WorldWideScience

Sample records for cenozoic tholeiitic volcanism

  1. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  2. K—Ar Geochronology and Evolution of Cenozoic Volcanic Rocks in Eastrn China

    Institute of Scientific and Technical Information of China (English)

    王慧芬; 杨学昌; 等

    1989-01-01

    Cenozoic volcanic rocks widespread in eastern China constitute an important part of the circum-Pacific volcanic belt.This paper presents more than 150K-Ar dates and a great deal of petrochemical analysis data from the Cenozoic volcanic rocks distributed in Tengchong,China's southeast coast,Shandong,Hebei,Nei Monggol and Northeast China.An integrated study shows that ubiquitous but uneven volcanic activities prevailed from the Eogene to the Holocene,characterized as being multi-eqisodic and multicycled.For example,in the Paleocene(67-58Ma),Eocene(57-37.5Ma),Miocene(22-18,16-19Ma),Pliocene(8-3Ma),and Early Pleistocene-Middle Pleistocene(1.2-0.5Ma) there were upsurges of volcanism,while in the Oligocene there was a repose period.In space,the older Eogene volcanic rocks are distributed within the region or in the central part of the NE-NNE-striking fault depression,while the younger Neogene and Quaternary volcanic rocks are distributed in the eastern and western parts.Petrologically,they belong essentially to tholeiite-series and alkali-series basalts,with alkalinity in the rocks increasing from old to youg.The above regularities are controlled by both global plate movement and regional inherent tectonic pattern.

  3. CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is concentrated on Cenozoic volcanism and geothermal resources in Northeast China. There are a lot of Cenozoic volcanoes, a large area of volcanic rocks, a large number of active faults and rich geothermal resources in Northeast China. The time and space characteristics of Cenozoic volcanism and the space distribution characters of hot springs and high geothermal flux regions in Northeast China are described and discussed on the basis of geological, geothermal, drilling and volcanological data. It is revealed that the hot springs and high geothermal flux regions are re lated to the Cenozoic volcanism, rifting and faulting in Northeast China. It is especially emphasized that the hot springs and high geothermal anomaly areas are controlled by active deep faults. It is proposed that the Cenozoic volcanism re gions, rift basins, active fault belts, activated plate suture zones and large earthquake occurrence points are the best areas for prospecting geothermal resources. The geothermal resources in younger volcanic zones are richer than those in older volcanic belts. The hot springs and active or activated faults might be a very good clue for looking for geothermal resources.

  4. The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex, and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar

    Science.gov (United States)

    Melluso, L.; Cucciniello, C.; le Roex, A. P.; Morra, V.

    2016-07-01

    The Ankaratra volcanic complex in central Madagascar consists of lava flows, domes, scoria cones, tuff rings and maars of Cenozoic age that are scattered over 3800 km2. The mafic rocks include olivine-leucite-nephelinites, basanites, alkali basalts and hawaiites, and tholeiitic basalts. Primitive samples have high Mg# (>60), high Cr and Ni concentrations; their mantle-normalized patterns peak at Nb and Ba, have troughs at K, and smoothly decrease towards the least incompatible elements. The Ankaratra mafic rocks show small variation in Sr-Nd-Pb isotopic compositions (e.g., 87Sr/86Sr = 0.70377-0.70446, 143Nd/144Nd = 0.51273-0.51280, 206Pb/204Pb = 18.25-18.87). These isotopic values differ markedly from those of Cenozoic mafic lavas of northern Madagascar and the Comoro archipelago, typical Indian Ocean MORB and oceanic basalt end-members. The patterns of olivine nephelinitic magmas can be obtained through 3-10% partial melting of a mantle source that was enriched by a Ca-rich alkaline melt, and that contained garnet, carbonates and phlogopite. The patterns of tholeiitic basalts can be obtained after 10-12% partial melting of a source enriched with lower amounts of the same alkaline melt, in the spinel- (and possibly amphibole-) facies mantle, hence in volumes where carbonate is not a factor. The significant isotopic change from the northernmost volcanic rocks of Madagascar and those in the central part of the island implicates a distinct source heterogeneity, and ultimately assess the role of the continental lithospheric mantle as source region. The source of at least some volcanic rocks of the still active Comoro archipelago may have suffered the same time-integrated geochemical and isotopic evolution as that of the northern Madagascar volcanic rocks.

  5. Paleomagnetic results from Cenozoic volcanics of Lusatia, NW Bohemian Massif

    Science.gov (United States)

    Schnabl, P.; Cajz, V.; Tietz, O.; Buechner, J.; Suhr, P.; Pecskay, Z.; Cizkova, K.

    2013-05-01

    Lusatia is situated in the NE continuation of the Ohre Rift (OR) behind Lusatian Overtrust. Compared to the neighbouring volcanic complex of the České stredohorí Mts. (CS) inside the OR. The scattered occurrences of basaltic bodies in Lusatia are spread on wider area. This can be caused by different tectonic development of the regions and from derived erosional conditions. The Lusatian Overtrust, high-order tectonic structure running across the course of the OR, separates Lusatian region into two different geological areas where Cretaceous sediments or granodiorites of Lusatian Massif represent the country rock of the Cenozoic volcanism, respectively. The age of volcanic activity ranges from 19 to 33 Ma, it's proved by newly obtained Ar-Ar data from Freiberg and K-Ar data from Debrecen. Forty two scattered remnants of Cenozoic volcanic products were sampled to get paleomagnetic data. The superficial volcanics with detectable geological position and volcanology were chosen preferentially, several dykes and separate vents were sampled as well. Paleomagnetic research was processed on more than 500 samples which were demagnetized using alternate field in the range 0-80 mT. Q-ratio was counted to prevent the lightning influence - solitary volcanic occurrences build positive morphology and thus, they are prone to be targeted by lightnings. The values of Q-ratio predominantly span from 0.1 to 7.0; those samples having the value over 10, were excluded for evaluation. The mean paleomagnetic direction (MPD) was acquired from several samples on each sampling site. Declination and Inclination show values of 11.8 deg and 62.7 deg (α95 = 9.3 deg) for normal polarity, or 182.1 deg and -59.2 deg (α95 = 6.1 deg) for reverse polarity, respectively,The corresponding paleolatitude of 41.9 deg was counted from the Inclination. This is 1000 km to the South, compared to recent position. The dispersions of the MPD are relatively wide. This coincides well with the idea of long

  6. Igneous Rocks of the East Pacific Rise: The alkali volcanic suite appear to be differentiated from a tholeiitic basalt extruded from the mantle.

    Science.gov (United States)

    Engel, A E; Engel, C G

    1964-10-23

    The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K(2)O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K(2)O by weight and more than 48 percent SiO(2). Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts. The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 10(4).

  7. Trace Element Geochemistry of Cenozoic Volcanic Rocks in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    陈道公; 李彬贤; 等

    1989-01-01

    The Cenozoic volcanic rock of Shandong Province are mainly alkalic and strongly alkalic basaltic rocks.The Contents of major and trace elements including transitional,incompatible and rare-earth elements were determined.The chemical characterisitics of major and trace elements indicate that these basaltic rocks were derived from a mantle source and probably represent a primary magma,I,e.,unmodifiecd partical melts of mantle peridotite in terms of Mg values,correlatione between P2O5 and Ce,Sr,Ni and Rb concentrations,mantle xenoliths,etc.The abundances of trace elements vary systematically from west to east.The compatible transition elements such as Co,Ni,and Cr show a remarkable depletion,whereas the incompatible and rare-earth elements are abundant as viewed from the chondrite-nor-malized patterns.The chemical composition and correlation are consistent with the tectonic setting.According to the batch and fractional partial melting theory,the trace element contents of Shandong volcanic rocks can be calculated from the two-component mixing model.

  8. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    Science.gov (United States)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  9. Effect of volatiles erupted from Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the determination of composition of volcanic volatiles and petrologic estimation of the total mass of volatiles erupted,we showed important advances in the study of the impact of Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China.The volcanic activities include western Liaoning and Zhangjiakou Mesozoic intermediate-acidic explosive eruptions,southern Tibet and Shanwang Cenozoic volcanism,and Mt.Changbai volcanic eruption around one thousand years ago.The paper predominantly discusses the earth's surface temperature changes,ozone depletion,acidic rain formation and mass mortalities of vertebrate induced by the Mesozoic and Cenozoic volcanism in China.

  10. CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA

    Institute of Scientific and Technical Information of China (English)

    WANG; Xi-kui

    2001-01-01

    Ke-qin, 1997. Paleoclimatic and environmental change since 2000a B. P. recorded in ice Core[J]. The Front of Ceo-science, 4(1): 95-100.(in Chiniese)[13]ZHANG Zhen-ke, WU Rui-jin, WANG Su-min, 1998. Paleoenvironmeal evolution during historic time reflected by frequency susceptibility of the lacustrine sediment in Daihai[J]. Geography Reaserch. 17(3) :297-300. (in Chinese)[14]ZHANG Pi-yuan, 1996. Climatic Changes During Historic Time in China[J]. Jinan: Shandong Science and Technology Press, 434-435. (in Chinese)[15]ZHANG Pi-yuan, GE Quan-sheng, 1997. The stage and abrupt ness of climatic evolution[J]. The Front of Geo-science, 4(1):122-126. (in Chinese)[16]ZHONG Wei, XIONG Hei-gang, Tashplati etal., 1998a. The preliminary study on the Spore-pollen combination of the Tagele section in Cele oasis[J]. Arid Zone Research, 15 (3):14-17. (in Chinese)[17]ZHONG Wei, XIONG Hei-gang, 1998b. Preliminary study on paleoclimatic evolution since about 12ka B.P. in Bosten Lake, southern Xinjiang, China[J]. Journal of Arid Land Resources and Enviorment, 12(3) :28-35. (in Chinese)[18]ZHU Ke-zhen. 1973, Preliminary study of climatic changes since about 5000 years in China[J]. Science in China, (2):291-296. (in Chinese)[19]CHEN Mo-xiang, WANG Ji-yang, DENG Xiao, 1994. Geothermal Resources in China[M] . Beijing: Science Press, 139 -159. (in Chinese)[20]CHEN Wen-ji, LI Da-ming, LI Qi et al. , 1992. Chronology and geochemistry of basalts in Lower Liaohe Basin[A] . In: LIU Ruo-xin. Chronology and Geochemistry of Cenozoic Volcanic Rocks in China [C] . Beijing: Seismological Press, 44-80. (in Chinese)[21]E Mo-lan, ZHAO Da-sheng, 1987. Cenozoic Basalts and Deep Source Rock Inclusions[M] . Beijing: Science Press, 86-132. (in Chinese)[22]LIU Jia-qi, 1987. Research on chronology of Cenozoic volcanic rocks in Northeast China[J]. Acta Petrologica Sinica, 3(4):21-31. (in Chinese)[23]MACHIDA H, ARAI F, 1983. Extensive ash falls in and around the Sea of Japan

  11. Discovery of Enclaves from Cenozoic Pulu Volcanic Rocks in West Kunlun Mountains and Its Geological Implications

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, we present the occurrence and mineral components of the enclaves firstly discovered in the Cenozoic Pulu volcanic rocks in west Kunlun Mountains, and propose that the enclave is accumulated by fractional crystallization within high-level magma chamber. In addition, the chemical compositions of its primary magma are calculated. The calculated compositions are similar to those of the Kangxiwa volcanic rocks that belong to the same volcanic belt in the Pulu volcanic region, suggesting their origin from the same source region. However, the temperatures and oxygen fugacity of magmas at high-level magma chamber decreased along with fractional crystallization.

  12. Characteristics and geological significance of olivine xenocrysts in Cenozoic volcanic rocks from western Qinling

    Institute of Scientific and Technical Information of China (English)

    SU Benxun; ZHANG Hongfu; XIAO Yan; ZHAO Xinmiao

    2006-01-01

    Cenozoic volcanic rocks from the Haoti, Dangchang County of the western Qinling Mountains, contain a few clearlyzoned olivines. These olivines are relatively big in grain sizes and usually have cracks or broken features. Their cores have similar compositions (Mg# = 90.4- 91.0) to those for the peridotitic xenoliths entrained in host volcanic rocks and their rims are close to the compositions of olivine phenocrysts (Mg# = 85.5 81.9). The CaO contents in these zoned olivines are lower than 0.1%. These features demonstrate that the clearly zoned olivines are xenocrysts and disaggregated from mantle peridotites. The zoned texture was the result of the interaction between the olivine and host magma. Available data show that the volcanic rocks would have been derived from the mantle source metasomatized by subducted hydrathermally-altered oceanic crust. The formation of these Cenozoic volcanic rocks was perhaps related to the rapid uplift of the Tibetan Plateau.

  13. Cenozoic Volcanism and Intraplate Subduction at the Northern Margin of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    邓万明

    1991-01-01

    Developed in the Mt.Kunlun orogenic belt at the northern margin of the Tibetan Plateau is an active Cenozoic volcanic zone which is more than 1000km in length and some ten to hundred kilometers in width.It extends east-westwards and is roughly parallet to the strike of Mt.Kunlun.The Cenozoic volcanic rocks are divided into the northern(N-)and southern(S-)subzones.Eruptions of volcanic lavas in the S-subzone are related to an initial rift zone within the north Qiangtang terrane,but the volcanic rocks in the N-subzone are relatively close to the contact zone between the Mt.Kunlun and the Tarim terrane.The space-time distribution,petrological and geochemical features can be explained by a model of southward intraplate subduction of the Tarim terrane.

  14. Cenozoic Volcanism in South China Sea and Its Vicinity and South China Sea Spreading

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rock series, rock types and Sr-Nd isotopic dating of the Cenozoic volcanic rocks in the South China Sea are similar to those in its vicinity. On the basis of the spreading age of the South China Sea, the Cenozoic volcanic rocks are divided into three stages: the pre-spreading stage, the spreading stage and the post-spreading stage. The deep process characteristics of the asthenosphere and lithosphere may be inferred from the study on primary basaltic magma. The top layers of the asthenosphere both in the spreading stage and in the pre-spreading stage are closer to the earth surface than that in the post-spreading stage. From the pre-spreading stage to the spreading stage, the top layer of the asthenosphere decreased in depth, while the amount of interstitial partial melts increased. The evolution of the primary basaltic magma shows a progressive evolution sequence of the rifting volcanism and a faster lithospheric spreading velocity. From the spreading stage to the post-spreading stage, the top layer of the asthenosphere gradually increased in depth, but the amount of interstitial partial melts decreased. The evolution of primary basaltic magma shows a retrogressive evolution sequence of the rifting volcanism and a gradual decrease in the lithospheric spreading velocity. The depth recognized by the study on the Cenozoic volcanism demonstrates the deep environment for the formation and evolution of the South China Sea.

  15. The Achkal Oligocene ring complex: Sr, Nd, Pb evidence for transition between tholeiitic and alkali cenozoic magmatism in Central Hoggar (South Algeria)

    International Nuclear Information System (INIS)

    The Achkal Oligocene ring complex-cuts the Upper Eocene tholeiitic traps located on the top of the Hoggar swell. The plutonic rocks range from tholeiitic gabbros to alkali essexites, monzonites and syenites, whereas the volcanites are restricted to late per-alkaline rhyolites. The affinity change linked to the large isotopic heterogeneities (from EM1 to HIMU) suggests that the parental magmas are issued from two district mantle sources, first lithospheric then deeper. The Achkal has recorded the magmatic evolution of the Hoggar hot spot, between Eocene and Miocene. (authors)

  16. The evolution of Neoproterozoic magmatism in Southernmost Brazil: shoshonitic, high-K tholeiitic and silica-saturated, sodic alkaline volcanism in post-collisional basins

    Directory of Open Access Journals (Sweden)

    Sommer Carlos A.

    2006-01-01

    Full Text Available The Neoproterozoic shoshonitic and mildly alkaline bimodal volcanism of Southernmost Brazil is represented by rock assemblages associated to sedimentary successions, deposited in strike-slip basins formed at the post-collisional stages of the Brasilian/Pan-African orogenic cycle. The best-preserved volcano sedimentary associations occur in the Camaquã and Campo Alegre Basins, respectively in the Sul-riograndense and Catarinense Shields and are outside the main shear belts or overlying the unaffected basement areas. These basins are characterized by alternation of volcanic cycles and siliciclastic sedimentation developed dominantly on a continental setting under subaerial conditions. This volcanism and the coeval plutonism evolved from high-K tholeiitic and calc-alkaline to shoshonitic and ended with a silica-saturated sodic alkaline magmatism, and its evolution were developed during at least 60 Ma. The compositional variation and evolution of post-collisional magmatism in southern Brazil are interpreted as the result mainly of melting of a heterogeneous mantle source, which includes garnet-phlogopite-bearing peridotites, veined-peridotites with abundant hydrated phases, such as amphibole, apatite and phlogopite, and eventually with the addition of an asthenospheric component. The subduction-related metasomatic character of post-collisional magmatism mantle sources in southern Brazil is put in evidence by Nb-negative anomalies and isotope features typical of EM1 sources.

  17. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs

    Science.gov (United States)

    Basu, A.R.; Wang, Junwen; Huang, Wankang; Xie, Guanghong; Tatsumoto, M.

    1991-01-01

    Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China. The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb Sr and Nd Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb 204Pb vs 206Pb 204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb 204Pb vs 206Pb 204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components-a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle

  18. Geochemical Characteristics of the Cenozoic Volcanic Rocks in Central Qiangtang, Tibet: Relation with the Uplift of the Qinghai Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    TAN Fuwen; PAN Guitang; XU Qiang

    2001-01-01

    The Cenozoic volcanic rocks in central Qiangtang are tectonically outcropped in the transitional area where crust of the Qinghai-Tibet Plateau thins northwards and the Passion's ratios of the crust increases abnormally northwards. Of all Cenozoic volcanic rocks of northern Tibet, the volcanic rocks in Qiangtang area is the oldest one with ages from 44.1±1.0 Ma to 32.6±0.8 Ma. Petrological and geochemical studies of the volcanic rocks in central Qiangtang suggest they formed in the extension environment of post collision-orogeny and were the product of mixture of magmas from crust and mantle. The uplift of the northern plateau is closely related to decoupling of mantle lithosphere,crustal extension and thinning as well as volcanism. Therefore, it is inferred that the main uplift of the northern plateau began from about 40 Ma ago.

  19. Hot Spot Induced Cenozoic Volcanism in the Upper Rajang Valley, Sarawak - Is Borneo Rifting?

    Science.gov (United States)

    Taib, N.

    2010-12-01

    The Upper Rajang Valley covers a large area in the northern interior of the island of Borneo, in the Malaysian state of Sarawak . It is underlain by the Cretaceous to Late Eocene deep to shallow marine sediments of the Rajang Group. Within this area are several Cenozoic volcanic edifices, which to date have been sparsely studied. Two distinct episodes of volcanism are recognized - the first, dated early Eocene, consists of K-rich basalts, and is represented by the Bukit Mersing volcanics, which were erupted conformably onto deep water turbidites of the Rajang Group. The second, far more extensive, is dated Pliocene to Quaternary, and is bimodal, consisting mainly of early dacite and rhyodacite tuffs, with a smaller amount of later basalt, forming several volcanic plateaus and massifs (Hose Mountains, Usun Apau, Linau-Balui, Nieuwenhuis Mountains and others). They lie unconformably over pre-Miocene sediments, the Linau-Balui basalts having been erupted onto Quaternary river terraces. Mantle-normalized REE and incompatible trace element spider plots reveal that the Bukit Mersing basalts have geochemical affinity with Oceanic Island Basalts (OIB) and rift basalts, being enriched in LREEs and Most Incompatible Elements, and no Eu anomaly. Preliminary trace element data for several basalt samples from Usun Apau also show Oceanic Island/Rift affinity. Bimodal volcanism is most often associated with rift environments. Efforts are being made to radiometrically date the volcanics, in part to determine the possibility of future eruptions. The Upper Rajang Valley is remote, covered in tropical rainforest and is very sparsely populated. At this time, there is no information concerning signs of imminent volcanism, such as hot springs and microseismicity.

  20. Cenozoic intraplate volcanism in Mongolia; if not a mantle plume then what?

    Science.gov (United States)

    Barry, T. L.; Saunders, A. D.; Kempton, P. D.

    2003-04-01

    Diffuse, small-volume basaltic volcanism has occurred throughout Mongolia for the past 30 My. This region provides an excellent opportunity to study intraplate volcanism because it is clearly on continental crust and far removed from the effects of subduction-related processes. Although magma has been erupted onto 45 km thick crust, there appears to be very little crustal contamination (Barry et al., 2003). The volcanism also provides an important link between the basaltic volcanism to the north around the Baikal rift zone, which has often been related to a mantle plume and Cenozoic basaltic volcanism that infills extensional grabens within NE China. Very clear chemical similarities within all the Baikal-Mongolia-NE China Cenozoic basalts exists (Barry &Kent, 1998) suggesting that the mantle source region beneath this vast area may be the same. Therefore, one general model should be able to explain all the volcanism. Trace element, REE and isotopic modeling of Mongolian basalt compositions indicate that the melts most likely formed within the lowermost lithospheric mantle from recently metasomatised lithosphere. There is no evidence for high heat flow within the mantle (Khutorskoy &Yarmolyuk, 1989), but geophysical studies infer anomalously dense material to be present at the base of the lithospheric mantle (Petit et al., 2002) which is coincident with a low velocity zone at ~200 km depth (Villaseñor et al., 2001). However, there does not appear to be anomalous low velocity material within the asthenospheric mantle. Geochemistry of the basalts give no positive indication for the presence of an underlying mantle plume. Conversely, whilst localized extensional tectonics may have aided the extrusion of basaltic melts, the small amount of extension cannot account for the generation of the basalts (McKenzie &Bickle, 1988). Lacking evidence for a high heat flux mantle plume, we may suggest the presence of a thermal anomaly, i.e. additional heat within the asthenosphere

  1. Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, W.A.; Bacon, C.R.; Dalrymple, G.B.

    1980-05-10

    The Coso Range lies at the west edge of the Great Basin, adjacent to the southern part of the Sierra Nevada. A basement complex of pre-Cenozoic plutonic and metamorphic rocks is partly buried by approx.35 km/sup 3/ of late Cenozoic volcanic rocks that were erupted during two periods, as defined by K-Ar dating: (1) 4.0--2.5 m.y., approx.31 km/sup 3/ of basalt, rhyodacite, dacite, andesite, and rhyolite, in descending order of abundance, and (2) < or =1.1 m.y., nearly equal amounts of basalt and rhyolite, most of the rhyolite being < or =0.3 m.y. old. Vents for the volcanic rocks of the younger period are localized on and near a horst of basement rocks within a concavity defined by the distribution of vents of the older period. The alignment of many vents and the presence of a considerable number of roughly north-trending normal faults of late Cenozoic age reflect basin and range tectonics dominated by roughly east-west lithospheric extension. Fumaroles, intermittently active thermal springs, and associated altered rocks occur within and immediately east of the central part of the field of Quaternary rhyolite, in an area characterized by various geophysical anomalies that are evidently related to an active hot-water geothermal system. This system apparently is heated by a reservoir of silicic magma at > or =8-km depth, itself produced and sustained through partial melting of crustal rocks by thermal energy contained in mantle-derived basaltic magma that intrudes the crust in repsonse to lithospheric extension.

  2. Post-collisional and intraplate Cenozoic volcanism in the rifted Apennines/Adriatic domain

    Science.gov (United States)

    Bianchini, G.; Beccaluva, L.; Siena, F.

    2008-02-01

    The distinctive tectono-magmatic characteristics of rift volcanism in the Apennines/Adria domains are discussed focussing attention on the nature of mantle sources, stress regimes, and conditions of magma generation. Post-collisional intensive lithospheric rifting and tectonic collapse of the Apennines generate large amounts of Pliocene-Quaternary orogenic magmas which overlie a nearly vertical subducted slab along the peri-Tyrrhenian border. This magmatism includes the Roman Magmatic Province sensu lato (RMP-s.l.) and the Internal Apennines Volcanism (IAV), and consists of high-K calcalkaline, potassic (shoshonitic) and ultrapotassic (leucitites, leucite basanite and minor lamproites and kamafugites) products. Integrated petrological and geochemical studies of these rocks (and associated mantle xenoliths) indicate that most of them could have been generated by a restricted partial melting range ( F ≤ 5-10%) of extremely inhomogeneous phlogopite-veined lithospheric mantle sources, resulting from subduction related K-metasomatic processes. Moreover, the presence of both intermediate anorogenic and subduction related geochemical features in Mt. Vulture magmas support the existence of a slab window beneath the central-southern Apennines, which could have allowed inflow of subduction components to intraplate mantle sources. This slab discontinuity may mark the transition between the already collisioned Adriatic and the still subducting Ionian lithospheric slabs. By contrast, the Paleogene intraplate magmatism of the Adriatic foreland (i.e., the Veneto Province (VVP) and the minor Mt. Queglia and Pietre Nere magmatic bodies) is characterized by small volumes of basic magmas, varying from tholeiitic to strongly Na-alkaline in composition. This magmatism appears to be related to a limited extensional regime typical of the low volcanicity rifts. Petrogenetic modelling of the intraplate Adriatic foreland magmas indicates that their composition is remarkably depth

  3. Cenozoic volcanism and lithospheric tectonic evolution in Qiangtang area, northern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    CHI Xiaoguo; LI Cai; JIN Wei

    2005-01-01

    Following the collision between the Indian and Eurasian plates, the Cenozoic volcanic activities are rather frequent in the Qiangtang area of northern Qinghai-Tibet Plateau. They can be divided into four series: alkaline basalt series, high-K calc-alkaline series, shoshonitic series and peralkaline potassic-ultrapotassic series. Geochemical data suggest that the magma sources of Cenozoic volcanic rocks have transferred from spinel Iherzolite mantle in the early stage to garnet peridotite enriched mantle (EM2) in the later stage. The high Mg# number and extremely high Cr-Ni-Co abundance of high-K calc-alkaline and shoshonitic series andesites in the Qiangtang area indicate that the primary magma might be derived from subduction of continent lithosphere from the Lhasa block. Incompatible element ratios of La/Rb, Zr/Rb, Rb/Nb, K/Nb,Pb/La and K/La of peralkaline potassic-ultrapotassic series lavas in northern Qinghai-Tibet Plateau are lower than island arc volcanic rocks and higher than and similar to oceanic island basalts. This signature indicates that the primary magma derive from a paleo-mantle wedge interfused by fluids derived from asthenosphere and/or subducted mantle lithosphere. But the above element ratios of ultrapotassic lavas in southern Tibet and ultrapotassic lamprophyres in eastern Tibet are higher than and similar to island arc volcanic rocks, which means that the primary magma sources contained a large quantity of crust contaminant from fluids and/or melts derived from subducted continent lithosphere. The studies result supports that the indian continental .lithosphere has underthrust beneath Tibet to about the middle of the plateau, and Eurasian (Qaidam basin) mantle lithosphere has underthrust beneath the Qiangtang area of northern Tibet Plateau. In the paper we demonstrate further that the pulsing cycles of potassic-ultrapotassic volcanism of the Qinghai-Tibet Plateau result from an asthenospher pulsing upwelling caused by the intraplate subduction

  4. Petrogenesis of Cenozoic Potassic Volcanic Rocks in the Nangqên Basin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Nangqên basin is one of the Tertiary pull-apart basins situated in the east of the Qiangtang block. Similar to the adjacent Dengqên basin and Baxoi basin, there occurred a series of potassic volcanic and sub-volcanic rocks, ranging from basic, intermediate to intermediate-acid in lithology. Based on the study of petrology, mineralogy and geochemistry, including REEs, trace elements, isotopic elements and chronology, the authors concluded that the Cenozoic potassic volcanic rocks in the Nangqên basin were formed in the post-collisional intraplate tectonic settings. The relations between the basic, intermediate and intermediate-acid rocks are neither differentiation nor evolution, but instead the geochemical variability is mainly attributable to the different partial melting degrees of the mantle sources formed at depths of 50(80 km. The sources of the potassic rocks are enriched metasomatic mantle that has experienced multiple mixing of components mainly derived from the crust. The recycling model can be described as follows: after they had subducted to the mantle wedge, the crust-derived rocks were metasomatized with the mantle materials. In view of the fact that the ratio of crust-derived rocks increases by the age of volcanism, it can be concluded that the sources of the potassic rocks moved upwards progressively with time. The underplating of small scattered magmas upwelling from the asthenosphere may have induced partial melting of the sources of the volcanic rocks in some pull-apart basins in the Hengduanshan area and the intense tectonic movements of large-scale strike-slip belts provided conduits for the ascending melts.

  5. Deep Mechanical Background for the Cenozoic Volcanism in the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    Xiong Xiong; Wang Jiye; Teng Jiwen

    2005-01-01

    The principle prerequisite for the formation of a volcano is the generation of a channel for magma transportation. There is little research on the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan plateau.Based on the subcrustal mantle convection-generated stress field inversed by gravity anomalies, together with its relationship to the Cenozoic volcanism in the plateau, and the mechanism of crustal fracture formation, as well as the numerical results of the evolution of mantle convection beneath the plateau, this paper investigates the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan plateau. There are two significant extensional convection-generated stress zones beneath the plateau, in which the volcanic rocks in the central and northern parts of the plateau are distributed. The Linzizong volcanism in southern Tibet correlates the upwelling mantle flow prior to the India-Asia collision or during the early stage of the collision. The magnitude of the stress is ~100 MPa, which is the same order of force that causes crustal fractures. The evidence implies that the mantle convection-generated stress is one of the principle causes of crustal fractures, and furthermore, the formation of the magma transportation channel in the Tibetan plateau.

  6. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  7. The Ajo Mining District, Pima County, Arizona--Evidence for Middle Cenozoic Detachment Faulting, Plutonism, Volcanism, and Hydrothermal Alteration

    Science.gov (United States)

    Cox, Dennis P.; Force, Eric R.; Wilkinson, William H.; More, Syver W.; Rivera, John S.; Wooden, Joseph L.

    2006-01-01

    Introduction: The Ajo porphyry copper deposit and surrounding Upper Cretaceous rocks have been separated from their plutonic source and rotated by detachment faulting. Overlying middle Cenozoic sedimentary and volcanic rocks have been tilted and show evidence for two periods of rotation. Following these rotations, a granitic stock (23.7?0.2 Ma) intruded basement rocks west of the Ajo deposit. This stock was uplifted 2.5 km to expose deep-seated Na-Ca alteration.

