} The reversible redox behavior between AgCl and Ag in RSiO{sub 3/2}-TiO{sub 2} film is studied. {center_dot} TiO{sub 2} component induces Cl to remain in the film after conversion of AgCl to Ag. {center_dot} The survival of Cl is essential for reconversion of Ag to AgCl. {center_dot} The film shows potential to be applied as rewritable holographic material. - Abstract: The reversible redox behavior exhibited by AgCl-doped organosilsesquioxane-titania gel films is studied. Films prepared by the sol-gel method show reversible color changes with blue laser irradiation and subsequent heat treatment, which is based on the formation of Ag and AgCl nanoparticles, respectively. Two-beam interference exposure experiments reveal that the films have potential to be applied as rewritable holographic materials. A large titania content is essential for the conversion of Ag to AgCl because it induces the Cl to remain near the Ag nanoparticles during blue laser irradiation, allowing the Cl to react with neighboring Ag nanoparticles to reform AgCl upon subsequent heat treatment.

  8. A high quality and quantity hybrid perovskite quantum dots (CsPbX3, X= Cl, Br and I) powders synthesis via ionic displacement

    Yin, Yuhang; Luan, Weiling; Zhang, Chengxi; Yang, Fuqian

    2017-12-01

    Recently, all-inorganic perovskites CsPbX3 (X= Cl, Br and I) quantum dots (QDs) have drawn great attentions because of their PL spectra tunable over the whole visible spectral region (400-700 nm) and adjustable bandgap, which revealed a promising potential on the field of photoelectronic devices, such as solar cells, LEDs and sensors. In this paper, CsPbX3 QDs and hybrid QDs, CsPbClxBr3-x and CsPbBrxI3-x were synthesized via one-step and two-step methods comparably. The optical bandgaps of CsPbCl3, CsPbBr3, and CsPbI3, were calculated as 3.08, 2.36, and 1.73eV, respectively, based on the Tauc’s equation and UV absorption spectra. Ionic displacement and phase transformation occurred during the mixing process were found based on the monitoring of PL spectra and HRTEM characterization. The long-term stability, dried, high quality and two-dimensional hybrid CsPbBrxI3-x QDs powders could be achieved via the two-step method. Polar solution inductions were used to wash and purify the CsPbX3 QDs, which help obtain of various compositions and well crystallize all-inorganic perovskites QDs powders.

  9. Comparison of semi-automated center-dot and fully automated endothelial cell analyses from specular microscopy images.

    Maruoka, Sachiko; Nakakura, Shunsuke; Matsuo, Naoko; Yoshitomi, Kayo; Katakami, Chikako; Tabuchi, Hitoshi; Chikama, Taiichiro; Kiuchi, Yoshiaki

    2017-10-30

    To evaluate two specular microscopy analysis methods across different endothelial cell densities (ECDs). Endothelial images of one eye from each of 45 patients were taken by using three different specular microscopes (three replicates each). To determine the consistency of the center-dot method, we compared SP-6000 and SP-2000P images. CME-530 and SP-6000 images were compared to assess the consistency of the fully automated method. The SP-6000 images from the two methods were compared. Intraclass correlation coefficients (ICCs) for the three measurements were calculated, and parametric multiple comparisons tests and Bland-Altman analysis were performed. The ECD mean value was 2425 ± 883 (range 516-3707) cells/mm 2 . ICC values were > 0.9 for all three microscopes for ECD, but the coefficients of variation (CVs) were 0.3-0.6. For ECD measurements, Bland-Altman analysis revealed that the mean difference was 42 cells/mm 2 between the SP-2000P and SP-6000 for the center-dot method; 57 cells/mm 2 between the SP-6000 measurements from both methods; and -5 cells/mm 2 between the SP-6000 and CME-530 for the fully automated method (95% limits of agreement: - 201 to 284 cell/mm 2 , - 410 to 522 cells/mm 2 , and - 327 to 318 cells/mm 2 , respectively). For CV measurements, the mean differences were - 3, - 12, and 13% (95% limits of agreement - 18 to 11, - 26 to 2, and - 5 to 32%, respectively). Despite using three replicate measurements, the precision of the center-dot method with the SP-2000P and SP-6000 software was only ± 10% for ECD data and was even worse for the fully automated method. Japan Clinical Trials Register ( http://www.umin.ac.jp/ctr/index/htm9 ) number UMIN 000015236.

  10. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  11. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: jcorrea@udem.edu.co [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  12. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    Hoyos, Jaime H.; Correa, J.D.; Mora-Ramos, M.E.; Duque, C.A.

    2016-01-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  13. Why Is the L-Shaped Structure of X-2 center dot center dot center dot X-2 (X = F, Cl, Br, I) Complexes More Stable Than Other Structures?

    Sedlák, Robert; Deepa, Palanisamy; Hobza, Pavel

    2014-01-01

    Roč. 118, č. 21 (2014), s. 3846-3855 ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : distributed multipole analysis * density functional theory * consistent basis sets * correlated molecular calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.693, year: 2014

  14. A administração clássica: um estudo aplicado a centrais de atendimento (call center

    Jairo Moran Carvalho Ribeiro

    2015-04-01

    Full Text Available As organizações modernas, a exemplo de operações de centrais de atendimento, ou call centers, tem atuado em diversas áreas de negócios, que pode ser do simples atendimento, como os serviços de atendimento a clientes - SAC, a grandes empresas com foco em cobrança, televendas ou operações diversas. Assim, a pesquisa buscou apresentar evidências do emprego das teorias clássicas da administração, através de estudo de casos, em dois Call Centers de empresas do Rio Grande do Sul vinculados à rede varejista de eletroeletrônicos e a distribuidora de energia elétrica. Embora, a natureza de atuação diversa entre as duas centrais analisadas, os princípios clássicos da administração se mostraram evidenciados em ambas as operações, a exemplo da racionalização do trabalho, controle das atividades, supervisão atuante, jornadas definidas, prêmios por produção, dentre outros elementos característicos dos princípios defendidos por Taylor, Fayol, Ford entre outros clássicos da administração.

  15. Origin of the ESR spectrum in the Prussian blue analog RbMn[Fe(CN)(6)]center dot H2O

    Antal, A.; Janossy, A.; Forro, L.; Vertelman, E. J. M.; van Koningsbruggen, P. J.; van Loosdrecht, P. H. M.

    2010-01-01

    We present an electron spin resonance (ESR) study at excitation frequencies of 9.4 and 222.4 GHz of powders and single crystals of a Prussian blue analog (PBA), RbMn[Fe(CN)(6)]center dot H2O in which Fe and Mn undergoes a charge-transfer transition between 175 and 300 K. The ESR of PBA powders, also

  16. Stark shift and photoionization cross section of on-center and off-center donor impurity in a core/shell ellipsoidal quantum dot

    Shi, L.; Yan, Z. W.

    2018-04-01

    Within the framework of the effective-mass approximation and by using a variational method, the Stark shift of on-center and off-center donor impurity binding energies and photoionization cross section under a z-direction electric field in a prolate (oblate) core/shell ellipsoidal quantum dot has been studied. We have calculated the Stark shift as a function of the core and shell sizes and shapes, electric field, and impurity position. We also discuss the photoionization cross section as a function of photon energy with different core and shell sizes and shapes, electric field strengths, and impurity positions. The results show that the Stark shift depends strongly on the impurity position, it could be positive or negative. The core and shell sizes and shapes also have a pronounce influence on the Stark shift, and the Stark shift changes with them is non-monotonic, especially when the impurity is located at the -z-axis, the situation will become complicated. In addition, the core and shell sizes and shapes, impurity position, and electric field also have an important influence on the photoionization cross section. In particular, the photoionization cross section will vanish when the impurity is located at center of spherical core with spherical or prolate shell case at zero field.

  17. Pnictogen bonding in pyrazine center dot PnX(5) (Pn = P, As, Sb and X = F, Cl, Br) complexes

    Fanfrlík, Jindřich; Zierkiewicz, W.; Švec, P.; Růžičková, Z.; Řezáč, Jan; Michalczyk, M.; Růžička, A.; Michalska, D.; Hobza, Pavel

    2017-01-01

    Roč. 23, č. 11 (2017), č. článku 328. ISSN 1610-2940 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : pnictogen bond * interaction energy decomposition * sigma-hole magnitude * deformation energy * X-ray crystallography * charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.425, year: 2016

  18. Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams.

    Quinteiro, G F; Lucero, A O; Tamborenea, P I

    2010-12-22

    We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.

  19. Thermal decomposition of Cu(NO{sub 3}){sub 2}{center_dot}3H{sub 2}O at reduced pressures

    Morozov, I.V.; Znamenkov, K.O.; Korenev, Yu.M.; Shlyakhtin, O.A

    2003-07-28

    Thermolysis of Cu(NO{sub 3}){sub 2}{center_dot}3H{sub 2}O is studied by means of XRD analysis in situ and mass spectral analysis of the gas phase at P=1/10 Pa at low heating rate. It is shown that stage I of the dehydration (40-80 deg. C) results in the consecutive appearance of crystalline Cu(NO{sub 3}){sub 2}{center_dot}2.5H{sub 2}O and Cu(NO{sub 3}){center_dot}H{sub 2}O. Anhydrous Cu(NO{sub 3}){sub 2} formed during further dehydration at 80-110 deg. C is moderately sublimed at 120-150 deg. C. Dehydration is accompanied by thermohydrolysis, leading to the appearance of Cu{sub 2}(OH){sub 3}NO{sub 3} and gaseous H{sub 2}O, HNO{sub 3}, NO{sub 2}, and H{sub 2}O. The higher pressure in the system, the larger amount of thermohydrolysis products is observed. The formation of the crystalline intermediate CuO{sub x}(NO{sub 3}){sub y} was observed by diffraction methods. Final product of thermolysis (CuO) is formed at 200-250 deg. C.

  20. Purple-bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films.

    Lukashev, Eugeny P; Knox, Petr P; Gorokhov, Vladimir V; Grishanova, Nadezda P; Seifullina, Nuranija Kh; Krikunova, Maria; Lokstein, Heiko; Paschenko, Vladimir Z

    2016-11-01

    Quantum dots (QDs) absorb ultraviolet and long-wavelength visible light energy much more efficiently than natural bacterial light-harvesting proteins and can transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion of RCs combined with QDs as antennae into liposomes opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components or inorganic components alone. RCs from Rhodobacter sphaeroides and QDs (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent. The efficiency of RC and QD interaction within the liposomes was estimated using fluorescence excitation spectra of the photoactive bacteriochlorophyll of the RCs and by measuring the fluorescence decay kinetics of the QDs. The functional activity of the RCs in hybrid complexes was fully maintained, and their stability was even increased. The efficiency of energy transfer between QDs and RCs and conditions of long-term stability of function of such hybrid complexes in film preparations were investigated as well. It was found that dry films containing RCs and QDs, maintained at atmospheric humidity, are capable of maintaining their functional activity for at least some months as judged by measurements of their spectral characteristics, efficiency of energy transfer from QDs to RCs and RC electron transport activity. Addition of trehalose to the films increases the stability further, especially for films maintained at low humidity. These stable hybrid film structures are promising for further studies towards developing new phototransformation devices for biotechnological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Targeting the environmental assessment of veterinary drugs with the multi-species-soil system (MS{center_dot}3) agricultural soil microcosms: the ivermectin case study

    Carbonell-Martin, G.; Pro-Gonzalez, J.; Aragones-Grunert, P.; Babib-Vich, M. M.; Fernandez-Rorija, C.; Tarazona-Lafarga, J. V.

    2011-07-01

    The environmental risk assessment of the veterinary pharmaceutical ivermectin is receiving significant attention. This paper assesses the capacity of the MS{center_dot}3 soil microcosm as a tool for targeting the environmental impact assessment of veterinary drugs, using ivermectin as model. Two screening MS{center_dot}3 were performed using different European soils; one with a soil collected in an agricultural station near to Madrid, Spain and a second with a soil collected in a farm area close to York, UK. Soils were fortified with ivermectin at the following ranges: 0.01-10 mg kg{sup -}1 and 0.1-100 mg kg{sup -}1 in the Madrid and York studies, respectively. The effects on earthworms, plants and soil microorganisms were assessed in the Madrid soil. Toxicity tests on aquatic organisms (algae, cladocerans and in vitro fish cell line RTLW1) were also conducted with the leachates. No effects were observed in earthworms and plants at any tested concentration; reduction in the respiration rate (< 5%) of soil microorganisms was detected. Earthworm/soil bioconcentration factors decreased with the increase in soil concentrations and were higher for the York soil. Effects on daphnids were observed in tested leachates; based on measured levels of ivermectin in the leachates an EC50 of about 0.5{mu}gL{sup -}1 can be estimated. Comparisons based on toxicity data and equilibrium partitioning confirmed that the main risk is expected to be related to the high sensitivity of cladocerans. The results confirm that MS{center_dot}3 systems are cost-effective tools for assessing the impact of veterinary pharmaceuticals when applied to agricultural land, as previously demonstrated for antimicrobials. (Author) 39 refs.

  2. Reactive scattering from oriented molecules: The three-center reaction K+ICl --> KI+Cl, KCl+I

    Loesch, H. J.; Möller, J.

    1992-12-01

    In a crossed molecular beam experiment, we have measured the angular and time-of-flight (TOF) distributions of the products KCl and KI formed in the reaction K+ICl→KI+Cl, KCl+I at an elevated collision energy of Etr=1.64 eV. Employing the brute force method, we have prepared an oriented ICl beam and studied in addition also the orientation dependence of these distributions. The results are (i) KCl is the dominant product, but also KI is substantially formed with a branching ratio of 4:1; (ii) the double differential reaction cross section in the center-of-mass frame (contour maps) indicates that all products are preferentially forward scattered and constrained to the forward hemisphere; (iii) the KCl flux consists of two distinct components which differ markedly in kinetic energy and dependence on the ICl orientation; there are also indications of the existence of two components of KI; (iv) 65%, 84%, and 64% of the available energy is vested into the internal degrees of freedom for the fast, slow component of KCl and KI, respectively; (v) the existence of two components can be rationalized on the basis of the harpooning mechanism where the jumping electron accesses the ground state or one of the low excited states of the ICl- ion and triggers the subsequent explosion of the ion with more or less kinetic energy of the fragments depending on the initially populated state; (vi) the energies released during dissociation of ICl- in the 2Σ ground state and the first 2Π state are ≤0.19 and ≤1.2 eV, respectively; (vii) the fast KCl component features a negative steric effect suggesting favorable product formation for attacks of K to the I end of ICl, the steric effect of the slow KI component is positive, i.e., attacks to the Cl end form products favorably; the other components exhibit no significant steric effect; (viii) the steric effects can be quantitatively rationalized using the same model as mentioned above; (ix) the magnitude of the steric effect suggests a

  3. Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots

    El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-11-01

    The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.

  4. Development of 9Al2O3{center_dot}2B2O3 whiskers reinforced piston by squeeze casting. Manufacturing process and characteristics of whiskers preform; Squeeze cast ho ni yoru 9Al2O3{center_dot}2B2O3 whisker kyoka piston no kaihatsu

    Yamauchi, T; Suzuki, M; Takahashi, M; Takada, I; Toda, M [Suzuki Motor Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The properties of 9Al2O3 {center_dot} 2B2O3 whisker reinforced aluminum alloy is excellent compared with conventional material at elevated temperatures. 9Al2O3 {center_dot} 2B2O3 whisker reinforced aluminum alloy was applied to the piston head of two cycle engines. This piston was produced by a squeeze casting process with the granulated whiskers preform which was infiltrated by a molten aluminum alloy under high pressure. Since the permeability of the granulated whiskers preform is larger than that of the uniform preform in which whiskers are distributed randomly and uniformly, it became possible to suppress the preform deformation using the developed preform. 7 refs., 8 figs., 2 tabs.

  5. Mixed-valence, layered, cation radical salts of the ethane-bridged dimeric tetrathiafulvalene [(EDT-TTF-CH2-)2#centre dot#+] [X-][THF]0.5, X-=FeCl4-, GaCl4-

    Mézière, C.; Fourmigué, M.; Canadell, E.

    2000-01-01

    The synthesis and X-ray crystal structure of the ethane-linked dimeric tetrathiafulvalene [(EDT-TTF-CH2)(2)], 1,2-bis(ethylenedithiotetrathiafulvalenyl)ethane (1), is reported. It oxidizes reversibly at 0.45 and 0.90 V vs SCE. Electrocrystallization in the presence of [n-Bu4N][FeCl4] or [n-Bu4N...

  6. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    Atiqullah, Muhammad

    2013-08-12

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  7. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    Atiqullah, Muhammad; Anantawaraskul, Siripon; Emwas, Abdul-Hamid M.; Al-Harthi, Mamdouh Ahmed; Hussain, Ikram; Ul-Hamid, Anwar; Hossaen, Anwar

    2013-01-01

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  8. Polymorphs of Pridopidine Hydrochloride

    Zimmermann, A.; Frostrup, B.; Bond, A. D.

    2012-01-01

    of both polymorphs contain N+-H center dot center dot center dot Cl-center dot center dot center dot N+-H center dot center dot center dot interactions, and the polymorphism can be viewed as alternative orientations (parallel or antiparallel) of comparable molecular columns while retaining the center dot...... center dot center dot N+-H center dot center dot center dot Cl-center dot center dot center dot N+-H center dot center dot center dot motif between columns. Forms I and II have melting points of 199 and 210 degrees C, respectively. Following melting of form I, a kinetically controlled crystallization...

  9. Structure and optical properties of TeO2 center dot PbCl2 center dot PbF2 glasses doped with Pr and Er, prepared in Au or Pt crucibles

    Trnovcová, V.; Kubliha, M.; Labas, V.; Kadleciková, M.; Pedlíková, Jitka; Greguš, J.; Slabeyclus, J.

    2012-01-01

    Roč. 14, 1-2 (2012), s. 77-83 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40320502 Keywords : Tellurite/lead chloride/lead fluoride glasses * Optical absorption * Photoluminescence Subject RIV: CA - Inorganic Chemistry Impact factor: 0.516, year: 2012

  10. Electrical and dielectric properties of doped TeO2 center dot PbCl2 center dot PbF2 glasses, prepared in Au or Pt crucibles

    Kubliha, M.; Trnovcová, V.; Labas, V.; Psota, J.; Pedlíková, Jitka; Podolinčiaková, J.

    2011-01-01

    Roč. 13, 11-12 (2011), s. 1493-1497 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40320502 Keywords : tellurite/lead chloride/lead fluoride glasses * electrical conductivity * TSDC * permittivity Subject RIV: CA - Inorganic Chemistry Impact factor: 0.457, year: 2011

  11. Studies of the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} reversible hydrogen storage system

    Liu Dongan [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Yang Jun, E-mail: jyang27@ford.com [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Ni Jun [Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Drews, Andy [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We systematically studied the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system. Black-Right-Pointing-Pointer It is found that adding 0.25 TiCl{sub 3} produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. Black-Right-Pointing-Pointer LiCl experiences four different states, i.e. 'formed-solid solution-molten solution-precipitation', in the whole desorption process of the system. Black-Right-Pointing-Pointer The incorporation of LiCl into LiBH{sub 4} forms more viscous molten LiBH{sub 4}{center_dot}LiCl, leading to fast kinetics. Black-Right-Pointing-Pointer The precipitation and re-incorporation of LiCl into LiBH{sub 4} lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl{sub 3} on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH{sub 4}/CaH{sub 2}/xTiCl{sub 3} and that as temperature increases, o-LiBH{sub 4} transforms into h-LiBH{sub 4}, into which LiCl incorporates, forming solid solution of LiBH{sub 4}{center_dot}LiCl, which melts above 280 Degree-Sign C. Molten LiBH{sub 4}{center_dot}LiCl is more viscous than molten LiBH{sub 4}, preventing the clustering of LiBH{sub 4} and the accompanied agglomeration of CaH{sub 2}, and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 Degree-Sign C, the molten solution LiBH{sub 4}{center_dot}LiCl further reacts with CaH{sub 2}, precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH{sub 4}{center_dot}LiCl and CaH{sub 2} and not between molten LiBH{sub 4} and CaH{sub 2}. This alters the hydrogen reaction thermodynamics and

  12. Quantum Dots

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  13. Thermodynamics of {l_brace}zNaCl+(1-z)Na{sub 2}SO{sub 4}{r_brace}(aq) from T=278.15 K to T=318.15 K, and representation with an extended ion-interaction (Pitzer) model

    Rard, Joseph A. E-mail: rard1@llnl.gov; Clegg, Simon L.; Platford, Robert

    2003-06-01

    In 1968, R.F. Platford reported the results from extensive isopiestic vapor-pressure measurements for the {l_brace}zNaCl+(1-z)Na{sub 2}SO{sub 4}{r_brace}(aq) system at T=298.15 K, using NaCl(aq) as the isopiestic reference standard [R.F. Platford, J. Chem. Eng. Data 13 (1968) 46-48]. However, only derived quantities were reported, and the experimental isopiestic equilibrium molalities were not given. The complete set of original isopiestic molalities from that study is tabulated in the present report. In addition, published thermodynamic information for this system is reviewed and the isopiestic equilibrium molalities, electromotive force measurements for five different types of electrochemical cells, and enthalpies of mixing from these other studies are critically assessed and recalculated consistently. These combined results are used to evaluate at T=298.15 K the two mixing parameters of Pitzer's ion-interaction model, {sup S}{theta}(Cl,SO{sub 4})=(1.236{+-}0.032{sub 5}){center_dot}10{sup -2} kg{center_dot}mol{sup -1} and {psi}(Na,Cl,SO{sub 4})=(1.808{+-}0.086){center_dot}10{sup -3} kg{sup 2}{center_dot}mol{sup -2}, and their temperature derivatives {l_brace}{partial_derivative}{sup S}{theta}(Cl,SO{sub 4})/{partial_derivative}T{r_brace}{sub p}=(2.474{+-}0.460){center_dot}10{sup -5} kg{center_dot}mol{sup -1}{center_dot}K{sup -1} and {l_brace}{partial_derivative}{psi}(Na,Cl,SO{sub 4})/{partial_derivative}T{r_brace}{sub p}=-(6.228{+-}0.186){center_dot}10{sup -5} kg{sup 2}{center_dot}mol{sup -2}{center_dot}K{sup -1}. Also reported are parameters for an extended ion-interaction model for Na{sub 2}SO{sub 4}(aq), valid from T=(273.15 to 323.15) K, that were required for this mixed electrolyte solution analysis.

  14. Graphene Oxide Quantum Dots Exfoliated From Carbon Fibers by Microwave Irradiation: Two Photoluminescence Centers and Self-Assembly Behavior.

    Yuan, Jian-Min; Zhao, Rui; Wu, Zhen-Jun; Li, Wei; Yang, Xin-Guo

    2018-04-17

    Graphene oxide quantum dots (GOQDs) attract great attention for their unique properties and promising application potential. The difficulty in the formation of a confined structure, and the numerous and diverse oxygen-containing functional groups results in a low emission yield to GOQDs. Here, GOQDs with a size of about 5 nm, exfoliated from carbon fibers by microwave irradiation, are detected and analyzed. The exfoliated GOQDs are deeply oxidized and induce large numbers of epoxy groups and ether bonds, but only a small amount of carbonyl groups and hydroxyl groups. The subdomains of sp 2 clusters, involving epoxy groups and ether bonds, are responsible for the two strong photoluminescence emissions of GOQDs under different excitation wavelengths. Moreover, GOQDs tend to self-assemble at the edges of their planes to form self-assembly films (SAFs) with the evaporation of water. SAFs can further assemble into different 3D patterns with unique microstructures such as sponge bulk, sponge ball, microsheet, sisal, and schistose coral, which are what applications such as supercapacitors, cells, catalysts, and electrochemical sensors need. This method for preparation of GOQDs is easy, quick, and environmentally friendly, and this work may open up new research interests about GOQDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantum dots

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  16. Effects of Supported ( n BuCp) 2 ZrCl 2 Catalyst Active-Center Distribution on Ethylene–1-Hexene Copolymer Backbone Heterogeneity and Thermal Behaviors

    Atiqullah, Muhammad

    2013-07-10

    Two catalysts, denoted as catalyst 1 [silica/MAO/(nBuCp) 2ZrCl2] and catalyst 2 [silica/nBuSnCl 3/MAO/(nBuCp)2ZrCl2] were synthesized and subsequently used to prepare, without separate feeding of methylaluminoxane (MAO), ethylene homopolymer 1 and homopolymer 2, respectively, and ethylene-1-hexene copolymer 1 and copolymer 2, respectively. Gel permeation chromatography (GPC), Crystaf, differential scanning calorimetry (DSC) [conventional and successive self-nucleation and annealing (SSA)], and 13C nuclear magnetic resonance (NMR) polymer characterization results were used, as appropriate, to model the catalyst active-center distribution, ethylene sequence (equilibrium crystal) distribution, and lamellar thickness distribution (both continuous and discrete). Five different types of active centers were predicted in each catalyst, as corroborated by the SSA experiments and complemented by an extended X-ray absorption fine structure (EXAFS) report published in the literature. 13C NMR spectroscopy also supported this active-center multiplicity. Models combined with experiments effectively illustrated how and why the active-center distribution and the variance in the design of the supported MAO anion, having different electronic and steric effects and coordination environments, influence the concerned copolymerization mechanism and polymer properties, including inter- and intrachain compositional heterogeneity and thermal behaviors. Copolymerization occurred according to the first-order Markovian terminal model, producing fairly random copolymers with minor skewedness toward blocky character. For each copolymer, the theoretical most probable ethylene sequences, nE MPDSC-GT and n E MPNMR-Flory, as well as the weight-average lamellar thicknesses, Lwav DSC-GT and Lwav SSA DSC, were found to be comparable. To the best of our knowledge, such a match has not previously been reported. The percentage crystallinities of the homo- and copolymers increased linearly as a function of

  17. Effects of supported (nBuCp)2ZrCl2 catalyst active center multiplicity on crystallization kinetics of ethylene homo- and copolymers

    Atiqullah, Muhammad

    2014-07-01

    Two different supported zirconocene, that is, bis(n-butylcyclopentadienyl) zirconium dichloride (nBuCp)2ZrCl2, catalysts were synthesized. Each catalyst was used to prepare one ethylene homopolymer and one ethylene-1-hexene copolymer. Catalyst active center multiplicity and polymer crystallization kinetics were modeled. Five separate active center types were predicted, which matched the successive self-nucleation and annealing (SSA) peak temperatures. The predicted crystallinity well matched the differential scanning calorimetric (DSC) values for a single Avrami-Erofeev index, which ranged between 2 and 3 for the polymers experimented. The estimated apparent crystallization activation energy Ea did not vary with cooling rates, relative crystallinity α, and crystallization time or temperature. Therefore, the concept of variable/instantaneous activation energy was not found to hold. Ea linearly increased with the weight average lamellar thickness Lwav DSC-GT; and for each homopolymer, it exceeded that of the corresponding copolymer. Higher Ea, hence slower crystallization, was identified as a pre-requisite to attain higher crystallinity. Crystallization parameters were correlated to polymer backbone parameters, which are influenced by catalyst active center multiplicity. © 2013 Taiwan Institute of Chemical Engineers.

  18. Radiation induced F-center and colloid formation in synthetic NaCl and natural rock salt: applications to radioactive waste repositories

    Levy, P.W.; Loman, J.M.; Kierstead, J.A.

    1983-01-01

    Radiation damage, particularly Na metal colloid formation, has been studied in synthetic NaCl and natural rock salt using unique equipment for making optical absorption, luminescence and other measurements during irradiation with 1 to 3 MeV electrons. Previous studies have established the F-center and colloid growth phenomenology. At temperatures where colloids form most rapidly, 100 to 250 C, F-centers appear when the irradiation is initiated and increase at a decreasing rate to a plateau, reached at doses of 10 6 to 10 7 rad. Concomitant colloid growth is described by classical nucleation and growth curves with the transition to rapid growth occurring at 10 6 to 10 7 rad. The colloid growth rate is low at 100 C, increases markedly to a maximum at 150 to 175 C and decreases to a negligible rate at 225 C. At 1.2x10 8 rad/h the induction period is >10 4 sec at 100 C, 10 4 sec at 275 C. The colloid growth in salt from 14 localities is well described by C(dose)/sup n/ relations. Data on WIPP site salt (Los Medanos, NM, USA) has been used to estimate roughly the colloid expected in radioactive waste repositories. Doses of 1 to 2x10 10 rad, which will accumulate in salt adjacent to lightly shielded high level canisters in 200 to 500 years, will convert between 1 and 100% of the salt to Na colloids (and Cl) if back reactions or other limiting reactions do not occur. Each high level lightly shielded canister may ultimately be surrounded by 200 to 300 kg of colloid sodium. Low level or heavily shielded canisters may produce as little as 1 kg sodium

  19. Hydrogenic impurity in double quantum dots

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  20. Hydroxyl radicals ({center_dot}OH) are associated with titanium dioxide (TiO{sub 2}) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells

    Reeves, James F.; Davies, Simon J.; Dodd, Nicholas J.F. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2008-04-02

    TiO{sub 2} nanoparticles (<100 nm diameter) have been reported to cause oxidative stress related effects, including inflammation, cytotoxicity and genomic instability, either alone or in the presence of UVA irradiation in mammalian studies. Despite the fact that the aquatic environment is often the ultimate recipient of all contaminants there is a paucity of data pertaining to the potential detrimental effects of nanoparticles on aquatic organisms. Therefore, these investigations aimed to evaluate the potential cytotoxic and genotoxic effects of TiO{sub 2} nanoparticles on goldfish skin cells (GFSk-S1), either alone or in combination with UVA. Whilst neutral red retention (NRR) assay (a measure of lysosomal membrane integrity) was used to evaluate cell viability, a modified Comet assay using bacterial lesion-specific repair endonucleases (Endo-III, Fpg) was employed to specifically target oxidative DNA damage. Additionally, electron spin resonance (ESR) studies with different spin traps were carried out for qualitative analysis of free radical generation. For cell viability, TiO{sub 2} alone (0.1-1000 {mu}g ml{sup -1}) had little effect whereas co-exposure with UVA (0.5-2.0 kJ m{sup -2}) caused a significant dose-dependent decrease which was dependent on both the concentration of TiO{sub 2} and the dose of UVA administered. For the Comet assay, doses of 1, 10 and 100 {mu}g ml{sup -1} in the absence of UVA caused elevated levels of Fpg-sensitive sites, indicating the oxidation of purine DNA bases (i.e. guanine) by TiO{sub 2}. UVA irradiation of TiO{sub 2}-treated cells caused further increases in DNA damage. ESR studies revealed that the observed toxic effects of nanoparticulate TiO{sub 2} were most likely due to hydroxyl radical ({center_dot}OH) formation.

  1. Effects of Supported ( n BuCp) 2 ZrCl 2 Catalyst Active-Center Distribution on Ethylene–1-Hexene Copolymer Backbone Heterogeneity and Thermal Behaviors

    Atiqullah, Muhammad; Anantawaraskul, Siripon; Emwas, Abdul Hamid M; Al-Harthi, Mamdouh A.; Hussain, Ikram; Ul-Hamid, Anwar; Hossaen, Anwar

    2013-01-01

    Two catalysts, denoted as catalyst 1 [silica/MAO/(nBuCp) 2ZrCl2] and catalyst 2 [silica/nBuSnCl 3/MAO/(nBuCp)2ZrCl2] were synthesized and subsequently used to prepare, without separate feeding of methylaluminoxane (MAO), ethylene homopolymer 1

  2. Chemiluminescence behavior of the carbon dots and the reduced state carbon dots

    Teng, Ping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xie, Jianxin [College of Resources and Environment, Yuxi Normal University, Yuxi, Yunnan 653100 (China); Long, Yijuan; Huang, Xiaoxiao; Zhu, Rui; Wang, Xiliang; Liang, Liping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Huang, Yuming, E-mail: ymhuang@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zheng, Huzhi, E-mail: zhenghz@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2014-02-15

    Potassium permanganate (KMnO{sub 4}) can react with two different carbon nanoparticles, i.e., carbon dots (CDs) and reduced state carbon dots (r-CDs), in a strong acid medium to generate chemiluminescence (CL). Furthermore, the different CL intensities and CL behaviors due to the different surface groups on these two kinds of carbon nanoparticles were confirmed. CL spectra, fluorescence spectra, UV–vis absorption spectra, and electron paramagnanetic resonance spectra were applied to investigate the CL mechanism. The main reaction pathways were proposed as follows: for the CL reaction between CDs and KMnO{sub 4}, the excited states of CDs (CDs{sup ⁎}) and Mn(II) (Mn(II){sup ⁎}) emerged as KMnO{sub 4} could inject holes into CDs, then, the CDs{sup ⁎} and Mn(II){sup ⁎} acted as luminophors to yield CL; in the r-CDs-KMnO{sub 4} system, r-CDs were oxidized by KMnO{sub 4} directly, and CDs{sup ⁎} and Mn(II){sup ⁎} were produced, at the same time, CL occurred. What is more interesting is that the CL intensity of the r-CD system is stronger than that of the CD system, which confirms that functional groups have strong effect on the CL behavior. It inspired us that new carbon nanoparticles with excellent luminous performance can be designed by tuning their surface groups. -- Highlights: • Carbon dots (CDs) and reduced state carbon dots (r-CDs) can react with potassium permanganate (KMnO{sub 4}) in a strong acid to generate chemiluminescence (CL). • With different surface groups, the CL intensity of r-CDs-KMnO{sub 4} system is different from that of CDs-KMnO{sub 4} system. • The CL mechanisms of the two systems were investigated.

  3. Spectral shifts and structures of phenol center dot center dot center dot Ar-n clusters

    Armentano, A.; Černý, Jiří; Riese, M.; Taherkhani, M.; Ben Yezzar, M.; Muller-Dethlefs, K.

    2011-01-01

    Roč. 13, č. 13 (2011), s. 6077-6084 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z50520701 Keywords : VAN-DER-WAALS * BENZENE-ARGON CLUSTERS * INFRARED-SPECTRA Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  4. DOT's CAFE rulemaking analysis.

    2013-02-13

    Presentation discusses what DOT needs to consider in setting CAFE standards. How DOT's use of the CAFE Compliance and Effects Modeling System helps to analyze potential CAFE Standards. How DOT might approach the next round of CAFE standards for model...

