WorldWideScience

Sample records for center dot cl

  1. Cold white light generation through the simultaneous emission from Ce{sup 3+}, Dy{sup 3+} and Mn{sup 2+} in 90Al{sub 2}O{sub 3}{center_dot}2CeCl{sub 3}{center_dot}3DyCl{sub 3}{center_dot}5MnCl{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, W. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Alvarez, E. [Departamento de Fisica, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000 (Mexico); Martinez-Martinez, R.; Yescas-Mendoza, E. [Instituto de Fisica y Matematicas, Universidad Tecnologica de la Mixteca, Carretera a Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca 69000 (Mexico); Camarillo, I. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Caldino, U., E-mail: cald@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico)

    2012-08-15

    The photoluminescence of a CeCl{sub 3}, DyCl{sub 3} and MnCl{sub 2} doped aluminum oxide film deposited by ultrasonic spray pyrolysis was characterized by excitation, emission and decay time spectroscopy. A nonradiative energy transfer from Ce{sup 3+} to Dy{sup 3+} and Mn{sup 2+} is observed upon UV excitation at 278 nm (peak emission wavelength of AlGaN-based LEDs). Such energy transfer leads to a simultaneous emission of these ions in the blue, green, yellow and red regions, resulting in white light emission with CIE1931 chromaticity coordinates, x=0.34 and y=0.23, which correspond to cold white light with a color temperature of 4900 K. - Highlights: Black-Right-Pointing-Pointer 90Al{sub 2}O{sub 3}{center_dot}2CeCl{sub 3}{center_dot}3DyCl{sub 3}{center_dot}5MnCl{sub 2} thin film (AOCDM) could be prepared by spray pyrolysis. Black-Right-Pointing-Pointer Non-radiative energy transfer from Ce{sup 3+} to Dy{sup 3+} and Mn{sup 2+} takes place in AOCDM. Black-Right-Pointing-Pointer AOCDM (pumped with 278 nm-UV light) can generate 4900 K cold white light.

  2. Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering

    1995-01-01

    The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.

  3. A Study of F-center in the Ionic Crystal by Using The Quantum Dot Model Potential

    Directory of Open Access Journals (Sweden)

    Hashem Abood Kassim

    2018-02-01

    Full Text Available This work presents a study of the electronic structure of F-center in the crystal of NaCl, CsCl and fluorite structure by using quantum dot model potential. This model employs the semi-continuum method due to Simpson and specifies the F-center as a quantum dot partially confined within finite potential. The energy levels and transition energy of the F-center are calculated analytically by using this new model potential and including the effect of continuum medium due to the coulomb tail and using the strong perturbation approach

  4. Photoinduced electric dipole in CuCl quantum dots

    International Nuclear Information System (INIS)

    Masumoto, Yasuaki; Naruse, Fumitaka; Kanno, Atsushi

    2003-01-01

    Electromodulated absorption spectra of CuCl quantum dots modulated at twice the modulation frequency of electric field, 2f, show prominent structure around persistently burned hole. It grows in proportion to square of the electric field in the same manner as the 2f component of electromodulated absorption spectra of the dots without the laser exposure. Even the f component of electromodulated signal was observed around the burned hole position. These observations are explained by considering electric dipole formed in hole burned and photoionized quantum dots. Photoionization not only produces persistent spectral hole burning but also the local built-in electric field and photoinduced dipole moment in quantum dots. The dipole moment is estimated to be about 5 debye for 3.2-nm-radius quantum dots. The dipole moments are randomly oriented but 1% anisotropy is deduced from the electromodulated signal at f

  5. Reversible conversion between AgCl and Ag in AgCl-doped RSiO{sub 3/2}-TiO{sub 2} films prepared by a sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Go, E-mail: gokawamura@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Tsurumi, Yuuki [Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Sakai, Mototsugu; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2011-10-17

    Highlights: {center_dot} The reversible redox behavior between AgCl and Ag in RSiO{sub 3/2}-TiO{sub 2} film is studied. {center_dot} TiO{sub 2} component induces Cl to remain in the film after conversion of AgCl to Ag. {center_dot} The survival of Cl is essential for reconversion of Ag to AgCl. {center_dot} The film shows potential to be applied as rewritable holographic material. - Abstract: The reversible redox behavior exhibited by AgCl-doped organosilsesquioxane-titania gel films is studied. Films prepared by the sol-gel method show reversible color changes with blue laser irradiation and subsequent heat treatment, which is based on the formation of Ag and AgCl nanoparticles, respectively. Two-beam interference exposure experiments reveal that the films have potential to be applied as rewritable holographic materials. A large titania content is essential for the conversion of Ag to AgCl because it induces the Cl to remain near the Ag nanoparticles during blue laser irradiation, allowing the Cl to react with neighboring Ag nanoparticles to reform AgCl upon subsequent heat treatment.

  6. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    Science.gov (United States)

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  7. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    Science.gov (United States)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  8. Diphosphine- and CO-Induced Fragmentation of Chloride-bridged Dinuclear Complex and Cp*Ir(mu-Cl)(3)Re(CO)(3) and Attempted Synthesis of Cp*Ir(mu-Cl)(3)Mn(CO)(3): Spectroscopic Data and X-ray Diffraction Structures of the Pentamethylcyclopentadienyl Compounds [Cp*IrCl{(Z)-Ph2PCH = CHPPh2}][Cl]center dot 2CHCl(3) and Cp*Ir(CO)Cl-2

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, Casey [University of North Texas; Wang, Xiaoping [ORNL; Nesterov, Vladimir [University of North Texas; Richmond, Michael G. [University of North Texas

    2010-01-01

    The confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (1) undergoes rapid fragmentation in the presence of the unsaturated diphosphine ligand (Z)-Ph2PCH = CHPPh2 to give the mononuclear compounds [Cp*IrCl {(Z)-Ph2PCH = CHPPh2}][Cl] (2) and fac-ClRe(CO)(3)[(Z)-Ph2PCH = CHPPh2] (3). 2 has been characterized by H-1 and P-31 NMR spectroscopy and X-ray diffraction analysis. 2 center dot 2CHCl(3) crystallizes in the monoclinic space group C2/c, a = 35.023 (8) angstrom, b = 10.189 (2) angstrom, c = 24.003 (6) angstrom, b = 103.340 (3), V = 8,335 (3) angstrom 3, Z = 8, and d(calc) = 1.647 Mg/m(3); R = 0.0383, R-w = 0.1135 for 8,178 reflections with I> 2 sigma(I). The Ir(III) center in 2 exhibits a six-coordinate geometry and displays a chelating diphosphine group. Compound 1 reacts with added CO with fragmentation to yield the known compounds Cp*Ir(CO)Cl-2 (4) and ClRe(CO)(5) (5) in near quantitative yield by IR spectroscopy. Using the protocol established by our groups for the synthesis of 1, we have explored the reaction of [Cp*IrCl2](2) with ClMn(CO)(5) as a potential route to Cp*Ir(mu-Cl)(3)Mn(CO)(3); unfortunately, 4 was the only product isolated from this reaction. The solid-state structure of 4 was determined by X-ray diffraction analysis. 4 crystallizes in the triclinic space group P-1, a = 7.4059 (4) angstrom, b = 7.8940 (4) angstrom, c = 11.8488 (7) angstrom, alpha = 80.020 (1), beta = 79.758 (1), gamma = 68.631 (1), V = 630.34 (6) angstrom(3), Z = 2, and d(calc) = 2.246 Mg/m(3); R = 0.0126, R-w = 0.0329 for 2,754 reflections with I> 2 sigma(I). The expected three-legged piano-stool geometry in 4 has been crystallographically confirmed.

  9. Electric conductivity of PCl{sub 5}-ZrCl{sub 4}, PCl{sub 5}-TaCl{sub 5}, and PCl{sub 5}-MoCl{sub 5} molten mixtures; Ehlektroprovodnost` rasplavlennykh sistem PCl{sub 5}-ZrCl{sub 4}, PCl{sub 5}-TaCl{sub 5}, i PCl{sub 5}-MoCl{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Red` kin, A A; Moskalenko, N I [Inst. Vysokotemperaturnoj Ehlektrokhimii UrO RAN, Ekaterinburg (Russian Federation)

    1997-05-01

    When mixing individual molecular melts of PCl{sub 5} with ZrCl{sub 4}, TaCl{sub 5} or with MoCl{sub 5}, an essential (by several orders) increase in electric conductivity (up to 0.02-0.1 Ohm{sup -1}{center_dot}cm{sup -1}), which stems, in all probability, from the appearance of complex ions PCl{sub 4}{sup +}, ZrCl{sub 5}{sup -}, ZrCl{sub 6}{sup 2-}, TaCl{sub 5}{sup -} and MoCl{sub 6}{sup -} in the molten mixtures as a result of chemical interaction. 12 refs., 3 figs., 1 tab.

  10. TxDOT can help pave the way for distribution centers.

    Science.gov (United States)

    2010-05-01

    TxDOT supports economic development in Texas. : Working through its district offices, TxDOT can help : developers avoid common transportation-related : problems associated with selected center sites. TxDOT : may also be able to help distribution cent...

  11. Studies of the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} reversible hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongan [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Yang Jun, E-mail: jyang27@ford.com [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Ni Jun [Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Drews, Andy [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We systematically studied the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system. Black-Right-Pointing-Pointer It is found that adding 0.25 TiCl{sub 3} produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. Black-Right-Pointing-Pointer LiCl experiences four different states, i.e. 'formed-solid solution-molten solution-precipitation', in the whole desorption process of the system. Black-Right-Pointing-Pointer The incorporation of LiCl into LiBH{sub 4} forms more viscous molten LiBH{sub 4}{center_dot}LiCl, leading to fast kinetics. Black-Right-Pointing-Pointer The precipitation and re-incorporation of LiCl into LiBH{sub 4} lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl{sub 3} on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH{sub 4}/CaH{sub 2}/xTiCl{sub 3} and that as temperature increases, o-LiBH{sub 4} transforms into h-LiBH{sub 4}, into which LiCl incorporates, forming solid solution of LiBH{sub 4}{center_dot}LiCl, which melts above 280 Degree-Sign C. Molten LiBH{sub 4}{center_dot}LiCl is more viscous than molten LiBH{sub 4}, preventing the clustering of LiBH{sub 4} and the accompanied agglomeration of CaH{sub 2}, and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 Degree-Sign C, the molten solution LiBH{sub 4}{center_dot}LiCl further reacts with CaH{sub 2}, precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH{sub 4}{center_dot}LiCl and CaH{sub 2} and not between molten LiBH{sub 4} and CaH{sub 2}. This alters the hydrogen reaction thermodynamics and

  12. Thermodynamics of {l_brace}zNaCl+(1-z)Na{sub 2}SO{sub 4}{r_brace}(aq) from T=278.15 K to T=318.15 K, and representation with an extended ion-interaction (Pitzer) model

    Energy Technology Data Exchange (ETDEWEB)

    Rard, Joseph A. E-mail: rard1@llnl.gov; Clegg, Simon L.; Platford, Robert

    2003-06-01

    In 1968, R.F. Platford reported the results from extensive isopiestic vapor-pressure measurements for the {l_brace}zNaCl+(1-z)Na{sub 2}SO{sub 4}{r_brace}(aq) system at T=298.15 K, using NaCl(aq) as the isopiestic reference standard [R.F. Platford, J. Chem. Eng. Data 13 (1968) 46-48]. However, only derived quantities were reported, and the experimental isopiestic equilibrium molalities were not given. The complete set of original isopiestic molalities from that study is tabulated in the present report. In addition, published thermodynamic information for this system is reviewed and the isopiestic equilibrium molalities, electromotive force measurements for five different types of electrochemical cells, and enthalpies of mixing from these other studies are critically assessed and recalculated consistently. These combined results are used to evaluate at T=298.15 K the two mixing parameters of Pitzer's ion-interaction model, {sup S}{theta}(Cl,SO{sub 4})=(1.236{+-}0.032{sub 5}){center_dot}10{sup -2} kg{center_dot}mol{sup -1} and {psi}(Na,Cl,SO{sub 4})=(1.808{+-}0.086){center_dot}10{sup -3} kg{sup 2}{center_dot}mol{sup -2}, and their temperature derivatives {l_brace}{partial_derivative}{sup S}{theta}(Cl,SO{sub 4})/{partial_derivative}T{r_brace}{sub p}=(2.474{+-}0.460){center_dot}10{sup -5} kg{center_dot}mol{sup -1}{center_dot}K{sup -1} and {l_brace}{partial_derivative}{psi}(Na,Cl,SO{sub 4})/{partial_derivative}T{r_brace}{sub p}=-(6.228{+-}0.186){center_dot}10{sup -5} kg{sup 2}{center_dot}mol{sup -2}{center_dot}K{sup -1}. Also reported are parameters for an extended ion-interaction model for Na{sub 2}SO{sub 4}(aq), valid from T=(273.15 to 323.15) K, that were required for this mixed electrolyte solution analysis.

  13. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    International Nuclear Information System (INIS)

    Wang Yuchi; Mao Hua; Wong, Lid B

    2010-01-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl - ] i ) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl - ] i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl - ] i . Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl - ] i . These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  14. Chemiluminescence behavior of the carbon dots and the reduced state carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xie, Jianxin [College of Resources and Environment, Yuxi Normal University, Yuxi, Yunnan 653100 (China); Long, Yijuan; Huang, Xiaoxiao; Zhu, Rui; Wang, Xiliang; Liang, Liping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Huang, Yuming, E-mail: ymhuang@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zheng, Huzhi, E-mail: zhenghz@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2014-02-15

    Potassium permanganate (KMnO{sub 4}) can react with two different carbon nanoparticles, i.e., carbon dots (CDs) and reduced state carbon dots (r-CDs), in a strong acid medium to generate chemiluminescence (CL). Furthermore, the different CL intensities and CL behaviors due to the different surface groups on these two kinds of carbon nanoparticles were confirmed. CL spectra, fluorescence spectra, UV–vis absorption spectra, and electron paramagnanetic resonance spectra were applied to investigate the CL mechanism. The main reaction pathways were proposed as follows: for the CL reaction between CDs and KMnO{sub 4}, the excited states of CDs (CDs{sup ⁎}) and Mn(II) (Mn(II){sup ⁎}) emerged as KMnO{sub 4} could inject holes into CDs, then, the CDs{sup ⁎} and Mn(II){sup ⁎} acted as luminophors to yield CL; in the r-CDs-KMnO{sub 4} system, r-CDs were oxidized by KMnO{sub 4} directly, and CDs{sup ⁎} and Mn(II){sup ⁎} were produced, at the same time, CL occurred. What is more interesting is that the CL intensity of the r-CD system is stronger than that of the CD system, which confirms that functional groups have strong effect on the CL behavior. It inspired us that new carbon nanoparticles with excellent luminous performance can be designed by tuning their surface groups. -- Highlights: • Carbon dots (CDs) and reduced state carbon dots (r-CDs) can react with potassium permanganate (KMnO{sub 4}) in a strong acid to generate chemiluminescence (CL). • With different surface groups, the CL intensity of r-CDs-KMnO{sub 4} system is different from that of CDs-KMnO{sub 4} system. • The CL mechanisms of the two systems were investigated.

  15. Modifications of center-surround, spot detection and dot-pattern selective operators

    NARCIS (Netherlands)

    Petkov, Nicolai; Visser, Wicher T.

    2005-01-01

    This paper describes modifications of the models of center-surround and dot-pattern selective cells proposed previously. These modifications concern mainly the normalization of the difference of Gaussians (DoG) function used to model center-surround receptive fields, the normalization of

  16. Assessing the occurrence of the dibromide radical (Br{sub 2}{sup -{center_dot}}) in natural waters: Measures of triplet-sensitised formation, reactivity, and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Mailhot, Gilles; Sarakha, Mohamed [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Brigante, Marcello, E-mail: marcello.brigante@univ-bpclermont.fr [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Vione, Davide, E-mail: davide.vione@unito.it [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Universita degli Studi di Torino, Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-11-15

    The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br{sup {center_dot}}/Br{sub 2}{sup -{center_dot}}, with rate constant (2-4) Dot-Operator 10{sup 9} M{sup -1} s{sup -1} that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ({sup 3}CDOM*). The brominating agent Br{sub 2}{sup -{center_dot}} could thus be formed in natural waters upon oxidation of bromide by both {sup {center_dot}}OH and {sup 3}CDOM*. Br{sub 2}{sup -{center_dot}} would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of {approx} 3 Dot-Operator 10{sup 2} L (mg C){sup -1} s{sup -1} was measured between Br{sub 2}{sup -{center_dot}} and DOM. It was thus possible to model the formation and reactivity of Br{sub 2}{sup -{center_dot}} in natural waters, assessing the steady-state [Br{sub 2}{sup -{center_dot}}] Almost-Equal-To 10{sup -13}-10{sup -12} M. It is concluded that bromide oxidation by {sup 3}CDOM* would be significant compared to oxidation by {sup {center_dot}}OH. The {sup 3}CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge {sup {center_dot}}OH. Under such conditions, {sup {center_dot}}OH-assisted formation of Br{sub 2}{sup -{center_dot}} would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of {sup 3}CDOM* is much higher compared to that of {sup {center_dot}}OH in most surface waters and would provide a large {sup 3}CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br{sub 2}{sup -{center_dot}} could be an important source of the nitrating agent {sup {center_dot

  17. Polymorphs of Pridopidine Hydrochloride

    DEFF Research Database (Denmark)

    Zimmermann, A.; Frostrup, B.; Bond, A. D.

    2012-01-01

    of both polymorphs contain N+-H center dot center dot center dot Cl-center dot center dot center dot N+-H center dot center dot center dot interactions, and the polymorphism can be viewed as alternative orientations (parallel or antiparallel) of comparable molecular columns while retaining the center dot...... center dot center dot N+-H center dot center dot center dot Cl-center dot center dot center dot N+-H center dot center dot center dot motif between columns. Forms I and II have melting points of 199 and 210 degrees C, respectively. Following melting of form I, a kinetically controlled crystallization...

  18. Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire

    International Nuclear Information System (INIS)

    Safarpour, Gh.; Barati, M.; Zamani, A.; Niknam, E.

    2014-01-01

    The binding energy as well as the linear, third-order nonlinear and total optical absorption coefficient and refractive index changes of an off-center hydrogenic donor impurity in an InAs spherical quantum dot placed at the center of a GaAs cylindrical nano-wire have been investigated. In this regard, the effective-mass approximation approach is considered and eigenvalues and corresponding eigenfunctions are calculated via the finite element method. The binding energy is plotted as a function of the dot size and impurity position along with optical properties as a function of photon energy. In this study two different directions have been considered for impurity position, along the nano-wire axis and perpendicular to it. It has been found that the binding energy, absorption coefficient and refractive index changes are impressively affected not only by the dot radius but also by the position of the impurity and its direction. Additionally, the optical saturation can be tuned by the direction of the impurity and incident optical intensity. -- Highlights: • We consider spherical quantum dot located at the center of a cylindrical nano-wire. • An off-center hydrogenic donor impurity is considered in the system. • Binding energy is affected by orientation of impurity and its distance from center. • Saturation depends on the orientation of impurity position. • By shifting impurity position, orientation and dot radius blue- and red-shifts appear

  19. Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 - y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4.MgSO4(aq) at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Miladinovic, J; Ninkovic, R; Todorovic, M; Rard, J A

    2007-06-06

    Isopiestic vapor pressure measurements were made for {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions with MgCl{sub 2} ionic strength fractions of y = 0, 0.1997, 0.3989, 0.5992, 0.8008, and (1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements for the mixtures cover the ionic strength range I = 0.9794 to 9.4318 mol {center_dot} kg{sup -1}. In addition, isopiestic measurements were made with NaCl(aq) as reference standard for mixtures of {l_brace}xNa{sub 2}SO{sub 4} + (1-x)MgSO{sub 4}{r_brace}(aq) with the molality fraction x = 0.50000 that correspond to solutions of the evaporite mineral bloedite (astrakanite), Na{sub 2}Mg(SO{sub 4}){sub 2} {center_dot} 4H{sub 2}O(cr). The total molalities, m{sub T} = m(Na{sub 2}SO{sub 4}) + m(MgSO{sub 4}), range from m{sub T} = 1.4479 to 4.4312 mol {center_dot} kg{sup -1} (I = 5.0677 to 15.509 mol {center_dot} kg{sup -1}), where the uppermost concentration is the highest oversaturation molality that could be achieved by isothermal evaporation of the solvent at 298.15 K. The parameters of an extended ion-interaction (Pitzer) model for MgCl2(aq) at 298.15 K, which were required for an analysis of the {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) mixture results, were evaluated up to I = 12.025 mol {center_dot} kg{sup -1} from published isopiestic data together with the six new osmotic coefficients obtained in this study. Osmotic coefficients of {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions from the present study, along with critically-assessed values from previous studies, were used to evaluate the mixing parameters of the extended ion-interaction model.

  20. Microscopic Structure of DX Centers in Cd0.8Zn0.2Te:Cl

    International Nuclear Information System (INIS)

    Shan, Y.Y.; Lynn, K.G.; Szeles, C.; Asoka-Kumar, P.; Thio, T.; Bennett, J.W.; Beling, C.B.; Fung, S.; Becla, P.

    1997-01-01

    Photoexcitation of chlorine DX centers induces a transition of the Cl atoms to the shallow-donor state and persistent photoconductivity at low temperature in Cd 0.8 Zn 0.2 Te:Cl. The relaxation of the substitutional Cl atoms to the DX state at 140K is coincident with a decrease of the positron line-shape parameter and an increase of annihilation with high-momentum core electrons. The results indicate positron trapping and annihilation at DX centers and at chlorine A centers. The data support the bond breaking model of the DX centers and the outward relaxation of the Cl and Cd(Zn) atoms along the [111] direction. The thermal barrier for the shallow-deep transition was found to be 0.44eV. copyright 1997 The American Physical Society

  1. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  2. Aurophilic Interactions in [(L)AuCl](center dot center dot center dot)[(L')AuCl] Dimers: Calibration by Experiment and Theory

    Czech Academy of Sciences Publication Activity Database

    Andris, E.; Andrikopoulos, Prokopis C.; Schulz, J.; Turek, J.; Růžička, A.; Roithová, J.; Rulíšek, Lubomír

    2018-01-01

    Roč. 140, č. 6 (2018), s. 2316-2325 ISSN 0002-7863 R&D Projects: GA ČR(CZ) GA17-24155S Institutional support: RVO:61388963 Keywords : N-heterocyclic carbenes * approximate coulomb potentials * auxiliary basis sets Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 13.858, year: 2016

  3. 1,4-Bis(4-chlorophenylseleno)-2,5-dimethoxybenzene

    DEFF Research Database (Denmark)

    Sørensen, Henning Osholm; Stuhr-Hansen, Nicolai

    2009-01-01

    The title compound, C20H16Cl2O2Se2, utilizes the symmetry of the crystallographic inversion center. Molecular chains are formed through symmetric C-H center dot center dot center dot Cl interactions around inversion centers, mimicking the commonly observed symmetric hydrogen-bonded dimer pattern...

  4. Proton production from Si+Au collisions at 14.5 A/center dot/GeV

    International Nuclear Information System (INIS)

    Sarabura, M.; Abbott, T.; Akiba, Y.

    1988-01-01

    Recent results are presented from the study of central Si+Au → p+X, Si+Au → π/sup +-/+X, and Si+Cu → p+X at 14.5 A/center dot/GeV. The distribution of protons in rapidity indicates that many target protons are found above 0.5 units. The variation of the slope parameter in rapidity is consistent with a thermal source of protons at the geometric center-of-mass rapidity. 4 refs., 4 figs

  5. Dependence of {beta} {center_dot} {tau} on plasma shape in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, E.A. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    In this paper we discuss the observed variation in plasma performance with plasma shape, in particular, we shall compare single and double null diverted plasmas. The product {beta} {center_dot} {tau} has been used as a figure-of-merit for comparing different toroidal magnetic configurations. Here we shall use it as the figure-of-merit for comparing differing configurations within the DIII-D tokamak. (author) 5 refs., 5 figs.

  6. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Energy Technology Data Exchange (ETDEWEB)

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  7. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    International Nuclear Information System (INIS)

    Somera, L.; Cruz Z, E.; Roman L, J.; Hernandez A, J. M.; Murrieta S, H.

    2015-10-01

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl 2 ) impurity were grown by using the Czochralski method. The emission characteristic of Mn 2+ was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from 60 Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  8. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Somera, L.; Cruz Z, E.; Roman L, J. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Hernandez A, J. M.; Murrieta S, H., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2015-10-15

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl{sub 2}) impurity were grown by using the Czochralski method. The emission characteristic of Mn{sup 2+} was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from {sup 60}Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  9. Thermal decomposition of Cu(NO{sub 3}){sub 2}{center_dot}3H{sub 2}O at reduced pressures

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, I.V.; Znamenkov, K.O.; Korenev, Yu.M.; Shlyakhtin, O.A

    2003-07-28

    Thermolysis of Cu(NO{sub 3}){sub 2}{center_dot}3H{sub 2}O is studied by means of XRD analysis in situ and mass spectral analysis of the gas phase at P=1/10 Pa at low heating rate. It is shown that stage I of the dehydration (40-80 deg. C) results in the consecutive appearance of crystalline Cu(NO{sub 3}){sub 2}{center_dot}2.5H{sub 2}O and Cu(NO{sub 3}){center_dot}H{sub 2}O. Anhydrous Cu(NO{sub 3}){sub 2} formed during further dehydration at 80-110 deg. C is moderately sublimed at 120-150 deg. C. Dehydration is accompanied by thermohydrolysis, leading to the appearance of Cu{sub 2}(OH){sub 3}NO{sub 3} and gaseous H{sub 2}O, HNO{sub 3}, NO{sub 2}, and H{sub 2}O. The higher pressure in the system, the larger amount of thermohydrolysis products is observed. The formation of the crystalline intermediate CuO{sub x}(NO{sub 3}){sub y} was observed by diffraction methods. Final product of thermolysis (CuO) is formed at 200-250 deg. C.

  10. Phase Transitions in Layered Diguanidinium Hexachlorostannate(IV)

    DEFF Research Database (Denmark)

    Szafranski, Marek; Ståhl, Kenny

    2016-01-01

    is different. The transitions involve also transformations in the networks of N-H center dot center dot center dot Cl hydrogen bonds. The large volume (similar to 3%) and entropy (similar to R ln 3) change at the transition between phases II and III, and the giant pressure coefficient of -755 K GPa(-1......Five crystalline phases of diguanidinium hexachlorostannate(IV), [C(NH2)(3)](2)SnCl6, have been identified and characterized by calorimetric and dielectric measurements, single crystal X-ray diffraction at atmospheric and high pressure, and synchrotron X-ray powder diffraction. The crystal...... structures of all phases are built of similar layers in which the tin hexachloride anions are connected to the guanidinium cations by N-H center dot center dot center dot Cl hydrogen bonds, forming a interact primarily by Coulombic forces between the ions from ap. double H-bonded sheets. The layers, neutral...

  11. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    Science.gov (United States)

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  12. Randomized study of initial treatment with radiationter dot MCNU or radiationter dot MCNUter dot interferon-. beta. for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kiya, Katsuzo; Uozumi, Tohru; Kurisu, Kaoru (Hiroshima Univ. (Japan). School of Medicine) (and others)

    1990-02-01

    The efficacy of radiation{center dot}MCNU (MR group) or radiation{center dot}MCNU{center dot}interferon-{beta} (IMR group) for malignant glioma was studied by a randomized trial at numerous medical facilities. MR group was irradiated with 50{approx}60 Gy and intravenously injected with 2 mg/kg of MCNU on the initial day of irradiation and 6 weeks later. IMR group was also given intravenous administration of interferon-{beta} at the dose of 2x10{sup 6}IU/m{sup 2} for 5 serial-days every eight weeks. There was no difference in background between the two groups. The response rate in MR group and IMR group was 44.4% (4/9) and 30.0% (3/10), respectively, showing no significant difference. The resected tumor volume before the start of these regimens seemed to correlate the response to the treatment in both groups. The major toxicity was myelosuppression, especially using MCNU with interferon-{beta}. These results indicated that this combined therapy is effective for malignant glioma, and should be executed further trials and follow up study. (author).

  13. Analytical investigation of AlCl[3]/SO[2]Cl[2] catholyte materials for secondary fuze reserve batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Paul Charles; Rodriguez, Mark Andrew; Segall, Judith M.; Malizia, Louis A., Jr.; Cherry, Brian Ray; Andrews, Nicholas L.; Clark, Nancy H.; Alam, Todd Michael; Ingersoll, David T.; Tallant, David Robert; Simpson, Regina Lynn; Boyle, Timothy J.; Garcia, Manuel Joseph

    2004-05-01

    Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a role in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2

  14. Comparison of semi-automated center-dot and fully automated endothelial cell analyses from specular microscopy images.

    Science.gov (United States)

    Maruoka, Sachiko; Nakakura, Shunsuke; Matsuo, Naoko; Yoshitomi, Kayo; Katakami, Chikako; Tabuchi, Hitoshi; Chikama, Taiichiro; Kiuchi, Yoshiaki

    2017-10-30

    To evaluate two specular microscopy analysis methods across different endothelial cell densities (ECDs). Endothelial images of one eye from each of 45 patients were taken by using three different specular microscopes (three replicates each). To determine the consistency of the center-dot method, we compared SP-6000 and SP-2000P images. CME-530 and SP-6000 images were compared to assess the consistency of the fully automated method. The SP-6000 images from the two methods were compared. Intraclass correlation coefficients (ICCs) for the three measurements were calculated, and parametric multiple comparisons tests and Bland-Altman analysis were performed. The ECD mean value was 2425 ± 883 (range 516-3707) cells/mm 2 . ICC values were > 0.9 for all three microscopes for ECD, but the coefficients of variation (CVs) were 0.3-0.6. For ECD measurements, Bland-Altman analysis revealed that the mean difference was 42 cells/mm 2 between the SP-2000P and SP-6000 for the center-dot method; 57 cells/mm 2 between the SP-6000 measurements from both methods; and -5 cells/mm 2 between the SP-6000 and CME-530 for the fully automated method (95% limits of agreement: - 201 to 284 cell/mm 2 , - 410 to 522 cells/mm 2 , and - 327 to 318 cells/mm 2 , respectively). For CV measurements, the mean differences were - 3, - 12, and 13% (95% limits of agreement - 18 to 11, - 26 to 2, and - 5 to 32%, respectively). Despite using three replicate measurements, the precision of the center-dot method with the SP-2000P and SP-6000 software was only ± 10% for ECD data and was even worse for the fully automated method. Japan Clinical Trials Register ( http://www.umin.ac.jp/ctr/index/htm9 ) number UMIN 000015236.

  15. Chemiluminescence of graphene quantum dots and its application to the determination of uric acid

    International Nuclear Information System (INIS)

    Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba

    2014-01-01

    We report on the chemiluminescence (CL) of graphene quantum dots (GQDs) induced by direct chemical oxidation. GQDs were prepared by a simple carbonization method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and Raman spectroscopy. It was found that Ce(IV) could oxidize GQDs to produce a relatively intense CL emission. The mechanism of CL generation was investigated based on the fluorescence and CL emission spectra. It was attributed to the radiative recombination of oxidant-injected holes and thermally excited electrons in the GQDs. In order to show the analytical application potential of GQDs-Ce(IV) CL system, it was applied to the determination of uric acid. Under the optimized conditions, the proposed CL system exhibited excellent analytical performance for determination of uric acid in the range of 1.0×10 −6 M–5.0×10 −4 M with a limit of detection of 5.0×10 −7 M. The method was applied to the determination of uric acid in human plasma and urine samples, with satisfactory results. - Highlights: • Chemiluminescence of graphene quantum dots by direct oxidation was studied. • Intense CL is produced by reaction of graphene quantum dots with Ce(IV). • The new CL system was applied to determination of uric acid in plasma and urine

  16. Chemiluminescence of graphene quantum dots and its application to the determination of uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, Mohammad, E-mail: amjadi@tabrizu.ac.ir; Manzoori, Jamshid L.; Hallaj, Tooba

    2014-09-15

    We report on the chemiluminescence (CL) of graphene quantum dots (GQDs) induced by direct chemical oxidation. GQDs were prepared by a simple carbonization method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and Raman spectroscopy. It was found that Ce(IV) could oxidize GQDs to produce a relatively intense CL emission. The mechanism of CL generation was investigated based on the fluorescence and CL emission spectra. It was attributed to the radiative recombination of oxidant-injected holes and thermally excited electrons in the GQDs. In order to show the analytical application potential of GQDs-Ce(IV) CL system, it was applied to the determination of uric acid. Under the optimized conditions, the proposed CL system exhibited excellent analytical performance for determination of uric acid in the range of 1.0×10{sup −6} M–5.0×10{sup −4} M with a limit of detection of 5.0×10{sup −7} M. The method was applied to the determination of uric acid in human plasma and urine samples, with satisfactory results. - Highlights: • Chemiluminescence of graphene quantum dots by direct oxidation was studied. • Intense CL is produced by reaction of graphene quantum dots with Ce(IV). • The new CL system was applied to determination of uric acid in plasma and urine.

  17. [Analysis on workload for hospital DOTS service].

    Science.gov (United States)

    Nagata, Yoko; Urakawa, Minako; Kobayashi, Noriko; Kato, Seiya

    2014-04-01

    A directly observed treatment short course (DOTS) trial was launched in Japan in the late 1990s and targeted patients with social depression at urban areas. Based on these findings, the Ministry of Health, Labour and Welfare established the Japanese DOTS Strategy in 2003, which is a comprehensive support service ensuring the adherence of tuberculosis patients to drug administration. DOTS services are initially provided at the hospital to patients with infectious tuberculosis who are hospitalized according to the Infectious Diseases Control Law. After being discharged from the hospital, the patients are referred to a public health center. However, a survey conducted in 2008 indicated that all the patients do not receive appropriate DOTS services at some hospitals. In the present study, we aimed to evaluate the protocols and workload of DOTS at hospitals that are actively involved in tuberculosis medical practice, including DOTS, to assess whether the hospital DOTS services were adequate. We reviewed a series of articles on hospital DOTS from a Japanese journal on nursing for tuberculosis patients and identified 25 activities regarding the hospital DOTS service. These 25 items were then classified into 3 categories: health education to patients, support for adherence, and coordination with the health center. In total, 20 hospitals that had > 20 authorized tuberculosis beds were selected--while considering the geographical balance, schedule of this survey, etc.--from 33 hospitals where an ex-trainee of the tuberculosis control expert training program in the Research Institute of Tuberculosis (RIT) was working and 20 hospitals that had collaborated with our previous survey on tuberculosis medical facilities. All the staff associated with the DOTS service were asked to record the total working time as well as the time spent for each activity. The data were collected and analyzed at the RIT. The working times for each activity of the DOTS service for nurses, pharmacists

  18. Radiation induced color center and colloid formation in synthetic NaCl and natural rock salt

    International Nuclear Information System (INIS)

    Levy, P.W.; Swyler, K.J.; Klaffky, R.W.

    1979-01-01

    F-center and colloid particle formation has been studied in synthetic NaCl and natural rock salt crystals with apparatus for making optical absorption measurements during irradiation. F-center and colloid formation are functions of temperature, dose, dose rate, strain applied prior to irradiation and numerous other factors. Many of the observed properties are in accord with the Jain-Lidiard theory for radiation induced F-center and colloid growth above room temperature

  19. Two-center three-electron bonding in ClNH{sub 3} revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH{sub 3} → ClNH{sub 2} + H reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Christopher P.; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 (United States); Xie, Changjian; Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Kaufmann, Matin [Department of Physical Chemistry II, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-04-28

    Pyrolytic dissociation of Cl{sub 2} is employed to dope helium droplets with single Cl atoms. Sequential addition of NH{sub 3} to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH{sub 3} → ClNH{sub 2} + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C{sub 3v} symmetric top. Frequency shifts from NH{sub 3} and dipole moment measurements are consistent with a ClNH{sub 3} complex containing a relatively strong two-center three-electron (2c–3e) bond. The nature of the 2c–3e bonding in ClNH{sub 3} is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH{sub 3}Cl and Cl–HNH{sub 2}, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH{sub 3} → HCl + NH{sub 2}.

  20. A novel chemiluminescence method for determination of bisphenol Abased on the carbon dot-enhanced HCO3−–H2O2 system

    International Nuclear Information System (INIS)

    Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba

    2015-01-01

    A simple and sensitive chemiluminescence (CL) method on the basis of carbon dot (C-dot) enhanced HCO 3 − –H 2 O 2 system, is designed for the determination of bisphenol A (BPA). The very weak CL of the HCO 3 − –H 2 O 2 system is enhanced by a factor of ∼100 in the presence of C-dots. Possible mechanisms that lead to the effect were elucidated by recording fluorescence and CL spectra and studying the effect of some radical scavengers. This enhancement is inhibited by BPA in the concentration range from 1.0 to 100 µg L −1 . This is exploited for its trace determination with a detection limit (3 s) of 0.3 µg L −1 . The established method was applied to the determination of BPA in baby bottle and water samples with satisfactory results. - Highlights: • The effect of carbon dots on HCO 3 − –H 2 O 2 chemiluminescence reaction is studied. • Carbon dots greatly enhance the CL signal of this reaction (∼100 fold). • The new CL system was applied to determination of bisphenol A in real samples

  1. Development of 9Al2O3{center_dot}2B2O3 whiskers reinforced piston by squeeze casting. Manufacturing process and characteristics of whiskers preform; Squeeze cast ho ni yoru 9Al2O3{center_dot}2B2O3 whisker kyoka piston no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, T; Suzuki, M; Takahashi, M; Takada, I; Toda, M [Suzuki Motor Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The properties of 9Al2O3 {center_dot} 2B2O3 whisker reinforced aluminum alloy is excellent compared with conventional material at elevated temperatures. 9Al2O3 {center_dot} 2B2O3 whisker reinforced aluminum alloy was applied to the piston head of two cycle engines. This piston was produced by a squeeze casting process with the granulated whiskers preform which was infiltrated by a molten aluminum alloy under high pressure. Since the permeability of the granulated whiskers preform is larger than that of the uniform preform in which whiskers are distributed randomly and uniformly, it became possible to suppress the preform deformation using the developed preform. 7 refs., 8 figs., 2 tabs.