  8. Late Cenozoic volcanism in central Myanmar: Geochemical characteristics and geodynamic significance

    Science.gov (United States)

    Lee, Hao-Yang; Chung, Sun-Lin; Yang, Hsiao-Ming

    2016-02-01

    Late Cenozoic volcanism occurred in the central Myanmar basin, a region that is marked by the existence of the dextral Sagaing fault linking the eastern Himalayan Syntaxis to the north and the Andaman Sea to the south. Here we report new geochemical data of volcanic rocks from Monywa, Mt. Popa and Singu areas erupting in two distinct stages, i.e., mid-Miocene and Quaternary, respectively. While calc-alkaline rocks showing arc-like geochemical features are abundant, an apparent change in magma composition is observed between these two stages. The mid-Miocene rocks are mainly dominated by intermediate compositions (SiO2 = 53-61 wt.%) and typical of high-K calc-alkaline nature. They exhibit uniform Sr and Nd isotopic ratios (ISr ≈ ~ 0.705; εNd(T) = + 2.7 to + 1.6), suggesting a juvenile mantle origin related to the subduction of Indian oceanic lithosphere beneath this part of Asia. The Quaternary rocks consist mainly of basalts that, however, show variations in geochemical features. Three suites in this stage are observed: (1) calc-alkaline suite (basalts and basaltic andesites from Monywa and Mt. Popa: SiO2 = 48-56 wt.%; ISr = 0.704 to 0.705; εNd(T) = + 3.1 to + 2.1), originating from partial melting of a "remnant" juvenile mantle wedge, (2) alkali basalt suite I (basanites from Monywa: SiO2 ≈ 45 wt.%; MgO = 10-12 wt.%; K2O ≈ 2.0 wt.%; ISr = 0.704 to 0.705; εNd(T) ≈ + 3.6), interpreted as the product of small-degree melting from an amphibole lherzolite in the lithospheric mantle, and (3) alkali basalt suite II (trachybasalts from Singu: SiO2 ≈ 51 wt.%; K2O = 2.6-3.5 wt.%; ISr ≈ 0.706; εNd(T) = + 1.6 to + 0.9), interpreted as the product of partial melting from the asthenosphere. All processes of magma generation were related to the India-Asia collision that caused regional plate reorganization, a transition from oblique subduction to dextral movement in the Miocene, and subsequent "rollback" of the subducted Indian oceanic lithosphere in the

  9. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia

    Science.gov (United States)

    Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.

    2015-11-01

    The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with

  10. Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution

    OpenAIRE

    Melis, M. T.; F. Mundula; DessÌ, F.; Cioni, R; Funedda, A.

    2014-01-01

    Unequivocal delimitation of landforms is an important issue for different purposes, from science-driven morphometric analysis to legal issues related to land conservation. This study is aimed at giving a new contribution to the morphometric approach for the delineation of the boundaries of volcanic edifices, applied to 13 monogenetic volcanoes (scoria cones) related to the Pliocene–Pleistocene volcanic cycle in Sardinia (Italy). External boundary delimitation of the edifices...

  11. Pervasive, tholeiitic refertilisation and heterogeneous metasomatism in Northern Victoria Land lithospheric mantle (Antarctica)

    Science.gov (United States)

    Pelorosso, Beatrice; Bonadiman, Costanza; Coltorti, Massimo; Faccini, Barbara; Melchiorre, Massimiliano; Ntaflos, Theodoros; Gregoire, Michel

    2016-04-01

    The petrology of peridotite xenoliths in the Cenozoic volcanics from Greene Point (Northern Victoria Land, Antarctica) provides new constraints on the characterisation of the lithospheric mantle beneath the West Antarctic Rift. Based on mineral major and trace element models, this mantle domain is proposed to represent a residuum after 10% and 20% partial melting. Moreover, melting models and isotopic results for Sr and Nd systematics highlight the substantial contribution of tholeiitic melts percolating through peridotites. Close correlation with trace element contents in clinopyroxene phenocrysts from Ferrar and Karoo tholeiites allows us to ascribe this refertilisation event to the Jurassic. This asthenospheric melt was also able to transfer a garnet signature to the Northern Victoria Land mantle segment. The rare presence of glass and secondary phases indicate that Greene Point xenoliths were heterogeneously affected by alkaline metasomatism, probably related to the West Antarctic Rift System opening; this has also been widely observed in other Northern Victoria Land localities (i.e., Baker Rocks). Temperature and fO2 were calculated (950 °C; Δlog fO2 (QFM), - 1.70 to - 0.39) at a fixed pressure of 15 kbar, confirming the tendency of the anhydrous Greene Point xenolith population to have higher equilibration temperatures and comparable redox conditions, compared to the nearby amphibole-bearing peridotites from Baker Rocks.

  12. Chronological dating and tectonic implications of late Cenozoic volcanic rocks and lacustrine sequence in Oiyug Basin of southern Tibet

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Reconstruction of uplift history of the Tibetan Plateau is crucial for understanding its environmental impacts. The Oiyug Basin in southern Tibet contains multiple periods of sedimentary sequences and volcanic rocks that span much of the Cenozoic and has great potential for further studying this issue. However, these strata were poorly dated. This paper presents a chronological study of the 145 m thick and horizontally-distributed lacustrine sequence using paleomagnetic method as well as a K-Ar dating of the underlying volcanic rocks. Based on these dating results, a chronostratigraphic framework and the basin-developmental history have been established for the past 15 Ma, during which three tectonic stages are identified. The period of 15-8.1 Ma is characterized by intense volcanic activities involving at least three major eruptions. Subsequently, the basin came into a tectonically quiescent period and a lacustrine sedimentary sequence was developed. Around 2.5 Ma, an N-S fault occurred across the southern margin of the basin, leading to the disappearance of the lake environment and the development of the Oiyug River. The Gyirong basin on northern slope of the Himalayas shows a similar basin developmental history and thus there is a good agreement in tectonic activities between the Himalayan and Gangdise orogenic belts. Therefore, the tectonic evolution stages experienced by the Oiyug Basin during the past 15 Ma could have a regional significance for southern Tibet. The chronological data obtained from this study may provide some constraints for further studies with regard to the tectonic processes and environmental changes in southern Tibetan Plateau.

  13. Geochemistry of the Cenozoic Potassic Volcanic Rocks in the West Kunlun Mountains and Constraints on Their Sources

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaochong; XIAO Xuchang; WANG Jun; WANG Yong; LUO Zhaohua

    2004-01-01

    The geochemical characteristics of the Cenozoic volcanic rocks from the north Pulu, east Pulu and Dahongliutan regions in the west Kunlun Mountains are somewhat similar as a whole. However, the volcanic rocks from the Dahongliutan region in the south belt are geochemically distinguished from those in the Pulu region (including the north and east Pulu) of the north belt. The volcanic rocks of the Dahongliutan region are characterized by relatively low TiO2 abundance, but more enrichment in alkali, much more enrichment in light rare earth elements and large ion lithosphile elements than those from the Pulu region. Compared with the Pulu region, volcanic rocks from the Dahongliutan region have relatively low 87Sr/86Sr ratios, and high εNd, 207pb/204Pb and 208Pb/204Pb. Their trace elements and isotopic data suggest that they were derived from lithospheric mantle, consisting of biotite- and hornblende-bearing garnet lherzolite, which had undertaken metasomatism and enrichment. On the primitive mantle-normalized patterns, they display remarkably negative Nb and Ta anomalies, indicating the presence of early-stage subducted oceanic crust. The metasomatism and enrichment resulted from the fluid released from the crustal materials enclosed in the source region in response to the uplift of asthenospheric mantle. Based on the previous experiments it can be inferred that the thickness of the lithosphere ranges from 75 to 100 km prior to the generation of the magmas. However, the south belt differs from the north one by its thicker lithosphere and lower degree of partial melting. The different thickness of the lithosphere gives rise to corresponding variation of the degree of crustal contamination. The volcanic rocks in the south belt are much more influenced by crustal contamination. In view of the tectonic setting, the generation of potassic magmas is linked with the uplift of asthenosphere resulted from large-scale thinning of the lithosphere after the collision of Indian

  14. Massive Volcanic SO2 Oxidation and Sulphate Aerosol Deposition in Cenozoic North America

    Science.gov (United States)

    Volcanic eruptions release a large amount of sulphur dioxide (SO2) into the atmosphere. SO2 is oxidized to sulphate and can subsequently form sulphate aerosol, which can affect the Earth's radiation balance, biologic productivity and high-altitude ozone co...

  15. Chemical and Isotopic Constraints on the Origin of Cenozoic Pacific Northwest Volcanism

    Science.gov (United States)

    Carlson, R. W.; Hart, W. K.; Grove, T. L.; Donnelly-Nolan, J. M.; Barr, J. A.; Till, C. B.

    2009-12-01

    Though there is little debate about the connection of Cascade volcanism to subduction of the Juan de Fuca plate, the cause of extensive Neogene volcanism east of the Cascades is not as well understood. Volumetrically, the most significant component of this volcanism, the flood basalts of the Columbia Plateau and Steens Mountain, are dominated by lavas that have suffered extensive crystal fractionation in crustal magma chambers. The evolved, crustally contaminated, nature of most of these basalts makes identification of the primary magma difficult, confounding interpretation of the background cause of the volcanism. Some Steens lavas are relatively undifferentiated (Johnson et al., USGS Open File report 98-0482). These Steens basalts have compositions that are distinguished from younger primitive basalts on the High Lava Plains (HLP) by distinctly lower Al and higher FeO, Ti, Zr and Nb concentrations, but also Mg#s that are too low to be in equilibrium with mantle that has Fo90 olivine. If these are primary magmatic characteristics, they suggest either a more fertile, FeO-rich source, or lower, not higher, degrees of melting at greater depth during the flood basalt era as opposed to the much smaller-volume younger HLP volcanism. Experimental results on primitive Quaternary HLP and Newberry Volcano lavas suggest last equilibration at pressures corresponding to just below the Moho (30-40 km) with water contents that range from substantial (up to 4 wt %) at Newberry to low (Columbia River basalts and most Snake River Plain basalts have Pb isotope compositions strongly displaced from values seen in oceanic basalts plotting instead along a circa 2.5 Ga trend. The shift in Pb (and Sr, Nd, and Hf) isotope composition occurs precisely at the boundary between young accreted terranes to the west and Precambrian North America to the east, suggesting that ancient continental lithospheric mantle is an important source component of Snake River basaltic volcanism. At precisely the

  16. Late Cenozoic alkaline volcanism in the northwestern Caribbean - Tectonic setting and Sr isotopic characteristics

    Science.gov (United States)

    Wadge, G.; Wooden, J. L.

    1982-01-01

    The northwestern corner of the Caribbean plate has at least sixteen centers of alkalic volcanism, most of which is Quaternary in age. Sr-87/Sr-86 ratios of the rocks in these centers are used to distinguish three geographical groups: a low-ratio group (0.7026-0.7031) at the Nicaraguan Rise, an intermediate-ratio group (0.7036-0.7038) in northeastern Costa Rica, and a high-ratio group (0.7047-0.7063) in Hispaniola. It is suggested that the increased radiogenic strontium in both Costa Rica and Hispaniola may have come from volatile-rich fluids escaping from adjacent subducting slabs of oceanic crust. The isotopic differences between the two areas is explained by the relative longevity and high rate of subduction in Costa Rica compared to that in Hispaniola. The Costa Rican alkaline rocks cover a segment of the Cocos plate which is being subducted at a smaller angle (about 35 deg) than at the rest of the Central American arc.

  17. Paleomagnetic result of the Cenozoic volcanic rocks from the Tuoyun Basin,southwest Tien Shan of China and its tectonic implications

    Institute of Scientific and Technical Information of China (English)

    WANG Yongcheng; HUANG Baochun; ZHU Rixiang; LIU Tao

    2004-01-01

    Paleomagnetic study on the Cenozoic volcanic rocks from the Tuoyun Basin of the southwest Tien Shan indicates that most samples could isolate a stable characteristic remanent magnetization with reversed polarity. The positive fold test suggests that the characteristic component is very likely to be a primary magnetization acquired in the formation of rocks. Comparison with the reference Eurasia poles at 60 Ma indicates little or insignificant N-S convergence between the south edge of southwest Tien Shan and Siberia since the onset of the India/Asia collision at the Eocene. Furthermore, the Cretaceous and Tertiary paleomagnetic results suggest that the Tuoyun Basin was subjected to a local clockwise rotation of 20 . -35 . With respect to Eurasia since the Paleocene time, which is probably subsequent to the Cenozoic northward compression of the Pamir arc.

  18. The stratigraphic significance of fission-track ages on volcanic ashes in the marine Late Cenozoic of southern California

    International Nuclear Information System (INIS)

    Fission-track dates and planktonic microfossil datum levels provide a revised chronology for the marine Late Cenozoic of southern California. In southern California, the Pliocene/Pleistocene boundary has been placed at the first appearance of Globorotalia truncatulinoides within the Pico Formation, Balcom Canyon, Ventura County. A fission-track age on glass shards from the Bailey Ash close to this level yields a result of 1.12 +- 0.36m.y.B.P. (millions of years before present). In tropical deep-sea cores, however, G. truncatulinoides has been shown to evolve within the Gilsa Paleomagnetic event with an estimated age of 1.8 m.y.B.P. Thus, the appearance of G. truncatulinoides in southern California is cryptogenic and probably related to the delayed migration into this region of water-mass conditions suitable for this species. Two volcanic ashes from the upper part of the Malaga Formation, Malaga Cove, Los Angeles County, yielded fission-track data on glass shards of 4.42+- 0.57 m.y.B.P. (lower ash) and 3.364 +- 0.69 m.y.B.P. (upper ash). These dates in addition to inferred paleomagnetic ages of planktonic microfossil datum levels suggest that the Delmontian Stage of California ranges in age from approximately 6 to approximately 3 m.y.B.P. Therefore, the Miocene/Pliocene boundary considered by Berggren and Van Couvering to be approximately 5 m.y.B.P. must lie in the lower Delmontian Stage but paleontologic criteria for its recognition in California are not yet available. (Auth.)

  19. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar-Lihir-Tanga-Feni alkalic province, New Ireland Basin, Papua New Guinea

    Science.gov (United States)

    Lindley, I. D.

    2016-05-01

    Late Cenozoic Tabar-Lihir-Tanga-Feni (TLTF) alkaline volcanism, New Ireland Basin, PNG, is associated with extensional cracks along the crests of flexed ridges developed on the New Ireland Microplate (New name). The tectonic alignment of the TLTF volcanic arc is essentially perpendicular to the flexed ridges, suggesting that fractures parallel to the direction of maximum horizontal compression facilitated the rapid ascent of alkaline magmas from the mantle region, perhaps 60-70 km depth. The mainly Pliocene to Pleistocene volcanoes were localized at the intersection of ridge-parallel Kabang structures and arc-parallel Niffin structures, suggesting that the Kabang-Niffin structural intersections underlying each of the TLTF island groups provided a well developed, clustered network of open conduits which tapped the mantle source region. Periodic post-Miocene locking and unlocking along the strike-slip Kilinailau Fault (New name) are thought to have functioned as a valve, turning on (Pliocene) and then turning off (Pleistocene) volcanic activity, respectively. Partial locking of the Kilinailau Fault during the Pliocene resulted in the accumulation of intraplate stresses within the New Ireland Microplate, and caused plate flexure and ridge development, plate-cracking along ridge crests and the development of arc-parallel regional fractures parallel to the direction of maximum compression. Unlocking of the Kilinailau Fault in the Pleistocene resulted in the release of intraplate stresses in the New Ireland Microplate and a cessation of volcanic activity across most of the TLTF arc. The style and scale of plate flexure and cracking, accompanied by within-plate alkaline volcanism from equally spaced ridge-top eruptive centers confined to a narrow, linear volcanic arc are unknown from any other tectonic province.

  20. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc

    Science.gov (United States)

    Cai, Yue; Rioux, Matthew; Kelemen, Peter B.; Goldstein, Steven L.; Bolge, Louise; Kylander-Clark, Andrew R. C.

    2015-12-01

    Cenozoic calc-alkaline plutons that comprise the middle crust of the central and eastern Aleutians have distinct isotopic and elemental compositions compared to Holocene tholeiitic lavas in the same region, including those from the same islands. Therefore the Holocene lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Compared to the lavas, the Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks show higher SiO2 at a given Fe/Mg ratio, and have higher εNd-εHf values and lower Pb-Sr isotope ratios. However, the plutonic rocks strongly resemble calc-alkaline Holocene volcanics with more "depleted" isotope ratios in the western Aleutians, whose composition has been attributed to significant contributions from partial melting of subducted basaltic oceanic crust. These data could reflect a temporal variation of central and eastern Aleutian magma source compositions, from predominantly calc-alkaline compositions with more "depleted" isotope ratios in the Paleogene, to tholeiitic compositions with more "enriched" isotopes more recently. Alternatively, the differences between central Aleutian plutonic and volcanic rocks may reflect different transport and emplacement processes for the magmas that form plutons versus lavas. Calc-alkaline parental magmas, with higher SiO2 and high viscosity, are likely to form plutons after extensive mid-crustal degassing of initially high water contents. This conclusion has overarching importance because the plutonic rocks are chemically similar to bulk continental crust. Formation of similar plutonic rocks worldwide may play a key role in the genesis and evolution of continental crust.

  1. Upper mantle structure under western Saudi Arabia from Rayleigh wave tomography and the origin of Cenozoic uplift and volcanism on the Arabian Shield

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y; Nyblade, A; Rodgers, A; Al-Amri, A

    2007-11-09

    The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanic line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.

  2. The Achkal Oligocene ring complex: Sr, Nd, Pb evidence for transition between tholeiitic and alkali cenozoic magmatism in Central Hoggar (South Algeria); Le complexe annulaire d`age Oligocene de l`Achkal (Hoggar Central, Sud Algerie): temoin de la transition au cenozoique entre magmatismes tholeitique et alcalin. Evidence par les isopopes du Sr, Nd et Pb

    Energy Technology Data Exchange (ETDEWEB)

    Maza, M.; Dautria, J.M. [Montpellier-2 Univ., 34 (France); Briqueu, L.; Bosch, D. [Montpellier-2 Univ., 34 (France). Laboratoire de Geochimie Isotopique; Maza, M. [Office National de la Recherche Geologique et Miniere, Boumerdes (Algeria)

    1998-08-01

    The Achkal Oligocene ring complex-cuts the Upper Eocene tholeiitic traps located on the top of the Hoggar swell. The plutonic rocks range from tholeiitic gabbros to alkali essexites, monzonites and syenites, whereas the volcanites are restricted to late per-alkaline rhyolites. The affinity change linked to the large isotopic heterogeneities (from EM1 to HIMU) suggests that the parental magmas are issued from two district mantle sources, first lithospheric then deeper. The Achkal has recorded the magmatic evolution of the Hoggar hot spot, between Eocene and Miocene. (authors)

  3. Late Cenozoic volcanism in the western Woodlark Basin area, SW Pacific: the sources of marine volcanic ash layers based on their elemental and Sr-Nd isotope compositions

    Science.gov (United States)

    Lackschewitz, K. S.; Mertz, D. F.; Devey, C. W.; Garbe-Schönberg, C.-D.

    2002-12-01

    Tephra fallout layers and volcaniclastic deposits, derived from volcanic sources around and on the Papuan Peninsula, form a substantial part of the Woodlark Basin marine sedimentary succession. Sampling by the Ocean Drilling Program Leg 180 in the western Woodlark Basin provides the opportunity to document the distribution of the volcanically-derived components as well as to evaluate their chronology, chemistry, and isotope compositions in order to gain information on the volcanic sources and original magmatic systems. Glass shards selected from 57 volcanogenic layers within the sampled Pliocene-Pleistocene sedimentary sequence show predominantly rhyolitic compositions, with subordinate basaltic andesites, basaltic trachy-andesites, andesites, trachy-andesites, dacites, and phonolites. It was possible to correlate only a few of the volcanogenic layers between sites using geochemical and age information apparently because of the formation of strongly compartmentalised sedimentary realms on this actively rifting margin. In many cases it was possible to correlate Leg 180 volcanic components with their eruption source areas based on chemical and isotope compositions. Likely sources for a considerable number of the volcanogenic deposits are Moresby and Dawson Strait volcanoes (D'Entrecasteaux Islands region) for high-K calc-alkaline glasses. The Dawson Strait volcanoes appear to represent the source for five peralkaline tephra layers. One basaltic andesitic volcaniclastic layer shows affinities to basaltic andesites from the Woodlark spreading tip and Cheshire Seamount. For other layers, a clear identification of the sources proved impossible, although their isotope and chemical signatures suggest similarities to south-west Pacific subduction volcanism, e.g. New Britain and Tonga-Kermadec island arcs. Volcanic islands in the Trobriand Arc (for example, Woodlark Island Amphlett Islands and/or Egum Atoll) are probable sources for several volcaniclastic layers with ages

  4. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective

    Science.gov (United States)

    Yan, Quanshu; Shi, Xuefa; Castillo, Paterno R.

    2014-05-01

    This paper presents a review of available petrological, geochonological and geochemical data for late Mesozoic to Recent igneous rocks in the South China Sea (SCS) and adjacent regions and a discussion of their petrogeneses and tectonic implications. The integration of these data with available geophysical and other geologic information led to the following tectono-magmatic model for the evolution of the SCS region. The geochemical characteristics of late Mesozoic granitic rocks in the Pearl River Mouth Basin (PRMB), micro-blocks in the SCS, the offshore continental shelf and Dalat zone in southern Vietnam, and the Schwaner Mountains in West Kalimantan, Borneo indicate that these are mainly I-type granites plus a small amount of S-type granites in the PRMB. These granitoids were formed in a continental arc tectonic setting, consistent with the ideas proposed by Holloway (1982) and Taylor and Hayes (1980, 1983), that there existed an Andean-type volcanic arc during later Mesozoic era in the SCS region. The geochonological and geochemical characteristics of the volcanics indicate an early period of bimodal volcanism (60-43 Ma or 32 Ma) at the northern margin of the SCS, followed by a period of relatively passive style volcanism during Cenozoic seafloor spreading (37 or 30-16 Ma) within the SCS, and post-spreading volcanism (tholeiitic series at 17-8 Ma, followed by alkali series from 8 Ma to present) in the entire SCS region. The geodynamic setting of the earlier volcanics was an extensional regime, which resulted from the collision between India and Eurasian plates since the earliest Cenozoic, and that of the post-spreading volcanics may be related to mantle plume magmatism in Hainan Island. In addition, the nascent Hainan plume may have played a significant role in the extension along the northern margin and seafloor spreading in the SCS.

  5. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    Science.gov (United States)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  6. Gravity and aeromagnetic constraints on the extent of Cenozoic volcanic rocks within the Nefza Tabarka region, northwestern Tunisia

    Science.gov (United States)

    Jallouli, Chokri; Mickus, Kevin; Turki, Mohamed Moncef; Rihane, Chedly

    2003-03-01

    Bouguer gravity and aeromagnetic data are analyzed to determine the extent of Miocene magmatism in the Nefza and Tabarka regions of northwestern Tunisia. Construction of magnetic intensity and enhanced analytic signal (EAS) maps indicated the existence of at least two regions containing probable subsurface igneous bodies that correlate to the small scattered igneous outcrops in the Nefza and Tabarka regions. Because of the lack of lateral resolution of the EAS techniques, 3-D magnetic and 2.5-D gravity models were constructed over the anomalies at Nefza and Tabarka. The final models indicate that the maximum depths of the igneous bodies are between 2.5 and 2.7 km with maximum widths between 15 and 22 km. The final models also indicate that the bodies are tabular with a combination of laccolithic and lopolithic shapes and were probably emplaced in the shallow levels of the crust (at least 3 km). These widths greatly expand the region of known Miocene magmatism in northwestern Tunisia. Combined with geochemical and petrological data of the surface volcanic rocks, the gravity and magnetic models imply a wider range of Miocene volcanic activity in northern Tunisia, probably related to a subduction zone.

  7. Geochemical Characteristics of Cenozoic Jining Basalts of the Western North China Craton: Evidence for the Role of the Lower Crust, Lithosphere, and Asthenosphere in Petrogenesis

    Directory of Open Access Journals (Sweden)

    Kung-Suan Ho

    2011-01-01

    Full Text Available The Jining volcanic field located in the southern margin of the Mongolian plateau and the western North China Block consists of four rock types: quartz tholeiite, olivine tholeiite, alkali olivine basalt and basanite. These rocks have a wide range of K-Ar ages from ~36 to < 0.2 Ma. The early volcanism was voluminous and dominated by flood-type fissure eruptions of tholeiites, whereas the later phase was represented by sparse eruptions of basanitic lavas. Thirty-six samples analyzed in this study show a wide range in SiO2 contents from 44% ~ 54%. They all are sodium-rich and high-Ti basalts that, however, show marked isotopic variations between two end-members: (1 tholeiites that have higher 87Sr/86Sr of 0.7048 ~ 0.7052, and lower _ of -0.8 to -2.4 and Pb isotope ratios (206Pb/204Pb of 16.9 ~ 17.2, 207Pb/204Pb of 15.3 ~ 15.4 and 208Pb/204Pb of 37.1 ~ 37.7; and (2 basanites that have lower 87Sr/86Sr of 0.7035 ~ 0.7044, and higher _ of +1.3 to +4.9 and Pb isotope ratios (206Pb/204Pb of 17.7 ~ 18.0, 207Pb/204Pb of 15.4 ~ 15.5 and 208Pb/204Pb of 37.8 ~ 38.2. Alkali olivine basalt that occurs as a subordinate rock type is geochemically similar to the basanites, but isotopically similar to the tholeiites, characterized by the highest 87Sr/86Sr ratio among the three basaltic suites, coupled with a low Nb/U value (~33. In Sr-Nd-Pb isotopic plots, the tholeiites extend toward the EM1 (i.e., enriched mantle type 1 component, whereas the basanites trend toward the Indian Ocean mid-ocean ridge basalt (MORB field. Adopting the _ model by Morris and Hart (1983, we suggest that the Oligocene tholeiites were generated by high degree melting of an ascended asthenospheric mantle that was contaminated with a large amount of EM1-type continental lithospheric material during the early Cenozoic. On the other hand, the late Tertiary and Quaternary basanites may have originated predominantly from a depleted asthenosphere component with small but variable degrees of

  8. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    Science.gov (United States)

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  9. Potassium, thorium, and uranium contents of upper Cenozoic basalts of the southern Rocky Mountain region, and their relation to the Rio Grande depression

    Science.gov (United States)

    Lipman, Peter W.; Bunker, Carl M.; Bush, Charles A

    1973-01-01

    Late Cenozoic basaltic volcanism in southern Colorado and northern New Mexico was most intense near the Rio Grande rift depression but extended onto stable platforms to the west (Colorado Plateau) and to the east (High Plains). Tholeiitic rocks are largely confined to the Rio Grande depression, and the basalts become increasingly alkalic with distance from the depression. The K, Th, and U contents and the Th/K and U/K ratios consistently increase away from the depression, and Th/U ratios also tend to increase slightly. Geographically distinct suites of petrographicaUy related basalts that are very similar in major-oxide compositions are readily distinguishable by K, Th, and U contents. Sialic crustal contamination did not contribute significantly to development of these compositional variations, and the lateral change from tholeiitic to alkalic basaltic volcanism may be related to different depths of or degrees of partial melting in the mantle. The compositions and compositional ranges of basalts in the southern Rocky Mountain region are similar to those of many Pacific islands, despite the contrasting geologic settings.

  10. Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34°30‧-37°S), Argentina

    Science.gov (United States)

    Litvak, Vanesa D.; Spagnuolo, Mauro G.; Folguera, Andrés; Poma, Stella; Jones, Rosemary E.; Ramos, Víctor A.

    2015-12-01

    A series of mesosilicic volcanic centers have been studied on the San Rafael Block (SRB), 300 km to the east of the present-day volcanic arc. K-Ar ages indicate that this magmatic activity was developed in at least two stages: the older volcanic centers (˜15-10 Ma) are located in the central and westernmost part of the SRB (around 36°S and 69°W) and the younger centers (8-3.5 Ma) are located in an eastern position (around 36°S and 69°30‧W) with respect to the older group. These volcanic rocks have andesitic to dacitic compositions and correspond to a high-K calc-alkaline sequence as shown by their SiO2, K2O and FeO/MgO contents. Elevated Ba/La, Ba/Ta and La/Ta ratios show an arc-like signature, and primitive mantle normalized trace element diagrams show typical depletions of high field strength elements (HFSE) relative to large ion lithophile elements (LILE). Rare earth element (REE) patterns suggest pyroxene and amphibole crystallization. Geochemical data obtained for SRB volcanic rocks support the proposal for a shallow subduction zone for the latest Miocene between 34°30″-37°S. Regionally, SRB volcanism is associated with a mid-Miocene to early Pliocene eastward arc migration caused by the shallowing of the subducting slab in the South-Central Andes at these latitudes, which represents the evolution of the Payenia shallow subduction segment. Overall, middle Miocene to early Pliocene volcanism located in the Payenia back-arc shows evidence for the influence of slab-related components. The younger (8-3.5 Ma) San Rafael volcanic rocks indicate the maximum slab shallowing and the easternmost extent of slab influence in the back-arc.

  11. Cenozoic volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, China: Petrochemical evidence for partial melting of the mantle-crust transition zone

    Institute of Scientific and Technical Information of China (English)

    LAI Shaocong; QIN Jiangfeng; LI Yongfeng; LIU Xin

    2007-01-01

    Neogene volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, are represented by a typical intermediate-basic and intermediate alkaline rock association, with latite-trachyte as the main rock type. The results of chemical analysis are: SiO2=52%-62%, Al2O3>15%, Na2O/K2O>1 and MgO<3.30%. In addition, the volcanic rocks are LREE-enriched with LREE/HREE=10-13, (La/Yb)N=15-19, and show a weak negative Eu anomaly with δEu=0.71-0.89. The close relationship between Mg# and SiO2 and the co-variation of the magmatophile elements and ultra-magmatophile elements such as La/Sm-La and Cr-Tb indicate that this association of volcanic rocks is the product of comagmatic fractional crystallization. The rock association type and lower Sm/Yb values (Sm/Yb=3.23-3.97) imply that this association of volcanic rocks should have originated from partial melting of spinel lherzolite in the lithospheric mantle. On the other hand, the weak negative Eu anomaly and relative depletion in Nb, Ta and Ti reflect the features of terrigenous magma. So the Neogene Belog Co alkaline volcanic rocks should be the result of partial melting of the special crust-mantle transition zone on the Qinghai-Tibet Plateau.