  5. Perfil de sujeitos de pesquisa clínica em um centro ambulatorial independente Profile of clinical research subjects in an independent outpatient center

    Paulo Gustavo Sampaio Lacativa

    2008-06-01

    Full Text Available Este artigo tem como objetivos avaliar a qualidade de atendimento de um centro de pesquisa clínica e o entendimento do termo de consentimento informado (TCLE; determinar os motivos da participação e detalhar níveis socioeconômicos. Foi feito um estudo transversal em centro de pesquisa ambulatorial, através de questionário auto-explicativo. Dos cem questionários avaliados, todos os sujeitos de pesquisa consideraram o centro como ótimo (86% ou bom (9%. A quase totalidade foi bem informada do conteúdo do TCLE e o conhecimento do direito "confidencialidade", comum a todos os TCLEs, foi seis vezes maior que " acesso aos dados", que não faz parte. Os principais motivos para participarem foram para "saber mais sobre a sua saúde" (59% e para "beneficiar outras pessoas no futuro" (47%. A principal faixa de renda salarial dos participantes foi entre dois e cinco salários mínimos (48% e a maioria (66% concluiu pelo menos até a 4º série do ensino fundamental. A população possui o mesmo perfil econômico do Rio de Janeiro, nível de escolaridade suficiente para assinar e compreender o que está assinando, conhecendo não só a existência do TCLE, mas demonstrando conhecer seu conteúdo. O motivo principal para participação é para autobenefício e por atitude altruísta.This paper assesses the quality of assistance in a clinical trial outpatient center as well as the patients´understanding of the informed consent (IC; determine the reasons why they participate and detail socio-economic levels. A cross-sectional study was adopted in a clinical trial outpatient center using a self-explanatory questionnaire. All 100 respondents considered the assistance at the center excellent (86% or good (9%. Almost all of them were well informed about the content of the IC. Their knowledge about the right to "confidentiality", present in all ICs, was 6 times higher than their knowledge about their right to "access the results", generally not included

  6. Effects of supported (nBuCp)2ZrCl2 catalyst active center multiplicity on crystallization kinetics of ethylene homo- and copolymers

    Atiqullah, Muhammad; Adamu, Sagir; Hossain, Mohammad Mozahar; Al-Harthi, Mamdouh A.; Anantawaraskul, Siripon; Hossaen, Anwar

    2014-01-01

    Two different supported zirconocene, that is, bis(n-butylcyclopentadienyl) zirconium dichloride (nBuCp)2ZrCl2, catalysts were synthesized. Each catalyst was used to prepare one ethylene homopolymer and one ethylene-1-hexene copolymer. Catalyst

  7. Infrared studies of ortho-para conversion at Cl-atom and H-atom impurity centers in cryogenic solid hydrogen

    Raston, P.L.; Kettwich, S.C.; Anderson, D.T.

    2010-01-01

    We report infrared spectroscopic studies of H 2 ortho-para (o/p) conversion in solid hydrogen doped with Cl-atoms at 2 K while the Cl + H 2 (υ = 1) → HCl + H infrared-induced chemical reaction is occurring. The Cl-atom doped hydrogen crystals are synthesized using 355 nm in situ photodissociation of Cl 2 precursor molecules. For hydrogen solids with high ortho-H 2 fractional concentrations (X o = 0.55), the o/p conversion kinetics is dominated by Cl-atom catalyzed conversion with a catalyzed conversion rate constant K cc = 1.16(11) min -1 and the process is rate-limited by ortho-H 2 quantum diffusion. For hydrogen crystals with low ortho-H2 concentrations (X o = 0.03), single-exponential decay of the ortho-H 2 concentration with time is observed which is attributed to H-atom catalyzed o/p conversion by the H-atoms produced during the infrared-induced Cl + H 2 reaction. The measured H-atom catalyzed o/p conversion kinetics indicates the H-atoms are mobile under these conditions in agreement with previous ESR measurements.

  8. Analytical investigation of AlCl[3]/SO[2]Cl[2] catholyte materials for secondary fuze reserve batteries.

    Butler, Paul Charles; Rodriguez, Mark Andrew; Segall, Judith M.; Malizia, Louis A., Jr.; Cherry, Brian Ray; Andrews, Nicholas L.; Clark, Nancy H.; Alam, Todd Michael; Ingersoll, David T.; Tallant, David Robert; Simpson, Regina Lynn; Boyle, Timothy J.; Garcia, Manuel Joseph

    2004-05-01

    Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a role in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2

  9. Room-temperature synthesis of MnMoO{sub 4}{center_dot}H{sub 2}O nanorods by the microemulsion-based method and its photocatalytic performance

    Mi Yan; Huang Zaiyin; Zhou Zeguang; Hu Feilong; Meng Qiufeng [College of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006 (China)], E-mail: hzy210@yahoo.cn

    2009-09-01

    Manganese molybdate hydrates (MnMoO{sub 4}{center_dot}H{sub 2}O) nanorods have been synthesized at room temperature by a facile water-in-oil reverse microemulsion method. This technique was carried out in the reverse microemulsion of OP-10 (Polyoxyethylene octylphenol ether)-n-octanol-water-cyclohexane with a water/surfactant molar ratio {omega} = 10. Field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that the diameters of these formed nanorods about 70 nm and lengthe up to 4 {mu}m, respectively. High-resolution transmission electron microscopy (HRTEM) results showed that each nanorod was formed by serveral nanobelts which are stacked by a layer-by-layer process. These unique nanorods demonstrate good photocatalytic properties.

  10. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot

    Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.

  11. Nature of active centers of catalytic system of VOCl/sub 3/ - Al(C/sub 2/H/sub 5/)/sub 2/Cl

    Dubnikova, I L; Meshkova, I N [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1977-05-01

    To investigate the nature of the active sites of the catalyst VOCl/sub 3/-Al(C/sub 2/H/sub 5/)/sub 2/Cl during olefine polymerization, the following factors have been studied: composition and catalytic activity of homogeneous and heterogeneous components of the system, valent state of vanadium entering into the composition of the catalytic sites, effect of an organoaluminium component on the catalytic activity of the system, and the properties of the polymeric products being formed. It has been shown that the catalytic sites of the system VOCl/sub 3/-Al(C/sub 4/H/sub 5/)/sub 2/Cl are located, predominantly, in the heterogeneus phase of the catalyst. A conclusion has been made that heterogeneous catalytic sites are bimetal complexes of alkyl derivatives of vanadium trichloride and aluminuim alkylchlorides and that polycentral mechanism of catalysis of olefine polymerization in the presence of VOCl/sub 3/-Al(C/sub 2/H/sub 5/)/sub 2/Cl is caused by two types of active vanadium-aluminium complexes differing in the nature of an organoaluminium component.

  12. Quantifying Local and Cooperative Components in the Ferroelectric Distortion of BaTiO3: Learning from the Off-Center Motion in the MnCl65– Complex Formed in KCl:Mn+

    García Lastra, Juan Maria; García-Fernández, P.; Calle-Vallejo, F.

    2014-01-01

    → C4v → Oh local transformations occurring in the 10–50 K temperature range for the MnCl65– complex formed in KCl:Mn+ that mimic the behavior of BaTiO3. From Boltzmann analysis of the vibronic levels derived from ab initio calculations and considering decoherence introduced by random strains......, the present calculations reproduce the experimental phase sequence and transition temperatures. Furthermore, our calculations show that the off-center instability in KCl:Mn+ would be suppressed by reducing by only 1% the lattice parameter, a situation that then becomes comparable to that found for BaTiO3...

  13. [Analysis on workload for hospital DOTS service].

    Nagata, Yoko; Urakawa, Minako; Kobayashi, Noriko; Kato, Seiya

    2014-04-01

    A directly observed treatment short course (DOTS) trial was launched in Japan in the late 1990s and targeted patients with social depression at urban areas. Based on these findings, the Ministry of Health, Labour and Welfare established the Japanese DOTS Strategy in 2003, which is a comprehensive support service ensuring the adherence of tuberculosis patients to drug administration. DOTS services are initially provided at the hospital to patients with infectious tuberculosis who are hospitalized according to the Infectious Diseases Control Law. After being discharged from the hospital, the patients are referred to a public health center. However, a survey conducted in 2008 indicated that all the patients do not receive appropriate DOTS services at some hospitals. In the present study, we aimed to evaluate the protocols and workload of DOTS at hospitals that are actively involved in tuberculosis medical practice, including DOTS, to assess whether the hospital DOTS services were adequate. We reviewed a series of articles on hospital DOTS from a Japanese journal on nursing for tuberculosis patients and identified 25 activities regarding the hospital DOTS service. These 25 items were then classified into 3 categories: health education to patients, support for adherence, and coordination with the health center. In total, 20 hospitals that had > 20 authorized tuberculosis beds were selected--while considering the geographical balance, schedule of this survey, etc.--from 33 hospitals where an ex-trainee of the tuberculosis control expert training program in the Research Institute of Tuberculosis (RIT) was working and 20 hospitals that had collaborated with our previous survey on tuberculosis medical facilities. All the staff associated with the DOTS service were asked to record the total working time as well as the time spent for each activity. The data were collected and analyzed at the RIT. The working times for each activity of the DOTS service for nurses, pharmacists

  14. Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 - y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4.MgSO4(aq) at 298.15 K

    Miladinovic, J; Ninkovic, R; Todorovic, M; Rard, J A

    2007-06-06

    Isopiestic vapor pressure measurements were made for {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions with MgCl{sub 2} ionic strength fractions of y = 0, 0.1997, 0.3989, 0.5992, 0.8008, and (1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements for the mixtures cover the ionic strength range I = 0.9794 to 9.4318 mol {center_dot} kg{sup -1}. In addition, isopiestic measurements were made with NaCl(aq) as reference standard for mixtures of {l_brace}xNa{sub 2}SO{sub 4} + (1-x)MgSO{sub 4}{r_brace}(aq) with the molality fraction x = 0.50000 that correspond to solutions of the evaporite mineral bloedite (astrakanite), Na{sub 2}Mg(SO{sub 4}){sub 2} {center_dot} 4H{sub 2}O(cr). The total molalities, m{sub T} = m(Na{sub 2}SO{sub 4}) + m(MgSO{sub 4}), range from m{sub T} = 1.4479 to 4.4312 mol {center_dot} kg{sup -1} (I = 5.0677 to 15.509 mol {center_dot} kg{sup -1}), where the uppermost concentration is the highest oversaturation molality that could be achieved by isothermal evaporation of the solvent at 298.15 K. The parameters of an extended ion-interaction (Pitzer) model for MgCl2(aq) at 298.15 K, which were required for an analysis of the {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) mixture results, were evaluated up to I = 12.025 mol {center_dot} kg{sup -1} from published isopiestic data together with the six new osmotic coefficients obtained in this study. Osmotic coefficients of {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions from the present study, along with critically-assessed values from previous studies, were used to evaluate the mixing parameters of the extended ion-interaction model.

  15. Optically active centers in Eu implanted, Eu in situ doped GaN, and Eu doped GaN quantum dots

    Bodiou, L.; Braud, A.; Doualan, J.-L.; Moncorge, R.; Park, J. H.; Munasinghe, C.; Steckl, A. J.; Lorenz, K.; Alves, E.; Daudin, B.

    2009-01-01

    A comparison is presented between Eu implanted and Eu in situ doped GaN thin films showing that two predominant Eu sites are optically active around 620 nm in both types of samples with below and above bandgap excitation. One of these sites, identified as a Ga substitutional site, is common to both types of Eu doped GaN samples despite the difference in the GaN film growth method and in the doping technique. High-resolution photoluminescence (PL) spectra under resonant excitation reveal that in all samples these two host-sensitized sites are in small amount compared to the majority of Eu ions which occupy isolated Ga substitutional sites and thus cannot be excited through the GaN host. The relative concentrations of the two predominant host-sensitized Eu sites are strongly affected by the annealing temperature for Eu implanted samples and by the group III element time opening in the molecular beam epitaxy growth. Red luminescence decay characteristics for the two Eu sites reveal different excitation paths. PL dynamics under above bandgap excitation indicate that Eu ions occupying a Ga substitutional site are either excited directly into the 5 D 0 level or into higher excited levels such as 5 D 1 , while Eu ions sitting in the other site are only directly excited into the 5 D 0 level. These differences are discussed in terms of the spectral overlap between the emission band of a nearby bound exciton and the absorption bands of Eu ions. The study of Eu doped GaN quantum dots reveals the existence of only one type of Eu site under above bandgap excitation, with Eu PL dynamics features similar to Eu ions in Ga substitutional sites

  16. NRC committee on assessment of technologies for improving fuel economy of light-duty vehicles: Meeting with DOT Volpe Center staff - February 27, 2013

    2013-02-27

    On February 27, 2013 National Research Council's Committee on Fuel Economy of Light-Duty Vehicles, Phase 2 held a meeting at the John A. Volpe National Transportation Systems Center on the Volpe Model and Other CAFE Issues. The meeting objectives wer...

  17. The first 3D malonate bridged copper [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: Structure, properties and electronic structure

    Seguatni, A., E-mail: seguatni@gmail.com [LBPC-INSERM U 698, Institut Galilee, Universite Paris XIII, 99, avenue J. B. Clement 93430, Villetaneuse (France); Fakhfakh, M. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada); Smiri, L.S. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Gressier, P.; Boucher, F. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Jouini, N. [Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada)

    2012-03-15

    A new inorganic-organic compound [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)-malonic acid-H{sub 2}O. Its framework is built up through carboxyl bridged copper where CuO{sub 6} octahedra are elongated with an almost D{sub 4h} symmetry (4+2) due to the Jahn-Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2-300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U{sub eff} value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: the first 3D hybrid organic-inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: Black-Right-Pointing-Pointer A new organic-inorganic material with an unprecedented topology is synthesized. Black-Right-Pointing-Pointer Crystallographic structure is determined using single crystal X-ray diffraction. Black-Right-Pointing-Pointer Electronic structure is obtained from DFT, GGA+U calculation. Black-Right-Pointing-Pointer Framework can be described as formed from CuC{sub 4} tetrahedron sharing four corners. Black-Right-Pointing-Pointer This structure can be classified as an extended diamond structure.

  18. Nonlinear Dot Plots.

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  19. Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures

    Birman, Joseph L.; Huong, Nguyen Que

    2007-01-01

    The formation of a hybridization state of Wannier Mott exciton and Frenkel exciton in different hetero-structure configurations involving quantum dots is investigated. The hybrid excitons exist at the interfaces of the semiconductors quantum dots and the organic medium, having unique properties and a large optical non-linearity. The coupling at resonance is very strong and tunable by changing the parameters of the systems (dot radius, dot-dot distance, generation of the organic dendrites and the materials of the system etc...). Different semiconductor quantum dot-organic material combination systems have been considered such as a semiconductor quantum dot lattice embedded in an organic host, a semiconductor quantum dot at the center of an organic dendrite, a semiconductor quantum dot coated by an organic shell

  20. Laser-induced positive ion and neutral atom/molecule emissions from single-crystal CaHPO4 center dot 2H20: The role of electron-beam-induced defects

    Dawes, Mary L.; Hess, Wayne P.; Kawaguchi, Yuji; Langford, S C.; Dickinson, J. Tom

    1998-01-01

    We examine laser-induced ion and neutral emissions from single-crystal CaHPO4 center dot 2H2O (brushite), a wide-band-gap, hydrated inorganic single crystal, with 248-nm excimer laser radiation. Both laser-induced ion and neutral emissions are several orders magnitude higher following exposure to 2keV electrons at current densities of 200 uA/cm2 and doses of 1 C/cm2. In addition to intense Ca+ signals, electron-irradiated surfaces yield substantial CaO+, PO+, and P+ signals. As-grown and as-cleaved brushite show only weak neutral O2 and Ca emissions, whereas electron-irradiated surfaces yield enhanced O2, Ca, PO, PO2, and P emissions. Electron irradiation (i) significantly heats the sample, leading to thermal dehydration (CaHPO4 formation) and pyrolysis (Ca2P2O7 formation)and (ii) chemically reduces the surface via electron stimulated desorption. The thermal effects are accompanied by morphological changes, including recrystallization. Although complex, these changes lead to high defect densities, which are responsible for the dramatic enhancements in the observed laser desorption

  1. La Clínica del Pueblo: a model of collaboration between a private media broadcasting corporation and an academic medical center for health education for North Carolina Latinos.

    Calles-Escandón, Jorge; Hunter, Jaimie C; Langdon, Sarah E; Gómez, Eva M; Duren-Winfield, Vanessa T; Woods, Kristy F

    2009-12-01

    La Clínica del Pueblo, a health education collaboration between the Maya Angelou Center for Health Equity at Wake Forest University School of Medicine and Qué Pasa Media, Inc., disseminates culturally appropriate health information to the North Carolina (NC) Latino community. The program includes a weekly radio show and corresponding newspaper column addressing four areas: childhood health, adult health, safety, and utilization. The radio show format includes a didactic presentation followed by a call-in question and answer period. Over 200 consecutive weeks of programming have been completed, averaging 11 calls per show. A Latino healthcare resource guide and hotline also provide resource information. Participant demographic information indicates that 50% of the target population comes from Mexico, 60% are women, and 70% of the community is younger than 38 years. There was an increase in the use of the media as a source of health information over the course of the project, from an initial 33% of respondents to 58% in the last survey. Listenership to La Clínica del Pueblo displayed a pronounced increase (18% initial survey to 55% in last survey, P education level (P < 0.0001), female gender (P < 0.01) and radio listenership (P < 0.05). The first three variables predicted higher scores; however, radio listening recognition of our radio program was more common among individuals who had lower scores. In conclusion, La Clínica del Pueblo is a model for a novel approach that can reach the Latino community to improve medical knowledge and possibly affect health behaviors in a positive manner.

  2. From DOT to Dotty

    CERN. Geneva

    2017-01-01

    - Module types are interfaces, which can be abstracted. In this talk Martin will present DOT, a particularly simple calculus that can express systems following these principles. DOT has been developed as the foundation of the next version of Scala. He will also report on dotty, a new Scala compiler that implements the constructs of DOT in its core data structures and that uses the lessons learned to drive Scala’s evolution.

  3. Transport in quantum dots

    Deus, Fernanda; Continetino, Mucio

    2011-01-01

    Full text. In this work we study the time dependent transport in interacting quantum dot. This is a zero-dimensional nano structure system which has quantized electronic states. In our purpose, we are interested in studying such system in a Coulomb blockade regime where a mean-field treatment of the electronic correlations are appropriate. The quantum dot is described by an Anderson type of Hamiltonian where the hybridization term arises from the contact with the leads. We consider a time dependence of both the energy of the localized state in the quantum dot and of the hybridization-like term. These time dependent parameters, under certain conditions, induce a current in the quantum dot even in the absence of difference on the chemical potential of the leads. The approach to this non-equilibrium problem requires the use of a Keldysh formalism. We calculate the non- equilibrium Green's functions and obtain results for the average (equilibrium term) and the non-equilibrium values of the electronic occupation number in the dot. we consider the possibility of a magnetic solution, with different values for the average up and down spins in the quantum dot. Our results allow to obtain, for instance, the tunneling current through the dot. The magnetic nature of the dot, for a certain range of parameters should give rise also to an induced spin current through the dot

  4. Outline in 1997 Japan compound material academic meeting technological prize winning technology. Kenchiku, doboku kozobutsu no hoshu[center dot]hokyo yo forukatousito no kaihatsu

    Iba, Yoshitomo.; Uemura, Masahiko.; Murakami, Shinkichi.; Saito, Makoto.; Kobayashi, Akira. (Nittetsu Composite Corp., Tokyo (Japan))

    1999-03-15

    That function declines in the sutra time target, and it is finally destroyed, or a construction structure thing bears putting off that life by managing efficient maintenance it is possible. The factor of the function decline of the structure thing, the degree of the decline, and so on are grasped quantitatively, and efficient repair reinforcement time and a method of construction are chosen, and you must carry it out for that. It is paying attention to the development of the method of construction to reinforce the maintenance repair of the construction structure thing by using the tip compound factor from such a viewpoint. In the beginning, a material cost was very expensive, and the recognition not to use it was very general in such a construction field. In such recognition, in Tonen Corp. incorporated company, it has paid attention to the use possibility in the construction field of the tip compound factor since early, research and development have been done continuously from 1980, that It succeeds in, and it is the method of construction that a repair reinforces a concrete structure thing by the tip material that the method of construction which got the technological prize of the Japan compound material academic meeting in 1997 moved carbon fiber to the center. (NEDO)

  5. Outline in 1997 Japan compound material academic meeting technological prize winning technology; Kenchiku, doboku kozobutsu no hoshu{center_dot}hokyo yo forukatousito no kaihatsu

    Iba, Yoshitomo.; Uemura, Masahiko.; Murakami, Shinkichi.; Saito, Makoto.; Kobayashi, Akira. [Nittetsu Composite Corp., Tokyo (Japan)

    1999-03-15

    That function declines in the sutra time target, and it is finally destroyed, or a construction structure thing bears putting off that life by managing efficient maintenance it is possible. The factor of the function decline of the structure thing, the degree of the decline, and so on are grasped quantitatively, and efficient repair reinforcement time and a method of construction are chosen, and you must carry it out for that. It is paying attention to the development of the method of construction to reinforce the maintenance repair of the construction structure thing by using the tip compound factor from such a viewpoint. In the beginning, a material cost was very expensive, and the recognition not to use it was very general in such a construction field. In such recognition, in Tonen Corp. incorporated company, it has paid attention to the use possibility in the construction field of the tip compound factor since early, research and development have been done continuously from 1980, that It succeeds in, and it is the method of construction that a repair reinforces a concrete structure thing by the tip material that the method of construction which got the technological prize of the Japan compound material academic meeting in 1997 moved carbon fiber to the center. (NEDO)

  6. ?????????? ?????, ?????????? ??????????? ?? ?????????? ?????????? ????? ? ?????? ???????? ZnCl2 +NH4Cl

    Kuntyi, Orest; Zozulya, Galyna

    2010-01-01

    Zinc cementation by magnesium from ZnCl2 + NH4Cl aqueous solutions has been investigated. The amount of magnesium has been established as 0.8?2.0 g per 1 g of conditioned zinc to obtain recovery degree ? 99 %. At low concentrations of Zn2+ ions (0.025?0.1 M ZnCl2) dispersed deposit is formed with nanoparticles of reduced metal; at high concentrations (0.25?0.5 M) coarse-crystalline and fern-shaped deposit is formed. ?????????? ?????????? ????? ??????? ? ?????? ???????? ZnCl2 + NH4Cl. ????????...

  7. On the origin of the substantial stabilisation of the electron-donor 1,3-dithiole-2-thione-4-carboxyclic acid center dot center dot center dot I-2 and DABCO center dot center dot center dot I-2 complexes

    Deepa, Palanisamy; Sedlák, Robert; Hobza, Pavel

    2014-01-01

    Roč. 16, č. 14 (2014), s. 6679-6686 ISSN 1463-9076 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : density functional theory * Kohn-Sham orbitals * basis set limit Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014

  8. Local and Nanoscale Structure and Speciation in the PuO{sub 2+x-y}(OH){sub 2y} {center_dot}zH{sub 2}O System

    Conradson, Steven D.; Begg, Bruce D.; Clark, David L.; Den Auwer, Christophe J.; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Haire, Richard G.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Morales, Luis A.; Neu, Mary P.; Paviet-Hartmann, Patricia; Runde, Wolfgang; Tait, C DREW.; Veirs, D. Kirk; Villella, Phillip M.

    2004-09-26

    Pu L3 X-ray absorption fine structure spectra from 24 samples of PuO{sub 2+x} (and two related Pu substituted oxides), prepared by a variety of methods, demonstrate that (1) although the Pu sublattice remains the ordered part of the Pu distribution, the nearest-neighbor O atoms even at x = 0 are found in a multisite distribution with Pu-O distances consistent with the stable incorporation of OH{sup -} (and possibly H{sub 2}O and H{sup +}) into the PuO{sub 2} lattice; (2) the excess O from oxidation is found at Pu-O distances <1.9 {angstrom}, consistent with the multiply bound ''oxo''-type ligands found in molecular complexes of Pu(V) and Pu(VI); (3) the Pu associated with these oxo groups is most likely Pu(V), so that the excess O probably occurs as PuO{sub 2}{sup +} moieties that are aperiodically distributed through the lattice; and (4) the collective interactions between these defect sites most likely cause them to cluster so as give nanoscale heterogeneity in the form of domains that may have unusual reactivity, observed as sequential oxidation by H{sub 2}O at ambient conditions. The most accurate description of PuO{sub 2} is therefore actually PuO{sub 2+x-y}(OH){sub 2y} {center_dot} zH{sub 2}O, with pure, ordered, homogeneous PuO{sub 2} attained only when H{sub 2}O is rigorously excluded and the O activity is relatively low.

  9. Photocatalytic production of {sup 1}O{sub 2} and {center_dot}OH mediated by silver oxidation during the photoinactivation of Escherichia coli with TiO{sub 2}

    Castro, Camilo A. [Centro de Investigaciones en Catalisis, Escuela de Ingenieria Quimica, Universidad Industrial de Santander (UIS), A.A. 678, Bucaramanga (Colombia); Institute of Chemical Sciences and Engineering, GGEC, Swiss Federal Institute of Technology (EPFL), Station 6, CH-1015, Lausanne (Switzerland); Osorio, Paula [Institute of Chemical Sciences and Engineering, GGEC, Swiss Federal Institute of Technology (EPFL), Station 6, CH-1015, Lausanne (Switzerland); Sienkiewicz, Andrzej [Laboratory of Complex Matter Physics, Institute of Physics of Condensed Matter, EPFL, Station 3, CH-1015, Lausanne (Switzerland); Pulgarin, Cesar, E-mail: cesar.pulgarin@epfl.ch [Institute of Chemical Sciences and Engineering, GGEC, Swiss Federal Institute of Technology (EPFL), Station 6, CH-1015, Lausanne (Switzerland); Centeno, Aristobulo [Centro de Investigaciones en Catalisis, Escuela de Ingenieria Quimica, Universidad Industrial de Santander (UIS), A.A. 678, Bucaramanga (Colombia); Giraldo, Sonia A., E-mail: sgiraldo@uis.edu.co [Centro de Investigaciones en Catalisis, Escuela de Ingenieria Quimica, Universidad Industrial de Santander (UIS), A.A. 678, Bucaramanga (Colombia)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Metallic silver enhances the Ag-TiO{sub 2} photoinactivation of Escherichia coli under Vis irradiation. Black-Right-Pointing-Pointer {sup 1}O{sub 2} and {center_dot}OH were identified in Vis irradiated Ag-TiO{sub 2} suspensions. Black-Right-Pointing-Pointer UV oxidized the Ag metallic species in the material decreasing photoactivity. Black-Right-Pointing-Pointer Dark contact of the UV oxidized material with E. coli regenerates the photocatalyst. - Abstract: Ag loaded TiO{sub 2} was applied in the photocatalytic inactivation of Escherichia coli under ultraviolet (UV) and visible (Vis) light irradiations. Ag enhanced the TiO{sub 2} photodisinfecting effect under Vis irradiation promoting the formation of singlet oxygen and hydroxyl radicals as identified by EPR analyses. Ag nanoparticles, determined on TEM analyses, undergo an oxidation process on the TiO{sub 2}'s surface under UV or Vis irradiation as observed by XPS. In particular, UV pre-irradiation of the material totally diminished its photodisinfection activity under a subsequent Vis irradiation test. Under UV, photodegradation of dichloroacetic acid (DCA), attributed to photoproduced holes in TiO{sub 2}, was inhibited by the presence of Ag suggesting that oxidation of Ag{sup 0} to Ag{sup +} and Ag{sup 2+} is faster than the oxidative path of the TiO{sub 2}'s holes on DCA molecules. Furthermore, photoassisted increased of Ag{sup +} concentration on TiO{sub 2}'s surface enhances the bacteriostatic activity of the material in dark periods. Indeed, this latter dark contact of Ag{sup +}-TiO{sub 2} and E. coli seems to induce recovering of the Vis light photoactivity promoted by the surface Ag photoactive species.

  10. Cesium and strontium incorporation into uranophane, Ca[(UO{sub 2})(SiO{sub 3}OH)]{sub 2}{center_dot}5H{sub 2}O

    Douglas, Matthew; Clark, Sue B. [Washington State Univ., Chemistry Dept. and Center for Multiphase Environmental Research, WA (United States); Utsunomiya, Satoshi; Ewing, Rodney C. [University of Michigan, Nuclear Engineering and Radiological Sciences Dept., Ann Arbor, MI (United States)

    2002-11-01

    The uranyl silicate solid uranophane, Ca[(UO{sub 2})(SiO{sub 3}OH)]{sub 2}{center_dot}5H{sub 2}O, is likely an important secondary solid that forms in the alteration of spent nuclear fuel. This 1:1 U(VI)-silicate structure may serve as a host for the incorporation of fission products such as {sup 137}Cs or {sup 90}Sr by substitution of Ca{sup 2+} in interlayer spaces in the solid. We have investigated this possibility by synthesizing 1:1 U(VI)-silicate solids where the Ca{sup 2+} is completely or partially replaced by either Sr{sup 2+} or Cs{sup +}. The solids obtained have been characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), and elemental analysis. We observe that the Sr{sup 2+} analog of uranophane yields a diffractogram that resembles the XRD pattern obtained for synthetic uranophane, although the morphology of the solid is different from uranophane. Conversely, substitution of Cs{sup +} for Ca{sup 2+} in the synthesis of the 1:1 uranyl-silicate solid yields a very different diffractogram but solid phase morphology similar to uranophane. When Ca{sup 2+} is partially replaced in the synthesis, the diffractograms appear to be similar to uranophane for both the Sr{sup 2+} an Cs{sup +} systems, but SEM indicates that a mixture of solid phases are formed. We describe and summarize our results, and propose additional studies to address the question of whether these cations are incorporated into the uranophane solid. (author)

  11. Quantum Dots: Theory

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  12. Quantum dot spectroscopy

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  13. Quantum dot spectroscopy

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  14. Synthesis of quantum dots

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  15. S center dot center dot center dot N chalcogen bonded complexes of carbon disulfide with diazines. Theoretical study

    Zierkiewicz, W.; Fanfrlík, Jindřich; Michalczyk, M.; Michalska, D.; Hobza, Pavel

    2018-01-01

    Roč. 500, Jan 26 (2018), s. 37-44 ISSN 0301-0104 Institutional support: RVO:61388963 Keywords : chalcogen bond * carbon disulfide * diazines * DFT Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.767, year: 2016

  16. B-H center dot center dot center dot pi: a nonclassical hydrogen bond or dispersion contact?

    Fanfrlík, Jindřich; Pecina, Adam; Řezáč, Jan; Sedlák, Robert; Hnyk, Drahomír; Lepšík, Martin; Hobza, Pavel

    2017-01-01

    Roč. 19, č. 28 (2017), s. 18194-18200 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GA17-08045S Institutional support: RVO:61388963 ; RVO:61388980 Keywords : perturbation theory * intermolecular interactions * interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Physical chemistry; Inorganic and nuclear chemistry (UACH-T) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp02762a

  17. Gunn's dots in retinal images of 2,286 adolescents

    Boberg-Ans, Lars C.; Munch, Inger C.; Larsen, Michael

    2017-01-01

    a 6 mm grid centered on the optic disc. Results: One or more Gunn's dots were seen in at least one eye in 82.6% of children. The median number of Gunn's dots per eye was 46 (range 0-482). Most Gunn's dots were found inferior and superior of the optic disc (49.3% and 45.8%, respectively, of the total...... number of Gunn's dots in the population). The odds for having 1 or more Gunn's dots were 3-fold greater in children with dark brown irides compared with children with blue irides (odds ratio 2.99, 95% CI 1.81 to 4.94, P, 0.0001 adjusted for age, sex, retinal nerve fiber layer thickness, refraction...

  18. Environmental conditions influence for real-time hologram formation on dichromated polyvinyl alcohol NiCl{sub 2}{center_dot}6H{sub 2}O doped films

    Fontanilla-Urdaneta, R C; Olivares-Perez, A; Fuentes-Tapia, I; Rios-Velasco, M A, E-mail: rfontanilla@inaoep.mx, E-mail: olivares@inaoep.mx, E-mail: ifuentes@inaoep.mx, E-mail: moni_arv@hotmail.com [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis Enrique Erro No. 1 Tonantzintla, Puebla (Mexico)

    2011-01-01

    The real-time holographic gratings recording are studied by the presence of a metallic salt. The experimental process refers to analysis of diffraction efficiency by the influence of humidity in the coating solution on holograms formation in presence of electrical potential. The diffraction efficiency is measured as a function of the exposure energy until reach the saturation. The influence of the hologram parameters to get the diffraction efficiency is studied at room conditions.

  19. Quantum dot molecules

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  20. Graphene quantum dots

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  1. Processos clínicos em Núcleos de Apoio à Saúde da Família / NASF: estágio supervisionado Procesos clínicos en Núcleos de Apoyo a la Salud de la Familia (NASF: pasantía supervisionada Clinical processes in Family Health Care Center: supervised training course

    Tales Vilela Santeiro

    2012-01-01

    intervención supervisada, en trámite desde 2011. En la realidad retratada, actividades de enseñanza y aprendizaje en Psicología clínica en sus interfaces con la salud pública han ocurrido entre distintas demandas: las de los usuarios, comprendidos como singulares y representantes del entorno social, y las de la formación en Psicología, comprimidas entre imperativos vinculados a las políticas públicas de enseñanza superior y de salud pública. Hay ponderaciones sobre el costo emocional que se les impone a los practicantes en busca de identidad profesional en ese contexto. Articular distintas necesidades permanece como un desafío a ser vivido y constantemente reflexionado por profesionales y estudiantes de Psicología clínica.The connection between psychology and public health has become narrowed in recent years, aiming at the consolidation of the profession in its commitments to the Brazilian reality. This article discusses the role of the integration of clinical psychology to Family Health Care Centers (NASFs, equipments of the Brazilian Unified Health System. Focused discussions result from supervised training courses developed by students from a public university in a small town in the interior of the Midwest. The activities take place on 5 NASFs and account for 16 weeks of theoretical and supervised intervention per semester, which have been ongoing since 2011. In the reality portrayed, teaching and learning in clinical psychology interfaced with public health have occurred between different demands: the users', understood as individuals and social environment representatives, and those of training in Psychology, compressed into imperatives linked to public policies on higher education and public health. There are considerations about the emotional cost that arises for the trainees who seek professional identity in this context. Articulating distinct needs remains a challenge to be faced and constantly reflected by professionals and clinical psychology

  2. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  3. Randomized study of initial treatment with radiationter dot MCNU or radiationter dot MCNUter dot interferon-. beta. for malignant glioma

    Kiya, Katsuzo; Uozumi, Tohru; Kurisu, Kaoru (Hiroshima Univ. (Japan). School of Medicine) (and others)

    1990-02-01

    The efficacy of radiation{center dot}MCNU (MR group) or radiation{center dot}MCNU{center dot}interferon-{beta} (IMR group) for malignant glioma was studied by a randomized trial at numerous medical facilities. MR group was irradiated with 50{approx}60 Gy and intravenously injected with 2 mg/kg of MCNU on the initial day of irradiation and 6 weeks later. IMR group was also given intravenous administration of interferon-{beta} at the dose of 2x10{sup 6}IU/m{sup 2} for 5 serial-days every eight weeks. There was no difference in background between the two groups. The response rate in MR group and IMR group was 44.4% (4/9) and 30.0% (3/10), respectively, showing no significant difference. The resected tumor volume before the start of these regimens seemed to correlate the response to the treatment in both groups. The major toxicity was myelosuppression, especially using MCNU with interferon-{beta}. These results indicated that this combined therapy is effective for malignant glioma, and should be executed further trials and follow up study. (author).