  2. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Banavoth, Murali; Sarmah, Smritakshi P.; Yuan, Mingjian; Sinatra, Lutfan; AlYami, Noktan; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N.; Mohammed, Omar F.; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H.; Bakr, Osman

    2016-01-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  3. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  4. Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures

    International Nuclear Information System (INIS)

    Birman, Joseph L.; Huong, Nguyen Que

    2007-01-01

    The formation of a hybridization state of Wannier Mott exciton and Frenkel exciton in different hetero-structure configurations involving quantum dots is investigated. The hybrid excitons exist at the interfaces of the semiconductors quantum dots and the organic medium, having unique properties and a large optical non-linearity. The coupling at resonance is very strong and tunable by changing the parameters of the systems (dot radius, dot-dot distance, generation of the organic dendrites and the materials of the system etc...). Different semiconductor quantum dot-organic material combination systems have been considered such as a semiconductor quantum dot lattice embedded in an organic host, a semiconductor quantum dot at the center of an organic dendrite, a semiconductor quantum dot coated by an organic shell

  5. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    Science.gov (United States)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  6. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Science.gov (United States)

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  7. Origin of the ESR spectrum in the Prussian blue analog RbMn[Fe(CN)(6)]center dot H2O

    NARCIS (Netherlands)

    Antal, A.; Janossy, A.; Forro, L.; Vertelman, E. J. M.; van Koningsbruggen, P. J.; van Loosdrecht, P. H. M.

    2010-01-01

    We present an electron spin resonance (ESR) study at excitation frequencies of 9.4 and 222.4 GHz of powders and single crystals of a Prussian blue analog (PBA), RbMn[Fe(CN)(6)]center dot H2O in which Fe and Mn undergoes a charge-transfer transition between 175 and 300 K. The ESR of PBA powders, also

  8. Alternative Fuels Data Center: Connecting Dots and Bridging Gaps:

    Science.gov (United States)

    access to fueling stations, AFV corridor signage on highways increases public awareness. Intra-State of 55 designated corridors covers 35 states. DOT categorized corridors as "signage ready," ; or "signage pending." Corridors are designated "signage ready" if there are

  9. Gunn's dots in retinal images of 2,286 adolescents

    DEFF Research Database (Denmark)

    Boberg-Ans, Lars C.; Munch, Inger C.; Larsen, Michael

    2017-01-01

    a 6 mm grid centered on the optic disc. Results: One or more Gunn's dots were seen in at least one eye in 82.6% of children. The median number of Gunn's dots per eye was 46 (range 0-482). Most Gunn's dots were found inferior and superior of the optic disc (49.3% and 45.8%, respectively, of the total...... number of Gunn's dots in the population). The odds for having 1 or more Gunn's dots were 3-fold greater in children with dark brown irides compared with children with blue irides (odds ratio 2.99, 95% CI 1.81 to 4.94, P, 0.0001 adjusted for age, sex, retinal nerve fiber layer thickness, refraction...

  10. Stark shift and photoionization cross section of on-center and off-center donor impurity in a core/shell ellipsoidal quantum dot

    Science.gov (United States)

    Shi, L.; Yan, Z. W.

    2018-04-01

    Within the framework of the effective-mass approximation and by using a variational method, the Stark shift of on-center and off-center donor impurity binding energies and photoionization cross section under a z-direction electric field in a prolate (oblate) core/shell ellipsoidal quantum dot has been studied. We have calculated the Stark shift as a function of the core and shell sizes and shapes, electric field, and impurity position. We also discuss the photoionization cross section as a function of photon energy with different core and shell sizes and shapes, electric field strengths, and impurity positions. The results show that the Stark shift depends strongly on the impurity position, it could be positive or negative. The core and shell sizes and shapes also have a pronounce influence on the Stark shift, and the Stark shift changes with them is non-monotonic, especially when the impurity is located at the -z-axis, the situation will become complicated. In addition, the core and shell sizes and shapes, impurity position, and electric field also have an important influence on the photoionization cross section. In particular, the photoionization cross section will vanish when the impurity is located at center of spherical core with spherical or prolate shell case at zero field.

  11. A administração clássica: um estudo aplicado a centrais de atendimento (call center

    Directory of Open Access Journals (Sweden)

    Jairo Moran Carvalho Ribeiro

    2015-04-01

    Full Text Available As organizações modernas, a exemplo de operações de centrais de atendimento, ou call centers, tem atuado em diversas áreas de negócios, que pode ser do simples atendimento, como os serviços de atendimento a clientes - SAC, a grandes empresas com foco em cobrança, televendas ou operações diversas. Assim, a pesquisa buscou apresentar evidências do emprego das teorias clássicas da administração, através de estudo de casos, em dois Call Centers de empresas do Rio Grande do Sul vinculados à rede varejista de eletroeletrônicos e a distribuidora de energia elétrica. Embora, a natureza de atuação diversa entre as duas centrais analisadas, os princípios clássicos da administração se mostraram evidenciados em ambas as operações, a exemplo da racionalização do trabalho, controle das atividades, supervisão atuante, jornadas definidas, prêmios por produção, dentre outros elementos característicos dos princípios defendidos por Taylor, Fayol, Ford entre outros clássicos da administração.

  12. Photoionization cross-section of donor impurities in spherical GaAs quantum dots: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Correa, J.D.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Using a variational procedure for a hydrogenic donor-impurity we have calculated the photoionization cross-section in spherical GaAs quantum dots. We discuss the dependence on the photoionization cross-section for hydrogenic donor impurity in in nite and nite barrier quantum dots as a function of the size of the dot, impurity position, polarization of the photon, applied hydrostatic pressure, and normalized photon energy. For the nite case, calculations for the pressure effects are both in direct and indirect GaAsAl gap regime. We have considered the different transition rules that depend of the impurity position and photon polarization. Calculations are presented for impurity on-center, and o -center in the spherical quantum dots. We found that the photoionization cross-section increases with the applied hydrostatic pressure both for on-center and o - center impurities. The photoionization cross-section increases or decreases depending of the impurity position, photon polarization, and radius of dots. Also we have showed that the photoionization cross-section decreases as the normalized photon energy increases. The results we have obtained show that the photoionization cross- section is strongly a effected by the quantum dot size, and the position of the impurity. The measurement of photoionization in such systems would be of great interest in understanding the optical properties of carriers in quantum dots. (author)

  13. Wetting layers effect on InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chao [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China); Lu Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China); Yu Zhongyuan; Cao Huawei; Zhang Lidong [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China)

    2012-11-15

    FEM combining with the K{center_dot}P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%{approx}4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.

  14. Biosynthesis of luminescent quantum dots in an earthworm

    Science.gov (United States)

    Stürzenbaum, S. R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J.-S.; Taniguchi, S.; Dailey, L.-A.; Khanbeigi, R. Ahmad; Rosca, E. V.; Thanou, M.; Suhling, K.; Zayats, A. V.; Green, M.

    2013-01-01

    The synthesis of designer solid-state materials by living organisms is an emerging field in bio-nanotechnology. Key examples include the use of engineered viruses as templates for cobalt oxide (Co3O4) particles, superparamagnetic cobalt-platinum alloy nanowires and gold-cobalt oxide nanowires for photovoltaic and battery-related applications. Here, we show that the earthworm's metal detoxification pathway can be exploited to produce luminescent, water-soluble semiconductor cadmium telluride (CdTe) quantum dots that emit in the green region of the visible spectrum when excited in the ultraviolet region. Standard wild-type Lumbricus rubellus earthworms were exposed to soil spiked with CdCl2 and Na2TeO3 salts for 11 days. Luminescent quantum dots were isolated from chloragogenous tissues surrounding the gut of the worm, and were successfully used in live-cell imaging. The addition of polyethylene glycol on the surface of the quantum dots allowed for non-targeted, fluid-phase uptake by macrophage cells.

  15. [Patient-centered medicine for tuberculosis medical services].

    Science.gov (United States)

    Fujita, Akira; Narita, Tomoyo

    2012-12-01

    The 2011 edition of Specific Guiding Principles for Tuberculosis Prevention calls for a streamlined medical services system capable of providing medical care that is customized to the patient's needs. The new 21st Century Japanese version of the Directly Observed Treatment Short Course (DOTS) expands the indication of DOTS to all tuberculosis (TB) patients in need of treatment. Hospital DOTS consists of comprehensive, patient-centered support provided by a DOTS care team. For DOTS in the field, health care providers should select optimal administration support based on patient profiles and local circumstances. In accordance with medical fee revisions for 2012, basic inpatient fees have been raised and new standards for TB hospitals have been established, the result of efforts made by the Japanese Society for Tuberculosis and other associated groups. It is important that the medical care system be improved so that patients can actively engage themselves as a member of the team, for the ultimate goal of practicing patient-centered medicine. We have organized this symposium to explore the best ways for practicing patient-centered medicine in treating TB. It is our sincere hope that this symposium will lead to improved medical treatment for TB patients. 1. Providing patient-centered TB service via utilization of collaborative care pathway: Akiko MATSUOKA (Hiroshima Prefectural Tobu Public Health Center) We have been using two types of collaborative care pathway as one of the means of providing patient-centered TB services since 2008. The first is the clinical pathway, which is mainly used by TB specialist doctors to communicate with local practitioners on future treatment plan (e.g. medication and treatment duration) of patients. The clinical pathway was first piloted in Onomichi district and its use was later expanded to the whole of Hiroshima prefecture. The second is the regional care pathway, which is used to share treatment progress, test results and other

  16. A high quality and quantity hybrid perovskite quantum dots (CsPbX3, X= Cl, Br and I) powders synthesis via ionic displacement

    Science.gov (United States)

    Yin, Yuhang; Luan, Weiling; Zhang, Chengxi; Yang, Fuqian

    2017-12-01

    Recently, all-inorganic perovskites CsPbX3 (X= Cl, Br and I) quantum dots (QDs) have drawn great attentions because of their PL spectra tunable over the whole visible spectral region (400-700 nm) and adjustable bandgap, which revealed a promising potential on the field of photoelectronic devices, such as solar cells, LEDs and sensors. In this paper, CsPbX3 QDs and hybrid QDs, CsPbClxBr3-x and CsPbBrxI3-x were synthesized via one-step and two-step methods comparably. The optical bandgaps of CsPbCl3, CsPbBr3, and CsPbI3, were calculated as 3.08, 2.36, and 1.73eV, respectively, based on the Tauc’s equation and UV absorption spectra. Ionic displacement and phase transformation occurred during the mixing process were found based on the monitoring of PL spectra and HRTEM characterization. The long-term stability, dried, high quality and two-dimensional hybrid CsPbBrxI3-x QDs powders could be achieved via the two-step method. Polar solution inductions were used to wash and purify the CsPbX3 QDs, which help obtain of various compositions and well crystallize all-inorganic perovskites QDs powders.

  17. Targeting the environmental assessment of veterinary drugs with the multi-species-soil system (MS{center_dot}3) agricultural soil microcosms: the ivermectin case study

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell-Martin, G.; Pro-Gonzalez, J.; Aragones-Grunert, P.; Babib-Vich, M. M.; Fernandez-Rorija, C.; Tarazona-Lafarga, J. V.

    2011-07-01

    The environmental risk assessment of the veterinary pharmaceutical ivermectin is receiving significant attention. This paper assesses the capacity of the MS{center_dot}3 soil microcosm as a tool for targeting the environmental impact assessment of veterinary drugs, using ivermectin as model. Two screening MS{center_dot}3 were performed using different European soils; one with a soil collected in an agricultural station near to Madrid, Spain and a second with a soil collected in a farm area close to York, UK. Soils were fortified with ivermectin at the following ranges: 0.01-10 mg kg{sup -}1 and 0.1-100 mg kg{sup -}1 in the Madrid and York studies, respectively. The effects on earthworms, plants and soil microorganisms were assessed in the Madrid soil. Toxicity tests on aquatic organisms (algae, cladocerans and in vitro fish cell line RTLW1) were also conducted with the leachates. No effects were observed in earthworms and plants at any tested concentration; reduction in the respiration rate (< 5%) of soil microorganisms was detected. Earthworm/soil bioconcentration factors decreased with the increase in soil concentrations and were higher for the York soil. Effects on daphnids were observed in tested leachates; based on measured levels of ivermectin in the leachates an EC50 of about 0.5{mu}gL{sup -}1 can be estimated. Comparisons based on toxicity data and equilibrium partitioning confirmed that the main risk is expected to be related to the high sensitivity of cladocerans. The results confirm that MS{center_dot}3 systems are cost-effective tools for assessing the impact of veterinary pharmaceuticals when applied to agricultural land, as previously demonstrated for antimicrobials. (Author) 39 refs.

  18. Enhancement effect of CdTe quantum dots-IgG bioconjugates on chemiluminescence of luminol-H2O2 system

    International Nuclear Information System (INIS)

    Kanwal, Shamsa; Traore, Zoumana; Zhao Chunfang; Su Xingguang

    2010-01-01

    In this paper we developed an entirely new and highly sensitive luminol-H 2 O 2 flow injection chemiluminescence system using the enhancement effect of CdTe quantum dots-IgG bioconjugates. Immunoglobulin G (IgG) as a kind of bio-molecule was conjugated to different sized CdTe semiconductor quantum dots (QDs). Using PL spectra and CL intensity profiles, it was found that chemiluminescence resonance energy transfer (CRET) was possibly occurring between CdTe-IgG bioconjugate and luminol. Under optimum conditions, increase of IgG concentration in CdTe-IgG bioconjugate resulted enhancing effect on CL intensity of luminol-H 2 O 2 system. Moreover quenching effects on CL intensity by addition of different proteases can construct turn off biosensor for these proteases with low detection limits and wide linear range. Furthermore, the effects of various organic and inorganic species on CdTe-IgG bioconjugates enhanced luminol-H 2 O 2 CL system were also studied in this paper.

  19. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    Science.gov (United States)

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  20. Resonant electronic transport through a triple quantum-dot with Λ-type level structure under dual radiation fields

    International Nuclear Information System (INIS)

    Guan, Chun; Xing, Yunhui; Zhang, Chao; Ma, Zhongshui

    2014-01-01

    Due to quantum interference, light can transmit through dense atomic media, a phenomenon known as electromagnetically induced transparency (EIT). We propose that EIT is not limited to light transmission and there is an electronic analog where resonant transparency in charge transport in an opaque structure can be induced by electromagnetic radiation. A triple-quantum-dots system with Λ-type level structure is generally opaque due to the level in the center dot being significantly higher and therefore hopping from the left dot to the center dot is almost forbidden. We demonstrate that an electromagnetically induced electron transparency (EIET) in charge of transport can indeed occur in the Λ-type system. The direct evidence of EIET is that an electron can travel from the left dot to the right dot, while the center dot apparently becomes invisible. We analyze EIET and the related shot noise in both the zero and strong Coulomb blockade regimes. It is found that the EIET (position, height, and symmetry) can be tuned by several controllable parameters of the radiation fields, such as the Rabi frequencies and detuning frequencies. The result offers a transparency/opaque tuning technique in charge transport using interfering radiation fields

  1. Ultra-large scale synthesis of high electrochemical performance SnO{sub 2} quantum dots within 5 min at room temperature following a growth self-termination mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Hongtao, E-mail: htcui@ytu.edu.cn; Xue, Junying; Ren, Wanzhong; Wang, Minmin

    2015-10-05

    Highlights: • SnO{sub 2} quantum dots were prepared at an ultra-large scale at room temperature within 5 min. • The grinding of SnCl{sub 2}⋅2H{sub 2}O and ammonium persulphate with morpholine produces quantum dots. • The reactions were self-terminated through the rapid consumption of water. • The obtained SnO{sub 2} quantum dots own high electrochemical performance. - Abstract: SnO{sub 2} quantum dots are prepared at an ultra-large scale by a productive synthetic procedure without using any organic ligand. The grinding of solid mixture of SnCl{sub 2}⋅2H{sub 2}O and ammonium persulphate with morpholine in a mortar at room temperature produces 1.2 nm SnO{sub 2} quantum dots within 5 min. The formation of SnO{sub 2} is initiated by the reaction between tin ions and hydroxyl groups generated from hydrolysis of morpholine in the released hydrate water from SnCl{sub 2}⋅2H{sub 2}O. It is considered that as water is rapidly consumed by the hydrolysis reaction of morpholine, the growth process of particles is self-terminated immediately after their transitory period of nucleation and growth. As a result of simple procedure and high toleration to scaling up of preparation, at least 50 g of SnO{sub 2} quantum dots can be produced in one batch in our laboratory. The as prepared quantum dots present high electrochemical performance due to the effective faradaic reaction and the alternative trapping of electrons and holes.

  2. Dot-ELISA for the detection of anti-Cysticercus cellulosae antibodies in cerebrospinal fluid using a new solid phase (resin-treated polyester fabric and Cysticercus longicollis antigens Teste dot-ELISA para detecção de anticorpos anti-Cysticercus cellulosae em líquido cefalorraquiano utilizando um novo suporte (tecido de poliéster-resina e antígenos de Cysticercus longicollis

    Directory of Open Access Journals (Sweden)

    Adelaide José Vaz

    1996-12-01

    Full Text Available A dot-ELISA was developed for the detection of antibodies in CSF in the immunologic diagnosis of human neurocysticercosis, using antigen extracts of the membrane and scolex of Cysticercus cellulosae (M+S-Cc and, alternately, membrane (M and vesicular fluid (VF of Cysticercus longicollis (Cl covalently bound to a new solid phase consisting of polyester fabric treated with N-methylol-acrylamide resin (dot-RT. The test was performed at room temperature, with reduced incubation times and with no need for special care in the manipulation of the support. The sensitivity rates obtained were 95.1% for antigen Cc and 97.6% for antigen Cl. Specificity was 90.6% when Cc was used, and 96.9% and 100% when M-Cl and VF-Cl were used, respectively. No significant differences in titer were observed between tests carried out with homologous and heterologous antigens. The low cost and easy execution of the dot-RT test using antigen extracts of Cysticercus longicollis indicate the test for use in the immunodiagnosis of human neurocysticercosis.Foi desenvolvido o teste dot-ELISA para detecção de anticorpos em líquido cefalorraquiano (LCR no diagnóstico imunológico da neurocisticercose humana, utilizando antígenos de membrana e escólex de Cysticercus cellulosae (M+E-Cc e, alternativamente, membrana (M e líquido vesicular (LV de Cysticercus longicollis (Cl covalentemente ligados a um novo suporte constituído de tecido de poliéster-resina de N-metilol-acrilamida (dot-TR. O teste foi realizado à temperatura ambiente, com tempos de incubação reduzidos e sem necessidade de cuidados na manipulação do suporte. A sensibilidade obtida foi de 95,1% para o antígeno Cc e 97,6% para o Cl. A especificidade foi de 90,6% quando o antígeno Cc foi usado, e 96,9% e 100% para M-Cl e LV-Cl, respectivamente. Não foi observada diferença significativa entre os antígenos homólogo e heterólogo. O baixo custo e a fácil execução do teste dot-TR empregando extratos antig

  3. The white dot syndromes Síndromes dos pontos brancos retinianos

    Directory of Open Access Journals (Sweden)

    Raul Nunes Galvarro Vianna

    2007-06-01

    Full Text Available Several entities must be considered when a patient presents with a white dot syndrome. In most cases these can be distinguished from one another based on the appearance or distribution of the lesions, the clinical course, or patient variables such as age, sex, laterality, and functional and image examinations. In this paper we review the distinctive and shared features of the white dot syndromes, highlighting the clinical findings, diagnostic test results, proposed etiologies, treatment, and prognosis.Várias doenças devem ser consideradas quando nos deparamos com paciente com uma entidade clínica incluída no grupo das "síndromes dos pontos brancos retinianos". O diagnóstico diferencial na maioria das vezes é baseado na aparência e/ou na distribuição das lesões, no curso clínico, ou por algumas variáveis relacionadas ao paciente, tais como idade, sexo, lateralidade, bem como por meio de exames funcionais e de imagem. O presente artigo revisa os achados clínicos das doenças que fazem parte do grupo das "síndromes dos pontos brancos retinianos", enfatizando as similaridades e as diferenças entre essas entidades. Os exames complementares, bem como a etiologia, o tratamento e o prognóstico de cada uma delas são descritos e comentados.

  4. New way for determining electron energy levels in quantum dots arrays using finite difference method

    Science.gov (United States)

    Dujardin, F.; Assaid, E.; Feddi, E.

    2018-06-01

    Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.

  5. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    NARCIS (Netherlands)

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, A|info:eu-repo/dai/nl/075044986

    2017-01-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control

  6. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  7. Clustering and percolation threshold in diphase systems of random centered quantum dots of ZnSe

    International Nuclear Information System (INIS)

    Bondar', N.V.

    2009-01-01

    A characteristic feature due to the formation of a percolation phase transition of carriers has been observed in a two-phase system consisting of borosilicate glass with ZnSe quantum dots. For near-threshold quantum-dot concentrations, changes due to microscopic fluctuations of the quantum-dot density have been observed in the intensities of radiation emission bands. This phenomenon is reminiscent of critical opalescence, where similar fluctuations of the density of a pure substance arise near a phase transition. It is proposed that the dielectric mismatch between the matrix and ZnSe plays a large role in the carrier (exciton) delocalization, resulting in the appearance of a 'dielectric trap' on the interface and the formation there of surface states of excitons. The spatial overlapping of states which occurs at the critical concentration of quantum dots results in carrier tunneling and the appearance of a percolation transition in such a system

  8. Interaction of different poisons with MgCl{sub 2}/TiCl{sub 4} based Ziegler-Natta catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bahri-Laleh, Naeimeh, E-mail: n.bahri@ippi.ac.ir

    2016-08-30

    Highlights: • The interactions between different classes of poison molecules and TiCl{sub 4}/MgCl{sub 2} type Ziegler-Natta catalyst is considered. • Poisons strongly stabilize MgCl{sub 2} crystal surfaces, mostly Ti active center relative to the unpoisoned solid. • Poison molecules decrease catalyst activity by increasing E{sub TS} in olefin polymerization. • Poison molecules do not have significant effect in stereospecifity of ZN catalysts in propylene polymerization. - Abstract: Adsorption of different poison molecules on activated MgCl{sub 2} is investigated within DFT using a cluster model of the MgCl{sub 2} surface with (MgCl{sub 2}){sub 16} formula containing four 4-coordinated and eight 5-coordinated Mg atoms as (110) and (104) surfaces, respectively. Studied poison molecules are chosen as possible impurities in hydrocarbon solvents and monomer feeds and contain water, hydrogensulfide, carbondioxide, molecular oxygen and methanol. First, adsorption of 1–4 molecules of different poisons to the (104) and (110) lateral cuts of MgCl{sub 2}, as well as their adsorption on [MgCl{sub 2}]/TiCl{sub 2}Et active center and AlEt{sub 3} cocatalyst is considered. Results reveal that poisons strongly stabilize both crystal surfaces, mostly Ti active center relative to the unpoisoned solid. Second, energy barrier (E{sub TS}) for ethylene insertion in the presence of different poisons located on the first and second Mg atom relative to the active Ti is calculated. While poison molecule located on the second Mg does not change E{sub TS}, coordination of it into the first Mg atom increases E{sub TS} by 0.9–1.2 kcal mol{sup −1}. In the last part of this manuscript, the stereoselective behavior of active Ti species, with and without poison molecules and external electron donor, is fully explored.

  9. Assembly of CdS Quantum Dots onto Hierarchical TiO2 Structure for Quantum Dots Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Syed Mansoor Ali

    2015-05-01

    Full Text Available Quantum dot (QD sensitized solar cells based on Hierarchical TiO2 structure (HTS consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate is fabricated. The hierarchical TiO2 structure consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate synthesized by hydrothermal route. The CdS quantum dots were grown by the successive ionic layer adsorption and reaction deposition method. The quantum dot sensitized solar cell based on the hierarchical TiO2 structure shows a current density JSC = 1.44 mA, VOC = 0.46 V, FF = 0.42 and η = 0.27%. The QD provide a high surface area and nano-urchins offer a highway for fast charge collection and multiple scattering centers within the photoelectrode.

  10. Effect of water chemistry on the aggregation and photoluminescence behavior of carbon dots.

    Science.gov (United States)

    Bayati, Mohamed; Dai, Jingjing; Zambrana, Austin; Rees, Chloe; Fidalgo de Cortalezzi, Maria

    2018-03-01

    Carbon dots are rapidly emerging carbon-based nanomaterials that, due to their growing applications, will inevitable find their way to natural waters; however, their environmental fate is mostly unknown. Carbon dots with different surface functionality were fabricated and characterized by TEM and FT-IR. Their surface charge, given by the zeta potential, and their hydrodynamic diameter in suspension were investigated under a variety of environmentally relevant conditions. The effect of ionic strength was studied in the presence of monovalent (NaCl) and divalent (CaCl 2 ) cations, for pH levels from 3 to 11; humic acid was used as a model for dissolved natural organic matter. Total potential energies of interactions were modeled by classical DLVO theory. The experimental results showed that water chemistry altered the surface charge of the nanomaterials, but their hydrodynamic size could not be correlated to those changes. Evidence of specific interactions was found for the amino functionalized particles in most cases, as well as the plain carbon dots in the presence of Ca 2+ and humic acid. Nanoparticles remained largely stable in suspension, with some exception at the highest ionic strength considered. DLVO theory did not adequately capture the aggregation behavior of the system. Moreover, cation and/or humic acid adsorption negatively affected the emission intensity of the particles, suggesting limitations to their use in natural water sensing applications. The particular stability shown by the carbon dots results in exposure to organisms in the water column and the possibility of contamination transported to significant distances from their source. Copyright © 2017. Published by Elsevier B.V.

  11. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    KAUST Repository

    Atiqullah, Muhammad

    2013-08-12

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  12. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    KAUST Repository

    Atiqullah, Muhammad; Anantawaraskul, Siripon; Emwas, Abdul-Hamid M.; Al-Harthi, Mamdouh Ahmed; Hussain, Ikram; Ul-Hamid, Anwar; Hossaen, Anwar

    2013-01-01

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  13. Short term inhalation toxicity of a liquid aerosol of glutaraldehyde-coated CdS/Cd(OH)2 core shell quantum dots in rats.

    Science.gov (United States)

    Ma-Hock, L; Farias, P M A; Hofmann, T; Andrade, A C D S; Silva, J N; Arnaud, T M S; Wohlleben, W; Strauss, V; Treumann, S; Chaves, C R; Gröters, S; Landsiedel, R; van Ravenzwaay, B

    2014-02-10

    Quantum dots exhibit extraordinary optical and mechanical properties, and the number of their applications is increasing. In order to investigate a possible effect of coating on the inhalation toxicity of previously tested non-coated CdS/Cd(OH)2 quantum dots and translocation of these very small particles from the lungs, rats were exposed to coated quantum dots or CdCl2 aerosol (since Cd(2+) was present as impurity), 6h/d for 5 consecutive days. Cd content was determined in organs and excreta after the end of exposure and three weeks thereafter. Toxicity was determined by examination of broncho-alveolar lavage fluid and microscopic evaluation of the entire respiratory tract. There was no evidence for translocation of particles from the respiratory tract. Evidence of a minimal inflammatory process was observed by examination of broncho-alveolar lavage fluid. Microscopically, minimal to mild epithelial alteration was seen in the larynx. The effects observed with coated quantum dots, non-coated quantum dots and CdCl2 were comparable, indicating that quantum dots elicited no significant effects beyond the toxicity of the Cd(2+) ion itself. Compared to other compounds with larger particle size tested at similarly low concentrations, quantum dots caused much less pronounced toxicological effects. Therefore, the present data show that small particle sizes with corresponding high surfaces are not the only factor triggering the toxic response or translocation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Remanence coercivity of dot arrays of hcp-CoPt perpendicular films

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuzuka, K; Shimatsu, T; Aoi, H [Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577 (Japan); Kikuchi, N; Okamoto, S; Kitakami, O, E-mail: shimatsu@riec.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 (Japan)

    2010-01-01

    The remanence coercivity, H{sub r}, of hcp-CoPt dot arrays with various dot thicknesses, {delta}, (3 and 10 nm) and Pt content (20-30at%) were experimentally investigated as a function of the dot diameter, D(30-400 nm). All dot arrays showed a single domain state, even after removal of an applied field equal to H{sub r}. The angular dependence of H{sub r} for the dot arrays indicated coherent rotation of the magnetization during nucleation. H{sub r} increased as Ddecreased in all series of dot arrays with various {delta} and Pt content. Assuming that the nucleation field of a dot is determined by the switching field of a grain having the smallest switching field, we calculated the value of nucleation field H{sub n}{sup cal} taking account of the c-axis distribution and the distribution of the demagnetizing field in the dot. The values of H{sub r} obtained experimentally are in good agreement with those of H{sub n}{sup cal}, taking account of thermal agitation of magnetization. This result suggested that the reversal process of hcp-CoPt dot arrays starts from a nucleation at the center of the dot followed by a propagation process.

  15. Controllable synthesis, growth mechanism and optical properties of the ZnSe quantum dots and nanoparticles with different crystalline phases

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Bo [Key Laboratory of Excited State Physics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern Nan-Hu Road, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Yang, Jinghai, E-mail: jhyang1@jlnu.edu.cn [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Cao, Jian; Yang, Lili; Gao, Ming; Wei, Maobin; Liu, Yang [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Song, Hang [Key Laboratory of Excited State Physics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern Nan-Hu Road, Changchun 130033 (China)

    2013-03-15

    Graphical abstract: The ZnSe quantum dots (3.5 nm) with the wurtzite structure exhibited a strong near band-edge emission (NBE) peak centered at 422 nm. The zinc blende ZnSe nanoparticles (21 nm) exhibited near-band-edge luminescence peak centered at 472 nm. Highlights: ► The results of TEM showed that the ZnSe quantum dots were about 3.5 nm. ► The ZnSe quantum dots exhibited a near band-edge emission peak centered at 422 nm. ► The ZnSe nanoparticles exhibited near-band-edge luminescence peak centered at 472 nm. - Abstract: ZnSe precursors were prepared by a solvothermal method at 180 °C without any surface-active agents. ZnSe quantum dots and nanoparticles were obtained by annealing the precursors at 300 °C for 2 h in argon atmosphere. The ZnSe quantum dots were about 3.5 nm, while the ZnSe nanoparticles were about 21 nm, as observed using TEM. The growth mechanisms for the two samples were discussed; this proved that the high coordination ability of ethylenediamine to zinc played an important role in the final phase of the products. The ZnSe quantum dots with the wurtzite structure exhibited a strong near band-edge emission (NBE) peak centered at 422 nm, which was blue-shifted in comparison to that of the bulk ZnSe, which was mainly caused by the quantum confinement effect. However, the zinc blende ZnSe nanoparticles exhibited a near-band-edge luminescence peak centered at 472 nm.

  16. Featured Image: Bright Dots in a Sunspot

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  17. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH3

    International Nuclear Information System (INIS)

    Tsai, Y.-L.; Gong, J.-R.; Lin, T.-Y.; Lin, H.-Y.; Chen, Yang-Fang; Lin, K.-M.

    2006-01-01

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH 3 ) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH 3 exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements

  18. Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.

  19. Determination of ethanol using permanganate-CdS quantum dot chemiluminescence system.

    Science.gov (United States)

    Abolhasani, Jafar; Hassanzadeh, Javad

    2015-08-01

    A novel and highly sensitive chemiluminescence (CL) method for the determination of ethanol was developed based on the CdS quantum dots (QDs)-permanganate system. It was found that KMnO4 could directly oxidize CdS QDs in acidic media resulting in relatively high CL emission. A possible mechanism was proposed for this reaction based on UV/Vis absorption, fluorescence and the generated CL emission spectra. However, it was observed that ethanol had a remarkable inhibition effect on this system. This effect was exploited in the determination of ethanol within the concentration range 12-300 µg/L, with detection at 4.3 µg/L. In order to evaluate the capability of presented method, it was satisfactorily utilized in the determination of alcohol in real samples. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  1. Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots

    Science.gov (United States)

    El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2017-11-01

    The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.

  2. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.-L. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Gong, J.-R. [Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi 621, Taiwan (China); Lin, T.-Y. [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lin, H.-Y. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Lin, K.-M. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2006-03-15

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH{sub 3}) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH{sub 3} exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements.

  3. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Directory of Open Access Journals (Sweden)

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  4. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  5. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  6. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul; Hugues, M.; Vézian, S.; Childs, D. T. D.; Hogg, R. A.

    2012-01-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  7. The interaction of CsCl with films of solid water

    CERN Document Server

    Borodin, A; Krischok, S; Kempter, V

    2003-01-01

    The interaction of CsCl molecules with films of solid water (three layers thick, typically), deposited on a tungsten crystal at 130 K, was studied. Metastable impact electron spectroscopy (MIES) and UPS(HeI) were applied to study the emission from Cl3p and Cs5p and the highest occupied states 1b sub 1 , 3a sub 1 and 1b sub 2 of molecular water. Below a critical stoichiometry of about CsCl centre dot nH sub 2 O with n=6 the UPS spectra are quite similar to those from chlorides solvated in liquid water in as much as the relative positions and intensities of the water and salt features are concerned; very little emission from the ionization of Cl3p and Cs5p is observed with MIES. We conclude that the CsCl molecules become solvated in the water film. As long as n>6, the water spectrum remains characteristic for condensed water; at n6, water molecules not involved directly into the hydration of the salt molecules desorb around 140 K. Around 160 K all water has disappeared from the surface. Above this temperature o...

  8. Synchrotron radiation studies on luminescence of Eu2+-doped LaCl3 microcrystals embedded in a NaCl matrix

    International Nuclear Information System (INIS)

    Savchyn, P.V.; Vistovskyy, V.V.; Pushak, A.S.; Voloshinovskii, A.S.; Gektin, A.V.; Pankratov, V.; Popov, A.I.

    2012-01-01

    LaCl 3 :Eu 2+ microcrystals dispersed in the NaCl matrix have been obtained in the NaCl–LaCl 3 (1 mol.%)–EuCl 3 (0.1 mol.%) crystalline system. The low-temperature luminescent properties of these microcrystals have been studied upon the VUV and UV excitation by the synchrotron radiation. The spectroscopic parameters as well as decay time constants of Eu 2+ -doped LaCl 3 host have been established. The excitation mechanism of divalent europium centers through energy transfer and reabsorption is discussed.

  9. Electron transmission through coupled quantum dots in an Aharonov-Bohm ring

    International Nuclear Information System (INIS)

    Joe, Y. S.; Kim, Y. D.

    2006-01-01

    Stimulated by recent intriguing experiments with a quantum dot in an Aharonov-Bohm (AB) ring, we investigate novel resonant phenomena by studying the total transmission probability of nanoscale AB ring with embedded double quantum dots in one arm and a magnetic flux passing through the rings' center. In this system, we show an overlapping and merging of Fano resonances as the interaction parameter between the dots changes. In the strong overlapping region of Fano resonances, the transmission zeros leave the real-energy axis and move away in opposite directions in the complex-energy plane. The behavior of the Fano zero-pole resonances in the complex-energy plane as a function of the external magnetic flux is also investigated for various coupling integrals between the quantum dots in the ring.

  10. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    Science.gov (United States)

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  11. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  12. Printer model for dot-on-dot halftone screens

    Science.gov (United States)

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  13. X-ray reciprocal space mapping of GaAs.AIAs quantum wires and quantum dots

    NARCIS (Netherlands)

    Darhuber, A.A.; Koppensteiner, E.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    Periodic arrays of 150 and 175 nm-wide GaAs–AlAs quantum wires and quantum dots were investigated, fabricated by electron beam lithography, and SiCl4/O2 reactive ion etching, by means of reciprocal space mapping using triple axis x-ray diffractometry. From the x-ray data the lateral periodicity of

  14. The quantum mechanical description of the dot-dot interaction in ionic colloids

    International Nuclear Information System (INIS)

    Morais, P.C.; Qu, Fanyao

    2007-01-01

    In this study the dot-dot interaction in ionic colloids is systematically investigated by self-consistently solving the coupled Schroedinger and Poisson equations in the frame of finite difference method (FDM). In a first approximation the interacting two-dot system (dimer) is described using the picture of two coupled quantum wells. It was found that the dot-dot interaction changes the colloid characteristic by changing the hopping coefficient (t) and consequently the nanodot surface charge density (σ). The hopping coefficient and the surface charge density were investigated as a function of the dot size and dot-dot distance

  15. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    Directory of Open Access Journals (Sweden)

    Heayoung P. Yoon

    2013-06-01

    Full Text Available We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC using a thin film solar cell (n-CdS / p-CdTe. Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots, is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  16. Wetting layers effect on InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Sun Chao; Lu Pengfei; Yu Zhongyuan; Cao Huawei; Zhang Lidong

    2012-01-01

    FEM combining with the K·P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%∼4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.

  17. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  18. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    Science.gov (United States)

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sensitizing effects of ZnO quantum dots on red-emitting Pr3+-doped SiO2 phosphor

    CSIR Research Space (South Africa)

    Mbule, PS

    2012-05-01

    Full Text Available In this study, red cathodoluminescence (CL) ( emission=614 nm) was observed from Pr3+ ions in a glassy (amorphous) SiO2 host. This emission was enhanced considerably when ZnO quantum dots (QDs) were incorporated in the SiO2:Pr3+ suggesting...

  20. Nonlinear Dot Plots.

    Science.gov (United States)

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  1. Laterally coupled circular quantum dots under applied electric field

    Science.gov (United States)

    Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.