  12. The viscosity of planetary tholeiitic melts: A configurational entropy model

    Science.gov (United States)

    Sehlke, Alexander; Whittington, Alan G.

    2016-10-01

    The viscosity (η) of silicate melts is a fundamental physical property controlling mass transfer in magmatic systems. Viscosity can span many orders of magnitude, strongly depending on temperature and composition. Several models are available that describe this dependency for terrestrial melts quite well. Planetary basaltic lavas however are distinctly different in composition, being dominantly alkali-poor, iron-rich and/or highly magnesian. We measured the viscosity of 20 anhydrous tholeiitic melts, of which 15 represent known or estimated surface compositions of Mars, Mercury, the Moon, Io and Vesta, by concentric cylinder and parallel plate viscometry. The planetary basalts span a viscosity range of 2 orders of magnitude at liquidus temperatures and 4 orders of magnitude near the glass transition, and can be more or less viscous than terrestrial lavas. We find that current models under- and overestimate superliquidus viscosities by up to 2 orders of magnitude for these compositions, and deviate even more strongly from measured viscosities toward the glass transition. We used the Adam-Gibbs theory (A-G) to relate viscosity (η) to absolute temperature (T) and the configurational entropy of the system at that temperature (Sconf), which is in the form of log η =Ae +Be /TSconf . Heat capacities (CP) for glasses and liquids of our investigated compositions were calculated via available literature models. We show that the A-G theory is applicable to model the viscosity of individual complex tholeiitic melts containing 10 or more major oxides as well or better than the commonly used empirical equations. We successfully modeled the global viscosity data set using a constant Ae of -3.34 ± 0.22 log units and 12 adjustable sub-parameters, which capture the compositional and temperature dependence on melt viscosity. Seven sub-parameters account for the compositional dependence of Be and 5 for Sconf. Our model reproduces the 496 measured viscosity data points with a 1

  13. Volcanism and Oil & Gas In Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shan Xuanlong

    2000-01-01

    Based on study on the relation with volcanic rock and oil & gas in Songliao Basin and Liaohe Basin in northeast China, author proposes that material from deep by volcanism enrichs the resources in basins, that heat by volcanism promotes organic matter transforming to oil and gas, that volcanic reservoir is fracture, vesicular, solution pore, intercrystal pore.Lava facies and pyroclastic facies are favourable reservoir. Mesozoic volcanic reservoir is majority of intermediate, acid rock,but Cenozoic volcanic reservoir is majority of basalt. Types of oil and gas pool relating to volcanic rock include volcanic fracture pool, volcanic unconformity pool, volcanic rock - screened pool, volcanic darpe structural pool.

  14. Minerogenesis of Shilu Iron Ores with Special Reference to Sm—Nd Isotope Geochemical Characteristics of Shilu Group Bimodal Volcanic Rocks in Hainan Island

    Institute of Scientific and Technical Information of China (English)

    方中; 赵建新; 等

    1994-01-01

    Presented in this paper are Sm-Nd isotope and major, trace and rare-earth element analyses of bimodal volcanic rocks of the Shilu Group and other stratigraphic units in northwestern Hainan Is-land ,South China. It is shown that there are some N-MORB-type basalts(spilites) in the western part of the bimodal volcanic belt, in addition to some E-MORB-type and initial rift-type tholeiites (IRT) in th emiddle and eastern parts.Sm-Nd model ages of these basalts range from 545 Ma to 460Ma .The other extremes of the bimodal volcanics are porphyritic quartz rhyolites, which are characteristic of crustal material source.Sm-Nd model ages of the rhyolites range from 1562 Ma to 1371 Ma .The bimodal volcanic rocks are almost distributed in fifts or faulted depressions,as well as in the Upper Paleozoic rift of Hainan Island.Tholeiites of the Shilu Group can be compared with Cenozoic basalts in the middle and south-ern parts of the Red Sea Rift Belt in petrology, elemental geochemistry and Sm-Nd isotope geology. Shilu iron ores are closely associated with N-MORB-type basalts located in the western bimodal vol-canic belt.It is very interesting to note that the Shilu Fe-Co-Cu deposit can also be compared with Atlantis II Deep in the Red Sea Rift Belt.Therefore ,the present authors believe that the Shilu depos-it is a kind of hydrothermal deposit related to ocean volcanic belt ,where the geotectonic setting be-longs to initial extensional rifts in the oceanic crust.On the other hand, the largest Fe-Co-Cu ore de-posit in China used to be influenced by Hercynian granites after mineralization ,as is clearly observed on both εNd(T)-1/Nd and εNd(T)-147Sm/144Nd diagrams.

  15. 腾冲新生代火山区温泉CO2气体排放通量研究%CO2 flux estimations of hot springs in the Tengchong Cenozoic volcanic field, Yunnan Province, SW China

    Institute of Scientific and Technical Information of China (English)

    成智慧; 郭正府; 张茂亮; 张丽红

    2012-01-01

    近期研究表明,不仅火山喷发期会向当时的大气圈输送大量的温室气体,火山间歇期同样会释放大量的温室气体.在火山活动间歇期,火山区主要以喷气孔、温(热)泉以及土壤微渗漏等形式向大气圈释放温室气体.腾冲是我国重要的新生代火山区,同时也是重要的水热活动区,那里出露大量的温泉,然而目前未见腾冲火山区温泉气体排放通量的研究报道.本文利用数字皂膜通量仪测量了腾冲新生代火山区温泉中CO2的排放通量.研究结果表明,腾冲新生代火山区温泉向当今大气圈输送的CO2通量达3.58×103t· a-1,相当于意大利锡耶纳Bassoleto地热区温泉中CO2的排放规模.腾冲火山区温泉的CO2释放通量主要受深部岩浆囊、断裂分布、地下水循环、围岩成分等多方面因素的影响.本文根据温泉中CO2的排放特征,将腾冲温泉分为南北两区,南区温泉CO2通量远高于北区的温泉,热海地热区的通量为腾冲CO2通量的最大值.在北温泉区,CO2通量主要受控于断裂的分布;而在南温泉区,除受到断裂控制外,热海地热区底部的岩浆囊及其与围岩的相互作用成为CO2气体的重要物质来源,同时高温的岩浆囊为温泉及CO2的形成提供了重要热源.%Recent research results have indicated that, beside volcanic eruption periods, dormant periods in the intermittent between the volcanic activities can emit a large amount of the greenhouse gases into atmosphere. In the intermittent between volcanic eruptions, greenhouse gases are erupted from the volcanic eruptive fields in the forms of fumaroles, hot springs, soil micro-seepage and so oa Tengchong volcanic and geothermal system is one of the most important Cenozoic volcanic activity fields in China whereas the estimates of the greenhouse gases emitted from Tengchong have been poorly understood. Using a new apparatus named digital bubble flowmeter, we have measured the flux of

  16. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    Science.gov (United States)

    Lipman, P.W.; Coombs, M.L.

    2006-01-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000–4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan–USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700–4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hualālai. Relatively low sulfur (330–600 ppm) and water (0.18–0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500–1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100–190 ppm) indicate deeper equilibration, at or near sample sites at water depths of − 3900 to − 2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from

  17. Spatio-temporal autocorrelation of Neogene-Quaternary volcanic and clastic sedimentary rocks in SW Montana and SE Idaho: Relationship to Cenozoic tectonic and thermally induced extensional events

    Science.gov (United States)

    Davarpanah, A.; Babaie, H. A.; Dai, D.

    2013-12-01

    Two systems of full and half grabens have been forming since the mid-Tertiary through tectonic and thermally induced extensional events in SW Montana and neighboring SE Idaho. The earlier mid-Tertiary Basin and Range (BR) tectonic event formed the NW- and NE-striking mountains around the Snake River Plain (SRP) in Idaho and SW Montana, respectively. Since the mid-Tertiary, partially synchronous with the BR event, diachronous bulging and subsidence due to the thermally induced stress field of the Yellowstone hotspot (YHS) has produced the second system of variably-oriented grabens through faulting across the older BR fault blocks. The track of the migration of the YHS is defined by the presence of six prominent volcanic calderas along the SRP which become younger toward the present location of the YHS. Graben basins bounded by both the BR faults and thermally induced cross-faults (CF) systems are now filled with Tertiary-Quaternary clastic sedimentary and volcanic-volcaniclastic rocks. Neogene mafic and felsic lava which erupted along the SRP and clastic sedimentary units (Sixmile Creek Fm., Ts) deposited in both types of graben basins were classified based on their lithology and age, and mapped in ArcGIS 10 as polygon using a combination of MBMG and USGS databases and geological maps at scales of 1:250.000, 1:100,000, and 1:48,000. The spatio-temporal distributions of the lava polygons were then analyzed applying the Global and Local Moran`s I methods to detect any possible spatial or temporal autocorrelation relative to the track of the YHS. The results reveal the spatial autocorrelation of the lithology and age of the Neogene lavas, and suggest a spatio-temporal sequence of eruption of extrusive rocks between Miocene and late Pleistocene along the SRP. The sequence of eruptions, which progressively becomes younger toward the Yellowstone National Park, may track the migration of the YSH. The sub-parallelism of the trend of the SRP with the long axis of the

  18. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  19. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    Science.gov (United States)

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  20. Uranium and thorium in Cenozoic basaltods of Kamchatka

    International Nuclear Information System (INIS)

    Regularities in distribution of radioactive elements (RAE) in basaltoids of Kamchatka have been analyzed. The RAE concentration in samples was determined by γ-spectrometric method. The results compared with the instrumental neutron-activation analysis data are found to be in agreement. Results of evaluating the average contents of U, Th and roch-forming elements in ce-- nozoic basaltoids are presented. The radiogeochemical data enable to associate the origin of the Kamchatka Cenozoic basaltoids with both fractional melting of the upper mantle depleted of radioactive elements and the development of magmatic chambers in submerged blocks of the Pre-Cretaceous melanocratic basement the composition of which is close to oceanic tholeiite

  1. 40Ar/39Ar dating of alkaline and tholeiitic magmatism of Saudi Arabia related to the early Red Sea Rifting

    International Nuclear Information System (INIS)

    40Ar/39Ar plateau-ages at 27-28 Ma obtained on feeder dykes and one lava flow of the alkaline massif of Harrat Hadan are in agreement with the assumed age partly deduced from the conventional K/Ar data of the early activity of other alkaline volcanic massifs from Saudi Arabia. This magmatic activity is spatially distributed over a large area, along the western edge of the Arabian plate, and their N-S to NW-SE volcano-tectonic directions are similar to those of the future Red Sea Rift. Preliminary results obtained on tholeiitic lava flows, dykes and plutons gave 17 plateau-ages which, combined with 6 ages deduced from more disturbed age-spectra, display a main histogram peak from 24 to 21 Ma, much narrower than that obtained with conventional K/Ar ages on the same formations. Therefore, a strong tholeiitic activity affected a narrow linear area following the actual eastern Red Sea coast, over nearly 1700 km, during a brief period of time, and without showing any apparent migration. The main volcano-tectonic features of the future Red Sea are strongly outlined during this event. Such brief magmatic episodes related to continental rifts have also been documented by precise 40Ar/39Ar analyses on the British Tertiary Igneous Province, the Deccan traps and the eastern Central Atlantic. (orig.)

  2. Amygdaloid and hydrothermal mineralization in the Cenozoic volcanic series of eastern part of Jilin Prvince%吉林省东部新生代火山岩系中的杏仁体与热水成矿作用

    Institute of Scientific and Technical Information of China (English)

    吕鹏; 惠艳梅

    2014-01-01

    吉林省东部山区大面积出露新生代火山岩,但多年以来地质科技人员很少在新生代火山岩中找矿。作者收集了近几年的有关资料,分析了杏仁体的主要特征、杏仁体形态特点、杏仁体的内部构造、杏仁体的矿物组成及其与热水成矿作用关系。供同仁们在火山岩找矿方面参考。%There are large Cenozoic volcano rock outcropping in the eastern mountain area of Jilin Province, but for many years, geological workers rarely prospect in Cenozoic volcano rock. The authors collect the relevant data in recent years, and analyze the main features of the amygdaloid, morphological characteristics, the internal structure, mineral composition and the relation with hot water mineralization. These are reference for colleagues in the volcano rock prospecting.

  3. Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts

    Science.gov (United States)

    Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.

    2014-01-01

    The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and

  4. Geochemistry of tholeiitic to alkaline lavas from the east of Lake Van (Turkey): Implications for a late Cretaceous mature supra-subduction zone environment

    Science.gov (United States)

    Özdemir, Yavuz

    2016-08-01

    Arc-related rocks of the Yüksekova Complex extend from Kahramanmaraş to Hakkari throughout the Southeast Anatolia representing the remnants of the Southern Branch of Neotethys. The volcanic members of this zone from the eastern parts of Lake Van suggest three different types of rock chemistry; tholeiitic (type I), calc-alkaline (type II) and alkaline (type III). Tholeiitic and calc-alkaline members suggest a subduction-related environment with their HFS and LIL element distributions. RE and trace element systematics and modelings indicate that i) the intermediate and the felsic calc-alkaline rocks are the result of fractional crystallization from a basic endmember, ii) alkaline members have originated from enriched mantle source relative to the tholeiitic and calc-alkaline lavas. Overall data from Yüksekova Complex suggest a mature supra-subduction zone environment within the southern Neotethyan Ocean during Upper Cretaceous time. The existence of Lutetian OIB like asthenospheric lavas at the upper parts of the ophiolitic assemblage in the eastern parts of Lake Van proposes the end of the normal ophiolite formation and the possible continuation of the magmatism with OIB like lavas during Middle Eocene.

  5. The geochemical variations of the upper cenozoic volcanism along the Calama Olacapato El Toro transversal fault system in central Andes (˜24°S): petrogenetic and geodynamic implications

    Science.gov (United States)

    Matteini, M.; Mazzuoli, R.; Omarini, R.; Cas, R.; Maas, R.

    2002-02-01

    In this paper, we present new geochemical and Sr-Nd isotopic data for several Upper Miocene volcanic centres aligned along one of the most extensive transcurrent lineament in the Central Andes, the Calama-Olacapato-El Toro (COT). The transversal volcanic belt along COT is constituted by large composite volcanoes and a caldera structure; they are, from NW to SE, Puntas Negras, Rincon, Tul Tul, Del Medio and Pocitos (TUMEPO), Quevar Aguas Calientes and Tastil. In order to compare chemical data from the different centres along the COT transect, differentiation effects were minimised by using data extrapolated at 60% SiO2 with least-square regression method. In the western sector of the COT, the volcanic products of Puntas Negras and Rincon show relatively high K2O and 87Sr/86Sr and low Rb/Cs, Ta/Th, La/Yb, 143Nd/144Nd. To the east, the TUMEPO products have high Sr and 143Nd/144Nd, La/Yb and Ba/Rb and low Y, 87Sr/86Sr. In the easternmost COT sector, Quevar, Aguas Calientes and Tastil volcanic complexes exhibit low La/Yb, high87Sr/Sr86 and low 143Nd/144Nd. On the basis of these data, we propose a petrogenetic and geodynamical model for Central Andes at 24°S. In correspondence of Miocene-Quaternary volcanic arc (Puntas Negras and Rincon), the magmas inherited a calcalkaline signature partly modified by upper crustal and/or sediment assimilation. In the central eastern sector, melting, assimilation, storage and homogenisation (MASH) processes occurred at the base of a thickened crust. In this COT sector, TUMEPO products show an evident lower crust signature and could be considered representative for MASH derived magmas. In the easternmost sector, Quevar, Aguas Calientes and Tastil products could represent magmas generated by partial melting of underthrusted Brasilian shield and mixed with magmas derived by MASH processes.

  6. Aeromagnetic search for Cenozoic magmatism over the Admiralty Mountains Block (East Antarctica)

    Science.gov (United States)

    ,; ,; Ferraccioli, F.; Zunino, A.; Bozzo, E.; Rocchi, S.; Armienti, P.

    2007-01-01

    Cenozoic magmatic rocks of the Transantarctic Mountains provide an important window on the tectonic and magmatic processes of the West Antarctic Rift System. Previous aeromagnetic investigations in northern Victoria Land have delineated Cenozoic volcanic and intrusive complexes assigned to the McMurdo Volcanic Group and Meander Intrusives over the Transantarctic Mountains. We present a new aeromagnetic anomaly map for the region north of the Mariner Glacier to study the extent and spatial distribution of these Cenozoic rocks over the previously unexplored Admiralty Mountains. The new map shows that the Meander Intrusives are restricted to the coastal region between the Malta Plateau and the Daniell Peninsula. However, the McMurdo Volcanic Group rocks extend further inland, and may delineate a hitherto unrecognised volcano-tectonic rift zone, extending as far north as the Trafalgar Glacier.

  7. I. Cenozoic geology of Iran: An integrated study of extensional tectonics and related volcanism. II. Ediacaran stratigraphy of the North American Cordillera: New observations from eastern California and northern Utah

    Science.gov (United States)

    Verdel, Charles

    2009-12-01

    I. The late Oligocene to Miocene collision of Arabia and Eurasia was preceded by ~175 My of subduction of Neotethyan oceanic crust. Associated magmatic activity includes late Triassic(?) to Jurassic plutons in the Sanandaj-Sirjan zone of southern Iran, limited Cretaceous magmatism in the Alborz Mountains of northern Iran, and widespread Eocene volcanism across central Iran. Metamorphic core complexes of Eocene age have recently been recognized in widely separated parts of Iran, suggesting that Tertiary volcanism was related to extension. Geochemical data indicate that Eocene volcanism was typical of continental arcs and was followed by less voluminous Oligocene basaltic volcanism of the type often associated with back-arc basins. This set of observations suggests that mid-Mesozoic plutons in southern Iran are the remnants of an original volcanic arc that was only weakly developed because of slow subduction rate. Magmatic activity largely ceased in southern and central Iran during the Cretaceous and shifted to the north, suggesting a period of flat slab subduction. Subsequent slab-rollback during the Eocene extended the overriding plate, forming metamorphic core complexes and inducing pressure-release melting of partially hydrated lithospheric mantle and upwelling of asthenosphere. II. The Ediacaran Period spans from the base of cap carbonates overlying glacial deposits of the Marinoan "Snowball Earth" event to the Precambrian-Cambrian boundary, ~635 to 542 Ma. Sediments deposited during the rifting of southwest Laurentia, which are now exposed in a relatively narrow belt in the western US, are one of the best records on earth of the geological, geochemical, and geobiological events that occurred during this period. Evidence for one of the most significant of these, the final oxygenation of the oceans, is found within the upper Johnnie Formation in the southern Great Basin. C isotope data from thick, basinal facies of the Johnnie Fm. in the Panamint Range provide a

  8. 火山温室气体释放通量与观测的研究进展%Research Advances in Greenhouse Gases Degassing from Cenozoic Volcanic Active Fields

    Institute of Scientific and Technical Information of China (English)

    郭正府; 张茂亮; 孙玉涛; 成智慧; 张丽红; 刘嘉麒

    2015-01-01

    火山活动是地球深部碳循环的重要环节,火山区不仅在火山喷发期能够释放温室气体,而且在休眠期也能向大气圈中释放大量的温室气体。在当前全球温室气体减排的背景下,定量化地研究火山区对大气圈温室气体含量增加的贡献,对于识别自然因素和人类因素碳排放的相对规模、为国际碳排放谈判积累基础数据等均具有至关重要的科学价值和现实意义。本文对火山区温室气体的排放方式与特征、温室气体释放通量与成因的研究方法进行了简要概括,并综述了中国新生代典型火山区温室气体释放通量与成因的研究成果。结合国外温室气体排放研究现状,指出深入研究活火山(包括休眠火山)区的温室气体释放通量与成因对于估算火山来源温室气体的释放规模、建立火山未来喷发预测-预警体系、深入理解岩浆脱气过程与机制等问题均具有至关重要的现实意义和科学价值。%Volcanic activities are of great importance to the global deep carbon cycle,which could release large amount of greenhouse gases during both eruptive and quiescent stages,resulting in climatic and environmental changes on local and even global scales.Under the context of global warming,quantitative studies on the contribution of volcanic activities to rising of atmospheric greenhouse gases concentration are critical to discriminating carbon emissions associated with nature and human and to accumulating essential data for geological carbon budget.In this study,we briefly reviewed types,char-acteristics and research methods of greenhouse gases emissions,and the current status of research on fluxes and origin of greenhouse gases emitting from volcanic fields of China.Based on internationally accepted theory in volcanic-related green-house gases,we proposed that,systematic studies on fluxes and origin of greenhouse gases emitting from volcanic activities

  9. Foraminifera in Cenozoic Paleoenvironments

    Institute of Scientific and Technical Information of China (English)

    Brian McGowran

    2005-01-01

    Paleontologists search the fossil record for evidence of age, ancient environments, phylogenetic reconstructions and ancient communities. Cenozoic foraminifera preserve evidence for all of these simultaneously from the water column and from at, above and below the sediment/water interface. As our understanding of foraminiferal assemblages and their place in the strata (biofacies) becomes more sophisticated, so are foraminiferal biofacies challenged to contribute to more subtle problems in Cenozoic earth and life history. Progress is described as a series of five "integrations". (Ⅰ) The quantification of foraminiferal biofacies was an advance on simple presences and absences of species meeting such questions as marine or nonmarine, or shallow or deep. (Ⅱ) Foraminiferal shells carry geochemical signals especially isotopes of oxygen (temperature, ice volume), carbon (nutrition and the carbon cycle), and strontium (seawater ratios through time). (Ⅲ) From modern foraminiferal biology we have lifestyle insights leading to a model of oceans and paleo-oceans called the trophic resource continuum, a valuable way into greenhouse-icehouse comparisons and contrasts. (Ⅳ) Biofacies changes in space and time are sometimes abrupt with little evidence of diachrony, and sometimes gradual. These patterns are clarified in the context of sequence stratigraphy (which they enrich in turn). (Ⅴ) The paleobiological counterpart of sequence stratigraphy is evolutionary paleoecology, reconstructing communities in deep time. The foraminifera are perfectly suited to investigate the possibility (or likelihood) that global environmental shifts have controlled community turnover in the pelagic, neritic and terrestrial realms.

  10. Cenozoic geodynamics of the Bering Sea region

    Science.gov (United States)

    Chekhovich, V. D.; Sukhov, A. N.; Sheremet, O. G.; Kononov, M. V.

    2012-05-01

    In the Early Cenozoic before origination of the Aleutian subduction zone 50-47 Ma ago, the northwestern (Asian) and northeastern (North American) parts of the continental framework of the Pacific Ocean were active continental margins. In the northwestern part, the island-arc situation, which arose in the Coniacian, remained with retention of the normal lateral series: continent-marginal sea-island arc-ocean. In the northeastern part, consumption of the oceanic crust beneath the southern margin of the continental Bering shelf also continued from the Late Cretaceous with the formation of the suprasubduction volcanic belt. The northwestern and northeastern parts of the Paleopacific were probably separated by a continuation of the Kula-Pacific Transform Fracture Zone. Change of the movement of the Pacific oceanic plates from the NNW to NW in the middle Eocene (50-47 Ma ago) was a cause of the origin of the Aleutian subduction zone and related Aleutian island arc. In the captured part of the Paleopacific (proto-Bering Sea), the ongoing displacement of North America relative to Eurasia in the middle-late Eocene gave rise to the formation of internal structural elements of the marginal sea: the imbricate nappe structure of the Shirshov Ridge and the island arc of the Bowers Ridge. The Late Cenozoic evolution was controlled by subduction beneath the Kamchatka margin and its convergence with the Kronotsky Terrane in the south. A similar convergence of the Koryak margin with the Goven Terrane occurred in the north. The Komandorsky minor oceanic basin opened in the back zone of this terrane. Paleotectonic reconstructions for 68-60, 56-52, 50-38, 30-15, and 15-6 Ma are presented.

  11. Petrogenesis of Late Cenozoic basalts from North Hainan Island: Constraints from melt inclusions and their host olivines

    Science.gov (United States)

    Liu, Jian-Qiang; Ren, Zhong-Yuan; Nichols, Alexander R. L.; Song, Mao-Shuang; Qian, Sheng-Ping; Zhang, Yan; Zhao, Pei-Pei

    2015-03-01

    Melt inclusions and their host olivines in basaltic lavas provide important information about the nature of their mantle source. We present the first analyzed chemical data of olivine-hosted melt inclusions in Cenozoic basalts from the North Hainan Island and report the discovery of both tholeiitic and alkalic melt inclusions in a single rock sample. Cenozoic basalts from the Hainan Island are predominantly tholeiites with only small amounts of alkali basalts. There is a much broader compositional variation in melt inclusions than whole rocks. Compared to partial melts of mantle peridotite, the Hainan basalts have lower CaO, Na2O/TiO2, CaO/Al2O3 and Co/Fe, and higher TiO2, FeO∗, Fe/Mn, Zn/Fe and Zn/Mn. The olivine phenocrysts from the Hainan basalts contain lower Ca and Mn, and higher Ni and Fe/Mn than those of olivines crystallized from partial melts of peridotite. Projections from or towards olivine into the plane CS-MS-A for melt inclusions and whole rocks with MgO >7.5 wt% imply that the residual minerals in the source of the tholeiites are mainly clinopyroxene and garnet, possibly with some orthopyroxene, while in the source of the alkali basalts they are dominated by clinopyroxene and garnet. This indicates that a pyroxenite component could serve as the source lithology of the Hainan basalts. The OIB-like trace element compositions, with Ba, Sr, Nb and Ta positive anomalies, and Th and U negative anomalies, of the Hainan basalts suggest that a recycled oceanic crust component was involved in the source of the Hainan basalts. Based on a CMAS projection of primary magma compositions of the whole rocks and melt inclusions, we infer that a stage-2 silica-deficient pyroxenite derived from melt-peridotite reaction or mechanical mixing between recycled oceanic crust and peridotite can serve as the source lithology. Partial melts derived from such a source can match the overall compositions of the Hainan basalts better than those of MORB-eclogite and fertile

  12. Cenozoic Uplift, Erosion and Dynamic Support of Madagascar

    Science.gov (United States)

    Stephenson, Simon; White, Nicky

    2016-04-01

    The physiography of Madagascar is characterised by high-elevation but low-relief topography; 42% of the landscape is above 500 m in elevation. Eocene (marine) nummulitic (marine) limestones at elevations of ˜400 m above sea level and newly dated, emergent 125 ka coral reefs suggest that Madagascar has experienced differential vertical motions during Cenozoic times. Malagasy rivers are often deeply incised and contain steepened reaches, implying that they have responded to changes in regional uplift rate. However, low temperature thermochronology and 10Be derived erosion rates suggest that both Cenozoic and Recent average denudation rates have been low. Extensive laterite-capped, low-relief surfaces also suggest that there have been long periods of tectonic quiescence. In contrast, the modern landscape is characterised by erosional gullies (i.e. lavaka), with very high local erosion rates. To bridge the gap between this disparate evidence, we inverted 2566 longitudinal river profiles using a damped non-negative, least-squares linear inversion to determine the history of regional uplift. We used a simplified version of the stream power erosional law. River profiles were extracted from the 3 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation model. Calibration of the stream power erosional law is based upon Cenozoic limestones and new radiometrically dated marine terraces. The residual misfit between observed and calculated river profiles is small. Results suggest that Malagasy topography grew diachronously by 1-2 km over the last 15-20 Ma. Calculated uplift and denudation are consistent with independent observations. Thus drainage networks contain coherent signals that record regional uplift. The resultant waves of incision are the principal trigger for modern erosional processes. Admittance calculations, the history of basaltic volcanism and nearby oceanic residual age-depth measurements all suggest that as much as 0.8 - 1.1 km of Cenozoic uplift

  13. Eocene volcanism during the incipient stage of Izu–Ogasawara Arc: Geology and petrology of the Mukojima Island Group, the Ogasawara Islands.

    OpenAIRE

    Kanayama, Kyoko; Umino, Susumu; Ishizuka, Osamu

    2012-01-01

    The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu-Ogasawara-Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra-depleted boninite-series rocks, and less-depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Ch...

  14. Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes

    Science.gov (United States)

    Silva Tamayo, J. C.; Sierra, G. M.; Correa, L. G.

    2008-12-01

    amalgamation and promoted both, high preservation of geomorphic elements and high diversity of sedimentary facies. This resulted in the most symmetric stratigraphic cycles of the entire Amagá Formation. The final stage of evolution of the Amagá Basin was related to the early stage of development of the late Miocene northwestern Andes tholeitic volcanism (from ˜10 to ˜8 Ma). The extensive thrusting and folding associated to this volcanism reduced the subsidence rates along the basin and thus the accommodation space. This permitted the development of highly aggradational braided rivers and promoted channels amalgamation. Little preservation of low energy facies, poor preservation of the geomorphic elements and a complete obliteration of important swamp deposits (coal beds) within the basin are reflected by the most asymmetric stratigraphic cycles of the whole formation. The presence of greenish/reddish flood plain deposits and Alfisols suggests a dry climate during this depositional stage. The presence of channel sandstones with high contents of volcanic rock fragments supports a dry climate, and suggests an incipient phase of the Combia tholeiitic magmatism present during deposition of the Amagá Formation. The subsequent eastward migration of the NW Andes magmatic arc (after ˜8 Ma) may have produced basin inversion and suppressed deposition along the Amagá Basin.

  15. Fertility of the Mantle beneath the Ocean Basins: Harzburgite, Lherzolite, and Eclogite in Depleted to Enriched Sources of Abyssal Tholeiites, Ocean Islands, and LIPs

    Science.gov (United States)

    Natland, J. H.; Anderson, D. L.

    2002-12-01

    and gabbro is returned to the mantle, there transforming to eclogite of diverse lithology and mineralogy. Eclogite distribution in the upper mantle cannot be uniform owing to the localized occurrence of trenches. Eclogite-rich mantle can be an important source of magma where the crust is thick (LIPs, Iceland) or volcanic structures very large (Hawaii). There is no need for plume-induced heterogeneity of the shallow mantle or for high temperatures. The absence of heat-flow and thermal anomalies at hotspots implies the presence of athermal mechanisms to explain melting and geochemical anomalies. Fertility spots, wetspots and lithospheric stress heterogeneity are a natural result of plate tectonics and may explain 'hotspots' without assuming deep-mantle thermal plumes. The non-fixity of hotspots, the occurrence of erratic age progressions and 'hotlines' and the orientations of volcanic chains have a natural explanation if lithospheric architecture, subduction and asthenospheric heterogeneity control magma volumes and chemistry. The case for a depleted eclogitic MORB-like source for Icelandic tholeiites will be discussed as an example.