  4. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  5. Featured Image: Bright Dots in a Sunspot

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  6. Hexagonal graphene quantum dots

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  7. Quantum dot solar cells

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  8. Hexagonal graphene quantum dots

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  9. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Banavoth, Murali; Sarmah, Smritakshi P.; Yuan, Mingjian; Sinatra, Lutfan; AlYami, Noktan; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N.; Mohammed, Omar F.; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H.; Bakr, Osman

    2016-01-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  10. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  11. Chemiluminescence of graphene quantum dots and its application to the determination of uric acid

    Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba

    2014-01-01

    We report on the chemiluminescence (CL) of graphene quantum dots (GQDs) induced by direct chemical oxidation. GQDs were prepared by a simple carbonization method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and Raman spectroscopy. It was found that Ce(IV) could oxidize GQDs to produce a relatively intense CL emission. The mechanism of CL generation was investigated based on the fluorescence and CL emission spectra. It was attributed to the radiative recombination of oxidant-injected holes and thermally excited electrons in the GQDs. In order to show the analytical application potential of GQDs-Ce(IV) CL system, it was applied to the determination of uric acid. Under the optimized conditions, the proposed CL system exhibited excellent analytical performance for determination of uric acid in the range of 1.0×10 −6 M–5.0×10 −4 M with a limit of detection of 5.0×10 −7 M. The method was applied to the determination of uric acid in human plasma and urine samples, with satisfactory results. - Highlights: • Chemiluminescence of graphene quantum dots by direct oxidation was studied. • Intense CL is produced by reaction of graphene quantum dots with Ce(IV). • The new CL system was applied to determination of uric acid in plasma and urine

  12. Chemiluminescence of graphene quantum dots and its application to the determination of uric acid

    Amjadi, Mohammad, E-mail: amjadi@tabrizu.ac.ir; Manzoori, Jamshid L.; Hallaj, Tooba

    2014-09-15

    We report on the chemiluminescence (CL) of graphene quantum dots (GQDs) induced by direct chemical oxidation. GQDs were prepared by a simple carbonization method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and Raman spectroscopy. It was found that Ce(IV) could oxidize GQDs to produce a relatively intense CL emission. The mechanism of CL generation was investigated based on the fluorescence and CL emission spectra. It was attributed to the radiative recombination of oxidant-injected holes and thermally excited electrons in the GQDs. In order to show the analytical application potential of GQDs-Ce(IV) CL system, it was applied to the determination of uric acid. Under the optimized conditions, the proposed CL system exhibited excellent analytical performance for determination of uric acid in the range of 1.0×10{sup −6} M–5.0×10{sup −4} M with a limit of detection of 5.0×10{sup −7} M. The method was applied to the determination of uric acid in human plasma and urine samples, with satisfactory results. - Highlights: • Chemiluminescence of graphene quantum dots by direct oxidation was studied. • Intense CL is produced by reaction of graphene quantum dots with Ce(IV). • The new CL system was applied to determination of uric acid in plasma and urine.

  13. cl-Supercontinuous Functions

    D. Singh

    2007-10-01

    Full Text Available Basic properties of cl-supercontinuity, a strong variant of continuity, due to Reilly and Vamanamurthy [Indian J. Pure Appl. Math., 14 (1983, 767–772], who call such maps clopen continuous, are studied. Sufficient conditions on domain or range for a continuous function to be cl-supercontinuous are observed. Direct and inverse transfer of certain topological properties under cl-supercontinuous functions are studied and existence or nonexistence of certain cl-supercontinuous function with specified domain or range is outlined.

  14. Quantum dots and nanocomposites.

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  15. PREFACE: Quantum Dot 2010

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  16. Remanence coercivity of dot arrays of hcp-CoPt perpendicular films

    Mitsuzuka, K; Shimatsu, T; Aoi, H [Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577 (Japan); Kikuchi, N; Okamoto, S; Kitakami, O, E-mail: shimatsu@riec.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 (Japan)

    2010-01-01

    The remanence coercivity, H{sub r}, of hcp-CoPt dot arrays with various dot thicknesses, {delta}, (3 and 10 nm) and Pt content (20-30at%) were experimentally investigated as a function of the dot diameter, D(30-400 nm). All dot arrays showed a single domain state, even after removal of an applied field equal to H{sub r}. The angular dependence of H{sub r} for the dot arrays indicated coherent rotation of the magnetization during nucleation. H{sub r} increased as Ddecreased in all series of dot arrays with various {delta} and Pt content. Assuming that the nucleation field of a dot is determined by the switching field of a grain having the smallest switching field, we calculated the value of nucleation field H{sub n}{sup cal} taking account of the c-axis distribution and the distribution of the demagnetizing field in the dot. The values of H{sub r} obtained experimentally are in good agreement with those of H{sub n}{sup cal}, taking account of thermal agitation of magnetization. This result suggested that the reversal process of hcp-CoPt dot arrays starts from a nucleation at the center of the dot followed by a propagation process.

  17. Nanocrystal quantum dots

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  18. Quantum Dot Photonics

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  19. Inmunodeficiencias humorales: Un estudio en tres Centros de Inmunología Clínica de adultos en la Ciudad de Buenos Aires Antibody deficiencies: A survey from three Clinical Immunology Centers for adults in Buenos Aires City

    Diego S. Fernández Romero

    2011-08-01

    Full Text Available Las inmunodeficiencias humorales (IDH comprenden a un grupo de enfermedades caracterizadas por la imposibilidad de desarrollar una respuesta inmune efectiva mediada por anticuerpos. Estos pacientes presentan infecciones, principalmente por bacterias extracelulares capsuladas, del tracto respiratorio. El objetivo de nuestro estudio fue describir las características clínicas de una población de 128 pacientes derivados con sospecha o diagnóstico de IDH a tres centros para inmunodeficiencias de adultos, asistidos entre junio de 2004 y diciembre de 2009. Tres (2.3% consultaron por infecciones recurrentes en una sola oportunidad sin datos suficientes para su adecuada clasificación y fueron excluidos del estudio. De los 125 pacientes restantes, en 21 (16.8% se descartó IDH, en 8 (6.4% se diagnosticó inmunodeficiencia humoral secundaria (IDHS y en 96 (76.8% inmunodeficiencia humoral primaria (IDHP. Las causas de IDHS fueron: en un caso enfermedad renal, en uno uso de fenitoína, dos casos: gammapatía monoclonal y en 4 linfoma B. Las causas de las 96 IDHP fueron: 57 inmunodeficiencia común variable, 12 agammaglobulinemia ligada al cromosoma X, 10 deficiencia selectiva de IgA, 7 deficiencia de IgG1, 3 síndrome hiper-IgM, 3 deficiencia de IgM, 2 síndrome linfoproliferativo ligado al cromosoma X, un síndrome de Good y una deficiencia funcional de anticuerpos. Sesenta y siete pacientes estaban en seguimiento en el momento de la finalización del estudio, 25 de ellos estaban en seguimiento al iniciarse el estudio. De los 58 pacientes en seguimiento con indicación de tratamiento sustitutivo con gammaglobulina, 54 se encontraban en tratamiento al finalizar el estudio. En cuatro pacientes no se pudo confirmar el diagnóstico de IDHP.Antibody deficiency (AD comprises a group of diseases characterized by the inability to develop an effective antibody mediated immune response. These patients suffer mainly of encapsulated extracellular bacterial

  20. Quantum dot solar cell

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  1. Preparation, optical, and photocatalytic studies of defect pyrochlores: KCr{sub 0.33}W{sub 1.67}O{sub 6} and A{sub x}Cr{sub 0.33}W{sub 1.67}O{sub 6}{center_dot}nH{sub 2}O

    Ravi, G.; Veldurthi, Naveen Kumar [Osmania University, Department of Chemistry (India); Prasad, Muvva D. [University of Hyderabad, School of Chemistry (India); Muniratnam, N. R. [Centre for Materials Electronics Technology (C-MET) (India); Prasad, G. [Osmania University, Department of Physics (India); Vithal, M., E-mail: mugavithal@gmail.com [Osmania University, Department of Chemistry (India)

    2013-09-15

    Nano sized defect pyrochlores of compositions KCr{sub 0.33}W{sub 1.67}O{sub 6} and A{sub x}Cr{sub 0.33}W{sub 1.67}O{sub 6}{center_dot}nH{sub 2}O (A = Sn, Ag, Bi, Sm, Eu, and Gd) have been synthesized by sol-gel and ion exchange methods, respectively. These oxides were characterized by thermogravimetric analysis, powder X-ray diffraction, energy dispersive spectra, transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman spectra, and Fourier transform infrared spectra. Spontaneous exchange of K{sup +} with A ion is accompanied by insertion of water also into the lattice. KCr{sub 0.33}W{sub 1.67}O{sub 6} and A{sub x}Cr{sub 0.33}W{sub 1.67}O{sub 6}{center_dot}nH{sub 2}O crystallize in cubic lattice and isomorphous with KSbWO{sub 6}. The optical properties of Cr{sup 3+} were investigated. Substitution of K{sup +} by A ion leads to a shift of absorption onset to longer wavelengths marginally. The Raman spectra of all the samples are characteristic of defect pyrochlore system. The photocatalytic degradation of methylene blue aqueous solution was investigated using these oxides. The results obtained were fitted with the Langmuir-Hinshelwood model to study the degradation kinetics. Both Sn{sup 2+} and Bi{sup 3+}-doped KCr{sub 0.33}W{sub 1.67}O{sub 6} exhibit higher photoactivity in the degradation of methylene blue. The structure/composition of the photocatalyst remains the same even after fourth cycle of photodegradation.

  2. 75 FR 37994 - Airworthiness Directives; Bombardier, Inc. Model CL-600-1A11 (CL-600), CL-600-2A12 (CL-601), CL...

    2010-07-01

    ... provides data for replacement of the accumulators. The commenter requests that stronger language be... numbers 1004 through 1085 inclusive; (2) Bombardier, Inc. CL-600-2A12 (CL-601) airplanes, serial numbers 3001 through 3066 inclusive; and (3) Bombardier, Inc. CL-600-2B16 (CL-601-3A, CL-601-3R, and CL- 604...

  3. New way for determining electron energy levels in quantum dots arrays using finite difference method

    Dujardin, F.; Assaid, E.; Feddi, E.

    2018-06-01

    Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.

  4. Silicon quantum dots: surface matters

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  5. Phosphorene quantum dots

    Vishnoi, Pratap; Mazumder, Madhulika; Barua, Manaswee; Pati, Swapan K.; Rao, C. N. R.

    2018-05-01

    Phosphorene, a two-dimensional material, has been a subject of recent investigations. In the present study, we have prepared blue fluorescent phosphorene quantum dots (PQDs) by liquid phase exfoliation of black phosphorus in two non-polar solvents, toluene and mesitylene. The average particle sizes of PQDs decrease from 5.0 to 1.0 nm on increasing the sonicator power from 150 to 225 W. The photoluminescence spectrum of the PQDs is red-shifted in the 395-470 nm range on increasing the excitation-wavelength from 300 to 480 nm. Electron donor and acceptor molecules quench the photoluminescence, with the acceptors showing more marked effects.

  6. Laterally coupled circular quantum dots under applied electric field

    Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.

  7. Reassessing the role of DotF in the Legionella pneumophila type IV secretion system.

    Molly C Sutherland

    Full Text Available Legionella pneumophila, the causative agent of a severe pneumonia termed Legionnaires' Disease, survives and replicates within both protozoan hosts and human alveolar macrophages. Intracellular survival is dependent upon secretion of a plethora of protein effectors that function to form a replicative vacuole, evade the endocytic pathway and subvert host immune defenses. Export of these factors requires a type IV secretion system (T4SS called Dot/Icm that is composed of twenty-seven proteins. This report focuses on the DotF protein, which was previously postulated to have several different functions, one of which centered on binding Dot/Icm substrates. In this report, we examined if DotF functions as the T4SS inner membrane receptor for Dot/Icm substrates. Although we were able to recapitulate the previously published bacterial two-hybrid interaction between DotF and several substrates, the interaction was not dependent on the Dot/Icm substrates' signal sequences as predicted for a substrate:receptor interaction. In addition, binding did not require the cytoplasmic domain of DotF, which was anticipated to be involved in recognizing substrates in the cytoplasm. Finally, inactivation of dotF did not abolish intracellular growth of L. pneumophila or translocation of substrates, two phenotypes dependent on the T4SS receptor. These data strongly suggest that DotF does not act as the major receptor for Dot/Icm substrates and therefore likely performs an accessory function within the core-transmembrane subcomplex of the L. pneumophila Dot/Icm type IV secretion system.

  8. Cl- channels in apoptosis

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  9. X-ray reciprocal space mapping of GaAs.AIAs quantum wires and quantum dots

    Darhuber, A.A.; Koppensteiner, E.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    Periodic arrays of 150 and 175 nm-wide GaAs–AlAs quantum wires and quantum dots were investigated, fabricated by electron beam lithography, and SiCl4/O2 reactive ion etching, by means of reciprocal space mapping using triple axis x-ray diffractometry. From the x-ray data the lateral periodicity of

  10. Printer model for dot-on-dot halftone screens

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  11. DOTS Compliance by Tuberculosis Patients in District Raipur (Chhattisgarh

    Teeku Sinha

    2010-10-01

    Full Text Available Background: Compliance to therapy is one of the important factors that affect the outcome. Non-compliance to self administered multi drug tuberculosis treatment regimens is an important cause of failure of initial therapy and relapse as well as acquired drug resistance, requiring more prolonged and expensive therapy. Objective: To know the compliance of DOTS therapy in TB patients in District Raipur and to find out the reasons of non-compliance of DOTS therapy among the patients. Study Design: Cross sectional observational community based study. Study Setting: Microscopic Centers in District Raipur. Participants: 695 patients of Tuberculosis. Result: Study revealed that 65.93% patients had complied with the DOTS therapy and 33.38% were non compliant. Conclusion: Most of the reasons of non-Compliance can be averted by proper counseling of target group. Hence to achieve the goal of RNTCP, proper counseling of target group must be given top priority.

  12. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  13. Graphene based quantum dots.

    Zhang, H G; Hu, H; Pan, Y; Mao, J H; Gao, M; Guo, H M; Du, S X; Greber, T; Gao, H-J

    2010-08-04

    Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.

  14. PennDOT : fact book

    2008-06-01

    PennDOT was created in 1970 when the former : Department of Highways was merged with transportation related : functions from the Departments of Revenue, : Commerce, Community Affairs and Military Affairs. With : an annual budget of about $5.4 billion...

  15. Quantum dots: Rethinking the electronics

    Bishnoi, Dimple [Department of Physics, S. S. Jain Subodh PG College, Jaipur, Rajasthan Pin-302004 (India)

    2016-05-06

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  16. DOT Official County Highway Map

    Minnesota Department of Natural Resources — The County Highway Map theme is a scanned and rectified version of the original MnDOT County Highway Map Series. The cultural features on some of these maps may be...

  17. Solid-state thermal decomposition of the [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O complex: A simple, rapid and low-temperature synthetic route to Co{sub 3}O{sub 4} nanoparticles

    Farhadi, Saeid, E-mail: sfarhad2001@yahoo.com [Department of Chemistry, Lorestan University, Khorramabad 68135-465 (Iran, Islamic Republic of); Safabakhsh, Jalil [Department of Chemistry, Lorestan University, Khorramabad 68135-465 (Iran, Islamic Republic of)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O complex was used for preparing pure Co{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Co{sub 3}O{sub 4} nanoparticles were prepared at low temperature of 175 Degree-Sign C. Black-Right-Pointing-Pointer Co{sub 3}O{sub 4} nanoparticles show a weak ferromagnetic behaviour at room temperature. Black-Right-Pointing-Pointer The method is simple, low-cost and suitable for the production of Co{sub 3}O{sub 4}. - Abstract: Co{sub 3}O{sub 4} nanoparticles were easily prepared via the decomposition of the pentammine(carbonato)cobalt(III) nitrate precursor complex [Co(NH{sub 3}){sub 5}CO{sub 3}]NO{sub 3}{center_dot}0.5H{sub 2}O at low temperature (175 Degree-Sign C). The product was characterized by thermal analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Brunauer-Emmett-Teller (BET) specific surface area measurements and magnetic measurements. The FT-IR, XRD, Raman and EDX results indicated that the synthesized Co{sub 3}O{sub 4} nanoparticles are highly pure and have a single phase. The TEM analysis revealed nearly uniform and quasi-spherical Co{sub 3}O{sub 4} nanoparticles with an average particle size of approximately 10 nm. The optical absorption spectrum of the Co{sub 3}O{sub 4} nanoparticles showed two direct band gaps of 2.18 and 3.52 eV with a red shift in comparison with previous reported values. The prepared Co{sub 3}O{sub 4} nanoparticles showed a weak ferromagnetic behaviour that could be attributed to uncompensated surface spins and/or finite-size effects. Using the present method, Co{sub 3}O{sub 4} nanoparticles can be produced without expensive organic solvents and complicated equipment. This simple, rapid, safe and low-cost synthetic route can be extended to the synthesis of other

  18. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  19. The quantum mechanical description of the dot-dot interaction in ionic colloids

    Morais, P.C.; Qu, Fanyao

    2007-01-01

    In this study the dot-dot interaction in ionic colloids is systematically investigated by self-consistently solving the coupled Schroedinger and Poisson equations in the frame of finite difference method (FDM). In a first approximation the interacting two-dot system (dimer) is described using the picture of two coupled quantum wells. It was found that the dot-dot interaction changes the colloid characteristic by changing the hopping coefficient (t) and consequently the nanodot surface charge density (σ). The hopping coefficient and the surface charge density were investigated as a function of the dot size and dot-dot distance

  20. A hydrochemical investigation using 36Cl/Cl in groundwaters

    Metcalfe, Richard

    2003-03-01

    This report describes 36 Cl studies which were undertaken during the H14 financial year. The results of this study suggest that, if 36 Cl data can be obtained for groundwaters at spatial scales comparable with, or smaller than, the spatial scales of the variability in in-situ 36 Cl production in the host rock, the data could potentially be useful for interpreting groundwater origins and flow paths. Four groundwater samples and one onsen water sample from the Tono area were collected for 36 Cl analysis. The groundwater samples came from boreholes MSB-2 and MSB-4 in the MIU Construction Site, whereas the onsen water was taken from Oniiwa Onsen (Komatsuya). In addition, a single sample from borehole HDB-1 at Horonobe was also sent for analysis. Supporting rock chemical data and wireline geophysical data have also been evaluated, to provide a basis for interpreting the 36 Cl data. Rock analyses and spectral gamma wireline data were used to estimate theoretical limiting equilibrium 36 Cl/Cl ratios in the rock. These have been compared with the compositions measured for groundwater samples, enabling a judgement to be made as to: whether the waters have resided for long enough in the rock to approach equilibrium (> c. 1.5 Ma); the spatial scales of mixing of the dissolved Cl in the groundwater. The estimates of in-situ 36 Cl/Cl production made with the newly available rock chemical data and wireline geophysical data have enabled 36 Cl data obtained previously from MIU-4, KNA-6 and DH-12 during H12 and H13 to be interpreted more confidently. In particular it seems that 36 Cl/Cl ratios measured previously in groundwater samples from MIU-4 are not in equilibrium with in-situ production in the granite. Furthermore, they imply that the Cl is homogenised, at least on the scale of the upper half of borehole. In contrast, the data from DH-12 imply that the Cl could be in equilibrium with in-situ 36 Cl production in the granite, which would be consistent with a relatively long

  1. Wetting layers effect on InAs/GaAs quantum dots

    Sun Chao [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China); Lu Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China); Yu Zhongyuan; Cao Huawei; Zhang Lidong [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China)

    2012-11-15

    FEM combining with the K{center_dot}P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%{approx}4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.

  2. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    Majid, Mohammed Abdul

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  3. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    Majid, Mohammed Abdul; Hugues, M.; Vézian, S.; Childs, D. T. D.; Hogg, R. A.

    2012-01-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  4. Electron correlations in quantum dots

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  5. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  6. Diseño de un Sistema de Control Interno para la Clínica Oftalmológica Laser Center Visión 20/20 CLV S.A

    Meneses Angulo, Lourdes Lorena; Subía Pincay, Gladys Gabriela

    2015-01-01

    The present thesis focuses in develops a system of internal control in the Laser Clinic Center Vision 20/20 CLV S.A with the purpose of strengthening the activities, procedures and processes for the improvement of the entity. Every area of a company that has neither functions nor internal suitable controls can happen a risk of having diversions in their operations and in the capture of decisions of the management, the same one that can lead to a crisis, this offer is to be able to safeguar...

  7. Estado nutricional de pacientes com esquizofrenia frequentadores do Centro de Atenção Psicossocial (CAPS do Hospital de Clínicas de Porto Alegre Nutritional status of patients with schizophrenia who attend the Psychosocial Care Center (CAPS, Hospital de Clínicas de Porto Alegre

    Karine Zortéa

    2010-01-01

    Full Text Available OBJETIVO: Avaliar o estado nutricional de pacientes com esquizofrenia, atendidos por um programa de reabilitação social (CAPS. MÉTODOS: Foi realizado um estudo transversal com 40 pacientes com diagnóstico de esquizofrenia, em uso de antipsicóticos, atendidos no CAPS do Hospital de Clínicas de Porto Alegre. Foram verificados medidas antropométricas (peso, estatura, circunferência abdominal, percentual de gordura corporal, pressão arterial e tabagismo. RESULTADOS: A amostra constitui-se de 65% de homens. A média de peso encontrada foi de 75,39 ± 15,73 kg. O índice de massa corporal médio apresentou-se dentro dos parâmetros de sobrepeso (26,76 ± 4,78 kg/m², sendo 55% dos pacientes com sobrepeso ou obesidade segundo a classificação da OMS/1998. A circunferência abdominal e o percentual de gordura corporal apresentaram-se elevados na maioria dos pacientes (62,5% e 92,5%, respectivamente. Adicionalmente, não houve associação significativa entre IMC e a classificação de antipsicóticos (típicos, atípicos, clozapina. Encontrou-se uma correlação entre o tempo de doença com o percentual de gordura (r = 0,39, p = 0,033 e escolaridade com o peso (r = 0,362, p = 0,046 e IMC (r = 0,372, p = 0,039. Na regressão linear, 13% da variabilidade do percentual de gordura foi explicada pelo tempo de doença (r² = 0,131, B = 0,233, p = 0,049; 13% da variação do peso foi explicada pela escolaridade (r² = 0,131, B = 1,415, p = 0,046 e 13,8% da variação do IMC foi explicada pela escolaridade (r² = 0,138, B = 0,411, p = 0,039. CONCLUSÃO: Os pacientes apresentaram níveis aumentados de circunferência abdominal, percentual de gordura corporal e peso. Aparentemente, o ganho de peso ocorre em todos os pacientes expostos a antipsicóticos, independentemente do tipo de medicação e de resposta clínica, e a qualquer momento ao longo da evolução da doença. Sugere-se que, adicionalmente, a avaliação dos hábitos alimentares e o

  8. Photoionization cross-section of donor impurities in spherical GaAs quantum dots: hydrostatic pressure effects

    Correa, J.D.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Using a variational procedure for a hydrogenic donor-impurity we have calculated the photoionization cross-section in spherical GaAs quantum dots. We discuss the dependence on the photoionization cross-section for hydrogenic donor impurity in in nite and nite barrier quantum dots as a function of the size of the dot, impurity position, polarization of the photon, applied hydrostatic pressure, and normalized photon energy. For the nite case, calculations for the pressure effects are both in direct and indirect GaAsAl gap regime. We have considered the different transition rules that depend of the impurity position and photon polarization. Calculations are presented for impurity on-center, and o -center in the spherical quantum dots. We found that the photoionization cross-section increases with the applied hydrostatic pressure both for on-center and o - center impurities. The photoionization cross-section increases or decreases depending of the impurity position, photon polarization, and radius of dots. Also we have showed that the photoionization cross-section decreases as the normalized photon energy increases. The results we have obtained show that the photoionization cross- section is strongly a effected by the quantum dot size, and the position of the impurity. The measurement of photoionization in such systems would be of great interest in understanding the optical properties of carriers in quantum dots. (author)

  9. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A novel chemiluminescence method for determination of bisphenol Abased on the carbon dot-enhanced HCO3−–H2O2 system

    Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba

    2015-01-01

    A simple and sensitive chemiluminescence (CL) method on the basis of carbon dot (C-dot) enhanced HCO 3 − –H 2 O 2 system, is designed for the determination of bisphenol A (BPA). The very weak CL of the HCO 3 − –H 2 O 2 system is enhanced by a factor of ∼100 in the presence of C-dots. Possible mechanisms that lead to the effect were elucidated by recording fluorescence and CL spectra and studying the effect of some radical scavengers. This enhancement is inhibited by BPA in the concentration range from 1.0 to 100 µg L −1 . This is exploited for its trace determination with a detection limit (3 s) of 0.3 µg L −1 . The established method was applied to the determination of BPA in baby bottle and water samples with satisfactory results. - Highlights: • The effect of carbon dots on HCO 3 − –H 2 O 2 chemiluminescence reaction is studied. • Carbon dots greatly enhance the CL signal of this reaction (∼100 fold). • The new CL system was applied to determination of bisphenol A in real samples

  11. Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions

    Goodman, Samuel Martin

    use of cadmium telluride quantum dots as light-activated therapeutics for treating multi-drug resistant bacterial infectoins. A review of the physiological effects of cadmium chalcogenide quantum dots is first presented in Chapter 5 which provides a foundation for understanding the inherent toxicity of these materials. The phototoxic effect induced by CdTe quantum dots is then introduced in Chapter 6 showing the reduction in growth of gram-negative bacteria. Additional insight is provided in Chapter 7 which discusses the therapeutic mechanism and the oxygen-centered radical species which are formed by the application of light in aqueous media. The section closes with Chapter 8 describing efforts to improve the stability and bio-compatibility of the dots using various surface treatments, and shows that stability can be improved by the passivation of the quantum dots' anionic facets, though at the cost of overall radical generation.

  12. Biosynthesis of luminescent quantum dots in an earthworm

    Stürzenbaum, S. R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J.-S.; Taniguchi, S.; Dailey, L.-A.; Khanbeigi, R. Ahmad; Rosca, E. V.; Thanou, M.; Suhling, K.; Zayats, A. V.; Green, M.

    2013-01-01

    The synthesis of designer solid-state materials by living organisms is an emerging field in bio-nanotechnology. Key examples include the use of engineered viruses as templates for cobalt oxide (Co3O4) particles, superparamagnetic cobalt-platinum alloy nanowires and gold-cobalt oxide nanowires for photovoltaic and battery-related applications. Here, we show that the earthworm's metal detoxification pathway can be exploited to produce luminescent, water-soluble semiconductor cadmium telluride (CdTe) quantum dots that emit in the green region of the visible spectrum when excited in the ultraviolet region. Standard wild-type Lumbricus rubellus earthworms were exposed to soil spiked with CdCl2 and Na2TeO3 salts for 11 days. Luminescent quantum dots were isolated from chloragogenous tissues surrounding the gut of the worm, and were successfully used in live-cell imaging. The addition of polyethylene glycol on the surface of the quantum dots allowed for non-targeted, fluid-phase uptake by macrophage cells.

  13. High 36Cl/Cl ratios in Chernobyl groundwater

    Roux, Céline; Le Gal La Salle, Corinne; Simonucci, Caroline; Van Meir, Nathalie; Fifield, L. Keith; Diez, Olivier; Bassot, Sylvain

    2014-01-01

    After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A 90 Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, 36 Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. 36 Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1–5 orders of magnitude higher than the theoretical natural 36 Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of 36 Cl, however other sources have to be involved to explain such contamination. 36 Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of 90 Sr, radionuclide which is impacted by retention and decay processes, 36 Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of 36 Cl from trench soil are better characterized. - Highlights: • High 36 Cl/Cl ratios measured in the Chernobyl Pilot Site groundwater. • Trench T22 acts as a modern source of groundwater contamination by 36 Cl but other sources are involved. • Contamination results from dilution of a contaminated “T22” soil water with rainwater. • Processes involved in the modern release need to be investigated

  14. Selective induced polarization through electron transfer in acetone and pyrazole ester derivatives via C-H center dot center dot center dot O=C interaction

    Tewari, A. K.; Srivastava, P.; Singh, V. P.; Singh, P.; Kumar, R.; Khanna, R. S.; Srivastava, Pa.; Gnanasekaran, Ramachandran; Hobza, Pavel

    2014-01-01

    Roč. 38, č. 10 (2014), s. 4885-4892 ISSN 1144-0546 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : O hydrogen bonds * noncovalent interactions * pi interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.086, year: 2014

  15. Ab initio and DFT studies of the interaction between carbonyl and thiocarbonyl groups: the role of S center dot center dot center dot O chalcogen bonds

    Zierkiewicz, W.; Fanfrlík, Jindřich; Hobza, Pavel; Michalska, D.; Zeegers-Huyskens, T.

    2016-01-01

    Roč. 135, č. 9 (2016), č. článku 217. ISSN 1432-881X R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : chalcogen bonds * carbonyl and thiocarbonyl groups * CCSD(T) * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.890, year: 2016 http://link.springer.com/article/10.1007%2Fs00214-016-1972-z

  16. Influence of hydrophobic residues on the binding of CB[7] toward diammonium ions of common ammonium center dot center dot center dot ammonium distance

    Cao, L.; Škalamera, D.; Zavalij, P. Y.; Hostaš, Jiří; Hobza, Pavel; Mlinaric-Majerski, K.; Glaser, R.; Isaacs, L.

    2015-01-01

    Roč. 13, č. 22 (2015), s. 6249-6254 ISSN 1477-0520 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : continuous symmetry measures * high-energy water * driving force Subject RIV: CC - Organic Chemistry Impact factor: 3.559, year: 2015

  17. Phosphorus As a Simultaneous Electron-Pair Acceptor in Intermolecular P center dot center dot center dot N Pnicogen Bonds and Electron-Pair Donor to Lewis Acids

    Del Bene, J. E.; Alkorta, I.; Sanchez-Sanz, Goar; Elguero, J.

    2013-01-01

    Roč. 117, č. 14 (2013), s. 3133-3141 ISSN 1089-5639 Institutional support: RVO:61388963 Keywords : spin coupling-constants * Gaussian-basis sets * correlated molecular calculations * noncovalent interaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.775, year: 2013

  18. Synchrotron radiation studies on luminescence of Eu2+-doped LaCl3 microcrystals embedded in a NaCl matrix

    Savchyn, P.V.; Vistovskyy, V.V.; Pushak, A.S.; Voloshinovskii, A.S.; Gektin, A.V.; Pankratov, V.; Popov, A.I.

    2012-01-01

    LaCl 3 :Eu 2+ microcrystals dispersed in the NaCl matrix have been obtained in the NaCl–LaCl 3 (1 mol.%)–EuCl 3 (0.1 mol.%) crystalline system. The low-temperature luminescent properties of these microcrystals have been studied upon the VUV and UV excitation by the synchrotron radiation. The spectroscopic parameters as well as decay time constants of Eu 2+ -doped LaCl 3 host have been established. The excitation mechanism of divalent europium centers through energy transfer and reabsorption is discussed.

  19. High (36)Cl/Cl ratios in Chernobyl groundwater.

    Roux, Céline; Le Gal La Salle, Corinne; Simonucci, Caroline; Van Meir, Nathalie; Fifield, L Keith; Diez, Olivier; Bassot, Sylvain; Simler, Roland; Bugai, Dmitri; Kashparov, Valery; Lancelot, Joël

    2014-12-01

    After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A (90)Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, (36)Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. (36)Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1-5 orders of magnitude higher than the theoretical natural (36)Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of (36)Cl, however other sources have to be involved to explain such contamination. (36)Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of (90)Sr, radionuclide which is impacted by retention and decay processes, (36)Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of (36)Cl from trench soil are better characterized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sensitizing effects of ZnO quantum dots on red-emitting Pr3+-doped SiO2 phosphor

    Mbule, PS

    2012-05-01

    Full Text Available In this study, red cathodoluminescence (CL) ( emission=614 nm) was observed from Pr3+ ions in a glassy (amorphous) SiO2 host. This emission was enhanced considerably when ZnO quantum dots (QDs) were incorporated in the SiO2:Pr3+ suggesting...

  1. Interaction of different poisons with MgCl{sub 2}/TiCl{sub 4} based Ziegler-Natta catalysts

    Bahri-Laleh, Naeimeh, E-mail: n.bahri@ippi.ac.ir

    2016-08-30

    Highlights: • The interactions between different classes of poison molecules and TiCl{sub 4}/MgCl{sub 2} type Ziegler-Natta catalyst is considered. • Poisons strongly stabilize MgCl{sub 2} crystal surfaces, mostly Ti active center relative to the unpoisoned solid. • Poison molecules decrease catalyst activity by increasing E{sub TS} in olefin polymerization. • Poison molecules do not have significant effect in stereospecifity of ZN catalysts in propylene polymerization. - Abstract: Adsorption of different poison molecules on activated MgCl{sub 2} is investigated within DFT using a cluster model of the MgCl{sub 2} surface with (MgCl{sub 2}){sub 16} formula containing four 4-coordinated and eight 5-coordinated Mg atoms as (110) and (104) surfaces, respectively. Studied poison molecules are chosen as possible impurities in hydrocarbon solvents and monomer feeds and contain water, hydrogensulfide, carbondioxide, molecular oxygen and methanol. First, adsorption of 1–4 molecules of different poisons to the (104) and (110) lateral cuts of MgCl{sub 2}, as well as their adsorption on [MgCl{sub 2}]/TiCl{sub 2}Et active center and AlEt{sub 3} cocatalyst is considered. Results reveal that poisons strongly stabilize both crystal surfaces, mostly Ti active center relative to the unpoisoned solid. Second, energy barrier (E{sub TS}) for ethylene insertion in the presence of different poisons located on the first and second Mg atom relative to the active Ti is calculated. While poison molecule located on the second Mg does not change E{sub TS}, coordination of it into the first Mg atom increases E{sub TS} by 0.9–1.2 kcal mol{sup −1}. In the last part of this manuscript, the stereoselective behavior of active Ti species, with and without poison molecules and external electron donor, is fully explored.

  2. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH3

    Tsai, Y.-L.; Gong, J.-R.; Lin, T.-Y.; Lin, H.-Y.; Chen, Yang-Fang; Lin, K.-M.

    2006-01-01

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH 3 ) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH 3 exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements

  3. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH{sub 3}

    Tsai, Y.-L. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Gong, J.-R. [Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi 621, Taiwan (China); Lin, T.-Y. [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lin, H.-Y. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Lin, K.-M. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2006-03-15

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH{sub 3}) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH{sub 3} exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements.

  4. Spin storage in quantum dot ensembles and single quantum dots

    Heiss, Dominik

    2009-01-01

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T 1 =20 ms at B=4 T and T=1 K. A strong magnetic field dependence T 1 ∝B -5 has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T 1 ∝T -1 . The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T 1 h in the microsecond range, therefore, comparable with

  5. Spin storage in quantum dot ensembles and single quantum dots

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  6. Volpe Center Annual Accomplishments: Advancing Transportation Innovation for the Public Good - January 2018

    2018-01-01

    The Volpe Centers Annual Accomplishments highlights our best work of 2017 and illustrates the sustained impact of the Volpe Center in supporting the U.S. DOTs top priorities and strategic goals: safety, infrastructure, innovation, and accountab...

  7. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  8. Resonant electronic transport through a triple quantum-dot with Λ-type level structure under dual radiation fields

    Guan, Chun; Xing, Yunhui; Zhang, Chao; Ma, Zhongshui

    2014-01-01

    Due to quantum interference, light can transmit through dense atomic media, a phenomenon known as electromagnetically induced transparency (EIT). We propose that EIT is not limited to light transmission and there is an electronic analog where resonant transparency in charge transport in an opaque structure can be induced by electromagnetic radiation. A triple-quantum-dots system with Λ-type level structure is generally opaque due to the level in the center dot being significantly higher and therefore hopping from the left dot to the center dot is almost forbidden. We demonstrate that an electromagnetically induced electron transparency (EIET) in charge of transport can indeed occur in the Λ-type system. The direct evidence of EIET is that an electron can travel from the left dot to the right dot, while the center dot apparently becomes invisible. We analyze EIET and the related shot noise in both the zero and strong Coulomb blockade regimes. It is found that the EIET (position, height, and symmetry) can be tuned by several controllable parameters of the radiation fields, such as the Rabi frequencies and detuning frequencies. The result offers a transparency/opaque tuning technique in charge transport using interfering radiation fields

  9. Electron transmission through coupled quantum dots in an Aharonov-Bohm ring

    Joe, Y. S.; Kim, Y. D.