  2. Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamole, L-cysteine and glutathione

    International Nuclear Information System (INIS)

    Dong, Yajuan; Su, Ming; Chen, Peiyun; Sun, Hanwen

    2015-01-01

    Aqueous solutions of carbon dots (C-dots) were prepared by microwave-assisted thermal carbonization of poly(ethylene glycol). They were investigated by transmission electron microscopy, absorption and fluorescence spectra. It is shown that diperiodato-nicklate(IV), a strong oxidant, induces the chemiluminescence (CL) of C-dots in strongly alkaline solution without use of an additional reagent. A mechanism for this reaction is suggested. It is also found that the CL of the system is quenched by paracetamole, L-cysteine and glutathione. Under the optimized conditions, the calibration plot is linear with a correlation coefficient (r) of >0.995. The limits of detection are 90, 8, and 60 µg L -1 for paracetamole, L-cysteine, and glutathione, respectively. Spiked urine and serum samples were analyzed and gave recoveries in the range from 84.38 to 116.0 %, with an RSD of 1.2–2.7 %. (author)

  3. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    Science.gov (United States)

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  4. Quantum dots as mineral- and matrix-specific strain gages for bone biomechanical studies

    Science.gov (United States)

    Zhu, Peizhi; Xu, Jiadi; Morris, Michael; Ramamoorthy, Ayyalusamy; Sahar, Nadder; Kohn, David

    2009-02-01

    We report the use of quantum dots (Qdots) as strain gages in the study of bone biomechanics using solid state nuclear magnetic resonance (NMR) spectroscopy. We have developed solid state NMR sample cells for investigation of deformations of bone tissue components at loads up to several Mega Pascal. The size constraints of the NMR instrumentation limit the bone specimen diameter and length to be no greater than 2-3 mm and 30 mm respectively. Further, magic angle spinning (MAS) solid state NMR experiments require the use of non-metallic apparatus that can be rotated at kilohertz rates. These experimental constraints preclude the use of standard biomechanical measurement systems. In this paper we explore the use of quantum dot center of gravity measurement as a strain gage technology consistent with the constraints of solid state NMR. We use Qdots that bind calcium (625 nm emission) and collagen (705 nm emission) for measurement of strain in these components. Compressive loads are applied to a specimen in a cell through a fine pitch screw turned with a mini-torque wrench. Displacement is measured as changes in the positions of arrays of quantum dots on the surface of a specimen. Arrays are created by spotting the specimen with dilute suspensions of Qdots. Mineral labeling is achieved with 705 nm carboxylated dots and matrix labeling with 565 nm quantum dots conjugated to collagen I antibodies. After each load increment the new positions of the quantum dots are measured by fluorescence microscopy. Changes in Qdot center of gravity as a function of applied load can be measured with submicron accuracy.

  5. Longitudinal wave function control in single quantum dots with an applied magnetic field

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  6. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  7. Reassessing the role of DotF in the Legionella pneumophila type IV secretion system.

    Directory of Open Access Journals (Sweden)

    Molly C Sutherland

    Full Text Available Legionella pneumophila, the causative agent of a severe pneumonia termed Legionnaires' Disease, survives and replicates within both protozoan hosts and human alveolar macrophages. Intracellular survival is dependent upon secretion of a plethora of protein effectors that function to form a replicative vacuole, evade the endocytic pathway and subvert host immune defenses. Export of these factors requires a type IV secretion system (T4SS called Dot/Icm that is composed of twenty-seven proteins. This report focuses on the DotF protein, which was previously postulated to have several different functions, one of which centered on binding Dot/Icm substrates. In this report, we examined if DotF functions as the T4SS inner membrane receptor for Dot/Icm substrates. Although we were able to recapitulate the previously published bacterial two-hybrid interaction between DotF and several substrates, the interaction was not dependent on the Dot/Icm substrates' signal sequences as predicted for a substrate:receptor interaction. In addition, binding did not require the cytoplasmic domain of DotF, which was anticipated to be involved in recognizing substrates in the cytoplasm. Finally, inactivation of dotF did not abolish intracellular growth of L. pneumophila or translocation of substrates, two phenotypes dependent on the T4SS receptor. These data strongly suggest that DotF does not act as the major receptor for Dot/Icm substrates and therefore likely performs an accessory function within the core-transmembrane subcomplex of the L. pneumophila Dot/Icm type IV secretion system.

  8. DOT/FAA Human Factors Workshop on Aviation (6th). Transcript.

    Science.gov (United States)

    1982-05-01

    This document is a verbatim transcript of the proceedings of the DOT/FAA Sixth Human Factors Workshop on Aviation held at the Mike Monroney Aeronautical Center, Oklahoma City, Oklahoma on July 7-8, 1981. The subject of the workshop was aviation maint...

  9. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: jcorrea@udem.edu.co [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  10. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    International Nuclear Information System (INIS)

    Hoyos, Jaime H.; Correa, J.D.; Mora-Ramos, M.E.; Duque, C.A.

    2016-01-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  11. DOTS Compliance by Tuberculosis Patients in District Raipur (Chhattisgarh

    Directory of Open Access Journals (Sweden)

    Teeku Sinha

    2010-10-01

    Full Text Available Background: Compliance to therapy is one of the important factors that affect the outcome. Non-compliance to self administered multi drug tuberculosis treatment regimens is an important cause of failure of initial therapy and relapse as well as acquired drug resistance, requiring more prolonged and expensive therapy. Objective: To know the compliance of DOTS therapy in TB patients in District Raipur and to find out the reasons of non-compliance of DOTS therapy among the patients. Study Design: Cross sectional observational community based study. Study Setting: Microscopic Centers in District Raipur. Participants: 695 patients of Tuberculosis. Result: Study revealed that 65.93% patients had complied with the DOTS therapy and 33.38% were non compliant. Conclusion: Most of the reasons of non-Compliance can be averted by proper counseling of target group. Hence to achieve the goal of RNTCP, proper counseling of target group must be given top priority.

  12. Radiolabeling of NOTA and DOTA with Positron Emitting {sup 68}Ga and Investigation of In Vitro Properties

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min; Kim, Young Ju; Lee, Yun Sang; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2009-08-15

    We established radiolabeling conditions of NOTA and DOTA with a generator-produced PET radionuclide {sup 68}Ga and studied in vitro characteristics such as stability, serum protein binding, octanol/water distribution, and interference with other metal ions. Various concentrations of NOTA{center_dot}3HCl and DOTA{center_dot}4HCl were labeled with 1 mL {sup 68}GaCl{sub 3} (0.18{approx}5.75 mCi in 0.1 M HCl) in various pH. NOTA{center_dot}3HCl (0.373 mM) was labeled with {sup 68}GaCl{sub 3} (0.183{approx}0.232 mCi/0.1 M HCl 1.0 mL) in the presence of CuCl{sub 2}, FeCl{sub 2}, InCl{sub 3}, FeCl{sub 3}, GaCl{sub 3}, MgCl{sub 2} or CaCl{sub 2} (0{approx}6.07 mM) at room temperature. The labeling efficiencies of {sup 68}Ga-NOTA and {sup 68}Ga-DOTA were checked by ITLC-SG using acetone or saline as mobile phase. Stabilities, protein bindings, and octanol distribution coefficients of the labeled compounds also were investigated. {sup 68}Ga-NOTA and {sup 68}Ga-DOTA were labeled optimally at pH 6.5 and pH 3.5, respectively, and the chelates were stable for 4 hr either in the reaction mixture at room temperature or in the human serum at 37 .deg. C. NOTA was labeled at room temperature while DOTA required heating for labeling. {sup 68}Ga-NOTA labeling efficiency was reduced by CuCl{sub 2}, FeCl{sub 2}, InCl{sub 2}, FeCl{sub 3} or GaCl{sub 3}, however, was not influenced by MgCl{sub 2} or CaCl{sub 2}. The protein binding was low (2.04{approx}3.32%). Log P value of {sup 68}Ga-NOTA was -3.07 indicating high hydrophilicity. We found that NOTA is a better bifunctional chelating agent than DOTA for {sup 68}Ga labeling. Although, {sup 68}Ga-NOTA labeling is interfered by various metal ions, it shows high stability and low serum protein binding.

  13. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    International Nuclear Information System (INIS)

    Depondt, Ph.; Levy, J.-C.S.

    2011-01-01

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  14. Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Sithole, J. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Ngom, B.D., E-mail: bdngom@tlabs.ac.za [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa) and African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Laboratoire de Photonique et de Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux, Departement de Physique Facultes des Sciences et Technique Universite Cheikh Anta Diop de Dakar, Dakar (Senegal); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Manikanadan, E. [National Centre for Nano-Structured Materials (NCNSM), Council for Scientific and Industrial Research, Pretoria (South Africa); Manyala, N. [Department of Physics, SARCHI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0028 (South Africa); Saboungi, M.L. [Centre de Recherche sur la Matiere Divisee, CNRS-Orleans, Orleans (France); Knoessen, D. [Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Nemutudi, R.; Maaza, M. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa)

    2012-08-01

    In this work, the new refined mineral platelets-like morphology of simonkolleite based particles described by Shemetzer et al. (1985) were synthesized in zinc nitrate aqueous solution by a moderate solution process. The morphological and structural properties of the platelets-like Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O were characterized by scanning electron microscope energy dispersed X-ray spectroscopy, transmission electron microscope, powder X-ray diffraction and selected area electron diffraction as well as attenuated total reflection infrared spectroscopy. The morphology as well as the size in both basal and transversal directions of the simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano/micro crystals was found to be significantly depending on the specific concentration of 0.1 M of Zn{sup 2+}/Cl{sup -} ions in the precursor solution. The simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano-platelets revealed a significant and singular H{sub 2} gas sensing characteristics. The operating temperature was found to play a key role on the sensing properties of simonkolleite. The effect of temperature on the simonkolleite sample as a hydrogen gas sensor was studied by recording the change in resistivity of the film in presence of the test gas. The results on the sensitivity and response time as per comparison to earlier reported ZnO based sensors are indicated and discussed.

  15. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection.

    Science.gov (United States)

    Galyean, A A; Behr, M R; Cash, K J

    2018-01-21

    Nanosensors present a biological monitoring method that is biocompatible, reversible, and nano-scale, and they offer many advantages over traditional organic indicators. Typical ionophore-based nanosensors incorporate nile-blue derivative pH indicators but suffer from photobleaching while quantum dot alternatives pose a potential toxicity risk. In order to address this challenge, sodium selective nanosensors containing carbon dots and a pH-sensitive quencher molecule were developed based on an ion-exchange theory and a decoupled recognition element from the pH indicator. Carbon dots were synthesized and integrated into nanosensors containing a pH-indicator, an analyte-binding ligand (ionophore), and a charge-balancing additive. These nanosensors are ion-selective against potassium (selectivity coefficient of 0.4) and lithium (selectivity coefficient of 0.9). Reversible nanosensor response to sodium is also demonstrated. The carbon dot nanosensors are resistant to changes in optical properties for at least 12 h and display stable selectivity to physiologically-relevant sodium (alpha = 0.5 of 200 mM NaCl) for a minimum of 6 days.

  16. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    International Nuclear Information System (INIS)

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  17. Third-harmonic generation of a laser-driven quantum dot with impurity

    Science.gov (United States)

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  18. Transport in quantum dots

    International Nuclear Information System (INIS)

    Deus, Fernanda; Continetino, Mucio

    2011-01-01

    Full text. In this work we study the time dependent transport in interacting quantum dot. This is a zero-dimensional nano structure system which has quantized electronic states. In our purpose, we are interested in studying such system in a Coulomb blockade regime where a mean-field treatment of the electronic correlations are appropriate. The quantum dot is described by an Anderson type of Hamiltonian where the hybridization term arises from the contact with the leads. We consider a time dependence of both the energy of the localized state in the quantum dot and of the hybridization-like term. These time dependent parameters, under certain conditions, induce a current in the quantum dot even in the absence of difference on the chemical potential of the leads. The approach to this non-equilibrium problem requires the use of a Keldysh formalism. We calculate the non- equilibrium Green's functions and obtain results for the average (equilibrium term) and the non-equilibrium values of the electronic occupation number in the dot. we consider the possibility of a magnetic solution, with different values for the average up and down spins in the quantum dot. Our results allow to obtain, for instance, the tunneling current through the dot. The magnetic nature of the dot, for a certain range of parameters should give rise also to an induced spin current through the dot

  19. Why Is the L-Shaped Structure of X-2 center dot center dot center dot X-2 (X = F, Cl, Br, I) Complexes More Stable Than Other Structures?

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Robert; Deepa, Palanisamy; Hobza, Pavel

    2014-01-01

    Roč. 118, č. 21 (2014), s. 3846-3855 ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : distributed multipole analysis * density functional theory * consistent basis sets * correlated molecular calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.693, year: 2014

  20. The effects of inorganic surface treatments on photogenerated carrier mobility and lifetime in PbSe quantum dot thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, E.D.; Straus, Daniel B. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Gaulding, E. Ashley [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Murray, Christopher B. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kagan, Cherie R., E-mail: kagan@seas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2016-06-01

    Highlights: • Na{sub 2}Se and PbCl{sub 2} treatments modified the surface chemistry of PbSe quantum dots. • Excess Se (Pb) p-doped (n-doped) PbSe quantum dot thin films. • Carrier mobility and lifetime were studied using time-resolved microwave conductivity. • Mobility increased as the Fermi level approached the band edges. - Abstract: We used flash-photolysis, time-resolved microwave conductivity (TRMC) to probe the carrier mobility and lifetime in PbSe quantum dot (QD) thin films treated with solutions of the metal salts of Na{sub 2}Se and PbCl{sub 2}. The metal salt treatments tuned the Pb:Se stoichiometry and swept the Fermi energy throughout the QD thin film bandgap. A stoichiometric imbalance favoring excess Se heavily p-doped the QD thin film, shifted the Fermi energy toward the valence band, and yielded the highest TRMC mobility and lifetime. Introducing Pb first compensated the p-doping and shifted the Fermi level through mid-gap, decreasing the TRMC mobility. Further Pb addition created an excess of Pb, n-doped the QD thin film, moved the Fermi level to near the conduction band, and again increased the TRMC mobility. The increase in TRMC mobility as the Fermi energy was shifted toward the band edges by non-stoichiometry is consistent with the QD thin film density of states.

  1. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-01-01

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped

  2. Optical characterization of InAs quantum wells and dots grown radially on wurtzite InP nanowires

    International Nuclear Information System (INIS)

    Lindgren, David; Kawaguchi, Kenichi; Heurlin, Magnus; Borgström, Magnus T; Pistol, Mats-Erik; Samuelson, Lars; Gustafsson, Anders

    2013-01-01

    Correlated micro-photoluminescence (μPL) and cathodoluminescence (CL) measurements are reported for single core–shell InP–InAs wurtzite nanowires grown using metal–organic vapor phase epitaxy. Samples covering a radial InAs shell thickness of 1–12 ML were investigated. The effective masses for the wurtzite material were determined from the transition energy dependence of the InAs shell thickness, using a model based on linear deformation potential theory. InP cores with segments of mixed zincblende and wurtzite, on which quantum dots nucleated selectively, were also investigated. Narrow peaks were observed by μPL and the spatial origin of the emission was identified with CL imaging. (paper)

  3. Viscoelastic wormlike micelles formed by ionic liquid-type surfactant [C16imC8]Br towards template-assisted synthesis of CdS quantum dots.

    Science.gov (United States)

    Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong

    2018-01-31

    In this paper, viscoelastic wormlike micelles consisting of cationic liquid-type surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C 16 imC 8 ]Br), water and different additives were utilized for the synthesis of CdS quantum dots. First, the influence of different additives, such as [Cd(NH 3 ) 6 ]Cl 2 and ethanethioamid (precursors for the synthesis of CdS quantum dots), and temperature on the viscoelasticity of the [C 16 imC 8 ]Br aqueous solution was studied by dynamic and steady rheology. Furthermore, the synthesized CdS quantum dots and their photoluminescence properties were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). In the end, the mechanism for the synthesis of CdS quantum dots in [C 16 imC 8 ]Br wormlike micelles is proposed.

  4. Optical-absorption spectra associated with shallow donor impurities in GaAs-(Ga,Al)As quantum-dots

    International Nuclear Information System (INIS)

    Silva Valencia, J.

    1995-08-01

    The binding energy of a hydrogenic donor impurity and the optical-absorption spectra associated with transitions between the n=1 valence level and the donor-impurity band were calculated for infinite barrier-well spherical GaAs-(Ga,Al)As quantum-dots of different radii, using the effective mass approximation within a variational scheme. An absorption peak associated with transitions involving impurities at the center of the well and a peak related with impurities at the edge of the dot were the main features observed for the different radii of the dots considered in the calculations. Also as a result of the higher electronic confinement in a quantum- dot, we found a much wider energy range of the absorption spectra when compared to infinite GaAs-(Ga,Al)As quantum-wells and quantum-well wires of width and diameter comparable to the diameter of the quantum dot. (author). 13 refs, 3 figs

  5. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    Science.gov (United States)

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  6. Red-shift of the photoluminescent emission peaks of CdTe quantum dots due to the synergistic interaction with carbon quantum dot mixtures

    International Nuclear Information System (INIS)

    Pelayo, E; Zazueta, A; López-Delgado, R; Ayón, A; Saucedo, E; Ruelas, R

    2016-01-01

    We report the relatively large red-shift effect observed in down-shifting carbon quantum dots (CQDs) that is anticipated to have a positive impact on the power conversion efficiency of solar cells. Specifically, with an excitation wavelength of 390 nm, CQDs of different sizes, exhibited down-shifted emission peaks centered around 425 nm. However, a solution comprised of a mixture of CQDs of different sizes, was observed to have an emission peak red-shifted to 515 nm. The effect could arise when larger carbon quantum dots capture the photons emitted by their smaller counterparts followed by the subsequent re-emission at longer wavelengths. Furthermore, the red-shift effect was also observed in CdTe QDs when added to a solution with the aforementioned mixture of Carbon QDs. Thus, whereas a solution solely comprised of a collection of CdTe QDs of different sizes, exhibited a down-shifted photoluminescence centered around 555 nm, the peak was observed to be further red-shifted to 580 nm when combined with the solution of CQDs of different sizes. The quantum dot characterization included crystal structure analysis as well as photon absorption and photoluminescence wavelengths. Subsequently, the synthesized QDs were dispersed in a polymeric layer of poly-methyl-methacrylate (PMMA) and incorporated on functional and previously characterized solar cells, to quantify their influence in the electrical performance of the photovoltaic structures. We discuss the synthesis and characterization of the produced Carbon and CdTe QDs, as well as the observed improvement in the power conversion efficiency of the fabricated photovoltaic devices. (paper)

  7. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza

    2014-01-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10 −6 to 2.59 × 10 −5 M with a detection limit of 1.70 × 10 −7 M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl − , Br − , F − , I − , IO 3 − , ClO 4 − , BrO 3 − , CO 3 2− , NO 2 − , NO 3 − , SO 4 2− , S 2 O 4 2− , C 2 O 4 2− , SCN − , N 3 − , citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN − by fluorescence quenching

  8. Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures

    DEFF Research Database (Denmark)

    Barettin, D.; Houmark-Nielsen, Jakob; Lassen, B.

    2009-01-01

    comparing four different k center dot p band-structure models. In addition to the separation of the heavy and light holes due to the biaxial-strain component, we observe a general reduction in the transition strengths due to energy crossings in the valence bands caused by strain and band-mixing effects. We......Using multiband k center dot p theory we study the size and geometry dependence on the slow light properties of conical semiconductor quantum dots. We find the V-type scheme for electromagnetically induced transparency (EIT) to be most favorable and identify an optimal height and size for efficient...... EIT operation. In case of the ladder scheme, the existence of additional dipole allowed intraband transitions along with an almost equidistant energy-level spacing adds additional decay pathways, which significantly impairs the EIT effect. We further study the influence of strain and band mixing...

  9. DOT's CAFE rulemaking analysis.

    Science.gov (United States)

    2013-02-13

    Presentation discusses what DOT needs to consider in setting CAFE standards. How DOT's use of the CAFE Compliance and Effects Modeling System helps to analyze potential CAFE Standards. How DOT might approach the next round of CAFE standards for model...

  10. Stimulated emission and lasing from all-inorganic perovskite quantum dots

    Science.gov (United States)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Haibo, Zeng

    We present superior optical gain and lasing properties in a new class of emerging quantum materials, the colloidal all-inorganic cesium lead halide perovskite quantum dots (IPQDs) (CsPbX3, X = Cl, Br, I). Our result has indicated that such material system show combined merits of both colloidal quantum dots and halide perovskites. Low-threshold and ultrastable stimulated emission was demonstrated under atmospheric condition. The flexibility and advantageous optical gain properties of these CsPbX3 IPQDs were manifested by demonstration of an optically pumped micro-laser. The nonlinear optical properties including the multi-photon absorption and resultant photoluminescence of the CsPbX3 nanocrystals were investigated. A large two-photon absorption cross-section of up to ~1.2×105 GM is determined from 9 nm-sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin films of close-packed CsPbBr3 nanocrystals. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal IPQD.

  11. Effect of tunneling injection on the modulation response of quantum dot lasers

    Directory of Open Access Journals (Sweden)

    Y. Yekta kiya

    2014-03-01

    Full Text Available In this paper, modulation bandwidth characteristics of InGaAs/GaAs quantum dot (QD laser were theoretically investigated. Simulation was done by using the fourth order Runge-Kutta method. Effect of carrier relaxation life time, temperature and current density on characteristics of tunneling injection QD laser (TIL and conventional QD laser (CL were analyzed. Results showed that tunneling injection in QD laser increases the modulation bandwidth indicating that it is very useful for using in the fiber optic communication systems.

  12. Double Super-Exchange in Silicon Quantum Dots Connected by Short-Bridged Networks

    Science.gov (United States)

    Li, Huashan; Wu, Zhigang; Lusk, Mark

    2013-03-01

    Silicon quantum dots (QDs) with diameters in the range of 1-2 nm are attractive for photovoltaic applications. They absorb photons more readily, transport excitons with greater efficiency, and show greater promise in multiple-exciton generation and hot carrier collection paradigms. However, their high excitonic binding energy makes it difficult to dissociate excitons into separate charge carriers. One possible remedy is to create dot assemblies in which a second material creates a Type-II heterojunction with the dot so that exciton dissociation occurs locally. This talk will focus on such a Type-II heterojunction paradigm in which QDs are connected via covalently bonded, short-bridge molecules. For such interpenetrating networks of dots and molecules, our first principles computational investigation shows that it is possible to rapidly and efficiently separate electrons to QDs and holes to bridge units. The bridge network serves as an efficient mediator of electron superexchange between QDs while the dots themselves play the complimentary role of efficient hole superexchange mediators. Dissociation, photoluminescence and carrier transport rates will be presented for bridge networks of silicon QDs that exhibit such double superexchange. This material is based upon work supported by the Renewable Energy Materials Research Science and Engineering Center (REMRSEC) under Grant No. DMR-0820518 and Golden Energy Computing Organization (GECO).

  13. Chemically tailoring the dopant emission in manganese-doped CsPbCl{sub 3} perovskite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Das Adhikari, Samrat; Dutta, Sumit K.; Dutta, Anirban; Guria, Amit K.; Pradhan, Narayan [Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata (India)

    2017-07-17

    Doping in perovskite nanocrystals adopts different mechanistic approach in comparison to widely established doping in chalcogenide quantum dots. The fast formation of perovskites makes the dopant insertions more competitive and challenging. Introducing alkylamine hydrochloride (RNH{sub 3}Cl) as a promoting reagent, precise controlled doping of Mn{sup II} in CsPbCl{sub 3} perovskite nanocrystals is reported. Simply, by changing the amount of RNH{sub 3}Cl, the Mn incorporation and subsequent tuning in the excitonic as well as Mn d-d emission intensities are tailored. Investigations suggested that RNH{sub 3}Cl acted as the chlorinating source, controlled the size, and also helps in increasing the number of particles. This provided more opportunity for Mn ions to take part in reaction and occupied the appropriate lattice positions. Carrying out several reactions with varying reaction parameters, the doping conditions are optimized and the role of the promoting reagent for both doped and undoped systems are compared. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    Energy Technology Data Exchange (ETDEWEB)

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.

  15. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  16. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Science.gov (United States)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  17. Apparent molar heat capacities and apparent molar volumes of Pr(ClO{sub 4}){sub 3}(aq), Gd(ClO{sub 4}){sub 3}(aq), Ho(ClO{sub 4}){sub 3}(aq), and Tm(ClO{sub 4}){sub 3}(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Hakin, Andrew W. E-mail: hakin@uleth.ca; Lian Liu, Jin; Erickson, Kristy; Munoz, Julie-Vanessa

    2004-09-01

    Acidified aqueous solutions of Pr(ClO{sub 4}){sub 3}(aq), Gd(ClO{sub 4}){sub 3}(aq), Ho(ClO{sub 4}){sub 3}(aq), and Tm(ClO{sub 4}){sub 3}(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 {<=} m/(mol {center_dot} kg{sup -1}) {<=} 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal V{sub phi,2} and C{sub pphi,2} values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent

  18. Muon-induced backgrounds in the CUORICINO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, E; Arnaboldi, C; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Bloxham, T; Brofferio, C; Bryant, A; Bucci, C; Canonica, L; Capelli, S; Carbone, L; Carrettoni, M; Clemenza, M; Cremonesi, O; Creswick, R J; Domizio, S D; Dolinski, M J; Ejzak, L; Faccini, R; Farach, H A; Ferri, E; Ferroni, F; Firoini, E; Foggetta, L; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Kadel, R; Kazkaz, K; Kraft, S; Kogler, L; Kolomensky, Y G; Maiano, C; Maruyama, R H; Martinez, C; Martinez, M; Mizouni, L; Morganti, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Tomei, C; Ventura, G; Vignati, M

    2009-11-16

    To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO site and operated during 3 months of the CUORICINO experiment. From these measurements, an upper limit of 0.0021 counts/keV {center_dot} kg {center_dot} yr (95% C.L.) was obtained on the cosmic ray induced background in the neutrinoless double beta decay region of interest. The measurements were compared to Geant4 simulations, which are similar to those that will be used to estimate the backgrounds in CUORE.

  19. Cost-effectiveness of meglumine antimoniate versus miltefosine caregiver DOT for the treatment of pediatric cutaneous leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Brandon A Berger

    2017-04-01

    Full Text Available Oral miltefosine has been shown to be non-inferior to first-line, injectable meglumine antimoniate (MA for the treatment of cutaneous leishmaniasis (CL in children. Miltefosine may be administered via in-home caregiver Directly Observed Therapy (cDOT, while patients must travel to clinics to receive MA. We performed a cost-effectiveness analysis comparing miltefosine by cDOT versus MA for pediatric CL in southwest Colombia.We developed a Monte Carlo model comparing the cost-per-cure of miltefosine by cDOT compared to MA from patient, government payer, and societal perspectives (societal = sum of patient and government payer perspective costs. Drug effectiveness and adverse events were estimated from clinical trials. Healthcare utilization and costs of travel were obtained from surveys of providers and published sources. The primary outcome was cost-per-cure reported in 2015 USD. Treatment efficacy, costs, and adherence were varied in sensitivity analysis to assess robustness of results. Treatment with miltefosine resulted in substantially lower cost-per-cure from a societal and patient perspective, and slightly higher cost-per-cure from a government payer perspective compared to MA. Mean societal cost-per-cure were $531 (SD±$239 for MA and $188 (SD±$100 for miltefosine, a mean cost-per-cure difference of +$343. Mean cost-per-cure from a patient perspective were $442 (SD ±$233 for MA and $30 (SD±$16 for miltefosine, a mean difference of +$412. Mean cost-per-cure from a government perspective were $89 (SD±$55 for MA and $158 (SD±$98 for miltefosine, with a mean difference of -$69. Results were robust across a variety of assumptions in univariate and multi-way analysis.Treatment of pediatric cutaneous leishmaniasis with miltefosine via cDOT is cost saving from patient and societal perspectives, and moderately more costly from the government payer perspective compared to treatment with MA. Results were robust over a range of sensitivity

  20. Strong enhancement of the chemiluminescence of the Cu(II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose.

    Science.gov (United States)

    Hallaj, Tooba; Amjadi, Mohammad; Song, Zhenlun; Bagheri, Robabeh

    2017-12-19

    The authors report that carbon nitride quantum dots (CN QDs) exert a strong enhancing effect on the Cu(II)/H 2 O 2 chemiluminescent system. Chemiluminescence (CL) intensity is enhanced by CN QDs by a factor of ~75, while other carbon nanomaterials have a much weaker effect. The possible mechanism of the effect was evaluated by recording fluorescence and CL spectra and by examining the effect of various radical scavengers. Emitting species was found to be excited-state CN QDs that produce green CL peaking at 515 nm. The new CL system was applied to the sensitive detection of H 2 O 2 and glucose (via glucose oxidase-catalyzed formation of H 2 O 2 ) with detection limits (3σ) of 10 nM for H 2 O 2 and 100 nM for glucose. The probe was employed for glucose determination in human plasma samples with satisfactory results. Graphical abstract The effect of carbon nitride quantum dots (CN QDs) on Cu(II)-H 2 O 2 chemiluminescence reaction was studied and the new CL system was applied for sensitive detection of glucose based on the glucose oxidase (GOx)-catalyzed formation of H 2 O 2 .

  1. Thermal And Gamma-Radiation Annealing Of The Iridium-192 Recoil Species In Crystalline Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O; Recuit Thermique et par Rayonnement Gamma de l'espece {sup 192}Ir de Recul dans des Cristaux de Na{sub 2}IrCl{sub 6} * 6H{sub 2}O; 0422 0415 041f 041b 041e 0412 041e 0419 0418 0413 0410 041c 041c 0410 - 041e 0422 0416 0418 0413 041f 0420 041e 0414 0423 041a 0422 041e 0412 041e 0422 0414 0410 0427 0418 0418 0420 0418 0414 0418 042f -192 0412 041a 0420 0418 0421 0422 0410 041b 041b 0418 0427 0415 0421 041a 041e 041c Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O; Regeneracion Termica y por Irradiacion Gamma de las Especies de Retroceso del Iridio-192 en Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O Cristalino

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Rita; Herr, W. [Kernforschungsanlage Juelich, Institut fuer Kernchemie der Universitaet Koeln, Cologne, Federal Republic of Germany (Germany)

    1965-04-15

    Ii is possible to separate by means of paper electrophoresis as many as 13 different recoil compounds from Na{sub 2}IrCl{sub 6}H{sub 2}O {center_dot} 6H{sub 2}O as a result of the nuclear reaction Ir{sup 191} (n, {gamma}) Ir{sup 192}. While most of them have anionic character, two of them act as Irwz-labelled cations. These carrier-free compounds have been studied as regards their behaviour towards reducing and oxidizing agents and aging in solution. Independently the hydrolysis of the hexachloro complexes of ter- and quadrivalent iridium, which had been labelled with Cl{sup 36} and Ir{sup 192}, was investigated. A comparison between these two series of results supported by further results from neutron activation analysis enables the recoil products to be identified mostly as octahedral complexes of Ir-III containing Cl{sup -}, H{sub 2}O and OH{sup -} ligands to a different extent. Evidently the water of crystallization plays an important role in the formation of the recoil species. The thermal annealing of these products at 120 Degree-Sign C shows a rapid decrease in the yields of the aquochloro, hydroxochloro and aquohydroxochloro complexes towards formation of the mother compound with the exception of the pentachloro complex. This complex decreases only after an initial increase, indicating that it is involved as an intermediate from other accompanying products during their annealing. Gamma-radiation annealing reveals many single steps whose general trend is a transition from lesser Cl-containing species to a higher Cl content leading finally to the hexachloro complex. This shows that the annealing process consists in the re-entering of Cl atoms (or ions) into the ligand sphere with the accompanying displacement of H{sub 2}O as well as OH (OH{sup -}). (author) [French] Il est possible de separer de Na{sub 2}IrCl{sub 6}(6H{sub 2}O), au moyen de l'electrophorese sur papier, jusqu'a 13 composes de recul resultant de la reaction nucleaire {sup 191}Ir(n, {gamma

  2. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  3. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    International Nuclear Information System (INIS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal

    2016-01-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  4. 75 FR 37994 - Airworthiness Directives; Bombardier, Inc. Model CL-600-1A11 (CL-600), CL-600-2A12 (CL-601), CL...

    Science.gov (United States)

    2010-07-01

    ... provides data for replacement of the accumulators. The commenter requests that stronger language be... numbers 1004 through 1085 inclusive; (2) Bombardier, Inc. CL-600-2A12 (CL-601) airplanes, serial numbers 3001 through 3066 inclusive; and (3) Bombardier, Inc. CL-600-2B16 (CL-601-3A, CL-601-3R, and CL- 604...

  5. Contractors Road Heavy Equipment Area SWMU 055 Corrective Measures Implementation Progress Report Kennedy Space Center, Florida

    Science.gov (United States)

    Johnson, Jill W. (Compiler)

    2015-01-01

    This Corrective Measures Implementation (CMI) Progress Report documents: (i) activities conducted as part of supplemental assessment activities completed from June 2009 through November 2014; (ii) Engineering Evaluation (EE) Advanced Data Packages (ADPs); and (iii) recommendations for future activities related to corrective measures at the Site. Applicable meeting minutes are provided as Appendix A. The following EE ADPs for CRHE are included with this CMI Progress Report: center dot Supplemental Site Characterization ADP (Step 1 EE) (Appendix B) center dot Site Characterization ADP (Step 1 EE) for Hot Spot 1 (HS1) (Appendix C) center dot Remedial Alternatives Evaluation (Step 2 EE) ADP for HS1 (Appendix D) center dot Interim Measures Work Plan (Step 3 EE) ADP for HS1 (Appendix E) center dot Site Characterization ADP (Step 1 EE) ADP for Hot Spot 2 (HS2), High Concentration Plume (HCP), and Low Concentration Plume (LCP) (Appendix F) A summary of direct-push technology (DPT) and groundwater monitoring well sampling results are provided in Appendices G and H, respectively. The Interim Land Use Control Implementation Plan (LUCIP) is provided as Appendix I. Monitoring well completion reports, other applicable field forms, survey data, and analytical laboratory reports are provided as Appendices J through M, respectively, in the electronic copy of this document. Selected Site photographs are provided in Appendix N. The interim groundwater monitoring plan and document revision log are included as Appendices O and P, respectively. KSC Electronic Data Deliverable (KEDD) files are provided on the attached compact disk.

  6. Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Noor-Ul-Ain

    2016-11-01

    Full Text Available Tuning the emission energy of graphene quantum dots (GQDs and understanding the reason of tunability is essential for the GOD function in optoelectronic devices. Besides material-based challenges, the way to realize chemical doping and band gap tuning also pose a serious challenge. In this study, we tuned the emission energy of GQDs by substitutional doping using chlorine, nitrogen, boron, sodium, and potassium dopants in solution form. Photoluminescence data obtained from (Cl- and N-doped GQDs and (B-, Na-, and K-doped GQDs, respectively exhibited red- and blue-shift with respect to the photoluminescence of the undoped GQDs. X-ray photoemission spectroscopy (XPS revealed that oxygen functional groups were attached to GQDs. We qualitatively correlate red-shift of the photoluminescence with the oxygen functional groups using literature references which demonstrates that more oxygen containing groups leads to the formation of more defect states and is the reason of observed red-shift of luminescence in GQDs. Further on, time resolved photoluminescence measurements of Cl- and N-GQDs demonstrated that Cl substitution in GQDs has effective role in radiative transition whereas in N-GQDs leads to photoluminescence (PL quenching with non-radiative transition to ground state. Presumably oxidation or reduction processes cause a change of effective size and the bandgap.

  7. Effects of Supported ( n BuCp) 2 ZrCl 2 Catalyst Active-Center Distribution on Ethylene–1-Hexene Copolymer Backbone Heterogeneity and Thermal Behaviors

    KAUST Repository

    Atiqullah, Muhammad

    2013-07-10

    Two catalysts, denoted as catalyst 1 [silica/MAO/(nBuCp) 2ZrCl2] and catalyst 2 [silica/nBuSnCl 3/MAO/(nBuCp)2ZrCl2] were synthesized and subsequently used to prepare, without separate feeding of methylaluminoxane (MAO), ethylene homopolymer 1 and homopolymer 2, respectively, and ethylene-1-hexene copolymer 1 and copolymer 2, respectively. Gel permeation chromatography (GPC), Crystaf, differential scanning calorimetry (DSC) [conventional and successive self-nucleation and annealing (SSA)], and 13C nuclear magnetic resonance (NMR) polymer characterization results were used, as appropriate, to model the catalyst active-center distribution, ethylene sequence (equilibrium crystal) distribution, and lamellar thickness distribution (both continuous and discrete). Five different types of active centers were predicted in each catalyst, as corroborated by the SSA experiments and complemented by an extended X-ray absorption fine structure (EXAFS) report published in the literature. 13C NMR spectroscopy also supported this active-center multiplicity. Models combined with experiments effectively illustrated how and why the active-center distribution and the variance in the design of the supported MAO anion, having different electronic and steric effects and coordination environments, influence the concerned copolymerization mechanism and polymer properties, including inter- and intrachain compositional heterogeneity and thermal behaviors. Copolymerization occurred according to the first-order Markovian terminal model, producing fairly random copolymers with minor skewedness toward blocky character. For each copolymer, the theoretical most probable ethylene sequences, nE MPDSC-GT and n E MPNMR-Flory, as well as the weight-average lamellar thicknesses, Lwav DSC-GT and Lwav SSA DSC, were found to be comparable. To the best of our knowledge, such a match has not previously been reported. The percentage crystallinities of the homo- and copolymers increased linearly as a function of

  8. KNOWLEDGE AND MISCONCEPTIONS OF PULMONARY TUBERCULOSIS PATIENTS AT DOTS CENTRE, URBAN MEERUT.

    Directory of Open Access Journals (Sweden)

    R Bansal

    2013-06-01

    Full Text Available Background: India is the second most populated country in the world; it has more new TB cases annually than any other country. In 2008, 1.98 million were estimated to have occurred in India, of whom 0.87 million were infectious cases, thus amounting to a fifth of the global burden of TB.With the entire country geographically covered under the DOTS program, research into socioeconomic impact of TB on patients and their households is crucial for providing comprehensive patient-friendly TB services and to document the benefits of DOTS. Objective: The present study was undertaken with the following objectives: (1 To determine the socio-demographic variables of registered patients for DOTS Treatment at Urban Health Training center Meerut. (2 To assess knowledge, awareness and attitude regarding Pulmonary Tuberculosis and its treatment among the patients. Materials and Methods: A cross-sectional study of 200 TB patients was done using a pre-tested semi-quantitative questionnaire in UHTC Meerut Period of Study: During 2010-2012. Results: Knowledge and awareness regarding Pulmonary Tuberculosis in patients at DOTS centre, Urban Meerut was very poor. There is a great need to educate the people about misconceptions like food and utensils as mode of transmission. BCC using the person to person contact in community , at health center and awareness campaigns are crucial in educating the ignorance seen in our field practice area. Conclusion: Poor knowledge and misconceptions concerning tuberculosis was quite concern in the patients. TB control program will remain ineffective unless myths and fears of TB patients are addressed related to causation of tuberculosis, mode of spread, and methods of prevention.