  16. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  17. Basic-ultrabasic and volcanic rocks in Chagbu-Shuanghu area of northern Xizang (Tibet),China

    Institute of Scientific and Technical Information of China (English)

    邓万明; 尹集祥; 呙中平

    1996-01-01

    The widespread Early Permian and Triassic sequences outcropping in the Chagbu-Shuanghu area of northern Xizang, China, are mainly characterized by volcanic rocks belonging to tholeiite with subordinate veins of diallagite. wehrlite and limburgites schlierens. These ultrabasic rocks do not carry plastic deformational fabrics from upper mantle and may result from the crystallization of fused mass derived from mantle under condition of deeper crust or earlier segregation of tholeiitic magma. These volcanic rocks, as interlayers or lens, are generally involved in slates, limestones and pebbly slates or breccia and geochemically different from MORB. It is reasonable to conclude from research results that the volcanic activities during the Early Permian and Late Triassic would be able to occur in an intraplale environment suffering initial extension of continental crust or an aulacogen. Therefore, these basic-ultrabasic and volcanic rocks did not constitute an ophiolitic association with an occurrence 6f the

  18. The Research of Cenozoic Migrant Worker Satisfaction

    Institute of Scientific and Technical Information of China (English)

    于海霞

    2010-01-01

    The phenomenon of Cenozoic migrant worker shortage is a realism problem of China's enterprise,and Cenozoic migrant worker has become an important force occupied the social structure.So the study of Cenozoic migrant worker's status and the demand is imperative.Understand employees"both psychological and physiological satisfaction of enterprises'environmental factors,and make some corresponding changes is of great help to reduce the employee turnover rate.This paper commenced to research from the Cenozoic migrant worker's characteristics,analyzed conditions and puts forward the corresponding countermeasures.

  19. The influence of source heterogeneity on the U-Th-Pa-Ra disequilibria in post-glacial tholeiites from Iceland

    Science.gov (United States)

    Koornneef, J. M.; Stracke, A.; Bourdon, B.; Grönvold, K.

    2012-06-01

    We investigate the relative influence of mantle upwelling velocity and source heterogeneity on the melting rates recorded by 230Th-238U, 231Pa-235U and 226Ra-230Th disequilibria in post-glacial tholeiites from Iceland's main rift areas. The measured (230Th/238U) ratios range from 1.085 to 1.247, the (231Pa/235U) ratios from 1.333 to 1.925, and the (226Ra/230Th) ratios from 0.801 to 1.218. A general positive correlation between 230Th excesses and distance from the inferred plume centre is consistent with a model of decreasing mantle upwelling velocity with increasing distance from the plume axis. However, the model is not substantiated by the (231Pa/235U) data as the correlation with distance from the plume centre is weak. On the scale of individual eruption centres, the observed U-series are influenced by variations in melt transport time, source porosity, and local variations in mantle upwelling velocity. Broad correlations between (230Th/238U) and (231Pa/235U) and highly incompatible trace element ratios for samples from the Western Volcanic Zone provide, however, evidence for a significant underlying effect of source heterogeneity on the U-series data. Low 230Th and 231Pa excesses in enriched samples from the Western Volcanic Zone with high U/Th, Nb/U and Nb/La indicate that partial melts from an enriched source component, characterised by high melt productivity but low bulk DU/DTh, influence the U-series systematics of the erupted melts. These results re-affirm the presence of comparatively larger abundances of enriched material in the mantle source beneath the South Western Rift of Iceland, which has been suggested based on relationships between highly incompatible element and Pb isotope ratios in Icelandic basalts. Overall, our results highlight the importance of lithological heterogeneity on the melting behaviour of the upper mantle and the composition of oceanic basalts.

  20. Magmatic Source Composition and Magmatism of the Volcanic Rocks in the Area of Kuruktag, Southern Xinjiang

    Institute of Scientific and Technical Information of China (English)

    JIANG Changyi; BAI Kaiyin; HI Aizhi; ZHAO Xiaoning; ZHANG Hongbo

    2001-01-01

    In the Sinian-Cambrian strata in the area of Kuruktag, southern Xingjiang, four layers of volcanic rocks occurred in the Early Sinian Beiyixi Formation, Late Sinian Zhamoketi Formation and Shuiquan Formation, and Early Cambrian Xishanbulake Formation, respectively. Volcanics of the Shuiquan Formation and Xishanbulake Formation are of alkali basalt series, those of the Zhamoketi Formation are of alkali basalt series and tholeiite series, and those of the Beiyixi Formation are obviously characterized by bimodal assemblage and mostly belong to alkali volcanics. Multi-element distribution patterns of the rocks show continental tumescence characters of interplate basalt.Fractional crystallization of plagioclase led to negative Eu-anomalies of some volcanics and the cumulation of olivine resulted in high MgO and low SiO2 content of some volcanic rocks. The SiO2 saturability of volcanic rocks of the Xishanbulake Formation and Shuiquan Formation is lower than that of tholeiite of the Zhamoketi Formation. Correspondingly, the abundance of incompatible elements in the first two formations is higher than those in the last formation, and the differences can be attributed to the different degrees of partial melting. The intense fractionation of REE and the obvious depletion of HREE suggest that these volcanic rocks were derived from garnet Iherzolite of the mantle in the continental lithosphere. The Ba/Nb, La/Nb, Ba/La, Ba/Th and Rb/Nb rations demonstrate that these volcanic rocks were exclusively derived from the enriched mantle, mainly the EMI type mantle.

  1. Analysing the Cenozoic depositional record

    DEFF Research Database (Denmark)

    Goledowski, Bartosz; Clausen, O.R.; Nielsen, S.B.

    between the global climate record (oxygen isotopes) and lithology variations on the Eocene-Oligocene transition in the eastern North Sea. Due to the strongly limited time resolution of low temperature thermochronology, the Cenozoic sedimentary record potentially provides the most detailed history of...... lower limit to erosion rate in source areas of the respective sedimentary bodies. The lower limit arises because some erosional products are transported out of the mapped area, and some erosion is caused by chemical dissolution. The development of the source areas will be modelled using surface process...... models. The matrix mass deposition history will be compared with the paleoclimate record (e.g. oxygen isotope curves) to see if the previously observed correlation in the eastern North Sea can be extended to other ages and locations.  ...

  2. Geochemistry of the Neoarchaean Volcanic Rocks of the Kilimafedha Greenstone Belt, Northeastern Tanzania

    Directory of Open Access Journals (Sweden)

    Charles W. Messo

    2012-01-01

    Full Text Available The Neoarchaean volcanic rocks of the Kilimafedha greenstone belt consist of three petrological types that are closely associated in space and time: the predominant intermediate volcanic rocks with intermediate calc-alkaline to tholeiitic affinities, the volumetrically minor tholeiitic basalts, and rhyolites. The tholeiitic basalts are characterized by slightly depleted LREE to nearly flat REE patterns with no Eu anomalies but have negative anomalies of Nb. The intermediate volcanic rocks exhibit very coherent, fractionated REE patterns, slightly negative to absent Eu anomalies, depletion in Nb, Ta, and Ti in multielement spidergrams, and enrichment of HFSE relative to MORB. Compared to the other two suites, the rhyolites are characterized by low concentrations of TiO2 and overall low abundances of total REE, as well as large negative Ti, Sr, and Eu anomalies. The three suites have a εNd (2.7 Ga values in the range of −0.51 to +5.17. The geochemical features of the tholeiitic basalts are interpreted in terms of derivation from higher degrees of partial melting of a peridotite mantle wedge that has been variably metasomatized by aqueous fluids derived from dehydration of the subducting slab. The rocks showing intermediate affinities are interpreted to have been formed as differentiates of a primary magma formed later by lower degrees of partial melting of a garnet free mantle wedge that was strongly metasomatized by both fluid and melt derived from the subducting oceanic slab. The rhyolites are best interpreted as having been formed by shallow level fractional crystallization of the intermediate volcanic rocks involving plagioclase and Ti-rich phases like ilmenite and magnetite as well as REE-rich phases like apatite, zircon, monazite, and allanite. The close spatial association of the three petrological types in the Kilimafedha greenstone belt is interpreted as reflecting their formation in an evolving late Archaean island arc.

  3. Geochemical Characteristics of Danfeng Meta-Volcanic Rocks in Shangzhou Area,Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    The Danfeng meta-volcanics in the Shangzhou area, Shaanxi Province are characterized by oceanic island arc volcanic geochemistry. They are a suite of low-K tholeiitic series and calc-alkaline series meta-volcanic rocks derived from different sources respectively.These meta-volcanics have high Th/Ta ratios and low contents of Ni,Ta,Ti,Y and Yb, suggesting that they were influenced by the subduction zone components.Many lines of evidence show that the Danfeng meta-volcanics were produced in an oceanic island are setting of the supra-subduction zone at the southern margin of the North China Block during the Early Paleozoic.

  4. Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?

    Directory of Open Access Journals (Sweden)

    G. Hoareau

    2015-07-01

    Full Text Available The 58–51 Ma interval was characterized by a long-term increase of global temperatures (+4 to +6 °C up to the Early Eocene Climate Optimum (EECO, 52.9–50.7 Ma, the warmest interval of the Cenozoic. It was recently suggested that sustained high atmospheric pCO2, controlling warm early Cenozoic climate, may have been released during Neo-Tethys closure through the subduction of large amounts of pelagic carbonates and their recycling as CO2 at arc volcanoes ("carbonate subduction factory". To analyze the impact of Neo-Tethys closure on early Cenozoic warming, we have modeled the volume of subducted sediments and the amount of CO2 emitted at active arc volcanoes along the northern Tethys margin. The impact of calculated CO2 fluxes on global temperature during the early Cenozoic have then been tested using a climate carbon cycle model (GEOCLIM. We first show that CO2 production may have reached up to 1.55 × 1018 mol Ma−1 specifically during the EECO, ~ 4 to 37 % higher that the modern global volcanic CO2 output, owing to a dramatic India–Asia plate convergence increase. In addition to the background CO2 degassing, the subduction of thick Greater Indian continental margin carbonate sediments at ~ 55–50 Ma may also have led to additional CO2 production of 3.35 × 1018 mol Ma−1 during the EECO, making a total of 85 % of the global volcanic CO2 outgassed. However, climate modelling demonstrates that timing of maximum CO2 release only partially fit with the EECO, and that corresponding maximum pCO2 values (750 ppm and surface warming (+2 °C do not reach values inferred from geochemical proxies, a result consistent with conclusions arise from modelling based on other published CO2 fluxes. These results demonstrate that CO2 derived from decarbonation of Neo-Tethyan lithosphere may have possibly contributed to, but certainly cannot account alone for early Cenozoic warming, including the EECO. Other commonly cited sources of excess CO2 such as

  5. Ages, rare-earth element enrichment, and petrogenesis of tholeiitic and alkalic basalts from Kahoolawe Island, Hawaii

    Science.gov (United States)

    Fodor, R.V.; Frey, F.A.; Bauer, G.R.; Clague, D.A.

    1992-01-01

    Kahoolawe Island, Hawaii (18??11 km), is a basaltic shield volcano with caldera-filling lavas, seven identified postshield vents, and at least two occurrences of apparent rejuvenated-stage eruptive. We examined 42 samples that represent all stages of Kahoolawe volcano stratigraphy for their petrography, whole-rock major-and trace-element contents, mineral compositions, and K-Ar ages. The two oldest shield samples have an average age of 1.34??0.08 Ma, and four postshield samples (3 are alkalic) average 1.15??0.03 Ma; ages of 1.08 and 0.99 Ma for two additional tholeiitic samples probably are minimum ages. Whole-rock major- and trace-element and mineral compositions of Kahoolawe shield and caldera-fill laves are generally similar to the lavas forming Kilauea and Mauna Loa tholeiitic shields, but in detail, Kahoolawe shield lavas have distinctive compositions. An unusual aspect of many postshield Ka-hoolawe lavas is anomalously high REE and Y abundances (up to 200 ppm La and 175 ppm Y) and negative Ce anomalies. These enrichments reflect surficial processes, where weathering and soil development promoted REE-Y transport at the weathering front. Major element abundances (MgO, 10-6 wt.%) for shield and caldera-fill basalts are consistent with fractionation of ol+px+pl in frequently replenished magma reservoirs. In general, tholeiitic basalts erupted from late vents are higher in SiO2 than the shield lavas, and temporal differences in parental magma compositions are the likely explanation. Alkalic basalts that erupted from vents are comparable in composition to those at other Hawaiian volcanoes. Trace-element abundance ratios indicate that alkalic basalts represent either relatively lower degrees of melting of the shield source or a distinct source. Apparent rejuvenated-stage basalts (i.e., emplaced after substantial Kahoolawe erosion) are tholeiitic, unlike the rejuvenated-stages at other Hawaiian volcanoes (alkalic). Kahoolawe, like several other Hawaiian volcanoes

  6. Petrology of continental tholeiitic magmas forming a 350-km-long Mesozoic dyke swarm in NE Brazil: Constraints of geochemical and isotopic data

    Science.gov (United States)

    Ngonge, Emmanuel Donald; de Hollanda, Maria Helena Bezerra Maia; Archanjo, Carlos José; de Oliveira, Diógenes Custódio; Vasconcelos, Paulo Marcosde Paula; Muñoz, Patrício Rodrigo Montecinos

    2016-08-01

    The Ceará Mirim dyke swarm (northeastern Brazil) is composed of Cretaceous tholeiites with plagioclase, clinopyroxene (± olivine), Fe-Ti oxides and pigeonite in their groundmass. These tholeiites have been subdivided into three groups: high-Ti olivine tholeiites, evolved high-Ti tholeiites (TiO2 ≥ 1.5 wt.%; Ti/Y > 360), and low-Ti tholeiites (TiO2 ≤ 1.5 wt%; Ti/Y ≤ 360), with all exhibiting distinct degrees of enrichment in incompatible elements relative to Primitive Mantle. Negative Pb anomalies are found in all three groups, while Nb-Ta abundances similar to those of OIB-type magmas are found in the olivine tholeiites, with moderate to high depletions being observed, respectively, in the evolved high-Ti and low-Ti tholeiites. The low-Ti tholeiites exhibit some contamination with crustal (felsic) materials during ascent. The initial isotopic compositions of the olivine tholeiites show uniform and unradiogenic 87Sr/86Sr (~ 0.7035-0.7039) combined with (in part) radiogenic 143Nd/144Nd and 206Pb/204Pb (> 19.1) ratios, which together reveal a likely contribution of FOZO (FOcalZOne) component in their genesis. The other tholeiite groups show variable Sr-Nd ratios with relatively consistent 206Pb/204Pb ratios clustering towards an isotopically enriched mantle (EM1) component. Taken in conjunction with the Nb, this enriched signature reflects the involvement of a subduction-modified lithospheric mantle in the source of the evolved high-Ti and low-Ti tholeiites. Thus, we propose that FOZO and EMI components coexisted (including minor mixing with E-MORB magmas) and contributed in varying extents to the generation of the Ceará-Mirim dyke swarm primary melts, which segregated at 75 to 60 km in depth around the garnet-spinel facies transition zone. The mechanism that promoted melting was most likely non-plume related. We suggest that plate-boundary forces linked to the opening of the Atlantic Ocean promoted passive rifting and that the resulting asthenospheric

  7. Mesozoic-Cenozoic Basin Features and Evolution of Southeast China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Late Triassic to Paleogene (T3-E) basin occupies an area of 143100 km2, being the sixth area of the whole of SE China; the total area of synchronous granitoid is about 127300 km2; it provides a key for understanding the tectonic evolution of South China. From a new 1:1500000 geological map of the Mesozoic-Cenozoic basins of SE China, combined with analysis of geometrical and petrological features, some new insights of basin tectonics are obtained. Advances include petrotectonic assemblages,basin classification of geodynamics, geometric features, relations of basin and range. According to basin-forming geodynamical mechanisms, the Mesozoic-Cenozoic basin of SE China can be divided into three types, namely: 1) para-foreland basin formed from Late Triassic to Early Jurassic (T3-J1)under compressional conditions; 2) rift basins formed during the Middle Jurassic (J2) under a strongly extensional setting; and 3) a faulted depression formed during Early Cretaceous to Paleogene (K1-E)under back-arc extension action. From the rock assemblages of the basin, the faulted depression can be subdivided into a volcanic-sedimentary type formed mainly during the Early Cretaceous (K1) and a red-bed type formed from Late Cretaceous to Paleogene (K2-E). Statistical data suggest that the area of all para-foreland basins (T3-J1) is 15120 km2, one of rift basins (J2) occupies 4640 km2, and all faulted depressions equal to 124330 km2 including the K2-E red-bed basins of 37850 km2. The Early Mesozoic(T3-J1) basin and granite were mostly co-generated under a post-collision compression background,while the basins from Middle Jurassic to Paleogene (J2-E) were mainly constrained by regional extensional tectonics. Three geological and geographical zones were surveyed, namely: 1) the Wuyishan separating zone of paleogeography and climate from Middle Jurassic to Tertiary; 2) the Middle Jurassic rift zone; and 3) the Ganjiang separating zone of Late Mesozoic volcanism. Three types of basin

  8. Potassium, rubidium, strontium, thorium, uranium, and the ratio of strontium-87 to strontium-86 in oceanic tholeiitic basalt

    Science.gov (United States)

    Tatsumoto, M.; Hedge, C.E.; Engel, A.E.J.

    1965-01-01

    The average concentrations of potassium, rubidium, strontium, thorium, and uranium in oceanic tholeiitic basalt are (in parts per million) K, 1400; Rb, 1.2; Sr, 120; Th, 0.2; and U, 0.1. The ratio Sr87 to Sr86 is about 0.702, that of K to U is 1.4 ?? 104, and of Th to U is 1.8. These amounts of K, Th, U, and radiogenic Sr87 are less than in other common igneous rocks. The ratios of Th to U and Sr87 to Sr 86 suggest that the source region of the oceanic tholeiites was differentiated from the original mantle material some time in the geologic past.

  9. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas

    Science.gov (United States)

    Kuritani, Takeshi; Yoshida, Takeyoshi; Kimura, Jun-Ichi; Hirahara, Yuka; Takahashi, Toshiro

    2014-02-01

    The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4-5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at ~200 MPa.

  10. Metallogenic systems related to Mesozoic and Cenozoic granitoids in South China

    Institute of Scientific and Technical Information of China (English)

    华仁民; 陈培荣; 张文兰; 刘晓东; 陆建军; 林锦富; 姚军明; 戚华文; 张展适; 顾晟彦

    2003-01-01

    Large scale mineralizations of nonferrous, precious, and rare metals took place in South China in Mesozoic and Cenozoic Eras, which were mostly closely related with granitic magmatisms of different sources and features. Four metallogenic systems related to Mesozoic and Cenozoic granitoids are put forward in this paper. They are: (i) the porphyry-epithermal copper-gold system related to calc-alkaline volcanic-intrusive magmatism, (ii) rare metal (mainly W, Sn, Ta, Nb, etc) metallogenic system related with continental crust re-melting type granitoids, (iii) copper and polymetallic metallogenic system related with intra-plate high potassium calc-alkaline and shoshonitic magmatism, and (iv) Au-Cu and REE metallogenic system related to A-type granites. The main characteristics of these systems are briefly discussed. These Mesozoic and Cenozoic granitoids of different sources were the products of different periods of lithosphere evolution in that area under different tectonic-dynamic environments. Fundamentally speaking, however, the granitoids and related metallogeneses are the results of mantle-crust interactions under a tensile tectonic environment in South China.

  11. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data

    International Nuclear Information System (INIS)

    We present the data used to construct the Cenozoic and Cretaceous portion of the Phanerozoic curve of seawater 87Sr/86Sr that had been given in summary form by W.H. Burke and coworkers. All Cenozoic samples (128) and 22 Cretaceous samples are foram-nannofossil oozes and limestones from DSDP cores distributed among 13 sites in the Atlantic, Pacific and Indian Oceans, and the Caribbean Sea. Non-DSDP Cretaceous samples (126) include limestone, anhydrite and phosphate samples from North America, Europe and Asia. Determination of the 87Sr/86Sr value of seawater at particular times in the past is based on comparison of ratios derived from coeval marine samples from widely separated geographic areas. The general configuration of the Cenozoic and Cretaceous curve appears to be strongly influenced by the history of plate interactions and sea-floor spreading. Specific rises and falls in the 87Sr/86Sr of seawater, however, may be caused by a variety of factors such as variation in lithologic composition of the crust exposed to weathering, configuration and topographic relief of continents, volcanic activity, rate of sea-floor spreading, extent of continental inundation by epeiric seas, and variations in both climate and paleo-oceanographic conditions. Many or all of these factors are probably related to global tectonic processes, yet their combined effect on the temporal variation of seawater 87Sr/86Sr can complicate a direct plate-tectonic interpretation for portions of the seawater curve. (Auth.)

  12. Meso-Cenozoic evolution of the Tuareg Shield (Algeria, Sahara): insights from new thermochronological data

    Science.gov (United States)

    Rougier, Sylvain; Missenard, Yves; Gautheron, Cécile; Barbarand, Jocelyn; Zeyen, Hermann; Pinna, Rosella; Liégeois, Jean-Paul; Bonin, Bernard; Ouabadi, Aziouz; El-Messaoud Derder, Mohammed; Frizon de Lamotte, Dominique; Kettouche, Djouher

    2013-04-01

    In North Africa, Meso-Cenozoic large scale topographic swells, such as Hoggar, Tibesti or Darfur domes, are superimposed to a Paleozoic arch and basin morphology which characterizes this region. Although these topographic highs are associated to Cenozoic intraplate volcanism, their development remains poorly constrained, both from temporal and spatial points of view. This study is focused on the Tuareg Shield bulge, a topographic high where Precambrian rocks, exposed over 500000 km², can reach 2400 m above sea level (Atakor district, Hoggar, South Algeria). While presumed Cretaceous sedimentary remnants, resting unconformably over the basement, suggest a possible stage of weak topography during the Mesozoic, current high topography is emphasized by time-temperature history were performed. As previously deduced from apatite (U-Th)/He analyzes, these modelings show that samples underwent a heating to at least 80°C before their Late Eocene exhumation. Moreover, they also indicate that samples underwent another cooling stage during Lower Cretaceous, prior to Upper Cretaceous/Paleogene heating. We interpret these results as an evidence of a large-scale subsidence stage after the Cretaceous and until the Eocene, which allowed the deposition of a 1.5 to 3 km thick sedimentary cover and a heating at ~80°C of the currently outcropping basement. During the Eocene, the establishment of a thermal anomaly beneath the Tuareg Shield lithosphere resulted in erosion of the major part of this cover and, since 35 Ma, the development of intraplate volcanism.

  13. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    Science.gov (United States)

    Butterworth, N. P.; Müller, R. D.; Quevedo, L.; O'Connor, J. M.; Hoernle, K.; Morra, G.

    2014-08-01

    Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motion

  14. Pacific Plate slab pull and intraplate deformation in the early Cenozoic

    Directory of Open Access Journals (Sweden)

    N. P. Butterworth

    2014-01-01

    Full Text Available Large tectonic plates are known to be susceptible to internal deformation, leading to a range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific Plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its north-western perimeter, causing lithospheric extension along pre-existing weaknesses. Large scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau, and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians Volcanic Ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific

  15. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    Directory of Open Access Journals (Sweden)

    N. P. Butterworth

    2014-08-01

    Full Text Available Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific

  16. Cenozoic stratigraphy and geologic history of the Tucson Basin, Pima County, Arizona

    Science.gov (United States)

    Anderson, S.R.

    1987-01-01

    This report was prepared as part of a geohydrologic study of the Tucson basin conducted by the U.S. Geological Survey in cooperation with the city of Tucson. Geologic data from more than 500 water supply and test wells were analyzed to define characteristics of the basin sediments that may affect the potential for land subsidence induced by groundwater withdrawal. The Tucson basin is a structural depression within the Basin and Range physiographic province. The basin is 1,000 sq mi in units area and trends north to northwest. Three Cenozoic stratigraphic unit--the Pantano Formation of Oligocene age, the Tinaja beds (informal usage) of Miocene and Pliocene age, and the Fort Lowell Formation of Pleistocene age--fill the basin. The Tinaja beds include lower, middle, and upper unconformable units. A thin veneer of stream alluvium of late Quaternary age overlies the Fort Lowell Formation. The Pantano Formation and the lower Tinaja beds accumulated during a time of widespread continental sedimentation, volcanism, plutonism, uplift, and complex faulting and tilting of rock units that began during the Oligocene and continued until the middle Miocene. Overlying sediments of the middle and upper Tinaja beds were deposited in response to two subsequent episodes of post-12-million-year block faulting, the latter of which was accompanied by renewed uplift. The Fort Lowell Formation accumulated during the Quaternary development of modern through-flowing the maturation of the drainage. The composite Cenozoic stratigraphic section of the Tucson basin is at least 20,000 ft thick. The steeply tilted to flat-lying section is composed of indurated to unconsolidated clastic sediments, evaporites, and volcanic rocks that are lithologically and structurally complex. The lithology and structures of the section was greatly affected by the uplift and exhumation of adjacent metamorphic core-complex rocks. Similar Cenozoic geologic relations have been identified in other parts of southern

  17. Low-K Tholeiitic Signatures in Calayan Island (Northern Luzon, Philippines)

    OpenAIRE

    Pendón, R. R.; Corretgé, Luis Guillermo; Ordaz, J.

    2000-01-01

    The Calayan island is a Tertiary (7-4 Ma) volcanic island situated in the northern portion of the Philippine archipelago, a part of Babuyan segment of the Luzon arc. It is a product of subduction of South China Sea oceanic crust underneath the Philippine terrane. Rock spectrum in the island ranges from basalt to rhyolite with andesite as the most predominating lava. Geochemical signatures are characterized by low concentrations of large-ion lithophile and flat behavior of rare-earth elements,...

  18. A synthesis of Cenozoic sedimentation in the North Sea

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Rasmussen, E.S.

    2012-01-01

    sediment influx into the North Sea during the Cenozoic is more complex than previously suggested clockwise rotation from early northwestern to late southern sources. The Shetland Platform supplied sediment continuously, although at varying rates, until the latest Cenozoic. Sedimentation around Norway...... changed from early Cenozoic influx from the southwestern margin, to almost exclusively from the southern margin in the Oligocene and from all of southern Norway in the latest Cenozoic. Thick Eocene deposits in the Central Graben are sourced mainly from a western and a likely southern source, indicating...

  19. Petrogenetic evaluation of the Laohutai basalts from North China Craton: Melting of a two-component source during lithospheric thinning in the late Cretaceous-early Cenozoic

    Science.gov (United States)

    Kuang, Y. S.; Wei, X.; Hong, L. B.; Ma, J. L.; Pang, C. J.; Zhong, Y. T.; Zhao, J.-X.; Xu, Y.-G.

    2012-12-01

    While the consensus has been reached as to the lithospheric thinning beneath the North China Craton, the timing of this event remains controversial. Whether it took place during the Early Cretaceous or it extended over a period from late Triassic to early Cenozoic is a matter of hot debate. With aims of contributing to this issue, we performed geochronological and geochemical analyses on basalts of the Laohutai Formation which were emplaced in the Fushun basin at 60-70 Ma. The Laohutai Formation consists of Ne- or Hy-normative alkali basalts in the lower part and Q-normative tholeiitic basalts in the upper part. The tholeiites are characterized by positive Eu and Sr anomalies and show higher ɛNd(t) (3.2-5.3) than the co-existing alkali basalts (1.8-2.4), opposite to the common observation made in other occurrences. Depletion of highly incompatible elements, positive Nbsbnd Ta and negative Pb anomalies in the Laohutai basalts are indicative of oceanic crustal components (likely in form of pyroxenite/eclogite) in their magma source. Since Eu and Sr anomalies are not related to magmatic differentiation, the negative correlation between 87Sr/86Sri and Eu/Eu* suggests that the melting process and sampling of source heterogeneity are intrinsically related. We propose a differential melting of a two-component source in association with lithospheric thinning to account for the temporal variation of the Laohutai basalts. Specifically, earlier alkali basalts were formed by low degree of melting of a source at a greater depth, modified by melts derived from a hydrothermally altered, upper oceanic crust; whereas the later tholeiitic basalts were generated by high degree of melting of a gabbroic lower oceanic crust and minor peridotite at a shallower depth. When the lithospheric lid effect is applied, this petrogenetic model suggests the late Cretaceous-early Cenozoic as an important period of lithospheric thinning, therefore leaning support to the idea of the protracted

  20. Synopsis of volcanic stratigraphy

    Science.gov (United States)

    Hammond, P. E.

    1974-01-01

    Volcanic stratigraphic units are mappable layered units composed of volcanic rocks that are formed on land (subaerially) or under water (subaqueously) by volcanic processes. At least ten different types of volcanic stratigraphic units are recognized. The characteristics for each are discussed briefly and some typical examples are illustrated by diagrams to show their salient features.

  1. Le volcanisme cambrien du Maroc central : implications géodynamiquesThe Central Morocco Cambrian volcanism: geodynamic implications

    Science.gov (United States)

    Ouali, Houssa; Briand, Bernard; Bouchardon, Jean-Luc; Capiez, Paul

    2003-05-01

    In southeastern Central Morocco, the Bou-Acila volcanic complex is considered of Cambrian age. In spite of low-grade metamorphic effect, initial volcanic texture and mineralogy can be recognized and volcanic rocks are dominated by dolerites and porphyric dolerites. The initial mineralogy is composed of plagioclases, pyroxenes and dark minerals. A secondary mineral assemblage is composed of albite, epidote, chlorite and calcite. According to their immobile elements compositions, the southeastern central Morocco metavolcanites are of within-plate continental tholeiites. This volcanism and those recognized in many other areas in Morocco confirm a Cambrian extensive episode within the Gondwana supercontinent. To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).

  2. Distribution and Evolution of Volcanism of the Bolaven Plateau, Southern Laos

    Science.gov (United States)

    Herrin, J. S.; Sieh, K.; Wiwegwin, W.; Charusiri, P.; Singer, B. S.; Singsomboun, K.; Jicha, B.