    2006-01-01

    Stimulated by recent intriguing experiments with a quantum dot in an Aharonov-Bohm (AB) ring, we investigate novel resonant phenomena by studying the total transmission probability of nanoscale AB ring with embedded double quantum dots in one arm and a magnetic flux passing through the rings' center. In this system, we show an overlapping and merging of Fano resonances as the interaction parameter between the dots changes. In the strong overlapping region of Fano resonances, the transmission zeros leave the real-energy axis and move away in opposite directions in the complex-energy plane. The behavior of the Fano zero-pole resonances in the complex-energy plane as a function of the external magnetic flux is also investigated for various coupling integrals between the quantum dots in the ring.

  10. Quantum optics with single quantum dot devices

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  11. Large quantum dots with small oscillator strength

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....

  12. The interaction between d-dot's

    Hirayama, Masaki; Machida, Masahiko; Koyama, Tomio; Ishida, Takekazu; Kato, Masaru

    2005-01-01

    We investigated the interaction between two square d-dot's. The d-dot is the nano-scaled superconducting composite structure that is made of a d-wave superconducting dot embedded in the s-wave superconducting matrix. In the numerical calculation, using the finite element method, we solved the two-components Ginzburg-Landau equation self-consistently. We obtained two kinds of solutions, which can be considered as ferromagnetic and antiferromagnetic configurations, when two d-dot's are separated parallel and diagonally. Also we discuss the applicability of d-dot's as an artificial spin system where the interactions can be controlled by the fabrication

  13. Nuclear Spins in Quantum Dots

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis,

  14. Luminescent Surface Quaternized Carbon Dots

    Bourlinos, Athanasios B.; Zbořil, Radek; Petr, Jan; Bakandritsos, Aristides; Krysmann, Marta; Giannelis, Emmanuel P.

    2012-01-01

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  15. Luminescent Surface Quaternized Carbon Dots

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  16. DOT strategies versus orbiter strategies

    Rutten, R.J.

    2001-01-01

    The Dutch Open Telescope is a high-resolution solar imager coming on-line at La Palma. The definition of the DOT science niche, strategies, and requirements resemble Solar Orbiter considerations and deliberations. I discuss the latter in the light of the former, and claim that multi-line observation

  17. Polymer-coated quantum dots

    Tomczak, N.; Liu, Rongrong; Vancso, Gyula J.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of

  18. Hyperdense dots mimicking microcalcifications : Mammographic findings

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo

    1996-01-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy

  19. Hyperdense dots mimicking microcalcifications : Mammographic findings

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1996-12-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy.

  20. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-01-01

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped

  1. Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT){sub n} {center_dot} (GA){sub n} microsatellite embedded within the U2 repeat unit

    Liao, D.; Weiner, A.M. [Yale Univ., New Haven, CT (United States)

    1995-12-10

    The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT){sub n}{center_dot}(GA){sub n} dinucleotide repeat (n {approx} 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to study the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT){sub n} tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, ogangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion. 70 refs., 5 figs.

  2. Influence of calcium on transport properties, band spectrum and superconductivity of YBa{sub 2}Cu{sub 3}O{sub y} and YBa{sub 1.5}La{sub 0.5}Cu{sub 3}O{sub y}{sup {center_dot}}

    Gasumyants, V.E.; Vladimirskaya, E.V. [State Technical Univ., St. Petersburg (Russian Federation); Patrina, I.B. [Institute of Silicate Chemistry, St. Petersburg (Russian Federation)

    1994-12-31

    The comparative investigation of transport phenomena in Y{sub 1-x}Ca{sub x}Ba{sub 2}Cu{sub 3}O{sub y} (0y>6.87 and 6.73y>6.96) and YBa{sub 2-x}La{sub x}Cu{sub 3}O{sub y} (0center_dot}}. The results obtained suggest that Ca gives rise to some peculiarities in band spectrum of this compound.

  3. Glass transition on the development of a hydrogen-bond network in nano-channel ice, and subsequent phase transitions of the ordering of hydrogen atom positions within the network in [Co(H{sub 2}bim){sub 3}](TMA){center_dot}20H{sub 2}O

    Watanabe, Keisuke [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan); Oguni, Masaharu [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan); Tadokoro, Makoto [Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Oohata, Yuki [Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nakamura, Ryouhei [Department of Chemistry, Graduate School of Science, Osaka Municipal University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2006-09-20

    Low-temperature thermal properties of crystalline [Co(H{sub 2}bim){sub 3}](TMA){center_dot}20H{sub 2}O were studied by adiabatic calorimetry, where H{sub 2}bim is 2,2'-biimidazole, TMA is 1,3,5-benzene tricarboxylic acid, and 20H{sub 2}O represents the water forming nano-channel in the crystal. A glass transition was observed at T{sub g} = 107 K. It was discussed as a freezing-in phenomenon of a small number of water molecules remaining partially disordered in their positional arrangement. The possibility that some defects really remain in the hydrogen-bond network of channel water was mentioned. Two subsequent phase transitions were observed at 54.8 and 59 K. These were interpreted as being of a (super-structural commensurate)-incommensurate-(normal commensurate) type in the heating direction with respect to the hydrogen-atom positions as referred to the periodicity of the hydrogen-bond network. The transition entropy was evaluated to be 0.65 J K{sup -1}(H{sub 2}O-mol){sup -1} as a total of the two, indicating that the disorder of the hydrogen atoms is present only in part of the water molecules of the channel. Based on the fact that the excess heat capacity due to the equilibrium phase transition is observed down to 35-40 K, the relaxation time for the rearrangement of the hydrogen-atom positions was assumed at the longest to be 1 ks at 35 K. This indicates that the activation energy of the rearrangement amounts to at most 13 kJ mol{sup -1} and that the transfer of Bjerrum defects is attributed to the rearrangement.

  4. Optical-absorption spectra associated with shallow donor impurities in GaAs-(Ga,Al)As quantum-dots

    Silva Valencia, J.

    1995-08-01

    The binding energy of a hydrogenic donor impurity and the optical-absorption spectra associated with transitions between the n=1 valence level and the donor-impurity band were calculated for infinite barrier-well spherical GaAs-(Ga,Al)As quantum-dots of different radii, using the effective mass approximation within a variational scheme. An absorption peak associated with transitions involving impurities at the center of the well and a peak related with impurities at the edge of the dot were the main features observed for the different radii of the dots considered in the calculations. Also as a result of the higher electronic confinement in a quantum- dot, we found a much wider energy range of the absorption spectra when compared to infinite GaAs-(Ga,Al)As quantum-wells and quantum-well wires of width and diameter comparable to the diameter of the quantum dot. (author). 13 refs, 3 figs

  5. Short term inhalation toxicity of a liquid aerosol of glutaraldehyde-coated CdS/Cd(OH)2 core shell quantum dots in rats.

    Ma-Hock, L; Farias, P M A; Hofmann, T; Andrade, A C D S; Silva, J N; Arnaud, T M S; Wohlleben, W; Strauss, V; Treumann, S; Chaves, C R; Gröters, S; Landsiedel, R; van Ravenzwaay, B

    2014-02-10

    Quantum dots exhibit extraordinary optical and mechanical properties, and the number of their applications is increasing. In order to investigate a possible effect of coating on the inhalation toxicity of previously tested non-coated CdS/Cd(OH)2 quantum dots and translocation of these very small particles from the lungs, rats were exposed to coated quantum dots or CdCl2 aerosol (since Cd(2+) was present as impurity), 6h/d for 5 consecutive days. Cd content was determined in organs and excreta after the end of exposure and three weeks thereafter. Toxicity was determined by examination of broncho-alveolar lavage fluid and microscopic evaluation of the entire respiratory tract. There was no evidence for translocation of particles from the respiratory tract. Evidence of a minimal inflammatory process was observed by examination of broncho-alveolar lavage fluid. Microscopically, minimal to mild epithelial alteration was seen in the larynx. The effects observed with coated quantum dots, non-coated quantum dots and CdCl2 were comparable, indicating that quantum dots elicited no significant effects beyond the toxicity of the Cd(2+) ion itself. Compared to other compounds with larger particle size tested at similarly low concentrations, quantum dots caused much less pronounced toxicological effects. Therefore, the present data show that small particle sizes with corresponding high surfaces are not the only factor triggering the toxic response or translocation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:

    Somsak Panyakeow

    2010-10-01

    Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.

  7. Silicon quantum dots with counted antimony donor implants

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  8. Comparação entre um método de diagnóstico clínico e a técnica de vigilância do Center for Disease Control and Prevention para identificação de pneumonia associada à ventilação mecânica

    Renata Waltrick

    2015-09-01

    Full Text Available RESUMOObjetivo:Avaliar a concordância entre um novo método de vigilância epidemiológica do Center for Disease Control and Prevention e o Clinical Pulmonary Infection Score para detecção de pneumonia associada à ventilação mecânica.Métodos:Coorte prospectiva que avaliou pacientes internados nas unidades de terapia intensiva de dois hospitais que permaneceram intubados por mais de 48 horas no período de agosto de 2013 a junho de 2014. Os pacientes foram avaliados diariamente pelos fisioterapeutas com o Clinical Pulmonary Infection Score. De forma independente, um enfermeiro aplicou o novo método de vigilância proposto pelo Center for Disease Control and Prevention. Avaliou-se a concordância diagnóstica entre os métodos. Clinical Pulmonary Infection Score ≥ 7 foi considerado diagnóstico clínico de pneumonia associada à ventilação mecânica, considerando-se diagnóstico definitivo a associação de Clinical Pulmonary Infection Score ≥ 7 com germe isolado em cultura semiquantitativa ≥ 104 unidades formadoras de colônias.Resultados:De 801 pacientes admitidos nas unidades de terapia intensiva, 198 estiveram sob ventilação mecânica. Destes, 168 permaneceram intubados por mais de 48 horas. Identificaram-se 18 (10,7% condições infecciosas associadas à ventilação mecânica e 14 (8,3% pneumonias associadas à ventilação mecânica possíveis ou prováveis, representando 35% (14/38 diagnósticos clínicos de pneumonia associada à ventilação mecânica. O método do Center for Disease Control and Prevention identificou casos de pneumonia associada à ventilação mecânica com sensibilidade de 0,37 e especificidade de 1,0, com valor preditivo positivo de 1,0 e negativo de 0,84. As diferenças implicaram em discrepâncias na densidade de incidência de pneumonia associada à ventilação mecânica (CDC: 5,2/1000 dias de ventilação mecânica; Clinical Pulmonary Infection Score ≥ 7: 13,1/1000 dias de ventilação mec

  9. The electronic properties of semiconductor quantum dots

    Barker, J.A.

    2000-10-01

    This work is an investigation into the electronic behaviour of semiconductor quantum dots, particularly self-assembled quantum dot arrays. Processor-efficient models are developed to describe the electronic structure of dots, deriving analytic formulae for the strain tensor, piezoelectric distribution and diffusion- induced evolution of the confinement potential, for dots of arbitrary initial shape and composition profile. These models are then applied to experimental data. Transitions due to individual quantum dots have a narrow linewidth as a result of their discrete density of states. By contrast, quantum dot arrays exhibit inhomogeneous broadening which is generally attributed to size variations between the individual dots in the ensemble. Interpreting the results of double resonance spectroscopy, it is seen that variation in the indium composition of the nominally InAs dots is also present. This result also explains the otherwise confusing relationship between the spread in the ground-state and excited-state transition energies. Careful analysis shows that, in addition to the variations in size and composition, some other as yet unidentified broadening mechanism must also be present. The influence of rapid thermal annealing on dot electronic structure is also considered, finding that the experimentally observed blue-shift and narrowing of the photoluminescence linewidth may both be explained in terms of normal In/Ga interdiffusion. InAs/GaAs self-assembled quantum dots are commonly assumed to have a pyramidal geometry, so that we would expect the energy separation of the ground-state electron and hole levels in the dot to be largest at a positive applied field. This should also be the case for any dot of uniform composition whose shape tapers inwards from base to top, counter to the results of experimental Stark-shift spectroscopy which show a peak transition energy at a negative applied field. It is demonstrated that this inversion of the ground state

  10. OpenCL programming guide

    Munshi, Aaftab; Mattson, Timothy G; Fung, James; Ginsburg, Dan

    2011-01-01

    Using the new OpenCL (Open Computing Language) standard, you can write applications that access all available programming resources: CPUs, GPUs, and other processors such as DSPs and the Cell/B.E. processor. Already implemented by Apple, AMD, Intel, IBM, NVIDIA, and other leaders, OpenCL has outstanding potential for PCs, servers, handheld/embedded devices, high performance computing, and even cloud systems. This is the first comprehensive, authoritative, and practical guide to OpenCL 1.1 specifically for working developers and software architects. Written by five leading OpenCL authorities, OpenCL Programming Guide covers the entire specification. It reviews key use cases, shows how OpenCL can express a wide range of parallel algorithms, and offers complete reference material on both the API and OpenCL C programming language. Through complete case studies and downloadable code examples, the authors show how to write complex parallel programs that decompose workloads across many different devices. They...

  11. Kinetic isotope effects in the gas phase reactions of OH and Cl with CH3Cl, CD3Cl, and 13CH3Cl

    A. A. Gola

    2005-01-01

    Full Text Available The kinetic isotope effects in the reactions of CH3Cl, 13CH3Cl and CD3Cl with OH radicals and Cl atoms were studied in relative rate experiments at 298±2 K and 1013±10 mbar. The reactions were carried out in a smog chamber using long path FTIR detection and the spectroscopic data analyzed employing a non-linear least squares spectral fitting method using measured high-resolution infrared spectra as well as absorption cross sections from the HITRAN database. The reaction rates of 13CH3Cl and CD3Cl with OH and Cl were determined relative to CH3Cl as: kOH+CH3ClkOH+CH3Cl/kOH+13CH3Cl}kOH+13CH3Cl=1.059±0.008, kOH+CH3ClkOH+CH3Cl/kOH+CD3ClkOH+CD3Cl=3.9±0.4, kCl+CH3ClkCl+CH3Cl/kCl+13CH3ClkCl+13CH3Cl =1.070±0.010 and kCl+CH3ClkCl+CH3Cl/kCl+CD3ClkCl+CD3Cl=4.91±0.07. The uncertainties given are 2σ from the statistical analyses and do not include possible systematic errors. The unexpectedly large 13C kinetic isotope effect in the OH reaction of CH3Cl has important implications for the global emission inventory of CH3Cl.

  12. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    Gu Shuna; Li Bing; Zhao Chongjun; Xu Yunlong; Qian Xiuzhen; Chen, Guorong

    2011-01-01

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: → AgCl/(PPy) nanocomposites as visible light driven photocatalyst. → Composites exhibited high visible light-driven photocatalytic activity and stability. → Photocatalytic process on MO followed photoreduction mechanisms. → Used photocatalyst can be regenerated in aqueous FeCl 3 solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag + and Cl - ions in the presence of PPy . The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl 3 solution.

  13. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    Gu Shuna; Li Bing [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu Yunlong; Qian Xiuzhen; Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-05-05

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: > AgCl/(PPy) nanocomposites as visible light driven photocatalyst. > Composites exhibited high visible light-driven photocatalytic activity and stability. > Photocatalytic process on MO followed photoreduction mechanisms. > Used photocatalyst can be regenerated in aqueous FeCl{sub 3} solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag{sup +} and Cl{sup -} ions in the presence of PPy{sub .} The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl{sub 3} solution.

  14. dotNet som multimediaplattform

    Johansson, Glenn

    2008-01-01

    As the speed and complexity of computers have increased so have software and the expectations of users. Software development follows a straightforward evolution where complicated tasks are made easier by better tools; this repeats itself as those tasks in turn are automated. Software mechanics that were seen as revolutionary a decade ago are seen as obvious requirements that no multimedia application can be without. dotNet is the next step in line and makes it easier and faster to build softw...

  15. Dicke states in multiple quantum dots

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  16. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.

  17. Wetting layers effect on InAs/GaAs quantum dots

    Sun Chao; Lu Pengfei; Yu Zhongyuan; Cao Huawei; Zhang Lidong

    2012-01-01

    FEM combining with the K·P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%∼4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.

  18. Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots

    Noor-Ul-Ain

    2016-11-01

    Full Text Available Tuning the emission energy of graphene quantum dots (GQDs and understanding the reason of tunability is essential for the GOD function in optoelectronic devices. Besides material-based challenges, the way to realize chemical doping and band gap tuning also pose a serious challenge. In this study, we tuned the emission energy of GQDs by substitutional doping using chlorine, nitrogen, boron, sodium, and potassium dopants in solution form. Photoluminescence data obtained from (Cl- and N-doped GQDs and (B-, Na-, and K-doped GQDs, respectively exhibited red- and blue-shift with respect to the photoluminescence of the undoped GQDs. X-ray photoemission spectroscopy (XPS revealed that oxygen functional groups were attached to GQDs. We qualitatively correlate red-shift of the photoluminescence with the oxygen functional groups using literature references which demonstrates that more oxygen containing groups leads to the formation of more defect states and is the reason of observed red-shift of luminescence in GQDs. Further on, time resolved photoluminescence measurements of Cl- and N-GQDs demonstrated that Cl substitution in GQDs has effective role in radiative transition whereas in N-GQDs leads to photoluminescence (PL quenching with non-radiative transition to ground state. Presumably oxidation or reduction processes cause a change of effective size and the bandgap.

  19. Dependence of Strain Distribution on In Content in InGaN/GaN Quantum Wires and Spherical Quantum Dots

    Sharma, Akant Sagar; Dhar, S.

    2018-02-01

    The distribution of strain, developed in zero-dimensional quantum spherical dots and one-dimensional cylindrical quantum wires of an InGaN/GaN system is calculated as functions of radius of the structure and indium mole fraction. The strain shows strong dependence on indium mole fraction at small distances from the center. The strain associated with both the structures is found to decrease exponentially with the increase in dot or cylinder radius and increases linearly with indium content.

  20. Sphere and dot product representations of graphs

    R.J. Kang (Ross); T. Müller (Tobias)

    2012-01-01

    textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such

  1. Electronic transport through a quantum dot chain with strong dot-lead coupling

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  2. Today's DOT and the quest for more accountable organizational structures.

    2005-12-01

    This study investigates the impact of DOT organizational structures on effective transportation planning and performance. A review of the 50 state DOT authorizing statutes and DOT organizational charts found minimal differences in organizational stru...

  3. Assembly of CdS Quantum Dots onto Hierarchical TiO2 Structure for Quantum Dots Sensitized Solar Cell Applications

    Syed Mansoor Ali

    2015-05-01

    Full Text Available Quantum dot (QD sensitized solar cells based on Hierarchical TiO2 structure (HTS consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate is fabricated. The hierarchical TiO2 structure consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate synthesized by hydrothermal route. The CdS quantum dots were grown by the successive ionic layer adsorption and reaction deposition method. The quantum dot sensitized solar cell based on the hierarchical TiO2 structure shows a current density JSC = 1.44 mA, VOC = 0.46 V, FF = 0.42 and η = 0.27%. The QD provide a high surface area and nano-urchins offer a highway for fast charge collection and multiple scattering centers within the photoelectrode.

  4. Quantum dots for quantum information technologies

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  5. Semiconductor quantum-dot lasers and amplifiers

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  6. Millimeter Wave Modulators Using Quantum Dots

    Prather, Dennis W

    2008-01-01

    In this effort electro-optic modulators for millimeter wave sensing and imaging were developed and demonstrated via design, fabrication, and experimental characterization of multi layer quantum dot...

  7. Spin Switching via Quantum Dot Spin Valves

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  8. Optical Signatures of Coupled Quantum Dots

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  9. DOT/FAA Human Factors Workshop on Aviation (6th). Transcript.

    1982-05-01

    This document is a verbatim transcript of the proceedings of the DOT/FAA Sixth Human Factors Workshop on Aviation held at the Mike Monroney Aeronautical Center, Oklahoma City, Oklahoma on July 7-8, 1981. The subject of the workshop was aviation maint...

  10. Raman spectra of the system TeCl4-SbCl5

    Brockner, W.; Demiray, A.F.

    1980-01-01

    Raman spectra of the solid and molten TeCl 4 . SbCl 5 addition compound and of some TeCl 4 -SbCl 5 mixtures have been recorded. Two modifications of the crystalline TeCl 4 -SbCl 5 compound have been found. The structure of the melt can be described by the equilibrium TeCl 3 + + SbCl 6 - reversible TeCl 4 + SbCl 5 lying on the left side. Mixtures with other stoichiometry contain the 1:1 adduct only and excess TeCl 4 or SbCl 5 , respectively. Such melts are built up by the ionic species TeCl 3 + and SbCl 6 - also and TeCl 4 or SbCl 5 according to stoichiometry. (author)

  11. Apparent molar heat capacities and apparent molar volumes of Pr(ClO{sub 4}){sub 3}(aq), Gd(ClO{sub 4}){sub 3}(aq), Ho(ClO{sub 4}){sub 3}(aq), and Tm(ClO{sub 4}){sub 3}(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa

    Hakin, Andrew W. E-mail: hakin@uleth.ca; Lian Liu, Jin; Erickson, Kristy; Munoz, Julie-Vanessa

    2004-09-01

    Acidified aqueous solutions of Pr(ClO{sub 4}){sub 3}(aq), Gd(ClO{sub 4}){sub 3}(aq), Ho(ClO{sub 4}){sub 3}(aq), and Tm(ClO{sub 4}){sub 3}(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 {<=} m/(mol {center_dot} kg{sup -1}) {<=} 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal V{sub phi,2} and C{sub pphi,2} values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent

  12. Reduction behaviors of Zr for LiCl-KCl-ZrCl4 and LiCl-KCl-ZrCl4-CdCl2

    Kim, Si Hyung; Yoon, Jongho; Kim, Gha Young; Kim, Tack Jin; Shim, Joon Bo; Kim, Kwang Rag; Jung, Jae Hoo; Ahn, Do Hee; Paek, Seungwoo

    2013-01-01

    The reduction potentials of most of the zirconium ions on the solid cathode are smaller (about 0.4V) than that of uranium, and thus zirconium can be recovered prior to uranium during the reduction stage. In the case of a liquid cadmium cathode, which is one of the major cathodes, the reduction potential can be changed because zirconium reacts with the liquid cadmium. Up to now, it has not been well known what the reduction potential of Zr was on the liquid Cd cathode. According to the Cd-Zr phase diagram, there are four intermetallic compounds between cadmium and zirconium. It is easier to use the solid cathode than the liquid cadmium cathode in LiCl-KCl-ZrCl 4 containing CdCl 2 to identify the formation of the Cd-Zr phase. In this study, the reduction behaviors of zirconium were compared in the LiCl-KCl-ZrCl 4 and LiCl-KCl-ZrCl 4 -CdCl 2 solutions when using a solid cathode. The reduction behavior of Zr at a solid W cathode and a Cd-coated W cathode was compared in a LiCl-KCl-ZrCl 4 solution at 500 .deg. C. It was observed from the results using a solid W cathode that Zr 4+ ions were gradually oxidized to Zr 2+ , Zr, and ZrCl during the reduction sweep, but the final oxidation peak of Zr 2+ to Zr 4+ seemed to be unclear during the oxidation sweep. In the case of the Cd-coated W electrode, only a Cd 2 Zr phase was formed at 500 .deg. C, which seemed to be related to the melting point of Cd-Zr intermetallics. Through additional studies at different temperatures, the formation behavior will be studied

  13. Vectorization of DOT3.5 code

    Nonomiya, Iwao; Ishiguro, Misako; Tsutsui, Tsuneo

    1990-07-01

    In this report, we describe the vectorization of two-dimensional Sn-method radiation transport code DOT3.5. Vectorized codes are not only the NEA original version developed at ORNL but also the versions improved by JAERI: DOT3.5 FNS version for fusion neutronics analyses, DOT3.5 FER version for fusion reactor design, and ESPRIT module of RADHEAT-V4 code system for radiation shielding and radiation transport analyses. In DOT3.5, input/output processing time amounts to a great part of the elapsed time when a large number of energy groups and/or a large number of spatial mesh points are used in the calculated problem. Therefore, an improvement has been made for the speedup of input/output processing in the DOT3.5 FNS version, and DOT-DD (Double Differential cross section) code. The total speedup ratio of vectorized version to the original scalar one is 1.7∼1.9 for DOT3.5 NEA version, 2.2∼2.3 fro DOT3.5 FNS version, 1.7 for DOT3.5 FER version, and 3.1∼4.4 for RADHEAT-V4, respectively. The elapsed times for improved DOT3.5 FNS version and DOT-DD are reduced to 50∼65% that of the original version by the input/output speedup. In this report, we describe summary of codes, the techniques used for the vectorization and input/output speedup, verification of computed results, and speedup effect. (author)

  14. 1,4-Bis(4-chlorophenylseleno)-2,5-dimethoxybenzene

    Sørensen, Henning Osholm; Stuhr-Hansen, Nicolai

    2009-01-01

    The title compound, C20H16Cl2O2Se2, utilizes the symmetry of the crystallographic inversion center. Molecular chains are formed through symmetric C-H center dot center dot center dot Cl interactions around inversion centers, mimicking the commonly observed symmetric hydrogen-bonded dimer pattern...

  15. PREFACE: Quantum dots as probes in biology

    Cieplak, Marek

    2013-05-01

    photosynthetic systems. The next paper, by Olejnik et al, discussed metallic QDs which enhance photosynthetic function in light-harvesting biomolecular complexes. Such hybrid structures with gold QDs are shown to exhibit a strong increase in the fluorescence quantum yield. The next two papers, by Sikora et al and Kaminska et al deal with the ZnO nanoparticles passivated by MgO. In the first of these two papers, the authors describe the behavior of ZnO/MgO when introduced to human cancer cells. In the second, the authors describe the QDs with an extra outer layer of Fe2O3 which makes the nanoparticles superparamagnetic and also capable of generation of reactive oxygen species which could be applied to form localized centers of toxicity for cancer treatment. Finally, in the last paper by Yatsunenko et al, the authors discuss several semiconducting QDs like ZnO with various rare-earth dopands. They propose a microwave-driven hydrothermal technology to make them, characterize their luminescence and demonstrate their usefulness in the early recognition of cancer tissues. Quantum dots as probes in biology contents Quantum dots as probes in biologyMarek Cieplak Luminescent nanoparticles and their applications in the life sciencesVarun K A Sreenivasan, Andrei V Zvyagin and Ewa M Goldys Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid Krzysztof Szczepaniak, Remigiusz Worch and Joanna Grzyb Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dotsMaria Olejnik, Bartosz Krajnik, Dorota Kowalska, Guanhua Lin and Sebastian Mackowski Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgOBożena Sikora, Krzysztof Fronc, Izabela Kamińska, Kamil Koper, Piotr Stępień and Danek Elbaum Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles I Kamińska, B Sikora, K Fronc, P Dziawa, K Sobczak, R Minikayev, W

  16. Stark shifting two-electron quantum dot

    Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.

    2003-01-01

    Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots

  17. Quantum Dots Coupled to a Superconductor

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  18. Detecting the chirality for coupled quantum dots

    Cao Huijuan; Hu Lian

    2008-01-01

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots

  19. Optical Properties of Semiconductor Quantum Dots

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  20. Optical anisotropy in vertically coupled quantum dots

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  1. Thick-shell nanocrystal quantum dots

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  2. Optical Spectroscopy Of Charged Quantum Dot Molecules

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  3. Capture, relaxation and recombination in quantum dots

    Sreenivasan, D.

    2008-01-01

    Quantum dots (QDs) have attracted a lot of interest both from application and fundamental physics point of view. A semiconductor quantum dot features discrete atomiclike energy levels, despite the fact that it contains many atoms within its surroundings. The discrete energy levels give rise to very

  4. Determination of ethanol using permanganate-CdS quantum dot chemiluminescence system.

    Abolhasani, Jafar; Hassanzadeh, Javad

    2015-08-01

    A novel and highly sensitive chemiluminescence (CL) method for the determination of ethanol was developed based on the CdS quantum dots (QDs)-permanganate system. It was found that KMnO4 could directly oxidize CdS QDs in acidic media resulting in relatively high CL emission. A possible mechanism was proposed for this reaction based on UV/Vis absorption, fluorescence and the generated CL emission spectra. However, it was observed that ethanol had a remarkable inhibition effect on this system. This effect was exploited in the determination of ethanol within the concentration range 12-300 µg/L, with detection at 4.3 µg/L. In order to evaluate the capability of presented method, it was satisfactorily utilized in the determination of alcohol in real samples. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Advancing Patient-Centered Care in Tuberculosis Management: A Mixed-Methods Appraisal of Video Directly Observed Therapy.

    Holzman, Samuel B; Zenilman, Avi; Shah, Maunank

    2018-04-01

    Directly observed therapy (DOT) remains an integral component of treatment support and adherence monitoring in tuberculosis care. In-person DOT is resource intensive and often burdensome for patients. Video DOT (vDOT) has been proposed as an alternative to increase treatment flexibility and better meet patient-specific needs. We conducted a pragmatic, prospective pilot implementation of vDOT at 3 TB clinics in Maryland. A mixed-methods approach was implemented to assess (1) effectiveness, (2) acceptability, and (3) cost. Medication adherence on vDOT was compared with that of in-person DOT. Interviews and surveys were conducted with patients and providers before and after implementation, with framework analysis utilized to extract salient themes. Last, a cost analysis assessed the economic impacts of vDOT implementation across heterogeneous clinic structures. Medication adherence on vDOT was comparable to that of in-person DOT (94% vs 98%, P = .17), with a higher percentage of total treatment doses (inclusive of weekend/holiday self-administration) ultimately observed during the vDOT period (72% vs 66%, P = .03). Video DOT was well received by staff and patients alike, who cited increased treatment flexibility, convenience, and patient privacy. Our cost analysis estimated a savings with vDOT of $1391 per patient for a standard 6-month treatment course. Video DOT is an acceptable and important option for measurement of TB treatment adherence and may allow a higher proportion of prescribed treatment doses to be observed, compared with in-person DOT. Video DOT may be cost-saving and should be considered as a component of individualized, patient-centered case management plans.

  6. Densities and apparent molar volumes of HClO{sub 4}(aq) and Yb(ClO{sub 4}){sub 3}(aq) at elevated temperatures and pressures

    Hakin, Andrew W. E-mail: hakin@uleth.ca; Lukacs, Michael J.; Jin Lianliu

    2004-09-01

    Relative densities have been measured for acidified aqueous solutions of ytterbium perchlorate {l_brace}Yb(ClO{sub 4}){sub 3}{r_brace} at approximately T=(348.15, 373.15, 398.15, and 423.15) K and p=(10.0, 20.0, and 30.0) MPa over the concentration range 0.01624{<=}m{sub 2}/(mol {center_dot} kg{sup -1}) {<=} 0.2531 using an optically coupled vibrating tube densimeter (OCVTD). Experimental apparent molar volumes have been calculated from the density measurements, and apparent molar volumes for the aqueous perchlorate salt have been calculated using Young's rule. The application of Young's rule requires apparent molar volumes for aqueous perchloric acid (HClO{sub 4}) solutions over extended temperature and pressure ranges. These values were calculated from densities for aqueous HClO{sub 4} solutions that were measured using the OCVTD at the same temperatures and pressures as those used to investigate the density surface of the acidified aqueous Yb(ClO{sub 4}){sub 3} solutions. The temperature, pressure, and composition surfaces of the apparent molar volumes for Yb(ClO{sub 4}){sub 3}(aq) and HClO{sub 4}(aq) have been modelled using Pitzer ion-interaction equations. Apparent molar volumes at infinite dilution obtained from these models have been compared to those which can be calculated using the semi-empirical Helgeson, Kirkham, and Flowers equations of state. Values for the apparent molar volume at infinite dilution of the ytterbium trivalent cation have also been calculated using simple additivity principles.

  7. Counted Sb donors in Si quantum dots

    Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2015-03-01

    Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  8. Study and application of Dot 3.5 computer code in radiation shielding problems

    Otto, A.C.; Mendonca, A.G.; Maiorino, J.R.

    1983-01-01

    The application of nuclear transportation code S sub(N), Dot 3.5, to radiation shielding problems is revised. Aiming to study the better available option (convergence scheme, calculation mode), of DOT 3.5 computer code to be applied in radiation shielding problems, a standard model from 'Argonne Code Center' was selected and a combination of several calculation options to evaluate the accuracy of the results and the computational time was used, for then to select the more efficient option. To illustrate the versatility and efficacy in the application of the code for tipical shielding problems, the streaming neutrons calculation along a sodium coolant channel is ilustrated. (E.G.) [pt

  9. Third-harmonic generation of a laser-driven quantum dot with impurity

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  10. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Sklenářová, Hana, E-mail: sklenarova@faf.cuni.cz [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic); Voráčová, Ivona [Institute of Analytical Chemistry of the CAS, v. v. i., Brno (Czech Republic); Chocholouš, Petr; Polášek, Miroslav [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic)

    2017-04-15

    The effect of 0.01–100 µmol L{sup −1} Quantum Dots (QDs) with different emission wavelengths (520–640 nm) and different surface modifications (mercaptopropionic, mercaptoundecanoic, thioglycolic acids and mercaptoethylamine) on permanganate-induced and luminol–hydrogen peroxide chemiluminescence (CL) was studied in detail by a sequential injection technique using a spiral detection flow cell and a flow-batch detection cell operated in flow and stop-flow modes. In permanganate CL system no significant enhancement of the CL signal was observed while for the luminol–hydrogen peroxide CL substantial increase (>100% and >90% with the spiral detection cell in flow and stop-flow modes, respectively) was attained for CdTe QDs. Enhancement exceeding 120% was observed for QDs with emissions at 520, 575 and 603 nm (sizes of 2.8 nm, 3.3 nm and 3.6 nm) using the flow-batch detection cell in the stop-flow mode. Pronounced effect was noted for surface modifications while mercaptoethylamine was the most efficient in CL enhancement compared to mercaptopropionic acid the most commonly applied coating. Significant difference between results obtained in flow and flow-batch conditions based on the entire kinetics of the extremely fast CL reaction was discussed. The increase of the CL signal was always accompanied by reduced lifetime of the CL emission thus application of QDs in flow techniques should be always coupled with the study of the CL lifetime.

  11. Biocompatible Quantum Dots for Biological Applications

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  12. Magnon-driven quantum dot refrigerators

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  13. Multi-Excitonic Quantum Dot Molecules

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  14. Viscoelastic wormlike micelles formed by ionic liquid-type surfactant [C16imC8]Br towards template-assisted synthesis of CdS quantum dots.

    Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong

    2018-01-31

    In this paper, viscoelastic wormlike micelles consisting of cationic liquid-type surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C 16 imC 8 ]Br), water and different additives were utilized for the synthesis of CdS quantum dots. First, the influence of different additives, such as [Cd(NH 3 ) 6 ]Cl 2 and ethanethioamid (precursors for the synthesis of CdS quantum dots), and temperature on the viscoelasticity of the [C 16 imC 8 ]Br aqueous solution was studied by dynamic and steady rheology. Furthermore, the synthesized CdS quantum dots and their photoluminescence properties were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). In the end, the mechanism for the synthesis of CdS quantum dots in [C 16 imC 8 ]Br wormlike micelles is proposed.