  9. KNOWLEDGE AND MISCONCEPTIONS OF PULMONARY TUBERCULOSIS PATIENTS AT DOTS CENTRE, URBAN MEERUT.

    Directory of Open Access Journals (Sweden)

    R Bansal

    2013-08-01

    Full Text Available Background: India is the second most populated country in the world; it has more new TB cases annually than any other country. In 2008, 1.98 million were estimated to have occurred in India, of whom 0.87 million were infectious cases, thus amounting to a fifth of the global burden of TB.With the entire country geographically covered under the DOTS program, research into socioeconomic impact of TB on patients and their households is crucial for providing comprehensive patient-friendly TB services and to document the benefits of DOTS. Objective: The present study was undertaken with the following objectives: (1 To determine the socio-demographic variables of registered patients for DOTS Treatment at Urban Health Training center Meerut. (2 To assess knowledge, awareness and attitude regarding Pulmonary Tuberculosis and its treatment among the patients. Materials and Methods: A cross-sectional study of 200 TB patients was done using a pre-tested semi-quantitative questionnaire in UHTC Meerut Period of Study: During 2010-2012. Results: Knowledge and awareness regarding Pulmonary Tuberculosis in patients at DOTS centre, Urban Meerut was very poor. There is a great need to educate the people about misconceptions like food and utensils as mode of transmission. BCC using the person to person contact in community , at health center and awareness campaigns are crucial in educating the ignorance seen in our field practice area. Conclusion: Poor knowledge and misconceptions concerning tuberculosis was quite concern in the patients. TB control program will remain ineffective unless myths and fears of TB patients are addressed related to causation of tuberculosis, mode of spread, and methods of prevention.

  10. Marshall Space Flight Center Technology Investments Overview

    Science.gov (United States)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  11. Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions

    Science.gov (United States)

    Goodman, Samuel Martin

    use of cadmium telluride quantum dots as light-activated therapeutics for treating multi-drug resistant bacterial infectoins. A review of the physiological effects of cadmium chalcogenide quantum dots is first presented in Chapter 5 which provides a foundation for understanding the inherent toxicity of these materials. The phototoxic effect induced by CdTe quantum dots is then introduced in Chapter 6 showing the reduction in growth of gram-negative bacteria. Additional insight is provided in Chapter 7 which discusses the therapeutic mechanism and the oxygen-centered radical species which are formed by the application of light in aqueous media. The section closes with Chapter 8 describing efforts to improve the stability and bio-compatibility of the dots using various surface treatments, and shows that stability can be improved by the passivation of the quantum dots' anionic facets, though at the cost of overall radical generation.

  12. The interaction between d-dot's

    International Nuclear Information System (INIS)

    Hirayama, Masaki; Machida, Masahiko; Koyama, Tomio; Ishida, Takekazu; Kato, Masaru

    2005-01-01

    We investigated the interaction between two square d-dot's. The d-dot is the nano-scaled superconducting composite structure that is made of a d-wave superconducting dot embedded in the s-wave superconducting matrix. In the numerical calculation, using the finite element method, we solved the two-components Ginzburg-Landau equation self-consistently. We obtained two kinds of solutions, which can be considered as ferromagnetic and antiferromagnetic configurations, when two d-dot's are separated parallel and diagonally. Also we discuss the applicability of d-dot's as an artificial spin system where the interactions can be controlled by the fabrication

  13. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  14. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  15. Transport through overlapping states in quantum dots and double dot molecules

    International Nuclear Information System (INIS)

    Berkovits, R.

    2006-01-01

    Full Text: We shall review the transport properties of interacting quantum dots with overlapping orbitals for which the orthodox Coulomb blockade picture no longer holds. We shall concentrate on he conductance through a serial double dot structure for which the inter-dot tunneling is stronger than the tunneling to the leads. When the dots are occupied by 1 or 3 electrons the usual Kondo peak is observed. For the case in which 2 electrons occupy the molecule a singlet is formed. Nevertheless, the conductance in that case has a constant non-zero value, and might even be equal to the maximum conductance of 2e 2 /h for certain values of the molecule parameters. We show that this is the result of the subtle interplay between the symmetric and anti-symmetric orbitals of the molecule caused by interactions and interference

  16. Liquid-vapor equilibrium in LaCl3-LuCl3 and PrCl3-NdCl3 systems

    International Nuclear Information System (INIS)

    Nisel'son, L.A.; Lyzlov, Yu.N.; Solov'ev, S.I.

    1978-01-01

    The liquid-vapour equilibrium in the systems LaCl 3 -LuCl 3 and PrCl 3 -NdCl 3 was studied by the boiling-point method. It was established that the system LaCl 3 -LuCl 3 is near-ideal. In the PrCl 3 -NdCl 3 system, a considerable positive deviation from the ideal with the formation of an azeotrope was detected. The azeotrope has a ''smeared-out'' minimum, which falls on a mixture containing approximately 65 mol.% neodymium trichloride. The boiling point of this mixture at a pressure of 1 mm Hg is approximately 975 deg C. The relative volatility coefficients in both systems were studied by the Raleigh distillation method. The presence of the azeotrope in the system PrCl 3 -NdCl 3 is confirmed by the nature of the dependence of the relative volatility coefficient on the composition of the mixture

  17. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  18. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  19. Isopiestic Determination of the Osmotic and Activity Coefficients of Li2SO4(aq) at T=298.15 and 323.15 K, and Representation with an Extended Ion-Interaction (Pitzer) Model

    Energy Technology Data Exchange (ETDEWEB)

    Rard, Joseph A. [Lawrence Livermore National Laboratory (LLNL); Clegg, Simon L. [University of East Anglia, Norwich, United Kingdom; Palmer, Donald [ORNL

    2007-01-01

    Isopiestic vapor-pressure measurements were made for Li{sub 2}SO{sub 4}(aq) from 0.1069 to 2.8190 mol{center_dot}kg{sup -1} at 298.15 K, and from 0.1148 to 2.7969 mol{center_dot}kg{sup -1} at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer's ion-interaction model with an ionic-strength dependent third-virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O(cr). Solubilities of Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O(cr) at 298.15 K were assessed and the selected value of m(sat.)=3.13{+-}0.04 mol{center_dot}kg{sup -1} was used to evaluate the thermodynamic solubility product K {sub s}(Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O, cr, 298.15 K) = (2.62{+-}0.19) and a CODATA-compatible standard molar Gibbs energy of formation {Delta}{sub f} G m{sup 0}(Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O, cr, 298.15 K) = -(1564.6{+-}0.5) kJ{center_dot}mol{sup -1}.

  20. 49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false How do DOT drug and alcohol tests relate to non... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Employer Responsibilities § 40.13 How do DOT drug and... non-DOT drug and alcohol testing programs. This prohibition includes the use of the DOT forms with...

  1. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sklenářová, Hana, E-mail: sklenarova@faf.cuni.cz [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic); Voráčová, Ivona [Institute of Analytical Chemistry of the CAS, v. v. i., Brno (Czech Republic); Chocholouš, Petr; Polášek, Miroslav [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic)

    2017-04-15

    The effect of 0.01–100 µmol L{sup −1} Quantum Dots (QDs) with different emission wavelengths (520–640 nm) and different surface modifications (mercaptopropionic, mercaptoundecanoic, thioglycolic acids and mercaptoethylamine) on permanganate-induced and luminol–hydrogen peroxide chemiluminescence (CL) was studied in detail by a sequential injection technique using a spiral detection flow cell and a flow-batch detection cell operated in flow and stop-flow modes. In permanganate CL system no significant enhancement of the CL signal was observed while for the luminol–hydrogen peroxide CL substantial increase (>100% and >90% with the spiral detection cell in flow and stop-flow modes, respectively) was attained for CdTe QDs. Enhancement exceeding 120% was observed for QDs with emissions at 520, 575 and 603 nm (sizes of 2.8 nm, 3.3 nm and 3.6 nm) using the flow-batch detection cell in the stop-flow mode. Pronounced effect was noted for surface modifications while mercaptoethylamine was the most efficient in CL enhancement compared to mercaptopropionic acid the most commonly applied coating. Significant difference between results obtained in flow and flow-batch conditions based on the entire kinetics of the extremely fast CL reaction was discussed. The increase of the CL signal was always accompanied by reduced lifetime of the CL emission thus application of QDs in flow techniques should be always coupled with the study of the CL lifetime.

  2. DotFETs: MOSFETs strained by a Single SiGE dot in a Low-Temperature ELA Technology

    OpenAIRE

    Biasotto, C.

    2011-01-01

    The work presented in this thesis was performed in the context of the European Sixth Framework Program FP6 project “Disposable Dot Field Effect Transistor for High Speed Si Integrated Circuits”, referred to as the D-DotFET project. The project had the goal of realizing strain-enhanced mobility in CMOS transistors by transferring strain from a self-assembled germanium dot to the channel of a transistor fabricated above the dot. The initial idea was to dispose of the Ge dot underneath the chann...

  3. On the diameter of dot-critical graphs

    Directory of Open Access Journals (Sweden)

    Doost Ali Mojdeh

    2009-01-01

    Full Text Available A graph G is \\(k\\-dot-critical (totaly \\(k\\-dot-critical if \\(G\\ is dot-critical (totaly dot-critical and the domination number is \\(k\\. In the paper [T. Burtona, D. P. Sumner, Domination dot-critical graphs, Discrete Math, 306 (2006, 11-18] the following question is posed: What are the best bounds for the diameter of a \\(k\\-dot-critical graph and a totally \\(k\\-dot-critical graph \\(G\\ with no critical vertices for \\(k \\geq 4\\? We find the best bound for the diameter of a \\(k\\-dot-critical graph, where \\(k \\in\\{4,5,6\\}\\ and we give a family of \\(k\\-dot-critical graphs (with no critical vertices with sharp diameter \\(2k-3\\ for even \\(k \\geq 4\\.

  4. Hyperdense dots mimicking microcalcifications : Mammographic findings

    International Nuclear Information System (INIS)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo

    1996-01-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy

  5. Vectorization of DOT3.5 code

    International Nuclear Information System (INIS)

    Nonomiya, Iwao; Ishiguro, Misako; Tsutsui, Tsuneo

    1990-07-01

    In this report, we describe the vectorization of two-dimensional Sn-method radiation transport code DOT3.5. Vectorized codes are not only the NEA original version developed at ORNL but also the versions improved by JAERI: DOT3.5 FNS version for fusion neutronics analyses, DOT3.5 FER version for fusion reactor design, and ESPRIT module of RADHEAT-V4 code system for radiation shielding and radiation transport analyses. In DOT3.5, input/output processing time amounts to a great part of the elapsed time when a large number of energy groups and/or a large number of spatial mesh points are used in the calculated problem. Therefore, an improvement has been made for the speedup of input/output processing in the DOT3.5 FNS version, and DOT-DD (Double Differential cross section) code. The total speedup ratio of vectorized version to the original scalar one is 1.7∼1.9 for DOT3.5 NEA version, 2.2∼2.3 fro DOT3.5 FNS version, 1.7 for DOT3.5 FER version, and 3.1∼4.4 for RADHEAT-V4, respectively. The elapsed times for improved DOT3.5 FNS version and DOT-DD are reduced to 50∼65% that of the original version by the input/output speedup. In this report, we describe summary of codes, the techniques used for the vectorization and input/output speedup, verification of computed results, and speedup effect. (author)

  6. Hyperdense dots mimicking microcalcifications : Mammographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1996-12-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy.

  7. Determination of hyperin in seed of Cuscuta chinensis Lam. by enhanced chemiluminescence of CdTe quantum dots on calcein/K3Fe(CN)6 system.

    Science.gov (United States)

    Kang, Jing; Li, Xuwen; Geng, Jiayang; Han, Lu; Tang, Jieli; Jin, Yongri; Zhang, Yihua

    2012-10-15

    In this paper, 3-mercaptocarboxylic acid (MPA) modified CdTe quantum dots (QDs) were used as sensitizers, to enhance the chemiluminescence (CL) of the calcein/K(3)Fe(CN)(6) system. A new CL system of CdTe/calcein/K(3)Fe(CN)(6) was developed. The effects of reactant concentrations and the particle sizes of CdTe QDs on the CL emission were investigated in detail. The possible enhancement mechanism of the CL was also further investigated based on the photoluminescence (PL) and CL spectra. Polyphenols such as chlorogenic acid, quercetin, hyperin, catechin and kaempferol, were observed to inhibit the CL signal of the CdTe/calcein/K(3)Fe(CN)(6) system and determined by the proposed method. The proposed method was applied to the determination of hyperin in seed of Cuscuta chinensis Lam. and the results obtained were satisfactory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. CL from ZnO nanowires and microneedles Co-doped with N and Mn

    International Nuclear Information System (INIS)

    Herrera, M; Morales, A; Díaz, J A

    2014-01-01

    Cathodoluminescence (CL) was used to study the luminescence emission of ZnO : N, Mn nanowires and microneedles grown by thermal evaporation. CL spectra acquired at room temperature showed the presence of near band edge and defect-related emissions. The defect related emission comprised two bands centered at 2.28 and 2.5 eV. The first component was attributed to the formation of spinel ZnMn 2 O 4  and the second to the well-known ZnO green emission. CL spectra acquired at 100 K showed two emissions centered at 3.22 and 3.25 eV that were attributed to donor–acceptor pair (DAP) and FA transitions, respectively. It was proposed that substitutional nitrogen (N O ) and zinc interstitial (Zn i ) were acceptor and shallow-donor centers in the DAP transition. (paper)

  9. From DOT to Dotty

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    - Module types are interfaces, which can be abstracted. In this talk Martin will present DOT, a particularly simple calculus that can express systems following these principles. DOT has been developed as the foundation of the next version of Scala. He will also report on dotty, a new Scala compiler that implements the constructs of DOT in its core data structures and that uses the lessons learned to drive Scala’s evolution.

  10. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl_2 with controllable dimension and morphology

    International Nuclear Information System (INIS)

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren

    2016-01-01

    Highlights: • One kind of large area nano-PAA-ZnCl_2 composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals. • At room temperature, the nano-PAA-ZnCl_2 film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl_2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl_2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl_2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl_2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  11. Efficiency of Cathodoluminescence Emission by Nitrogen-Vacancy Color Centers in Nanodiamonds.

    Science.gov (United States)

    Zhang, Huiliang; Glenn, David R; Schalek, Richard; Lichtman, Jeff W; Walsworth, Ronald L

    2017-06-01

    Correlated electron microscopy and cathodoluminescence (CL) imaging using functionalized nanoparticles is a promising nanoscale probe of biological structure and function. Nanodiamonds (NDs) that contain CL-emitting color centers are particularly well suited for such applications. The intensity of CL emission from NDs is determined by a combination of factors, including particle size, density of color centers, efficiency of energy deposition by electrons passing through the particle, and conversion efficiency from deposited energy to CL emission. This paper reports experiments and numerical simulations that investigate the relative importance of each of these factors in determining CL emission intensity from NDs containing nitrogen-vacancy (NV) color centers. In particular, it is found that CL can be detected from NV-doped NDs with dimensions as small as ≈40 nm, although CL emission decreases significantly for smaller NDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Silicon quantum dots with counted antimony donor implants

    Science.gov (United States)

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  13. Reduction behaviors of Zr for LiCl-KCl-ZrCl4 and LiCl-KCl-ZrCl4-CdCl2

    International Nuclear Information System (INIS)

    Kim, Si Hyung; Yoon, Jongho; Kim, Gha Young; Kim, Tack Jin; Shim, Joon Bo; Kim, Kwang Rag; Jung, Jae Hoo; Ahn, Do Hee; Paek, Seungwoo

    2013-01-01

    The reduction potentials of most of the zirconium ions on the solid cathode are smaller (about 0.4V) than that of uranium, and thus zirconium can be recovered prior to uranium during the reduction stage. In the case of a liquid cadmium cathode, which is one of the major cathodes, the reduction potential can be changed because zirconium reacts with the liquid cadmium. Up to now, it has not been well known what the reduction potential of Zr was on the liquid Cd cathode. According to the Cd-Zr phase diagram, there are four intermetallic compounds between cadmium and zirconium. It is easier to use the solid cathode than the liquid cadmium cathode in LiCl-KCl-ZrCl 4 containing CdCl 2 to identify the formation of the Cd-Zr phase. In this study, the reduction behaviors of zirconium were compared in the LiCl-KCl-ZrCl 4 and LiCl-KCl-ZrCl 4 -CdCl 2 solutions when using a solid cathode. The reduction behavior of Zr at a solid W cathode and a Cd-coated W cathode was compared in a LiCl-KCl-ZrCl 4 solution at 500 .deg. C. It was observed from the results using a solid W cathode that Zr 4+ ions were gradually oxidized to Zr 2+ , Zr, and ZrCl during the reduction sweep, but the final oxidation peak of Zr 2+ to Zr 4+ seemed to be unclear during the oxidation sweep. In the case of the Cd-coated W electrode, only a Cd 2 Zr phase was formed at 500 .deg. C, which seemed to be related to the melting point of Cd-Zr intermetallics. Through additional studies at different temperatures, the formation behavior will be studied

  14. Stark shifting two-electron quantum dot

    International Nuclear Information System (INIS)

    Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.

    2003-01-01

    Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots

  15. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    International Nuclear Information System (INIS)

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  16. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of)

    2014-03-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10{sup −6} to 2.59 × 10{sup −5} M with a detection limit of 1.70 × 10{sup −7} M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl{sup −}, Br{sup −}, F{sup −}, I{sup −}, IO{sub 3}{sup −}, ClO{sub 4}{sup −}, BrO{sub 3}{sup −}, CO{sub 3}{sup 2−}, NO{sub 2}{sup −}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, S{sub 2}O{sub 4}{sup 2−}, C{sub 2}O{sub 4}{sup 2−}, SCN{sup −}, N{sub 3}{sup −}, citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN{sup −} by fluorescence quenching.

  17. Study and application of Dot 3.5 computer code in radiation shielding problems

    International Nuclear Information System (INIS)

    Otto, A.C.; Mendonca, A.G.; Maiorino, J.R.

    1983-01-01

    The application of nuclear transportation code S sub(N), Dot 3.5, to radiation shielding problems is revised. Aiming to study the better available option (convergence scheme, calculation mode), of DOT 3.5 computer code to be applied in radiation shielding problems, a standard model from 'Argonne Code Center' was selected and a combination of several calculation options to evaluate the accuracy of the results and the computational time was used, for then to select the more efficient option. To illustrate the versatility and efficacy in the application of the code for tipical shielding problems, the streaming neutrons calculation along a sodium coolant channel is ilustrated. (E.G.) [pt

  18. ?????????? ?????, ?????????? ??????????? ?? ?????????? ?????????? ????? ? ?????? ???????? ZnCl2 +NH4Cl

    OpenAIRE

    Kuntyi, Orest; Zozulya, Galyna

    2010-01-01

    Zinc cementation by magnesium from ZnCl2 + NH4Cl aqueous solutions has been investigated. The amount of magnesium has been established as 0.8?2.0 g per 1 g of conditioned zinc to obtain recovery degree ? 99 %. At low concentrations of Zn2+ ions (0.025?0.1 M ZnCl2) dispersed deposit is formed with nanoparticles of reduced metal; at high concentrations (0.25?0.5 M) coarse-crystalline and fern-shaped deposit is formed. ?????????? ?????????? ????? ??????? ? ?????? ???????? ZnCl2 + NH4Cl. ????????...

  19. Quantum nano ring composed of quantum dots as a source of pure persistent spin or charge current

    International Nuclear Information System (INIS)

    Eslami, L.; Faizabadi, E.; Ahmadi, S.

    2016-01-01

    Spin-dependent persistent current in a quantum ring constituted by two normal and one magnetic quantum dots, in the presence of Rashba spin–orbit interaction is studied by using Green function technique. It is shown that the presence of the magnetic quantum dot breaks the degeneracy of the density of states of electrons with different spin states. Besides, the Rashba spin–orbit interaction along with the magnetic quantum dot develops tunable persistent spin and charge currents. Moreover, the persistent charge current induces a fully adjustable magnetic flux whose direction and magnitude can be tuned by altering the strength of the Rashba spin–orbit interaction. - Highlights: • An array of normal and magnetic quantum dots with Rashba effect is studied. • Spin-dependent persistent current and DOS are studied using Green function method. • The magnetic quantum dot breaks degeneracy of DOS of up and down spin electrons. • The persistent spin and charge currents are tuned by adjusting the Rashba constant. • The persistent charge current induces tunable magnetic field at the center of ring.

  20. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xiao; Wang, Hao; Yi, Qinghua; Wang, Yun; Cong, Shan; Zhao, Jie; Sun, Yinghui; Zou, Guifu, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Qian, Zhicheng [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, Jianwen; Xiong, Jie, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Hongmei [Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States)

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefits the future development of optoelectronic nanodevices with new functionalities.

  1. Spin storage in quantum dot ensembles and single quantum dots

    International Nuclear Information System (INIS)

    Heiss, Dominik

    2009-01-01

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T 1 =20 ms at B=4 T and T=1 K. A strong magnetic field dependence T 1 ∝B -5 has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T 1 ∝T -1 . The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T 1 h in the microsecond range, therefore, comparable with

  2. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  3. Volpe Center Annual Accomplishments: Advancing Transportation Innovation for the Public Good - January 2018

    Science.gov (United States)

    2018-01-01

    The Volpe Centers Annual Accomplishments highlights our best work of 2017 and illustrates the sustained impact of the Volpe Center in supporting the U.S. DOTs top priorities and strategic goals: safety, infrastructure, innovation, and accountab...

  4. A 2x2 quantum dot array with controllable inter-dot tunnel couplings

    OpenAIRE

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-01-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems make them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2$\\times$2 quantum dots defined electrostatically in a AlGaA...

  5. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl{sub 2} with controllable dimension and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianguo [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Physics Department, Northwest University, Xi’an 710069 (China); Wang, Kaige, E-mail: wangkg@nwu.edu.cn [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Zhou, Yukun; Wang, Shuang; Zhang, Chen [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Wang, Guiren [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia SC 29208 (United States); and others

    2016-12-30

    Highlights: • One kind of large area nano-PAA-ZnCl{sub 2} composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals. • At room temperature, the nano-PAA-ZnCl{sub 2} film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl{sub 2} nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl{sub 2} composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl{sub 2} composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl{sub 2} composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher

  6. Dicke states in multiple quantum dots

    Science.gov (United States)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  7. Delay in DOTS for new pulmonary tuberculosis patient from rural area of Wardha District, India

    Directory of Open Access Journals (Sweden)

    Shilpa Bawankule

    2010-07-01

    Full Text Available Vast majority of active tuberculosis patients seeks treatment, do so promptly, still many patients spend a great deal of time and money “shopping for health” and too often they do not receive either accurate diagnosis or effective treatment, despite spending considerable resources. Objective: To find out the time taken to, for diagnosis of tuberculosis and to put patient on DOTS from the onset of symptoms and pattern of health seeking behavior of new pulmonary tuberculosis patients. A cross-sectional rapid assessment using qualitative (FGD and quantitative (Interview methods conducted at DOTS center of tertiary care hospital from rural Wardha. Participants: 53 pulmonary tuberculosis patients already on DOTS, in intensive phase. Main outcome measure: Delay in initiation of DOTS & health seeking behavior Results: Median total delay for starting DOTS was 111 days, (range: 10 to 321 days. Patient delay was more than provider delay. Patients delay was more in patients above 60 years, illiterate, per-capita income below 650 Rupees and HIV TB co-infection. Pattern of health seeking behavior was complex. Family physician was the preferred health care provider. Patient visited on an average four providers and spent around 1450 rupees (only direct cost before DOTS begin. Time taken from the onset of symptoms and start of DOT is a cause of concern for the tuberculosis control program. Early case detection is important rather than mere achieving target of 70% new case detection. Program manager needs to implement locally relevant & focused strategies for early case detection to improve the treatment success, especially in rural area of India.

  8. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao, E-mail: chaoyangscu@gmail.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Feng, Guoying, E-mail: guoing_feng@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Dai, Shenyu, E-mail: 232127079@qq.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Wang, Shutong, E-mail: wangshutong.scu@gmail.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Li, Guang, E-mail: 632524844@qq.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Zhang, Hua [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Zhou, Shouhuan, E-mail: zhoush@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); North China Research Institute of Electro-Optics, 4 Jiuxianqiao Street, Chaoyang District, Beijing 100015 (China)

    2017-08-31

    Highlights: • A novel method for synthesis and coating of quantum dots by ultrafast laser pulses. • Mild and “green” synthesis method without toxic chemicals. • Enhanced bright green light emission without doped transition metal ions. • Ultrafast laser and coating layer enhanced the emission originated from defects. - Abstract: A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4–6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  9. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    International Nuclear Information System (INIS)

    Yang, Chao; Feng, Guoying; Dai, Shenyu; Wang, Shutong; Li, Guang; Zhang, Hua; Zhou, Shouhuan

    2017-01-01

    Highlights: • A novel method for synthesis and coating of quantum dots by ultrafast laser pulses. • Mild and “green” synthesis method without toxic chemicals. • Enhanced bright green light emission without doped transition metal ions. • Ultrafast laser and coating layer enhanced the emission originated from defects. - Abstract: A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4–6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  10. Kinetic isotope effects in the gas phase reactions of OH and Cl with CH3Cl, CD3Cl, and 13CH3Cl

    Directory of Open Access Journals (Sweden)

    A. A. Gola

    2005-01-01

    Full Text Available The kinetic isotope effects in the reactions of CH3Cl, 13CH3Cl and CD3Cl with OH radicals and Cl atoms were studied in relative rate experiments at 298±2 K and 1013±10 mbar. The reactions were carried out in a smog chamber using long path FTIR detection and the spectroscopic data analyzed employing a non-linear least squares spectral fitting method using measured high-resolution infrared spectra as well as absorption cross sections from the HITRAN database. The reaction rates of 13CH3Cl and CD3Cl with OH and Cl were determined relative to CH3Cl as: kOH+CH3ClkOH+CH3Cl/kOH+13CH3Cl}kOH+13CH3Cl=1.059±0.008, kOH+CH3ClkOH+CH3Cl/kOH+CD3ClkOH+CD3Cl=3.9±0.4, kCl+CH3ClkCl+CH3Cl/kCl+13CH3ClkCl+13CH3Cl =1.070±0.010 and kCl+CH3ClkCl+CH3Cl/kCl+CD3ClkCl+CD3Cl=4.91±0.07. The uncertainties given are 2σ from the statistical analyses and do not include possible systematic errors. The unexpectedly large 13C kinetic isotope effect in the OH reaction of CH3Cl has important implications for the global emission inventory of CH3Cl.

  11. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2012-01-01

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr '1 m '2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  12. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Science.gov (United States)

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  13. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  14. Dot gain compensation in the blue noise mask

    Science.gov (United States)

    Yao, Meng; Parker, Kevin J.

    1995-04-01

    Frequency modulated (FM) halftoning or 'stochastic screening,' has attracted a great deal of attention in the printing industry in recent years. It has several advantages over conventional halftoning. But one serious problem that arises in FM halftoning is dot gain. One approach to stochastic screening uses a specially constructed halftone screen, the blue noise mask (BNM), to produce an unstructured and visually appealing pattern of halftone dots at any gray level. In this paper, we will present methods to correct dot gain with the BNM. Dot gain is related to the area-to-perimeter ration of printed spots. We can exploit this feature in different ways. At a medium level, a B>NM pattern will have 'connected' as well as 'isolated' dots. Normally, as we build down BNM patterns to lower levels, a specific number of white dots will be replace by black dots. Since connected white dots are more likely to be picked than isolated white dots, this will results in substantial dot gain because of the increasing number of isolated white dots. We show that it is possible to constrain the process of constructing a BNM such that isolated dots are preferentially removes, thus significantly reducing dot gain in a BNM.

  15. Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Le, Quyet Van [School; Kim, Jong Beom [Department; Kim, Soo Young [School; Lee, Byeongdu [X-ray; Lee, Dong Ryeol [Department

    2017-08-15

    We have investigated the effect of reaction temperature of hot-injection method on the structural properties of CsPbX3 (X: Br, I, Cl) perovskite nanocrystals (NCs) using the small- and wide-angle X-ray scattering. It is confirmed that the size of the NCs decreased as the reaction temperature decreased, resulting stronger quantum confinement. The cubic-phase perovskite NCs were formed despite the reaction temperatures increased from 140 to 180 °C. However, monodispersive NC cubes which are required for densely packing self-assembly film were only formed at lower temperatures. From the X-ray scattering measurements, the spin-coated film from more monodispersive perovskite nanocubes synthesized at lower temperatures resulted in more preferred orientation. This dense-packing perovskite film with preferred orientation yielded efficient light-emitting diode (LED) performance. Thus, the dense-packing structure of NC assemblies formed after spin-coating should be considered for high-efficient LEDs based on perovskite quantum dots in addition to quantum confinement effect of the quantum dots.

  16. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    Science.gov (United States)

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  17. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    International Nuclear Information System (INIS)

    Gu Shuna; Li Bing; Zhao Chongjun; Xu Yunlong; Qian Xiuzhen; Chen, Guorong

    2011-01-01

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: → AgCl/(PPy) nanocomposites as visible light driven photocatalyst. → Composites exhibited high visible light-driven photocatalytic activity and stability. → Photocatalytic process on MO followed photoreduction mechanisms. → Used photocatalyst can be regenerated in aqueous FeCl 3 solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag + and Cl - ions in the presence of PPy . The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl 3 solution.

  18. Preparation and characterization of visible light-driven AgCl/PPy photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gu Shuna; Li Bing [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu Yunlong; Qian Xiuzhen; Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-05-05

    Graphical abstract: AgCl/PPy composite exhibits improved photocatalytic performance and high stability under visible light. Display Omitted Highlights: > AgCl/(PPy) nanocomposites as visible light driven photocatalyst. > Composites exhibited high visible light-driven photocatalytic activity and stability. > Photocatalytic process on MO followed photoreduction mechanisms. > Used photocatalyst can be regenerated in aqueous FeCl{sub 3} solution. - Abstract: Visible light photoactive AgCl/polypyrrole (PPy) composites were prepared via the reaction between excessive Ag{sup +} and Cl{sup -} ions in the presence of PPy{sub .} The AgCl/PPy composites were systematically characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and Thermal gravity analysis (TGA). It was found that face-centered cubic AgCl nanocrystallite and 0.2 wt% PPy component existed in the composite and spherical AgCl/PPy nanoparticles were in the range of 200-600 nm. The AgCl/PPy composites showed higher visible light-driven photocatalytic activity and stability than that of AgCl. A photoreduction mechanism was postulated for AgCl/PPy photocatalyst on dye methyl orange (MO). The used AgCl/PPy photocatalyst was facilely regenerated by an oxidation process in aqueous FeCl{sub 3} solution.

  19. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  20. Magnon-driven quantum dot refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  1. Multi-Excitonic Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  2. 78 FR 48868 - Proposed Cercla Administrative Cost Recovery Settlement; MassDOT, MassDOT Route 1 Right-of-Way...

    Science.gov (United States)

    2013-08-12

    ... Settlement; MassDOT, MassDOT Route 1 Right-of-Way Site, Chelsea, MA AGENCY: Environmental Protection Agency... (``CERCLA''), 42 U.S.C. 9622(h)(1), concerning the MassDOT Route 1 Right-of-Way Site in Chelsea... (OES04-3), Boston, MA 02109-3912 (Telephone No. 617-918-1886) and should refer to: In re: MassDOT Route 1...

  3. Dependence of Strain Distribution on In Content in InGaN/GaN Quantum Wires and Spherical Quantum Dots

    Science.gov (United States)

    Sharma, Akant Sagar; Dhar, S.

    2018-02-01

    The distribution of strain, developed in zero-dimensional quantum spherical dots and one-dimensional cylindrical quantum wires of an InGaN/GaN system is calculated as functions of radius of the structure and indium mole fraction. The strain shows strong dependence on indium mole fraction at small distances from the center. The strain associated with both the structures is found to decrease exponentially with the increase in dot or cylinder radius and increases linearly with indium content.

  4. Biocompatible Quantum Dots for Biological Applications

    Science.gov (United States)

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  5. Quantum measurement of coherent tunneling between quantum dots

    International Nuclear Information System (INIS)

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  6. Radiation induced F-center and colloid formation in synthetic NaCl and natural rock salt: applications to radioactive waste repositories

    International Nuclear Information System (INIS)

    Levy, P.W.; Loman, J.M.; Kierstead, J.A.

    1983-01-01

    Radiation damage, particularly Na metal colloid formation, has been studied in synthetic NaCl and natural rock salt using unique equipment for making optical absorption, luminescence and other measurements during irradiation with 1 to 3 MeV electrons. Previous studies have established the F-center and colloid growth phenomenology. At temperatures where colloids form most rapidly, 100 to 250 C, F-centers appear when the irradiation is initiated and increase at a decreasing rate to a plateau, reached at doses of 10 6 to 10 7 rad. Concomitant colloid growth is described by classical nucleation and growth curves with the transition to rapid growth occurring at 10 6 to 10 7 rad. The colloid growth rate is low at 100 C, increases markedly to a maximum at 150 to 175 C and decreases to a negligible rate at 225 C. At 1.2x10 8 rad/h the induction period is >10 4 sec at 100 C, 10 4 sec at 275 C. The colloid growth in salt from 14 localities is well described by C(dose)/sup n/ relations. Data on WIPP site salt (Los Medanos, NM, USA) has been used to estimate roughly the colloid expected in radioactive waste repositories. Doses of 1 to 2x10 10 rad, which will accumulate in salt adjacent to lightly shielded high level canisters in 200 to 500 years, will convert between 1 and 100% of the salt to Na colloids (and Cl) if back reactions or other limiting reactions do not occur. Each high level lightly shielded canister may ultimately be surrounded by 200 to 300 kg of colloid sodium. Low level or heavily shielded canisters may produce as little as 1 kg sodium

  7. Metamorphic quantum dots: Quite different nanostructures

    International Nuclear Information System (INIS)

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-01-01

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  8. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  9. Room-temperature synthesis of MnMoO{sub 4}{center_dot}H{sub 2}O nanorods by the microemulsion-based method and its photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Mi Yan; Huang Zaiyin; Zhou Zeguang; Hu Feilong; Meng Qiufeng [College of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006 (China)], E-mail: hzy210@yahoo.cn

    2009-09-01

    Manganese molybdate hydrates (MnMoO{sub 4}{center_dot}H{sub 2}O) nanorods have been synthesized at room temperature by a facile water-in-oil reverse microemulsion method. This technique was carried out in the reverse microemulsion of OP-10 (Polyoxyethylene octylphenol ether)-n-octanol-water-cyclohexane with a water/surfactant molar ratio {omega} = 10. Field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that the diameters of these formed nanorods about 70 nm and lengthe up to 4 {mu}m, respectively. High-resolution transmission electron microscopy (HRTEM) results showed that each nanorod was formed by serveral nanobelts which are stacked by a layer-by-layer process. These unique nanorods demonstrate good photocatalytic properties.

  10. Quantum dots: Rethinking the electronics

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Dimple [Department of Physics, S. S. Jain Subodh PG College, Jaipur, Rajasthan Pin-302004 (India)

    2016-05-06

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  11. The electronic properties of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Barker, J.A.

    2000-10-01

    This work is an investigation into the electronic behaviour of semiconductor quantum dots, particularly self-assembled quantum dot arrays. Processor-efficient models are developed to describe the electronic structure of dots, deriving analytic formulae for the strain tensor, piezoelectric distribution and diffusion- induced evolution of the confinement potential, for dots of arbitrary initial shape and composition profile. These models are then applied to experimental data. Transitions due to individual quantum dots have a narrow linewidth as a result of their discrete density of states. By contrast, quantum dot arrays exhibit inhomogeneous broadening which is generally attributed to size variations between the individual dots in the ensemble. Interpreting the results of double resonance spectroscopy, it is seen that variation in the indium composition of the nominally InAs dots is also present. This result also explains the otherwise confusing relationship between the spread in the ground-state and excited-state transition energies. Careful analysis shows that, in addition to the variations in size and composition, some other as yet unidentified broadening mechanism must also be present. The influence of rapid thermal annealing on dot electronic structure is also considered, finding that the experimentally observed blue-shift and narrowing of the photoluminescence linewidth may both be explained in terms of normal In/Ga interdiffusion. InAs/GaAs self-assembled quantum dots are commonly assumed to have a pyramidal geometry, so that we would expect the energy separation of the ground-state electron and hole levels in the dot to be largest at a positive applied field. This should also be the case for any dot of uniform composition whose shape tapers inwards from base to top, counter to the results of experimental Stark-shift spectroscopy which show a peak transition energy at a negative applied field. It is demonstrated that this inversion of the ground state

  12. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter

    OpenAIRE

    Nagai, Hiroki; Roy, Craig R.