    2015-12-01

    The Bolaven Plateau of southern Laos hosts a 6000 km2 basaltic volcanic complex erupted through flat-lying Mesozoic non-marine clastic sedimentary rocks. It is among the largest of dozens of isolated intracontinental Neogene-Quaternary volcanic centers in southeast Asia. The most voluminous flow sequences are tholeiitic, but a significant component of alkalic basalt is also present as morphologically younger cinder cones and related flows that cap the Plateau. Two salient aspects of the volcanic field are these: (1) Lava compositions appear to transition temporally from tholeiitic to alkaline, suggesting that the field tapped low-degree partial melts of a fresh mantle source toward the end of its lifespan. Circumstantial evidence for this can be found in abundant spinel lherzolite, wehrlite, and olivine websterite xenoliths within the alkaline basalts. (2) The volcanic center appears to have initiated atop a pre-existing 1000 m high, 90 km wide bedrock plateau, with nearly all visible vents confined to a 30-km wide zone that extends 80-km north to south. Our work on the Bolaven volcanic complex aims at establishment of a geochemical and temporal framework for its evolution. Using field relationships, petrologic and geochemical studies, and 40Ar/39Ar dating, we hope to unravel the genetic and age relationships of these compositionally varied lava sequences. Another objective of our investigation is to assess the possibility that lavas of the Bolaven might mask the heretofore undiscovered impact site of the Australasian tektite strewnfield (see Sieh et al, this meeting). Toward this aim, we will determine whether a sufficient expanse of the volcanic field is younger than the 0.8 Ma tektites. Finally, we intend to constrain the timing of incision of the Bolaven Plateau by the Mekong River and its tributaries.

  3. Early cenozoic differentiation of polar marine faunas.

    Directory of Open Access Journals (Sweden)

    J Alistair Crame

    Full Text Available The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability.

  4. Cenozoic stratigraphy of the Sahara, Northern Africa

    Science.gov (United States)

    Swezey, Christopher S.

    2009-01-01

    This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the

  5. Origin and geodynamic setting of Late Cenozoic granitoids in Sulawesi, Indonesia

    Science.gov (United States)

    Maulana, Adi; Imai, Akira; Van Leeuwen, Theo; Watanabe, Koichiro; Yonezu, Kotaro; Nakano, Takanori; Boyce, Adrian; Page, Laurence; Schersten, Anders

    2016-07-01

    Late Cenozoic granitoids are widespread in a 1600 km long belt forming the Western and Northern Sulawesi tectono-magmatic provinces. They can be divided into three rock series: shoshonitic (HK), high-K felsic calc-alkaline (CAK), and normal calc-alkaline to tholeiitic (CA-TH). Representative samples collected from eleven plutons, which were subjected to petrography, major element, trace element, Sr, Nd, Pb isotope and whole-rock δ18O analyses, are all I-type and metaluminous to weakly peraluminous. The occurrence of the two K-rich series is restricted to Western Sulawesi, where they formed in an extensional, post-subduction tectonic setting with astenospheric upwelling providing thermal perturbation and adiabatic decompression. Two parental magma sources are proposed: enriched mantle or lower crustal equivalent for HK magmas, and Triassic igneous rocks in a Gondwana-derived fragment thrust beneath the cental and northern parts of Western Sulawesi for CAK magmas. The latter interpretation is based on striking similarities in radiogenic isotope and trace element signatures. CA-TH granitoids are found mostly in Northern Sulawesi. Partial melting of lower-middle crust amphibolites in an active subduction environment is the proposed origin of these rocks. Fractional crystallization and crustal contamination have played a significant role in magma petrogenesis, particularly in the case of the HK and CAK series. Contamination by organic carbon-bearing sedimentary rocks of the HK and CAK granitoids in the central part of Western Sulawesi is suggested by their ilmenite-series (reduced) character. The CAK granitoids further to the north and CA-TH granitoids in Northern Sulawesi are typical magnetite-series (oxidized). This may explain differences in mineralization styles in the two regions.

  6. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, S.W. (Geological Survey, Reston, VA (USA) Univ. of Minnesota, MN (USA)); Shirey, S.B. (Carnegie Institution of Washington, DC (USA))

    1990-07-10

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North American. The Portage Lake Volcanics in Michigan, which are the youngest MRS flood basalts, fall into distinctly high- and low-TiO{sub 2} types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle (La/Yb = 4.3-5.3; Th/Ta = 2.12-2.16; Zr/Y = 4.3-4.4), and both basalt types are isotopically indistinguishable. Sr, Nd, and Pb isotopic compositions of the Portage Lake tholeiites have {sup 87}Sr/{sup 86}Sr{sub i} {approx}0.7038, {epsilon}{sub Nd(1095 Ma)} {approx}0 {plus minus} 2, and {mu}{sub 1} {approx}8.2. Model ages with respect to a depleted mantle source (T{sub DM}) average about 1950-2100 Ma. Portage Lake rhyolits fall into two groups. Type I rhyolites have Nd and Pb isotopic characteristics ({epsilon}{sub Nd(1095 Ma)} {approx}0 to {minus}4.7; {mu}{sub 1} {approx}8.2-7.8) consistent with contamination of tholeiitic rocks by 5-10% Archean crust. The one type II rhyolite analyzed has Nd and Pb isotopic compositions ({epsilon}{sub Nd(1095 Ma)} {approx}{minus}13 to {minus}16; {mu}{sub 1} {approx}7.6-7.7) which are consistent with partial melting of Archean crust. Early Proterozoic crust was not a major contaminant of MRS rocks in the Lake Superior region. Most reported Nd and Pb isotopic compositions of MRS tholeiites from the main stage of volcanism in the Lake Superior region and of the Duluth Complex are comparable to the Nd and Pb isotopic data for Portage lake tholeiites. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma.

  7. Inversion of Gravity Data to Define the Pre-Cenozoic Surface and Regional Structures Possibly Influencing Groundwater Flow in the Rainier Mesa Region, Nye County, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen

    2006-09-21

    A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.

  8. Cenozoic rift formation in the northern Caribbean

    Science.gov (United States)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  9. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  10. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  11. Cenozoic planktonic marine diatom diversity and correlation to climate change

    Science.gov (United States)

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all pimpact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  12. Application of Clinopyroxene Chemistry to Interpret the Physical Conditions of Ascending Magma, a Case Study of Eocene Volcanic Rocks in the Ghohrud Area (North of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari

    2016-07-01

    Full Text Available Introduction Volcanic rocks with a porphyritic texture have experienced two crystallization stages. The first is slow, resulting in phenocrysts, and the second, which took place at, or near the surface, or during intrusion into a cooler body of rock, result in a groundmass of glass, or fine crystals. The pressure and temperature history of a magma during crystallization is recorded in the chemical composition of the phenocrysts during both stages. These phenocrysts provide valuable data about the physicochemical conditions of the parent magma during the process of crystallization. The composition of clinopyroxene (cpx reflects not only the chemical condition and therefore the magmatic series, but also the physical conditions, i.e., temperature and pressure of a magma at the time when clinopyroxene crystallized. The Ghohrud area lies in the middle part of the Urumieh-Dokhtar Magmatic Arc , which is part of a much larger magmatic province extending in a vast region of convergence between Arabia and Eurasia north of the Zagros-Bitlis suture zone (Dilek et al., 2010. In the Ghohrud area, north of Isfahan, exposed Eocene volcanic rocks belong to the first pulse of Cenozoic volcanism of Iran (Sayari, 2015, ranging in composition from andesitic basalt to basalt. The basaltic rocks of the Ghohrud area are composed mainly of plagioclase phenocrysts surrounded by smaller crystals of clinopyroxene in a groundmass of microlites, glass and opaques. In this study, the clinopyroxene and plagioclase of these rocks were analyzed in order to estimate the physicochemical conditions of the parent magmas. Results Clinopyroxene and plagioclase phenocrysts of nineteen samples were analyzed with the electron microprobe. The chemical compositions of the clinopyroxenes were used to estimate both the chemical evolution and temperature and pressure conditions of the magmas during crystallization, using SCG, a specialized software for clinopyroxene thermobarometry (Sayari

  13. The ancestral cascades arc: Cenozoic evolution of the central Sierra Nevada (California) and the birth of the new plate boundary

    Science.gov (United States)

    Busby, C.J.; Hagan, J.C.; Putirka, K.; Pluhar, C.J.; Gans, P.B.; Wagner, D.L.; Rood, D.; DeOreo, S.B.; Skilling, I.

    2008-01-01

    We integrate new stratigraphic, structural, geochemical, geochronological, and magnetostratigraphic data on Cenozoic volcanic rocks in the central Sierra Nevada to arrive at closely inter-related new models for: (1) the paleogeography of the ancestral Cascades arc, (2) the stratigraphic record of uplift events in the Sierra Nevada, (3) the tectonic controls on volcanic styles and compositions in the arc, and (4) the birth of a new plate margin. Previous workers have assumed that the ancestral Cascades arc consisted of stratovolcanoes, similar to the modern Cascades arc, but we suggest that the arc was composed largely of numerous, very small centers, where magmas frequently leaked up strands of the Sierran frontal fault zone. These small centers erupted to produce andesite lava domes that collapsed to produce block-and-ash flows, which were reworked into paleocanyons as volcanic debris flows and streamflow deposits. Where intrusions rose up through water-saturated paleocanyon fill, they formed peperite complexes that were commonly destabilized to form debris flows. Paleocanyons that were cut into Cretaceous bedrock and filled with Oligocene to late Miocene strata not only provide a stratigraphic record of the ancestral Cascades arc volcanism, but also deep unconformities within them record tectonic events. Preliminary correlation of newly mapped unconformities and new geochronological, magnetostratigraphic, and structural data allow us to propose three episodes of Cenozoic uplift that may correspond to (1) early Miocene onset of arc magmatism (ca. 15 Ma), (2) middle Miocene onset of Basin and Range faulting (ca. 10 Ma), and (3) late Miocene arrival of the triple junction (ca. 6 Ma), perhaps coinciding with a second episode of rapid extension on the range front. Oligocene ignimbrites, which erupted from calderas in central Nevada and filled Sierran paleocanyons, were deeply eroded during the early Miocene uplift event. The middle Miocene event is recorded by growth

  14. Geochemical characteristics of island-arc volcanic rocks in the Nan-Nam Pat-Phetchabun zone, northern Thailand

    Institute of Scientific and Technical Information of China (English)

    SHEN Shangyue; FENG Qinglai; YANG Wenqiang; ZHANG Zhibin; Chongpom Chonglakmani

    2010-01-01

    Late Permian-Early Triassic (P2-T1) volcanic rocks distributed on the eastern side of ocean-ridge and oceanic-island basalts in the Nan-Uttaradit zone were analyzed from aspects of petrographic characteristics, rock assemblage, REE, trace elements, geotectonic setting, etc., indicating that those volcanic rocks possess the characteristic features of island-arc volcanic rocks. The volcanic rock assemblage is basalt-basaltic andesite-andesite. The volcanic rocks are sub-alkaline, dominated by calc-alkaline series, with tholeiite series coming next. The chemical composition of the volcanic rocks is characterized by low TiO2 and K2O and high Al2O3 and Na2O. Their REE patterns are of the flat, weak LREE-enrichment right-inclined type. The trace elements are characterized by the enrichment of large cation elements such as K, Rb and Ba, common enrichment of U and Th, and depletion of Nb, Ta, Zr and Hf. The petrochemical plot falls within the field of volcanic rocks, in consistency with the plot of island-arc volcanic rocks in the Jinsha River zone of China. This island-arc volcanic zone, together with the ocean-ridge/oceanic island type volcanic rocks in the Nan-Uttaradit zone, constitutes the ocean-ridge volcanic rock-island-arc magmatic rock zones which are distributed in pairs, indicating that the oceanic crust of the Nan-Uttaradit zone once was of eastward subduction. This work is of great significance in exploring the evolution of paleo-Tethys in the Nan-Uttaradit zone.

  15. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    Directory of Open Access Journals (Sweden)

    David Lazarus

    Full Text Available Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18O (climate and carbon cycle records (∂(13C, and 20-0 Ma pCO2. Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p.9, detrended r>.6, all p<.001, but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  16. Permo-Triassic hypabyssal mafic intrusions and associated tholeiitic basalts of the Kolyuchinskaya Guba, Chukotka (NE Russia): Significance for interregional correlations

    Science.gov (United States)

    Ledneva, G. V.; Pease, V. L.; Sokolov, S. D.

    2008-12-01

    In order to test tectonic hypotheses regarding the evolution of the Arctic Alaska-Chukotka microplate prior to the opening of the Amerasian basin, we investigated rocks exposed near Kolyuchinskaya Guba, eastern Chukotka. Hypabyssal mafic rocks and associated basaltic flows enclose terrigenous sediments, minor cherts and limestones in pillow interstices. The hypabyssal mafic rock yields a U-Pb zircon age of 252+/-4 Ma and indicates intrusion of basic magma at the Permo-Triassic boundary, contemporaneous with voluminous magmatism of the Siberian large igneous province (LIP). The lava flows and hypabyssal mafic rocks of the Kolyuchinskaya Guba region have major and trace element compositions identical the tholeiitic flood basalts of the main plateau stage of the Siberian LIP. They are strongly differentiated, the result of high-pressure equilibrium crystallization of a low-Ti/Y tholeiitic melt, and contaminated. The compositional variations in these rocks, however, neither proves nor disproves a correlation between the Permo-Triassic tholeiitic flood basalts of eastern Chukotka and the Siberian LIP. Thus, two alternative geodynamic interpretations are possible: 1) The hypabyssal mafic rocks and associated tholeiitic flows crystallized from a plume-derived melt; 2) The rocks are not related to plume activity, consequently eastern Chukotka was probably part of a passive rifted or extensional continental margin in the Permo-Triassic. Nonetheless, we prefer the first of these two possibilities. Funding for this work is gratefully acknowledged from the Swedish Polar Research Secretariat ("Beringia-2005"), the Swedish Research Council, the Russian Foundation for Basic Research (grant No 08-05-00547), Leading Scientific School (NSH-3172.2008.5) and ONZ RAS. Thanks are also extended to M.J. Whitehouse and the Nordsim facility - the Nordsim facility is funded by the research councils of Denmark, Norway, Sweden, the Geological Survey of Finland, and the Swedish Museum of

  17. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine

    Science.gov (United States)

    Gates, Olcott; Moench, R.H.

    1981-01-01

    Exposed in the Machias-Eastport area of southeastern Maine is the thickest (at least 8,000 m), best exposed, best dated, and most nearly complete succession of Silurian and Lower Devonian volcanic strata in the coastal volcanic belt, remnants of which crop out along the coasts of southern New Brunswick, Canada, and southeastern New England in the United States. The volcanics were erupted through the 600-700-million-year-old Avalonian sialic basement. To test the possibility that this volcanic belt was a magmatic arc above a subduction zone prior to presumed Acadian continental collision, samples representing the entire section in the Machias-Eastport area of Maine were chemically analyzed. Three strongly bimodal assemblages of volcanic rocks and associated intrusives are recognized, herein called the Silurian, older Devonian, and younger Devonian assemblages. The Silurian assemblage contains typically nonporphyritic high-alumina tholeiitic basalts, basaltic andesites, and diabase of continental characterand calc-alkalic rhyolites, silicic dacites, and one known dike of andesite. These rocks are associated with fossiliferous, predominantly marine strata of the Quoddy, Dennys, and Edmunds Formations, and the Leighton Formation of the Pembroke Group (the stratigraphic rank of both is revised herein for the Machias-Eastport area), all of Silurian age. The shallow marine Hersey Formation (stratigraphic rank also revised herein) of the Pembroke Group, of latest Silurian age (and possibly earliest Devonian, as suggested by an ostracode fauna), contains no known volcanics; and it evidently was deposited during a volcanic hiatus that immediately preceded emergence of the coastal volcanic belt and the eruption of the older Devonian assemblage. The older Devonian assemblage, in the lagoonal to subaerial Lower Devonian Eastport Formation, contains tholeiitic basalts and basaltic andesites, typically with abundant plagioclase phenocrysts and typically richer in iron and

  18. Permian to late Cenozoic evolution of northern Patagonia: Main tectonic events, magmatic activity, and depositional trends

    Science.gov (United States)

    Uliana, M. A.; Biddle, K. T.

    The late Paleozoic to late Cenozoic evolution of northern Patagonia was influenced significantly by events that occurred while the area was part of the South American sector of Gondwanaland. Late Paleozoic to Middle Triassic subduction along the edge of the supercontinent formed a broad convergent-margin system that is the underpinning of northern Patagonia. Deformation (Gondwanidian orogeny) associated with the subduction is recognized in both the forearc and the convergent backarc areas. Regional extension, accompanied by bimodal volcanism, began in the Late Triassic and led to the formation of a number of north-northwest trending rift basins in Patagonia, which generally followed the Gondwanidian basement grain. Continued extension in the Jurassic and Early Cretaceous led to the opening of the Rocas Verdes marginal basin in southern Chile and, ultimately, to the opening of the South Atlantic Ocean. Once oceanic crust began to form, faulting and volcanism declined in Patagonia. During the late Early Cretaceous to the Late Cretaceous, sags over the rift basins coalesced to form a broad backarc basin behind the volcanic arc to the west. These sags are suggestive of thermally driven subsidence. Subsidence of the evolving Atlantic margin allowed extensive marine transgressions to take place from the east. The stratigraphic record of northern Patagonia reflects these events. The upper Paleozoic to upper Mesozoic sedimentary sequences were deposited in basins directly associated with convergent activity along the margin of Gondwanaland or in rift basins created during its breakup. Even though the Tertiary evolution of Patagonia was dominated by events along the western margin of South America, the patterns of sediment transport, thickness, and general shoreline position were still influenced by the locations of the Mesozoic rifts formed during the breakup of Gondwanaland.

  19. Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan

    Science.gov (United States)

    Takada, Youichiro; Fukushima, Yo

    2013-08-01

    The 2011 Mw 9.0 Tohoku earthquake caused an unprecedented level of crustal deformation in eastern parts of Japan. The event also induced seismic activity in the surrounding area, including some volcanic regions, but has not yet triggered any eruptions. Here we use data from satellite radar and the Global Positioning System to show that volcanic regions, located between 150 and 200km from the rupture area, experienced subsidence coincident with the Tohoku earthquake. The volcanic regions subsided by 5-15cm, forming elliptical depressions with horizontal dimensions of up to 15-20km. The depressions are elongated in a direction roughly perpendicular to the axis of maximum coseismic extension. A high concentration of Late Cenozoic calderas, high heat flow, hot thermal waters, and young and hot granite in the subsided regions imply the presence of magmatic and hot plutonic bodies beneath the volcanoes, that may have deformed and subsided in response to stress changes associated with the Tohoku earthquake along with the surrounding, thermally weakened host rocks. Similar subsidence observed in Chile following the 2010 Maule earthquake indicates that earthquake-triggered subsidence could be widespread in active volcanic chains along subduction zones.

  20. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles

    Science.gov (United States)

    Zhang, Qiao; Wu, Shiguo; Dong, Dongdong

    2016-06-01

    Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene-Mid Miocene) and after cessation of seafloor spreading (Mid Miocene-Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean-continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to

  1. Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement

    Science.gov (United States)

    De Pelsmaeker, Elien; Glorie, Stijn; Buslov, Mikhail M.; Zhimulev, Fedor I.; Poujol, Marc; Korobkin, Valeriy V.; Vanhaecke, Frank; Vetrov, Evgeny V.; De Grave, Johan

    2015-11-01

    The Ili-Balkhash Basin in southeastern Kazakhstan is located at the junction of the actively deforming mountain ranges of western Junggar and the Tien Shan, and is therefore part of the southwestern Central Asian Orogenic Belt. The basement of the Ili-Balkhash area consists of an assemblage of mainly Precambrian microcontinental fragments, magmatic arcs and accretionary complexes. Eight magmatic basement samples (granitoids and tuffs) from the Ili-Balkhash area were dated with zircon U-Pb LA-ICP-MS and yield Carboniferous to late Permian (~ 350-260 Ma) crystallization ages. These ages are interpreted as reflecting the transition from subduction to (post-) collisional magmatism, related to the closure of the Junggar-Balkhash Ocean during the Carboniferous-early Permian and hence, to the final late Paleozoic accretion history of the ancestral Central Asian Orogenic Belt. Apatite fission track (AFT) dating of 14 basement samples (gneiss, granitoids and volcanic tuffs) mainly provides Cretaceous cooling ages. Thermal history modeling based on the AFT data reveals that several intracontinental tectonic reactivation episodes affected the studied basement during the late Mesozoic and Cenozoic. Late Mesozoic reactivation and associated basement exhumation is interpreted as distant effects of the Cimmerian collisions at the southern Eurasian margin and possibly of the Mongol-Okhotsk Orogeny in SE Siberia during the Jurassic-Cretaceous. Following tectonic stability during the Paleogene, inherited basement structures were reactivated during the Neogene (constrained by Miocene AFT ages of ~ 17-10 Ma). This late Cenozoic reactivation is interpreted as the far-field response of the India-Eurasia collision and reflects the onset of modern mountain building and denudation in southeast Kazakhstan, which seems to be at least partially controlled by the inherited basement architecture.

  2. Geology and geochemistry of palaeoproterozoic low-grade metabasic volcanic rocks from Salumber area, Aravalli Supergroup, NW India

    Indian Academy of Sciences (India)

    L S Shekhawat; M K Pandit; D W Joshi

    2007-12-01

    The Palaeoproterozoic Aravalli Supergroup in Salumber region includes a basal unit of metabasic volcanic rocks (Salumber volcanic rocks) overlain by a volcaniclastic/conglomerate one. Although these volcanic rocks have been metamorphosed to green-schist facies, some primary volcanic features are still preserved. This metabasic volcanic sequence can be further differentiated on the basis of textural variations, and the mineral assemblages are: (a) oligoclase + actinolite + chlorite + epidote; and (b) oligoclase + hornblende+ chlorite + biotite + Fe-Ti oxides. The SiO2 content ranges from ∼47.7 to 55.8% and MgO from ∼4.2 to 12.8%. Geochemical characteristics allow their subdivision into high Mg and Fe tholeiites. Inverse relationship of MgO with silica, alkalis and Zr is generally consistent with fractionation mechanism, also suggested by a change in colour of the rocks from dark greenish to light greenish towards the upper parts of the sequence. These metabasic volcanic rocks are enriched in incompatible trace elements and LREE (La = 30 − 40 × chondrite, Lu = 2 − 5 × chondrite), and demonstrate affinity mainly with MORB and within plate settings in geochemical tectonic discrimination schemes. The geochemical characteristics suggest a complex evolutionary history envisaging derivation of the melt from an enriched heterogeneous lithospheric source.

  3. Cenozoic uplift and subsidence in the North Atlantic region

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Artemieva, Irina

    2009-01-01

    studies, mass balance calculations and extrapolation of seismic profiles to onshore geomorphological features. The integration of about 200 published results reveal a clear pattern of topographic changes in the North Atlantic region during the Cenozoic: (1) The first major phase of Cenozoic regional......The topographic evolution of the "passive" margins of the North Atlantic during the last 65 Myr is the subject of extensive debate due to inherent limitations of the geological, geomorphological and geophysical methods used for studies of uplift and subsidence. We have compiled a database of sign......, time and amplitude (where possible) of topographic changes in the North Atlantic region during the Cenozoic (65-0 Ma). Our compilation is based on published results from reflection seismic studies, AFT (apatite fission track) studies, VR (vitrinite reflectance) trends, maximum burial, sediment supply...

  4. Relating Cenozoic North Sea sediments to topography in southern Norway:

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Stratford, Wanda Rose

    2010-01-01

    sources for progradational influx of clastic sediments from Scotland, the Shetland platform and, to a lesser degree, southwestern Norway. The Eocene sedimentation pattern was similar to the Palaeocene, with lower rates of accumulation associated with flooding and tectonic quiescence. Sediment influx from...... the Shetland platform continued throughout the Cenozoic while supply from southern Norway increased markedly around the Eocene–Oligocene, coeval with the greenhouse–icehouse transition. Mass balance calculations of sediment and eroded rock volumes suggest that while some topography along the western...... margin of Norway may be pre-Cenozoic, significant uplift of the main Paleic surface in southern Norway occurred around the early Oligocene. Sedimentation rates were almost ten-fold higher than the Cenozoic average in the Plio-Pleistocene, slightly higher than the global average. Mass balance calculations...

  5. Landscape evolution within a retreating volcanic arc, Costa Rica, Central America

    Science.gov (United States)

    Marshall, Jeffrey S.; Idleman, Bruce D.; Gardner, Thomas W.; Fisher, Donald M.

    2003-05-01

    Subduction of hotspot-thickened seafloor profoundly affects convergent margin tectonics, strongly affecting upper plate structure, volcanism, and landscape evolution. In southern Central America, low-angle subduction of the Cocos Ridge and seamount domain largely controls landscape evolution in the volcanic arc. Field mapping, stratigraphic correlation, and 40Ar/39Ar geochronology for late Cenozoic volcanic rocks of central Costa Rica provide new insights into the geomorphic response of volcanic arc landscapes to changes in subduction parameters (slab thickness, roughness, dip). Late Neogene volcanism was focused primarily along the now-extinct Cordillera de Aguacate. Quaternary migration of the magmatic front shifted volcanism northeastward to the Caribbean slope, creating a new topographic divide and forming the Valle Central basin. Stream capture across the paleo Aguacate divide led to drainage reversal toward the Pacific slope and deep incision of reorganized fluvial networks. Pleistocene caldera activity generated silicic ash flows that buried the Valle Central and descended the Tárcoles gorge to the Orotina debris fan at the coast. Growth of the modern Cordillera Central accentuated relief along the new divide, establishing the Valle Central as a Pacific slope drainage basin. Arc migration, relocation of the Pacific-Caribbean drainage divide, and formation of the Valle Central basin resulted from slab shallowing as irregular, hotspot-thickened crust entered the subduction zone. The geomorphic evolution of volcanic arc landscapes is thus highly sensitive to changes in subducting plate character.

  6. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  7. Geochemical study of volcanic and associated granitic rocks from Endau Rompin, Johor, Peninsular Malaysia

    Indian Academy of Sciences (India)

    Azman A Ghani; Ismail Yusoff; Meor Hakif Amir Hassan; Rosli Ramli

    2013-02-01

    Geochemical studies and modelling show that both volcanic and granitic magmas from the western part of the Johor National Park, Endau Rompin are different and probably have different sources. The geochemical plot suggests that both dacite/rhyolite and andesite probably have a common origin as in many of the geochemical plots, these two groups form a similar trend. Volcanic rocks have a transitional geochemical character between tholeiite and calc alkaline on a Y versus Zr plot. (La/Yb)N versus La and TiO2 versus Zr modelling show that the crystallization of both granitic and volcanic magmas are controlled by a different set of minerals. The rare earth elements (REE) patterns of some of the granite and volcanic samples have pronounced negative Eu anomaly indicating plagioclase fractionation. The difference between both profiles is that the granite samples show a concave shape profile which is consistent with liquids produced by partial melting of quartz feldspathic rocks containing amphibole among the residual phase. Both magmas were generated at a different time during the subduction of Sibumasu beneath the Indochina blocks.

  8. Sr, Nd, Pb Isotope geochemistry and magma evolution of the potassic volcanic rocks, Wudalianchi, Northeast China

    Science.gov (United States)

    Junwen, W.; Guanghong, X.; Tatsumoto, M.; Basu, A.R.

    1989-01-01

    Wudalianchi volcanic rocks are the most typical Cenozoic potassic volcanic rocks in eastern China. Compositional comparisons between whole rocks and glasses of various occurrences indicate that the magma tends to become rich in silica and alkalis as a result of crystal differentiation in the course of evolution. They are unique in isotopic composition with more radiogenic Sr but less radiogenic Pb.87Sr /86 Sr is higher and143Nd/144Nd is lower than the undifferentiated global values. In comparison to continental potash volcanic rocks, Pb isotopes are apparently lower. These various threads of evidence indicate that the rocks were derived from a primary enriched mantle which had not been subjected to reworking and shows no sign of incorporation of crustal material. The correlation between Pb and Sr suggests the regional heterogeneity in the upper mantle in terms of chemical composition. ?? 1989 Institute of Geochemistry, Chinese Academy of Sciences.

  9. Geochemistry and petrogenesis of Quaternary volcanism from the islets in the eastern Beibu Gulf:evidence for Hainan plume

    Institute of Scientific and Technical Information of China (English)

    LI Naisheng; YAN Quanshu; CHEN Zhihua; SHI Xuefa

    2013-01-01

    Some of the islets in the eastern Beibu Gulf are covered by Quaternary volcano strata. The rock samples from these islets mainly consist of quartz tholeiites (at Shenjiandao), olivine tholeiites (at Linshidao and Xieyang-dao) and alkali basalts (at Yangpubi and Jianshidao), and basically represent four periods of the Quaternary volcanism of Hainan Island and its adjacent regions. Except for the samples from Shenjiandao, most of the Quaternary volcanics of these islets belong to alkali magma series. The trace element characteristics of all of these samples show they are OIB (oceanic island basalt)-like, which implies that their deep geodynamic setting may be related to a mantle plume. The Sr-Nd-Pb isotopic compositions show that the mantle source beneath the Quaternary strata can be regarded as a result of binary mixing between a depleted, DMM (de-pleted MORB mantle)-like source and an enriched mantle type 2 (EM2). The EM2 may be originated from the Hainan mantle plume, and has been metasomatized by carbonaceous fluids released from ancient re-cycled oceanic crust at an asthenospheric mantle level. These features, together with typical trace element ratios, reflect that the parent magma was not subjected to crustal contamination during its ascent to the surface. This study provides further petrological and geochemical evidence for the existence of the Hainan mantle plume.

  10. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  11. Volcanic hazard assessment in monogenetic volcanic fields

    OpenAIRE

    Bartolini, Stefania

    2014-01-01

    Tesi realitzada a l'Institut de Ciències de la Terra “Jaume Almera” (ICTJA-CSIC) One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing...

  12. Some aspects of Cenozoic maar sediments in Europe: the source-rock potential and their exceptionally good fossil preservation

    Science.gov (United States)

    Zimmerle, W.

    During the last decade, two particular aspects of maar geology have been reported using Cenozoic examples: (1) the formation of sediments rich in organic matter (hydrocarbon source rocks) and (2) the exceptionally good fossil preservation in maar sediments, which invariably contain a certain amount of volcanogenic material. The periodically high sedimentation rate of maar sediments leads to rapid burial of animal or plant remains. The minute particle size of much volcanic ash, their thixotropic behaviour, and the neoformation of cryptocrystalline silica ensure rapid and complete isolation of organic matter and fossils. These factors impede exchange between the pore water in the sediment and the overlying water body, thus, protecting the organic material against oxidation.