  15. Electron transport in quantum dots

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  16. Frecuencia de virus respiratorios y características clínicas de niños que acuden a un hospital en México Frequency of respiratory viruses and clinical characteristics in children attending a care center in Mexico City

    Rosa María Wong-Chew

    2010-12-01

    Full Text Available OBJETIVO. Describir la frecuencia de virus respiratorios y características clínicas en niños con cuadros respiratorios de un hospital de tercer nivel en México. MATERIAL Y MÉTODOS. Se incluyeron niños con diagnóstico de infección respiratoria y un resultado positivo por inmunofluorescencia de enero 2004 a octubre 2006. RESULTADOS. De 986 muestras nasofaríngeas, 138 (14% fueron positivas. La frecuencia fue: 80% virus sincicial respiratorio (VSR, 8% parainfluenza 1, 5% parainfluenza3, 2% adenovirus, 2% influenza A, 1% parainfluenza 2 y 1% influenza B. CONCLUSIONES. La frecuencia de virus respiratorios fue de 14%. El VSR se identificó asociado con más frecuencia, a neumonía y bronquiolitis en menores de 3 años.OBJECTIVE. To describe the frequency of respiratory viruses and clinical characteristics in children with respiratory signs and symptoms in a tertiary care center in Mexico. MATERIAL AND METHODS. Patients with a clinical diagnosis of respiratory infection and a positive immunofluorescence result (Light Diagnostics from January 2004 to October 2006 were included. RESULTS. From the 986 nashopharyngeal samples, 138 (14% were positive by immunofluorescence. The frequency was: 80% RSV, 8% parainfluenza 1, 5% parainfluenza 3, 2% adenovirus, 2% influenza A, 1% parainfluenza 2 and 1% influenza B. CONCLUSIONS. Respiratory viruses were detected in 14% of samples tested. RSV was the most frequently identified virus and was associated with pneumonia and bronchiolitis in children younger than 3 years old.

  17. Determination of hyperin in seed of Cuscuta chinensis Lam. by enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe(CN)6 system.

    Kang, Jing; Li, Xuwen; Geng, Jiayang; Han, Lu; Tang, Jieli; Jin, Yongri; Zhang, Yihua

    2012-10-15

    In this paper, 3-mercaptocarboxylic acid (MPA) modified CdTe quantum dots (QDs) were used as sensitizers, to enhance the chemiluminescence (CL) of the calcein/K(3)Fe(CN)(6) system. A new CL system of CdTe/calcein/K(3)Fe(CN)(6) was developed. The effects of reactant concentrations and the particle sizes of CdTe QDs on the CL emission were investigated in detail. The possible enhancement mechanism of the CL was also further investigated based on the photoluminescence (PL) and CL spectra. Polyphenols such as chlorogenic acid, quercetin, hyperin, catechin and kaempferol, were observed to inhibit the CL signal of the CdTe/calcein/K(3)Fe(CN)(6) system and determined by the proposed method. The proposed method was applied to the determination of hyperin in seed of Cuscuta chinensis Lam. and the results obtained were satisfactory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Red Dot Basal Cell Carcinoma: Report of Cases and Review of This Unique Presentation of Basal Cell Carcinoma.

    Cohen, Philip R

    2017-03-22

    Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that

  19. 36Cl AMS measurement of JCO samples

    Arai, D.; Seki, R.; Nagashima, Y.; Takahashi, T.; Kume, H.; Mawatari, R.

    2000-01-01

    A critical nuclear accident occurred at the nuclear fuel processing facility, JCO, in Tokaimura, Ibaraki prefecture, Japan on 30 September 1999, and a lot of neutron particle were released in the environment. In order to estimate the total neutron flux, we measured the yield of 36 Cl radioisotopes in the samples being collected from the accident site. The neutron flux can be estimated from the ratio of 36 Cl to 35 Cl because the 36 Cl nuclei are created from 35 Cl through a thermal neutron capture process, 35 Cl(n,γ) 36 Cl. (author)

  20. Controllable synthesis, growth mechanism and optical properties of the ZnSe quantum dots and nanoparticles with different crystalline phases

    Feng, Bo [Key Laboratory of Excited State Physics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern Nan-Hu Road, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Yang, Jinghai, E-mail: jhyang1@jlnu.edu.cn [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Cao, Jian; Yang, Lili; Gao, Ming; Wei, Maobin; Liu, Yang [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Song, Hang [Key Laboratory of Excited State Physics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern Nan-Hu Road, Changchun 130033 (China)

    2013-03-15

    Graphical abstract: The ZnSe quantum dots (3.5 nm) with the wurtzite structure exhibited a strong near band-edge emission (NBE) peak centered at 422 nm. The zinc blende ZnSe nanoparticles (21 nm) exhibited near-band-edge luminescence peak centered at 472 nm. Highlights: ► The results of TEM showed that the ZnSe quantum dots were about 3.5 nm. ► The ZnSe quantum dots exhibited a near band-edge emission peak centered at 422 nm. ► The ZnSe nanoparticles exhibited near-band-edge luminescence peak centered at 472 nm. - Abstract: ZnSe precursors were prepared by a solvothermal method at 180 °C without any surface-active agents. ZnSe quantum dots and nanoparticles were obtained by annealing the precursors at 300 °C for 2 h in argon atmosphere. The ZnSe quantum dots were about 3.5 nm, while the ZnSe nanoparticles were about 21 nm, as observed using TEM. The growth mechanisms for the two samples were discussed; this proved that the high coordination ability of ethylenediamine to zinc played an important role in the final phase of the products. The ZnSe quantum dots with the wurtzite structure exhibited a strong near band-edge emission (NBE) peak centered at 422 nm, which was blue-shifted in comparison to that of the bulk ZnSe, which was mainly caused by the quantum confinement effect. However, the zinc blende ZnSe nanoparticles exhibited a near-band-edge luminescence peak centered at 472 nm.

  1. Liquid-vapor equilibrium in LaCl3-LuCl3 and PrCl3-NdCl3 systems

    Nisel'son, L.A.; Lyzlov, Yu.N.; Solov'ev, S.I.

    1978-01-01

    The liquid-vapour equilibrium in the systems LaCl 3 -LuCl 3 and PrCl 3 -NdCl 3 was studied by the boiling-point method. It was established that the system LaCl 3 -LuCl 3 is near-ideal. In the PrCl 3 -NdCl 3 system, a considerable positive deviation from the ideal with the formation of an azeotrope was detected. The azeotrope has a ''smeared-out'' minimum, which falls on a mixture containing approximately 65 mol.% neodymium trichloride. The boiling point of this mixture at a pressure of 1 mm Hg is approximately 975 deg C. The relative volatility coefficients in both systems were studied by the Raleigh distillation method. The presence of the azeotrope in the system PrCl 3 -NdCl 3 is confirmed by the nature of the dependence of the relative volatility coefficient on the composition of the mixture

  2. Delay in DOTS for new pulmonary tuberculosis patient from rural area of Wardha District, India

    Shilpa Bawankule

    2010-07-01

    Full Text Available Vast majority of active tuberculosis patients seeks treatment, do so promptly, still many patients spend a great deal of time and money “shopping for health” and too often they do not receive either accurate diagnosis or effective treatment, despite spending considerable resources. Objective: To find out the time taken to, for diagnosis of tuberculosis and to put patient on DOTS from the onset of symptoms and pattern of health seeking behavior of new pulmonary tuberculosis patients. A cross-sectional rapid assessment using qualitative (FGD and quantitative (Interview methods conducted at DOTS center of tertiary care hospital from rural Wardha. Participants: 53 pulmonary tuberculosis patients already on DOTS, in intensive phase. Main outcome measure: Delay in initiation of DOTS & health seeking behavior Results: Median total delay for starting DOTS was 111 days, (range: 10 to 321 days. Patient delay was more than provider delay. Patients delay was more in patients above 60 years, illiterate, per-capita income below 650 Rupees and HIV TB co-infection. Pattern of health seeking behavior was complex. Family physician was the preferred health care provider. Patient visited on an average four providers and spent around 1450 rupees (only direct cost before DOTS begin. Time taken from the onset of symptoms and start of DOT is a cause of concern for the tuberculosis control program. Early case detection is important rather than mere achieving target of 70% new case detection. Program manager needs to implement locally relevant & focused strategies for early case detection to improve the treatment success, especially in rural area of India.

  3. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    Yang, Chao, E-mail: chaoyangscu@gmail.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Feng, Guoying, E-mail: guoing_feng@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Dai, Shenyu, E-mail: 232127079@qq.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Wang, Shutong, E-mail: wangshutong.scu@gmail.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Li, Guang, E-mail: 632524844@qq.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Zhang, Hua [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Zhou, Shouhuan, E-mail: zhoush@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); North China Research Institute of Electro-Optics, 4 Jiuxianqiao Street, Chaoyang District, Beijing 100015 (China)

    2017-08-31

    Highlights: • A novel method for synthesis and coating of quantum dots by ultrafast laser pulses. • Mild and “green” synthesis method without toxic chemicals. • Enhanced bright green light emission without doped transition metal ions. • Ultrafast laser and coating layer enhanced the emission originated from defects. - Abstract: A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4–6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  4. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    Yang, Chao; Feng, Guoying; Dai, Shenyu; Wang, Shutong; Li, Guang; Zhang, Hua; Zhou, Shouhuan

    2017-01-01

    Highlights: • A novel method for synthesis and coating of quantum dots by ultrafast laser pulses. • Mild and “green” synthesis method without toxic chemicals. • Enhanced bright green light emission without doped transition metal ions. • Ultrafast laser and coating layer enhanced the emission originated from defects. - Abstract: A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4–6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  5. Inter-dot coupling effects on transport through correlated parallel

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  6. Metamorphic quantum dots: Quite different nanostructures

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-01-01

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  7. Quantum dots as mineral- and matrix-specific strain gages for bone biomechanical studies

    Zhu, Peizhi; Xu, Jiadi; Morris, Michael; Ramamoorthy, Ayyalusamy; Sahar, Nadder; Kohn, David

    2009-02-01

    We report the use of quantum dots (Qdots) as strain gages in the study of bone biomechanics using solid state nuclear magnetic resonance (NMR) spectroscopy. We have developed solid state NMR sample cells for investigation of deformations of bone tissue components at loads up to several Mega Pascal. The size constraints of the NMR instrumentation limit the bone specimen diameter and length to be no greater than 2-3 mm and 30 mm respectively. Further, magic angle spinning (MAS) solid state NMR experiments require the use of non-metallic apparatus that can be rotated at kilohertz rates. These experimental constraints preclude the use of standard biomechanical measurement systems. In this paper we explore the use of quantum dot center of gravity measurement as a strain gage technology consistent with the constraints of solid state NMR. We use Qdots that bind calcium (625 nm emission) and collagen (705 nm emission) for measurement of strain in these components. Compressive loads are applied to a specimen in a cell through a fine pitch screw turned with a mini-torque wrench. Displacement is measured as changes in the positions of arrays of quantum dots on the surface of a specimen. Arrays are created by spotting the specimen with dilute suspensions of Qdots. Mineral labeling is achieved with 705 nm carboxylated dots and matrix labeling with 565 nm quantum dots conjugated to collagen I antibodies. After each load increment the new positions of the quantum dots are measured by fluorescence microscopy. Changes in Qdot center of gravity as a function of applied load can be measured with submicron accuracy.

  8. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  9. Double Super-Exchange in Silicon Quantum Dots Connected by Short-Bridged Networks

    Li, Huashan; Wu, Zhigang; Lusk, Mark

    2013-03-01

    Silicon quantum dots (QDs) with diameters in the range of 1-2 nm are attractive for photovoltaic applications. They absorb photons more readily, transport excitons with greater efficiency, and show greater promise in multiple-exciton generation and hot carrier collection paradigms. However, their high excitonic binding energy makes it difficult to dissociate excitons into separate charge carriers. One possible remedy is to create dot assemblies in which a second material creates a Type-II heterojunction with the dot so that exciton dissociation occurs locally. This talk will focus on such a Type-II heterojunction paradigm in which QDs are connected via covalently bonded, short-bridge molecules. For such interpenetrating networks of dots and molecules, our first principles computational investigation shows that it is possible to rapidly and efficiently separate electrons to QDs and holes to bridge units. The bridge network serves as an efficient mediator of electron superexchange between QDs while the dots themselves play the complimentary role of efficient hole superexchange mediators. Dissociation, photoluminescence and carrier transport rates will be presented for bridge networks of silicon QDs that exhibit such double superexchange. This material is based upon work supported by the Renewable Energy Materials Research Science and Engineering Center (REMRSEC) under Grant No. DMR-0820518 and Golden Energy Computing Organization (GECO).

  10. 49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false How do DOT drug and alcohol tests relate to non... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Employer Responsibilities § 40.13 How do DOT drug and... non-DOT drug and alcohol testing programs. This prohibition includes the use of the DOT forms with...

  11. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    Heayoung P. Yoon

    2013-06-01

    Full Text Available We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC using a thin film solar cell (n-CdS / p-CdTe. Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots, is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  12. Quantum dot devices for optical communications

    Mørk, Jesper

    2005-01-01

    -low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record...

  13. Micromagnetic simulations of submicron cobalt dots

    Parker, G. J.; Cerjan, C.

    2000-01-01

    Numerical simulations of submicron Co extruded elliptical dots were performed to illustrate the relative importance of different physical parameters on the switching behavior in the easy direction. Shape, size, magnetic moment magnitude, and the magnitude and distribution of the crystalline anisotropicity were varied. The simulation represents magnetostatic, exchange, and crystalline anisotropicity fields on a structured mesh using finite difference techniques. The smooth boundary of the dots is accurately represented by use of the embedded curve boundary method. Agreement with experimental hysteresis measurements of submicron dot arrays is obtained when an appropriate angular distribution of the grain anisotropicity axes is invoked. (c) 2000 American Institute of Physics

  14. Entangled exciton states in quantum dot molecules

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  15. Circularly organized quantum dot nanostructures of Ge on Si substrates

    Cai, Qijia; Chen, Peixuan; Zhong, Zhenyang; Jiang, Zuimin; Lu, Fang; An, Zhenghua

    2009-01-01

    A novel circularly arranged structure of germanium quantum dots has been fabricated by combining techniques including electron beam lithography, wet etching and molecular beam epitaxy. It was observed that both pattern and growth parameters affect the morphology of the quantum dot molecules. Meanwhile, the oxidation mask plays a vital role in the formation of circularly organized quantum dots. The experimental results demonstrate the possibilities of investigating the properties of quantum dot molecules as well as single quantum dots

  16. Quadro clínico e nutricional de pacientes com fibrose cística: 20 anos de seguimento no HC-UFMG Clinical and nutritional aspects of a Center of Cystic Fibrosis-HC-UFMG: 20 years of follow-up

    F. J. C. Reis

    2000-10-01

    Full Text Available OBJETIVOS: A fibrose cística (FC é a doença genética letal, de herança autossômica recessiva, mais comum entre pacientes de cor branca. O presente estudo foi realizado com o objetivo de identificar o quadro clínico e nutricional à admissão dos pacientes no Centro de Tratamento de FC do HC-UFMG e avaliar a sobrevida a longo prazo. PACIENTES E MÉTODOS: Em um período de 20 anos, 127 pacientes portadores de FC foram acompanhados longitudinalmente e submetidos a protocolo previamente estabelecido, após confirmação do diagnóstico pelo teste do suor. Foram obtidos na admissão dados demográficos, da apresentação clínica, nutricionais e laboratoriais. O genótipo foi obtido de 106 pacientes pela técnica do PCR. Os pacientes foram seguidos por mediana de 44 meses. A análise de sobrevida foi realizada utilizando-se o método de Kaplan-Meier. RESULTADOS: A mediana da idade do diagnóstico da FC foi de 33 meses. A manifestação clínica predominante na época do diagnóstico foi a associação de sintomas respiratórios e gastrointestinais crônicos, presentes em 61% das crianças. A mutação mais freqüente encontrada foi a deltaF508: 17 pacientes (16% eram homozigotos para essa mutação e 30 (28% eram heterozigotos. Houve uma prevalência de desnutrição à admissão de 63% tendo sido reduzida para 45% ao final do seguimento. Um total 20 pacientes (15,7% evoluiu para o óbito. A probabilidade estimada de sobrevida nos primeiros 12 meses após o diagnóstico foi de 96% e após 5 anos de seguimento de 80%. CONCLUSÕES: O diagnóstico da FC é ainda tardio em nosso meio e a sobrevida é menor quando comparada a dados internacionais. O seguimento desses pacientes em centro especializado permitiu uma melhora no estado nutricional apesar da inerente evolução da doença.BACKGROUND: Cystic fibrosis (CF is the most common severe autosomal recessive disease in caucasian population. The life expectancy of patients with CF has improved

  17. A 2x2 quantum dot array with controllable inter-dot tunnel couplings

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-01-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems make them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2$\\times$2 quantum dots defined electrostatically in a AlGaA...

  18. Thermoelectric transport through quantum dots

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  19. Chiral Responsive Liquid Quantum Dots.

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The white dot syndromes Síndromes dos pontos brancos retinianos

    Raul Nunes Galvarro Vianna

    2007-06-01

    Full Text Available Several entities must be considered when a patient presents with a white dot syndrome. In most cases these can be distinguished from one another based on the appearance or distribution of the lesions, the clinical course, or patient variables such as age, sex, laterality, and functional and image examinations. In this paper we review the distinctive and shared features of the white dot syndromes, highlighting the clinical findings, diagnostic test results, proposed etiologies, treatment, and prognosis.Várias doenças devem ser consideradas quando nos deparamos com paciente com uma entidade clínica incluída no grupo das "síndromes dos pontos brancos retinianos". O diagnóstico diferencial na maioria das vezes é baseado na aparência e/ou na distribuição das lesões, no curso clínico, ou por algumas variáveis relacionadas ao paciente, tais como idade, sexo, lateralidade, bem como por meio de exames funcionais e de imagem. O presente artigo revisa os achados clínicos das doenças que fazem parte do grupo das "síndromes dos pontos brancos retinianos", enfatizando as similaridades e as diferenças entre essas entidades. Os exames complementares, bem como a etiologia, o tratamento e o prognóstico de cada uma delas são descritos e comentados.

  1. International Guide to Highway Transportation Information: Volume 1 - Highway Transportation Libraries and Information Centers

    2013-01-01

    The FHWA Road Weather Management Program partnered with Utah DOT to develop and implement advanced traveler information strategies during weather events. UDOT already has one of the most sophisticated Traffic Operations Centers (TOCs) in the country ...

  2. Effect of water chemistry on the aggregation and photoluminescence behavior of carbon dots.

    Bayati, Mohamed; Dai, Jingjing; Zambrana, Austin; Rees, Chloe; Fidalgo de Cortalezzi, Maria

    2018-03-01

    Carbon dots are rapidly emerging carbon-based nanomaterials that, due to their growing applications, will inevitable find their way to natural waters; however, their environmental fate is mostly unknown. Carbon dots with different surface functionality were fabricated and characterized by TEM and FT-IR. Their surface charge, given by the zeta potential, and their hydrodynamic diameter in suspension were investigated under a variety of environmentally relevant conditions. The effect of ionic strength was studied in the presence of monovalent (NaCl) and divalent (CaCl 2 ) cations, for pH levels from 3 to 11; humic acid was used as a model for dissolved natural organic matter. Total potential energies of interactions were modeled by classical DLVO theory. The experimental results showed that water chemistry altered the surface charge of the nanomaterials, but their hydrodynamic size could not be correlated to those changes. Evidence of specific interactions was found for the amino functionalized particles in most cases, as well as the plain carbon dots in the presence of Ca 2+ and humic acid. Nanoparticles remained largely stable in suspension, with some exception at the highest ionic strength considered. DLVO theory did not adequately capture the aggregation behavior of the system. Moreover, cation and/or humic acid adsorption negatively affected the emission intensity of the particles, suggesting limitations to their use in natural water sensing applications. The particular stability shown by the carbon dots results in exposure to organisms in the water column and the possibility of contamination transported to significant distances from their source. Copyright © 2017. Published by Elsevier B.V.

  3. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  4. Aspectos clínicos de pacientes com pitiríase versicolor atendidos em um centro de referência em dermatologia tropical na cidade de Manaus (AM, Brasil Clinical aspects of patients with pityriasis versicolor seen at a referral center for tropical dermatology in Manaus, Amazonas, Brazil

    Patrícia Motta de Morais

    2010-12-01

    Full Text Available FUNDAMENTOS: A pitiríase versicolor (tinha versicolor é uma micose superficial crônica, causada por leveduras do gênero Malassezia spp. comensais das camadas queratinizadas da pele e que, sob determinadas condições ainda não esclarecidas, se torna patogênica, determinando as manifestações clínicas da doença. É uma dermatose recidivante e, mesmo após tratamento, pode deixar hipopigmentação persistente, causando problemas sociais aos indivíduos acometidos. OBJETIVO: Descrever as características clínicas e epidemiológicas de pacientes com diagnóstico de tinha versicolor atendidos em uma unidade de referência em Dermatologia (Fundação Alfredo da Matta. MÉTODOS: Estudo de série de casos em que foram detalhadas as manifestações cutâneas e as características epidemiológicas de pacientes atendidos na Fundação Alfredo da Matta com diagnóstico de tinha versicolor. RESULTADOS: Cento e dezesseis pacientes foram incluídos no estudo no período de janeiro a agosto de 2008. A maioria dos indivíduos é do sexo masculino, de cor parda, da faixa etária jovem e formada por estudantes, que apresentavam fatores predisponentes ao surgimento das manchas. Também a maioria apresentava lesões extensas e história passada da doença. CONCLUSÃO: O estudo mostrou alta proporção de indivíduos com quadros extensos e de longa duração da doença.BACKGROUND: Pityriasis versicolor (tinea versicolor is a chronic superficial mycosis caused by yeasts of the Malassezia spp. genus commensal of the keratinized layers of the skin. Under conditions not yet understood, it becomes pathogenic determining the clinical manifestations of the disease. It is a recurrent skin condition and persistent hypopigmentation may remain after treatment, causing social problems to those affected. OBJECTIVE: To describe the clinical and epidemiological features of patients diagnosed with tinea versicolor treated at a referral center for dermatology (Alfredo da

  5. Calidad de vida en el trabajo: Profesionales de la salud de Clínica Río Blanco y Centro de Especialidades Médicas Quality of life at work: Health Professionals Clinica Rio Blanco and Center Especialidades Médicas

    Diemen Delgado García

    2012-09-01

    Full Text Available Objetivo: Identificar un constructo sobre la calidad de vida en el trabajo de los médicos/as y enfermeros/as de Clínica Río Blanco y Centro de Especialidades Médicas. Métodos y Materiales: Estudio transversal y analítico. Se aplicó un cuestionario de datos socio-laborales integrados por 10 ítems y el instrumento CVT-GOHISALO, el cual consta de 74 ítems y mide la calidad de vida en el trabajo en siete dimensiones Resultados: En un grupo de 20 trabajadores entre médicos/as y enfermeros/as, el 40 % cuenta con dos trabajos, el 20 % reporta ausentismo por enfermedad el año previo. El 60 % se desempeñan principalmente en turno mixto. El 40 % tiene una antigüedad de dos a cinco años y el 30 % menos de dos años. El número de horas semanales que dedican al descanso es menor a 20 horas en un 50 % de los trabajadores. Las siete dimensiones evaluadas: soporte institucional para el trabajo, seguridad en el trabajo, integración al puesto de trabajo, satisfacción por el trabajo, bienestar a través del trabajo, desarrollo personal y administración del tiempo libre, reflejan grados de insatisfacción en la calidad de vida en el trabajo. Conclusiones: Los trabajadores de la salud evaluados muestran una serie de percepciones subjetivas que reflejan una realidad de su medio laboral.Objective: To identify a construct on quality of life in the work of doctors and nurses Clínica Río Blanco and Center Especialidades Médicas. Methods and Materials: Cross-sectional and analytical. A questionnaire was social and labor data consisting of 10 question and CVT-GOHISALO instrument, which consists of 74 question and measures the quality of life at work in seven dimensions. Results: In a group of 20 workers among doctors and nurses, 40 % have two jobs, 20 % reported absenteeism due to illness the previous year. 60 % work mainly in mixed shift. 40 % have a length of two to five years and 30 % less than two years. The number of hours per week devoted to rest

  6. Historia Clínica

    Micó, Lydia; Bretó, Patricia; Soriano, José Miguel

    2012-01-01

    Uso del video educativo y el podcasting como fortalecimiento en el aprendizaje de la Dietoterapia. La anámnesis e historia clínica es el primer acercamiento del profesional frente a sus pacientes. En este vídeo se explican los principales puntos que se deberían desarrollar para realizar el tratamiento dietoterapéutico como herramienta clave del diagnóstico nutricional.

  7. System and method for making quantum dots

    Bakr, Osman; Pan, Jun; El-Ballouli, Ala'a O.; Knudsen, Kristian Rahbek; Abdelhady, Ahmed L.

    2015-01-01

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments

  8. MoDOT research peer exchange.

    2011-04-01

    The Missouri Department of Transportation hosted a peer exchange on April 11-12, 2011 in Jefferson City, Missouri. Participants included representatives from four state DOTs, The National Academies, USDOT-RITA, FHWA, and both public and private resea...

  9. Electron Transport in Coupled Quantum Dots

    Antoniadis, D

    1998-01-01

    In the course of the investigation funded by this proposal we fabricated, modeled, and measured a variety of quantum dot structures in order to better understand how such nanostructures might be used for computation...

  10. Synthetic Developments of Nontoxic Quantum Dots.

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optical Studies of Single Quantum Dots

    Gammon, Daniel; Steel, Duncan G

    2002-01-01

    ...: the atomlike entities known as quantum dots (QDs). Measuring 1-100 nm across, QDs are semiconductor structures in which the electron wavefunction is confined in all three dimensions by the potential energy barriers that form the QD's boundaries...

  12. The evolving DOT enterprise : today toward tomorrow.

    2013-04-01

    Departments of transportation (DOTs) today are being shaped by a wide range of : factors some of which are directly managed and controlled within the transportation : industry while others are external factors shaping the demand for transportatio...

  13. Alternative energy resources for MoDOT

    2011-02-01

    This research investigates environmentally friendly alternative energy sources that could be used by MoDOT in various areas, and develops applicable and sustainable strategies to implement those energy sources.

  14. Colloidal Quantum Dot Photovoltaics: A Path Forward

    Kramer, Illan J.; Sargent, Edward H.

    2011-01-01

    spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements

  15. Longitudinal wave function control in single quantum dots with an applied magnetic field

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  16. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  17. Silicon Quantum Dots for Quantum Information Processing

    2013-11-01

    S. Lai, C. Tahan, A. Morello and A. S. Dzurak, Electron Spin lifetimes in multi-valley sil- icon quantum dots, S3NANO Winter School Few spin solid...lifetimes in multi-valley sil- icon quantum dots, International Workshop on Silicon Quantum Electronics, Grenoble, France, February 2012 (Poster). C...typically plunger gates), PMMA A5 is spun at 5000 rpm for 30 seconds, resulting in a 280 nm resist thickness. The resists are baked for 90 seconds at 180

  18. Exciton in type-II quantum dot

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  19. Sol-Gel Chemistry for Carbon Dots.

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Coherent transport through interacting quantum dots

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  1. Coherent transport through interacting quantum dots

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  2. Quantum-dot-in-perovskite solids

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  3. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  4. Quantum-dot-in-perovskite solids

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  5. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  6. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal

    2016-01-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  7. [Patient-centered medicine for tuberculosis medical services].

    Fujita, Akira; Narita, Tomoyo

    2012-12-01

    The 2011 edition of Specific Guiding Principles for Tuberculosis Prevention calls for a streamlined medical services system capable of providing medical care that is customized to the patient's needs. The new 21st Century Japanese version of the Directly Observed Treatment Short Course (DOTS) expands the indication of DOTS to all tuberculosis (TB) patients in need of treatment. Hospital DOTS consists of comprehensive, patient-centered support provided by a DOTS care team. For DOTS in the field, health care providers should select optimal administration support based on patient profiles and local circumstances. In accordance with medical fee revisions for 2012, basic inpatient fees have been raised and new standards for TB hospitals have been established, the result of efforts made by the Japanese Society for Tuberculosis and other associated groups. It is important that the medical care system be improved so that patients can actively engage themselves as a member of the team, for the ultimate goal of practicing patient-centered medicine. We have organized this symposium to explore the best ways for practicing patient-centered medicine in treating TB. It is our sincere hope that this symposium will lead to improved medical treatment for TB patients. 1. Providing patient-centered TB service via utilization of collaborative care pathway: Akiko MATSUOKA (Hiroshima Prefectural Tobu Public Health Center) We have been using two types of collaborative care pathway as one of the means of providing patient-centered TB services since 2008. The first is the clinical pathway, which is mainly used by TB specialist doctors to communicate with local practitioners on future treatment plan (e.g. medication and treatment duration) of patients. The clinical pathway was first piloted in Onomichi district and its use was later expanded to the whole of Hiroshima prefecture. The second is the regional care pathway, which is used to share treatment progress, test results and other

  8. Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures

    Barettin, D.; Houmark-Nielsen, Jakob; Lassen, B.

    2009-01-01

    comparing four different k center dot p band-structure models. In addition to the separation of the heavy and light holes due to the biaxial-strain component, we observe a general reduction in the transition strengths due to energy crossings in the valence bands caused by strain and band-mixing effects. We......Using multiband k center dot p theory we study the size and geometry dependence on the slow light properties of conical semiconductor quantum dots. We find the V-type scheme for electromagnetically induced transparency (EIT) to be most favorable and identify an optimal height and size for efficient...... EIT operation. In case of the ladder scheme, the existence of additional dipole allowed intraband transitions along with an almost equidistant energy-level spacing adds additional decay pathways, which significantly impairs the EIT effect. We further study the influence of strain and band mixing...

  9. On the diameter of dot-critical graphs

    Doost Ali Mojdeh

    2009-01-01

    Full Text Available A graph G is \\(k\\-dot-critical (totaly \\(k\\-dot-critical if \\(G\\ is dot-critical (totaly dot-critical and the domination number is \\(k\\. In the paper [T. Burtona, D. P. Sumner, Domination dot-critical graphs, Discrete Math, 306 (2006, 11-18] the following question is posed: What are the best bounds for the diameter of a \\(k\\-dot-critical graph and a totally \\(k\\-dot-critical graph \\(G\\ with no critical vertices for \\(k \\geq 4\\? We find the best bound for the diameter of a \\(k\\-dot-critical graph, where \\(k \\in\\{4,5,6\\}\\ and we give a family of \\(k\\-dot-critical graphs (with no critical vertices with sharp diameter \\(2k-3\\ for even \\(k \\geq 4\\.

  10. Quantum measurement of coherent tunneling between quantum dots

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  11. Effect of tunneling injection on the modulation response of quantum dot lasers

    Y. Yekta kiya

    2014-03-01

    Full Text Available In this paper, modulation bandwidth characteristics of InGaAs/GaAs quantum dot (QD laser were theoretically investigated. Simulation was done by using the fourth order Runge-Kutta method. Effect of carrier relaxation life time, temperature and current density on characteristics of tunneling injection QD laser (TIL and conventional QD laser (CL were analyzed. Results showed that tunneling injection in QD laser increases the modulation bandwidth indicating that it is very useful for using in the fiber optic communication systems.

  12. The interaction of CsCl with films of solid water

    Borodin, A; Krischok, S; Kempter, V

    2003-01-01

    The interaction of CsCl molecules with films of solid water (three layers thick, typically), deposited on a tungsten crystal at 130 K, was studied. Metastable impact electron spectroscopy (MIES) and UPS(HeI) were applied to study the emission from Cl3p and Cs5p and the highest occupied states 1b sub 1 , 3a sub 1 and 1b sub 2 of molecular water. Below a critical stoichiometry of about CsCl centre dot nH sub 2 O with n=6 the UPS spectra are quite similar to those from chlorides solvated in liquid water in as much as the relative positions and intensities of the water and salt features are concerned; very little emission from the ionization of Cl3p and Cs5p is observed with MIES. We conclude that the CsCl molecules become solvated in the water film. As long as n>6, the water spectrum remains characteristic for condensed water; at n6, water molecules not involved directly into the hydration of the salt molecules desorb around 140 K. Around 160 K all water has disappeared from the surface. Above this temperature o...

  13. Spin interactions in InAs quantum dots and molecules

    Doty, M.F.; Ware, M.E.; Stinaff, E.A.; Scheibner, M.; Bracker, A.S.; Ponomarev, I.V.; Badescu, S.C.; Reinecke, T.L.; Gammon, D. [Naval Research Lab, Washington, DC 20375 (United States); Korenev, V.L. [A.F. Ioffe Physical Technical Institute, St. Petersburg 194021 (Russian Federation)

    2006-12-15

    Spin interactions between particles in quantum dots or quantum dot molecules appear as fine structure in the photoluminescence spectra. Using the understanding of exchange interactions that has been developed from single dot spectra, we analyze the spin signatures of coupled quantum dots separated by a wide barrier such that inter-dot interactions are negligible. We find that electron-hole exchange splitting is directly evident. In dots charged with an excess hole, an effective hole-hole interaction can be turned on through tunnel coupling. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Artful and multifaceted applications of carbon dot in biomedicine.

    Jaleel, Jumana Abdul; Pramod, K

    2018-01-10

    Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Study of thermoluminescence in K Cl crystals doped with Sr2+

    Russo, D.M.B.

    1990-01-01

    An attempt is made to correlate the F and Z 1 (F center modified by the presence of a two-valence impurity pair and and positive ion vacancy) and a V center, with the T L curve peaks observed in pure K Cl crystals doped with Sr 2+ , irradiated at room temperature. (L.C.J.A.)

  16. SU-F-BRE-14: Uncertainty Analysis for Dose Measurements Using OSLD NanoDots

    Kry, S; Alvarez, P; Stingo, F; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Optically stimulated luminescent dosimeters (OSLD) are an increasingly popular dosimeter for research and clinical applications. It is also used by the Radiological Physics Center for remote auditing of machine output. In this work we robustly calculated the reproducibility and uncertainty of the OSLD nanoDot. Methods: For the RPC dose calculation, raw readings are corrected for depletion, element sensitivity, fading, linearity, and energy. System calibration is determined for the experimental OSLD irradiated at different institutions by using OSLD irradiated by the RPC under reference conditions (i.e., standards): 1 Gy in a Cobalt beam. The intra-dot and inter-dot reproducibilities (coefficient of variation) were determined from the history of RPC readings of these standards. The standard deviation of the corrected OSLD signal was then calculated analytically using a recursive formalism that did not rely on the normality assumption of the underlying uncertainties, or on any type of mathematical approximation. This analytical uncertainty was compared to that empirically estimated from >45,000 RPC beam audits. Results: The intra-dot variability was found to be 0.59%, with only a small variation between readers. Inter-dot variability was found to be 0.85%. The uncertainty in each of the individual correction factors was empirically determined. When the raw counts from each OSLD were adjusted for the appropriate correction factors, the analytically determined coefficient of variation was 1.8% over a range of institutional irradiation conditions that are seen at the RPC. This is reasonably consistent with the empirical observations of the RPC, where the coefficient of variation of the measured beam outputs is 1.6% (photons) and 1.9% (electrons). Conclusion: OSLD nanoDots provide sufficiently good precision for a wide range of applications, including the RPC remote monitoring program for megavoltage beams. This work was supported by PHS grant CA10953 awarded by

  17. Magnetic moment of 33Cl

    Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    2004-01-01

    The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived

  18. Submonolayer Quantum Dot Infrared Photodetector

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  19. Advancements in the Field of Quantum Dots

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  20. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    Depondt, Ph.; Levy, J.-C.S.

    2011-01-01

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  1. Dot gain compensation in the blue noise mask

    Yao, Meng; Parker, Kevin J.