    2001-01-01

    Legionella pneumophila requires the dot/icm genes to create an organelle inside eukaryotic host cells that will support bacterial replication. The dot/icm genes are predicted to encode a type IV-related secretion apparatus. However, no proteins have been identified that require the dot/icm genes for secretion. In this study we show that the DotA protein, which was previously found to be a polytopic membrane protein, is secreted by the Dot/Icm transporter into culture supernatants. Secreted Do...

  13. Optical and structural characterization of self-organized stacked GaN/AlN quantum dots

    International Nuclear Information System (INIS)

    Salviati, G; Rossi, F; Armani, N; Grillo, V; Martinez, O; Vinattieri, A; Damilano, B; Matsuse, A; Grandjean, N

    2004-01-01

    Self-organized GaN/AlN stacked quantum dots (QDs) have been studied by means of cathodoluminescence (CL), near field scanning optical microscopy (NSOM), photoluminescence, μ-Raman, and transmission electron microscopy. Assignment of the optical emissions was made on the basis of the structural parameters, power-dependent optical studies and depth-resolved CL. Power-dependent studies allowed us to distinguish between quantum confined and buffer emissions. On increasing the power injection conditions, a QD-size-dependent blue shift due to the screening of the internal electric fields was found together with a trend to saturation observed in the high injection limit. The possible evidence of excited states has also been shown by power-dependent photoluminescence and CL. Different blue shifts in specimens with different numbers of stacked layers suggested possible different residual strain values as confirmed by μ-Raman studies. Depth-resolved CL investigations performed at constant power injection per unit volume allowed us to distinguish between QD layers with different nominal GaN coverages and a linear dependence of peak energy versus GaN monolayer number has also been found. Adding 1 ML of GaN resulted in an average shift of about 150 meV. The existence of QDs with different size distributions along the growth axis was also found. The observations were confirmed by NSOM spectroscopy

  14. Densities and apparent molar volumes of HClO{sub 4}(aq) and Yb(ClO{sub 4}){sub 3}(aq) at elevated temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hakin, Andrew W. E-mail: hakin@uleth.ca; Lukacs, Michael J.; Jin Lianliu

    2004-09-01

    Relative densities have been measured for acidified aqueous solutions of ytterbium perchlorate {l_brace}Yb(ClO{sub 4}){sub 3}{r_brace} at approximately T=(348.15, 373.15, 398.15, and 423.15) K and p=(10.0, 20.0, and 30.0) MPa over the concentration range 0.01624{<=}m{sub 2}/(mol {center_dot} kg{sup -1}) {<=} 0.2531 using an optically coupled vibrating tube densimeter (OCVTD). Experimental apparent molar volumes have been calculated from the density measurements, and apparent molar volumes for the aqueous perchlorate salt have been calculated using Young's rule. The application of Young's rule requires apparent molar volumes for aqueous perchloric acid (HClO{sub 4}) solutions over extended temperature and pressure ranges. These values were calculated from densities for aqueous HClO{sub 4} solutions that were measured using the OCVTD at the same temperatures and pressures as those used to investigate the density surface of the acidified aqueous Yb(ClO{sub 4}){sub 3} solutions. The temperature, pressure, and composition surfaces of the apparent molar volumes for Yb(ClO{sub 4}){sub 3}(aq) and HClO{sub 4}(aq) have been modelled using Pitzer ion-interaction equations. Apparent molar volumes at infinite dilution obtained from these models have been compared to those which can be calculated using the semi-empirical Helgeson, Kirkham, and Flowers equations of state. Values for the apparent molar volume at infinite dilution of the ytterbium trivalent cation have also been calculated using simple additivity principles.

  15. Design of quaternary logic circuit using quantum dot gate-quantum dot channel FET (QDG-QDCFET)

    Science.gov (United States)

    Karmakar, Supriya

    2014-10-01

    This paper presents the implementation of quaternary logic circuits based on quantum dot gate-quantum dot channel field effect transistor (QDG-QDCFET). The super lattice structure in the quantum dot channel region of QDG-QDCFET and the electron tunnelling from inversion channel to the quantum dot layer in the gate region of a QDG-QDCFET change the threshold voltage of this device which produces two intermediate states between its ON and OFF states. This property of QDG-QDCFET is used to implement multi-valued logic for future multi-valued logic circuit. This paper presents the design of basic quaternary logic operation such as inverter, AND and OR operation based on QDG-QDCFET.

  16. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F., E-mail: spizzo@fe.infn.it [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia and CNISM, Università di Perugia, I-06123 Perugia (Italy); Chinni, F.; Bonfiglioli, E. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy); Gerardino, A. [Istituto di Fotonica e Nanotecnologie, CNR, I-00156 Roma (Italy); Barucca, G. [Dipartimento SIMAU, Università Politecnica delle Marche, I-60131 Ancona (Italy); Bisero, D.; Fin, S.; Del Bianco, L. [Dipartimento di Fisica e Scienze della Terra and CNISM, Università di Ferrara, I-44122 Ferrara (Italy)

    2016-02-15

    We studied the exchange bias effect in an array of IrMn(3 nm)/NiFe(3 nm) circular dots (size ~140 nm and center-to-center distance ~200 nm, as revealed by microscopy analyses), prepared on a large area (3×3 mm{sup 2}) by electron beam lithography and lift-off, using dc sputtering deposition. Hysteresis loops were measured by SQUID magnetometer at increasing values of temperature T (in the 5–300 K range) after cooling from 300 K down to 5 K in zero field (ZFC mode) and in a saturating magnetic field (FC mode). The exchange bias effect disappears above T~200 K and, at each temperature, the exchange field H{sub EX} measured in ZFC is substantially lower than the FC one. Micromagnetic calculations indicate that, at room temperature, each dot is in high-remanence ground state, but magnetic dipolar interactions establish a low-remanence configuration of the array as a whole. Hence, at low temperature, following the ZFC procedure, the exchange anisotropy in the dot array is averaged out, tending to zero. However, even the FC values of H{sub EX} and of the coercivity H{sub C} are definitely smaller compared to those measured in a reference continuous film with the same stack configuration (at T=5 K, H{sub EX}~90 Oe and H{sub C}~180 Oe in the dots and H{sub EX}~1270 Oe and H{sub C}~860 Oe in the film). Our explanation is based on the proven glassy magnetic nature of the ultrathin IrMn layer, implying the existence of magnetic correlations among the spins, culminating in a collective freezing below T~100 K. We propose, also by the light of micromagnetic simulations, that the small dot size imposes a spatial constraint on the magnetic correlation length among the IrMn spins so that, even at the lowest temperature, their thermal stability, especially at the dot border, is compromised. - Highlights: • Exchange bias in 140 nm-sized IrMn(3 nm)/NiFe(3 nm) dots much weaker than in a film. • Glassy magnetic nature of the IrMn phase and collective spin freezing at T<100 K

  17. Exchange bias properties of 140 nm-sized dipolarly interacting circular dots with ultrafine IrMn and NiFe layers

    International Nuclear Information System (INIS)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Gerardino, A.; Barucca, G.; Bisero, D.; Fin, S.; Del Bianco, L.

    2016-01-01

    We studied the exchange bias effect in an array of IrMn(3 nm)/NiFe(3 nm) circular dots (size ~140 nm and center-to-center distance ~200 nm, as revealed by microscopy analyses), prepared on a large area (3×3 mm"2) by electron beam lithography and lift-off, using dc sputtering deposition. Hysteresis loops were measured by SQUID magnetometer at increasing values of temperature T (in the 5–300 K range) after cooling from 300 K down to 5 K in zero field (ZFC mode) and in a saturating magnetic field (FC mode). The exchange bias effect disappears above T~200 K and, at each temperature, the exchange field H_E_X measured in ZFC is substantially lower than the FC one. Micromagnetic calculations indicate that, at room temperature, each dot is in high-remanence ground state, but magnetic dipolar interactions establish a low-remanence configuration of the array as a whole. Hence, at low temperature, following the ZFC procedure, the exchange anisotropy in the dot array is averaged out, tending to zero. However, even the FC values of H_E_X and of the coercivity H_C are definitely smaller compared to those measured in a reference continuous film with the same stack configuration (at T=5 K, H_E_X~90 Oe and H_C~180 Oe in the dots and H_E_X~1270 Oe and H_C~860 Oe in the film). Our explanation is based on the proven glassy magnetic nature of the ultrathin IrMn layer, implying the existence of magnetic correlations among the spins, culminating in a collective freezing below T~100 K. We propose, also by the light of micromagnetic simulations, that the small dot size imposes a spatial constraint on the magnetic correlation length among the IrMn spins so that, even at the lowest temperature, their thermal stability, especially at the dot border, is compromised. - Highlights: • Exchange bias in 140 nm-sized IrMn(3 nm)/NiFe(3 nm) dots much weaker than in a film. • Glassy magnetic nature of the IrMn phase and collective spin freezing at T<100 K • Confinement of IrMn magnetic

  18. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    Science.gov (United States)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  19. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  20. High 36Cl/Cl ratios in Chernobyl groundwater

    International Nuclear Information System (INIS)

    Roux, Céline; Le Gal La Salle, Corinne; Simonucci, Caroline; Van Meir, Nathalie; Fifield, L. Keith; Diez, Olivier; Bassot, Sylvain

    2014-01-01

    After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A 90 Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, 36 Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. 36 Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1–5 orders of magnitude higher than the theoretical natural 36 Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of 36 Cl, however other sources have to be involved to explain such contamination. 36 Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of 90 Sr, radionuclide which is impacted by retention and decay processes, 36 Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of 36 Cl from trench soil are better characterized. - Highlights: • High 36 Cl/Cl ratios measured in the Chernobyl Pilot Site groundwater. • Trench T22 acts as a modern source of groundwater contamination by 36 Cl but other sources are involved. • Contamination results from dilution of a contaminated “T22” soil water with rainwater. • Processes involved in the modern release need to be investigated

  1. Arrays of Au-TiO{sub 2} Janus-like nanoparticles fabricated by block copolymer templates and their photocatalytic activity in the degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiaoning; Liu Jun; Yang Hui; Sun Jiuchuan [Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Li Xue, E-mail: lixue0312@yahoo.com [Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Zhang Xiaokai [College of Physics and Electronics, Shandong Normal University, 88 Wenhuadong Road, Jinan 250014 (China); Jia Yuxi, E-mail: jia_yuxi@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2011-10-17

    Highlights: {center_dot} Fabrication of an array of Au-titania Janus nanoparticles on silicon substrate. {center_dot} PS-b-PEO block copolymer is used as templates. {center_dot} Au-TiO{sub 2} Janus-like nanoparticles exhibit higher photocatalytic activity. - Abstract: A simple approach towards the fabrication of an array of Au-titania Janus-like nanoparticles is presented. Monolayer organic-inorganic hybrid films are produced by spin coating the mixture of polystyrene-block-poly (ethylene oxide) (PS-b-PEO)/HAuCl{sub 4} solution and titania sol-gel precursor solution. HAuCl{sub 4} and titania are incorporated in the PEO domains. After removing the organic matrix by deep UV irradiation, arrays of Au-TiO{sub 2} Janus-like nanoparticles on the substrate surface are obtained. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are employed to characterize the Janus-like nanoparticles. The photocatalytic degradation of methylene blue (MB) chosen as the test reaction to examine the photocatalytic activity of the Au-TiO{sub 2} Janus-like nanoparticles is shown to be more effective as compared to that of TiO{sub 2} nanoparticles or Au-TiO{sub 2} composite nanoparticles. The increased photocatalytic activity of Au-TiO{sub 2} Janus-like nanoparticles is attributed to the Au-TiO{sub 2} heterointerfaces.

  2. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  3. SU-F-BRE-14: Uncertainty Analysis for Dose Measurements Using OSLD NanoDots

    Energy Technology Data Exchange (ETDEWEB)

    Kry, S; Alvarez, P; Stingo, F; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Optically stimulated luminescent dosimeters (OSLD) are an increasingly popular dosimeter for research and clinical applications. It is also used by the Radiological Physics Center for remote auditing of machine output. In this work we robustly calculated the reproducibility and uncertainty of the OSLD nanoDot. Methods: For the RPC dose calculation, raw readings are corrected for depletion, element sensitivity, fading, linearity, and energy. System calibration is determined for the experimental OSLD irradiated at different institutions by using OSLD irradiated by the RPC under reference conditions (i.e., standards): 1 Gy in a Cobalt beam. The intra-dot and inter-dot reproducibilities (coefficient of variation) were determined from the history of RPC readings of these standards. The standard deviation of the corrected OSLD signal was then calculated analytically using a recursive formalism that did not rely on the normality assumption of the underlying uncertainties, or on any type of mathematical approximation. This analytical uncertainty was compared to that empirically estimated from >45,000 RPC beam audits. Results: The intra-dot variability was found to be 0.59%, with only a small variation between readers. Inter-dot variability was found to be 0.85%. The uncertainty in each of the individual correction factors was empirically determined. When the raw counts from each OSLD were adjusted for the appropriate correction factors, the analytically determined coefficient of variation was 1.8% over a range of institutional irradiation conditions that are seen at the RPC. This is reasonably consistent with the empirical observations of the RPC, where the coefficient of variation of the measured beam outputs is 1.6% (photons) and 1.9% (electrons). Conclusion: OSLD nanoDots provide sufficiently good precision for a wide range of applications, including the RPC remote monitoring program for megavoltage beams. This work was supported by PHS grant CA10953 awarded by

  4. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  5. Sol-Gel Chemistry for Carbon Dots.

    Science.gov (United States)

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of supported (nBuCp)2ZrCl2 catalyst active center multiplicity on crystallization kinetics of ethylene homo- and copolymers

    KAUST Repository

    Atiqullah, Muhammad

    2014-07-01

    Two different supported zirconocene, that is, bis(n-butylcyclopentadienyl) zirconium dichloride (nBuCp)2ZrCl2, catalysts were synthesized. Each catalyst was used to prepare one ethylene homopolymer and one ethylene-1-hexene copolymer. Catalyst active center multiplicity and polymer crystallization kinetics were modeled. Five separate active center types were predicted, which matched the successive self-nucleation and annealing (SSA) peak temperatures. The predicted crystallinity well matched the differential scanning calorimetric (DSC) values for a single Avrami-Erofeev index, which ranged between 2 and 3 for the polymers experimented. The estimated apparent crystallization activation energy Ea did not vary with cooling rates, relative crystallinity α, and crystallization time or temperature. Therefore, the concept of variable/instantaneous activation energy was not found to hold. Ea linearly increased with the weight average lamellar thickness Lwav DSC-GT; and for each homopolymer, it exceeded that of the corresponding copolymer. Higher Ea, hence slower crystallization, was identified as a pre-requisite to attain higher crystallinity. Crystallization parameters were correlated to polymer backbone parameters, which are influenced by catalyst active center multiplicity. © 2013 Taiwan Institute of Chemical Engineers.

  7. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....

  8. Raman spectra of the system TeCl4-SbCl5

    International Nuclear Information System (INIS)

    Brockner, W.; Demiray, A.F.

    1980-01-01

    Raman spectra of the solid and molten TeCl 4 . SbCl 5 addition compound and of some TeCl 4 -SbCl 5 mixtures have been recorded. Two modifications of the crystalline TeCl 4 -SbCl 5 compound have been found. The structure of the melt can be described by the equilibrium TeCl 3 + + SbCl 6 - reversible TeCl 4 + SbCl 5 lying on the left side. Mixtures with other stoichiometry contain the 1:1 adduct only and excess TeCl 4 or SbCl 5 , respectively. Such melts are built up by the ionic species TeCl 3 + and SbCl 6 - also and TeCl 4 or SbCl 5 according to stoichiometry. (author)

  9. A hydrochemical investigation using 36Cl/Cl in groundwaters

    International Nuclear Information System (INIS)

    Metcalfe, Richard

    2003-03-01

    This report describes 36 Cl studies which were undertaken during the H14 financial year. The results of this study suggest that, if 36 Cl data can be obtained for groundwaters at spatial scales comparable with, or smaller than, the spatial scales of the variability in in-situ 36 Cl production in the host rock, the data could potentially be useful for interpreting groundwater origins and flow paths. Four groundwater samples and one onsen water sample from the Tono area were collected for 36 Cl analysis. The groundwater samples came from boreholes MSB-2 and MSB-4 in the MIU Construction Site, whereas the onsen water was taken from Oniiwa Onsen (Komatsuya). In addition, a single sample from borehole HDB-1 at Horonobe was also sent for analysis. Supporting rock chemical data and wireline geophysical data have also been evaluated, to provide a basis for interpreting the 36 Cl data. Rock analyses and spectral gamma wireline data were used to estimate theoretical limiting equilibrium 36 Cl/Cl ratios in the rock. These have been compared with the compositions measured for groundwater samples, enabling a judgement to be made as to: whether the waters have resided for long enough in the rock to approach equilibrium (> c. 1.5 Ma); the spatial scales of mixing of the dissolved Cl in the groundwater. The estimates of in-situ 36 Cl/Cl production made with the newly available rock chemical data and wireline geophysical data have enabled 36 Cl data obtained previously from MIU-4, KNA-6 and DH-12 during H12 and H13 to be interpreted more confidently. In particular it seems that 36 Cl/Cl ratios measured previously in groundwater samples from MIU-4 are not in equilibrium with in-situ production in the granite. Furthermore, they imply that the Cl is homogenised, at least on the scale of the upper half of borehole. In contrast, the data from DH-12 imply that the Cl could be in equilibrium with in-situ 36 Cl production in the granite, which would be consistent with a relatively long

  10. Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer

    International Nuclear Information System (INIS)

    Nie Tianxiao; Lin Jinhui; Shao Yuanmin; Wu Yueqin; Yang Xinju; Fan Yongliang; Jiang Zuimin; Chen Zhigang; Zou Jin

    2011-01-01

    A Si-capped Ge quantum dot sample was self-assembly grown via Stranski-Krastanov mode in a molecular beam epitaxy system with the Si capping layer deposited at 300 deg. C. After annealing the sample in an oxygen atmosphere at 1000 deg. C, a structure, namely two layers of quantum dots, was formed with the newly formed Ge-rich quantum dots embedded in the oxidized matrix with the position accurately located upon the as-grown quantum dots. It has been found that the formation of such nanostructures strongly depends upon the growth temperature and oxygen atmosphere. A growth mechanism was proposed to explain the formation of the nanostructure based on the Ge diffusion from the as-grown quantum dots, Ge segregation from the growing oxide, and subsequent migration/agglomeration.

  11. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  12. Optical Signatures of Coupled Quantum Dots

    Science.gov (United States)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  13. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    Science.gov (United States)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  14. Quantum dot-polymer conjugates for stable luminescent displays.

    Science.gov (United States)

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  15. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  16. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  17. High (36)Cl/Cl ratios in Chernobyl groundwater.

    Science.gov (United States)

    Roux, Céline; Le Gal La Salle, Corinne; Simonucci, Caroline; Van Meir, Nathalie; Fifield, L Keith; Diez, Olivier; Bassot, Sylvain; Simler, Roland; Bugai, Dmitri; Kashparov, Valery; Lancelot, Joël

    2014-12-01

    After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A (90)Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, (36)Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. (36)Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1-5 orders of magnitude higher than the theoretical natural (36)Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of (36)Cl, however other sources have to be involved to explain such contamination. (36)Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of (90)Sr, radionuclide which is impacted by retention and decay processes, (36)Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of (36)Cl from trench soil are better characterized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Reactions UF{sub 4} - ClF, UF{sub 4} - ClF{sub 3}, UF{sub 5} - ClF, UF{sub 5} - ClF{sub 3}; Reactions UF{sub 4} - ClF, UF{sub 4} - ClF{sub 3}, UF{sub 5} - ClF, UF{sub 5} - ClF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Luce, M; Benoit, R; Hartmanshenn, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The reaction between ClF{sub 3} and UF{sub 4} is partially explained by the study of the reactions of the three systems: UF{sub 4}-ClF, UF{sub 5}-ClF and UF{sub 5}-ClF{sub 3}. The analytical techniques used are: the micro-sublimation, the infra-red spectroscopy and the thermogravimetry. The origin of the by-products is indicated. (authors) [French] La reaction entre ClF{sub 3} et UF{sub 4} est partiellement expliquee grace a l'etude des reactions des trois systemes UF{sub 4}-ClF, UF{sub 5}-ClF et UF{sub 5}-ClF{sub 3}. Les techniques analytiques utilisees sont: la micro-sublimation, la spectroscopie infrarouge et la thermogravimetrie. L'origine des sous-produits est indiquee. (auteurs)

  19. Study of thermoluminescence in K Cl crystals doped with Sr2+

    International Nuclear Information System (INIS)

    Russo, D.M.B.

    1990-01-01

    An attempt is made to correlate the F and Z 1 (F center modified by the presence of a two-valence impurity pair and and positive ion vacancy) and a V center, with the T L curve peaks observed in pure K Cl crystals doped with Sr 2+ , irradiated at room temperature. (L.C.J.A.)

  20. Crystal structure of transition metal halides TiCl4, α-TiCl3, WCl4 and TiI2

    International Nuclear Information System (INIS)

    Troyanov, S.I.; Snigireva, E.M.

    2000-01-01

    Crystal structures of TiCl 4 , α-TiCl 3 , WCl 4 and TiI 2 are determined by x-ray diffraction method. For crystalline WCl 4 general for phases of this type space group C2/m is confirmed. Linear chains of WCl 6 octahedrons joined through the opposite edges exist in structure. Short W-W distances (2.69 A) in linear chains differentiate the structure of WCl 6 . Laminar structure of TiI 2 is belongs to CdI 2 structural type. Iodine atoms form slightly distorted hexagonal face-centered packing, titanium atoms fill up octahedral hollows in two-layer packing of iodine atoms with Ti-I distances equal 2.903 A [ru

  1. PREFACE: Quantum Dot 2010

    Science.gov (United States)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  2. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    Science.gov (United States)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  3. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  4. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  5. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  6. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  7. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  8. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  9. Infrared studies of ortho-para conversion at Cl-atom and H-atom impurity centers in cryogenic solid hydrogen

    International Nuclear Information System (INIS)

    Raston, P.L.; Kettwich, S.C.; Anderson, D.T.

    2010-01-01

    We report infrared spectroscopic studies of H 2 ortho-para (o/p) conversion in solid hydrogen doped with Cl-atoms at 2 K while the Cl + H 2 (υ = 1) → HCl + H infrared-induced chemical reaction is occurring. The Cl-atom doped hydrogen crystals are synthesized using 355 nm in situ photodissociation of Cl 2 precursor molecules. For hydrogen solids with high ortho-H 2 fractional concentrations (X o = 0.55), the o/p conversion kinetics is dominated by Cl-atom catalyzed conversion with a catalyzed conversion rate constant K cc = 1.16(11) min -1 and the process is rate-limited by ortho-H 2 quantum diffusion. For hydrogen crystals with low ortho-H2 concentrations (X o = 0.03), single-exponential decay of the ortho-H 2 concentration with time is observed which is attributed to H-atom catalyzed o/p conversion by the H-atoms produced during the infrared-induced Cl + H 2 reaction. The measured H-atom catalyzed o/p conversion kinetics indicates the H-atoms are mobile under these conditions in agreement with previous ESR measurements.

  10. Spin effects in InAs self-assembled quantum dots

    Directory of Open Access Journals (Sweden)

    Brasil Maria

    2011-01-01

    Full Text Available Abstract We have studied the polarized resolved photoluminescence in an n-type resonant tunneling diode (RTD of GaAs/AlGaAs which incorporates a layer of InAs self-assembled quantum dots (QDs in the center of a GaAs quantum well (QW. We have observed that the QD circular polarization degree depends on applied voltage and light intensity. Our results are explained in terms of the tunneling of minority carriers into the QW, carrier capture by InAs QDs and bias-controlled density of holes in the QW.

  11. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  12. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  13. Measurement of 36Cl induced in shielding concrete of various accelerator facilities

    International Nuclear Information System (INIS)

    Bessho, K.; Matsumura, H.; Matsuhiro, T.

    2003-01-01

    The concentrations of 36 Cl induced in shielding concrete of the various accelerators has been measured by accelerator mass spectrometry. For three kinds of accelerator facilities, SF cyclotron (Center for Nuclear Study, the University of Tokyo), 300 MeV electron LINAC (Laboratory of Nuclear Science, Tohoku University), and 12 GeV proton synchrotron (High Energy Accelerator Research Organization), the depth profiles of 36 Cl/ 35 Cl ratios in concrete samples near the beam lines were analyzed. The depth profiles of 36 Cl/ 35 Cl are consistent with those of the radioactive concentrations of 152 Eu and 60 Co, which are formed by thermal neutron capture reactions. These results imply that 36 Cl formed in shielding concrete of these accelerators is mainly produced by thermal neutron capture of 35 Cl. The maximum 36 Cl/ 35 Cl ratio of 3x10 -8 (300 MeV electron LINAC, depth of 8 cm) corresponds to the specific radioactivity of 2x10 -3 Bq/g, which is not serious for radioactive waste management in reconstruction or decommissioning of accelerator facilities, compared with specific radioactivity of 3 H, 152 Eu and 60 Co. (author)

  14. 49 CFR 41.119 - DOT regulated buildings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false DOT regulated buildings. 41.119 Section 41.119 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.119 DOT regulated buildings. (a) Each DOT Operating Administration with responsibility for regulating the structural safety of buildings...

  15. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. MOVPE grown InGaAs quantum dots of high optical quality as seed layer for low-density InP quantum dots

    International Nuclear Information System (INIS)

    Richter, D; Hafenbrak, R; Joens, K D; Schulz, W-M; Eichfelder, M; Rossbach, R; Jetter, M; Michler, P

    2010-01-01

    To achieve a low density of optically active InP-quantum dots we used InGaAs islands embedded in GaAs as a seed layer. First, the structural InGaAs quantum dot properties and the influence of the annealing technique was investigated by atomic force microscope measurements. High-resolution micro-photoluminescence spectra reveal narrow photoluminescence lines, with linewidths down to 11 μeV and fine structure splittings of 25 μeV. Furthermore, using these InGaAs quantum dots as seed layer reduces the InP quantum dot density of optically active quantum dots drastically. InP quantum dot excitonic photoluminescence emission with a linewidth of 140 μeV has been observed.

  17. Advancing Patient-Centered Care in Tuberculosis Management: A Mixed-Methods Appraisal of Video Directly Observed Therapy.

    Science.gov (United States)

    Holzman, Samuel B; Zenilman, Avi; Shah, Maunank

    2018-04-01

    Directly observed therapy (DOT) remains an integral component of treatment support and adherence monitoring in tuberculosis care. In-person DOT is resource intensive and often burdensome for patients. Video DOT (vDOT) has been proposed as an alternative to increase treatment flexibility and better meet patient-specific needs. We conducted a pragmatic, prospective pilot implementation of vDOT at 3 TB clinics in Maryland. A mixed-methods approach was implemented to assess (1) effectiveness, (2) acceptability, and (3) cost. Medication adherence on vDOT was compared with that of in-person DOT. Interviews and surveys were conducted with patients and providers before and after implementation, with framework analysis utilized to extract salient themes. Last, a cost analysis assessed the economic impacts of vDOT implementation across heterogeneous clinic structures. Medication adherence on vDOT was comparable to that of in-person DOT (94% vs 98%, P = .17), with a higher percentage of total treatment doses (inclusive of weekend/holiday self-administration) ultimately observed during the vDOT period (72% vs 66%, P = .03). Video DOT was well received by staff and patients alike, who cited increased treatment flexibility, convenience, and patient privacy. Our cost analysis estimated a savings with vDOT of $1391 per patient for a standard 6-month treatment course. Video DOT is an acceptable and important option for measurement of TB treatment adherence and may allow a higher proportion of prescribed treatment doses to be observed, compared with in-person DOT. Video DOT may be cost-saving and should be considered as a component of individualized, patient-centered case management plans.

  18. The crystal structure of TeCl3+AuCl4-

    International Nuclear Information System (INIS)

    Jones, P.G.; Jentsch, D.; Schwarzmann, E.

    1986-01-01

    TeCl 3 + AuCl 4 - crystallizes in the triclinic space group Panti 1 with a=7.564(2), b=7.720(3), c=8.964(3) A, α=78.26(3), β=88.84(3), γ=89.35(3) 0 , Z=2. The structure was refined to R 0.041 for 1380 reflections. The cation polyhedron, including secondary Te...Cl interactions, is a square pyramid with mean Te-Cl 2.294, Te...Cl 3.028 A. The secondary interactions link the ions to form centrosymmetric (TeCl 3 .AuCl 4 ) 2 dimers. (orig.)

  19. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  20. Entangled exciton states in quantum dot molecules

    Science.gov (United States)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  1. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  2. Experimental and theoretical studies of d-dot

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Fujii, Masaki; Abe, Taiji; Yamamoto, Masuo; Miki, Shigehito; Kawamata, Shuichi; Satoh, Kazuo; Yotsuya, Tsutomu; Kato, Masaru; Machida, Masahiko; Koyama, Tomio; Terashima, Takahito; Tsukui, Shigeki; Adachi, Motoaki

    2006-01-01

    We propose the idea of d-dot, where a d-wave superconducting dot is embedded in s-wave matrix. Spontaneous half vortices should appear in the four corners of the d-dot [M. Kato, M. Ako, M. Machida, T. Koyama, T. Ishida, Physica C 412-414 (2004) 352; M. Ako, M. Kato, M. Machida, T. Koyama, T. Ishida, Physica C 412-414 (2004) 544; M. Fujii, T. Abe, H. Yoshikawa, S. Miki, S. Kawamata, K. Satoh, T. Yotsuya, M. Kato, M. Machida, T. Koyama, T. Terashima, S. Tsukui, M. Adachi, T. Ishida, Physica C 426-431 (2005) 104]. Symmetric geometry and the fourfold symmetry of the d-dot would be suitable as a building block for constructing the novel physical systems. The phase dynamics of a closed 0-π junction, which can be realized in a small d x 2 -y 2 -dot, is mapped on a quantum two-level system when the system size is small enough. Using two-component Ginzburg-Landau equation, we study the physical properties of d-dots systematically. We prepare epitaxial YBa 2 Cu 3 O 7 (YBCO) films of thickness 100nm on SrTiO 3 substrates using a laser ablation apparatus. The d-dot is fabricated by a photolithography, electron beam lithography EB and an electron cyclotron resonance (ECR) etching, a focused ion beam microscope, and a lift-off technique. Local vortex profile is investigated using a SQUID microscope when d-dot is cooled in zero field

  3. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor.

    Science.gov (United States)

    Chen, Xu; Sun, Xueke; Xu, Wen; Pan, Gencai; Zhou, Donglei; Zhu, Jinyang; Wang, He; Bai, Xue; Dong, Biao; Song, Hongwei

    2018-01-18

    Intracellular pH sensing is of importance and can be used as an indicator for monitoring the evolution of various diseases and the health of cells. Here, we developed a new class of surface-functionalized MXene quantum dots (QDs), Ti 3 C 2 , by the sonication cutting and hydrothermal approach and further explored their intracellular pH sensing. The functionalized Ti 3 C 2 QDs exhibit bright excitation-dependent blue photoluminescence (PL) originating from the size effect and surface defects. Meanwhile, Ti 3 C 2 QDs demonstrate a high PL response induced by the deprotonation of the surface defects. Furthermore, combining the highly pH sensitive Ti 3 C 2 QDs with the pH insensitive [Ru(dpp) 3 ]Cl 2 , we developed a ratiometric pH sensor to quantitatively monitor the intracellular pH values. These novel MXene quantum dots can serve as a promising platform for developing practical fluorescent nanosensors.

  4. Sensitive determination of 4-nitrophenol based on its enhancement of a peroxyoxalate chemiluminescence system containing graphene oxide quantum dots and fluorescein

    International Nuclear Information System (INIS)

    Chen, Donghua; Peng, Rulin; Zhou, Hong; Liu, Hui

    2016-01-01

    Graphene oxide quantum dots (GOQD) are capable of enhancing the green chemiluminescence (CL) of the system composed of bis (2,4,6-trichlorophenyl) oxalate, hydrogen peroxide and fluorescein (TCPO/H_2O_2/fluorescein). It was found that 4-nitrophenol (4-NP) causes a further enhancement of the system, and this was exploited to develop a CL detection scheme for 4-NP. The optimum reaction concentrations were established, and under these conditions the calibration plot is linear in the 1.0 to 300 pmol L"−"1 concentration range, with a 0.3 pmol L"−"1 detection limit (at 3σ).We assume that CL enhancement is due to energy transfer from GOQD to fluorescein which is promoted by the interaction of 4-NP with the GOQD. The method was applied to the determination of 4-NP in spiked tap water and river water and gave recoveries between 93.4 and 107.9 %, with relative standard deviations of <4.0 %. (author)

  5. Patients' costs and cost-effectiveness of tuberculosis treatment in DOTS and non-DOTS facilities in Rio de Janeiro, Brazil.

    Directory of Open Access Journals (Sweden)

    Ricardo Steffen

    2010-11-01

    Full Text Available Costs of tuberculosis diagnosis and treatment may represent a significant burden for the poor and for the health system in resource-poor countries.The aim of this study was to analyze patients' costs of tuberculosis care and to estimate the incremental cost-effectiveness ratio (ICER of the directly observed treatment (DOT strategy per completed treatment in Rio de Janeiro, Brazil.We interviewed 218 adult patients with bacteriologically confirmed pulmonary tuberculosis. Information on direct (out-of-pocket expenses and indirect (hours lost costs, loss in income and costs with extra help were gathered through a questionnaire. Healthcare system additional costs due to supervision of pill-intake were calculated considering staff salaries. Effectiveness was measured by treatment completion rate. The ICER of DOT compared to self-administered therapy (SAT was calculated.DOT increased costs during the treatment phase, while SAT increased costs in the pre-diagnostic phase, for both the patient and the health system. Treatment completion rates were 71% in SAT facilities and 79% in DOT facilities. Costs per completed treatment were US$ 194 for patients and U$ 189 for the health system in SAT facilities, compared to US$ 336 and US$ 726 in DOT facilities. The ICER was US$ 6,616 per completed DOT treatment compared to SAT.Costs incurred by TB patients are high in Rio de Janeiro, especially for those under DOT. The DOT strategy doubles patients' costs and increases by fourfold the health system costs per completed treatment. The additional costs for DOT may be one of the contributing factors to the completion rates below the targeted 85% recommended by WHO.

  6. Core–shell quantum dots: Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  7. Core–shell quantum dots: Properties and applications

    International Nuclear Information System (INIS)

    Vasudevan, D.; Gaddam, Rohit Ranganathan; Trinchi, Adrian; Cole, Ivan

    2015-01-01

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis

  8. Correlation effects in side-coupled quantum dots

    International Nuclear Information System (INIS)

    Zitko, R; Bonca, J

    2007-01-01

    Using Wilson's numerical renormalization group (NRG) technique, we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system, a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures

  9. Nuclear hyperfine structure of muonium in CuCl resolved by means of avoided level crossing

    International Nuclear Information System (INIS)

    Schneider, J.W.; Celio, M.; Keller, H.; Kuendig, W.; Odermatt, W.; Puempin, B.; Savic, I.M.; Simmler, H.; Estle, T.L.; Schwab, C.; Kiefl, R.F.; Renker, D.

    1990-01-01

    We report detailed avoided-level-crossing spectra of a muonium center (Mu II ) in single-crystal CuCl in a magnetic field range of 4--5 T and at a temperature of 100 K. The hyperfine parameters of the muon and the closest two shells of nuclei indicate that this center consists of muonium at a tetrahedral interstice with four Cu nearest neighbors and six Cl next-nearest neighbors and that the spin density is appreciable on the muon and on the ten neighboring nuclei but negligible elsewhere

  10. Activation measurements for thermal neutrons. Part F. 36Cl measurements in Japan

    International Nuclear Information System (INIS)

    Nagashima, Yasuo; Seki, Riki; Matsuhiro, Takeshi; Takahashi, Tsutomu; Sasa, Kimikazu; Usui, Toshihide; Sueki, Keisuke

    2005-01-01

    The development of the accelerator mass spectrometry (AMS) system at the Tandem Accelerator Center of the University of Tsukuba was started in 1995, using the university's own molecular pilot beam technique. Presently, it is the only facility in Japan used to measure 36 Cl (Nagashima et al. 2000). The sensitivity of the 36 Cl AMS system is around 10 -14 36 Cl/Cl atom ratio, which is enough to measure the natural level of the 36 Cl/Cl ratio. The system is characterized by long-term stability, enabling high-quality, continuous measurements over many hours. Our AMS system was used to measure 36 Cl produced in soil by neutrons released into the environment at the time of the JCO criticality accident in Tokai-mura in 1999 (Seki et al. 2003). At the beginning of 2001, our group joined the collaborative efforts to investigate and clarify the discrepancy observed between measurements and calculations of neutron activities induced by the atomic bombings in Hiroshima and Nagasaki. Using our AMS system, 36 Cl was measured in granite samples from Hiroshima exposed to atomic-bomb neutrons and in distant, unexposed samples. (author)

  11. The quantum Hall effect in quantum dot systems

    International Nuclear Information System (INIS)

    Beltukov, Y M; Greshnov, A A

    2014-01-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given

  12. Flow-based determination of methionine in pharmaceutical formulations exploiting TGA-capped CdTe quantum dots for enhancing the luminol-KIO{sub 4} chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min, E-mail: mzhou8367@sina.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang, Ailian [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Jiuquan Enviromental Protection Bureau, Jiuquan 735000 (China); Li, Cong; Luo, Xiaowei; Ma, Yongjun [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2017-03-15

    A novel flow-injection chemiluminescence method (FI-CL) was established for the determination of methionine in this paper, based on its strong enhancement on CL intensity of the luminol-KIO{sub 4} system catalyzed by thioglycolic acid-capped CdTe quantum dots in alkaline media. Under the optimized conditions, the relative CL intensity was in proportion to methionine concentration in the range from 1.0×10{sup −8} to 1.0×10{sup −5} g mL{sup −1} with a detection limit of 6.6×10{sup −9} g mL{sup −1} (3σ). The relative standard deviation (RSD) of the CL intensity for 1.0×10{sup −6} g mL{sup −1} standard methionine solution was 0.97% (n=11). The proposed method was successfully applied to determine methionine in commercial pharmaceutical formulations with recoveries between 98.0% and 101.9%. The possible CL mechanism was discussed as well. - Graphical abstract: Methionine in commercial pharmaceutical formulations was determined by flow-injection chemiluminescence and the possible chemiluminescence mechanism was discussed as well.