  13. Meso-Cenozoic basin evolution in northern Korean Peninsula

    Institute of Scientific and Technical Information of China (English)

    PAK Hyon Uk; LYANG To Jun; LIU Yongjiang; HYON Yun Su; KIM Gyong Chol

    2009-01-01

    In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modern large rivers in direction. Such faults were usually developed to rift and formed lake-type tectonic basin, such as the Amrokgang-, Taedonggang-, Ryesonggang-, Hochongang-, Jangphari-, Susongchon-, Pujon-, and Nampho basins. The Mesozoic strata are considered to be divided into the Lower Jurassic Taedong System, Upper Jurassic Jasong System, Upper Jurassic- -early Lower Cretaceous Taebo System, and the Upper Cretaceous- -Paleocene (Chonjaebong, Hongwon, Jaedok Series). The Cenozoic block movement succeeded the Mesozoic fault block movement. The Kilju-Myongchon Graben and Tumangang Basin, etc, are the basins related to the fault zones developed from the Oligocene to Miocene. In addition, the Tertiary basins were formed in many areas in the Miocene (e.g. Sinhung, Oro, Hamhung, Yonghung, Anbyon, Cholwon, etc). The Cenozoic sedimentation occurred mainly from the late Oligocene to Miocene. The Kilju-Myongchon Graben was the fore deep connected to the sea and the basins inclined in the Chugaryong Fault Zone are intramountain basins. Therefore, coal-bearing beds and clastic rocks in the intramountain basins and rare marine strata and terrigenous clastic rocks are main sedimentary sequences in the Cenozoic.

  14. Early Cenozoic Shortening and Foreland Basin Sedimentation in the Marañon Fold-thrust Belt, Central Peruvian Andes

    Science.gov (United States)

    Jackson, L. J.; Carlotto, V.; Horton, B. K.; Rosell, L. N.

    2015-12-01

    The Marañon fold-thrust belt in the westernmost Andes of Peru has long been considered a robust signature of early Cenozoic shortening in the Andean orogenic belt. However, the structural details and potential records of coeval synorogenic sedimentation remain elusive. We report results from new geologic mapping (1:50,000), cross-section construction, and U-Pb geochronology for the Matucana-Ticlio region at 11-12°S along the Lima-La Oroya highway. Zircon U-Pb age data from volcanic rocks and clastic basin fill provide a maximum depositional age of ~43 Ma for a middle Eocene syndeformational unit that we identify as the Anta Formation, which overlies the Paleocene Casapalca Formation. Sedimentary lithofacies and unconformable relationships within the volcaniclastic Anta Formation reveal mixed fluvial, alluvial-fan, and volcanic depositional conditions during shortening accommodated by a NE-verging thrust/reverse fault and corresponding backthrust (here named the Chonta fault system). Our cross-section reconstruction and geochronological data indicate that the region is a critical, possibly unique, zone of the broader NE-directed Marañon fold-thrust belt where pre-Neogene synorogenic sediments and their associated structures are preserved. We interpret this combined structural and basin system as an Eocene-age (Incaic) frontal thrust belt and corresponding foredeep to wedge-top depozone in central Peru. As one of the better-constrained segments of the Marañon fold-thrust belt, this zone provides insight into potential linkages with elusive early Cenozoic (Incaic) structures and foreland basin fill of the Western Cordillera and Altiplano farther south in the central Andean plateau.

  15. Newly developed evidence for the original Tethysan island-arc volcanic rocks in the southern segment of the South Lancangjiang Belt

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper re-describes the characteristics of pre-Ordovician (Pt3) metamorphic volcanic rocks in the Huimin-Manlai region of Yunnan Province from the aspects of petrographic characteristics, rock assemblage, petrochemistry, REE, trace elements, lead isotopes and geotectonic setting. The metamorphic volcanic rocks maintain blasto-intergranular and blasto-andesitic textures; the volcanic rocks are characterized by a basalt-andesite-dacite assemblage; the volcanic rocks are basic-intermediate-intermediate-acid in chemical composition, belonging to semi-alkaline rocks, with calc-alkaline series and tholeiite series coexisting, and they are characterized by low TiO2 contents; their REE distribution patterns are of the LREE-enrichment right-inclined type; the volcanic rocks are enriched in large cation elements and commonly enriched in Th and partly depleted in Ti, Cr and P, belonging to the Gondwana type as viewed from their Pb isotopic composition; petrochemically the data points fall mostly within the field of island-arc volcanic rocks. All these characteristics provided new evidence for the existence of original Tethysan island-arc volcanic rocks in the region studied.

  16. Delimitation of volcanic edifices for landscape characterization and planning

    Science.gov (United States)

    Melis, Maria Teresa; Mundula, Filippo; Dessì, Francesco; Danila Patta, Elisabetta; Funedda, Antonio; Cioni, Raffaello

    2014-05-01

    The European Landscape Convention, recently adopted in Italy, indicates specific landforms to be selected as special protected sites. Active and inactive volcanic edifices, defined as the products of evolution of aggradational (lava effusion, pyroclastic deposition, magma intrusion) and degradational processes (erosion, deformation, gravitative phenomena), are one of the specific landforms to be protected. In order to protect these sites, management and planning measures are to be defined and shared with the local communities. In the framework of the Regional Landscape Management Plan of Sardinia (Italy), a detailed study aimed at identifying and delimiting Cenozoic volcanic edifices was performed. The large geological and morphological variability of the volcanic edifices of Sardinia in terms of type, dimension, age, integrity (a measure of the wholeness and intactnes of the volcanic edifice), geology and paleomorphology of the substrate, does not allow the definition of an automatic procedure for extracting the boundaries to delimit the volcanic edifices. In addition, quantitative geomorphological studies in the field of volcanology are confined to specific volcano types, and landscape literature does not suggest any universal criteria for delimiting volcanic edifices, except for the use of the concave breaks in slope at their base (Euillades et al., Computers and Geosciences, 2013). As this simple criterion can be unequivocally applied only in the ideal case of symmetric cones or domes built up on a planar surface, we developed a multidisciplinary methodology based on the integrated analysis of geological, geomorphological and morphometrical data of each edifice. The process of selection and delimitation of the volcanic edifices is the result of the following steps: i) a literature based delimitation of the volcanic edifice; ii) a preliminary delimitation through photo-interpretation and the use of geological criteria; and iii) a final refinement based on the

  17. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  18. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    International Nuclear Information System (INIS)

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10-9/km2/y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10-7/y

  19. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  20. Thermochronological constraints on two pulses of Cenozoic high-K magmatism in eastern Tibet

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The previously published U-Pb and 40Ar/39Ar ages and our 21 newly-obtained 40Ar/39Ar ages suggest that the Cenozoic magmatism in eastern Tibet and Indochina occurred in two episodes, each with distinctive geochemical signatures, at (40-28) Ma and (16-0) Ma. The older rocks are localized along the major strike-slip faults such as the Jinsha-Red River fault system and erupted synchronously with transpression. The younger rocks are widely distributed in rift basins and coeval with the east-west extension of Tibet and eastern Asia. Combining with their geochemical data, we consider that the earlier magmatic phase was generated by continental subduction, while the later volcanic phase was caused by decompression melting of a recently meta- somatically-altered, depleted mantle source. The magmatic gap between the two igneous pulses represents an important geodynamic transition in the evolution of eastern Tibet, from the processes controlled mainly by crustal deformation to those largely dominated by mantle tectonics.

  1. Carboniferous Bimodal Volcanic Rocks and Their Plate Tectonic Setting,Hainan Island

    Institute of Scientific and Technical Information of China (English)

    夏邦栋; 施光宇; 等

    1992-01-01

    The Carboniferous volcanic rocks in western Hainan Island consist of a series of oceanic tholeite and rhyoporphyrite,showing bimodal nature.Similar geochemical characters,in terms of abun-daces and relative rations of incompatible elements and REE and the REE patterns,between the basalt and continental rift-associated tholeiite indicate the occurrence of Late Paleozoic rifting in the area.The basaltic magma,with a low degree of evolution,was originated from deep mantle,show-ing contamination by low crustal material.The rhyolite is thought to be formed from partial melting of the continental crust by higher thermal flow in a rift environment rather than from fractional crystallization of a basaltic magma.

  2. Olivine and chromian spinel in primitive calc-alkaline and tholeiitic lavas from the southernmost cascade range, California: A reflection of relative fertility of the source

    Science.gov (United States)

    Clynne, M.A.; Borg, L.E.

    1997-01-01

    Chromian spinel and coexisting olivine phenocrysts from a geochemically diverse suite of primitive tholeiitic and calc-alkaline basalts and magnesian andesites from the Lassen region, in the southernmost Cascade Range, in California, show that the sub-arc mantle is zoned. Depleted calc-alkaline basalts and magnesian andesites erupt in the forearc region, and calc-alkaline basalts contain increasing abundances of incompatible elements toward the backarc. High-alumina olivine tholeiites erupt from the arc and backarc areas. Olivine from all these lavas displays a limited compositional range, from Fo86 to Fo91, and crystallized at high temperature, generally 1225-1275??C. Chromian spinel trapped in the olivine phenocrysts displays a large range of composition: Cr# values span the range 9-76. Excess Al in the spinel relative to that in 1-atm spinel suggests that it crystallized at elevated pressure. The phenocrysts in these lavas are in equilibrium with their host liquids. The full range of Cr# of the spinel compositions cannot be explained by differentiation or variable pressure, variations in f(O2), subsolidus equilibration or variations in degree of partial melting of a single peridotitic source. Rather, the systematic compositional differences among phenocrysts in these primitive lavas result from bulk chemical variability in their mantle sources. Correlations between spinel and host-rock compositions support the assertion that the geochemical diversity of Lassen basalts reflects the relative fertility of their mantle sources.

  3. An Early Cretaceous volcanic arc/marginal basin transition zone, Peninsula hardy, southernmost Chile

    Science.gov (United States)

    Miller, Christopher A.; Barton, Michael; Hanson, Richard E.; Fleming, Thomas H.

    1994-10-01

    The Hardy Formation represents a latest Jurassic-Early Cretaceous volcanic arc that was located along the Pacific margin of southern South America. It was separated from the continent by a marginal basin floored by portions of an ophiolite sequence (the Rocas Verdes ophiolites). The transition between the arc and marginal basin occurs on Peninsula Hardy, southernmost Chile, where there is a lateral facies transition from arc deposits of the Hardy Formation into proximal marginal basin fill of the Yahgan Formation. Interfingering of arc and marginal basin sequences demonstrates that subduction-related arc magmatism was concurrent with marginal basin formation. The lateral facies transition is reflected in the geochemistry of volcanic rocks from the Hardy and Yahgan formations. Basalts, andesites and dacites of the arc sequence follow a calc-alkaline differentiation trend whereas basalts from the marginal basin follow a tholeiitic differentiation trend. Estimates of temperature and oxygen fugacity for crystallization of the arc andesites are similar to values reported for other calc-alkaline andesites. It is suggested that water activity influenced the early or late crystallization of Ti-magnetite and this controlled the style of differentiation of the magmas erupted on Peninsula Hardy. Magmas with high water contents evolved along the calc-alkaline differentiation trend whereas those with low water contents evolved along the tholeiitic differentiation trend. Some rhyolites are differentiated from the calc-alkaline andesites and dacites, but most appear to be the products of crustal anatexis on the basis of trace-element evidence. The arc basalts and some marginal basin basalts show relative enrichment in LILE, relative depletion in HFSE, and enrichment in LREE. Other marginal basin basalts are LREE depleted and show small relative depletions in HFSE. Basalts with both calc-alkaline and tholeiitic affinities can also be recognized in the Rocas Verdes ophiolites

  4. Meso-Cenozoic Mineralization Pattern in the Continent of China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the complex structure and material resources,the complex geological setting of the Mesozoic-Cenozoic continent of China controlled four kinds of dynamic mechanisms of the continental tectonic-mineralization pattern, i.e. the dynamic mechanisms related to (1) underthrusting or collision, (2) activation of old tectonic belts or activity of new tectonic belts, (3) upwelling of mantle material and heat, and (4) interaction between the atmosphere, hydrosphere, biosphere and lithosphere. The four dynamic factors are related to and interact with each other; and the mantle-crust interaction leads to the regulhar time-space zonation of endogenetic deposits on a regional scale. The Meso-Cenozoic mineralization pattern in China can be outlined as the network tectono-metallogenic pattern constructed by NNE- and E-W-trending tectonics in eastern China, and multi-layer ring tectono-metallogenic pattern in the Qinghai-Tibet plateau and its northern and eastern neighbouring areas.

  5. Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)

    Science.gov (United States)

    Westerhoff, Wim; Donders, Timme; Luthi, Stefan

    2016-08-01

    ICDP workshop COring the NOrth Sea Cenozoic focused on the scientific objectives and the technical aspects of drilling and sampling. Some 55 participants attended the meeting, ranging from climate scientists, drilling engineers, and geophysicists to stratigraphers and public outreach experts. Discussion on the proposed research sharpened the main research lines and led to working groups and the necessary technical details to compile a full proposal that was submitted in January 2016.

  6. Modeling volcanic ash dispersal

    CERN Document Server

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  7. Cenozoic evolution of the eastern Danish North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Huuse, M.; Lykke-Andersen, H.; Michelsen, O.

    2003-12-01

    This paper provides a review of recent high-resolution and conventional seismic investigations in the eastern Danish North Sea and destribes their implications for the development of the eastern North Sea Basin. The results tomprise detailed timestructure maps of four major unconformities in the eastern Danish North Sea: the Top Chalk surface (mid-Paleogene), near top Oligocene, the mid-Miocene unconformity, and base Quatemary. The maps show that the eastem Danish North Sea has been affected by fauldng and salt diapirism throughout the Cenozoic. Carbonate mounds, erosional valleys and pockmark- or karstlike struttures were identitied at the top of the Upper Cretaceous-Danian Chalk Group. Strike-parallel erosional features and depositional geometries observed at near top Oligocene and at the mid-Miocene unconformity indicate that these major sequence boundarics tan be attributed to large-scale lateral changes in sediment supply directions. Increases in sediment flux to the southeastern North Sea at the Eocene/Oligocene transition and in the post-Middle Miocene appear to correlate with similar events world wide and with long term {delta} {sup 18} O increases, indicating forting by global factors, i.e. eustasy and climate. Stratal geometries observed on the seismic data indicate that the socalled `Neogene uplift' of the Bastern Danish North Sea may have been hundreds of metres less than previously suggested. lt is argued that late Cenozoic uplift of the basin margin and of mountain peaks in southern Norway may have been caused entirely by isostatic uplift of the trust in response to accelerated late Cenozoic denudation and dissection of topography created in the Paleogene. The late Cenozoic periods of accelerated denudation and incision rates were most likely driven by climatic deterioration and long term eustatic lowering rather than active late Cenozoic tectonics, the cause of which is conjectural. A series of shallow thrust struttures and an associated system

  8. Cenozoic carbon cycle imbalances and a variable weathering feedback

    Science.gov (United States)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, 1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has increased the reactivity of the surface of the Earth. Increasing feedback strength through the Cenozoic reconciles mass balance in the carbon cycle with

  9. Cenozoic carbon cycle imbalances and a variable weathering feedback

    Science.gov (United States)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, temperature decline in response, the integrated weathering flux over >1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has increased the reactivity of the surface of the Earth. Increasing feedback strength

  10. Hydrocarbon potential of the Meso-Cenozoic Turkana Depression, northern Kenya. 1. Reservoirs: depositional environments, diagenetic characteristics, and source rock-reservoir relationships

    Energy Technology Data Exchange (ETDEWEB)

    Tiercelin, J.-J.; Bellon, H.; Rio, A.; Le Gall, B.; Vetel, W. [UMR CNRSUBO, Plouzane (France). Institut Universitaire Europeen de la Mer; Universite de Bretagne Occidentale, Brest (France); Potdevin, J.-L. [Universite des Sciences et Technologies de Lille (France). UFR des Sciences de la Terre; Morley, C.K. [Universiti Brunei Darassalam (Brunei Darussalam). Jalan Tungku Link; Talbot, M.R. [University of Bergen (Norway). Geological Institute

    2004-01-01

    Major oil exploration efforts started in the 70s in the Meso-Cenozoic Anza Rift and Cenozoic Turkana Depression of northern Kenya. Thick piles of fluvio-lacustrine sandstones and shales infill these different rift basins. West of Lake Turkana, the Auwerwer/Lomerimong Formation is part of the Palaeogene-middle Miocene age, 7 km-thick fluvio-lacustrine infill of the Lokichar half-graben. East of Lake Turkana, the 220 m-thick Sera Iltomia Formation is of possible late Mesozoic-basal Palaeocene age, and comprises sandstones and mudstones with conglomeratic layers. The poorly dated Sera Iltomia Formation may represent either the early phase of Cenozoic East African rifting in northern Kenya or the Meso-Cenozoic Anza Rift. The sandstones of these two formations exhibit different sediment sources and consequent reservoir quality. The Sera litomia sandstones are immature and basement-derived. While the sources of clastic material from the Auwerwer/Lomerimong section originated from both volcanic and basement terrains. Palaeocurrent data for the Sera Iltomia and Auwerwer/Lomerimong basement-derived sandstones suggest a source to the south and south-cast of Lake Turkana. The volcanic-derived clastic rocks forming part of the Auwerwer/Lomerimong section suggest a sediment source to the south-southeast of the Lokichar Basin, linked to the lower Miocene Samburu Basalts Formation. Evidence for significant burial diagenesis is absent in both. In the Auwerwer/Lomerimong sandstones, calcite-analcite precipitation and calcite cementation significantly reduced the porosity from initial values of 40-45% to values which ranges up to 15%. In the Sera Iltomia sandstones, different early diagenetic events are recorded by calcite, quartz or kaolin cements. Quartz overgrowths and kaolin precipitation are local phenomena, and did not induce significant porosity reduction. In some cases, calcite cementation completely occluded the initial porosity, but in other cases it has helped preserve

  11. Exploring Hawaiian volcanism

    Science.gov (United States)

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  12. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; YANG Yaomin; WANG Kunshan

    2008-01-01

    Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea,the characteristics of volcanic activi-ty of the South China Sea after spreading were studied.The potassium - argon ages of eight alkali basalt samples from the South China Sea,and the argon - argon ages of two samples among them are reported.Apparent ages of the whole rock are 3.80 to 7.91 Ma with an average value of 5.43 Ma (potassium- argon,whole rock),and there is little difference among samples at the same location,e.g.,4.76~5.78 Ma for location S04-12.The argon - argon ages for the two samples are 6.06 and 4.71 Ma,which lie within the age scope of potassium - argon method.The dating results indicate that rock-forming age is from late Miocene to Pli-ocene,which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea.Volcanic activities occur after the cessation of spreading of the South China Sea,which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea.These dating results,combined with geochemical characteristics of these basalts,the published chronological data for the South China Sea and its adjacent regions,and the updated geophysical data near Hainan Island,suggest that after the cessation of spreading of the South China Sea,there occur widely distributing magmatic activities which primarily is alkali basalt,and the volcanic activity continues to Quaternary.The activity may be relative to Hainan mantle plume originated from core/mantle boundary.

  13. Reducing volcanic risk

    Science.gov (United States)

    Decker, R.; Decker, B.

    1991-01-01

    The last two decades have brought major advances in research on how volcanoes work and how to monitor their changing habits. Geologic mapping as well as studies of earthquake patterns and surface deformation associated with underground movement of magma have given scientists a better view of the inner structure and dynamics of active volcanoes. With the next decade, the time has come to focuses more on applying this knowledge toward reducing the risk from volcanic activity on a worldwide basis. 

  14. Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S-70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile

    Science.gov (United States)

    Salas, Pablo A.; Rabbia, Osvaldo M.; Hernández, Laura B.; Ruprecht, Philipp

    2016-06-01

    In the Andean Southern Volcanic Zone (SVZ), the broad distribution of mafic compositions along the recent volcanic arc occurs mainly south of 37°S, above a comparatively thin continental crust (≤~35 km) and mostly associated with the dextral strike-slip regime of the Liquiñe-Ofqui Fault Zone (LOFZ). North of 36°S, mafic compositions are scarce. This would be in part related to the effect resulting from protracted periods of trapping of less evolved ascending magmas beneath a thick Meso-Cenozoic volcano-sedimentary cover that lead to more evolved compositions in volcanic rocks erupted at the surface. Here, we present whole-rock and olivine mineral chemistry data for mafic rocks from four monogenetic vents developed above a SVZ segment of thick crust (~45 km) in the Descabezado Grande volcanic field (~35.5°S). Whole-rock chemistry (MgO > 8 wt%) and compositional variations in olivine (92 ≥ Fo ≥ 88 and Ni up to ~3650 ppm) indicate that some of the basaltic products erupted through these vents (e.g., Los Hornitos monogenetic cones) represent primitive arc magmas reaching high crustal levels. The combined use of satellite images, regional data analysis and field observations allow to recognize at least 38 mafic monogenetic volcanoes dispersed over an area of about 5000 km2 between 35.5° and 36.5°S. A link between ancient structures inherited from pre-Andean tectonics and the emplacement and distribution of this mafic volcanism is suggested as a first-order structural control that may explain the widespread occurrence of mafic volcanism in this Andean arc segment with thick crust.

  15. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  16. Bimodal magmatism, basaltic volcanic styles, tectonics, and geomorphic processes of the eastern Snake River Plain, Idaho

    Science.gov (United States)

    Hughes, S.S.; Smith, R.P.; Hackett, W.R.; McCurry, M.; Anderson, S.R.; Ferdock, G.C.

    1997-01-01

    Geology presented in this field guide covers a wide spectrum of internal and surficial processes of the eastern Snake River Plain, one of the largest components of the combined late Cenozoic igneous provinces of the western United States. Focus is on widespread Quaternary basaltic plains volcanism that produced coalescent shields and complex eruptive centers that yielded compositionally evolved magmas. The guide is constructed in several parts beginning with discussion sections that provide an overview of the geology followed by road directions, with explanations, for specific locations. The geology overview briefly summarizes the collective knowledge gained, and petrologic implications made, over the past few decades. The field guide covers plains volcanism, lava flow emplacement, basaltic shield growth, phreatomagmatic eruptions, and complex and evolved eruptive centers. Locations and explanations are also provided for the hydrogeology, groundwater contamination, and environmental issues such as range fires and cataclysmic floods associated with the region.

  17. Continental arc volcanism as the principal driver of icehouse-greenhouse variability

    Science.gov (United States)

    McKenzie, N. Ryan; Horton, Brian K.; Loomis, Shannon E.; Stockli, Daniel F.; Planavsky, Noah J.; Lee, Cin-Ty A.

    2016-04-01

    Variations in continental volcanic arc emissions have the potential to control atmospheric carbon dioxide (CO2) levels and climate change on multimillion-year time scales. Here we present a compilation of ~120,000 detrital zircon uranium-lead (U-Pb) ages from global sedimentary deposits as a proxy to track the spatial distribution of continental magmatic arc systems from the Cryogenian period to the present. These data demonstrate a direct relationship between global arc activity and major climate shifts: Widespread continental arcs correspond with prominent early Paleozoic and Mesozoic greenhouse climates, whereas reduced continental arc activity corresponds with icehouse climates of the Cryogenian, Late Ordovician, late Paleozoic, and Cenozoic. This persistent coupled behavior provides evidence that continental volcanic outgassing drove long-term shifts in atmospheric CO2 levels over the past ~720 million years.

  18. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    Science.gov (United States)

    Nicholson, S.W.; Shirey, S.B.

    1990-01-01

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors

  19. Coarse Grain Progradation in a Foreland basin: Application of Detrital Zircon Double Dating to Cenozoic Stratigraphy, Eastern Cordillera, Colombia.

    Science.gov (United States)

    Odoh, S.; Saylor, J. E.; Higuera-Diaz, C.; Lapen, T. J.; Copeland, P.

    2015-12-01

    Progradation of coarse clastic material into distal foreland basins has been attributed to both 1) enhanced sediment production during rapid tectonic exhumation and 2) sediment reworking during tectonic quiescence. The Floresta and Medina basins in the Eastern Cordillera record deposition of alternating coarse- and fine-grained clastic strata in medial and distal (respectively) Cenozoic foreland basins. The Medina Basin records the continued eastward progradation of the deformation front in the Neogene. We use detrital zircon U-Pb (ZPb) and (U-Th)/He (ZHe) analyses from the Paleogene Floresta Basin and the entire Cenozoic Medina Basin record to evaluate the effects of episodic thrust-belt exhumation and wide-spread deposition of coarse-grained sediments in the adjacent foreland basin. Both ZPb and ZHe systems are applied to individual grains (double dating) to constrain source area and up-section variations in exhumation rates. Changes in exhumation rate or introduction of new sediment sources are recorded as changes in lag time (ZHe age - depositional age). Analysis of 6 samples from the Floresta Basin shows a decrease in lag time during deposition of the coarse-grained middle Eocene Picacho Formation and upper Paleocene Socha Sandstone suggesting that Paleogene deposition of coarse-grained intervals in this medial location corresponds to an increase in exhumation rate. However, initial results from the Medina basin are less clear as there is evidence for Paleocene volcanic input but no clear evidence for thrust-belt related sediment until the Oligocene-early Miocene. We interpret the evidence for different sediment sources for Eocene strata in the axial Eastern Cordillera (Floresta) versus the Eastern foothills (Medina) as indicative of separation of these two regions by an emergent forebulge. Exhumation rate and granularity appear to be inversely correlated in post-Oligocene strata, though confirmation of initial interpretations awaits larger samples sizes

  20. Structural inheritance and selective reactivation in the central Andes: Cenozoic deformation guided by pre-Andean structures in southern Peru

    Science.gov (United States)

    Perez, Nicholas D.; Horton, Brian K.; Carlotto, Victor

    2016-03-01

    Structural, stratigraphic, and geochronologic constraints from the Eastern Cordillera in the central Andean plateau of southern Peru (14-15°S) demonstrate the existence and position of major pre-Andean structures that controlled the accumulation of Triassic synrift fill and guided subsequent Cenozoic deformation. The timing of initial clastic deposition of the Triassic Mitu Group is here constrained to ~ 242-233 Ma on the basis of detrital and volcanic zircon U-Pb geochronology. Regionally distinct provenance variations, as provided by U-Pb age populations from localized synrift accumulations, demonstrate Triassic erosion of multiple diagnostic sources from diverse rift-flank uplifts. Stratigraphic correlations suggest synchronous initiation of extensional basins containing the Mitu Group, in contrast with previous interpretations of southward rift propagation. Triassic motion along the NE-dipping San Anton normal fault accommodated up to 7 km of throw and hanging-wall deposition of a synrift Mitu succession > 2.5 km thick. The contrasting orientation of a non-reactivated Triassic normal fault suggests selective inversion of individual structures in the Eastern Cordillera was dependent on fault dip and strike. Selective preservation of a ~ 4 km thick succession of Carboniferous-Permian strata in the down-dropped San Anton hanging wall, beneath the synrift Mitu Group, suggests large-scale erosional removal in the uplifted footwall. Field and map observations identify additional pre-Andean thrust faults and folds attributed to poorly understood Paleozoic orogenic events preserved in the San Anton hanging wall. Selective thrust reactivation of normal and reverse faults during later compression largely guided Cenozoic deformation in the Eastern Cordillera. The resulting structural compartmentalization and across-strike variations in kinematics and deformation style highlight the influence of inherited Paleozoic structures and Triassic normal faults on the long

  1. Cenozoic History of Paleo-Currents through the Central American Seaway: Insights from Deep Sea Sediments and Outcrops in Panama

    Science.gov (United States)

    Waite, A. J.; Martin, E. E.

    2015-12-01

    Paleontologic, oceanographic, and ecologic studies suggest gradual shoaling of the Central American Seaway between ~15 to 2 Ma that caused a stepwise shutdown of deep, intermediate, and shallow water exchange between the Pacific Ocean and Caribbean Sea. This diminishing communication has been further associated with changes in surface and deep ocean currents, atmospheric flow, and ultimately regional and global climate. Recent studies of the Isthmus of Panama's exhumation history, palm phylogenies, and fossil/molecularly derived migration rates, however, suggest that the isthmus may have risen much earlier. An earlier rise scenario would call into question many accepted consequences of this gateway event under the 'Panama Hypothesis,' including strengthened thermohaline circulation, North Atlantic Deep Water production, the onset of Northern Hemisphere glaciation, and the Great American Biotic Interchange. Despite considerable research on the Neogene, few paleoceanographic studies have directly examined long-term changes in the adjacent oceans over the Cenozoic to evaluate the potential for earlier events in the closure history of the seaway. In this study, we extend records of bottom water circulation reconstructed from the Nd-isotopes of fish teeth from several Caribbean International Ocean Discovery Program sediment cores (ODP Sites 998, 999, 1000). These reconstructions clearly depict an increase in Pacific volcanism throughout the Cenozoic and sustained transport of Pacific waters into the Caribbean basin from ~50 to 9 Ma, although there appear to be interesting complexities within the Caribbean basin itself. We also present preliminary investigations into the potential of Nd-isotopic analyses on fossil fish teeth recovered from outcrops and exposures of marine strata across Panama to further elucidate the regional dynamics and shoaling history of the Central American Seaway.

  2. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    Science.gov (United States)

    Stille, P.; Tatsumoto, M.

    1985-01-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.

  3. Early Cenozoic Multiple Thrust in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Zhenhan Wu

    2013-01-01

    Full Text Available Recently completed regional geological mapping at a scale of 1 : 250,000 or larger across all of the Tibetan Plateau coupled with deep seismic surveys reveals for the first time a comprehensive depiction of the major early Cenozoic thrust systems resulting from the northward subduction of the Indian Continental Plate. These systems define a series of overlapping north-dipping thrust sheets that thickened the Tibetan crust and lead to the rise of the plateau. The few south-dipping thrusts present apparently developed within a sheet when the back moved faster than the toe. Many of the thrusts are shown to extend to the middle-lower crustal depths by seismic data. The regional thrust systems are the Main Central, Renbu-Zedong, Gangdese, Central Gangdese, North Gangdese, Bangoin-Nujiang, Qiangtang, Hohxil, and South Kunlun Thrusts. The minimal southward displacements of the South Kunlun, Hohxil, South Qiangtang, and Central Gangdese Thrusts are estimated to be 30 km, 25 km, 150 km and 50 km, respectively. Deep thrusting began in the Himalaya-Tibetan region soon after India-Eurasia continental collision and led to crustal thickening and subsequent uplift of the Tibetan Plateau during Late Eocene-Early Miocene when the systems were mainly active. The major thrust systems ceased moving in Early Miocene and many were soon covered by lacustrine strata. This activity succeeded in the late Cenozoic to crustal extension and strike-slip movement in the central Tibetan Plateau. The revelation of the full array of the early Cenozoic thrust systems provides a much more complete understanding of the tectonic framework of the Tibetan Plateau.