    1995-04-01

    Frequency modulated (FM) halftoning or 'stochastic screening,' has attracted a great deal of attention in the printing industry in recent years. It has several advantages over conventional halftoning. But one serious problem that arises in FM halftoning is dot gain. One approach to stochastic screening uses a specially constructed halftone screen, the blue noise mask (BNM), to produce an unstructured and visually appealing pattern of halftone dots at any gray level. In this paper, we will present methods to correct dot gain with the BNM. Dot gain is related to the area-to-perimeter ration of printed spots. We can exploit this feature in different ways. At a medium level, a B>NM pattern will have 'connected' as well as 'isolated' dots. Normally, as we build down BNM patterns to lower levels, a specific number of white dots will be replace by black dots. Since connected white dots are more likely to be picked than isolated white dots, this will results in substantial dot gain because of the increasing number of isolated white dots. We show that it is possible to constrain the process of constructing a BNM such that isolated dots are preferentially removes, thus significantly reducing dot gain in a BNM.

  2. Biodegradation of the Nitramine Explosive CL-20

    Trott, Sandra; Nishino, Shirley F.; Hawari, Jalal; Spain, Jim C.

    2003-01-01

    The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobact...

  3. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  4. Measurement of 36Cl induced in shielding concrete of various accelerator facilities

    Bessho, K.; Matsumura, H.; Matsuhiro, T.

    2003-01-01

    The concentrations of 36 Cl induced in shielding concrete of the various accelerators has been measured by accelerator mass spectrometry. For three kinds of accelerator facilities, SF cyclotron (Center for Nuclear Study, the University of Tokyo), 300 MeV electron LINAC (Laboratory of Nuclear Science, Tohoku University), and 12 GeV proton synchrotron (High Energy Accelerator Research Organization), the depth profiles of 36 Cl/ 35 Cl ratios in concrete samples near the beam lines were analyzed. The depth profiles of 36 Cl/ 35 Cl are consistent with those of the radioactive concentrations of 152 Eu and 60 Co, which are formed by thermal neutron capture reactions. These results imply that 36 Cl formed in shielding concrete of these accelerators is mainly produced by thermal neutron capture of 35 Cl. The maximum 36 Cl/ 35 Cl ratio of 3x10 -8 (300 MeV electron LINAC, depth of 8 cm) corresponds to the specific radioactivity of 2x10 -3 Bq/g, which is not serious for radioactive waste management in reconstruction or decommissioning of accelerator facilities, compared with specific radioactivity of 3 H, 152 Eu and 60 Co. (author)

  5. The crystal structure of TeCl3+AuCl4-

    Jones, P.G.; Jentsch, D.; Schwarzmann, E.

    1986-01-01

    TeCl 3 + AuCl 4 - crystallizes in the triclinic space group Panti 1 with a=7.564(2), b=7.720(3), c=8.964(3) A, α=78.26(3), β=88.84(3), γ=89.35(3) 0 , Z=2. The structure was refined to R 0.041 for 1380 reflections. The cation polyhedron, including secondary Te...Cl interactions, is a square pyramid with mean Te-Cl 2.294, Te...Cl 3.028 A. The secondary interactions link the ions to form centrosymmetric (TeCl 3 .AuCl 4 ) 2 dimers. (orig.)

  6. Marshall Space Flight Center Technology Investments Overview

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  7. Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots

    Paik, Young Hun

    As the global concern for the financial and environmental costs of traditional energy resources increases, research on renewable energy, most notably solar energy, has taken center stage. Many alternative photovoltaic (PV) technologies for 'the next generation solar cell' have been extensively studied to overcome the Shockley-Queisser 31% efficiency limit as well as tackle the efficiency vs. cost issues. This dissertation focuses on the novel photovoltaic mechanism for the next generation solar cells using two inorganic nanomaterials, nanocrystal quantum dots and ferroelectric nanoparticles. Lead zirconate titanate (PZT) materials are widely studied and easy to synthesize using solution based chemistry. One of the fascinating properties of the PZT material is a Bulk Photovoltaic effect (BPVE). This property has been spotlighted because it can produce very high open circuit voltage regardless of the electrical bandgap of the materials. However, the poor optical absorption of the PZT materials and the required high temperature to form the ferroelectric crystalline structure have been obstacles to fabricate efficient photovoltaic devices. Colloidal quantum dots also have fascinating optical and electrical properties such as tailored absorption spectrum, capability of the bandgap engineering due to the wide range of material selection and quantum confinement, and very efficient carrier dynamics called multiple exciton generations. In order to utilize these properties, many researchers have put numerous efforts in colloidal quantum dot photovoltaic research and there has been remarkable progress in the past decade. However, several drawbacks are still remaining to achieve highly efficient photovoltaic device. Traps created on the large surface area, low carrier mobility, and lower open circuit voltage while increasing the absorption of the solar spectrum is main issues of the nanocrystal based photovoltaic effect. To address these issues and to take the advantages of

  8. Photoluminescence of carbon dots from mesoporous silica

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  9. Improvement of pre-treatment method for 36Cl/Cl measurement of Cl in natural groundwater by AMS

    Nakata, Kotaro; Hasegawa, Takuma

    2011-01-01

    Estimation of 36 Cl/Cl by accelerator mass spectrometry (AMS) is a useful method to trace hydrological processes in groundwater. For accurate estimation, separation of SO 4 2- from Cl - in groundwater is required because 36 S affects AMS measurement of 36 Cl. Previous studies utilized the difference in solubility between BaSO 4 and BaCl 2 (BaSO 4 method) to chemically separate SO 4 2- from Cl - . However, the accuracy of the BaSO 4 method largely depends on operator skill, and consequently Cl - recovery is typically incomplete (70-80%). In addition, the method is time consuming (>1 week), and cannot be applied directly to dilute solutions. In this study, a method based on ion-exchange column chromatography (column method) was developed for separation of Cl - and SO 4 2- . Optimum conditions were determined for the diameter and height of column, type and amount of resin, type and concentration of eluent, and flow rate. The recovery of Cl - was almost 100%, which allowed complete separation from SO 4 2- . The separation procedure was short ( 4 methods, and then analyzed by AMS to estimate 36 S counts and 36 Cl/Cl values. 36 S counts in samples processed by the column method were stable and lower than those from the BaSO 4 method. The column method has the following advantages over the BaSO 4 method: (1) complete and stable separation of Cl - and SO 4 2- , (2) less operator influence on results, (3) short processing time ( - , and (5) concentration of Cl - and separation from SO 4 2- in the one system for dilute solutions.

  10. Analysis of MoDOT communication and outreach effectiveness

    2008-07-01

    Personal interviews were held with MoDOT personnel to assess MoDOTs current communication practices and existing customer segmentation practices. Focus groups were then held to help gauge the effectiveness of existing communication practices and t...

  11. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  12. Surface treatment of nanocrystal quantum dots after film deposition

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  13. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  14. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    Hoogland, Sjoerd H.; Ip, Alex; Thon, Susanna; Voznyy, Oleksandr; Tang, Jiang; Liu, Huan; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  15. TxDOT administration research : tasks completed in FY2009.

    2010-01-01

    Texas Department of Transportation (TxDOT) Project 0-6581-TI, TxDOT Administration : Research, encompasses multiple tasks that explore and support administrative aspects of : transportation research. : The project term began in October 2008 and has b...

  16. Orifice diseases project - experience of the "Hospital das Clínicas" University of São Paulo Medical Center in day-hospital of anorectal disease Projeto doenças orificiais experiência do HCFMUSP em hospital-dia e doenças anorretais

    Sergio Carlos Nahas

    1999-06-01

    Full Text Available The treatment of malignant or benign colorectal pathologies that require more complex management are priorities in tertiary hospitals such as "Hospital das Clínicas" University of São Paulo Medical Center (HCFMUSP. Therefore, benign, uncomplicated orifice conditions are relegated to second place. The number of patients with hemorrhoids, perianal fistulas, fissures, condylomas and pilonidal cysts who seek treatment at the HFMUSP is very great, resulting in over-crowding in the outpatient clinics and a long waiting list for recommended surgical treatment (at times over 18 months. The authors describe the experience of the HCFMUSP over an eight-day period with day-hospital surgery in which 140 patients underwent surgery. Data was prospectively taken on the patients undergoing surgery for benign orifice pathologies including age, sex, diagnosis, surgery performed, immediate and late postoperative complications, and follow-up. 140 patients operated on over eight days were studied. 68 were males (48.75% with ages ranging from 25 to 62 (mean 35.2 yrs.. Hemorrhoids was the most frequent condition encountered (82 hemorrhoidectomies, 58.6%, followed by perineal fistula (28 fistula repairs, 20.0%. The most common complication was headache secondary to rachianesthesia occurring in 9 patients (6.4%. One patient (0.7% developed bleeding immediately PO that required reoperation. Mean follow-up was 104 days. Day-surgery characterized by quality care and low morbidity is feasible in tertiary public hospitals, permitting surgery for benign orifice pathologies on many patients within a short period of time.O tratamento das patologias colorretais malignas ou benignas, que necessitam tratamento com maior grau de complexidade são prioridades em hospitais terciários, como é o Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP, permanecendo assim as patologias orificiais benignas em um segundo plano. Todavia devido à sua

  17. Filtering algorithm for dotted interferences

    Osterloh, K., E-mail: kurt.osterloh@bam.de [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Buecherl, T.; Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany); Zscherpel, U.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Bock, S. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  18. Filtering algorithm for dotted interferences

    Osterloh, K.; Buecherl, T.; Lierse von Gostomski, Ch.; Zscherpel, U.; Ewert, U.; Bock, S.

    2011-01-01

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  19. Carbon quantum dots and a method of making the same

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    2017-08-22

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  20. Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots

    Rahmani, K; Zorkani, I; Jorio, A

    2011-01-01

    The binding energy and diamagnetic susceptibility χ dia are estimated for a shallow donor confined to move in GaAs-GaAlAs inhomogeneous quantum dots. The calculation was performed within the effective mass approximation and using the variational method. The results show that the binding energy and the diamagnetic susceptibility χ dia depend strongly on the core radius and the shell radius. We have demonstrated that there is a critical value of the ratio of the inner radius to the outer radius which may be important for nanofabrication techniques. The binding energy E b shows a minimum for a critical value of this ratio depending on the value of the outer radius and shows a maximum when the donor is placed at the center of the spherical layer. The diamagnetic susceptibility is more sensitive to variations of the radius for a large spherical layer. The binding energy and diamagnetic susceptibility depend strongly on the donor position.

  1. Nano dots and nano crystals detectors applications and questions

    Paltiel, Y.; Shusterman, S.; Naaman, R.; Aqua, T.; Banin, U.; Aharoni, A.

    2006-01-01

    Full Text: Nano technology is in the center of attention in the last decade. In our work we are using nano dots, nano crystals and quantum wells to study and fabricate infrared devices. In this study we aim to develop an accurate narrow band infrared sensor that will use quantum mechanics at room temperature. The sensor is based on a FET like structure, in which the current is very sensitive to potential changes on its surface. We have shown that this configuration provides flexibility and variability in operation bandgap and response. However, the relations between the quantum and the macroscopic world are not trivial and the coupling between worlds influences the transport, noise, and optical measurements. In this talk we will show some of the infrared devices we are studying, and try to present the rich physics and relations that combine between the two worlds

  2. Determination of 36Cl in environmental samples collected in the JCO by AMS

    Seki, R.; Tsukuba Univ., Ibaraki; Arai, D.; Nagashima, Y.; Takahashi, T.; Matsuhiro, T.; Imanaka, T.

    2003-01-01

    Long-lived chlorine, 36 Cl (T 1/2 = 301,000 y) in environmental samples has been measured by the AMS system installed in Tandem Accelerator Center, University of Tsukuba. A tri-carbon-molecular 12 C 3 - pilot beam method is used to stabilize the terminal voltage of the tandem. A small amount of pure carbon graphite is well mixed into a AgCl target material for creating Cl - and 12 C 3 - in the ion source. A 36 S isobaric interference in the system is eliminated to determine 36 Cl in environmental samples by chemical procedure. Some samples containing chlorine such as soil, chemical reagents and table salt have been collected in the JCO criticality accident site and analyzed to detect neutron-induced 36 Cl. The experimental result has been compared with a theoretical calculation. (author)

  3. Spectroscopy of Charged Quantum Dot Molecules

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  4. Seperation of CsCl from LiCl-CsCl molten salt by cold finger melt cryst allization

    Versey, Joshua R. [Dept. of Chemical and Materials Engineering and Nuclear Engineering Program University of Idaho, Idaho (United States); Phongikaroon, Supathorn [Dept. of Mechanical and Nuclear Engineering Virginia Commonwealth University, Richmond (Korea, Republic of); Simpson, Michael F. [Dept. of Metallurgical Engineering University of Utah, Utah (Korea, Republic of)

    2014-06-15

    This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%), cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min), and separation times (5, 10, 15, and 30 min). Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

  5. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  6. 49 CFR 41.119 - DOT regulated buildings.

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false DOT regulated buildings. 41.119 Section 41.119 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.119 DOT regulated buildings. (a) Each DOT Operating Administration with responsibility for regulating the structural safety of buildings...

  7. Bright infrared LEDs based on colloidal quantum-dots

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  8. Double quantum dot as a minimal thermoelectric generator

    Donsa, S.; Andergassen, S.; Held, K.

    2014-01-01

    Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.

  9. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  10. Coherence and dephasing in self-assembled quantum dots

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  11. Optical localization of quantum dots in tapered nanowires

    Østerkryger, Andreas Dyhl; Gregersen, Niels; Fons, Romain

    2017-01-01

    In this work we have measured the far-field emission patterns of In As quantum dots embedded in a GaAs tapered nanowire and used an open-geometry Fourier modal method for determining the radial position of the quantum dots by computing the far-field emission pattern for different quantum dot...

  12. Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamole, L-cysteine and glutathione

    Dong, Yajuan; Su, Ming; Chen, Peiyun; Sun, Hanwen

    2015-01-01

    Aqueous solutions of carbon dots (C-dots) were prepared by microwave-assisted thermal carbonization of poly(ethylene glycol). They were investigated by transmission electron microscopy, absorption and fluorescence spectra. It is shown that diperiodato-nicklate(IV), a strong oxidant, induces the chemiluminescence (CL) of C-dots in strongly alkaline solution without use of an additional reagent. A mechanism for this reaction is suggested. It is also found that the CL of the system is quenched by paracetamole, L-cysteine and glutathione. Under the optimized conditions, the calibration plot is linear with a correlation coefficient (r) of >0.995. The limits of detection are 90, 8, and 60 µg L -1 for paracetamole, L-cysteine, and glutathione, respectively. Spiked urine and serum samples were analyzed and gave recoveries in the range from 84.38 to 116.0 %, with an RSD of 1.2–2.7 %. (author)

  13. Circular polarization memory in single Quantum Dots

    Khatsevich, S.; Poem, E.; Benny, Y.; Marderfeld, I.; Gershoni, D.; Badolato, A.; Petroff, P. M.

    2010-01-01

    Under quasi-resonant circularly polarized optical excitation, charged quantum dots may emit polarized light. We measured various transitions with either positive, negative or no circular-polarization memory. We explain these observations and quantitatively calculate the polarization spectrum. Our model use the full configuration-interaction method, including the electron-hole exchange interaction, for calculating the quantum dot's confined many-carrier states, along with one assumption regarding the spin relaxation of photoexcited carriers: Electrons maintain their initial spin polarization, while holes do not.

  14. Bilayer graphene quantum dot defined by topgates

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  15. Polymers in Carbon Dots: A Review

    Yiqun Zhou

    2017-02-01

    Full Text Available Carbon dots (CDs have been widely studied since their discovery in 2004 as a green substitute of the traditional quantum dots due to their excellent photoluminescence (PL and high biocompatibility. Meanwhile, polymers have increasingly become an important component for both synthesis and modification of CDs to provide polymeric matrix and enhance their PL property. Furthermore, critical analysis of composites of CDs and polymers has not been available. Herein, in this review, we summarized the use of polymers in the synthesis and functionalization of CDs, and the applications of these CDs in various fields.

  16. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  17. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  18. The effects of inorganic surface treatments on photogenerated carrier mobility and lifetime in PbSe quantum dot thin films

    Goodwin, E.D.; Straus, Daniel B. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Gaulding, E. Ashley [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Murray, Christopher B. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kagan, Cherie R., E-mail: kagan@seas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2016-06-01

    Highlights: • Na{sub 2}Se and PbCl{sub 2} treatments modified the surface chemistry of PbSe quantum dots. • Excess Se (Pb) p-doped (n-doped) PbSe quantum dot thin films. • Carrier mobility and lifetime were studied using time-resolved microwave conductivity. • Mobility increased as the Fermi level approached the band edges. - Abstract: We used flash-photolysis, time-resolved microwave conductivity (TRMC) to probe the carrier mobility and lifetime in PbSe quantum dot (QD) thin films treated with solutions of the metal salts of Na{sub 2}Se and PbCl{sub 2}. The metal salt treatments tuned the Pb:Se stoichiometry and swept the Fermi energy throughout the QD thin film bandgap. A stoichiometric imbalance favoring excess Se heavily p-doped the QD thin film, shifted the Fermi energy toward the valence band, and yielded the highest TRMC mobility and lifetime. Introducing Pb first compensated the p-doping and shifted the Fermi level through mid-gap, decreasing the TRMC mobility. Further Pb addition created an excess of Pb, n-doped the QD thin film, moved the Fermi level to near the conduction band, and again increased the TRMC mobility. The increase in TRMC mobility as the Fermi energy was shifted toward the band edges by non-stoichiometry is consistent with the QD thin film density of states.

  19. Reactions UF4 - ClO2F and UF5 - ClO2F

    Benoit, Raymond; Besnard, Ginette; Hartmanshenn, Olivier; Luce, Michel; Mougin, Jacques; Pelissie, Jean

    1970-02-01

    The study of the reaction UF 4 - ClO 2 F between 0 deg. and 100 deg. C, by various techniques (micro-sublimation, isopiestic method, IR and UV spectrography, thermogravimetry and X-ray diffraction) shows that intermediate steps are possible before the production of UF 5 . The whole reaction may be schematised by two equations: (1) n UF 4 + ClO 2 F → n UF x + ClO 2 (4 4 + ClO 2 F → UF x + 1/2 Cl 2 + O 2 . The more the temperature rises, the more the second equation becomes experimentally verified. The reaction at 0 deg. C between UF 5 and ClO 2 F may be represented by: UF 5 + ClO 2 F → UF 6 ClO 2 . The reactions: UF 5 + ClO 2 F → UF 6 + ClO 2 , UF 5 + ClO 2 F → UF 6 + 1/2 Cl 2 + O 2 are verified, the first and the second at 25 deg. C., the second from 50 deg. to 150 deg. C. From the results of AGRON it is possible to predict the residual solids before complete volatilization as UF 6 . The IR spectra of ClO 2 F adsorbed on UF 4 and UF x at 60 deg. C have been compared with those of gaseous ClO 2 F and UF 6 adsorbed on UF 4 . (authors) [fr

  20. Thermodynamic properties of thulium and ytterbium in fused NaCl-KCl-CsCl eutectic

    Novoselova, A., E-mail: A.Novoselova@ihte.uran.ru [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, S. Kovalevskaya Str., 22, Ekaterinburg 620990 (Russian Federation); Smolenski, V. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, S. Kovalevskaya Str., 22, Ekaterinburg 620990 (Russian Federation)

    2011-07-15

    Research highlights: > Tm and Yb chloride compounds as fission products. > The investigation of electrochemical properties of lanthanides. > Determination of the apparent standard redox potentials of the couple Ln(III)/Ln(II) in fused NaCl-KCl-CsCl eutectic at (823 to 973) K. > The calculation of the basic thermodynamic properties of redox reaction in molten salt. - Abstract: This work presents the results of a study of the Tm{sup 3+}/Tm{sup 2+} and Yb{sup 3+}/Yb{sup 2+} couple redox potentials vs. Cl{sup -}/Cl{sub 2} reference electrode at the temperature range (823 to 973) K in fused NaCl-KCl-CsCl eutectic by direct potentiometric method. Initial concentrations of TmCl{sub 3} and YbCl{sub 3} in solvents did not exceed 5.0 mol%. Basic thermodynamic properties of the reactions TmCl{sub 2(l)} + 1/2 Cl{sub 2(g)} {r_reversible} TmCl{sub 3(l)} and YbCl{sub 2(l)} + 1/2 Cl{sub 2(g)} {r_reversible} YbCl{sub 3(l)} were calculated using the temperature dependencies of apparent standard potentials of the couples E{sub Tm{sup 3+}/Tm{sup 2+*}} and E{sub Yb{sup 3+}/Yb{sup 2+*}}.

  1. Optical and structural characterization of self-organized stacked GaN/AlN quantum dots

    Salviati, G; Rossi, F; Armani, N; Grillo, V; Martinez, O; Vinattieri, A; Damilano, B; Matsuse, A; Grandjean, N

    2004-01-01

    Self-organized GaN/AlN stacked quantum dots (QDs) have been studied by means of cathodoluminescence (CL), near field scanning optical microscopy (NSOM), photoluminescence, μ-Raman, and transmission electron microscopy. Assignment of the optical emissions was made on the basis of the structural parameters, power-dependent optical studies and depth-resolved CL. Power-dependent studies allowed us to distinguish between quantum confined and buffer emissions. On increasing the power injection conditions, a QD-size-dependent blue shift due to the screening of the internal electric fields was found together with a trend to saturation observed in the high injection limit. The possible evidence of excited states has also been shown by power-dependent photoluminescence and CL. Different blue shifts in specimens with different numbers of stacked layers suggested possible different residual strain values as confirmed by μ-Raman studies. Depth-resolved CL investigations performed at constant power injection per unit volume allowed us to distinguish between QD layers with different nominal GaN coverages and a linear dependence of peak energy versus GaN monolayer number has also been found. Adding 1 ML of GaN resulted in an average shift of about 150 meV. The existence of QDs with different size distributions along the growth axis was also found. The observations were confirmed by NSOM spectroscopy

  2. Be-10 and Cl-36 interlaboratory comparisons

    Merchel, Silke [CEREGE, Aix-en-Provence (France); FZD, Dresden (Germany); Bremser, Wolfram [BAM, Berlin (Germany); Alfimov, Vasily; Christl, Marcus; Kubik, Peter W. [PSI/ETH Zurich (Switzerland); Arnold, Maurice; Aumaitre, Georges; Benedetti, Lucilla; Bourles, Didier L.; Braucher, Regis [CEREGE, Aix-en-Provence (France); Caffee, Marc [PRIME Lab, Purdue, IN (United States); Fifield, L. Keith; Tims, Stephen G. [ANU, Canberra (Australia); Finkel, Robert C. [CEREGE, Aix-en-Provence (France); LLNL, Livermore, CA (United States); Freeman, Stewart P.H.T.; Wilcken, Klaus M.; Xu, Sheng [SUERC, East Kilbride (United Kingdom); Ruiz-Gomez, Aaron [CNA, Sevilla (Spain); Rood, Dylan H. [LLNL, Livermore, CA (United States); Sasa, Kimikazu [University of Tsukuba (Japan); Steier, Peter; Wallner, Anton [VERA, Wien (Austria)

    2009-07-01

    Driven by the progress in AMS and its spreading application within geosciences, measurements of increasing numbers of samples with low isotopic ratios will be required in the future. Therefore, we have examined the linearity of {sup 10}Be/{sup 9}Be as a function of isotope ratio by distributing 3 secondary standards (dilutions of NIST4325: 10{sup -12}-10{sup -14}) to 9 AMS labs. The problem of low ratio samples is even more crucial for {sup 36}Cl mainly due to the high volatility of chlorine. Thus, we have prepared large quantities of 3 {sup 36}Cl/Cl solutions from a certified {sup 36}Cl activity (NIST4943) by dilution with NaCl. AgCl precipitated from these solutions (10{sup -11}-10{sup -13}) has been distributed to 9 AMS labs. Some measurements are still ongoing. First results from 6 labs for each nuclide show that these interlaboratory exercises are very valuable.

  3. Heterogeneous computing with OpenCL

    2013-01-01

    Heterogeneous Computing with OpenCL teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs) such as AMD Fusion technology. Designed to work on multiple platforms and with wide industry support, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. The authors explore memory spaces, optimization techniques, graphics interoperability, extensions, and debugging and profiling. Intended to support a parallel programming course, Heterogeneous Computing with OpenCL includes detailed examples throughout, plus additional online exercises and other supporting materials.

  4. 36Cl measurements of Hiroshima concrete samples

    Matsuhiro, T.; Nagashima, Y.; Seki, R.; Takahashi, T.

    2002-01-01

    The 36 Cl AMS studies are reported. A new steps of procedure of a sample preparation is developed and a tremendous reduction of sulphur background has been achieved. The 36 Cl contents of two atomic bombed concrete samples, old Hiroshima Bank one and Gokoku Shrine one, have been measured as a function of 36 Cl to Cl ratio by the Tsukuba AMS system. The 36 Cl to Cl ratio of the old Hiroshima Bank sample shows very nice agreement with the result of γ measurement of 152 Eu. Otherwise, the ratio is about 20% smaller than an estimation by the DS86 dosimetry system. A result of the Gokoku Shrine sample is also smaller than a depth profile estimation by the same DS86. It might be clear that the DS86 has a tendency of overestimation. It seems that a calculation method and/or the parameters used in the calculation are requested to be improved. (author)

  5. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    Shamsipur, Mojtaba; Rajabi, Hamid Reza

    2014-01-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10 −6 to 2.59 × 10 −5 M with a detection limit of 1.70 × 10 −7 M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl − , Br − , F − , I − , IO 3 − , ClO 4 − , BrO 3 − , CO 3 2− , NO 2 − , NO 3 − , SO 4 2− , S 2 O 4 2− , C 2 O 4 2− , SCN − , N 3 − , citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN − by fluorescence quenching

  6. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of)

    2014-03-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10{sup −6} to 2.59 × 10{sup −5} M with a detection limit of 1.70 × 10{sup −7} M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl{sup −}, Br{sup −}, F{sup −}, I{sup −}, IO{sub 3}{sup −}, ClO{sub 4}{sup −}, BrO{sub 3}{sup −}, CO{sub 3}{sup 2−}, NO{sub 2}{sup −}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, S{sub 2}O{sub 4}{sup 2−}, C{sub 2}O{sub 4}{sup 2−}, SCN{sup −}, N{sub 3}{sup −}, citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN{sup −} by fluorescence quenching.

  7. Ultra-large scale synthesis of high electrochemical performance SnO{sub 2} quantum dots within 5 min at room temperature following a growth self-termination mechanism

    Cui, Hongtao, E-mail: htcui@ytu.edu.cn; Xue, Junying; Ren, Wanzhong; Wang, Minmin

    2015-10-05

    Highlights: • SnO{sub 2} quantum dots were prepared at an ultra-large scale at room temperature within 5 min. • The grinding of SnCl{sub 2}⋅2H{sub 2}O and ammonium persulphate with morpholine produces quantum dots. • The reactions were self-terminated through the rapid consumption of water. • The obtained SnO{sub 2} quantum dots own high electrochemical performance. - Abstract: SnO{sub 2} quantum dots are prepared at an ultra-large scale by a productive synthetic procedure without using any organic ligand. The grinding of solid mixture of SnCl{sub 2}⋅2H{sub 2}O and ammonium persulphate with morpholine in a mortar at room temperature produces 1.2 nm SnO{sub 2} quantum dots within 5 min. The formation of SnO{sub 2} is initiated by the reaction between tin ions and hydroxyl groups generated from hydrolysis of morpholine in the released hydrate water from SnCl{sub 2}⋅2H{sub 2}O. It is considered that as water is rapidly consumed by the hydrolysis reaction of morpholine, the growth process of particles is self-terminated immediately after their transitory period of nucleation and growth. As a result of simple procedure and high toleration to scaling up of preparation, at least 50 g of SnO{sub 2} quantum dots can be produced in one batch in our laboratory. The as prepared quantum dots present high electrochemical performance due to the effective faradaic reaction and the alternative trapping of electrons and holes.

  8. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection.

    Galyean, A A; Behr, M R; Cash, K J

    2018-01-21

    Nanosensors present a biological monitoring method that is biocompatible, reversible, and nano-scale, and they offer many advantages over traditional organic indicators. Typical ionophore-based nanosensors incorporate nile-blue derivative pH indicators but suffer from photobleaching while quantum dot alternatives pose a potential toxicity risk. In order to address this challenge, sodium selective nanosensors containing carbon dots and a pH-sensitive quencher molecule were developed based on an ion-exchange theory and a decoupled recognition element from the pH indicator. Carbon dots were synthesized and integrated into nanosensors containing a pH-indicator, an analyte-binding ligand (ionophore), and a charge-balancing additive. These nanosensors are ion-selective against potassium (selectivity coefficient of 0.4) and lithium (selectivity coefficient of 0.9). Reversible nanosensor response to sodium is also demonstrated. The carbon dot nanosensors are resistant to changes in optical properties for at least 12 h and display stable selectivity to physiologically-relevant sodium (alpha = 0.5 of 200 mM NaCl) for a minimum of 6 days.

  9. Transport through overlapping states in quantum dots and double dot molecules

    Berkovits, R.

    2006-01-01

    Full Text: We shall review the transport properties of interacting quantum dots with overlapping orbitals for which the orthodox Coulomb blockade picture no longer holds. We shall concentrate on he conductance through a serial double dot structure for which the inter-dot tunneling is stronger than the tunneling to the leads. When the dots are occupied by 1 or 3 electrons the usual Kondo peak is observed. For the case in which 2 electrons occupy the molecule a singlet is formed. Nevertheless, the conductance in that case has a constant non-zero value, and might even be equal to the maximum conductance of 2e 2 /h for certain values of the molecule parameters. We show that this is the result of the subtle interplay between the symmetric and anti-symmetric orbitals of the molecule caused by interactions and interference

  10. CL from ZnO nanowires and microneedles Co-doped with N and Mn

    Herrera, M; Morales, A; Díaz, J A

    2014-01-01

    Cathodoluminescence (CL) was used to study the luminescence emission of ZnO : N, Mn nanowires and microneedles grown by thermal evaporation. CL spectra acquired at room temperature showed the presence of near band edge and defect-related emissions. The defect related emission comprised two bands centered at 2.28 and 2.5 eV. The first component was attributed to the formation of spinel ZnMn 2 O 4  and the second to the well-known ZnO green emission. CL spectra acquired at 100 K showed two emissions centered at 3.22 and 3.25 eV that were attributed to donor–acceptor pair (DAP) and FA transitions, respectively. It was proposed that substitutional nitrogen (N O ) and zinc interstitial (Zn i ) were acceptor and shallow-donor centers in the DAP transition. (paper)

  11. Photoluminescence studies of single InGaAs quantum dots

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  12. Kondo and mixed-valence regimes in multilevel quantum dots

    Chudnovskiy, A. L.; Ulloa, S. E.

    2001-01-01

    We investigate the dependence of the ground state of a multilevel quantum dot on the coupling to an external fermionic system and on the interactions in the dot. As the coupling to the external system increases, the rearrangement of the effective energy levels in the dot signals the transition from the Kondo regime to a mixed-valence (MV) regime. The MV regime in a two-level dot is characterized by an intrinsic mixing of the levels in the dot, resulting in nonperturbative subtunneling and supertunneling phenomena that strongly influence the Kondo effect

  13. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  14. Activation measurements for thermal neutrons. Part F. 36Cl measurements in Japan

    Nagashima, Yasuo; Seki, Riki; Matsuhiro, Takeshi; Takahashi, Tsutomu; Sasa, Kimikazu; Usui, Toshihide; Sueki, Keisuke

    2005-01-01

    The development of the accelerator mass spectrometry (AMS) system at the Tandem Accelerator Center of the University of Tsukuba was started in 1995, using the university's own molecular pilot beam technique. Presently, it is the only facility in Japan used to measure 36 Cl (Nagashima et al. 2000). The sensitivity of the 36 Cl AMS system is around 10 -14 36 Cl/Cl atom ratio, which is enough to measure the natural level of the 36 Cl/Cl ratio. The system is characterized by long-term stability, enabling high-quality, continuous measurements over many hours. Our AMS system was used to measure 36 Cl produced in soil by neutrons released into the environment at the time of the JCO criticality accident in Tokai-mura in 1999 (Seki et al. 2003). At the beginning of 2001, our group joined the collaborative efforts to investigate and clarify the discrepancy observed between measurements and calculations of neutron activities induced by the atomic bombings in Hiroshima and Nagasaki. Using our AMS system, 36 Cl was measured in granite samples from Hiroshima exposed to atomic-bomb neutrons and in distant, unexposed samples. (author)

  15. Using isotope 36Cl to study utilization of Cl by crops and distribution and movement of Cl in soil

    Pan Jiarong; Wen Xianfang; Tang Nianxin

    1991-06-01

    Results from using isotope 36 Cl show that a large quantity of Cl is absorbed and utilized by spring wheat, cotton and tobacco from the chloride fertilizers. The utilization coefficient of Cl increases with the growing time of plants and reaches peak at mature stage. The utilization coefficient of above plants are 26.72%, 3317% and 26.19% respectively. The absorption and utilization of residual Cl in soil is much smaller than that in fertilizers, and the utilization coefficient is decreasing with the increasing of growth season. For spring wheat, utilization coefficient is 12.7% in second season and 9.3% in third season. The ability of absorbing and utilizing Cl from organic materials by crops is very low and the utilization coefficient is 10% or less, that depends on circumstances. For rice the utilization coefficient is 3.1% in dry land and 24.3% in flooded land. The distribution of absorbed Cl is mainly in stalk, a little in husk and a few in seeds and roots. After irrigating water it is equivalent to 9.1 mm of rainfall in soil, the Cl moves rapidly to depth 10∼12 cm. Cl moves faster in porous soil than in clay soil, and faster in horizontal direction than in vertical direction

  16. Entangled photons from small quantum dots

    Visser, P.M.; Allaart, K.; Lenstra, D.

    2003-01-01

    We discuss level schemes of small quantum-dot turnstiles and their applicability in the production of entanglement in two-photon emission. Due to the large energy splitting of the single-electron levels, only one single-electron level and one single-hole level can be made resonant with the levels in

  17. Coulomb Coupling Between Quantum Dots and Waveguides

    Porod, Wolfgang

    2000-01-01

    .... We considered both III-V and Si-based semiconductor systems. In later years, the AASERT award supported work on QCA realizations in Coulomb-blockade metal-dot systems, which were successful in demonstrating the basic QCA switching operation...

  18. System and method for making quantum dots

    Bakr, Osman M.

    2015-05-28

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.

  19. Enabling biomedical research with designer quantum dots

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, Gyula J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  20. Effect of temperature on quantum dots

    MAHDI AHMADI BORJI

    2017-07-12

    Jul 12, 2017 ... Effect of temperature on InxGa1−xAs/GaAs quantum dots. MAHDI AHMADI BORJI1, ALI ... Attention should be given to the effects of temperature, ... tion 2 explains the model and method of the numerical simulation. Our results ...

  1. Decoherence in Nearly-Isolated Quantum Dots

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single...

  2. Electron Spins in Semiconductor Quantum Dots

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  3. Resistance to Black Dot in Potato

    Black dot fungus can colonize tubers on the surface, in the stolon end, or in a combination of both.On the surface the fungus is prevalent as sclerotia, and in the stolon end the fungus colonizes the vascular tissuesas hyphae. The fungus is introduced to non-infested soils mostly by infected potato ...

  4. Photoluminescence of hybrid quantum dot systems

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 347-349 ISSN 2164-6627 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : quantum dots * energy transfer * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Many electron effects in semiconductor quantum dots

    Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as 'artificial atoms' by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the ...