  13. Silicon quantum dots: surface matters

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  14. Improvement of pre-treatment method for 36Cl/Cl measurement of Cl in natural groundwater by AMS

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma

    2011-01-01

    Estimation of 36 Cl/Cl by accelerator mass spectrometry (AMS) is a useful method to trace hydrological processes in groundwater. For accurate estimation, separation of SO 4 2- from Cl - in groundwater is required because 36 S affects AMS measurement of 36 Cl. Previous studies utilized the difference in solubility between BaSO 4 and BaCl 2 (BaSO 4 method) to chemically separate SO 4 2- from Cl - . However, the accuracy of the BaSO 4 method largely depends on operator skill, and consequently Cl - recovery is typically incomplete (70-80%). In addition, the method is time consuming (>1 week), and cannot be applied directly to dilute solutions. In this study, a method based on ion-exchange column chromatography (column method) was developed for separation of Cl - and SO 4 2- . Optimum conditions were determined for the diameter and height of column, type and amount of resin, type and concentration of eluent, and flow rate. The recovery of Cl - was almost 100%, which allowed complete separation from SO 4 2- . The separation procedure was short ( 4 methods, and then analyzed by AMS to estimate 36 S counts and 36 Cl/Cl values. 36 S counts in samples processed by the column method were stable and lower than those from the BaSO 4 method. The column method has the following advantages over the BaSO 4 method: (1) complete and stable separation of Cl - and SO 4 2- , (2) less operator influence on results, (3) short processing time ( - , and (5) concentration of Cl - and separation from SO 4 2- in the one system for dilute solutions.

  15. Spin interactions in InAs quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Doty, M.F.; Ware, M.E.; Stinaff, E.A.; Scheibner, M.; Bracker, A.S.; Ponomarev, I.V.; Badescu, S.C.; Reinecke, T.L.; Gammon, D. [Naval Research Lab, Washington, DC 20375 (United States); Korenev, V.L. [A.F. Ioffe Physical Technical Institute, St. Petersburg 194021 (Russian Federation)

    2006-12-15

    Spin interactions between particles in quantum dots or quantum dot molecules appear as fine structure in the photoluminescence spectra. Using the understanding of exchange interactions that has been developed from single dot spectra, we analyze the spin signatures of coupled quantum dots separated by a wide barrier such that inter-dot interactions are negligible. We find that electron-hole exchange splitting is directly evident. In dots charged with an excess hole, an effective hole-hole interaction can be turned on through tunnel coupling. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Artful and multifaceted applications of carbon dot in biomedicine.

    Science.gov (United States)

    Jaleel, Jumana Abdul; Pramod, K

    2018-01-10

    Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Reactive scattering from oriented molecules: The three-center reaction K+ICl --> KI+Cl, KCl+I

    Science.gov (United States)

    Loesch, H. J.; Möller, J.

    1992-12-01

    In a crossed molecular beam experiment, we have measured the angular and time-of-flight (TOF) distributions of the products KCl and KI formed in the reaction K+ICl→KI+Cl, KCl+I at an elevated collision energy of Etr=1.64 eV. Employing the brute force method, we have prepared an oriented ICl beam and studied in addition also the orientation dependence of these distributions. The results are (i) KCl is the dominant product, but also KI is substantially formed with a branching ratio of 4:1; (ii) the double differential reaction cross section in the center-of-mass frame (contour maps) indicates that all products are preferentially forward scattered and constrained to the forward hemisphere; (iii) the KCl flux consists of two distinct components which differ markedly in kinetic energy and dependence on the ICl orientation; there are also indications of the existence of two components of KI; (iv) 65%, 84%, and 64% of the available energy is vested into the internal degrees of freedom for the fast, slow component of KCl and KI, respectively; (v) the existence of two components can be rationalized on the basis of the harpooning mechanism where the jumping electron accesses the ground state or one of the low excited states of the ICl- ion and triggers the subsequent explosion of the ion with more or less kinetic energy of the fragments depending on the initially populated state; (vi) the energies released during dissociation of ICl- in the 2Σ ground state and the first 2Π state are ≤0.19 and ≤1.2 eV, respectively; (vii) the fast KCl component features a negative steric effect suggesting favorable product formation for attacks of K to the I end of ICl, the steric effect of the slow KI component is positive, i.e., attacks to the Cl end form products favorably; the other components exhibit no significant steric effect; (viii) the steric effects can be quantitatively rationalized using the same model as mentioned above; (ix) the magnitude of the steric effect suggests a

  18. A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film.

    Science.gov (United States)

    Chen, Zheng; Gu, Zhi-Gang; Fu, Wen-Qiang; Wang, Fei; Zhang, Jian

    2016-10-26

    Organic-inorganic hybrid lead organohalide perovskites are inexpensive materials for high-efficiency photovoltaic solar cells, optical properties, and superior electrical conductivity. However, the fabrication of their quantum dots (QDs) with uniform ultrasmall particles is still a challenge. Here we use oriented microporous metal-organic framework (MOF) thin film prepared by liquid phase epitaxy approach as a template for CH 3 NH 3 PbI 2 X (X = Cl, Br, and I) perovskite QDs fabrication. By introducing the PbI 2 and CH 3 NH 3 X (MAX) precursors into MOF HKUST-1 (Cu 3 (BTC) 2 , BTC = 1,3,5-benzene tricarboxylate) thin film in a stepwise approach, the resulting perovskite MAPbI 2 X (X = Cl, Br, and I) QDs with uniform diameters of 1.5-2 nm match the pore size of HKUST-1. Furthermore, the photoluminescent properties and stability in the moist air of the perovskite QDs loaded HKUST-1 thin film were studied. This confined fabrication strategy demonstrates that the perovskite QDs loaded MOF thin film will be insensitive to air exposure and offers a novel means of confining the uniform size of the similar perovskite QDs according to the oriented porous MOF materials.

  19. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2016-08-10

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  20. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    International Nuclear Information System (INIS)

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2016-01-01

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  1. Direct-Bandgap InAs Quantum-Dots Have Long-Range Electron--Hole Exchange Whereas Indirect Gap Si Dots Have Short-Range Exchange

    International Nuclear Information System (INIS)

    Juo, J.W.; Franceschetti, A.; Zunger, A.

    2009-01-01

    Excitons in quantum dots manifest a lower-energy spin-forbidden 'dark' state below a spin-allowed 'bright' state; this splitting originates from electron-hole (e-h) exchange interactions, which are strongly enhanced by quantum confinement. The e-h exchange interaction may have both a short-range and a long-range component. Calculating numerically the e-h exchange energies from atomistic pseudopotential wave functions, we show here that in direct-gap quantum dots (such as InAs) the e-h exchange interaction is dominated by the long-range component, whereas in indirect-gap quantum dots (such as Si) only the short-range component survives. As a result, the exciton dark/bright splitting scales as 1/R 2 in InAs dots and 1/R 3 in Si dots, where R is the quantum-dot radius.

  2. Formation of self-assembled quantum dots of iron oxide thin films by spray pyrolysis from non-aqueous medium

    International Nuclear Information System (INIS)

    Desai, J.D.; Pathan, H.M.; Min, Sun-Ki; Jung, Kwang-Deog; Joo, Oh-Shim

    2006-01-01

    Quantum dots (QDs) of iron oxide have been deposited onto ITO coated glass substrates by spray pyrolysis technique, using ferric chloride (FeCl 3 .7H 2 O) in non-aqueous medium as a starting material. The non-aqueous solvents namely methanol, ethanol, propanol, butanol and pentanol were used as solvents. The effect of solvents on the film structure and morphology was studied. The structural, morphological, compositional and optical properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), and optical absorption measurement techniques

  3. Fingerprints of transversal and longitudinal coupling between induced open quantum dots in the longitudinal magneto-conductance through anti-dot lattices

    International Nuclear Information System (INIS)

    Ujevic, Sebastian; Mendoza, Michel

    2011-01-01

    Full text. We propose numerical simulations of longitudinal magneto conductance through a finite anti dot lattice located inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal magneto conductance and the generation of transversal couplings between the induced open quantum dots in the system. The system presents longitudinal magneto conductance maps with crossovers (between transversal bands) and closings (longitudinal decoupling) of fundamental quantum states related to the open quantum dots induced by the anti dot lattice. A relationship is observed between the distribution of anti dots and the formed conductance bands, allowing a systematic follow-up of the bands as a function of the applied magnetic field and quantum point contact width. We observed a high conductance intensity (between n- and (n + 1)-quantum of conductance, n = 1; 2...) in the regions of crossover and closing of states. This suggests transversal couplings between the induced open quantum dots of the system that can be modulated by varying both the anti dots potential and the quantum point contact width. A new continuous channel (not expected) is induced by the variation of the contact width and generate Fano resonances in the conductance. These resonances can be manipulated by the applied magnetic field

  4. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  5. Quantum dot systems: artificial atoms with tunable properties

    International Nuclear Information System (INIS)

    Weis, J.

    2005-01-01

    Full text: Quantum dots - also called zero-dimensional electron systems or artificial atoms - are physical objects where the constituent electrons are confined in a small spatial region, leading to discrete eigenvalues for the energies of the confined electrons. Large quantum dots offer a dense energy spectrum comparable to that of metallic grains, whereas small quantum dots more closely resemble atoms in their electronic properties. Quantum dots can be linked to leads by tunnel barriers, hence permitting electrical transport measurements: Coulomb blockade and single-electron charging effects are observed due to the repulsive electron electron interaction on the quantum dot site. Usually fabricated by conventional semiconductor growth and processing technology, the advantage is that both simple and also more complex quantum dot systems can be designed to purpose, acting as model systems with in-situ tunable parameters such as the number of confined electrons in the quantum dot and the strength of the tunnel coupling to the leads, electrostatically controlled by the applied voltages to gate electrodes. With increasing the tunnel coupling to the leads, the virtual occupation of the quantum dot from the leads becomes more and more important -- the simple description of electrical transport by single-electron tunneling events breaks down. The basic physics is described by the Kondo physics based on the Anderson impurity model. A system consisting of strongly electrostatically coupled quantum dots with separate leads to each quantum dot represent another realization of the Anderson impurity model. Experiments to verify the analogy are presented. The experimental data embedded within this tutorial have been obtained with Alexander Huebel, Matthias Keller, Joerg Schmid, David Quirion, Armin Welker, Ulf Wilhelm, and Klaus von Klitzing. (author)

  6. Iridium- and ruthenium-catalysed synthesis of 2,3-disubstituted indoles from anilines and vicinal diols

    DEFF Research Database (Denmark)

    Tursky, Matyas; Lorentz-Petersen, Linda Luise Reeh; Olsen, L. B.

    2010-01-01

    A straightforward and atom-economical method is described for the synthesis of 2,3-disubstituted indoles. Anilines and 1,2-diols are condensed under neat conditions with catalytic amounts of either [Cp*IrCl2](2)/MsOH or RuCl3 center dot xH(2)O/phosphine (phosphine = PPh3 or xantphos). The reactio...... the alpha-hydroxyimine which rearranges to the corresponding alpha-aminoketone. Acid-or metal-catalysed electrophilic ring-closure with the release of water then furnishes the indole product....

  7. Using of Quantum Dots in Biology and Medicine.

    Science.gov (United States)

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  8. Quantum Dots and Their Multimodal Applications: A Review

    Directory of Open Access Journals (Sweden)

    Paul H. Holloway

    2010-03-01

    Full Text Available Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence or electric field (electroluminescence. In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  9. Spin interactions in InAs quantum dots

    Science.gov (United States)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  10. Inter-dot coupling effects on transport through correlated parallel

    Indian Academy of Sciences (India)

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  11. Two path transport measurements on a triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Maximilian C.; Haug, Rolf J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2008-07-01

    We present a novel triple quantum dot device made with local anodic oxidation on a GaAs/AlGaAs heterostructure. The geometry provides two path transport via a three lead setup with each lead connected to one of the three quantum dots. In addition charge detection is implemented via a quantum point contact. One lead is used as a common source contact, the other two are used as two separate drain contacts with independent current measurement. Thus two paths are formed with two dots in each path. Along both paths serial transport is observed at the triple points of the two corresponding dots. With four side gates a wide tunability is given. Thus the system can be tuned in and out of triple dot resonances. When all three dots come into resonance, quadruple points are formed with simultaneous transport along both paths. The data are analysed in combined two colour plots and compared to the charge detection showing sets of three different lines, one for each dot. This way the two path setup allows to investigate the transition from double dot physics to triple dot physics.

  12. Tunable single quantum dot nanocavities for cavity QED experiments

    International Nuclear Information System (INIS)

    Kaniber, M; Laucht, A; Neumann, A; Bichler, M; Amann, M-C; Finley, J J

    2008-01-01

    We present cavity quantum electrodynamics experiments performed on single quantum dots embedded in two-dimensional photonic crystal nanocavities. We begin by describing the structural and optical properties of the quantum dot sample and the photonic crystal nanocavities and compare the experimental results with three-dimensional calculations of the photonic properties. The influence of the tailored photonic environment on the quantum dot spontaneous emission dynamics is studied using spectrally and spatially dependent time-resolved spectroscopy. In ensemble and single dot measurements we show that the photonic crystals strongly enhance the photon extraction efficiency and, therefore, are a promising concept for realizing efficient single-photon sources. Furthermore, we demonstrate single-photon emission from an individual quantum dot that is spectrally detuned from the cavity mode. The need for controlling the spectral dot-cavity detuning is discussed on the basis of shifting either the quantum dot emission via temperature tuning or the cavity mode emission via a thin film deposition technique. Finally, we discuss the recently discovered non-resonant coupling mechanism between quantum dot emission and cavity mode for large detunings which drastically lowers the purity of single-photon emission from dots that are spectrally coupled to nanocavity modes.

  13. Use of Dictionary of Occupational Titles (DOT) on formwork carpentry--a comparison between the United States and Hong Kong.

    Science.gov (United States)

    Lee, Gloria K L; Chan, Chetwyn C H

    2003-01-01

    This study aimed at investigating the utilization and applicability of the Dictionary of Occupational Titles (DOT) as a methodology to study the job profile (nature and physical demand) of formwork carpentry in the local situation. Thirty male formwork carpenters were recruited by convenient sampling to participate in a two-hour interview, with reference to the DOT Physical Demand Questionnaire (DOTPDQ) and the WestTool Sort Questionnaire. The information obtained was further consolidated by comparing the results from the interview to three construction sites and training guidelines from the formwork carpentry training centers. The triangulation of the data formulated a job profile of formwork carpenters. The results from the DOTPDQ revealed that workers' work demands were standing, walking, pushing, pulling, reaching, climbing, balancing, stooping, crouching, lifting, carrying, handling and near acuity. This produced an agreement of 84.6% with the original DOT. A discrepancy was found in the demands of kneeling, fingering, far acuity and depth perception. The discrepancy between the data from the United States and local appeared to be minimal. It was thus inferred that the DOT-based job profile was largely valid for describing formwork carpentry in Hong Kong. In-depth analysis should be conducted to further substantiate the validity of utilizing the DOT system for other job types and their physical demands.

  14. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  15. Determination of the equilibrium constant of FeZrCl6 formation from FeCl3 and ZrCl4

    International Nuclear Information System (INIS)

    Berdonosov, S.S.; Kharisov, B.I.; Nikitin, M.I.

    1992-01-01

    Equilibrium pressures of chlorine formed in the course of reaction FeCl 3 +ZrCl 4 ↔ FeZrCl 6 +0.5 Cl 2 were determined at the temperatures of 250-325 deg C. The values of equilibrium constant K p of the reaction mentioned at the temperatures of 250, 275, 300 and 325 deg were calculated, taking into consideration the determined values of p Cl2 and literature data on equilibrium pressures of ZrCl 4 and FeCl 3 vapours

  16. Determination of 36Cl in environmental samples collected in the JCO by AMS

    International Nuclear Information System (INIS)

    Seki, R.; Tsukuba Univ., Ibaraki; Arai, D.; Nagashima, Y.; Takahashi, T.; Matsuhiro, T.; Imanaka, T.

    2003-01-01

    Long-lived chlorine, 36 Cl (T 1/2 = 301,000 y) in environmental samples has been measured by the AMS system installed in Tandem Accelerator Center, University of Tsukuba. A tri-carbon-molecular 12 C 3 - pilot beam method is used to stabilize the terminal voltage of the tandem. A small amount of pure carbon graphite is well mixed into a AgCl target material for creating Cl - and 12 C 3 - in the ion source. A 36 S isobaric interference in the system is eliminated to determine 36 Cl in environmental samples by chemical procedure. Some samples containing chlorine such as soil, chemical reagents and table salt have been collected in the JCO criticality accident site and analyzed to detect neutron-induced 36 Cl. The experimental result has been compared with a theoretical calculation. (author)

  17. Vacuum-induced coherence in quantum dot systems

    Science.gov (United States)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  18. Silicon-Vacancy Color Centers in Nanodiamonds: Cathodoluminescence Imaging Marker in the Near Infrared

    OpenAIRE

    Zhang, Huiliang; Aharonovich, Igor; Glenn, David R.; Schalek, R.; Magyar, Andrew P.; Lichtman, Jeff W.; Hu, Evelyn L.; Walsworth, Ronald L.

    2013-01-01

    We demonstrate that nanodiamonds fabricated to incorporate silicon-vacancy (Si-V) color centers provide bright, spectrally narrow, and stable cathodoluminescence (CL) in the near-infrared. Si-V color centers containing nanodiamonds are promising as non-bleaching optical markers for correlated CL and secondary electron microscopy, including applications to nanoscale bioimaging.

  19. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  20. Separation of CsCl and SrCl_2 from a ternary CsCl-SrCl_2-LiCl via a zone refining process for waste salt minimization of pyroprocessing

    International Nuclear Information System (INIS)

    Shim, Moonsoo; Choi, Ho Gil; Yi, Kyung Woo; Hwang, Il Soon; Lee, Jong Hyeon

    2016-01-01

    The purification of LiCl salt mixture has traditionally been carried out by a melt crystallization process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone refining method was used to grow pure LiCl salt ingots from LiCl-CsCl-SrCl_2 salt mixture. The main investigated parameters were the heater speed and the number of passes. A change in the LiCl crystal grain size was observed according to the horizontal direction. From each zone refined salt ingot, samples were collected horizontally. To analyze the concentrations of Sr and Cs, an inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer were used, respectively. The experimental results show that Sr and Cs concentrations at the initial region of the ingot were low and reached their peak at the final freezing region of the salt ingot. Concentration results of zone refined salt were compared with theoretical results yielded by the proposed model to validate its predictions. The k_e_f_f of Sr and Cs were 0.13 and 0.11, respectively. The decontamination factors of Sr and Cs were 450 and 1650, respectively. - Highlights: • The LiCl-CsCl-SrCl_2 salt ingot was purified by zone refining technique to minimize waste salt. • The concentration distribution of Cs and Sr were analyzed by mass transfer equation. • The decontamination factors of Cs and Sr were 1600 and 450 respectively in case of 60% of recovery yield.

  1. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  2. Sphere and dot product representations of graphs

    NARCIS (Netherlands)

    R.J. Kang (Ross); T. Müller (Tobias)

    2012-01-01

    textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such

  3. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  4. Influence of surface states of CuInS{sub 2} quantum dots in quantum dots sensitized photo-electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Wu, Lei [School of Electronic and Electrical, Wuhan Railway Vocational College of Technology, Wuhan 430205 (China); Zhao, Yinghan; Chen, Keqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-12-01

    Graphical abstract: J–V curves of different ligands capped CuInS{sub 2} QDs sensitized TiO{sub 2} photo-electrodes. - Highlights: • DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared. • Surface states of quantum dots greatly influence the electrochemical performance of CuInS{sub 2} quantum dot sensitized photo-electrodes. • S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes. - Abstract: Surface states are significant factor for the enhancement of electrochemical performance in CuInS{sub 2} quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S{sup 2−} ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S{sup 2−}-capped CuInS{sub 2} quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  5. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.

    Science.gov (United States)

    Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V

    2015-06-10

    Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

  6. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid.

    Science.gov (United States)

    Shah, Syed Niaz Ali; Li, Haifang; Lin, Jin-Ming

    2016-06-01

    A new sensitized chemiluminescence (CL) was developed to broaden the analytical application of KIO4-H2O2 system. The nitrogen doped carbon dots (N-CDs) dramatically boosted the CL intensity of KIO4-H2O2 system which was further enriched by basic medium. In light of EPR analysis, free radical scavenging studies and CL spectra the detail mechanism for the enhancement was conferred in the presence of N-CDs and NaOH. The results suggested that CL of KIO4-H2O2 system in the presence and absence of N-CDs and NaOH proceeds via radical pathway. The enhanced CL was used for the determination of pyrogallol and gallic acid in range of 1.0×10(-4)-1.0×10(-7)M with 4.6×10(-8) and 6.1×10(-8)M limit of detection respectively. The relative standard deviation (RSD) at a concentration of 10(-5) for gallic acid and pyrogallol was 1.4% and 2.3% respectively (n=11). The attained results unveil that the present method is sensitive, faster, simpler and less costly compared to other methods and could be applied to determine polyphenols in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Kondo and mixed-valence regimes in multilevel quantum dots

    International Nuclear Information System (INIS)

    Chudnovskiy, A. L.; Ulloa, S. E.

    2001-01-01

    We investigate the dependence of the ground state of a multilevel quantum dot on the coupling to an external fermionic system and on the interactions in the dot. As the coupling to the external system increases, the rearrangement of the effective energy levels in the dot signals the transition from the Kondo regime to a mixed-valence (MV) regime. The MV regime in a two-level dot is characterized by an intrinsic mixing of the levels in the dot, resulting in nonperturbative subtunneling and supertunneling phenomena that strongly influence the Kondo effect

  8. Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO4)(H2O)4Cl]Cl·H2O.

    Science.gov (United States)

    Lin, Jian; Bao, Hongliang; Qie, Meiying; Silver, Mark A; Yue, Zenghui; Li, Xiaoyun; Zhu, Lin; Wang, Xiaomei; Zhang, Linjuan; Wang, Jian-Qiang

    2018-06-05

    Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO 4 )(H 2 O) 4 Cl]Cl·H 2 O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO 4 )(H 2 O) 4 Cl] + with Cl - as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th 4+ center in TMC are vulnerable to competition with F - , due to the formation of more favorable Th-F bonds compared to Th-OH 2 . This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.

  9. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  10. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M.; Kim, H.J., E-mail: hongjooknu@gmail.com; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-02-15

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator.

  11. Quantum dots and nanocomposites.

    Science.gov (United States)

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  12. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingli; Yin, Huancai; Bai, Pengli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Miao, Peng [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Xudong [Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7 (Canada); Xu, Yingxue [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jun [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Jian, E-mail: yinj@sibet.ac.cn [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China)

    2016-07-15

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity of QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.

  13. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  14. Transport through a vibrating quantum dot: Polaronic effects

    International Nuclear Information System (INIS)

    Koch, T; Alvermann, A; Fehske, H; Loos, J; Bishop, A R

    2010-01-01

    We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.

  15. Red Dot Basal Cell Carcinoma: Report of Cases and Review of This Unique Presentation of Basal Cell Carcinoma.

    Science.gov (United States)

    Cohen, Philip R

    2017-03-22

    Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that

  16. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  17. Blood-derived small Dot cells reduce scar in wound healing

    International Nuclear Information System (INIS)

    Kong, Wuyi; Li Shaowei; Longaker, Michael T.; Lorenz, H. Peter

    2008-01-01

    Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin β1, CD184, CD34, CD13 low and Sca1 low , but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 μm diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherin and integrin β1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells

  18. Use of thermodynamic calculation for investigating phase diagram of the ternary system NaCl-PbCl2-NdCl3

    International Nuclear Information System (INIS)

    Kostygov, V.I.; Potemin, S.S.

    1984-01-01

    Thermodynamic calculation of meltability diagram of ternary system NaCl-PbCl 2 -NdCl 3 with the use of literature and experimental data on meltability diagrams of binary systems forming it, as well as data on crystallization heats of the components, has been carried out. Equations are derived under condition of pseudoperfection of the ternary system. 64 mol.% PbCl 2 , 26 mol.% NaCl, 10 mol.% NdCl 3 and average temperature of crystallization 391 deg C correspond to the calculated composition of the ternary eutectics, 49 mol.% PbCl 2 , 35 mol.% NaCl, 16 mol.% NdCl 3 and average temperature of peritectic transformation 416 deg C - to the composition of the ternary peritectic. The results obtained agree well with the experimental data

  19. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  1. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    International Nuclear Information System (INIS)

    Galindez-Ramirez, G; Perez-Merchancano, S T; Paredes Gutierrez, H; Gonzalez, J D

    2010-01-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  2. Optical localization of quantum dots in tapered nanowires

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; Gregersen, Niels; Fons, Romain

    2017-01-01

    In this work we have measured the far-field emission patterns of In As quantum dots embedded in a GaAs tapered nanowire and used an open-geometry Fourier modal method for determining the radial position of the quantum dots by computing the far-field emission pattern for different quantum dot...

  3. Ordered quantum-ring chains grown on a quantum-dot superlattice template

    International Nuclear Information System (INIS)

    Wu Jiang; Wang, Zhiming M.; Holmes, Kyland; Marega, Euclydes; Mazur, Yuriy I.; Salamo, Gregory J.

    2012-01-01

    One-dimensional ordered quantum-ring chains are fabricated on a quantum-dot superlattice template by molecular beam epitaxy. The quantum-dot superlattice template is prepared by stacking multiple quantum-dot layers and quantum-ring chains are formed by partially capping quantum dots. Partially capping InAs quantum dots with a thin layer of GaAs introduces a morphological change from quantum dots to quantum rings. The lateral ordering is introduced by engineering the strain field of a multi-layer InGaAs quantum-dot superlattice.

  4. Capping layer growth rate and the optical and structural properties of GaAsSbN-capped InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa, J. M., E-mail: jmulloa@isom.upm.es; Utrilla, A. D.; Guzman, A.; Hierro, A. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM) and Dpto. Ingeniería Electrónica, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Reyes, D. F.; Ben, T.; González, D. [Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cádiz, 11510 Puerto Real (Cádiz) (Spain)

    2014-10-07

    Changing the growth rate during the heteroepitaxial capping of InAs/GaAs quantum dots (QDs) with a 5 nm-thick GaAsSbN capping layer (CL) strongly modifies the QD structural and optical properties. A size and shape transition from taller pyramids to flatter lens-shaped QDs is observed when the CL growth rate is decreased from 1.5 to 0.5 ML/s. This indicates that the QD dissolution processes taking place during capping can be controlled to some extent by the GaAsSbN CL growth rate, with high growth rates allowing a complete preservation of the QDs. However, the dissolution processes are shown to have a leveling effect on the QD height, giving rise to a narrower size distribution for lower growth rates. Contrary to what could be expected, these effects are opposite to the strong blue-shift and improvement of the photoluminescence (PL) observed for higher growth rates. Nevertheless, the PL results can be understood in terms of the strong impact of the growth rate on the Sb and N incorporation into the CL, which results in lower Sb and N contents at higher growth rates. Besides the QD-CL band offsets and QD strain, the different CL composition alters the band alignment of the system, which can be transformed to type-II at low growth rates. These results show the key role of the alloyed CL growth parameters on the resulting QD properties and demonstrate an intricate correlation between the PL spectra and the sample morphology in complex QD-CL structures.

  5. Detection of CdSe quantum dot photoluminescence for security label on paper

    Energy Technology Data Exchange (ETDEWEB)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok [Research Center for Physics, Indonesian Institute of Science, Building 442 Puspiptek Serpong, South Tangerang, Banten, Indonesia 15314 (Indonesia); Bilqis, Ratu; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. Soedarto, Tembalang, Semarang, Indonesia 50275 (Indonesia)

    2016-02-08

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  6. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  7. SEPARATION OF CsCl FROM LiCl-CsCl MOLTEN SALT BY COLD FINGER MELT CRYSTALLIZATION

    Directory of Open Access Journals (Sweden)

    JOSHUA R. VERSEY

    2014-06-01

    Full Text Available This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%, cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min, and separation times (5, 10, 15, and 30 min. Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

  8. DotFETs : MOSFETs strained by a Single SiGE dot in a Low-Temperature ELA Technology

    NARCIS (Netherlands)

    Biasotto, C.

    2011-01-01

    The work presented in this thesis was performed in the context of the European Sixth Framework Program FP6 project “Disposable Dot Field Effect Transistor for High Speed Si Integrated Circuits”, referred to as the D-DotFET project. The project had the goal of realizing strain-enhanced mobility in

  9. Coherent radiation by quantum dots and magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V. I.; Yukalova, E. P.

    2014-01-01

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins

  10. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  11. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    -low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record...

  12. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  13. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  14. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  15. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    Science.gov (United States)

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  16. The effect of near laterally and vertically neighboring quantum dots on the composition of uncapped InxGa1−xAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Donglin, Wang; Zhongyuan, Yu; Yumin, Liu; Han, Ye; Pengfei, Lu; Xiaotao, Guo; Long, Zhao; Xia, Xin

    2010-01-01

    The composition of quantum dots has a direct effect on the optical and electronic properties of quantum-dot-based devices. In this paper, we combine the method of moving asymptotes and finite element tools to compute the composition distribution by minimizing the Gibbs free energy of quantum dots, and use this method to study the effect of near laterally and vertically neighboring quantum dots on the composition distribution. The simulation results indicate that the effect from the laterally neighboring quantum dot is very small, and the vertically neighboring quantum dot can significantly influence the composition by the coupled strain field

  17. Fabrication of quantum-dot devices in graphene

    Directory of Open Access Journals (Sweden)

    Satoshi Moriyama, Yoshifumi Morita, Eiichiro Watanabe, Daiju Tsuya, Shinya Uji, Maki Shimizu and Koji Ishibashi

    2010-01-01

    Full Text Available We describe our recent experimental results on the fabrication of quantum-dot devices in a graphene-based two-dimensional system. Graphene samples were prepared by micromechanical cleavage of graphite crystals on a SiO2/Si substrate. We performed micro-Raman spectroscopy measurements to determine the number of layers of graphene flakes during the device fabrication process. By applying a nanofabrication process to the identified graphene flakes, we prepared a double-quantum-dot device structure comprising two lateral quantum dots coupled in series. Measurements of low-temperature electrical transport show the device to be a series-coupled double-dot system with varied interdot tunnel coupling, the strength of which changes continuously and non-monotonically as a function of gate voltage.

  18. Enhanced Photoelectrochemical Response of Zn-Dotted Hematite

    Directory of Open Access Journals (Sweden)

    Saroj Kumari

    2007-01-01

    Full Text Available Photoelectrochemical response of thin films of α-Fe2O3, Zn doped α-Fe2O3, and Zn dots deposited on doped α-Fe2O3 prepared by spray pyrolysis has been studied. Samples of Zn dots were prepared using thermal evaporation method by evaporating Zn through a mesh having pore diameter of 0.7 mm. The presence of Zn-dotted islands on doped α-Fe2O3 surface exhibited significantly large photocurrent density as compared to other samples. An optimum thickness of Zn dots ∼230 Å is found to give enhanced photoresponse. The observed results are analyzed with the help of estimated values of resistivity, band gap, flatband potential, and donor density.

  19. Separation of CsCl and SrCl{sub 2} from a ternary CsCl-SrCl{sub 2}-LiCl via a zone refining process for waste salt minimization of pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Moonsoo [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 (Korea, Republic of); Choi, Ho Gil; Yi, Kyung Woo; Hwang, Il Soon [Graduate School of Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 (Korea, Republic of); Graduate School of Department of Advanced Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 (Korea, Republic of); Rapid Solidified Materials Research Center, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 (Korea, Republic of)

    2016-11-15

    The purification of LiCl salt mixture has traditionally been carried out by a melt crystallization process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone refining method was used to grow pure LiCl salt ingots from LiCl-CsCl-SrCl{sub 2} salt mixture. The main investigated parameters were the heater speed and the number of passes. A change in the LiCl crystal grain size was observed according to the horizontal direction. From each zone refined salt ingot, samples were collected horizontally. To analyze the concentrations of Sr and Cs, an inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer were used, respectively. The experimental results show that Sr and Cs concentrations at the initial region of the ingot were low and reached their peak at the final freezing region of the salt ingot. Concentration results of zone refined salt were compared with theoretical results yielded by the proposed model to validate its predictions. The k{sub eff} of Sr and Cs were 0.13 and 0.11, respectively. The decontamination factors of Sr and Cs were 450 and 1650, respectively. - Highlights: • The LiCl-CsCl-SrCl{sub 2} salt ingot was purified by zone refining technique to minimize waste salt. • The concentration distribution of Cs and Sr were analyzed by mass transfer equation. • The decontamination factors of Cs and Sr were 1600 and 450 respectively in case of 60% of recovery yield.

  20. From quantum dots to quantum circuits

    International Nuclear Information System (INIS)

    Ensslin, K.

    2008-01-01

    Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse

  1. Double quantum dot as a minimal thermoelectric generator

    OpenAIRE

    Donsa, S.; Andergassen, S.; Held, K.

    2014-01-01

    Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.

  2. Circularly organized quantum dot nanostructures of Ge on Si substrates

    International Nuclear Information System (INIS)

    Cai, Qijia; Chen, Peixuan; Zhong, Zhenyang; Jiang, Zuimin; Lu, Fang; An, Zhenghua

    2009-01-01

    A novel circularly arranged structure of germanium quantum dots has been fabricated by combining techniques including electron beam lithography, wet etching and molecular beam epitaxy. It was observed that both pattern and growth parameters affect the morphology of the quantum dot molecules. Meanwhile, the oxidation mask plays a vital role in the formation of circularly organized quantum dots. The experimental results demonstrate the possibilities of investigating the properties of quantum dot molecules as well as single quantum dots

  3. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  4. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor.

    Science.gov (United States)

    Gao, Xue; Tang, Guangchao; Su, Xingguang

    2012-01-01

    In this paper, we report a sensitive and selective method for detection of organophosphorus compounds (OPs) based on Mn:ZnSe d-dots-enzyme-hydrogen peroxide (H(2)O(2)) fluorescence quenching system. Acetylcholine esterase (AChE) can hydrolyze acetylcholine (ACh) to choline. Subsequently, choline oxidase (ChOx) oxidizes choline to generate H(2)O(2). The enzyme-generated H(2)O(2) can quench the fluorescence of Mn:ZnSe d-dots. When paraoxon are introduced in solution, it can interact with the active centers of AChE and decrease the enzyme activity. This leads to the decrease of the H(2)O(2) production and then the fluorescence quenching rate of Mn:ZnSe d-dots. Experimental results showed that the enzyme inhibition percentage of Mn:ZnSe d-dots-ChOx-AChE-ACh system was proportional to the logarithm of paraoxon in the range 4.84×10(-11) to 4.84×10(-6) mol/L with the detection limit (S/N=3) of 1.31×10(-11) mol/L. The proposed biosensor has been employed for quick determination of paraoxon in tap water and milk samples with satisfactory reproducibility and accuracy. This nano-biosensor was proved to be sensitive, rapid, simple and tolerance of most interfering substances. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    Directory of Open Access Journals (Sweden)

    Yudi Darma

    2008-03-01

    Full Text Available Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of annealing temperature in the range of 550-800oC has been evaluated by XPS analysis and confirms the diffusion of Ge atoms from Ge core towards the Si clad accompanied by formation of GeOx at the Si clad surface. The first subband energy at the valence band of Si dot with Ge core has been measured as an energy shift at the top of the valence band density of state using XPS. The systematic shift of the valence band maximum towards higher binding energy with progressive deposition in the dot formation indicate the charging effect of dots and SiO2 layer by photoemission during measurements.

  6. Electric conductivity of PCl5-ZrCl4, PCl5-TaCl5, and PCl5-MoCl5 molten mixtures

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Red'kin, A.A.; Moskalenko, N.I.

    1997-01-01

    When mixing individual molecular melts of PCl 5 with ZrCl 4 , TaCl 5 or with MoCl 5 , an essential (by several orders) increase in electric conductivity (up to 0.02-0.1 Ohm -1 ·cm -1 ), which stems, in all probability, from the appearance of complex ions PCl 4 + , ZrCl 5 - , ZrCl 6 2- , TaCl 5 - and MoCl 6 - in the molten mixtures as a result of chemical interaction

  7. Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode

    International Nuclear Information System (INIS)

    Jian, Xuan; Yang, Hui-min; Li, Jia-gang; Zhang, Er-hui; Cao, Le-le; Liang, Zhen-hai

    2017-01-01

    Highlights: • Porous nanostructure carbon quantum dots/polypyrrole composite film was successfully synthesized by direct electrochemical method. • A flexible all-solid-state supercapacitor device was fabricated using the carbon quantum dots/polypyrrole composite electrode. • The flexible supercapacitor exhibits high specific capacitance, excellent reliability and long cycling life. - Abstract: Recently, carbon quantum dots (CQDs) as a new zero-dimensional carbon nanomaterial have become a focus in electrochemical energy storage. In this paper, flexible all-solid-state supercapacitors (ASSSs) were electrochemically synthesized by on-step co-deposition of appropriate amounts of pyrrole monomer and CQDs in aqueous solution. The different electrodeposition time plays an important role in controlling morphologies of stainless steel wire meshes (SSWM)-supported CQDs/PPy composite film. The morphologies and compositions of the obtained CQDs/PPy composite electrodes were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Furthermore, a novel flexible ASSS device was fabricated using CQDs/PPy composite as the electrode and separated by polyvinyl alcohol/LiCl gel electrolyte. Benefiting from superior electrochemical properties of CQDs and PPy, the as-prepared CQDs/PPy composite ASSSs exhibit outstanding electrochemical performance with the areal capacitance 315 mF cm −2 (corresponding to specific capacitance of 308 F g −1 ) at a current density of 0.2 mA cm −2 and long cycle life with 85.7% capacitance retention after 2 000 cycles.