  4. Dynamic topography and the Cenozoic carbonate compensation depth

    Science.gov (United States)

    Campbell, S. M.; Moucha, R.; Raymo, M. E.; Derry, L. A.

    2015-12-01

    The carbonate compensation depth (CCD), the ocean depth at which the calcium carbonate accumulation rate goes to zero, can provide valuable insight into climatic and weathering conditions over the Cenozoic. The paleoposition of the CCD can be inferred from sediment core data. As the carbonate accumulation rate decreases linearly with depth between the lysocline and CCD, the CCD can be calculated using a linear regression on multiple sediment cores with known carbonate accumulation rates and paleodepths. It is therefore vital to have well-constrained estimates of paleodepths. Paleodepths are typically calculated using models of thermal subsidence and sediment loading and compaction. However, viscous convection-related stresses in the mantle can warp the ocean floor by hundreds of meters over broad regions and can also vary significantly over millions of years. This contribution to paleobathymetry, termed dynamic topography, can be calculated by modeling mantle flow backwards in time. Herein, we demonstrate the effect dynamic topography has on the inference of the late Cenozoic CCD with an example from the equatorial Pacific, considering sites from IODP Expeditions 320/321. The equatorial Pacific, given its large size and high productivity, is closely tied to the global carbon cycle. Accordingly, long-term changes in the equatorial Pacific CCD can be considered to reflect global changes in weathering fluxes and the carbon cycle, in addition to more regional changes in productivity and thermohaline circulation. We find that, when the dynamic topography contribution to bathymetry is accounted for, the equatorial Pacific CCD is calculated to be appreciably shallower at 30 Ma than previous estimates would suggest, implying a greater deepening of the Pacific CCD over the late Cenozoic.

  5. Cenozoic sequence stratigraphy in the eastern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O.; Thomsen, E.; Danielsen, M.; Heilmann-Clausen, C.; Jordt, H.; Laursen, G.V.

    1995-05-01

    The Cenozoic evolution of the epicontinental North Sea Basin is described on the basis of sequence stratigraphy, comprising analyses of seismic sections, petrophysical logs, and biostratigraphic studies of foraminifera, dinoflagellates, and calcareous nannofossils. Stratigraphic, palaeogeographic, and palaeoecological information from the Danish onshore area is integrated in the study. The deposits are subdivided into 21 sequences, which groups into seven informal major units. The sequence boundaries are identified by differences in seismic facies and by seismic onlap, toplap, and truncation features. The maximum flooding surface is placed at an internal downlap surface which correlates with high values on the gamma ray log. The source of sediments and the direction of sediment transport changed several times during the Cenozoic. Transport was mainly from the north during the Late Paleocene and Early Eocene, from the west during the Middle and Late Eocene, and from the north and northwest during the Oligocene to quaternary. The depocenters of the seven major units are generally located marginally, probably adjoining the source areas. There is only minor evidence for changes in subsidence rates in the basin. A constant rate is assumed from the Paleocene to the mid Middle Miocene. For the remaining part of the Cenozoic and increased rate is indicated. A tentative relative sea-level curve for the North Sea Basin is proposed. The overall trends of the curve are broadly comparable with the global sea-level curve of Haq et al. Discrepancies may be caused by differences in the biostratigraphic calibrations. The most pronounced Oligocene sea-level fall is dated ot the latest Oligocene. (au) (83 refs.)

  6. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    Directory of Open Access Journals (Sweden)

    Steffen Kiel

    Full Text Available We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema. In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large

  7. Cenozoic crustal shortening and thickening contributions to Andean orogenesis: Preliminary results from structural mapping in the southern Peruvian Andes

    Science.gov (United States)

    Perez, N.; Horton, B. K.

    2012-12-01

    Estimates of Cenozoic crustal shortening and thickening from the southern Peruvian Andes are necessary to address ongoing debates regarding growth of the Andes and Altiplano plateau. However, limited regional studies in southern Peru prevent accurate assessments of the structural contributions to high topography. This study provides new structural mapping along a >200 km transect spanning the northernmost Altiplano to Subandes at 13-15.5°S and fills the gap between existing central Peruvian and northern Bolivian studies. New stratigraphic data, fault relationships and fold orientations are used to create an updated geologic map and provide insights into the style, timing and magnitude of crustal deformation. Preliminary cross sections accompanying these map transects illustrate deformation style and provide first-order estimates of shortening. Further cross section analyses will be balanced and provide estimates of total crustal shortening and associated thickening in southern Peru. The study transect is subdivided into belts according to the age of exposed rocks and style of deformation. From west to east these belts include: Cretaceous strata dominated by tight folds, closely spaced faults and multiple detachments; Permo-Triassic strata dominated by thicker thrust sheets and fault-fold orientations departing from typical Andean trends; and Paleozoic rocks characterized by thick thrust sheets and deformation focused near major faults. The Cretaceous belt is composed of marine limestones and upward coarsening, siltstone to coarse sandstone progradational sequences. Disharmonic and detachment folds in the Cretaceous section demonstrate the importance of interbedded gypsum and mudstone layers. Fault relationships suggest local shortening during the Early Cretaceous. The Permo-Triassic belt is composed of thick Permian carbonates (Copacabana Formation) and interbedded sandstones, conglomerates and volcanics of the Mitu Formation. This study defines the orientation of

  8. Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany

    Science.gov (United States)

    Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.

    2016-06-01

    The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by

  9. Petrology and geochemistry of Cenozoic intra-plate basalts in east-central China: Constraints on recycling of an oceanic slab in the source region

    Science.gov (United States)

    Li, Yan-Qing; Ma, Chang-Qian; Robinson, Paul T.

    2016-10-01

    Cenozoic mafic rocks in Jiangsu and Anhui Provinces, east-central China are chiefly basanites and alkali olivine basalts with subordinate tholeiites, which were erupted in three stages; Paleogene, Neogene and Quaternary. The rocks become increasingly alkaline as they become younger. On a primitive mantle-normalized multi-element plot, these lavas exhibit typical OIB-like trace element patterns, including enrichment in most incompatible elements (LILE and HFSE) and negative K and Pb anomalies. The compositions of the mafic rocks indicate that they were derived from a mantle source mainly containing clinopyroxene and garnet, most probably a mixture of pyroxenite/eclogite and peridotite. A mineral equilibrium projection shows that all the mafic magmas were produced at pressures of 3-4 GPa, implying an asthenospheric origin. Their positive Ba and Sr anomalies and relatively high 87Sr/86Sr ratios suggest derivation from an EM1-type mantle source. However, poor correlations between 87Sr/86Sr and 143Nd/144Nd indicate an isotopically heterogeneous source for the magmas, including DMM, EM1 and EM2, representing mantle peridotite, recycled ancient oceanic crust and seafloor sedimentary rocks, respectively. Variable correlations between 87Sr/86Sr and 143Nd/144Nd ratios, CaO-MgO contents and Eu/Eu* and Ce/Ce* anomalies with rock type imply that marine sediments (plus variable amounts of oceanic crust) and peridotites were the dominant source lithologies of the basanites, whereas recycled oceanic crust (pyroxenite/eclogite) was the main source of the weakly alkaline basalts. This hypothesis is supported by seismic tomographic images of the mantle beneath the region, which show the presence of a stagnant subducted slab in the mantle transition zone. Thus, we propose a petrological model in which a hybrid magma column originated from the mantle transition zone and assimilated some of the overlying peridotite during upwelling, to become the parental magmas of these mafic rocks

  10. Thermal state of the Roer Valley Graben, part of the European Cenozoic Rift System

    NARCIS (Netherlands)

    Luijendijk, E.; Voorde, M. ter; Balen, R. van; Verweij, H.; Simmelink, E.

    2011-01-01

    We performed a detailed analysis of the thermal state of the Cenozoic Roer Valley Graben, the north-western branch of the European Cenozoic Rift System, based on a new set of temperature data. We developed a numerical technique for correcting bottom hole temperatures, including an evaluation of the

  11. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.

    1983-03-01

    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt (<4 Myr) of the NTS region and southern Death Valley area, California, indicate an enrichment in incompatible elements, with the exception of rubidium. The conditional probability of recurring basaltic volcanism and disruption of a repository by that event is bounded by the range of 10{sup -8} to 10{sup -10} as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes.

  12. Mantle xenoliths from Marosticano area (Northern Italy): a comparison with Veneto Volcanic Province lithospheric mantle

    Science.gov (United States)

    Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo

    2016-04-01

    The Tertiary Magmatic Province of Veneto, known as Veneto Volcanic Province (VVP), in the North-East of Italy, represents the most important volcanic distric of Adria Plate. It is composed by five volcanic bodies: Val d'Adige, Marosticano, Mts. Lessini, Berici Hills and Euganean Hills. Most of the volcanic products are relatively undifferentiated lavas and range in composition from nephelinites to tholeiites. Often VVP nephelinites and basanites carry mantle xenoliths (mainly harzburgites and lherzolite). This study reports petrological comparison between Marosticano xenoliths (new outcrop) and xenoliths from the Lessinean and Val d'Adige areas already studied by many Authors (Siena & Coltorti 1989; Beccaluva et al., 2001, Gasperini et al., 2006). Mineral major elements analyses show that the Marosticano lherzolites and harzburgites reflect "more restitic" composition than the mantle domain beneath the other VVP districts (Lessini Mts. and Val d'Adige). In fact, olivine and pyroxene of Marosticano xenoliths have the highest mg# values of the entire district (Marosticano→90-93; literature→86-92). At comparable mg# (45-85 wt%) Marosticano spinels tend to be higher in Cr2O3 (23-44 wt%) contents with respect to the other VVP sp (7-25 wt%). It is worth noting that, Ni contents of Marosticano olivines in both harzburgites and lherzolites are higher (2650-3620 ppm) than those of the Lessinean xenoliths (1500- 3450 ppm), and similar to that of Val d'Adige lherzolites (3000-3500 ppm), approaching the contents of Archean cratonic mantle (Kelemen, 1998). In turn, Lessinean olivines properly fall in the Ni-mg# Phanerozoic field. At fixed pressure of 15 kbar, the equilibration temperature of Marosticano xenoliths are similar (Brey & Köhler: 920-1120°C) to those of Lessini (O'Neill & Wall: 990-1110°C; Beccaluva et al., 2007), but higher than those of Val d'Adige (Wells: 909-956°C; Gasperini et al., 2006). Finally, Marosticano mantle fragment show similar relatively high

  13. Geochemical characteristics of Bikou volcanic group and Sr-Nd-Pb isotopic composition: Evidence for breakup event in the north margin of Yangtze plate, Jining era

    Institute of Scientific and Technical Information of China (English)

    LI; YongFei; LAI; ShaoCong; QIN; JiangFeng; LIU; Xin; WANG; Juan

    2007-01-01

    The geodynamic setting of the Bikou volcanic group is a critical question to trace the Precambrain tectonic framework and evolution for the Yangtze plate. This study has suggested that the Bikou volcanic group is composed of several residual oceanic crust units: MORB (mid-ocean ridge basalt), Alk-OIB (alkaline ocean island basalt) and Th-OIB (tholeiitic ocean island basalt) as well as subduction-related volcanic rocks. According to field observation, those distinct rocks occurred collectively in form of tectonic contact, implying that the Bikou volcanic group was an ophiolitic mélange. Coupled with geochronological data, a perished oceanic basin at the northern margin of the Yangtze block during Neoproterozoic was tested by this ophiolitic mélange. Meanwhile, the isogeochemical data suggest that the ocean occurred in the Southern Hemisphere identical to Indian, South Atlantic and South Pacific oceans in terms of their Dupal anomalies, and the original source of the rocks could be probably mixing by EMⅠand EMⅡ component caused by dehydration melting of subducting oceanic crust during subduction process. On the basis of geochemical characteristics of the studied rocks, the Bikou volcanic group could imply that a partial breakup event occurred in the northern margin of Yangtze plate during the Neoproterozoic era.

  14. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    Science.gov (United States)

    Tang, Zheng; Julià, Jordi; Zahran, Hani; Mai, P. Martin

    2016-06-01

    We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.

  15. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    KAUST Repository

    Tang, Zheng

    2016-05-11

    We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.

  16. Volcanic Ash Nephelometer Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  17. Fluorine geochemistry in volcanic rock series

    DEFF Research Database (Denmark)

    Stecher, Ole

    1998-01-01

    A new analytical procedure has been established in order to determine low fluorine concentrations (30–100 ppm F) in igneous rocks, and the method has also proven successful for higher concentrations (100–4000 ppm F). Fluorine has been measured in a series of olivine tholeiites from the Reykjanes ...

  18. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  19. Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia

    Science.gov (United States)

    Duncan, Robert A; Kent, Adam J R; Thornber, Carl; Schliedler, Tyler D; Al-Amri, Abdullah M

    2016-01-01

    Harrat Hutaymah is an alkali basalt volcanic field in north-central Saudi Arabia, at the eastern margin of a large Neogene continental, intraplate magmatic province. Lava flow, tephra and spatter cone compositions in the field include alkali olivine basalts and basanites. These compositions contrast with the predominantly tholeiitic, fissure-fed basalts found along the eastern margin of the Red Sea. The Hutaymah lava flows were erupted through Proterozoic arc-associated plutonic and meta-sedimentary rocks of the Arabian shield, and commonly contain a range of sub-continental lithospheric xenoliths, although the lavas themselves show little indication of crustal contamination. Previous radiometric dating of this volcanic field (a single published K–Ar age; 1.8 Ma) is suspiciously old given the field measurement of normal magnetic polarity only (i.e. Brunhes interval, ≤ 780 Ka). We report new age determinations on 14 lava flows by the 40Ar–39Ar laser step heating method, all younger than ~ 850 Ka, to better constrain the time frame of volcanism, and major, trace and rare earth element compositions to describe the chemical variation of volcanic activity at Harrat Hutaymah. Crystal fractionation was dominated by olivine ± clinopyroxene at a range of upper mantle and crustal pressures. Rapid ascent and eruption of magma is indicated by the array of lower crustal and lithospheric xenoliths observed in lava flows and tephra. Modeling suggests 1–7% melting of an enriched asthenospheric mantle source occurred beneath Harrat Hutaymah under a relatively thick lithospheric cap (60–80 km).

  20. Intraplate Harrat Volcanism and Neogene Evolution of the Lithosphere-Asthenosphere Boundary beneath Western Saudi Arabia

    Science.gov (United States)

    Kent, A. J.; Duncan, R. A.; Graham, D. W.; Al-Amri, A. M.; Alshalntoni, S. A.

    2015-12-01

    Continental extension is a fundamental plate tectonic process, and extensional environments are associated with significant production of basaltic magmas. Although tholeiitic magmatism produced by mantle decompression is common, dispersed, less voluminous and compositionally variable basaltic and related magmas also occur in association with continental extension. One of the most voluminous, best-preserved and least studied examples of the latter is the volcanic harrats of western Saudi Arabia. Uplift, crustal erosion and harrat volcanism occurred from ~15 Ma to recent over a considerable region of western Arabia. Volcanism trends north from the Red Sea along the Makkah-Madinah-Nafud (MMN) line as a number of discrete harrats, and geophysical evidence suggests this region is underlain by hot upwelling asthenosphere. Larger harrats occur along the central axis of the MMN line, with smaller fields on the periphery. We present initial results of an ongoing study of harrat volcanism, including more than 50 new 40Ar-39Ar ages together with geochemical and isotopic data. Magma storage and fractionation appears to have occurred at a range of crustal levels, including deep storage and transport sufficiently rapid to preserve a range of lithospheric and crustal xenoliths. Melting commenced within the garnet peridotite field, however modeling of REE element abundances suggest that considerable differences exist in the thickness of the overlying lithospheric lid. Thinner lithosphere (line, whereas harrats peripheral to the MMN line have thicker lithosphere (>60-80 km) and magmas result from lower degree melts. The observed variability can be explained by a process of progressively thinning lithosphere along the main axis of the MMN line, as a result of regional lithospheric extension and mantle decompression melting, coupled with northward asthenospheric flow from the Red Sea and/or Afar hot spot.

  1. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  2. Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia

    Science.gov (United States)

    Duncan, Robert A.; Kent, Adam J. R.; Thornber, Carl R.; Schlieder, Tyler D.; Al-Amri, Abdullah M.

    2016-03-01

    Harrat Hutaymah is an alkali basalt volcanic field in north-central Saudi Arabia, at the eastern margin of a large Neogene continental, intraplate magmatic province. Lava flow, tephra and spatter cone compositions in the field include alkali olivine basalts and basanites. These compositions contrast with the predominantly tholeiitic, fissure-fed basalts found along the eastern margin of the Red Sea. The Hutaymah lava flows were erupted through Proterozoic arc-associated plutonic and meta-sedimentary rocks of the Arabian shield, and commonly contain a range of sub-continental lithospheric xenoliths, although the lavas themselves show little indication of crustal contamination. Previous radiometric dating of this volcanic field (a single published K-Ar age; 1.8 Ma) is suspiciously old given the field measurement of normal magnetic polarity only (i.e. Brunhes interval, ≤ 780 Ka). We report new age determinations on 14 lava flows by the 40Ar-39Ar laser step heating method, all younger than ~ 850 Ka, to better constrain the time frame of volcanism, and major, trace and rare earth element compositions to describe the chemical variation of volcanic activity at Harrat Hutaymah. Crystal fractionation was dominated by olivine ± clinopyroxene at a range of upper mantle and crustal pressures. Rapid ascent and eruption of magma is indicated by the array of lower crustal and lithospheric xenoliths observed in lava flows and tephra. Modeling suggests 1-7% melting of an enriched asthenospheric mantle source occurred beneath Harrat Hutaymah under a relatively thick lithospheric cap (60-80 km).

  3. North Chilean forearc tectonics and cenozoic plate kinematics

    Science.gov (United States)

    Buddin, Tim S.; Stimpson, Ian G.; Williams, Graham D.

    1993-04-01

    The continental forearc of northern Chile has been subjected to contemporaneous extension and compression. Here, cross-sections constructed across the forearc are presented which show that since initial shortening, deformation of the forearc has occurred in two tectonically distinct areas. These inner and outer forearc areas are separated by the strain discontinuity of the Atacama fault system and the tectonically neutral Central Depression. The outer forearc, the Coastal Cordillera, exhibits extensional tectonics, with large (up to 300 m) normal fault scarps preserved. These faults cut the earlier thrusts responsible for the elevation of Jurassic rocks at the coast above their regional elevation. The normal faults have been re-activated, displacing Quaternary salt deposits in the Salar Grande. This re-activation of the basement faults is probably due to the subduction of anomalously thick oceanic crust, producing an isostatic imbalance in the outer forearc. In the inner forearc, cross-sections through the Sierra del Medio and Cordillera de Domeyko show that structures of the Pre-Cordillera are best explained by a thick-skinned thrust system, with localized thin-skinned tectonics controlled by evaporite detachment horizons. Current forearc deformation features indicate a strong degree of correlation between subduction zone geometry and forearc tectonics. The timing of Cenozoic tectonism also fits well with established plate motion parameters, and the spatial and temporal variation in the state of stress of the forearc shows a close relationship throughout the Cenozoic to the plate kinematics and morphology of the subducting Nazca plate.

  4. Algal constraints on the Cenozoic history of atmospheric CO2?

    Directory of Open Access Journals (Sweden)

    R. E. M. Rickaby

    2007-01-01

    Full Text Available An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO2. To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing an upper constraint on pCO2 over the Cenozoic based on the living geological record. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of first emergence of each morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.

  5. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    Pleistocene times. These basalts mark the end of a period of shallow subduction of the Nazca slab beneath the Payenia province and volcanism in the Nevado volcanic field apparently followed the downwarping slab in a north-northwest direction ending in the Northern Segment. The northern Payenia basalts...

  6. Volcan Reventador's Unusual Umbrella

    Science.gov (United States)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2005-12-01

    In the past two decades, field observations of the deposits of volcanoes have been supplemented by systemmatic, and sometimes, opportunistic photographic documentation. Two photographs of the umbrella of the December 3, 2002 eruption of Volcan Reventador, Ecuador, reveal a prominently scalloped umbrella that is unlike any umbrella previously documented on a volcanic column. The material in the umbrella was being swept off a descending pyroclastic flow, and was, therefore, a co-ignimbrite cloud. We propose that the scallops are the result of a turbulent Rayleigh-Taylor (RT) instability with no precedents in volcanology. We ascribe the rare loss of buoyancy that drives this instability to the fact that the Reventador column fed on a cool co-ignimbrite cloud. On the basis of the observed wavelength of the scallops, we estimate a value for the eddy viscosity of the umbrella of 4000 ~m2/s. This value is consistent with a previously obtained lower bound (200 ~m2/s, K. Wohletz, priv. comm., 2005). We do not know the fate of the material in the umbrella subsequent to the photos. The analysis suggests that the umbrella was negatively buoyant. Field work on the co-ignimbrite deposits might reveal whether or not the material reimpacted, and if so, where and whether or not this material was involved in the hazardous flows that affected the main oil pipeline across Ecuador.

  7. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  8. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  9. Geochemistry of Mesoproterozoic Volcanic Rocks in the Western Kunlun Mountains:Evidence for Plate Tectonic Evolution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chuanlin; DONG Yongguan; ZHAO Yu; WANG Aiguo; GUO Kunyi

    2003-01-01

    Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the alkalinity of the rocks decreases from early to late: alkaline→calc-alkaline→tholeiite, and geochemistry proves that the volcanic rocks were formed in rifting tectonic systems. The sedimentary facies shows characteristics of back-arc basins. The second (south belt) group, which occurs to the south of Yutian-Minfeng-Cele, is composed of calc-alkaline island arc (basaltic) andesite and minor rhyolite. The space distribution, age and geochemistry of the two volcanite groups indicate that they were formed in a back-arc basin (the first group) and an island arc (the second group) respectively and indicate the plate evolution during the Mesoproterozoic. The orogeny took place at ~1.05 Ga, which was coeval with the Grenville orogeny. This study has provided important geological data for exploring the position of the Paleo-Tarim plate in the Rodinia super-continent.

  10. Terrestrial volcanism in space and time

    Science.gov (United States)

    Simkin, Tom

    1993-01-01

    A survey is presented of current volcanic activity around the world and of dated volcanism over the past 10,000 yrs. The patterns in the data are described. The hazard presented by volcanism is briefly examined.

  11. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt:Geology, volcanism and neotectonics

    Institute of Scientific and Technical Information of China (English)

    E. Sharkov; V. Lebedev; A. Chugaev; L. Zabarinskaya; A. Rodnikov; N. Sergeeva; I. Safonova

    2015-01-01

    The Caucasian-Arabian belt is part of the huge late Cenozoic Alpine-Himalayan orogenic belt formed by collision of continental plates. The belt consists of two domains:the Caucasian-Arabian Syntaxis (CAS) in the south and the EW-striking Greater Caucasus in the north. The CAS marks a zone of the indentation of the Arabian plate into the southern East European Craton. The Greater Caucasus Range is located in the south of the Eurasian plate;it was tectonically uplifted along the Main Caucasian Fault (MCF), which is, in turn, a part of a megafault extended over a great distance from the Kopetdag Mts. to the Tornquist-Teisseyre Trans-European Suture Zone. The Caucasus Mts. are bounded by the Black Sea from the west and by the Caspian Sea from the east. The SN-striking CAS is characterized by a large geophysical isostatic anomaly suggesting presence of mantle plume head. A 500 km long belt of late Cenozoic volcanism in the CAS extends from the eastern Anatolia to the Lesser and Greater Caucasus ranges. This belt hosts two different types of volcanic rocks: (1) plume-type intraplate basaltic plateaus and (2) suprasubduction-type calc-alkaline and shoshonite-latite volcanic rocks. As the CAS lacks signatures of subduction zones and is characterized by relatively shallow earthquakes (50e60 km), we suggest that the “supra-subduction-type”magmas were derived by interaction between mantle plume head and crustal material. Those hybrid melts were originated under conditions of collision-related deformation. During the late Cenozoic, the width of the CAS reduced to ca. 400 km due to tectonic “diffluence” of crustal material provided by the continuing Arabia-Eurasia collision.

  12. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  13. Recurrence models of volcanic events

    International Nuclear Information System (INIS)

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Volcanism studies for the Yucca Mountain Site Characterization Project have progressed to a sufficient degree that it is now prudent to work toward concluding aspects of the work. An advantage of a probabilistic approach to volcanic risk is that it assigns a structured formalism to the problem. This formalism subdivides a complex issue into logical sections. The significance of uncertainty or differences in scientific opinion concerning volcanism issues can be tested for each section of a probabilistic problem. The perspective for making judgement of significance for volcanism studied are the regulatory requirements for assessing the suitability of the potential Yucca Mountain site. This paper attempts to begin the process of helping establish the probabilistic framework for making those judgement. There are three objectives. First, the authors describe the tripartite probability used to define the risk of volcanism and the geologic assumptions required for the probability model. Second, the authors examine and define the first part of this probability, the recurrence of volcanic events. Studies are reviewed from the volcanological literature where time-volume behavior of volcanic centers and fields have been evaluated. These evaluations include both conventional statistical analysis of time-series of volcanic events and applications using newly developing concepts of fractal analysis and deterministic chaos. Third, the authors tabulate past calculations and derive new values for the recurrence of volcanic events using a simple Poison model

  14. Timing, distribution, amount, and style of Cenozoic extension in the northern Great Basin

    Science.gov (United States)

    Henry, Christopher D.; McGrew, Allen J.; Colgan, Joseph P.; Snoke, Arthur W.; Brueseke, Matthew E.

    2011-01-01

    This field trip examines contrasting lines of evidence bearing on the timing and structural style of Cenozoic (and perhaps late Mesozoic) extensional deformation in northeastern Nevada. Studies of metamorphic core complexes in this region report extension beginning in the early Cenozoic or even Late Cretaceous, peaking in the Eocene and Oligocene, and being largely over before the onset of “modern” Basin and Range extension in the middle Miocene. In contrast, studies based on low-temperature thermochronology and geologic mapping of Eocene and Miocene volcanic and sedimentary deposits report only minor, localized extension in the Eocene, no extension at all in the Oligocene and early Miocene, and major, regional extension in the middle Miocene. A wealth of thermochronologic and thermobarometric data indicate that the Ruby Mountains–East Humboldt Range metamorphic core complex (RMEH) underwent ~170 °C of cooling and 4 kbar of decompression between ca. 85 and ca. 50 Ma, and another 450 °C cooling and 4–5 kbar decompression between ca. 50 and ca. 21 Ma. These data require ~30 km of exhumation in at least two episodes, accommodated at least in part by Eocene to early Miocene displacement on the major west-dipping mylonitic zone and detachment fault bounding the RMEH on the west (the mylonitic zone may also have been active during an earlier phase of crustal extension). Meanwhile, Eocene paleovalleys containing 45–40 Ma ash-flow tuffs drained eastward from northern Nevada to the Uinta Basin in Utah, and continuity of these paleovalleys and infilling tuffs across the region indicate little, if any deformation by faults during their deposition. Pre–45 Ma deformation is less constrained, but the absence of Cenozoic sedimentary deposits and mappable normal faults older than 45 Ma is also consistent with only minor (if any) brittle deformation. The presence of ≤1 km of late Eocene sedimentary—especially lacustrine—deposits and a low-angle angular

  15. Cenozoic uplift of the Central Andes in northern Chile and Bolivia - reconciling paleoaltimetry with the geological evolution.

    Science.gov (United States)

    Lamb, S. H.

    2015-12-01

    The Cenozoic geological evolution of the Central Andes, along two transects between ~17.5°S and 21°S, is compared with paleo-topography, determined from published paleo-altimetry studies. Surface and rock uplift are quantified using simple 2-D models of crustal shortening and thickening, together with estimates of sedimentation, erosion and magmatic addition. Prior to ~25 Ma, during a phase of amagmatic flat-slab subduction, thick skinned crustal shortening and thickening was focused in the Eastern and Western Cordilleras, separated by a broad basin up to 300 km wide and close to sea level, which today comprises the high Altiplano. Surface topography in the Eastern Cordillera appears to be ~1 km lower than anticipated from crustal thickening, which may be due to the pull-down effect of the subducted slab, coupled to the overlying lithosphere by a cold mantle wedge. Oligocene steepening of the subducted slab is indicated by the initiation of the volcanic arc at ~27 - 25 Ma, and widespread mafic volcanism in the Altiplano between 25 and 20 Ma. This may have resulted in detachment of mantle lithosphere and possibly dense lower crust, triggering 1 - 1.5 km of rapid uplift (over Altiplano and western margin of the Eastern Cordillera and establishing the present day lithospheric structure beneath the high Andes. Since ~25 Ma, surface uplift has been the direct result of crustal shortening and thickening, locally modified by the effects of erosion, sedimentation and magmatic addition from the mantle. The rate of crustal shortening and thickening varies with location and time, with two episodes of rapid shortening in the Altiplano, lasting < 5 Myrs, that are superimposed on a long term history of ductile shortening in the lower crust, driven by underthrusting of the Brazilian Shield on the eastern margin.

  16. Patterns of Cenozoic sediment flux from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    2012-01-01

    tectonism, climate and climate change. Western Scandinavia, the northern British Isles and the Faeroe-Shetland Platform were significant sediment sources during the Paleocene, which is well founded in tectonic causes related to the opening of the North Atlantic. From the Eocene and onward, variations in the...... sediment flux from western Scandinavia correlate better with climate and climate change. During the Eocene, sediment production was low. From the late Eocene onward, increased seasonality may have contributed to stimulating the sediment flux. Significant climatic cooling episodes correlate with Oligocene......The significance of variations in the sediment flux from western Scandinavia during the Cenozoic has been a matter of debate for decades. Here we compile the sediment flux using seismic data, boreholes and results from other publications and discuss the relative importance of causal agents such as...