  6. Integrated photonics using colloidal quantum dots

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  7. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  8. Optical properties of quantum-dot-doped liquid scintillators

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  9. From quantum dots to quantum circuits

    Ensslin, K.

    2008-01-01

    Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse

  10. Quantum nano ring composed of quantum dots as a source of pure persistent spin or charge current

    Eslami, L.; Faizabadi, E.; Ahmadi, S.

    2016-01-01

    Spin-dependent persistent current in a quantum ring constituted by two normal and one magnetic quantum dots, in the presence of Rashba spin–orbit interaction is studied by using Green function technique. It is shown that the presence of the magnetic quantum dot breaks the degeneracy of the density of states of electrons with different spin states. Besides, the Rashba spin–orbit interaction along with the magnetic quantum dot develops tunable persistent spin and charge currents. Moreover, the persistent charge current induces a fully adjustable magnetic flux whose direction and magnitude can be tuned by altering the strength of the Rashba spin–orbit interaction. - Highlights: • An array of normal and magnetic quantum dots with Rashba effect is studied. • Spin-dependent persistent current and DOS are studied using Green function method. • The magnetic quantum dot breaks degeneracy of DOS of up and down spin electrons. • The persistent spin and charge currents are tuned by adjusting the Rashba constant. • The persistent charge current induces tunable magnetic field at the center of ring.

  11. Use of Dictionary of Occupational Titles (DOT) on formwork carpentry--a comparison between the United States and Hong Kong.

    Lee, Gloria K L; Chan, Chetwyn C H

    2003-01-01

    This study aimed at investigating the utilization and applicability of the Dictionary of Occupational Titles (DOT) as a methodology to study the job profile (nature and physical demand) of formwork carpentry in the local situation. Thirty male formwork carpenters were recruited by convenient sampling to participate in a two-hour interview, with reference to the DOT Physical Demand Questionnaire (DOTPDQ) and the WestTool Sort Questionnaire. The information obtained was further consolidated by comparing the results from the interview to three construction sites and training guidelines from the formwork carpentry training centers. The triangulation of the data formulated a job profile of formwork carpenters. The results from the DOTPDQ revealed that workers' work demands were standing, walking, pushing, pulling, reaching, climbing, balancing, stooping, crouching, lifting, carrying, handling and near acuity. This produced an agreement of 84.6% with the original DOT. A discrepancy was found in the demands of kneeling, fingering, far acuity and depth perception. The discrepancy between the data from the United States and local appeared to be minimal. It was thus inferred that the DOT-based job profile was largely valid for describing formwork carpentry in Hong Kong. In-depth analysis should be conducted to further substantiate the validity of utilizing the DOT system for other job types and their physical demands.

  12. DotFETs: MOSFETs strained by a Single SiGE dot in a Low-Temperature ELA Technology

    Biasotto, C.

    2011-01-01

    The work presented in this thesis was performed in the context of the European Sixth Framework Program FP6 project “Disposable Dot Field Effect Transistor for High Speed Si Integrated Circuits”, referred to as the D-DotFET project. The project had the goal of realizing strain-enhanced mobility in CMOS transistors by transferring strain from a self-assembled germanium dot to the channel of a transistor fabricated above the dot. The initial idea was to dispose of the Ge dot underneath the chann...

  13. Nuclear hyperfine structure of muonium in CuCl resolved by means of avoided level crossing

    Schneider, J.W.; Celio, M.; Keller, H.; Kuendig, W.; Odermatt, W.; Puempin, B.; Savic, I.M.; Simmler, H.; Estle, T.L.; Schwab, C.; Kiefl, R.F.; Renker, D.

    1990-01-01

    We report detailed avoided-level-crossing spectra of a muonium center (Mu II ) in single-crystal CuCl in a magnetic field range of 4--5 T and at a temperature of 100 K. The hyperfine parameters of the muon and the closest two shells of nuclei indicate that this center consists of muonium at a tetrahedral interstice with four Cu nearest neighbors and six Cl next-nearest neighbors and that the spin density is appreciable on the muon and on the ten neighboring nuclei but negligible elsewhere

  14. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor.

    Chen, Xu; Sun, Xueke; Xu, Wen; Pan, Gencai; Zhou, Donglei; Zhu, Jinyang; Wang, He; Bai, Xue; Dong, Biao; Song, Hongwei

    2018-01-18

    Intracellular pH sensing is of importance and can be used as an indicator for monitoring the evolution of various diseases and the health of cells. Here, we developed a new class of surface-functionalized MXene quantum dots (QDs), Ti 3 C 2 , by the sonication cutting and hydrothermal approach and further explored their intracellular pH sensing. The functionalized Ti 3 C 2 QDs exhibit bright excitation-dependent blue photoluminescence (PL) originating from the size effect and surface defects. Meanwhile, Ti 3 C 2 QDs demonstrate a high PL response induced by the deprotonation of the surface defects. Furthermore, combining the highly pH sensitive Ti 3 C 2 QDs with the pH insensitive [Ru(dpp) 3 ]Cl 2 , we developed a ratiometric pH sensor to quantitatively monitor the intracellular pH values. These novel MXene quantum dots can serve as a promising platform for developing practical fluorescent nanosensors.

  15. NbCl 5 and CrCl 3 catalysts effect on synthesis and hydrogen ...

    Two kinds of novel materials, Mg–1.6 mol% Ni–0.4 mol% NiO–2 mol% MCl (MCl = NbCl5, CrCl3), along with Mg–1.6 mol% Ni–0.4 mol% NiO for comparison, were examined for their potential use in hydrogen storage applications, having been fabricated via cryomilling. The effects of NbCl5 and CrCl3 on hydrogen storage ...

  16. The unified coordination language UnCL.

    F.S. de Boer (Frank); J.V. Guillen Scholten (Juan); J.F. Jacob (Joost)

    2005-01-01

    textabstractIn this paper we show how to use a (subset) of UML as an Unified Coordination Language (UnCL) that is based on a separation of concerns between coordination and computation. As such UnCL provides a general language for the coordination of, in particular, object-oriented applications. The

  17. Atmospheric production rate of {sup 36}Cl

    Parrat, Y.; Hajdas, W.; Baltensperger, U.; Synal, H.A.; Kubik, P.W.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Using experimental cross sections, a new calculation of the atmospheric production rate of {sup 36}Cl was carried out. A mean production rate of 20 atoms m{sup -2}s{sup -1} was obtained, which is lower than mean {sup 36}Cl deposition rates. (author) 2 figs., 7 refs.

  18. Kinetin Reversal of NaCl Effects

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  19. 76 FR 41653 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2A12 (CL-601) and CL-600-2B16 (CL-601-3A...

    2011-07-15

    ... p.m., Monday through Friday, except Federal holidays. The AD docket contains the NPRM, the.... Model CL-600-2A12 (CL-601) airplanes, serial numbers 3001 through 3066 inclusive on which Bombardier... Variants) airplanes, serial numbers 5001 through 5194 inclusive on which Bombardier Service Bulletin 601...

  20. Atmospheric production rate of 36Cl

    Parrat, Y.; Hajdas, W.; Baltensperger, U.; Synal, H.A.; Kubik, P.W.; Gaeggeler, H.W.; Suter, M.

    1997-01-01

    Using experimental cross sections, a new calculation of the atmospheric production rate of 36 Cl was carried out. A mean production rate of 20 atoms m -2 s -1 was obtained, which is lower than mean 36 Cl deposition rates. (author) 2 figs., 7 refs

  1. Electrolytic coloration of O22--doped NaCl crystals

    Qin Fang; Gu Hongen; Song Cuiying; Wang Na; Guo Meili; Wang Fen; Liu Jia

    2007-01-01

    O 2 2- -doped NaCl crystals are colored electrolytically by using a pointed cathode and a flat anode at various temperatures and voltages, which mainly benefit from appropriate coloration temperatures and voltages as well as anode structure of used electrolysis apparatus. Characteristic OH - , U, V 2 m , U A , V 2 , V 3 , O 2- -V a + complex, F, R 1 , R 2 and M absorption bands are observed in absorption spectra of the colored crystals. Production and conversion of color centers in electrolytic coloration is explained. Current-time curves for electrolytic colorations and their relationships with electrolytic colorations were given

  2. Dot-ELISA for the detection of anti-Cysticercus cellulosae antibodies in cerebrospinal fluid using a new solid phase (resin-treated polyester fabric and Cysticercus longicollis antigens Teste dot-ELISA para detecção de anticorpos anti-Cysticercus cellulosae em líquido cefalorraquiano utilizando um novo suporte (tecido de poliéster-resina e antígenos de Cysticercus longicollis

    Adelaide José Vaz

    1996-12-01

    Full Text Available A dot-ELISA was developed for the detection of antibodies in CSF in the immunologic diagnosis of human neurocysticercosis, using antigen extracts of the membrane and scolex of Cysticercus cellulosae (M+S-Cc and, alternately, membrane (M and vesicular fluid (VF of Cysticercus longicollis (Cl covalently bound to a new solid phase consisting of polyester fabric treated with N-methylol-acrylamide resin (dot-RT. The test was performed at room temperature, with reduced incubation times and with no need for special care in the manipulation of the support. The sensitivity rates obtained were 95.1% for antigen Cc and 97.6% for antigen Cl. Specificity was 90.6% when Cc was used, and 96.9% and 100% when M-Cl and VF-Cl were used, respectively. No significant differences in titer were observed between tests carried out with homologous and heterologous antigens. The low cost and easy execution of the dot-RT test using antigen extracts of Cysticercus longicollis indicate the test for use in the immunodiagnosis of human neurocysticercosis.Foi desenvolvido o teste dot-ELISA para detecção de anticorpos em líquido cefalorraquiano (LCR no diagnóstico imunológico da neurocisticercose humana, utilizando antígenos de membrana e escólex de Cysticercus cellulosae (M+E-Cc e, alternativamente, membrana (M e líquido vesicular (LV de Cysticercus longicollis (Cl covalentemente ligados a um novo suporte constituído de tecido de poliéster-resina de N-metilol-acrilamida (dot-TR. O teste foi realizado à temperatura ambiente, com tempos de incubação reduzidos e sem necessidade de cuidados na manipulação do suporte. A sensibilidade obtida foi de 95,1% para o antígeno Cc e 97,6% para o Cl. A especificidade foi de 90,6% quando o antígeno Cc foi usado, e 96,9% e 100% para M-Cl e LV-Cl, respectivamente. Não foi observada diferença significativa entre os antígenos homólogo e heterólogo. O baixo custo e a fácil execução do teste dot-TR empregando extratos antig

  3. Usage Center

    Kleinaltenkamp, Michael; Plewa, Carolin; Gudergan, Siegfried

    2017-01-01

    Purpose: The purpose of this paper is to advance extant theorizing around resourceintegration by conceptualizing and delineating the notion of a usage center. Ausage center consists of a combination of interdependent actors that draw onresources across their individual usage processes to create v...

  4. Radiative forcing calculations for CH3Cl

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1994-06-01

    Methyl chloride, CH 3 Cl, is the major natural source of chlorine to the stratosphere. The production of CH 3 Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH 3 Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH 3 Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH 3 Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m 2 ppbv was obtained for CH 3 Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO 2 , on a per molecule basis. The radiative forcing calculation for CH 3 Cl is used to estimate the global warming potential (GWP) of CH 3 Cl. The results give GWPs for CH 3 Cl of the order of 25 at a time of 20 years(CO 2 = 1). This result indicates that CH 3 Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  5. Hubble's View of Little Blue Dots

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  6. KNOWLEDGE AND MISCONCEPTIONS OF PULMONARY TUBERCULOSIS PATIENTS AT DOTS CENTRE, URBAN MEERUT.

    R Bansal

    2013-06-01

    Full Text Available Background: India is the second most populated country in the world; it has more new TB cases annually than any other country. In 2008, 1.98 million were estimated to have occurred in India, of whom 0.87 million were infectious cases, thus amounting to a fifth of the global burden of TB.With the entire country geographically covered under the DOTS program, research into socioeconomic impact of TB on patients and their households is crucial for providing comprehensive patient-friendly TB services and to document the benefits of DOTS. Objective: The present study was undertaken with the following objectives: (1 To determine the socio-demographic variables of registered patients for DOTS Treatment at Urban Health Training center Meerut. (2 To assess knowledge, awareness and attitude regarding Pulmonary Tuberculosis and its treatment among the patients. Materials and Methods: A cross-sectional study of 200 TB patients was done using a pre-tested semi-quantitative questionnaire in UHTC Meerut Period of Study: During 2010-2012. Results: Knowledge and awareness regarding Pulmonary Tuberculosis in patients at DOTS centre, Urban Meerut was very poor. There is a great need to educate the people about misconceptions like food and utensils as mode of transmission. BCC using the person to person contact in community , at health center and awareness campaigns are crucial in educating the ignorance seen in our field practice area. Conclusion: Poor knowledge and misconceptions concerning tuberculosis was quite concern in the patients. TB control program will remain ineffective unless myths and fears of TB patients are addressed related to causation of tuberculosis, mode of spread, and methods of prevention.

  7. KNOWLEDGE AND MISCONCEPTIONS OF PULMONARY TUBERCULOSIS PATIENTS AT DOTS CENTRE, URBAN MEERUT.

    R Bansal

    2013-08-01

    Full Text Available Background: India is the second most populated country in the world; it has more new TB cases annually than any other country. In 2008, 1.98 million were estimated to have occurred in India, of whom 0.87 million were infectious cases, thus amounting to a fifth of the global burden of TB.With the entire country geographically covered under the DOTS program, research into socioeconomic impact of TB on patients and their households is crucial for providing comprehensive patient-friendly TB services and to document the benefits of DOTS. Objective: The present study was undertaken with the following objectives: (1 To determine the socio-demographic variables of registered patients for DOTS Treatment at Urban Health Training center Meerut. (2 To assess knowledge, awareness and attitude regarding Pulmonary Tuberculosis and its treatment among the patients. Materials and Methods: A cross-sectional study of 200 TB patients was done using a pre-tested semi-quantitative questionnaire in UHTC Meerut Period of Study: During 2010-2012. Results: Knowledge and awareness regarding Pulmonary Tuberculosis in patients at DOTS centre, Urban Meerut was very poor. There is a great need to educate the people about misconceptions like food and utensils as mode of transmission. BCC using the person to person contact in community , at health center and awareness campaigns are crucial in educating the ignorance seen in our field practice area. Conclusion: Poor knowledge and misconceptions concerning tuberculosis was quite concern in the patients. TB control program will remain ineffective unless myths and fears of TB patients are addressed related to causation of tuberculosis, mode of spread, and methods of prevention.

  8. Quantum dot-polymer conjugates for stable luminescent displays.

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  9. Contractors Road Heavy Equipment Area SWMU 055 Corrective Measures Implementation Progress Report Kennedy Space Center, Florida

    Johnson, Jill W. (Compiler)

    2015-01-01

    This Corrective Measures Implementation (CMI) Progress Report documents: (i) activities conducted as part of supplemental assessment activities completed from June 2009 through November 2014; (ii) Engineering Evaluation (EE) Advanced Data Packages (ADPs); and (iii) recommendations for future activities related to corrective measures at the Site. Applicable meeting minutes are provided as Appendix A. The following EE ADPs for CRHE are included with this CMI Progress Report: center dot Supplemental Site Characterization ADP (Step 1 EE) (Appendix B) center dot Site Characterization ADP (Step 1 EE) for Hot Spot 1 (HS1) (Appendix C) center dot Remedial Alternatives Evaluation (Step 2 EE) ADP for HS1 (Appendix D) center dot Interim Measures Work Plan (Step 3 EE) ADP for HS1 (Appendix E) center dot Site Characterization ADP (Step 1 EE) ADP for Hot Spot 2 (HS2), High Concentration Plume (HCP), and Low Concentration Plume (LCP) (Appendix F) A summary of direct-push technology (DPT) and groundwater monitoring well sampling results are provided in Appendices G and H, respectively. The Interim Land Use Control Implementation Plan (LUCIP) is provided as Appendix I. Monitoring well completion reports, other applicable field forms, survey data, and analytical laboratory reports are provided as Appendices J through M, respectively, in the electronic copy of this document. Selected Site photographs are provided in Appendix N. The interim groundwater monitoring plan and document revision log are included as Appendices O and P, respectively. KSC Electronic Data Deliverable (KEDD) files are provided on the attached compact disk.

  10. Efficiency of Cathodoluminescence Emission by Nitrogen-Vacancy Color Centers in Nanodiamonds.

    Zhang, Huiliang; Glenn, David R; Schalek, Richard; Lichtman, Jeff W; Walsworth, Ronald L

    2017-06-01

    Correlated electron microscopy and cathodoluminescence (CL) imaging using functionalized nanoparticles is a promising nanoscale probe of biological structure and function. Nanodiamonds (NDs) that contain CL-emitting color centers are particularly well suited for such applications. The intensity of CL emission from NDs is determined by a combination of factors, including particle size, density of color centers, efficiency of energy deposition by electrons passing through the particle, and conversion efficiency from deposited energy to CL emission. This paper reports experiments and numerical simulations that investigate the relative importance of each of these factors in determining CL emission intensity from NDs containing nitrogen-vacancy (NV) color centers. In particular, it is found that CL can be detected from NV-doped NDs with dimensions as small as ≈40 nm, although CL emission decreases significantly for smaller NDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  12. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl_2 with controllable dimension and morphology

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren

    2016-01-01

    Highlights: • One kind of large area nano-PAA-ZnCl_2 composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals. • At room temperature, the nano-PAA-ZnCl_2 film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl_2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl_2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl_2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl_2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  13. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2012-01-01

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr '1 m '2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  14. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  15. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  16. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  17. Quantum Dots in Photonic Crystal Waveguides

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  18. Conductance Peaks in Open Quantum Dots

    Ramos, J. G. G. S.; Bazeia, D.; Hussein, M. S.; Lewenkopf, C. H.

    2011-01-01

    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation function of T(Z). The parameter Z can be associated with an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of maxima is found to be Z >=α Z /Z c , where α Z is a universal constant and Z c is the conductance autocorrelation length, which is system specific. The analysis of Z > does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as Z c .

  19. Efficient Luminescence from Perovskite Quantum Dot Solids

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F.; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  20. Trajectory phases of a quantum dot model

    Genway, Sam; Hickey, James M; Garrahan, Juan P; Armour, Andrew D

    2014-01-01

    We present a thermodynamic formalism to study the trajectories of charge transport through a quantum dot coupled to two leads in the resonant-level model. We show that a close analogue of equilibrium phase transitions exists for the statistics of transferred charge; by tuning an appropriate ‘counting field’, crossovers to different trajectory phases are possible. Our description reveals a mapping between the statistics of a given device and current measurements over a range of devices with different dot–lead coupling strengths. Furthermore insight into features of the trajectory phases are found by studying the occupation of the dot conditioned on the transported charge between the leads; this is calculated from first principles using a trajectory biased two-point projective measurement scheme. (paper)

  1. Quantum features of semiconductor quantum dots

    Lozada-Cassou, M.; Dong Shihai; Yu Jiang

    2004-01-01

    The exact solutions of the two-dimensional Schrodinger equation with the position-dependent mass for the square well potential in the semiconductor quantum dots system are obtained. The eigenvalues, which are closely related to the position-dependent masses μ1 and μ2, the potential well depth V0 and the radius of the quantum dots r0, can be calculated from two boundary conditions. We generalize this quantum system to three-dimensional case. The special cases for the angular momentum quantum number l=0, 1, 2 are studied in some detail. We find that the energy levels are proportional to the parameters μ2, V0 and r0 for l=0. The relations between them for l=1, 2 become very complicated. The scattering states of this quantum system are mentioned briefly

  2. Dynamic localization in quantum dots: Analytical theory

    Basko, D.M.; Skvortsov, M.A.; Kravtsov, V.E.

    2003-02-01

    We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-dependent perturbation φ(t). Assuming the dot to be described by random matrix theory for GOE we find the quantum correction to the energy absorption rate as a function of the dephasing time t φ . If φ(t) is a sum of d harmonics with incommensurate frequencies, the correction behaves similarly to that to the conductivity δσ d (t φ ) in the d-dimensional Anderson model of the orthogonal symmetry class. For a generic periodic perturbation the leading quantum correction is absent as in the systems of the unitary symmetry class, unless φ(-t+τ)=φ(t+τ) for some τ, which falls into the quasi-1d orthogonal universality class. (author)

  3. Theory of Charged Quantum Dot Molecules

    Ponomarev, I. V.; Scheibner, M.; Stinaff, E. A.; Bracker, A. S.; Doty, M. F.; Ware, M. E.; Gammon, D.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Recent optical spectroscopy of excitonic molecules in coupled quantum dots (CQDs) tuned by electric field reveal a richer diversity in spectral line patterns than in their single quantum dot counterparts. We developed a theoretical model that allows us to classify energies and intensities of various PL transitions. In this approach the electric field induced resonance tunneling of the electron and hole states occurs at different biases due to the inherent asymmetry of CQDs. The truncated many-body basis configurations for each molecule are constructed from antisymmetrized products of single-particle states, where the electron occupies only one ground state level in single QD and the hole can occupy two lowest levels of CQD system. The Coulomb interaction between particles is treated with perturbation theory. As a result the observed PL spectral lines can be described with a small number of parameters. The theoretical predictions account well for recent experiments.

  4. Strain-tunable quantum dot devices

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  5. Efficient Luminescence from Perovskite Quantum Dot Solids

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  6. Quantum Dot Devices for Optical Signal Processing

    Chen, Yaohui

    and the continuum. Additional to the conventional time-domain modeling scheme, a small-signal perturbation analysis has been used to assist the investigation of harmonic modulation properties. The static properties of quantum dot devices, for example high saturation power, have been quantitatively analyzed....... Additional to the static linear amplication properties, we focus on exploring the gain dynamics on the time scale ranging from sub-picosecond to nanosecond. In terms of optical signals that have been investigated, one is the simple sinusoidally modulated optical carrier with a typical modulation frequency....... We also investigate the gain dynamics in the presence of pulsed signals, in particular the steady gain response to a periodic pulse trains with various time periods. Additional to the analysis of high speed patterning free amplication up to 150-200 Gb/s in quantum dot semiconductor optical ampliers...

  7. Magnetic control of dipolaritons in quantum dots

    Rojas-Arias, J S; Vinck-Posada, H; Rodríguez, B A

    2016-01-01

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure. (paper)

  8. Thermonuclear 36Cl pulse in natural water

    Bentley, H.W.; Davis, S.N.; Gifford, S.; Phillips, E.M.; Elmore, D.; Tubbs, L.E.; Gove, H.E.

    1982-01-01

    The enhanced concentration of 3 6Cl, produced by neutron activation of seawater and released into the environment during atmospheric thermonuclear tests in the 1950s, has been used as a tracer in natural water systems. The results of numerical modelling and analyses of water samples are presented which indicate that in the mid-latitudes the fallout peak was 3 orders of magnitude above the natural background, and that the period of enhanced 36 Cl fallout was 1953 to about 1964. The advantages of 36Cl as an environmental tracer are discussed. (U.K.)

  9. The Silicon:Colloidal Quantum Dot Heterojunction

    Masala, Silvia; Adinolfi, Valerio; Sun, Jon Paul; Del Gobbo, Silvano; Voznyy, Oleksandr; Kramer, Illan J.; Hill, Ian G.; Sargent, Edward H.

    2015-01-01

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biomedical application of carbon quantum dots

    Markovic, Z.

    2017-01-01

    In this presentation we will summarize and discuss the possibilities of application of carbon quantum dots (CQD) as agents for PDT. Considering their biocompatibility, photostability and optical properties, CQD seem to be good candidates as a photosensitizer. This lecture critically compares and discusses current state-of the-art use of CQD in PDT. We will analyze structural, morphological and optical properties of these nanomaterials as well as the mechanisms responsible for their photosensition and ROS production. (authors)

  11. Quantum Dots for Molecular Diagnostics of Tumors

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imaging in vivo. We also point out the essential problems that require resolution in order to c...

  12. Silicon based quantum dot hybrid qubits

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  13. The Silicon:Colloidal Quantum Dot Heterojunction

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Formation of self-assembled quantum dots of iron oxide thin films by spray pyrolysis from non-aqueous medium

    Desai, J.D.; Pathan, H.M.; Min, Sun-Ki; Jung, Kwang-Deog; Joo, Oh-Shim

    2006-01-01

    Quantum dots (QDs) of iron oxide have been deposited onto ITO coated glass substrates by spray pyrolysis technique, using ferric chloride (FeCl 3 .7H 2 O) in non-aqueous medium as a starting material. The non-aqueous solvents namely methanol, ethanol, propanol, butanol and pentanol were used as solvents. The effect of solvents on the film structure and morphology was studied. The structural, morphological, compositional and optical properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), and optical absorption measurement techniques

  16. SEPARATION OF CsCl FROM LiCl-CsCl MOLTEN SALT BY COLD FINGER MELT CRYSTALLIZATION

    JOSHUA R. VERSEY

    2014-06-01

    Full Text Available This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%, cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min, and separation times (5, 10, 15, and 30 min. Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

  17. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  18. Quantum Dots and Their Multimodal Applications: A Review

    Paul H. Holloway

    2010-03-01

    Full Text Available Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence or electric field (electroluminescence. In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  19. Central dot sign in entities other than Caroli disease

    Ahmadi, T.; Itai, Yuji; Minami, Manabu.

    1997-01-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ''central dot sign'' on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  20. Central dot sign in entities other than Caroli disease

    Ahmadi, T.; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Minami, Manabu

    1997-11-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ``central dot sign`` on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  1. Templated self-assembly of SiGe quantum dots

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  2. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  3. The quantum Hall effect in quantum dot systems

    Beltukov, Y M; Greshnov, A A

    2014-01-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given

  4. Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs

    Fukadai, Takahisa; Sasamoto, Tomohiro

    2018-05-01

    We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.

  5. Using of Quantum Dots in Biology and Medicine.

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  6. Principles of conjugating quantum dots to proteins via carbodiimide chemistry

    Song Fayi; Chan, Warren C W

    2011-01-01

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein–quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  7. Theory of the Quantum Dot Hybrid Qubit

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  8. Quantum Dots for Solar Cell Application

    Poudyal, Uma

    Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.

  9. Transcending binary logic by gating three coupled quantum dots.

    Klein, Michael; Rogge, S; Remacle, F; Levine, R D

    2007-09-01

    Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.

  10. In situ electron-beam polymerization stabilized quantum dot micelles.

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  11. Spin fine structure of optically excited quantum dot molecules

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  12. En el camino para acortar los tratamientos de la tuberculosis: los ensayos clínicos de la Unitat d'Investigació en la Tuberculosi de Barcelona impulsados por los Centres for Disease Control and Prevention On the way to shortening tuberculosis treatments: clinical trials of the Unitat d' Investagació en Tuberculosi de Barcelona supported by the Centers for Disease Control and Prevention

    Antonio Moreno

    2010-04-01

    Full Text Available El control de la tuberculosis exige nuevas pautas terapéuticas que superen las actuales, disponibles desde hace más de 30 años. En virtud de una cuerdo, siete centros de la Unitat d’ Investigació en Tuberculosi de Barcelona (UITB vienen colaborando con la División para la Eliminación de la Tuberculosis de los Centers for Disease Control de Estados Unidos en el desarrollo de diversos ensayos clínicos en el tratamiento de la infección y la enfermedad tuberculosa. La colaboración se inició en 2004 con el Estudio 26, que compara la eficacia y la tolerabilidad de rifapentina + isoniazida administradas una vez por semana durante tres meses frente a la pauta estándar, para la forma latente. Incluimos 246 sujetos (3 % del total. En febrero de 2008 se cerró la inclusión general. El estudio permanece abierto para sujetos VIH positivos y niños. Tratar con 12 dosis y no con 270 (terapia estándar supondrán un éxito evidente. Habrá que esperar, sin embargo, hasta 2010 para conocer el análisis. El Estudio 28 (iniciado en 2006 comparó, para el tratamiento de la tuberculosis pulmonar, la pauta estándar con una experimental en la cual la isoniazida se sustituyo por moxifloxacino. La UITB incluyó 15 pacientes (3,5 % del total. Los resultados provisionales (presentados en la 47º Interscience Conference on Antimicrobial Agentsand Chemotherapy de Chicago de 2007 no mostraron diferencias entre las dos pautas en la conversión del esputo a las 8 semanas de tratamiento. Recientemente hemos comenzado el Estudio 29, en el cual la rifapentina sustituye a la rifampicina en la pauta estándar de tratamiento.New treatment guidelines are required to improve the tuberculosis control strategies that have been used for 30 years. Seven centers of the Barcelona Tuberculosis Research Unit (BTRU (Unitat d’ Investigació en Tuberculosi de Barcelona are collaborating with the Division of Tuberculosis Elimination of the United States Centers for Disease

  13. A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater.

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza

    2016-04-01

    A simple and sensitive flow injection chemiluminescence (CL) method in which CdS quantum dots (QDs) enhanced the CL intensity of a KMnO4-formaldehyde (HCHO) reaction was offered for the determination of HCHO. This CL system was based on the catalytic activity of CdS QDs and their participation in the CL resonance energy transfer (CRET) phenomenon. A possible mechanism for the supplied CL system was proposed using the kinetic curves of the CL systems and the spectra of CL, photoluminescence (PL) and ultraviolet-visible (UV-Vis). The emanated CL intensity of the KMnO4-CdS QDs system was amplified in the presence of a trace level of HCHO. Based on this enhancement effect, a simple and sensitive flow injection CL method was suggested for the determination of HCHO concentration in environmental water and wastewater samples. Under selected optimized experimental conditions, the increased CL intensity was proportional to the HCHO concentration in the range of 0.03-4.5 μg L(-1) and 4.5-10.0 μg L(-1). The detection limits (3σ) were 0.0003 μg L(-1) and 1.2 μg L(-1). The relative standard deviations (RSD%) for eleven replicate determinations of 4.0 μg L(-1) HCHO were 2.2%. Furthermore, the feasibility of the developed method was investigated via the determination of HCHO concentration in environmental water and wastewater samples.

  14. Red-shift of the photoluminescent emission peaks of CdTe quantum dots due to the synergistic interaction with carbon quantum dot mixtures

    Pelayo, E; Zazueta, A; López-Delgado, R; Ayón, A; Saucedo, E; Ruelas, R

    2016-01-01

    We report the relatively large red-shift effect observed in down-shifting carbon quantum dots (CQDs) that is anticipated to have a positive impact on the power conversion efficiency of solar cells. Specifically, with an excitation wavelength of 390 nm, CQDs of different sizes, exhibited down-shifted emission peaks centered around 425 nm. However, a solution comprised of a mixture of CQDs of different sizes, was observed to have an emission peak red-shifted to 515 nm. The effect could arise when larger carbon quantum dots capture the photons emitted by their smaller counterparts followed by the subsequent re-emission at longer wavelengths. Furthermore, the red-shift effect was also observed in CdTe QDs when added to a solution with the aforementioned mixture of Carbon QDs. Thus, whereas a solution solely comprised of a collection of CdTe QDs of different sizes, exhibited a down-shifted photoluminescence centered around 555 nm, the peak was observed to be further red-shifted to 580 nm when combined with the solution of CQDs of different sizes. The quantum dot characterization included crystal structure analysis as well as photon absorption and photoluminescence wavelengths. Subsequently, the synthesized QDs were dispersed in a polymeric layer of poly-methyl-methacrylate (PMMA) and incorporated on functional and previously characterized solar cells, to quantify their influence in the electrical performance of the photovoltaic structures. We discuss the synthesis and characterization of the produced Carbon and CdTe QDs, as well as the observed improvement in the power conversion efficiency of the fabricated photovoltaic devices. (paper)

  15. CL møder sptogfagsdidaktikken

    Pedersen, Michael Svendsen

    2011-01-01

    I artiklen diskuteres den didaktiske kontekst for brugen af CL (Cooperative Learning) i sprogundervisningen. Indledningsvis stilles følgende spørgsmål: Hvor kommer de indholdsfrie CL-strukturer fra, og hvad sker der når man inddrager dem i sprogundervisningen? I besvarelsen af disse spørgsmål ind...... inddrages antologien Cooperative Learning and Second Language Teaching (McCafferty, Steven G. 2006)......I artiklen diskuteres den didaktiske kontekst for brugen af CL (Cooperative Learning) i sprogundervisningen. Indledningsvis stilles følgende spørgsmål: Hvor kommer de indholdsfrie CL-strukturer fra, og hvad sker der når man inddrager dem i sprogundervisningen? I besvarelsen af disse spørgsmål...

  16. Zero-Pressure Organic Superconductor: Di-(Tetramethyltetraselenafulvalenium)-Perchlorate [(TMTSF)2ClO4

    Bechgaard, Klaus; da Costa Carneiro, Kim; Olsen, Malte

    1981-01-01

    Evidence for superconductivity in the organic conductor di-(tetramethyltetraselenafulvalenium)-perchlorate [(TMTSF)2ClO4] has been found by resistance measurements in the absence of applied pressure. For different crystals the transitions are approximately 0.3 K wide and are centered around...

  17. The role of the tunneling matrix element and nuclear reorganization in the design of quantum-dot cellular automata molecules

    Henry, Jackson; Blair, Enrique P.

    2018-02-01

    Mixed-valence molecules provide an implementation for a high-speed, energy-efficient paradigm for classical computing known as quantum-dot cellular automata (QCA). The primitive device in QCA is a cell, a structure with multiple quantum dots and a few mobile charges. A single mixed-valence molecule can function as a cell, with redox centers providing quantum dots. The charge configuration of a molecule encodes binary information, and device switching occurs via intramolecular electron transfer between dots. Arrays of molecular cells adsorbed onto a substrate form QCA logic. Individual cells in the array are coupled locally via the electrostatic electric field. This device networking enables general-purpose computing. Here, a quantum model of a two-dot molecule is built in which the two-state electronic system is coupled to the dominant nuclear vibrational mode via a reorganization energy. This model is used to explore the effects of the electronic inter-dot tunneling (coupling) matrix element and the reorganization energy on device switching. A semi-classical reduction of the model also is made to investigate the competition between field-driven device switching and the electron-vibrational self-trapping. A strong electron-vibrational coupling (high reorganization energy) gives rise to self-trapping, which inhibits the molecule's ability to switch. Nonetheless, there remains an expansive area in the tunneling-reorganization phase space where molecules can support adequate tunneling. Thus, the relationship between the tunneling matrix element and the reorganization energy affords significant leeway in the design of molecules viable for QCA applications.

  18. Silicon-Vacancy Color Centers in Nanodiamonds: Cathodoluminescence Imaging Marker in the Near Infrared

    Zhang, Huiliang; Aharonovich, Igor; Glenn, David R.; Schalek, R.; Magyar, Andrew P.; Lichtman, Jeff W.; Hu, Evelyn L.; Walsworth, Ronald L.

    2013-01-01

    We demonstrate that nanodiamonds fabricated to incorporate silicon-vacancy (Si-V) color centers provide bright, spectrally narrow, and stable cathodoluminescence (CL) in the near-infrared. Si-V color centers containing nanodiamonds are promising as non-bleaching optical markers for correlated CL and secondary electron microscopy, including applications to nanoscale bioimaging.