  8. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  9. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  10. The role of the tunneling matrix element and nuclear reorganization in the design of quantum-dot cellular automata molecules

    Science.gov (United States)

    Henry, Jackson; Blair, Enrique P.

    2018-02-01

    Mixed-valence molecules provide an implementation for a high-speed, energy-efficient paradigm for classical computing known as quantum-dot cellular automata (QCA). The primitive device in QCA is a cell, a structure with multiple quantum dots and a few mobile charges. A single mixed-valence molecule can function as a cell, with redox centers providing quantum dots. The charge configuration of a molecule encodes binary information, and device switching occurs via intramolecular electron transfer between dots. Arrays of molecular cells adsorbed onto a substrate form QCA logic. Individual cells in the array are coupled locally via the electrostatic electric field. This device networking enables general-purpose computing. Here, a quantum model of a two-dot molecule is built in which the two-state electronic system is coupled to the dominant nuclear vibrational mode via a reorganization energy. This model is used to explore the effects of the electronic inter-dot tunneling (coupling) matrix element and the reorganization energy on device switching. A semi-classical reduction of the model also is made to investigate the competition between field-driven device switching and the electron-vibrational self-trapping. A strong electron-vibrational coupling (high reorganization energy) gives rise to self-trapping, which inhibits the molecule's ability to switch. Nonetheless, there remains an expansive area in the tunneling-reorganization phase space where molecules can support adequate tunneling. Thus, the relationship between the tunneling matrix element and the reorganization energy affords significant leeway in the design of molecules viable for QCA applications.

  11. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  12. Realization of electrically tunable single quantum dot nanocavities

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Felix Florian Georg

    2009-03-15

    We investigated the design, fabrication and optical investigation of electrically tunable single quantum dot-photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light matter interaction. We demonstrate that the quantum confined Stark effect can be employed to quickly and reversibly switch the dot-cavity coupling, simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by up to {proportional_to}4 meV relative to the nanocavity mode, before the emission quenches due to carrier tunneling escape from the dots. We directly probe spontaneous emission, irreversible polariton decay and the statistics of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. The structures investigated are p-i-n photodiodes consisting of an 180nm thick free-standing GaAs membrane into which a two dimensional photonic crystal is formed by etching a triangular lattice of air holes. Low mode volume nanocavities (V{sub mode}<1.6 ({lambda}/n){sup 3}) are realized by omitting 3 holes in a line to form L3 cavities and a single layer of InGaAs self-assembled quantum dots is embedded into the midpoint of the membrane. The nanocavities are electrically contacted via 35 nm thick p- and n-doped contact layers in the GaAs membrane. In the weak coupling regime, time resolved spectroscopy reveals a {proportional_to}7 x shortening of the spontaneous emission lifetime as the dot is tuned through the nanocavity mode, due to the Purcell effect. Upon strongly detuning the same quantum dot transition from the nanocavity mode we observe an additional {proportional_to}8 x lengthening of the spontaneous emission lifetime. These observations unequivocally highlight two regimes of dot

  13. Shape, strain, and ordering of lateral InAs quantum dot molecules

    International Nuclear Information System (INIS)

    Krause, B.; Metzger, T.H.; Rastelli, A.; Songmuang, R.; Kiravittaya, S.; Schmidt, O. G.

    2005-01-01

    The results of an x-ray study on freestanding, self-assembled InAs/GaAs quantum dots grown by molecular beam epitaxy are presented. The studied samples cover the range from statistically distributed single quantum dots to quantum dot bimolecules, and finally to quantum dot quadmolecules. The x-ray diffraction data of the single quantum dots and the bimolecules, obtained in grazing incidence geometry, have been analyzed using the isostrain model. An extended version of the isostrain model has been developed, including the lateral arrangement of the quantum dots within a quantum dot molecule and the superposition of the scattering from different parts of the dots. This model has been applied to the scattering maps of all three samples. Quantitative information about the positions of the dots, the shape, and the lattice parameter distribution of their crystalline core has been obtained. For the single dot and the bimolecule, a strong similarity of the shape and lattice parameter distribution has been found, in agreement with the similarity of their photoluminescence spectra

  14. Seperation of CsCl from LiCl-CsCl molten salt by cold finger melt cryst allization

    Energy Technology Data Exchange (ETDEWEB)

    Versey, Joshua R. [Dept. of Chemical and Materials Engineering and Nuclear Engineering Program University of Idaho, Idaho (United States); Phongikaroon, Supathorn [Dept. of Mechanical and Nuclear Engineering Virginia Commonwealth University, Richmond (Korea, Republic of); Simpson, Michael F. [Dept. of Metallurgical Engineering University of Utah, Utah (Korea, Republic of)

    2014-06-15

    This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%), cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min), and separation times (5, 10, 15, and 30 min). Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

  15. Micromagnetic simulations of submicron cobalt dots

    International Nuclear Information System (INIS)

    Parker, G. J.; Cerjan, C.

    2000-01-01

    Numerical simulations of submicron Co extruded elliptical dots were performed to illustrate the relative importance of different physical parameters on the switching behavior in the easy direction. Shape, size, magnetic moment magnitude, and the magnitude and distribution of the crystalline anisotropicity were varied. The simulation represents magnetostatic, exchange, and crystalline anisotropicity fields on a structured mesh using finite difference techniques. The smooth boundary of the dots is accurately represented by use of the embedded curve boundary method. Agreement with experimental hysteresis measurements of submicron dot arrays is obtained when an appropriate angular distribution of the grain anisotropicity axes is invoked. (c) 2000 American Institute of Physics

  16. Purple-bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films.

    Science.gov (United States)

    Lukashev, Eugeny P; Knox, Petr P; Gorokhov, Vladimir V; Grishanova, Nadezda P; Seifullina, Nuranija Kh; Krikunova, Maria; Lokstein, Heiko; Paschenko, Vladimir Z

    2016-11-01

    Quantum dots (QDs) absorb ultraviolet and long-wavelength visible light energy much more efficiently than natural bacterial light-harvesting proteins and can transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion of RCs combined with QDs as antennae into liposomes opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components or inorganic components alone. RCs from Rhodobacter sphaeroides and QDs (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent. The efficiency of RC and QD interaction within the liposomes was estimated using fluorescence excitation spectra of the photoactive bacteriochlorophyll of the RCs and by measuring the fluorescence decay kinetics of the QDs. The functional activity of the RCs in hybrid complexes was fully maintained, and their stability was even increased. The efficiency of energy transfer between QDs and RCs and conditions of long-term stability of function of such hybrid complexes in film preparations were investigated as well. It was found that dry films containing RCs and QDs, maintained at atmospheric humidity, are capable of maintaining their functional activity for at least some months as judged by measurements of their spectral characteristics, efficiency of energy transfer from QDs to RCs and RC electron transport activity. Addition of trehalose to the films increases the stability further, especially for films maintained at low humidity. These stable hybrid film structures are promising for further studies towards developing new phototransformation devices for biotechnological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    OpenAIRE

    Yudi Darma

    2008-01-01

    Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter) have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD) on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of ...

  18. Distribution of {sup 36}Cl/Cl in a river-recharged aquifer: Implications for the fallout rate of bomb-produced {sup 36}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, Yuki, E-mail: tosaki@tac.tsukuba.ac.j [Sustainable Environmental Studies, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Massmann, Gudrun [Institute of Geological Sciences, Department of Earth Sciences, Freie Universitaet Berlin, Malteserstrasse 74-100, 12249 Berlin (Germany); Tase, Norio [Sustainable Environmental Studies, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Sasa, Kimikazu; Takahashi, Tsutomu [Tandem Accelerator Complex, Research Facility Center for Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Matsushi, Yuki [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Tamari, Michiko [Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Nagashima, Yasuo [Tandem Accelerator Complex, Research Facility Center for Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Bessho, Kotaro; Matsumura, Hiroshi [Radiation Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-04-15

    Distribution of {sup 36}Cl/Cl ratios in a river-recharged aquifer was investigated in the Oderbruch area, northeastern Germany. The aquifer is confined up to 3.5-4 km inland, where it changes to an unconfined condition. The {sup 36}Cl/Cl ratios in the confined area were in the range between 4.6 x 10{sup -14} and 23.1 x 10{sup -14}, showing a peak at 2-3 km away from the river. A plot of {sup 36}Cl/Cl vs. reciprocal Cl{sup -} concentrations indicated possible effect of the Cl{sup -} concentration variation on the observed {sup 36}Cl/Cl ratios. After accounting for this effect, the estimated {sup 36}Cl fallout rates for the last 30 yrs show reasonable agreement with the Dye-3 data and the mid-latitude background value. The results suggest that a local {sup 36}Cl fallout curve can be constructed from groundwater when dispersive mixing is of minor importance.

  19. Central dot sign in entities other than Caroli disease

    International Nuclear Information System (INIS)

    Ahmadi, T.; Itai, Yuji; Minami, Manabu.

    1997-01-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ''central dot sign'' on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  20. Central dot sign in entities other than Caroli disease

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, T.; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Minami, Manabu

    1997-11-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ``central dot sign`` on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  1. Studies of quantum dots in the quantum Hall regime

    Science.gov (United States)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  2. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  3. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  4. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu

    2009-01-01

    The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design

  5. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes.

    Science.gov (United States)

    Sun, Chun; Zhang, Yu; Sun, Kai; Reckmeier, Claas; Zhang, Tieqiang; Zhang, XiaoYu; Zhao, Jun; Wu, Changfeng; Yu, William W; Rogach, Andrey L

    2015-07-28

    We realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.

  6. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  7. Normal vibrations in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Dolling, G; Waugh, J L T

    1964-07-01

    The triple axis crystal spectrometer at Chalk River has been used to observe coherent slow neutron scattering from a single crystal of pure gallium arsenide at 296{sup o}K. The frequencies of normal modes of vibration propagating in the [{zeta}00], ({zeta}{zeta}{zeta}], and (0{zeta}{zeta}] crystal directions have been determined with a precision of between 1 and 2{center_dot}5 per cent. A limited number of normal modes have also been studied at 95 and 184{sup o}K. Considerable difficulty was experienced in obtaining welt resolved neutron peaks corresponding to the two non-degenerate optic modes for very small wave-vector, particularly at 296{sup o}K. However, from a comparison of results obtained under various experimental conditions at several different points in reciprocal space, frequencies (units 10{sup 12} c/s) for these modes (at 296{sup o}K) have been assigned: T 8{center_dot}02{+-}0{center_dot}08 and L 8{center_dot}55{+-}02. Other specific normal modes, with their measured frequencies are (a) (1,0,0): TO 7{center_dot}56 {+-} 008, TA 2{center_dot}36 {+-} 0{center_dot}015, LO 7{center_dot}22 {+-} 0{center_dot}15, LA 6{center_dot}80 {+-} 0{center_dot}06; (b) (0{center_dot}5, 0{center_dot}5, 0{center_dot}5): TO 7{center_dot}84 {+-} 0{center_dot}12, TA 1{center_dot}86 {+-} 0{center_dot}02, LO 7{center_dot}15 {+-} 0{center_dot}07, LA 6{center_dot}26 {+-} 0{center_dot}10; (c) (0, 0{center_dot}65, 0{center_dot}65): optic 8{center_dot}08 {+-}0{center_dot}13, 7{center_dot}54 {+-} 0{center_dot}12 and 6{center_dot}57 {+-} 0{center_dot}11, acoustic 5{center_dot}58 {+-} 0{center_dot}08, 3{center_dot}42 {center_dot} 0{center_dot}06 and 2{center_dot}36 {+-} 004. These results are generally slightly lower than the corresponding frequencies for germanium. An analysis in terms of various modifications of the dipole approximation model has been carried out. A feature of this analysis is that the charge on the gallium atom appears to be very small, about +0{center_dot}04 e. The

  8. Development of nonlinear optical materials using inorganic-organic complexes; Hisenkei kogaku zairyo to shite no yuki-muki fukugotai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, N. [Hokkaido University, Sapporo (Japan). Catalysis Research Center

    1994-12-15

    Development was attempted on organic-inorganic complexes as nonlinear optical materials. The objective is to develop elements with SHG activity (generating second harmonics) to change a visible ray into an ultraviolet ray by inserting P-nitroaniline (pNA) into such solid acids having strong static electric field as zeolite, laminar compounds, and heteropolyacid, and utilizing the static electric field and the molecule coordination field of inorganic compounds. Used for the pNA{center_dot}Bronsted acid composite are HBr, HCl, HNO3, and H2SO4. The pNA that has a center of symmetry in the crystalline structure and does not generate the second harmonics shows SHG when it is formed into a composite with HBr. No SHG is recognized in other acid composites. This difference is due to the difference in the crystalline structure. The SHG activity was generated when pNA is loaded onto alumina and silica as solid oxides. When zeolites are used as carriers, no SHG was observed. A composite of pNA{center_dot}AlCl3 has high SHG intensity, which reached a maximum when the pNA/AlCl3 ratio was two. This composite showed four new peaks that belong to the SHG activity phase. 8 refs., 2 figs., 2 tabs.

  9. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  10. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  11. Magneto-exciton transitions in laterally coupled quantum dots

    Science.gov (United States)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  12. Spectral shifts and structures of phenol center dot center dot center dot Ar-n clusters

    Czech Academy of Sciences Publication Activity Database

    Armentano, A.; Černý, Jiří; Riese, M.; Taherkhani, M.; Ben Yezzar, M.; Muller-Dethlefs, K.

    2011-01-01

    Roč. 13, č. 13 (2011), s. 6077-6084 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z50520701 Keywords : VAN-DER-WAALS * BENZENE-ARGON CLUSTERS * INFRARED-SPECTRA Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  13. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei

    2011-01-01

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  14. International Guide to Highway Transportation Information: Volume 1 - Highway Transportation Libraries and Information Centers

    Science.gov (United States)

    2013-01-01

    The FHWA Road Weather Management Program partnered with Utah DOT to develop and implement advanced traveler information strategies during weather events. UDOT already has one of the most sophisticated Traffic Operations Centers (TOCs) in the country ...

  15. Simple preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n], n=1, 2 (Q=TBA+, PPN+) and structural characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10].C7H8.

    Science.gov (United States)

    Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona

    2008-02-04

    The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.

  16. A theoretical study of exciton energy levels in laterally coupled quantum dots

    International Nuclear Information System (INIS)

    Barticevic, Z; Pacheco, M; Duque, C A; Oliveira, L E

    2009-01-01

    A theoretical study of the electronic and optical properties of laterally coupled quantum dots, under applied magnetic fields perpendicular to the plane of the dots, is presented. The exciton energy levels of such laterally coupled quantum-dot systems, together with the corresponding wavefunctions and eigenvalues, are obtained in the effective-mass approximation by using an extended variational approach in which the magnetoexciton states are simultaneously obtained. One achieves the expected limits of one single quantum dot, when the distance between the dots is zero, and of two uncoupled quantum dots, when the distance between the dots is large enough. Moreover, present calculations-with appropriate structural dimensions of the two-dot system-are shown to be in agreement with measurements in self-assembled laterally aligned GaAs quantum-dot pairs and naturally/accidentally occurring coupled quantum dots in GaAs/GaAlAs quantum wells.

  17. Spectroscopy characterization and quantum yield determination of quantum dots

    International Nuclear Information System (INIS)

    Ortiz, S N Contreras; Ospino, E Mejía; Cabanzo, R

    2016-01-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum. (paper)

  18. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  19. Principles of conjugating quantum dots to proteins via carbodiimide chemistry

    International Nuclear Information System (INIS)

    Song Fayi; Chan, Warren C W

    2011-01-01

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein–quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  20. 35Cl NQR spectra of complexes of tetrachlorostannane with substituted benzoyl chlorides

    International Nuclear Information System (INIS)

    Feshin, V.P.; Dogushin, G.V.; Lazarev, I.M.; Voronkov, M.G.; Feshina, E.V.

    1987-01-01

    35 Cl NQR spectra of mixtures of SnCl 4 with 2-, 3- and 4-XC 6 H 4 COCl were obtained. The electronic and steric structure of the complexes obtained was established. Their formation and structure depend on the nature of substituents X. Complexes with a trigonal-bipyramidal structure are formed with the participation of the carbonyl oxygen atom of the ligand as an electron-donor-center, and complexes with trans-octahedral structure, with the participation of the sulfur atom of the X = CH 3 S substituent

  1. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection

    Science.gov (United States)

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas

    2013-01-01

    Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison

  2. Manganese (III) cyclam complexes with aqua, iodo, nitrito, perchlorato and acetic acid/acetato axial ligands

    DEFF Research Database (Denmark)

    Mossin, Susanne; Sørensen, Henning Osholm; Weihe, Høgni

    2005-01-01

    of the complexes as high-spin d(4) systems. trans-[Mn(cyclam)(OH2)(2)](CF3SO3)(3)center dot H2O is shown to be a convenient starting material for the syntheses of trans cyclam complexes. [Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)(2) exhibits extremely short intermolecular hydrogen bonds resulting in a pseudo-chain...

  3. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    argue that there is ample room for improving the oscillator strength with prospects for approaching the ultra-strong-coupling regime of cavity quantum electrodynamics with optical photons. These outstanding gures of merit render interface-uctuation quantum dots excellent candidates for use in cavity...... quantum electrodynamics and quantum-information science. We investigate exciton localization in droplet-epitaxy quantum dots by conducting spectral and time-resolved measurements. We nd small excitons despite the large physical size of dropletepitaxy quantum dots, which is attributed to material inter......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...

  4. Zero-Pressure Organic Superconductor: Di-(Tetramethyltetraselenafulvalenium)-Perchlorate [(TMTSF)2ClO4

    DEFF Research Database (Denmark)

    Bechgaard, Klaus; da Costa Carneiro, Kim; Olsen, Malte

    1981-01-01

    Evidence for superconductivity in the organic conductor di-(tetramethyltetraselenafulvalenium)-perchlorate [(TMTSF)2ClO4] has been found by resistance measurements in the absence of applied pressure. For different crystals the transitions are approximately 0.3 K wide and are centered around...

  5. Today's DOT and the quest for more accountable organizational structures.

    Science.gov (United States)

    2005-12-01

    This study investigates the impact of DOT organizational structures on effective transportation planning and performance. A review of the 50 state DOT authorizing statutes and DOT organizational charts found minimal differences in organizational stru...

  6. Exciton confinement in strain-engineered metamorphic InAs/I nxG a1 -xAs quantum dots

    Science.gov (United States)

    Khattak, S. A.; Hayne, M.; Huang, J.; Vanacken, J.; Moshchalkov, V. V.; Seravalli, L.; Trevisi, G.; Frigeri, P.

    2017-11-01

    We report a comprehensive study of exciton confinement in self-assembled InAs quantum dots (QDs) in strain-engineered metamorphic I nxG a1 -xAs confining layers on GaAs using low-temperature magnetophotoluminescence. As the lattice mismatch (strain) between QDs and confining layers (CLs) increases from 4.8% to 5.7% the reduced mass of the exciton increases, but saturates at higher mismatches. At low QD-CL mismatch there is clear evidence of spillover of the exciton wave function due to small localization energies. This is suppressed as the In content x in the CLs decreases (mismatch and localization energy increasing). The combined effects of low effective mass and wave-function spillover at high x result in a diamagnetic shift coefficient that is an order of magnitude larger than for samples where In content in the barrier is low (mismatch is high and localization energy is large). Finally, an anomalously small measured Bohr radius in samples with the highest x is attributed to a combination of thermalization due to low localization energy, and its enhancement with magnetic field, a mechanism which results in small dots in the ensemble dominating the measured Bohr radius.

  7. MnDOT Library strategic plan : final report.

    Science.gov (United States)

    2017-06-01

    MnDOTs Senior Leadership asked MnDOT Library to develop a Strategic Plan that identifies and reviews the challenges facing the Library over the next five years to better address the evolving needs of the department and users. The strategic plan is...

  8. Double Rashba Quantum Dots Ring as a Spin Filter

    Directory of Open Access Journals (Sweden)

    Chi Feng

    2008-01-01

    Full Text Available AbstractWe theoretically propose a double quantum dots (QDs ring to filter the electron spin that works due to the Rashba spin–orbit interaction (RSOI existing inside the QDs, the spin-dependent inter-dot tunneling coupling and the magnetic flux penetrating through the ring. By varying the RSOI-induced phase factor, the magnetic flux and the strength of the spin-dependent inter-dot tunneling coupling, which arises from a constant magnetic field applied on the tunneling junction between the QDs, a 100% spin-polarized conductance can be obtained. We show that both the spin orientations and the magnitude of it can be controlled by adjusting the above-mentioned parameters. The spin filtering effect is robust even in the presence of strong intra-dot Coulomb interactions and arbitrary dot-lead coupling configurations.

  9. The enhanced nucleation factors and field electron emission property of diamond synthesized by RF-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guangmin [College of Physics, Changchun Normal University, Jilin Province, Changchun 130032 (China); Xu Qiang [Changchun Institute of Technology, Changchun 130021 (China); Wang Xin [Department of Materials Science, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zheng Weitao, E-mail: wtzheng@jlu.edu.cn [Department of Materials Science, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Submicron-diamond, microcrystalline diamond, and nanocrystalline diamond were synthesized using different substrates and pretreatment methods. Black-Right-Pointing-Pointer Three techniques have been developed to create some density of diamond on substrate surfaces by PECVD deposition procedure. Black-Right-Pointing-Pointer The field electron emission property was also investigated. - Abstract: In this work, submicron-diamond (SD), microcrystalline diamond (MD), and nanocrystalline diamond (ND) were synthesized using different substrates and pretreatment methods. In order to investigate influencing factors on nucleation, three techniques have been developed to create some density of diamond on substrate surfaces: (a) with chemical-etching technique (NaOH water solution at 80 Degree-Sign C for 3, 8, 15 min, respectively), (b) (Co(NO{sub 3}){sub 3}/Mg(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O or Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O/Mg(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O alcohol solution) dripping on silicon substrate, and (c) NaCl substrate directly by following a same PECVD deposition procedure. Furthermore, the field electron emission property was also investigated.

  10. Quantum Dot Photonics

    Science.gov (United States)

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  11. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    Science.gov (United States)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  12. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianrong; Yuan Hongyan [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Feng Yunlong, E-mail: sky37@zjnu.edu.cn [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China)

    2012-07-15

    Five Zn(II) and Cd(II) coordination polymers, [Zn{sub 2}(BOABA)(bpp)(OH)]{center_dot}0.5H{sub 2}O (1), [Cd{sub 3}(BOABA){sub 2}(bpp){sub 2}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O (2), [Cd{sub 3}(BOABA){sub 2}(2,2 Prime -bipy){sub 3}(H{sub 2}O){sub 4}]{center_dot}5.5H{sub 2}O (3), [CdNa(BOABA)(H{sub 2}O)]{sub 2}{center_dot}H{sub 2}O (4) and [Cd{sub 2}(BOABA)(bimb)Cl(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2 Prime -bipy=2,2 Prime -bipyridine, bimb=1,4-bis(imidazol-1 Prime -yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2 Prime -bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {l_brace}Cd{sub 2}Na{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {l_brace}Cd{sub 4}Cl{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d{sup 10} metal(II) coordination polymers based on H{sub 3}BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: Black-Right-Pointing-Pointer Five d{sup 10} metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Polymers 1-5 display different

  13. Evidence for possible quantum dot interdiffusion induced by cap layer growth

    International Nuclear Information System (INIS)

    Jasinski, J.; Czeczott, M.; Gladysz, A.; Babinski, A.; Kozubowski, J.

    1999-01-01

    Self-organised InGaAs quantum dots were grown on (001) GaAs substrates and covered with two different types of cap layers grown at significantly different temperatures. In order to determine quantum dot emission energy and dot size distribution, photoluminescence and transmission electron microscopy studies were carried out on such samples. Simple theoretical model neglecting effect of interdiffusion allowed for correlation between quantum dot size and photoluminescence emission energy only in the case of dots covered by cap layers grown at the lower temperature. For dots covered by layers grown at the higher temperature such correlation was possible only when strong interdiffusion was assumed. (author)

  14. Optical Spectroscopy Of Charged Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  15. Using isotope 36Cl to study utilization of Cl by crops and distribution and movement of Cl in soil

    International Nuclear Information System (INIS)

    Pan Jiarong; Wen Xianfang; Tang Nianxin

    1991-06-01

    Results from using isotope 36 Cl show that a large quantity of Cl is absorbed and utilized by spring wheat, cotton and tobacco from the chloride fertilizers. The utilization coefficient of Cl increases with the growing time of plants and reaches peak at mature stage. The utilization coefficient of above plants are 26.72%, 3317% and 26.19% respectively. The absorption and utilization of residual Cl in soil is much smaller than that in fertilizers, and the utilization coefficient is decreasing with the increasing of growth season. For spring wheat, utilization coefficient is 12.7% in second season and 9.3% in third season. The ability of absorbing and utilizing Cl from organic materials by crops is very low and the utilization coefficient is 10% or less, that depends on circumstances. For rice the utilization coefficient is 3.1% in dry land and 24.3% in flooded land. The distribution of absorbed Cl is mainly in stalk, a little in husk and a few in seeds and roots. After irrigating water it is equivalent to 9.1 mm of rainfall in soil, the Cl moves rapidly to depth 10∼12 cm. Cl moves faster in porous soil than in clay soil, and faster in horizontal direction than in vertical direction

  16. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  17. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  18. Strong-coupling polaron effect in quantum dots

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-11-01

    Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs

  19. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...

  20. Thermodynamic properties of thulium and ytterbium in fused NaCl-KCl-CsCl eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Novoselova, A., E-mail: A.Novoselova@ihte.uran.ru [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, S. Kovalevskaya Str., 22, Ekaterinburg 620990 (Russian Federation); Smolenski, V. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, S. Kovalevskaya Str., 22, Ekaterinburg 620990 (Russian Federation)

    2011-07-15

    Research highlights: > Tm and Yb chloride compounds as fission products. > The investigation of electrochemical properties of lanthanides. > Determination of the apparent standard redox potentials of the couple Ln(III)/Ln(II) in fused NaCl-KCl-CsCl eutectic at (823 to 973) K. > The calculation of the basic thermodynamic properties of redox reaction in molten salt. - Abstract: This work presents the results of a study of the Tm{sup 3+}/Tm{sup 2+} and Yb{sup 3+}/Yb{sup 2+} couple redox potentials vs. Cl{sup -}/Cl{sub 2} reference electrode at the temperature range (823 to 973) K in fused NaCl-KCl-CsCl eutectic by direct potentiometric method. Initial concentrations of TmCl{sub 3} and YbCl{sub 3} in solvents did not exceed 5.0 mol%. Basic thermodynamic properties of the reactions TmCl{sub 2(l)} + 1/2 Cl{sub 2(g)} {r_reversible} TmCl{sub 3(l)} and YbCl{sub 2(l)} + 1/2 Cl{sub 2(g)} {r_reversible} YbCl{sub 3(l)} were calculated using the temperature dependencies of apparent standard potentials of the couples E{sub Tm{sup 3+}/Tm{sup 2+*}} and E{sub Yb{sup 3+}/Yb{sup 2+*}}.

  1. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  2. cl-Supercontinuous Functions

    Directory of Open Access Journals (Sweden)

    D. Singh

    2007-10-01

    Full Text Available Basic properties of cl-supercontinuity, a strong variant of continuity, due to Reilly and Vamanamurthy [Indian J. Pure Appl. Math., 14 (1983, 767–772], who call such maps clopen continuous, are studied. Sufficient conditions on domain or range for a continuous function to be cl-supercontinuous are observed. Direct and inverse transfer of certain topological properties under cl-supercontinuous functions are studied and existence or nonexistence of certain cl-supercontinuous function with specified domain or range is outlined.

  3. Carbon quantum dots and a method of making the same

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    2017-08-22

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  4. Quantum dot solar cell

    International Nuclear Information System (INIS)

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  5. C8-structured carbon quantum dots: Synthesis, blue and green double luminescence, and origins of surface defects

    Science.gov (United States)

    Xifang, Chen; Wenxia, Zhang; Qianjin, Wang; Jiyang, Fan

    Carbon quantum dots (CQDs) have attracted great attention in the past few years due to their low cytotoxicity, exploited various synthesis methods, unexampled abundance of raw materials on earth, and robust near-infrared to near-UV luminescence. Carbon nanoparticles have applications in biological labeling, delivery of drugs and biological molecules into cells, and light emitting diodes and lasing. CQDs generally exist as nanodiamonds or graphite quantum dots according to previous research reports. In this study, we report the first synthesis of the third-allotrope CQDs through carbonization of sucrose and study their luminescence properties. These CQDs have a body-centered cubic structure and each lattice point is composed of eight atoms which form a sub-cube (so called C8 crystal structure). High-resolution transmission electron microscopy and X-ray diffraction confirm the C8 structure of the synthesized carbon nanocrystallites with an average size of 2 nm. The C8 CQDs exhibit double-band luminescence with two peaks centered at around 432 and 520 nm. The study based on the photoluminescence, UV-Vis absorption, Fourier-transform infrared, and X-ray photoelectron spectroscopies reveals that the green emission originates from the C=O related surface defect.

  6. Charge sensing of a few-donor double quantum dot in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Watson, T. F., E-mail: tfwatson15@gmail.com; Weber, B.; Büch, H.; Fuechsle, M.; Simmons, M. Y., E-mail: michelle.simmons@unsw.edu.au [Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2015-12-07

    We demonstrate the charge sensing of a few-donor double quantum dot precision placed with atomic resolution scanning tunnelling microscope lithography. We show that a tunnel-coupled single electron transistor (SET) can be used to detect electron transitions on both dots as well as inter-dot transitions. We demonstrate that we can control the tunnel times of the second dot to the SET island by ∼4 orders of magnitude by detuning its energy with respect to the first dot.

  7. Modeling of phonon- and Coulomb-mediated capture processes in quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg

    2003-01-01

    This thesis describes modeling of carrier relaxation processes in self-assembled quantum-dot-structures, with particular emphasis on carrier capture processes in quantum dots. Relaxation by emission of lontitudinal optical (LO) phonons is very efficient in bulk semiconductors and nanostructures...... of higher dimensionality. Here, we investigate carrier capture processes into quantum dots, mediated by emission of one and two LO phonons. In these investigations is is assumed that the dot is empty initially. In the Case of single-phonon capture we also investigate the influence of the presence...... of a charge in the quantum-dot state to which the capture takes place. In general, capture rates are of the same order as capture rates into an empty dot state, but in some cases the dot-size interval for which the capture process is energetically allowed, is considerably reduced.The above calculations...

  8. Optical properties of pH-sensitive carbon-dots with different modifications

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Weiguang, E-mail: 11236095@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Wu, Huizhen, E-mail: hzwu@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Ye, Zhenyu, E-mail: yzheny@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Ruifeng, E-mail: hbrook@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Xu, Tianning, E-mail: xtn9886@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Zhang, Bingpo, E-mail: 11006080@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-04-15

    Carbon dots with unique characters of chemical inertness, low cytotoxicity and good biocompatibility, demonstrate important applications in biology and optoelectronics. In this paper we report the optical properties of pH-sensitive carbon dots with different surface modifications. The as-prepared carbon dots can be well dispersed in water by modifying with acid, alkali or metal ions though they tend to form a suspension when being directly dispersed in water. We find that the carbon dots dispersed in water show a new emission and absorption character which is tunable due to the pH-sensitive nature. It is firstly proved that the addition of bivalent copper ions offers a high color contrast for visual colorimetric assays for pH measurement. The effect of surface defects with different modification on the performances of the carbon dots is also explored with a core–shell model. The hydro-dispersed carbon dots can be potentially utilized for cellular imaging or metal ion probes in biochemistry. -- Highlights: • The dispersibility in water of as-prepared carbon dots is effectively improved by the addition of acid, alkali or metal ions. • The effect of hydrolysis on the optical properties of the carbon dots is studied. • The luminescent carbon dots show a pH-sensitive fluorescence and absorption property. • The addition of bivalent copper ions in the post-treated carbon dots offers a high color contrast for visual colorimetric assays for pH measurement. • The effect of surface defects and ligands on the performances of the carbon dots is also explored.

  9. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  10. First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections

    Directory of Open Access Journals (Sweden)

    M. Birk

    2010-02-01

    Full Text Available Active chlorine species play a dominant role in the catalytic destruction of stratospheric ozone in the polar vortices during the late winter and early spring seasons. Recently, the correct understanding of the ClO dimer cycle was challenged by the release of new laboratory absorption cross sections (Pope et al., 2007 yielding significant model underestimates of observed ClO and ozone loss (von Hobe et al., 2007. Under this aspect, nocturnal Arctic stratospheric limb emission measurements carried out by the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B from Kiruna (Sweden on 11 January 2001 and 20/21 March 2003 have been reanalyzed with regard to the chlorine reservoir species ClONO2 and the active species, ClO and ClOOCl (Cl2O2. New laboratory measurements of IR absorption cross sections of ClOOCl for various temperatures and pressures allowed for the first time the retrieval of ClOOCl mixing ratios from remote sensing measurements. High values of active chlorine (ClOx of roughly 2.3 ppbv at 20 km were observed by MIPAS-B in the cold mid-winter Arctic vortex on 11 January 2001. While nighttime ClOOCl shows enhanced values of nearly 1.1 ppbv at 20 km, ClONO2 mixing ratios are less than 0.1 ppbv at this altitude. In contrast, high ClONO2 mixing ratios of nearly 2.4 ppbv at 20 km have been observed in the late winter Arctic vortex on 20 March 2003. No significant ClOx amounts are detectable on this date since most of the active chlorine has already recovered to its main reservoir species ClONO2. The observed values of ClOx and ClONO2 are in line with the established polar chlorine chemistry. The thermal equilibrium constants between the dimer formation and its dissociation, as derived from the balloon measurements, are on the lower side of reported data and in good agreement with values recommended by von Hobe et al. (2007. Calculations with the ECHAM/MESSy Atmospheric Chemistry model (EMAC using

  11. Integrated photonics using colloidal quantum dots

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  12. Capture, relaxation and recombination in quantum dots

    NARCIS (Netherlands)

    Sreenivasan, D.

    2008-01-01

    Quantum dots (QDs) have attracted a lot of interest both from application and fundamental physics point of view. A semiconductor quantum dot features discrete atomiclike energy levels, despite the fact that it contains many atoms within its surroundings. The discrete energy levels give rise to very

  13. Proposal for a magnetic field induced graphene dot

    International Nuclear Information System (INIS)

    Maksym, P A; Roy, M; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S; Aoki, H

    2010-01-01

    Quantum dots induced by a strong magnetic field applied to a single layer of graphene in the perpendicular direction are investigated. The dot is defined by a model potential which consists of a well of depth ΔV relative to a flat asymptotic part and quantum states formed from the zeroth Landau level are considered. The energy of the dot states cannot be lower than -ΔV relative to the asymptotic potential. Consequently, when ΔV is chosen to be about half of the gap between the zeroth and first Landau levels, the dot states are isolated energetically in the gap between Landau level 0 and Landau level -1. This is confirmed with numerical calculations of the magnetic field dependent energy spectrum and the quantum states. Remarkably, an antidot formed by reversing the sign of ΔV also confines electrons but in the energy region between Landau level 0 and Landau level +1. This unusual behaviour gives an unambiguous signal of the novel physics of graphene quantum dots.

  14. The first 3D malonate bridged copper [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: Structure, properties and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Seguatni, A., E-mail: seguatni@gmail.com [LBPC-INSERM U 698, Institut Galilee, Universite Paris XIII, 99, avenue J. B. Clement 93430, Villetaneuse (France); Fakhfakh, M. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada); Smiri, L.S. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Gressier, P.; Boucher, F. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Jouini, N. [Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada)

    2012-03-15

    A new inorganic-organic compound [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)-malonic acid-H{sub 2}O. Its framework is built up through carboxyl bridged copper where CuO{sub 6} octahedra are elongated with an almost D{sub 4h} symmetry (4+2) due to the Jahn-Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2-300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U{sub eff} value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: the first 3D hybrid organic-inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: Black-Right-Pointing-Pointer A new organic-inorganic material with an unprecedented topology is synthesized. Black-Right-Pointing-Pointer Crystallographic structure is determined using single crystal X-ray diffraction. Black-Right-Pointing-Pointer Electronic structure is obtained from DFT, GGA+U calculation. Black-Right-Pointing-Pointer Framework can be described as formed from CuC{sub 4} tetrahedron sharing four corners. Black-Right-Pointing-Pointer This structure can be classified as an extended diamond structure.

  15. Graphene quantum dots probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, Markus; Freitag, Nils; Nent, Alexander; Nemes-Incze, Peter; Liebmann, Marcus [II. Institute of Physics B and JARA-FIT, RWTH Aachen University, Aachen (Germany)

    2017-11-15

    Scanning tunneling spectroscopy results probing the electronic properties of graphene quantum dots are reviewed. After a short summary of the study of squared wave functions of graphene quantum dots on metal substrates, we firstly present data where the Landau level gaps caused by a perpendicular magnetic field are used to electrostatically confine electrons in monolayer graphene, which are probed by the Coulomb staircase revealing the consecutive charging of a quantum dot. It turns out that these quantum dots exhibit much more regular charging sequences than lithographically confined ones. Namely, the consistent grouping of charging peaks into quadruplets, both, in the electron and hole branch, portrays a regular orbital splitting of about 10meV. At low hole occupation numbers, the charging peaks are, partly, additionally grouped into doublets. The spatially varying energy separation of the doublets indicates a modulation of the valley splitting by the underlying BN substrate. We outline that this property might be used to eventually tune the valley splitting coherently. Afterwards, we describe graphene quantum dots with multiple contacts produced without lithographic resist, namely by local anodic oxidation. Such quantum dots target the goal to probe magnetotransport properties during the imaging of the corresponding wave functions by scanning tunneling spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    Science.gov (United States)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  17. Color center lasers passively mode locked by quantum wells

    International Nuclear Information System (INIS)

    Islam, M.N.; Soccolich, C.E.; Bar-Joseph, I.; Sauer, N.; Chang, T.Y.; Miller, B.I.

    1989-01-01

    This paper describes how, using multiple quantum well (MQW) saturable absorbers, the authors passively mode locked a NaCl color center laser to produce 275 fs transform-limited, pedestal-free pulses with as high as 3.7 kW peak power. The pulses are tunable from λ = 1.59 to 1.7 μm by choosing MQW's with different bandgaps. They shortened the output pulses from the laser to 25 fs using the technique of soliton compression in a fiber. The steady-state operation of the laser requires the combination of a fast saturable absorber and gain saturation. In addition to the NaCl laser, they passively mode locked a Tl 0 (1):KCl color center laser and produced -- 22 ps pulses. Although the 275 fs pulses from the NaCl laser are Gaussian, when broadened, the pulses acquire an asymmetric spectrum because of carrier-induced refractive index changes

  18. Heat transport modeling of the dot spectroscopy platform on NIF

    Science.gov (United States)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.

    2018-04-01

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.

  19. Electrical and dielectric properties of doped TeO2 center dot PbCl2 center dot PbF2 glasses, prepared in Au or Pt crucibles

    Czech Academy of Sciences Publication Activity Database

    Kubliha, M.; Trnovcová, V.; Labas, V.; Psota, J.; Pedlíková, Jitka; Podolinčiaková, J.

    2011-01-01

    Roč. 13, 11-12 (2011), s. 1493-1497 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40320502 Keywords : tellurite/lead chloride/lead fluoride glasses * electrical conductivity * TSDC * permittivity Subject RIV: CA - Inorganic Chemistry Impact factor: 0.457, year: 2011

  20. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    Science.gov (United States)

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  1. Enhanced intratumoral uptake of quantum dots concealed within hydrogel nanoparticles

    International Nuclear Information System (INIS)

    Nair, Ashwin; Shen Jinhui; Thevenot, Paul; Zou Ling; Tang Liping; Cai Tong; Hu Zhibing

    2008-01-01

    Effective nanomedical devices for tumor imaging and drug delivery are not yet available. In an attempt to construct a more functional device for tumor imaging, we have embedded quantum dots (which have poor circulatory behavior) within hydrogel nanoparticles made of poly-N-isopropylacrylamide. We found that the hydrogel encapsulated quantum dots are more readily taken up by cultured tumor cells. Furthermore, in a melanoma model, hydrogel encapsulated quantum dots also preferentially accumulate in the tumor tissue compared with normal tissue and have ∼16-fold greater intratumoral uptake compared to non-derivatized quantum dots. Our results suggest that these derivatized quantum dots, which have greatly improved tumor localization, may enhance cancer monitoring and chemotherapy.

  2. Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.

    Science.gov (United States)

    Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad

    2015-12-01

    This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.

  3. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Ma, Jian-Fang [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated. - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit

  4. Cost and cost-effectiveness of PPM-DOTS for tuberculosis control: evidence from India.

    OpenAIRE

    Floyd, Katherine; Arora, V. K.; Murthy, K. J. R.; Lonnroth, Knut; Singla, Neeta; Akbar, Y.; Zignol, Matteo; Uplekar, Mukund

    2006-01-01

    OBJECTIVE: To assess the cost and cost-effectiveness of the Public-Private Mix DOTS (PPM-DOTS) strategy for tuberculosis (TB) control in India. METHODS: We collected data on the costs and effects of pilot PPM-DOTS projects in Delhi and Hyderabad using documentary data and interviews. The cost of PPM-DOTS was compared with public sector DOTS (i.e. DOTS delivered through public sector facilities only) and non-DOTS treatment in the private sector. Costs for 2002 in US$ were assessed for the publ...

  5. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  6. Bit-Serial Adder Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the

  7. A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater.

    Science.gov (United States)

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza

    2016-04-01

    A simple and sensitive flow injection chemiluminescence (CL) method in which CdS quantum dots (QDs) enhanced the CL intensity of a KMnO4-formaldehyde (HCHO) reaction was offered for the determination of HCHO. This CL system was based on the catalytic activity of CdS QDs and their participation in the CL resonance energy transfer (CRET) phenomenon. A possible mechanism for the supplied CL system was proposed using the kinetic curves of the CL systems and the spectra of CL, photoluminescence (PL) and ultraviolet-visible (UV-Vis). The emanated CL intensity of the KMnO4-CdS QDs system was amplified in the presence of a trace level of HCHO. Based on this enhancement effect, a simple and sensitive flow injection CL method was suggested for the determination of HCHO concentration in environmental water and wastewater samples. Under selected optimized experimental conditions, the increased CL intensity was proportional to the HCHO concentration in the range of 0.03-4.5 μg L(-1) and 4.5-10.0 μg L(-1). The detection limits (3σ) were 0.0003 μg L(-1) and 1.2 μg L(-1). The relative standard deviations (RSD%) for eleven replicate determinations of 4.0 μg L(-1) HCHO were 2.2%. Furthermore, the feasibility of the developed method was investigated via the determination of HCHO concentration in environmental water and wastewater samples.

  8. Reduction behavior of UO22+ in molten LiCl-RbCl and LiCl-KCl eutectics by using tungsten

    Science.gov (United States)

    Nagai, Takayuki; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu

    2013-08-01

    The reduction of uranium from UO22+ to UO2+ or U4+ in molten LiCl-RbCl and LiCl-KCl eutectics was examined by using tungsten and chlorine gas. Spectrophotometric technique was adopted to determine the concentration of uranium species. When tungsten was immersed into the LiCl-RbCl eutectic melt at 400 °C without supplying chlorine gas, 36% of the total weight of the hexavalent of UO22+ was reduced to the pentavalent of UO2+. Under purging chlorine gas into the melt, 96% of UO22+ was reduced to the tetravalent of U4+. Tungsten oxy-chloride of WOCl4 was produced via the reductions of UO22+, which was volatized from the melt and adsorbed on the upper part of experimental cell. On the other hand, 84% of UO22+ in the LiCl-KCl eutectic melt at 500 °C was reduced to U4+ by using tungsten and chlorine gas.

  9. 77 FR 47913 - The National Center for Mobility Management Under FTA's National Research Program

    Science.gov (United States)

    2012-08-10

    ... Management Under FTA's National Research Program AGENCY: Federal Transit Administration (FTA), DOT. ACTION: Notice. SUMMARY: Federal Transit Administration (FTA), as the primary staff agency to the Federal... transportation service delivery. FTA, under its National Research Program, plans to fund a National Center for...

  10. Computer assisted design of poly-silicon gated enhancement-mode, lateral double quantum dot devices for quantum computing

    Science.gov (United States)

    Bishop, Nathaniel; Young, Ralph; Borras Pinilla, Carlos; Stalford, Harold; Nielsen, Erik; Muller, Richard; Rahman, Rajib; Tracy, Lisa; Wendt, Joel; Lilly, Michael; Carroll, Malcolm

    2012-02-01

    We discuss trade-offs of different double quantum dot and charge sensor lay-outs using computer assisted design (CAD). We use primarily a semi-classical model, augmented with a self-consistent configuration interaction method. Although CAD for quantum dots is difficult due to uncontrolled factors (e.g., disorder), different ideal designs can still be compared. Comparisons of simulation and measured dot characteristics, such as capacitance, show that CAD can agree well with experiment for relevant cases. CAD results comparing several different designs will be discussed including a comparison to measurement results from the same designs. Trade-offs between poly-silicon and metal gate lay-outs will also be discussed. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Synthesis, characterization and TG-DSC study of cadmium halides adducts with caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Robson F. de; Silva, Ademir O. da; Silva, Umberto G. da

    2003-11-28

    The synthesis, characterization and TG-DSC study of the compounds CdX{sub 2}{center_dot}ncaff, for which X: Cl, Br and I; n=1 and 2 and caff: caffeine is reported. It is verified that caffeine is coordinated through more than one coordination site, despite the fact that the nitrogen of the imidazole ring is the main coordination site. The following thermal stability trend is observed: Cl>Br>I and monoadducts are more stable than bisadducts. The thermal degradation (td) enthalpies have the values (kJ mol{sup -1}): 58.2 and 71.5; 74.9 and 91.4; 31.1 and 47.5 for Cl, Br and I mono and bisadducts, respectively.

  12. B-H center dot center dot center dot pi: a nonclassical hydrogen bond or dispersion contact?

    Czech Academy of Sciences Publication Activity Database

    Fanfrlík, Jindřich; Pecina, Adam; Řezáč, Jan; Sedlák, Robert; Hnyk, Drahomír; Lepšík, Martin; Hobza, Pavel

    2017-01-01

    Roč. 19, č. 28 (2017), s. 18194-18200 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GA17-08045S Institutional support: RVO:61388963 ; RVO:61388980 Keywords : perturbation theory * intermolecular interactions * interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Physical chemistry; Inorganic and nuclear chemistry (UACH-T) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp02762a

  13. Beginning DotNetNuke Skinning and Design

    CERN Document Server

    Hay, Andrew

    2011-01-01

    DotNetNuke is an open source framework built on top of the ASP.Net platform. While this system offers an impressive set of out-of-the-box features for public and private sites, it also includes a compelling story for folks who want to present a unique look and feel to visitors. The skinning engine inside of DotNetNuke has strengthened over the course of several years and hundreds of thousands of registered users. The success of its skin and module developer community is another key indicator of the depth and breadth of this technology. The Core Team responsible for the DotNetNuke brand has gon

  14. Improvement of characteristics of diffraction gratings in Dot-matrix holograms

    International Nuclear Information System (INIS)

    ZHUMALIEV, K.M.; ISMAILOV, D.A.; ZHEENBEKOV, A.A.; SARYBAEVA, A.A.; KAZAKBAEVA, Z.M.

    2014-01-01

    This paper describes the results of research of the formation and recording of matrix hologram by Dot-matrix (dot-matrix hologram) technology on the photosensitive material of the photoresist. The principle of creating and modifying the characteristics of diffraction gratings of each pixel based on the diffraction efficiency, and recovery of colors and dynamic visual effects in dot-matrix holograms are discussed. An optical schematic diagram of the device and the process of recording dot-matrix holograms are presented. (authors)

  15. Reactions UF4 - ClO2F and UF5 - ClO2F

    International Nuclear Information System (INIS)

    Benoit, Raymond; Besnard, Ginette; Hartmanshenn, Olivier; Luce, Michel; Mougin, Jacques; Pelissie, Jean

    1970-02-01

    The study of the reaction UF 4 - ClO 2 F between 0 deg. and 100 deg. C, by various techniques (micro-sublimation, isopiestic method, IR and UV spectrography, thermogravimetry and X-ray diffraction) shows that intermediate steps are possible before the production of UF 5 . The whole reaction may be schematised by two equations: (1) n UF 4 + ClO 2 F → n UF x + ClO 2 (4 4 + ClO 2 F → UF x + 1/2 Cl 2 + O 2 . The more the temperature rises, the more the second equation becomes experimentally verified. The reaction at 0 deg. C between UF 5 and ClO 2 F may be represented by: UF 5 + ClO 2 F → UF 6 ClO 2 . The reactions: UF 5 + ClO 2 F → UF 6 + ClO 2 , UF 5 + ClO 2 F → UF 6 + 1/2 Cl 2 + O 2 are verified, the first and the second at 25 deg. C., the second from 50 deg. to 150 deg. C. From the results of AGRON it is possible to predict the residual solids before complete volatilization as UF 6 . The IR spectra of ClO 2 F adsorbed on UF 4 and UF x at 60 deg. C have been compared with those of gaseous ClO 2 F and UF 6 adsorbed on UF 4 . (authors) [fr

  16. Spin-orbit effects in carbon-nanotube double quantum dots

    DEFF Research Database (Denmark)

    Weiss, S; Rashba, E I; Kuemmeth, Ferdinand

    2010-01-01

    We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...

  17. 3D super-resolution imaging with blinking quantum dots

    Science.gov (United States)

    Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R.

    2013-01-01

    Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots, and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (FWHM) of 8–17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3–7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells. PMID:24093439

  18. Electroluminescent Cu-doped CdS quantum dots

    NARCIS (Netherlands)

    Stouwdam, J.W.; Janssen, R.A.J.

    2009-01-01

    Incorporating Cu-doped CdS quantum dots into a polymer host produces efficient light-emitting diodes. The Cu dopant creates a trap level that aligns with the valence band of the host, enabling the direct injection of holes into the quantum dots, which act as emitters. At low current densities, the

  19. A triple quantum dot in a single-wall carbon nanotube

    DEFF Research Database (Denmark)

    Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Hayashi, T.

    2008-01-01

    A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams...

  20. Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe3+

    Science.gov (United States)

    Sun, Chun; Zhang, Yu; Wang, Peng; Yang, Yue; Wang, Yu; Xu, Jian; Wang, Yiding; Yu, William W.

    2016-02-01

    Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe3+ ion made these CDs a luminescent probe for selective detection of Fe3+ ion.

  1. Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs

    Science.gov (United States)

    Fukadai, Takahisa; Sasamoto, Tomohiro

    2018-05-01

    We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.

  2. Ruthenium-Catalyzed Alkylation of Oxindole with Alcohols

    DEFF Research Database (Denmark)

    Jensen, Thomas; Madsen, Robert

    2009-01-01

    An atom-economical and solvent-free catalytic procedure for the mono-3-alkylation of oxindole with alcohols is described. The reaction is mediated by the in situ generated catalyst from RuCl3 center dot xH(2)O and PPh3 in the presence of sodium hydroxide, The reactions proceed in good to excellent...... yields with a wide range of aromatic, heteroaromatic, and aliphatic alcohols....

  3. In situ electron-beam polymerization stabilized quantum dot micelles.

    Science.gov (United States)

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  4. Analysis of MoDOT communication and outreach effectiveness

    Science.gov (United States)

    2008-07-01

    Personal interviews were held with MoDOT personnel to assess MoDOTs current communication practices and existing customer segmentation practices. Focus groups were then held to help gauge the effectiveness of existing communication practices and t...

  5. Electroluminescence of colloidal ZnSe quantum dots

    International Nuclear Information System (INIS)

    Dey, S.C.; Nath, S.S.

    2011-01-01

    The article reports a green chemical synthesis of colloidal ZnSe quantum dots at a moderate temperature. The prepared colloid sample is characterised by UV-vis absorption spectroscopy and transmission electron microscopy. UV-vis spectroscopy reveals as-expected blue-shift with strong absorption edge at 400 nm and micrographs show a non-uniform size distribution of ZnSe quantum dots in the range 1-4 nm. Further, photoluminescence and electroluminescence spectroscopies are carried out to study optical emission. Each of the spectroscopies reveals two emission peaks, indicating band-to-band transition and defect related transition. From the luminescence studies, it can be inferred that the recombination of electrons and holes resulting from interband transition causes violet emission and the recombination of a photon generated hole with a charged state of Zn-vacancy gives blue emission. Meanwhile electroluminescence study suggests the application of ZnSe quantum dots as an efficient light emitting device with the advantage of colour tuning (violet-blue-violet). - Highlights: → Synthesis of ZnSe quantum dots by a green chemical route. → Characterisation: UV-vis absorption spectroscopy and transmission electron microscopy. → Analysis of UV-vis absorption spectrum and transmission electron micrographs. → Study of electro-optical properties by photoluminescence and electroluminescence. → Conclusion: ZnSe quantum dots can be used as LED with dual colour emission.

  6. Photoluminescence of carbon dots from mesoporous silica

    Science.gov (United States)

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  7. Simulation of quantum dots size and spacing effect for intermediate band solar cell application based on InAs quantum dots arrangement in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hendra, P. I. B., E-mail: ib.hendra@gmail.com; Rahayu, F., E-mail: ib.hendra@gmail.com; Darma, Y., E-mail: ib.hendra@gmail.com [Physical Vapor Deposition Laboratory, Physics of Material Electronics Research, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Intermediate band solar cell (IBSC) has become a promising technology in increasing solar cell efficiency. In this work we compare absorption coefficient profile between InAs quantum dots with GaAs bulk. We calculate the efficiency of GaAs bulk and GaAs doped with 2, 5, and 10 nm InAs quantum dot. Effective distances in quantum dot arrangement based on electron tunneling consideration were also calculated. We presented a simple calculation method with low computing power demand. Results showed that arrangement of quantum dot InAs in GaAs can increase solar cell efficiency from 23.9 % initially up to 60.4%. The effective distance between two quantum dots was found 2 nm in order to give adequate distance to prevent electron tunneling and wave functions overlap.

  8. Cyclic voltammetric study of the reduction of U(III) to uranium metal in molten LiCl-NaCl-CaCl2-BaCl2-UCl3

    International Nuclear Information System (INIS)

    Poa, D.S.; Tomczuk, Z.; Steunenberg, R.K.

    1986-01-01

    Cyclic voltammetry was used to investigate the electrochemistry of the reduction of UCl 3 to uranium metal in molten LiCl-NaCl-CaCl 2 -BaCl 2 (49.7-8.0-26.5-15.8 mol %) containing dissolved UCl 3 . The purpose of the study was to obtain information on the kinetics of the reaction, which will be used in the design of electrorefining equipment for the reprocessing of core and blanket fuel discharged from the Integral Fast Reactor (IFR). The electrorefining operation employs the above salt as the electrolyte and a liquid cadmium pool as the anode

  9. Silicon Quantum Dots with Counted Antimony Donor Implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenakshi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Pacheco, Jose L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Perry, Daniel Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Garratt, E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Ten Eyck, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Wendt, Joel R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Manginell, Ronald P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Luhman, Dwight [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Bielejec, Edward S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Lilly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  10. Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ian D. Tomlinson

    2007-01-01

    Full Text Available We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes.

  11. Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures

    International Nuclear Information System (INIS)

    Bortoleto, J R R; Zelcovit, J G; Gutierrez, H R; Bettini, J; Cotta, M A

    2008-01-01

    Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals

  12. Quantum size effect and thermal stability of carbon-nanotube-based quantum dot

    International Nuclear Information System (INIS)

    Huang, N.Y.; Peng, J.; Liang, S.D.; Li, Z.B.; Xu, N.S.

    2004-01-01

    Full text: Based on semi-experience quantum chemical calculation, we have investigated the quantum size effect and thermal stability of open-end carbon nanotube (5, 5) quantum dots of 20 to 400 atoms. It was found that there is a gap in the energy band of all carbon nanotube (5, 5) quantum dots although a (5, 5) carbon nanotube is metallic. The energy gap of quantum dots is much dependent of the number of atoms in a dot, as a result of the quantization rules imposed by the finite scales in both radial and axial directions of a carbon nanotube quantum dot. Also, the heat of formation of carbon nanotube quantum dots is dependent of the size of a quantum dot. (author)

  13. Tuberculosis in Sulaimaniyah, Iraqi Kurdistan: A Detailed Analysis of Cases Registered in Treatment Centers.

    Science.gov (United States)

    Karadakhy, Kamaran; Othman, Nasih; Ibrahimm, Faredun; Saeed, Akam Ali; Amin, Ari Abdul-Adheem Hama

    2016-01-01

    Tuberculosis (TB) remains a major public health problem especially in low and middle-income countries. The current study was undertaken to estimate the incidence of the disease and describe its epidemiological characteristics in Iraqi Kurdistan. A retrospective study was carried out on cases registered in the directly observed treatment-short course (DOTS) centers in Sulaimaniyah province. Information was collected from the summary reports of all cases registered in 2010 and detailed information was obtained from 307 cases in the main center. During 2010, a total of 530 new and relapsed cases were registered in the DOTS centers amounting to an annual incidence of 31 per 100,000. Over 73% of cases were pulmonary TB and 45% of all cases had positive smear. Most common symptoms were cough (58%), sweating (49%) and fever (48). Almost 43% of patients were diagnosed by direct swab examination, 30% by biopsy and 23% through clinical and radiologic examination. In relation to outcome, 89% of patients were treated successfully, 7% died and 3% defaulted. Mortality rate was 8% in pulmonary infection and 4% in extrapulmonary infection. Old age (65 years and over) was significantly associated with higher odds of death compared to people aged 34 years and younger (OR 6.7, 95% CI 1.3-36.1, P=0.03). The incidence of TB is still high in the Iraqi Kurdistan. The DOTS has been successful in treating the majority of cases but there are areas needing improvement especially record-keeping and patient follow-up during and after treatment.

  14. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  15. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  16. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    Science.gov (United States)

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  17. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  18. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  19. Colloidal quantum dot photovoltaics: The effect of polydispersity

    KAUST Repository

    Zhitomirsky, David

    2012-02-08

    The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity. © 2012 American Chemical Society.

  20. Injection of a single electron from static to moving quantum dots.

    Science.gov (United States)

    Bertrand, Benoit; Hermelin, Sylvain; Mortemousque, Pierre-André; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Ludwig, Arne; Wieck, Andreas D; Bäuerle, Christopher; Meunier, Tristan

    2016-05-27

    We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols.

  1. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2013-09-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  2. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Bakandritsos, Aristides; Papagiannouli, Irene; Aloukos, Panagiotis; Couris, Stelios; Hola, Katerina; Zboril, Radek; Krysmann, Marta; Giannelis, Emmanuel P.

    2013-01-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  3. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Qiu J

    2015-10-01

    Full Text Available Jichuan Qiu,1 Ruibin Zhang,2 Jianhua Li,1 Yuanhua Sang,1 Wei Tang,3 Pilar Rivera Gil,4 Hong Liu1,51Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, 2Blood Purification Center, Jinan Central Hospital, 3Department of Pathogenic Biology, Shandong University School of Medicine, Jinan, People’s Republic of China; 4Institute of Chemistry, Rovira i Virgili University, Tarragona, Spain; 5Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People’s Republic of ChinaAbstract: Graphene quantum dots (GQDs were rationally fabricated as a traceable drug delivery system for the targeted, pH-sensitive delivery of a chemotherapeutic drug into cancer cells. The GQDs served as fluorescent carriers for a well-known anticancer drug, doxorubicin (Dox. The whole system has the capacity for simultaneous tracking of the carrier and of drug release. Dox release is triggered upon acidification of the intracellular vesicles, where the carriers are located after their uptake by cancer cells. Further functionalization of the loaded carriers with targeting moieties such as arginine-glycine-aspartic acid (RGD peptides enhanced their uptake by cancer cells. DU-145 and PC-3 human prostate cancer cell lines were used to evaluate the anticancer ability of Dox-loaded RGD-modified GQDs (Dox-RGD-GQDs. The results demonstrated the feasibility of using GQDs as traceable drug delivery systems with the ability for the pH-triggered delivery of drugs into target cells.Keywords: graphene quantum dots, drug delivery, pH-sensitive, controlled release, traceable

  4. Room-temperature dephasing in InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. Semiconductor quantum dots (QDs) are receiving increasing attention for fundamental studies on zero-dimensional confinement and for device applications. Quantum-dot lasers are expected to show superior performances, like high material gain, low and temperature...... stacked layers of InAs-InGaAs-GaAs quantum dots....

  5. Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies.

    Science.gov (United States)

    Suzuki, Miho; Udaka, Hikari; Fukuda, Takeshi

    2017-09-05

    An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification. In this study, CdSe/ZnS quantum dots are introduced as bright and photobleaching-tolerant fluorescent materials. Since hydrophilic surface coating of quantum dots rendered biocompatibility and functional groups for chemical reactions, the quantum dots were modified with half-sized antibodies after partial reduction. The half-sized antibody could be bound to a quantum dot through a unique thiol site to properly display the recognition domain for the core process of ELISA, which is an antigen-antibody interaction. The reducing conditions were investigated to generate efficient conjugates of quantum dots and half-sized antibodies. This was applied to IL-6 detection, as the quantification of IL-6 is significant owing to its close relationships with various biomedical phenomena that cause different diseases. An ELISA-like assay with CdSe/ZnS quantum dot institution (QLISA; Quantum dot-linked immunosorbent assay) was developed to detect 0.05ng/mL IL-6, which makes it sufficiently sensitive as an immunosorbent assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Non-blinking quantum dot with a plasmonic nanoshell resonator

    Science.gov (United States)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  7. Design and Simulation Test of an Open D-Dot Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Yunjie Bai

    2015-09-01

    Full Text Available Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation.

  8. Intermediate-range chemical ordering of cations in molten RbCl-AgCl

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, S. [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), Hyogo 679-5198 (Japan); Kawakita, Y. [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Shimakura, H. [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Ohara, K. [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), Hyogo 679-5198 (Japan); Fukami, T. [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Takeda, S. [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2015-07-28

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag–Cl and ionic Rb–Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag–Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb–Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag–Ag and Rb–Rb correlations, S{sub AgAg}(Q) and S{sub RbRb}(Q), show a positive contribution to the FSDP, while S{sub AgRb}(Q) for the Ag–Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM.

  9. Intermediate-range chemical ordering of cations in molten RbCl-AgCl

    International Nuclear Information System (INIS)

    Tahara, S.; Kawakita, Y.; Shimakura, H.; Ohara, K.; Fukami, T.; Takeda, S.

    2015-01-01

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag–Cl and ionic Rb–Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag–Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb–Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag–Ag and Rb–Rb correlations, S AgAg (Q) and S RbRb (Q), show a positive contribution to the FSDP, while S AgRb (Q) for the Ag–Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM

  10. ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries

    Science.gov (United States)

    Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.

    Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.

  11. THE GALACTIC CENTER WEATHER FORECAST

    International Nuclear Information System (INIS)

    Mościbrodzka, M.; Shiokawa, H.; Gammie, C. F.; Dolence, J. C.

    2012-01-01

    In accretion-based models for Sgr A*, the X-ray, infrared, and millimeter emission arise in a hot, geometrically thick accretion flow close to the black hole. The spectrum and size of the source depend on the black hole mass accretion rate M-dot . Since Gillessen et al. have recently discovered a cloud moving toward Sgr A* that will arrive in summer 2013, M-dot may increase from its present value M-dot 0 . We therefore reconsider the 'best-bet' accretion model of Mościbrodzka et al., which is based on a general relativistic MHD flow model and fully relativistic radiative transfer, for a range of M-dot . We find that for modest increases in M-dot the characteristic ring of emission due to the photon orbit becomes brighter, more extended, and easier to detect by the planned Event Horizon Telescope submillimeter Very Long Baseline Interferometry experiment. If M-dot ∼>8 M-dot 0 , this 'silhouette' of the black hole will be hidden beneath the synchrotron photosphere at 230 GHz, and for M-dot ∼>16 M-dot 0 the silhouette is hidden at 345 GHz. We also find that for M-dot > 2 M-dot 0 the near-horizon accretion flow becomes a persistent X-ray and mid-infrared source, and in the near-infrared Sgr A* will acquire a persistent component that is brighter than currently observed flares.

  12. THE GALACTIC CENTER WEATHER FORECAST

    Energy Technology Data Exchange (ETDEWEB)

    Moscibrodzka, M. [Department of Physics and Astronomy, University of Nevada, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States); Shiokawa, H.; Gammie, C. F. [Astronomy Department, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Dolence, J. C., E-mail: monikam@physics.unlv.edu [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States)

    2012-06-10

    In accretion-based models for Sgr A*, the X-ray, infrared, and millimeter emission arise in a hot, geometrically thick accretion flow close to the black hole. The spectrum and size of the source depend on the black hole mass accretion rate M-dot . Since Gillessen et al. have recently discovered a cloud moving toward Sgr A* that will arrive in summer 2013, M-dot may increase from its present value M-dot{sub 0}. We therefore reconsider the 'best-bet' accretion model of Moscibrodzka et al., which is based on a general relativistic MHD flow model and fully relativistic radiative transfer, for a range of M-dot . We find that for modest increases in M-dot the characteristic ring of emission due to the photon orbit becomes brighter, more extended, and easier to detect by the planned Event Horizon Telescope submillimeter Very Long Baseline Interferometry experiment. If M-dot {approx}>8 M-dot{sub 0}, this 'silhouette' of the black hole will be hidden beneath the synchrotron photosphere at 230 GHz, and for M-dot {approx}>16 M-dot{sub 0} the silhouette is hidden at 345 GHz. We also find that for M-dot > 2 M-dot{sub 0} the near-horizon accretion flow becomes a persistent X-ray and mid-infrared source, and in the near-infrared Sgr A* will acquire a persistent component that is brighter than currently observed flares.

  13. Carrier-phonon interaction in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seebeck, Jan

    2009-03-10

    In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non

  14. 49 CFR 41.110 - New DOT owned buildings and additions to buildings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false New DOT owned buildings and additions to buildings....110 New DOT owned buildings and additions to buildings. (a) DOT Operating Administrations responsible for the design and construction of new DOT Federally owned buildings will ensure that each building is...

  15. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  16. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    International Nuclear Information System (INIS)

    Eslami, L.; Faizabadi, E.

    2014-01-01

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  17. Preparation of carbon quantum dots based high photostability luminescent membranes.

    Science.gov (United States)

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2017-06-01

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm -1 disappeared but there was strong vibration at1687cm -1 which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Optical manipulation of electron spin in quantum dot systems

    Science.gov (United States)

    Villas-Boas, Jose; Ulloa, Sergio; Govorov, Alexander

    2006-03-01

    Self-assembled quantum dots (QDs) are of particular interest for fundamental physics because of their similarity with atoms. Coupling two of such dots and addressing them with polarized laser light pulses is perhaps even more interesting. In this paper we use a multi-exciton density matrix formalism to model the spin dynamics of a system with single or double layers of QDs. Our model includes the anisotropic electron-hole exchange in the dots, the presence of wetting layer states, and interdot tunneling [1]. Our results show that it is possible to switch the spin polarization of a single self-assembled quantum dot under elliptically polarized light by increasing the laser intensity. In the nonlinear mechanism described here, intense elliptically polarized light creates an effective exchange channel between the exciton spin states through biexciton states, as we demonstrate by numerical and analytical methods. We further show that the effect persists in realistic ensembles of dots, and we propose alternative ways to detect it. We also extend our study to a double layer of quantum dots, where we find a competition between Rabi frequency and tunneling oscillations. [1] J. M. Villas-Boas, S. E. Ulloa, and A. O. Govorov, Phys. Rev. Lett. 94, 057404 (2005); Phys. Rev. B 69, 125342 (2004).

  19. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  20. Detecting the chirality for coupled quantum dots

    International Nuclear Information System (INIS)

    Cao Huijuan; Hu Lian

    2008-01-01

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots

  1. Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.

    Science.gov (United States)

    Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W

    2015-01-01

    Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. In vivo cation exchange in quantum dots for tumor-specific imaging.

    Science.gov (United States)

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  3. PREFACE: Quantum dots as probes in biology

    Science.gov (United States)

    Cieplak, Marek

    2013-05-01

    photosynthetic systems. The next paper, by Olejnik et al, discussed metallic QDs which enhance photosynthetic function in light-harvesting biomolecular complexes. Such hybrid structures with gold QDs are shown to exhibit a strong increase in the fluorescence quantum yield. The next two papers, by Sikora et al and Kaminska et al deal with the ZnO nanoparticles passivated by MgO. In the first of these two papers, the authors describe the behavior of ZnO/MgO when introduced to human cancer cells. In the second, the authors describe the QDs with an extra outer layer of Fe2O3 which makes the nanoparticles superparamagnetic and also capable of generation of reactive oxygen species which could be applied to form localized centers of toxicity for cancer treatment. Finally, in the last paper by Yatsunenko et al, the authors discuss several semiconducting QDs like ZnO with various rare-earth dopands. They propose a microwave-driven hydrothermal technology to make them, characterize their luminescence and demonstrate their usefulness in the early recognition of cancer tissues. Quantum dots as probes in biology contents Quantum dots as probes in biologyMarek Cieplak Luminescent nanoparticles and their applications in the life sciencesVarun K A Sreenivasan, Andrei V Zvyagin and Ewa M Goldys Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid Krzysztof Szczepaniak, Remigiusz Worch and Joanna Grzyb Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dotsMaria Olejnik, Bartosz Krajnik, Dorota Kowalska, Guanhua Lin and Sebastian Mackowski Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgOBożena Sikora, Krzysztof Fronc, Izabela Kamińska, Kamil Koper, Piotr Stępień and Danek Elbaum Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles I Kamińska, B Sikora, K Fronc, P Dziawa, K Sobczak, R Minikayev, W

  4. Size dependence in tunneling spectra of PbSe quantum-dot arrays.

    Science.gov (United States)

    Ou, Y C; Cheng, S F; Jian, W B

    2009-07-15

    Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.

  5. OpenCL programming guide

    CERN Document Server

    Munshi, Aaftab; Mattson, Timothy G; Fung, James; Ginsburg, Dan

    2011-01-01

    Using the new OpenCL (Open Computing Language) standard, you can write applications that access all available programming resources: CPUs, GPUs, and other processors such as DSPs and the Cell/B.E. processor. Already implemented by Apple, AMD, Intel, IBM, NVIDIA, and other leaders, OpenCL has outstanding potential for PCs, servers, handheld/embedded devices, high performance computing, and even cloud systems. This is the first comprehensive, authoritative, and practical guide to OpenCL 1.1 specifically for working developers and software architects. Written by five leading OpenCL authorities, OpenCL Programming Guide covers the entire specification. It reviews key use cases, shows how OpenCL can express a wide range of parallel algorithms, and offers complete reference material on both the API and OpenCL C programming language. Through complete case studies and downloadable code examples, the authors show how to write complex parallel programs that decompose workloads across many different devices. They...

  6. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  7. Laterally coupled jellium-like two-dimensional quantum dots

    NARCIS (Netherlands)

    Markvoort, Albert. J.; Hilbers, P.A.J.; Pino, R.

    2003-01-01

    Many studies have been performed to describe quantum dots using a parabolic confining potential. However, infinite potentials are unphysical and lead to problems when describing laterally coupled quantum dots. We propose the use of the parabolic potential of a homogeneous density distribution within

  8. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    KAUST Repository

    Li, Yan Vivian

    2016-03-02

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl2, and MgCl2) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl2 and MgCl2 solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl2 and MgCl2 solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.

  9. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan Vivian, E-mail: yan.li@colostate.edu [Colorado State University, Department of Design and Merchandising (United States); Cathles, Lawrence M., E-mail: lmc19@cornell.edu [Cornell University, Earth and Atmospheric Sciences (United States)

    2016-03-15

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl{sub 2}, and MgCl{sub 2}) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl{sub 2} and MgCl{sub 2} solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl{sub 2} and MgCl{sub 2} solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.Graphical Abstract.

  10. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    International Nuclear Information System (INIS)

    Li, Yan Vivian; Cathles, Lawrence M.

    2016-01-01

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl_2, and MgCl_2) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl_2 and MgCl_2 solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl_2 and MgCl_2 solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.Graphical Abstract

  11. Theoretical analysis of four wave mixing in quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing.......The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing....

  12. On the origin of the substantial stabilisation of the electron-donor 1,3-dithiole-2-thione-4-carboxyclic acid center dot center dot center dot I-2 and DABCO center dot center dot center dot I-2 complexes

    Czech Academy of Sciences Publication Activity Database

    Deepa, Palanisamy; Sedlák, Robert; Hobza, Pavel

    2014-01-01

    Roč. 16, č. 14 (2014), s. 6679-6686 ISSN 1463-9076 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : density functional theory * Kohn-Sham orbitals * basis set limit Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014

  13. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  14. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    Science.gov (United States)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  15. Spectroscopy of Charged Quantum Dot Molecules

    Science.gov (United States)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  16. Fabrication of double-dot single-electron transistor in silicon nanowire

    International Nuclear Information System (INIS)

    Jo, Mingyu; Kaizawa, Takuya; Arita, Masashi; Fujiwara, Akira; Ono, Yukinori; Inokawa, Hiroshi; Choi, Jung-Bum; Takahashi, Yasuo

    2010-01-01

    We propose a simple method for fabricating Si single-electron transistors (SET) with coupled dots by means of a pattern-dependent-oxidation (PADOX) method. The PADOX method is known to convert a small one-dimensional Si wire formed on a silicon-on-insulator (SOI) substrate into a SET automatically. We fabricated a double-dot Si SET when we oxidized specially designed Si nanowires formed on SOI substrates. We analyzed the measured electrical characteristics by fitting the measurement and simulation results and confirmed the double-dot formation and the position of the two dots in the Si wire.

  17. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    International Nuclear Information System (INIS)

    Lue Rong; Zhang Guangming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  18. [Louis Braille (1809-1852)--inventor of raised dots system].

    Science.gov (United States)

    Maciejewicz, Piotr; Kopacz, Dorota

    2005-01-01

    Louis Braille was born on January 4th 1809 in Coupvray, France. An injury to his eye at the age of three, resulted in total loss of vision. In 1819 he entered the Institute for Blind Youth in Paris. There he would live, study, and later teach. When he was fifteen, he developed system of reading and writing by means of raised dots, which is known today as Braille. The basis of the Braille system is known as a Braille cell. The cell is comprised of six dots numbered in a specific order. Each dot or combination of dots represents a letter of the alphabet. This Braille system has established itself internationally and formed the basic Braille for all languages.

  19. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique

    Science.gov (United States)

    Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.

    2018-03-01

    Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.

  20. Stark effect and polarizability of graphene quantum dots

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we...