  19. Core–shell quantum dots: Properties and applications

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  20. Core–shell quantum dots: Properties and applications

    Vasudevan, D.; Gaddam, Rohit Ranganathan; Trinchi, Adrian; Cole, Ivan

    2015-01-01

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis

  1. Two path transport measurements on a triple quantum dot

    Rogge, Maximilian C.; Haug, Rolf J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2008-07-01

    We present a novel triple quantum dot device made with local anodic oxidation on a GaAs/AlGaAs heterostructure. The geometry provides two path transport via a three lead setup with each lead connected to one of the three quantum dots. In addition charge detection is implemented via a quantum point contact. One lead is used as a common source contact, the other two are used as two separate drain contacts with independent current measurement. Thus two paths are formed with two dots in each path. Along both paths serial transport is observed at the triple points of the two corresponding dots. With four side gates a wide tunability is given. Thus the system can be tuned in and out of triple dot resonances. When all three dots come into resonance, quadruple points are formed with simultaneous transport along both paths. The data are analysed in combined two colour plots and compared to the charge detection showing sets of three different lines, one for each dot. This way the two path setup allows to investigate the transition from double dot physics to triple dot physics.

  2. Using a quantum dot system to realize perfect state transfer

    Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang

    2011-01-01

    There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler—London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. (general)

  3. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-01-01

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure

  4. Correlation effects in side-coupled quantum dots

    Zitko, R; Bonca, J

    2007-01-01

    Using Wilson's numerical renormalization group (NRG) technique, we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system, a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures

  5. Tunable single quantum dot nanocavities for cavity QED experiments

    Kaniber, M; Laucht, A; Neumann, A; Bichler, M; Amann, M-C; Finley, J J

    2008-01-01

    We present cavity quantum electrodynamics experiments performed on single quantum dots embedded in two-dimensional photonic crystal nanocavities. We begin by describing the structural and optical properties of the quantum dot sample and the photonic crystal nanocavities and compare the experimental results with three-dimensional calculations of the photonic properties. The influence of the tailored photonic environment on the quantum dot spontaneous emission dynamics is studied using spectrally and spatially dependent time-resolved spectroscopy. In ensemble and single dot measurements we show that the photonic crystals strongly enhance the photon extraction efficiency and, therefore, are a promising concept for realizing efficient single-photon sources. Furthermore, we demonstrate single-photon emission from an individual quantum dot that is spectrally detuned from the cavity mode. The need for controlling the spectral dot-cavity detuning is discussed on the basis of shifting either the quantum dot emission via temperature tuning or the cavity mode emission via a thin film deposition technique. Finally, we discuss the recently discovered non-resonant coupling mechanism between quantum dot emission and cavity mode for large detunings which drastically lowers the purity of single-photon emission from dots that are spectrally coupled to nanocavity modes.

  6. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    Lue Rong; Zhang Guangming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  7. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    Dai, Xiao; Wang, Hao; Yi, Qinghua; Wang, Yun; Cong, Shan; Zhao, Jie; Sun, Yinghui; Zou, Guifu, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Qian, Zhicheng [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, Jianwen; Xiong, Jie, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Hongmei [Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States)

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefits the future development of optoelectronic nanodevices with new functionalities.

  8. Doença de Chagas aguda: vias de transmissão, aspectos clínicos e resposta à terapêutica específica em casos diagnosticados em um centro urbano Acute Chagas' disease: transmission mechanisms, clinical features and specific therapeutic response in cases diagnosed in an urban center

    M.A. Shikanai-Yasuda

    1990-02-01

    Full Text Available Relata-se o quadro clínico de 27 pacientes com doença de Chagas aguda, acompanhados no ambulatório da Clínica de Doenças Infecciosas e Parasitárias do Hospital das Clínicas da FM-USP no período de 1974 a 1987. As vias de transmissão envolvidas foram: vetorial em 7 casos, transfusional em 9, transplante de rim e/ou transfusional em 4, acidental em 1, via oral em 3, provável aleitamento materno em 1, congênita ou aleitamento materno em 1, congênita ou transfusional em 1. Pacientes com infecção por via vetorial eram procedentes da Bahia e Minas Gerais, tendo 6 apresentado a doença de 1974 a 1980 e um em 1987. Já os pacientes infectados por via transfusional adquiriram a doença na Grande São Paulo, 7 deles após 1983. O quadro clínico foi oligossintomático ou assintomático em 4 pacientes, sendo 3 deles imunodeprimidos por doença de base ou por medicamentos. Em outros 2 pacientes imunodeprimidos ocorreu miocardite grave com insuficiência cardíaca congestiva. O quadro clínico foi também mais grave em 5 de 6 crianças menores de dois anos de idade, qualquer que fosse a via de transmissão. A avaliação de 16 pacientes tratados na fase aguda com benzonidazol (4-10mg/kg/dia por 30 a 60 dias mostrou falha terapêutica em 4/16 (25,0%, possível sucesso terapêutico em 9/16 (56,2%, sendo inconclusivos os resultados em 3/16 (18,8%. A reação de LMC foi concordante com o xenodiagóstico em 18 e 22 casos (agudos e na fase crônica inicial, e se negativou mais precocemente que as RSC. No seguimento pós-terapêutico, observou-se aparecimento de doença linfoproliferativa em um paciente com anemia aplástica e que recebia corticosteróide 6 anos após o emprego de benzonidazol.The authors report clinical features and therapeutic response of 24 outpatients with acute Chagas' disease, and 3 in the initial chronic phase, referred to the Clinic for Infectious and Parasitic Diseases of the FMUSP "Clínicas" Hospital between 1974 and 1987

  9. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes.

    Sun, Chun; Zhang, Yu; Sun, Kai; Reckmeier, Claas; Zhang, Tieqiang; Zhang, XiaoYu; Zhao, Jun; Wu, Changfeng; Yu, William W; Rogach, Andrey L

    2015-07-28

    We realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.

  10. Electric conductivity of PCl5-ZrCl4, PCl5-TaCl5, and PCl5-MoCl5 molten mixtures

    Salyulev, A.B.; Red'kin, A.A.; Moskalenko, N.I.

    1997-01-01

    When mixing individual molecular melts of PCl 5 with ZrCl 4 , TaCl 5 or with MoCl 5 , an essential (by several orders) increase in electric conductivity (up to 0.02-0.1 Ohm -1 ·cm -1 ), which stems, in all probability, from the appearance of complex ions PCl 4 + , ZrCl 5 - , ZrCl 6 2- , TaCl 5 - and MoCl 6 - in the molten mixtures as a result of chemical interaction

  11. Determination of the equilibrium constant of FeZrCl6 formation from FeCl3 and ZrCl4

    Berdonosov, S.S.; Kharisov, B.I.; Nikitin, M.I.

    1992-01-01

    Equilibrium pressures of chlorine formed in the course of reaction FeCl 3 +ZrCl 4 ↔ FeZrCl 6 +0.5 Cl 2 were determined at the temperatures of 250-325 deg C. The values of equilibrium constant K p of the reaction mentioned at the temperatures of 250, 275, 300 and 325 deg were calculated, taking into consideration the determined values of p Cl2 and literature data on equilibrium pressures of ZrCl 4 and FeCl 3 vapours

  12. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    Galindez-Ramirez, G; Perez-Merchancano, S T; Paredes Gutierrez, H; Gonzalez, J D

    2010-01-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  13. Optical characterization of InAs quantum wells and dots grown radially on wurtzite InP nanowires

    Lindgren, David; Kawaguchi, Kenichi; Heurlin, Magnus; Borgström, Magnus T; Pistol, Mats-Erik; Samuelson, Lars; Gustafsson, Anders

    2013-01-01

    Correlated micro-photoluminescence (μPL) and cathodoluminescence (CL) measurements are reported for single core–shell InP–InAs wurtzite nanowires grown using metal–organic vapor phase epitaxy. Samples covering a radial InAs shell thickness of 1–12 ML were investigated. The effective masses for the wurtzite material were determined from the transition energy dependence of the InAs shell thickness, using a model based on linear deformation potential theory. InP cores with segments of mixed zincblende and wurtzite, on which quantum dots nucleated selectively, were also investigated. Narrow peaks were observed by μPL and the spatial origin of the emission was identified with CL imaging. (paper)

  14. Determination of 36Cl/Cl ratio in ground water using the accelerator mass spectrometry technique

    Sharma, Suman; Deodhar, A.S.; Saravana Kumar, U.; Surendran, P.; Shrivastava, A.; Gupta, A.K.; Nair, J.P.; Yadav, M.L.; Hemalatha, M.; Sparrow, H.; Mahata, K.; Thomas, R.G.; Bhagwat, P.V.; Kailas, S.; Kale, R.M.

    2009-01-01

    The Accelerator Mass Spectrometry (AMS) programme using the 14 MV Pelletron Accelerator at Mumbai has been initiated with major emphasis on the determination of 36 Cl in water samples, of interest to hydrology and environment. In order to carry out the AMS measurement, a beam chopper to cut down beam intensity by a factor of 20 has been developed and commissioned. A multi-anode gas -si detector has been built to separate 36 Cl from the interfering 36 S. A new TPS system has been procured to operate the machine in the GVM mode. Standard and blank samples from Prime lab, Purdue have been employed in these measurements to standardise the technique for 36 Cl/Cl ratio determination. The detector was calibrated using the stable 35,37 Cl ions. The background 36 Cl in the system has been measured using the blank sample from Purdue and it was estimated that the ratio of 36 Cl/Cl was of the order of 10 -13 in the present setup. Ground water samples collected from South India were converted to AgCl and put in the SNICS ion source for the AMS measurements. These ground water samples, with 14 C content estimated to be in the range of 1 to 4 pMC indicate that the samples may be more than 35,000 years old. Using the AMS technique we have determined the 36 Cl/Cl ratio values for these ground water samples. They are found to range between 2 to 5 x 10 -12 . Additional measurements are planned to determine the age of the water samples and to understand the reasons for the observed high values of 36 Cl in these samples. (author)

  15. Enhancement effect of CdTe quantum dots-IgG bioconjugates on chemiluminescence of luminol-H2O2 system

    Kanwal, Shamsa; Traore, Zoumana; Zhao Chunfang; Su Xingguang

    2010-01-01

    In this paper we developed an entirely new and highly sensitive luminol-H 2 O 2 flow injection chemiluminescence system using the enhancement effect of CdTe quantum dots-IgG bioconjugates. Immunoglobulin G (IgG) as a kind of bio-molecule was conjugated to different sized CdTe semiconductor quantum dots (QDs). Using PL spectra and CL intensity profiles, it was found that chemiluminescence resonance energy transfer (CRET) was possibly occurring between CdTe-IgG bioconjugate and luminol. Under optimum conditions, increase of IgG concentration in CdTe-IgG bioconjugate resulted enhancing effect on CL intensity of luminol-H 2 O 2 system. Moreover quenching effects on CL intensity by addition of different proteases can construct turn off biosensor for these proteases with low detection limits and wide linear range. Furthermore, the effects of various organic and inorganic species on CdTe-IgG bioconjugates enhanced luminol-H 2 O 2 CL system were also studied in this paper.

  16. Chemical effects of (n, γ) nuclear reaction on (Mo6Cl8)Cl4

    Fucugauchi, L.A.; Millan, S.; Mondragon, A.; Solache-Rios, M.

    1994-01-01

    The chemical effects of 98 Mo(n, γ) 99 Mo reaction on molybdenum(II) chloride [(Mo 6 Cl 8 )Cl 4 ] have been studied. Retention, thermal and radiolytical annealing were determined. It was found that this molybdenum compound has low retention, a negligible tendency to thermal annealing and a virtual insensitivity to hydrolysis. For practical applications in the enrichment of 99 Mo by the Shilard-Chalmers method, molybdenum(II) chloride [(Mo 6 Cl 8 )Cl 4 ] appears to offer good prospects. (author) 14 refs.; 2 figs

  17. Clinical features, diagnosis and treatment of acute primary headaches at an emergency center: why are we still neglecting the evidence? Características clínicas, diagnóstico e tratamento das cefaléias primárias agudas em um serviço de emergência: por que ainda negligenciamos as evidências?

    Facundo Burgos Ruiz Jr

    2007-12-01

    Full Text Available In order to analyze the clinical features, approach and treatment of patients with acute primary headaches seen at the Clinics Hospital of the Federal University of Uberlândia (HC-UFU throughout 2005, the medical charts of 109 patients were evaluated through a standardized questionnaire as to age, gender, main diagnosis, characteristics of the headache attacks, diagnostic tests and treatment. Probable migraine was the most common type of primary headache (47.7%, followed by probable tension-type headache (37.6%, unspecified headache (11.9%, and headache not elsewhere classified (2.8%. As to characteristics of the crisis, the location of the pain was described in 86.2% of the patients. The most commonly used drugs for treatment of acute headache attacks were dipyrone (74.5%, tenoxicam (31.8%, diazepam (20.9%, dimenhydrate (10.9%, and metochlopramide (9.9%. The data collected are in agreement with those reported in literature. In most cases, treatment was not what is recommended by consensus or clinical studies with appropriate methodology. Therefore, we suggest the introduction of a specific acute headache management protocol which could facilitate the diagnosis, treatment and management of these patients.Com o objetivo de avaliar as características clínicas, abordagem e tratamento das cefaléias agudas primárias atendidas no Hospital de Clínicas da Universidade Federal de Uberlândia (HC-UFU no ano de 2005, 109 prontuários foram analisados através de questionário padronizado, segundo idade, sexo, diagnóstico principal, características das crises, propedêutica e tratamento. A distribuição dos pacientes quanto ao tipo de cefaléia foi a seguinte: provável enxaqueca 47,7%, provável cefaléia tensional 37,6%, cefaléia não classificada 11,9% e cefaléia não classificada em outro local 2,8%. No que tange às características da crise, a localização da dor foi descrita em 86,2% dos pacientes. No tratamento dos pacientes com crise

  18. Utilización de los grupos clínicos ajustados en un centro de atención primaria español: estudio retrospectivo de base poblacional Adjusted clinical groups use at a Spanish primary care center: a retrospective, population-based study

    Antoni Sicras-Mainar

    2010-01-01

    Full Text Available OBJETIVOS: Evaluar los resultados de la aplicación del sistema de clasificación mediante grupos clínicos ajustados (GCA en un centro de atención primaria de salud (APS de una población española. MÉTODOS: Estudio transversal retrospectivo a partir de los registros médicos informatizados de los pacientes atendidos ambulatoriamente durante 2007 en el centro de salud La Roca, administrado por una empresa de gestión de servicios de salud en La Roca del Vallès, Barcelona, España. Los GCA se conformaron según la Clasificación Internacional de Enfermedades, 9.ª revisión, modificación clínica. Se calcularon los pesos relativos medios en dólares estadounidenses de cada GCA respecto al costo medio total y, a partir de ellos, se crearon las bandas de utilización de recursos. Se determinaron los índices de riesgo (IR y eficiencia (IE con respecto a 2006 y se estimó el poder explicativo de la clasificación empleada. RESULTADOS: Se estudiaron 8 294 pacientes, para una cobertura de 82,7%, con una media de 4,1 episodios por paciente, 6,9 visitas por paciente y 5,7 visitas por habitante al año. A siete GCA correspondió 51,0% de los pacientes atendidos. El IR fue de 1,015, el IE en las visitas de 0,975 y el poder explicativo de la clasificación en GCA fue de 53,4% para las visitas y de 74,8% para los episodios. CONCLUSIONES: El sistema de GCA permitió agrupar a los pacientes de una población según su estado clínico y puede ayudar, entre otros aspectos, en la asignación de recursos y la evaluación de la eficiencia de los equipos de APS.OBJECTIVES: To evaluate the results of implementing a classification system based on adjusted clinical groups (ACG at a primary health care (PHC in a Spanish population. METHODS: A retrospective, cross-sectional study based on the computerized medical records of outpatients seen in 2007 by the La Roca clinic, administered by a health services management company in La Roca del Vallès, Barcelona, Spain

  19. A novel high-efficiency single-mode quantum dot single photon source

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  20. Spin effects in InAs self-assembled quantum dots

    Brasil Maria

    2011-01-01

    Full Text Available Abstract We have studied the polarized resolved photoluminescence in an n-type resonant tunneling diode (RTD of GaAs/AlGaAs which incorporates a layer of InAs self-assembled quantum dots (QDs in the center of a GaAs quantum well (QW. We have observed that the QD circular polarization degree depends on applied voltage and light intensity. Our results are explained in terms of the tunneling of minority carriers into the QW, carrier capture by InAs QDs and bias-controlled density of holes in the QW.

  1. Stimulated emission and lasing from all-inorganic perovskite quantum dots

    Sun, Handong; Wang, Yue; Li, Xiaoming; Haibo, Zeng

    We present superior optical gain and lasing properties in a new class of emerging quantum materials, the colloidal all-inorganic cesium lead halide perovskite quantum dots (IPQDs) (CsPbX3, X = Cl, Br, I). Our result has indicated that such material system show combined merits of both colloidal quantum dots and halide perovskites. Low-threshold and ultrastable stimulated emission was demonstrated under atmospheric condition. The flexibility and advantageous optical gain properties of these CsPbX3 IPQDs were manifested by demonstration of an optically pumped micro-laser. The nonlinear optical properties including the multi-photon absorption and resultant photoluminescence of the CsPbX3 nanocrystals were investigated. A large two-photon absorption cross-section of up to ~1.2×105 GM is determined from 9 nm-sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin films of close-packed CsPbBr3 nanocrystals. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal IPQD.

  2. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  3. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  4. The centrifugal sudden distorted wave method for chemical reactions: Application to Cl+HCl → ClH+Cl

    Amaee, B.; Connor, J.N.L.; Schatz, G.C.

    1987-01-01

    The authors describe a method for calculating cross sections for atom plus diatom reactive collisions based on the centrifugal sudden distorted wave (CSDW) approximation. This method is nearly exact at low energies where reactive cross sections are small. Representative CPU times are given for applications of CSDW method to the Cl + HCl → ClH + Cl reaction using CDC 7600, Cyber 176, Cyber 205, Cray XMP and Cray 2 computers. Calculations show that the product HCl molecule is highly rotationally excited, (receiving 40-50% of the available energy) and that the shape of the product rotational distribution is nearly independent of reagent rotational state. The authors also calculated product differential cross sections and find them to be backward peaked at low energies

  5. Controlling the aspect ratio of quantum dots: from columnar dots to quantum rods

    Li, L.; Patriarche, G.; Chauvin, N.J.G.; Ridha, P.; Rossetti, M.; Andrzejewski, J.; Sek, G.; Misiewicz, J.; Fiore, A.

    2008-01-01

    We demonstrate the feasibility and flexibility of artificial shape engineering of epitaxial semiconductor nanostructures. Novel nanostructures including InGaAs quantum rods (QRs), nanocandles, and quantum dots (QDs)-in-rods were realized on a GaAs substrate. They were formed by depositing a

  6. Explosive hydrogen brning of 35Cl

    Ilidas, C.; Goerres, J.; Ross, J.G.; Scheller, K.W.; Wiescher, M.; Azuma, R.E.; Roters, G.; Trautvetter, H.P.; Evans, H.C.

    1994-01-01

    Proton threshold states in 36 Ar have been studied via the reactions 35 Cl( 3 He,d) 36 Ar, 32 S( 6 Li,d) 36 Ar, 32 S(α,γ) 36 Ar, 35 Cl(p,γ) 36 Ar and 35 Cl(p,α) 32 S to investigate their influence on a possible SCl reaction cycle in explosive hydrogen burning. Three new states in 36 Ar have been observed in the ( 3 He,d) reaction at E x =8806, 8887 and 8923 keV. Deuteron angular distributions were measured for 14 states near the 35 Cl+p threshold and were analyzed with DWBA calculations. Values of transferred orbital angular momenta, spectroscopic factors and proton partial widths were determined. Gamma-ray spectra have been measured at ten (p,γ) resonances. Three new resonances were observed at E R =311, 416 and 627 keV, corresponding to 36 Ar states at E x =8806, 8909 and 9117 keV, respectively. Excitation and resonance energies, γ-ray branching ratios and resonance strengths are presented. The astrophysical implications of our results for explosive hydrogen burning of 35 Cl are discussed. (orig.)

  7. Hybrid passivated colloidal quantum dot solids

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Hybrid passivated colloidal quantum dot solids

    Ip, Alex; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  9. Linfoma não-Hodgkin na infância: características clínico-epidemiológicas e avaliação de sobrevida em um único centro no Nordeste do Brasil Non-Hodgkin's lymphoma in childhood: clinical and epidemiological characteristics and survival analysis at a single center in Northeast Brazil

    Márcia Ferreira Pedrosa

    2007-12-01

    Full Text Available OBJETIVO: Descrever o perfil clínico-epidemiológico dos pacientes portadores de linfoma não-Hodgkin diagnosticados no Serviço de Oncologia Pediátrica do Instituto Materno-Infantil Professor Fernando Figueira em um período de 9 anos, bem como descrever sobrevida e possíveis associações prognósticas com as variáveis clínico-epidemiológicas estudadas. MÉTODOS: Estudo descritivo de corte transversal, realizado através da análise dos prontuários de 110 pacientes com linfoma não-Hodgkin admitidos na instituição no período de maio de 1994 a maio de 2003. As sobrevidas global e livre de doença foram analisadas através da técnica de Kaplan-Meier, e o teste de log rank foi utilizado para avaliar diferenças entre os grupos. RESULTADOS: A idade média foi de 6,1 anos, e a relação masculino-feminino, 2,4:1. O subtipo histológico mais freqüente foi o linfoma de Burkitt. A maioria dos pacientes foi diagnosticada em estádio III e IV da classificação de Murphy e provinha da zona rural. Renda familiar per capita inferior a 1/2 salário mínimo foi observada em 36,4%, e analfabetismo materno, em 12,7% dos casos. A probabilidade de sobrevida global e livre de doença aos 5 anos foi de 70±4% e 68±4%, respectivamente. Nenhuma das variáveis clínico-epidemiológicas analisadas mostrou associação estatística significante com a probabilidade de sobrevida dos pacientes (p > 0,05. CONCLUSÃO: Observamos incidência mais elevada do subtipo Burkitt e de crianças acometidas em idade mais jovem quando comparada à descrita em literatura estrangeira. A sobrevida observada aproximou-se dos resultados descritos pelos principais grupos cooperativos de tratamento de câncer infantil. As variáveis clínico-epidemiológicas analisadas não apresentaram associação prognóstica estatística significante.OBJECTIVE:To describe the clinical and demographic characteristics of non-Hodgkin's lymphoma patients diagnosed at the Pediatric Oncology Unit

  10. year Review of Patients on DOTS in Delta State, Nigeria

    UNIBEN

    1Department of Community Medicine, Delta State University Teaching ... Therapy Short-course (DOTS), DOTS plus, and the Stop TB Strategy. ... Methods: In this descriptive records review of years 2011-2015, existing data ... Treatment success rate improved from 68.3% in ..... exploration and social interventions to curb it.

  11. Electron Energy Level Statistics in Graphene Quantum Dots

    De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.

    2008-01-01

    Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the

  12. Quantum-dot cluster-state computing with encoded qubits

    Weinstein, Yaakov S.; Hellberg, C. Stephen; Levy, Jeremy

    2005-01-01

    A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection

  13. INTERACTIONS BETWEEN MODULATED LUMINANCE PATTERNS AND RANDOM-DOT PATTERNS

    CORNELISSEN, FW; KOOIJMAN, AC

    1994-01-01

    It has been suggested that density modulated random-dot patterns can be used to study higher order pattern vision [Van Meeteren and Barlow (1981) Vision Research, 21, 765-777]. The high contrast dots of which the pattern is composed, are assumed to be reliably transduced-and transmitted by the lower

  14. Exciton binding energy in a pyramidal quantum dot

    A ANITHA

    2018-03-27

    Mar 27, 2018 ... screening function on exciton binding energy in a pyramid-shaped quantum dot of ... tures may generate unique properties and they show .... where Ee is the ground-state energy of the electron in ... Figure 1. The geometry of the pyramidal quantum dot. base and H is the height of the pyramid which is taken.

  15. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  16. Teaching Beginning Chemistry Students Simple Lewis Dot Structures

    Nassiff, Peter; Czerwinski, Wendy A.

    2015-01-01

    Students beginning their initial study of chemistry often have a difficult time mastering simple Lewis dot structures. Textbooks show students how to manipulate Lewis structures by moving valence electron dots around the chemical structure so each atom has an octet or duet. However, an easier method of teaching Lewis structures for simple…

  17. Electron transport and coherence in semiconductor quantum dots and rings

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  18. Andreev molecules in semiconductor nanowire double quantum dots.

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  19. Stark effect and polarizability of graphene quantum dots

    Pedersen, Thomas Garm

    2017-01-01

    The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we...

  20. Laterally coupled jellium-like two-dimensional quantum dots

    Markvoort, Albert. J.; Hilbers, P.A.J.; Pino, R.

    2003-01-01

    Many studies have been performed to describe quantum dots using a parabolic confining potential. However, infinite potentials are unphysical and lead to problems when describing laterally coupled quantum dots. We propose the use of the parabolic potential of a homogeneous density distribution within

  1. Fast synthesize ZnO quantum dots via ultrasonic method.

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Electroluminescent Cu-doped CdS quantum dots

    Stouwdam, J.W.; Janssen, R.A.J.

    2009-01-01

    Incorporating Cu-doped CdS quantum dots into a polymer host produces efficient light-emitting diodes. The Cu dopant creates a trap level that aligns with the valence band of the host, enabling the direct injection of holes into the quantum dots, which act as emitters. At low current densities, the

  3. Imaging vasculature and lymphatic flow in mice using quantum dots

    Ballou, Byron; Ernst, Lauren A.; Andreko, Susan

    2009-01-01

    Quantum dots are ideal probes for fluorescent imaging of vascular and lymphatic tissues. On injection into appropriate sites, red- and near-infrared-emitting quantum dots provide excellent definition of vasculature, lymphoid organs, and lymph nodes draining both normal tissues and tumors. We detail...

  4. Fractional decay of quantum dots in photonic crystals

    Kristensen, Philip Trøst; Koenderink, Femius; Lodahl, Peter

    2008-01-01

    We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses.......We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses....

  5. X-ray scattering from periodic arrays of quantum dots

    Holy, V; Stangl, J; Lechner, R T; Springholz, G

    2008-01-01

    Three-dimensional periodic arrays of self-organized quantum dots in semiconductor multilayers are investigated by high-resolution x-ray scattering. We demonstrate that the statistical parameters of the dot array can be determined directly from the scattering data without performing a numerical simulation of the scattered intensity.

  6. High-resolution photoluminescence studies of single semiconductor quantum dots

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has...

  7. Polarized electrons, trions, and nuclei in charged quantum dots

    Bracker, A. S.; Tischler, J. G.; Korenev, V. L.; Gammon, D.

    2003-07-01

    We have investigated spin polarization in GaAs quantum dots. Excitons and trions are polarized directly by optical excitation and studied through polarization of photoluminescence. Electrons and nuclei are polarized indirectly through subsequent relaxation processes. Polarized electrons are identified by the Hanle effect for exciton and trion photoluminescence, while polarized nuclei are identified through the Overhauser effect in individual charged quantum dots.

  8. MnDOT Library strategic plan : final report.

    2017-06-01

    MnDOTs Senior Leadership asked MnDOT Library to develop a Strategic Plan that identifies and reviews the challenges facing the Library over the next five years to better address the evolving needs of the department and users. The strategic plan is...

  9. Electronic properties of assemblies of zno quantum dots

    Roest, Aarnoud Laurens

    2003-01-01

    Electron transport in an assembly of ZnO quantum dots has been studied using an electrochemically gated transistor. The electron mobility shows a step-wise increase as a function of the electron occupation per quantum dot. When the occupation number is below two, transport occurs by tunnelling

  10. Green Dot Public Schools. What Works Clearinghouse Intervention Report

    What Works Clearinghouse, 2018

    2018-01-01

    "Green Dot Public Schools" is a nonprofit organization that operates more than 20 public charter middle and high schools in California, Tennessee, and Washington. The "Green Dot Public Schools" model emphasizes high quality teaching, strong school leadership, a curriculum that prepares students for college, and partnerships…

  11. Phonon-assisted decoherence and tunneling in quantum dot molecules

    Grodecka-Grad, Anna; Foerstner, Jens

    2011-01-01

    processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...

  12. Optical properties of a tip-induced quantum dot

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Fomin, V.M.; Wolter, J.H.; Devreese, J.T.; Miura, N.; Ando, T.

    2001-01-01

    We have performed optical spectroscopy measurements on an STM-tip-induced quantum dot. The dominant confinement in the (hole) quantum dot is in the direction parallel to the tip axis. Electron confinement is achieved by a sub-surface AlGaAs barrier. Current dependent measurements indicate that

  13. Electroluminescence spectra of an STM-tip-induced quantum dot

    Croitoru, M.D.; Gladilin, V.N.; Fomin, V.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H.; Long, A.R.; Davies, J.H.

    2003-01-01

    We analyse the electroluminescence measurements performed on a STM-tipImduced quantum dot in a GaAs layer. Positions of electroluminescence peaks, attributed to the electron-hole recombination in the quantum dot, are very sensitive to the electron tunnelling current even in the case when the current

  14. Correlation effects in superconducting quantum dot systems

    Pokorný, Vladislav; Žonda, Martin

    2018-05-01

    We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.

  15. Quantum dot loaded immunomicelles for tumor imaging

    Levchenko Tatyana

    2010-10-01

    Full Text Available Abstract Background Optical imaging is a promising method for the detection of tumors in animals, with speed and minimal invasiveness. We have previously developed a lipid coated quantum dot system that doubles the fluorescence of PEG-grafted quantum dots at half the dose. Here, we describe a tumor-targeted near infrared imaging agent composed of cancer-specific monoclonal anti-nucleosome antibody 2C5, coupled to quantum dot (QD-containing polymeric micelles, prepared from a polyethylene glycol/phosphatidylethanolamine (PEG-PE conjugate. Its production is simple and involves no special equipment. Its imaging potential is great since the fluorescence intensity in the tumor is twofold that of non-targeted QD-loaded PEG-PE micelles at one hour after injection. Methods Para-nitrophenol-containing (5% PEG-PE quantum dot micelles were produced by the thin layer method. Following hydration, 2C5 antibody was attached to the PEG-PE micelles and the QD-micelles were purified using dialysis. 4T1 breast tumors were inoculated subcutaneously in the flank of the animals. A lung pseudometastatic B16F10 melanoma model was developed using tail vein injection. The contrast agents were injected via the tail vein and mice were depilated, anesthetized and imaged on a Kodak Image Station. Images were taken at one, two, and four hours and analyzed using a methodology that produces normalized signal-to-noise data. This allowed for the comparison between different subjects and time points. For the pseudometastatic model, lungs were removed and imaged ex vivo at one and twenty four hours. Results The contrast agent signal intensity at the tumor was double that of the passively targeted QD-micelles with equally fast and sharply contrasted images. With the side views of the animals only tumor is visible, while in the dorsal view internal organs including liver and kidney are visible. Ex vivo results demonstrated that the agent detects melanoma nodes in a lung

  16. Quantum Dots for Molecular Diagnostics of Tumors

    Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.

    2011-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imagingin vivo. We also point out the essential problems that require resolution in order to clinically promote QD, and we indicate innovative approaches to oncology which are implementable using QD. PMID:22649672

  17. DOT-7A packaging test procedure

    Kelly, D.L.

    1995-01-01

    This test procedure documents the steps involved with performance testing of Department of Transportation Specification 7A (DOT-7A) Type A packages. It includes description of the performance tests, the personnel involved, appropriate safety considerations, and the procedures to be followed while performing the tests. Westinghouse Hanford Company (WHC) is conducting the evaluation and testing discussed herein for the Department of Energy-Headquarters, Division of Quality Verification and Transportation Safety (EH-321). Please note that this report is not in WHC format. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes

  18. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating

    Zhang, Wanyi [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Yang, Lin; Kuang, Huijuan; Yang, Pengfei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Aguilar, Zoraida P.; Wang, Andrew [Ocean NanoTech, LLC, Springdale, AR72764 (United States); Fu, Fen, E-mail: fu_fen@163.com [The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Xu, Hengyi, E-mail: kidyxu@163.com [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2016-11-15

    Graphical abstract: In spite of the immense benefits from quantum dots (QDs), there is scanty information regarding their toxicity mechanisms against late pregnancy. - Highlights: • QDs and CdCl{sub 2} were effectively blocked by the placental barrier. • CdSe QDs more effectively altered the expression levels of susceptive genes. • Nanoscale size of QDs is more important than free Cd in inducing toxicity. • Outer surface shell coating of QDs played a protective role. - Abstract: In this study, the effects of cadmium containing QDs (such as CdSe/ZnS and CdSe QDs) and bulk CdCl{sub 2} in pregnant mice, their fetuses, and the pregnancy outcomes were investigated. It was shown that although the QDs and bulk CdCl{sub 2} were effectively blocked by the placental barrier, the damage on the placenta caused by CdSe QDs still led to fetus malformation, while the mice in CdSe/ZnS QDs treatment group exhibited slightly hampered growth but showed no significant abnormalities. Moreover, the Cd contents in the placenta and the uterus of CdSe QDs and CdSe/ZnS QDs treatment groups showed significantly higher than the CdCl{sub 2} treated group which indicated that the nanoscale size of the QDs allowed relative ease of entry into the gestation tissues. In addition, the CdSe QDs more effectively altered the expression levels of susceptive genes related to cell apoptosis, dysplasia, metal transport, cryptorrhea, and oxidative stress, etc. These findings suggested that the nanoscale size of the QDs were probably more important than the free Cd in inducing toxicity. Furthermore, the results indicated that the outer surface shell coating played a protective role in the adverse effects of QDs on late pregnancy mice.

  19. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor.

    Gao, Xue; Tang, Guangchao; Su, Xingguang

    2012-01-01

    In this paper, we report a sensitive and selective method for detection of organophosphorus compounds (OPs) based on Mn:ZnSe d-dots-enzyme-hydrogen peroxide (H(2)O(2)) fluorescence quenching system. Acetylcholine esterase (AChE) can hydrolyze acetylcholine (ACh) to choline. Subsequently, choline oxidase (ChOx) oxidizes choline to generate H(2)O(2). The enzyme-generated H(2)O(2) can quench the fluorescence of Mn:ZnSe d-dots. When paraoxon are introduced in solution, it can interact with the active centers of AChE and decrease the enzyme activity. This leads to the decrease of the H(2)O(2) production and then the fluorescence quenching rate of Mn:ZnSe d-dots. Experimental results showed that the enzyme inhibition percentage of Mn:ZnSe d-dots-ChOx-AChE-ACh system was proportional to the logarithm of paraoxon in the range 4.84×10(-11) to 4.84×10(-6) mol/L with the detection limit (S/N=3) of 1.31×10(-11) mol/L. The proposed biosensor has been employed for quick determination of paraoxon in tap water and milk samples with satisfactory reproducibility and accuracy. This nano-biosensor was proved to be sensitive, rapid, simple and tolerance of most interfering substances. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Use of thermodynamic calculation for investigating phase diagram of the ternary system NaCl-PbCl2-NdCl3

    Kostygov, V.I.; Potemin, S.S.

    1984-01-01

    Thermodynamic calculation of meltability diagram of ternary system NaCl-PbCl 2 -NdCl 3 with the use of literature and experimental data on meltability diagrams of binary systems forming it, as well as data on crystallization heats of the components, has been carried out. Equations are derived under condition of pseudoperfection of the ternary system. 64 mol.% PbCl 2 , 26 mol.% NaCl, 10 mol.% NdCl 3 and average temperature of crystallization 391 deg C correspond to the calculated composition of the ternary eutectics, 49 mol.% PbCl 2 , 35 mol.% NaCl, 16 mol.% NdCl 3 and average temperature of peritectic transformation 416 deg C - to the composition of the ternary peritectic. The results obtained agree well with the experimental data