  17. The 13 million year Cenozoic pulse of the Earth

    Science.gov (United States)

    Chen, Jiasheng; Kravchinsky, Vadim A.; Liu, Xiuming

    2015-12-01

    The geomagnetic polarity reversal rate changes radically from very low to extremely high. Such process indicates fundamental changes in the Earth's core reorganization and core-mantle boundary heat flow fluctuations. However, we still do not know how critical such changes are to surface geology and climate processes. Our analysis of the geomagnetic reversal frequency, oxygen isotope record, and tectonic plate subduction rate, which are indicators of the changes in the heat flux at the core mantle boundary, climate and plate tectonic activity, shows that all these changes indicate similar rhythms on million years' timescale in the Cenozoic Era occurring with the common fundamental periodicity of ∼13 Myr during most of the time. The periodicity is disrupted only during the last 20 Myr. Such periodic behavior suggests that large scale climate and tectonic changes at the Earth's surface are closely connected with the million year timescale cyclical reorganization of the Earth's interior.

  18. Cenozoic back-arc magmatism of the southern extra-Andean Patagonia (44° 30' - 52° S: A review of geochemical data and geodynamic interpretations

    Directory of Open Access Journals (Sweden)

    M. D'Orazio

    2004-12-01

    Full Text Available Huge amounts of basaltic s.l. lavas were persistently erupted along the eastern side of the Andean Cordillera, throughout Cenozoic time, forming extensive plateaus, hundreds of monogenetic scoria cones and other volcanic structures in a continental back-arc setting. The igneous products exposed in the southern sector of the extra-Andean Patagonia (44° 30' - 52° S are dominantly mafic with minor slightly evolved compositions and rare highly differentiated products. The many published chemical analyses of these rocks, indicate that the mafic lavas range from strongly silica - undersaturated basanites to oversaturated basaltic andesites, and that most of the lavas have a typical within-plate geochemical signature. However, a number of lavas, generally erupted in the western-central sectors of Patagonia, are characterized by different distributions of the incompatible elements with high LILE/HFSE and LREE/HFSE ratios. The REE distribution modelling suggests a low degree of melting of a deep (> 70 km garnet-bearing source for the alkaline magmas, and a higher degree of melting of the same source, or an even higher degree of melting of an enriched source, for the subalkaline magmas. The available Sr-Nd-Pb isotope compositions clearly attest to a major geographic variation: the southernmost lavas have lower 87Sr/86Sr and higher 143Nd/144Nd and 206Pb/204Pb ratios with respect to those erupted to the north. On the whole, the Sr-Nd-Pb isotope compositions of the southern Patagonia lavas fall within the typical range of within-plate continental magmas; in addition the Pb isotope ratios fall in the range of the Southern Hemisphere Dupal Pb isotope anomaly. The geochemical variations of the southern Patagonia lavas are discussed in terms of different geochemical components: depleted and enriched sub-slab asthenosphere, enriched continental lithospheric mantle, continental crust and subducted materials. The geodynamic significance is interpreted with in the

  19. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  20. Io. [theories concerning volcanic activity

    Science.gov (United States)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  1. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    Science.gov (United States)

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.

    2014-01-01

    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been

  2. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    Science.gov (United States)

    Wing, S. L.

    2011-12-01

    analysis of early Cenozoic floras from the Rocky Mountain region. Paleocene climates across the region were warm with warm winters. Mean annual temperature estimates vary from 10-18 °C depending on the time and place, and ground-freezing climates occurred only north of 40-45 °N. Plants and sedimentary environments suggest low altitude deposition, though floras are not as homogeneous as once thought, suggesting barriers existed. Eocene climates were warmer, with mean annual temperature estimates of 14-25 °C, and ground-freezing climates occurring only north of the Canadian border. Paleobotanical evidence for substantial paleoelevations in basinal areas is weak, but volcanic terrains to the west preserve floras that suggest higher paleoelevations, even in the early and middle Eocene. The terms "frost-free" and "tropical" have sometimes been used to describe Eocene climate and vegetation of the northern U.S. Rocky Mountains, but are probably not justified, with the possible exception of the the warmest early Eocene hyperthermal events at low paleoelevation.

  3. Petrogenetic significance of high Fe/Mn ratios of the Cenozoic basalts from Eastern China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Cenozoic basalts from eastern China show commonly high Fe/Mn ratios (average = 68.6 ± 11.5) coupled with OIB-type trace element signature. The Cenozoic basalts form the northern margin and the southern margin of the North China Craton are studied in detail. Model calculations point out that the coupling feature of high Fe/Mn ratio with OIB-type trace element signature of these basalts cannot be produced by neither pyroxene/olivine crystallization nor remelting of previously melted mantle, but require partial melting of a garnet pyroxenite-rich mantle source. Combining these features of the Cenozoic basalts with the Phanerozoic lithospheric evolution of the eastern China, we suggest that the Cenozoic basalts were derived from a garnet pyroxenite-rich mantle source associated with continental crust delamination or oceanic crust subduction.

  4. Types of Cenozoic Mollusca from Java in the Martin Collection of Naturalis

    NARCIS (Netherlands)

    Leloux, J.; Wesselingh, F.P.

    2009-01-01

    An updated type catalogue of the Martin Collection (fossil Mollusca, predominantly from the Cenozoic of Java, Indonesia) is presented. Type specimen data, updated locality data, and illustrations are given.

  5. Volcanology: Volcanic bipolar disorder explained

    Science.gov (United States)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  6. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  7. Volcanic eruptions observed with infrasound

    Science.gov (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.

    2004-07-01

    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  8. The Cenozoic evolution of the San Joaquin Valley, California

    Science.gov (United States)

    Bartow, J. Alan

    1991-01-01

    The San Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The San Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the San Joaquin basin from the remainder of the basin. Cenozoic strata in the San Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The San Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the San Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the San Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo

  9. Robust 24 ± 6 ka 40Ar/39Ar age of a low-potassium tholeiitic basalt in the Lassen region of NE California

    Science.gov (United States)

    Turrin, Brent D.; Muffler, L. J. Patrick; Clynne, Michael A.; Champion, Duane E.

    2007-01-01

    40Ar/39Ar ages on the Hat Creek Basalt (HCB) and stratigraphically related lava flows show that latest Pleistocene tholeiitic basalt with very low K2O can be dated reliably. The HCB underlies ∼ 15 ka glacial gravel and overlies four andesite and basaltic andesite lava flows that yield 40Ar/39Ar ages of 38 ± 7 ka (Cinder Butte; 1.65% K2O), 46 ± 7 ka (Sugarloaf Peak; 1.85% K2O), 67 ± 4 ka (Little Potato Butte; 1.42% K2O) and 77 ± 11 ka (Potato Butte; 1.62% K2O). Given these firm age brackets, we then dated the HCB directly. One sample (0.19% K2O) clearly failed the criteria for plateau-age interpretation, but the inverse isochron age of 26 ± 6 ka is seductively appealing. A second sample (0.17% K2O) yielded concordant plateau, integrated (total fusion), and inverse isochron ages of 26 ± 18, 30 ± 20 and 24 ± 6 ka, all within the time bracket determined by stratigraphic relations; the inverse isochron age of 24 ± 6 ka is preferred. As with all isotopically determined ages, confidence in the results is significantly enhanced when additional constraints imposed by other isotopic ages within a stratigraphic context are taken into account.

  10. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    Science.gov (United States)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  11. ACEX: A First Look at Arctic Ocean Cenozoic History

    Science.gov (United States)

    Moran, K.; Backman, J.

    2004-12-01

    The first Integrated Ocean Drilling Program mission specificplatform expedition (ACEX - Arctic Coring Expedition) drilled and recovered core from five holes at four sites through Cenozoic sediments draping the crest of the Lomonosov Ridge in the central Arctic Ocean. Coring continued into the underlying Cretaceous sedimentary bedrock. Sites are located only a few nautical miles apart along a single seismic line (AWI-91090), showing an identical and coherent Cenozoic seismostratigraphy. Preliminary results from shipboard investigations of core-catcher-based bio- and lithostratigraphy, pore water analyses and core logger data describe a thick (~160 m) middle Miocene through Pleistocene sequence that shows large amplitude, cyclic variability in the density, magnetic susceptibility and acoustic velocity of the sediments. Sediments are largely carbonate free. Pleistocene sedimentation rates are close to 3 cm/ka, whereas Pliocene sediments are by-and-large missing. A sharp change in physical properties at ~200 m defines the transition into a 200+ m thick Paleogene sequence that is initially dominated by large numbers of dinoflagellate cysts. The early Miocene, Oligocene and late Eocene appear to be largely missing in a hiatus. However, a 32 m thick interval separates the overlying middle Miocene from the underlying middle Eocene and presumably preserves some of the early Neogene and late Paleogene sections. Dinoflagellate cysts, diatoms, ebridians and silicoflagellates are common to abundant in the middle Eocene section, which bottoms in a spectacular layer showing massive occurrences of glochidia and massulae (megaspores) of the freshwater hydropterid fern Azolla (duckweed) at the early/middle Eocene boundary (~306 m), suggesting strongly reduced surface water salinity or perhaps even a brief episode of fresh water conditions at the surface. Biosilica is not present prior to the late early Eocene (~320 m). The (sub-) tropical dinoflagellate species Apectodinium augustum

  12. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula

    Science.gov (United States)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien

    2015-04-01

    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  13. Geochemical Interpretation of Collision Volcanism

    Science.gov (United States)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  14. Suprasubduction volcanic rocks of the Char ophiolite belt, East Kazakhstan: new geochemical and first geochronological data

    Science.gov (United States)

    Safonova, Inna; Simonov, Vladimir; Seltmann, Reimar; Yamamoto, Shinji; Xiao, Wenjiao

    2016-04-01

    The Char ophiolite belt is located in the western Central Asian Orogenic Belt, a world largest accretionary orogen, which has evolved during more than 800 Ma. The Char belt formed during Kazakhstan - Siberia collision. It has been known for hosting fragments of Late Devonian-Early Carboniferous oceanic crust, MORB, OPB and OIB, of the Paleo-Asian Ocean (Safonova et al., 2012). The Char is surrounded by two Paleozoic island-arc terranes: Zharma-Saur in the west and Rudny Altai in the east, however, until recent times, no island-arc units have been found within it. We were the first to find island-arc units as tectonic sheets occurring adjacent to those consisting of oceanic rocks. In places, island-arc andesites cut oceanic basalts. The Char volcanic and subvolcanic rocks of a probable suprasubduction origin are basalt, microgabbro, dolerite, andesite, tonalite and dacite. The mafic to andesitic volcanics possessing low TiO2 (0.85 wt.%av.) and show MgO vs. major elements crystallization trends suggesting two magma series: tholeiitic and calc-alkaline. The tholeiitic varieties are less enriched in incompatible elements then the calc-alkaline ones. Two samples are high-Mg and low-Ti andesibasalts similar to boninites. The rocks possess moderately LREE enriched rare-earth element patterns and are characterized by negative Nb anomalies present on the multi-element spectra (Nb/Lapm = 0.14-0.47; Nb/Thpm = 0.7-1.6).The distribution of rare-earth elements (La/Smn = 0.8-2.3, Gd/Ybn = 0.7-1.9) and the results of geochemical modeling in the Nb-Yb system suggest high degrees of melting of a depleted harzburgite-bearing mantle source at spinel facies depths. Fractional crystallization of clinopyroxene, plagioclase and opaque minerals also affected the final composition of the volcanic rocks. Clinopyroxene monomineral thermometry indicates crystallization of melts at 1020-1180°C. Melt inclusion composition based numerical calculations show that primary melts were derived at 1350

  15. Evidence for the Mesozoic and Cenozoic Evolution of the Lithosphere in the Trans-European Suture Zone from Surface Wave Tomography

    Science.gov (United States)

    Meier, Thomas; Soomro, Riaz; Lebedev, Sergei; Weidle, Christian; Viereck, Lothar; Behrmann, Jan; Cristiano, Luigia; Hanemann, Ricarda

    2016-04-01

    The Trans-European Suture Zone marks the transition between the East European Craton and Phanerozoic central Europe. Subduction of the Thor ocean and collision of Avalonia resulted in a Caledonian terrane assemblage that has been strongly affected by Permian volcanism, sedimentation in Post-Permian basins and recently by Cenozoic inversion tectonics. Whereas the structure of the crust in the area has been extensively studied by Deep Seismic Soundings, properties of the subcontinental mantle lithosphere are less well known. Surface waves are well suited to study the structure of the lithosphere and the sublithospheric mantle being mainly sensitive to the S-wave velocity structure at those depths. It has been shown before that the Tornquist-Teisseyre Zone representing the boundary to the East-European Craton in the southwest of the Trans-European Suture Zone is associated with a sharp transition between thick cratonic lithosphere in the northeast and thinner lithosphere to the southwest. Here we present results of a tomographic surface wave study based on automated broad-band measurements of average inter-station Rayleigh wave phase velocities providing higher resolution especially at lithospheric depths. All available broad-band recordings including data of temporary deployments like the TOR and PASSEQ experiments have been processed. At shorter periods phase velocities are sensitive to the sedimentary basins providing a 3D image of average shear-wave velocities. At intermediate periods differences in the crustal thickness and the structure of the uppermost mantle in the regions of the North German Basin and the Polish Basin become obvious. The latter is characterized by larger crustal thickness and rather low sub-Moho S-wave velocities. Also, lithospheric thickness varies along the Trans-European Suture Zone. In the region of the Sorgenfrei-Tornquist Zone a rather gradual decrease of lithospheric thickness towards central Europe is observed, whereas a shallow

  16. Interaction between Cenozoic fault activity and sediment influx in the Arctic region: new thermochronologic data and seismic study

    Science.gov (United States)

    Bigot-Buschendorf, Maelianna; Mouthereau, Frédéric; Fillon, Charlotte; Loget, Nicolas; Labrousse, Loïc; Werner, Philippe; Bernet, Matthias; Ehlers, Todd

    2015-04-01

    The Alaskan Brooks Range and its canadian counterpart, the British Mountains result from the Meso-Cenozoic collision of the Arctic continental margin with accreted volcanic arcs and adjacent continental terranes. Because of its location and known potential for oil industries, more attention has been brought to this area for the last few years. While the timing of collisional events, duration, and rates of exhumation associated with mountain building is now better understood, the causes of these exhumation events are still largely unknown. Published constraints and our present data are consistent with progressive cooling from 105 to 25 Ma, with rates of exhumation constant across the range until 35-25 Ma. From 35 Ma onwards, exhumation likely slowed in concomitance with underplating/duplexing in the inner part of the belt (Doonerak window) and activation of the northernmost thrust. The earliest cooling stage (from 100 Ma) marking the onset of the Brookian orogeny is recorded by a low order coarsening upward sequence in the foreland. On the contrary, the latest stage of cooling (at 35 Ma) is not linked to the construction of the range but more likely due to a reorganization of the wedge possibly related to changes in the regional climatic or geodynamic boundary conditions. First, we aim at reconstructing the time-temperature evolution of the British Mountains by combining new (U-Th)/He and fission-tracks ages on zircon and apatite ; our first thermochronological data in the British Mountains show ages ranging from 110 to 25 Ma from range to basin. These data will permit to reconstruct the thermal history of the British Mountains and its basin, and to estimate the exhumation rates associated to the main unities. Then, we also examine the role of climate during the Tertiary period. Some markers indicate a climate change at this period which could be registered in the sedimentation. Therefore we determine the part of climate by analyzing seismic lines in the Beaufort

  17. Yanshan, Gaoshan-Two Active Volcanoes of the Volcanic Cluster in Arshan, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    Bai Zhida; Tian Mingzhong; Wu Fadong; Xu Debing; Li Tuanjie

    2005-01-01

    The volcanic cluster in Arshan, Inner Mongolia, is located in the west of the middle section of the Da Hinggan Mountains. There are more than forty Cenozoic volcanoes among which the Yanshan Volcano and Gaoshan Volcano are the active ones in broad sense and basaltic central vents. Arshan is a newly found volcanic active region in the Chinese continent. The volcanoes are perfectly preserved and composed of cinder cones, pyroclastic sheets and lava flows. Their cones are grand and the Gaoshan cone is about 362m high, and the depth of the Yanshan crater is about 140m. The pyroclastic sheet is mainly made up of scoria, and the distribution area of scoria with thickness more than 1m is about 27km2. There are two Carbonized-wood sites in the pyroclastic sheet and the 14C datings indicate ages of 1990 ± 100a B. P and 1900 ±70a B. P, which are rectified by dendrodating. Basaltic lava flows are uncovered, and they change from pahoehoe in the early stage to aa in the later stage. There are lots of perfect fumarolic cones, fumarolic dishes and lava tumulus in the front zones. The spread of lava flow is controlled by the local topography and its main body flowed northwestwards covering the Holocene rivers and swamp deposits and blocked up the Halahahe river and its branches to create six lava-dam lakes. For these distinguishing features, Arshan volcanic cluster could be called another natural "Volcano Museum".

  18. Successor Characteristics of the Mesozoic and Cenozoic Songliao Basins

    Institute of Scientific and Technical Information of China (English)

    LI Zhongquan; Timothy KUSKY; YING Danlin; GUO Xiaoyu; LI Hongkui

    2008-01-01

    The Songliao basin is a complex successor basin that was initiated in the Mesozoic and experienced multiple periods of reactivation. Based on seismic and drilling data, as well as regional geologic research, we suggest that the Songliao basin contains several different successor basins resting on top of Carboniferous-Permian folded strata forming the basement to the Songliao basin. These basins include the Triassic-Mid Jurassic Paleo-foreland basin, the Late Jurassic-Early Cretaceous downfaulted basin, and an early Cretaceous depressed basin (since the Denglouku Group). This paper presents a systematic study of the basin-mountain interactions, and reveals that there are different types of prototype basin at different geologic times. These prototype basins sequentially superimposed and formed the large Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin fills a Triassic-early Middle Jurassic gap in the geologic history of the Songliao basin. The paleoforeland basin, downfaulted basin, and depressed thermal subsidence basin all together represent the whole Mesozoic-Cenozoic geologic history and deformation of the Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin plays an important role both for deep natural gas exploration and the study of basin-mountain coupling in north China and eastern China in general. This example gives dramatic evidence that we should give much more attention to the polyphase tectonic evolution of related basins for the next phase of exploration and study.

  19. Early Cenozoic "dome like" exhumation around the Irish Sea

    Science.gov (United States)

    Doepke, Daniel; Cogné, Nathan; Chew, David; Stuart, Fin

    2016-04-01

    Despite decades of research the Early Cenozoic exhumation history of Ireland and Britain is still poorly understood and subject to contentious debate (see Davis et al., 2012 and subsequent comments). Previous studies have attributed the Cenozoic exhumation history of Ireland and Britain mainly to: (a) Paleogene - Neogene far-field stress between the opening of the North Atlantic Ocean and the Alpine collision (Ziegler et al., 1995; Hillis et al., 2008) or (b) early Paleogene mantle driven magmatic underplating associated with the development of the proto-Iceland mantle plume beneath the Irish Sea (Brodie and White, 1994; Al-Kindi et al., 2003). The major differences between the two hypotheses are the pattern and timing of spatial exhumation. This project thus seeks to investigate the timing and mechanisms of late Mesozoic - early Cenozoic exhumation on the onshore part of the British Isles by using a combination of apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) data, which we then model using the QTQt program of Gallagher (2012) to better constrain the modelled thermal histories. Our studied area centres on the margins of the Irish Sea, but includes all Ireland and western Britain. Overall we analysed 74 samples for AFT and 66 samples for AHe dating. In particular, our results include ten pseudo-vertical profiles. The AFT ages display a wide range of ages from early Carboniferous in Scotland to early Eocene in central Ireland. Our AHe ages range from mid Permian on Shetland to Eocene Ft-corrected. The AFT data do not show any specific spatial distribution, however, the Ft-corrected AHe ages around the Irish Sea only focus around late Cretaceous to Eocene suggesting an important thermal event around this time. The modelled thermal histories of samples located around the Irish Sea and western Scotland show a clear late Cretaceous to early Paleogene cooling event which is not present elsewhere. The distribution of this cooling event is broadly consistent

  20. Mid Cenozoic freshwater wetlands of the Sunda region

    Directory of Open Access Journals (Sweden)

    Robert J. Morley

    2013-08-01

    Full Text Available The Sunda region was the scene of widespread rifting during the mid-Cenozoic, resulting in the development of numerous large lake-filled rifts, analogous in scale to the rift valley system of East Africa. The Tonle Sap in Cambodia forms the closest modern analogue for these lakes in the Southeast Asian region. Many of the palaeolakes were long lived, continuing uninterrupted as open lakes for several millions of years during the Oligocene. Smaller rift systems infilled with fluvial sediments, but the larger ones remained as lakes, and with Late Oligocene subsidence, were transformed by brackish, and in the earliest Miocene, by marine incursion, into large inland seas. These seas reached their greatest extent at the time of the mid Miocene thermal maximum. This paper describes the development and eventual demise of these lakes following marine transgression, and, based on their rich content of pollen and spores, illustrates the variety of fresh and brackish water swamp communities which developed around their margins. The marginal swamps can be divided into: i seasonally inundated swamps, mainly during the Oligocene, characterised by Barringtonia, Lagerstroemia and grasses/sedges; ii fern swamps and iii from the Late Oligocene onward alluvial swamps, often characterised by Pandanus; and iv peat swamps. The latter can be differentiated into kerapah peat swamps, first occurring during the Oligocene, and basinal peat swamps, becoming widespread from the Early Miocene onward.

  1. On water in volcanic clouds

    Science.gov (United States)

    Durant, Adam J.

    2007-12-01

    Volcanic clouds and tephra fallout present a hazard to aviation, human and animal health (direct inhalation or ingestion, contamination of water supplies), and infrastructure (building collapse, burial of roads and railways, agriculture, abrasive and chemical effects on machinery). Understanding sedimentation processes is a fundamental component in the prediction of volcanic cloud lifetime and fallout at the ground, essential in the mitigation of these hazards. The majority of classical volcanic ash transport and dispersion models (VATDM) are based solely on fluid dynamics. The non-agreement between VATDM and observed regional-scale tephra deposit characteristics is especially obvious at large distances from the source volcano. In meteorology, the processes of hydrometeor nucleation, growth and collection have been long-established as playing a central role in sedimentation and precipitation. Taking this as motivation, the hypothesis that hydrometeor formation drives sedimentation from volcanic clouds was tested. The research objectives of this dissertation are: (1) To determine the effectiveness of tephra particles in the catalysis of the liquid water to ice phase transformation, with application to ice hydrometeor formation in volcanic clouds. (2) To determine the sedimentological characteristics of distal (100s km) tephra fallout from recent volcanic clouds. (3) To assess particle fallout rates from recent volcanic clouds in the context of observed deposit characteristics. (4) To assess the implications of hydrometeor formation on the enhancement of volcanic sedimentation and the potential for cloud destabilization from volcanic hydrometeor sublimation. Dissertation Overview. The following chapters present the analysis, results and conclusions of heterogeneous ice nucleation experiments and sedimentological characterization of several recent tephra deposits. The dissertation is organized in three chapters, each prepared in journal article format. In Chapter 1

  2. Volcanism, sedimentation, K/Ar and palynology studies, Yayu and Delbi-Moye Basins, Southwestern Plateau of Ethiopia

    Science.gov (United States)

    Wolela, A.

    2014-05-01

    Major element, K/Ar, sedimentation and palynology data are reported on Tertiary volcanic and sedimentary rocks from the Yayu and Delbi-Moye Basins, SW Ethiopia. In the Yayu and Delbi-Moye Basins, pre-rift volcanic (basalts) and post-rift volcanic (basalts) are separated by coal and oil shale-bearing sedimentary rocks. The basalts are tholeiitic in composition. The K/Ar data on the volcanic rocks range from 10.98 ± 0.55 Ma (Lower Miocene i.e. Tortonian) to 111.19 ± 2.83 Ma (Early Cretaceous i.e. Aptian). Inter-Trappean coal and oil shale-bearing sedimentary rocks are widely distributed in the Yayu and Delbi-Moye Basins. The NNW-SSE fault system developed grabens and half-grabens for the deposition of coal and oil shale-bearing sedimentary rocks. The sedimentary successions are dominated by fine to medium-grained sandstones, siltstones, mudstones, carbonaceous shales, carbonaceous claystones, coal and oil shale seams, and are characterized by meandering river and lacustrine depositional environments. Fresh water algae Botryococcus brauni, Pediastrum sp., Polypodii sporites favus and Polypodii sporites afavus and Pachydermites diederixi, are common palynomorphs in the studied coal and oil shales, and are indicators of lacustrine environment. The presence of Peregrinipollis nigericus is consistent with Oligocene to Miocene. The presence of Euphorbiaceae, Papilionacae, Melastomtaceae sp., Dodonaea, Martretia quadricornis, Rubiaceae sp. (pollen derived from tropical shrubs), Sapotaceae spp. and Meliaceae spp. are indicative of humid, tropical rainforest conditions. Extensive bio-assemblages confirm that the age of coal and oil shale-bearing sedimentary rocks to be Oligocene to Miocene.

  3. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  4. Atmospheric chemistry in volcanic plumes.

    Science.gov (United States)

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  5. The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran

    Science.gov (United States)

    Moghadam, Hadi Shafaii; Rossetti, Federico; Lucci, Federico; Chiaradia, Massimo; Gerdes, Axel; Martinez, Margarita Lopez; Ghorbani, Ghasem; Nasrabady, Mohsen

    2016-04-01

    A major magmatic flare-up is documented along the Bitlis-Zagros suture zone in Eocene-Oligocene times. The Cenozoic magmatism of intraplate Central Iran is an integrant part of this tectono-magmatic scenario. The Cenozoic magmatism of the Sabzevar structural zone consists of mostly intermediate to felsic intrusions and volcanic products. These igneous rocks have calc-alkaline and adakitic geochemical signatures, with nearly coincident zircon U-Pb and mica Ar-Ar ages of ca. 45 Ma. Adakitic rocks have quite low HREE and high Sr/Y ratio, but share most of their geochemical features with the calc-alkaline rocks. The Sabzevar volcanic rocks have similar initial Sr, Nd and Pb isotope ratios, showing their cogenetic nature. Nd model ages cluster tightly around ~ 0.2-0.3 Ga. The geochemistry of the Sabzevar volcanic rocks, along with their isotopic signatures, might strangle that an upper mantle source, metasomatized by slab-derived melts was involved in generating the Sabzevar calc-alkaline rocks. A bulk rock trace element modeling suggests that amphibole-plagioclase-titanite-dominated replenishment-fractional crystallization (RFC) is further responsible for the formation of the middle Eocene Sabzevar adakitic rocks. Extensional tectonics accompanied by lithospheric delamination, possibly assisted by slab break-off and melting at depth was responsible for the Eocene formation of the Sabzevar magmatic rocks and, more in general, for the magmatic "flare-up" in Iran.

  6. Geopulsation, Volcanism and Astronomical Periods

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou; Yang Xiaoying; Yang Shuchen

    2000-01-01

    Volcanism is mainly controlled by the intermittent release of energy in the earth. As far as the differential rotation of the earth's inner core is concerned, the Galactic Year may change the gravitational constant G, the solar radiative quantity and the moving speed of the solar system and affect the exchange of angular momentum between core and mantle as well as the energy exchange between crust and mantle. As a result, this leads to eruptions of superplumes and magma, and controls the energy flow from core - mantle boundary (CMB) to crust. When the earth' s speed decreases, it will release a huge amount of energy. They are the reason of the correspondence of the volcanic cycles one by one with the astronomical periods one by one. According to the astronomical periods, volcanic eruptions may possibly be predicted in the future.

  7. Geochemical study for volcanic surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Panichi, C.; La Ruffa, G. [Consiglio Nazionale delle Ricerche, International Institute for Geothermal Research Ghezzano, PI (Italy)

    2000-07-01

    For years, geologists have been striving to reconstruct volcanic eruptions from the analysis of pyroclastic deposits and lava flows on the surface of the earth and in the oceans. This effort has produced valuable information on volcanic petrology and magma generation, separation, mixing, crystallisation, and interaction with water in phreatomagmatic and submarine eruptions. The volcanological process are tied to the dynamics of the earth's crust and lithosphere. The mantle, subducted oceanic crust, and continental crust contain different rock types and are sources of different magmas. Magmas consist primarily of completely or partially molten silicates containing volatile materials either dissolved in the melt or as bubbles of gas. The silicate and volatile portions affect the physical properties of magma and, therefore, the nature of a volcanic eruption.

  8. Oligocene and Miocene arc volcanism in northeastern California: evidence for post-Eocene segmentation of the subducting Farallon plate

    Science.gov (United States)

    Colgan, J.P.; Egger, A.E.; John, D.A.; Cousens, B.; Fleck, R.J.; Henry, C.D.

    2011-01-01

    The Warner Range in northeastern California exposes a section of Tertiary rocks over 3 km thick, offering a unique opportunity to study the long-term history of Cascade arc volcanism in an area otherwise covered by younger volcanic rocks. The oldest locally sourced volcanic rocks in the Warner Range are Oligocene (28–24 Ma) and include a sequence of basalt and basaltic andesite lava flows overlain by hornblende and pyroxene andesite pyroclastic flows and minor lava flows. Both sequences vary in thickness (0–2 km) along strike and are inferred to be the erosional remnants of one or more large, partly overlapping composite volcanoes. No volcanic rocks were erupted in the Warner Range between ca. 24 and 16 Ma, although minor distally sourced silicic tuffs were deposited during this time. Arc volcanism resumed ca. 16 Ma with eruption of basalt and basaltic andesite lavas sourced from eruptive centers 5–10 km south of the relict Oligocene centers. Post–16 Ma arc volcanism continued until ca. 8 Ma, forming numerous eroded but well-preserved shield volcanoes to the south of the Warner Range. Oligocene to Late Miocene volcanic rocks in and around the Warner Range are calc-alkaline basalts to andesites (48%–61% SiO2) that display negative Ti, Nb, and Ta anomalies in trace element spider diagrams, consistent with an arc setting. Middle Miocene lavas in the Warner Range are distinctly different in age, composition, and eruptive style from the nearby Steens Basalt, with which they were previously correlated. Middle to Late Miocene shield volcanoes south of the Warner Range consist of homogeneous basaltic andesites (53%–57% SiO2) that are compositionally similar to Oligocene rocks in the Warner Range. They are distinctly different from younger (Late Miocene to Pliocene) high-Al, low-K olivine tholeiites, which are more mafic (46%–49% SiO2), did not build large edifices, and are thought to be related to backarc extension. The Warner Range is ∼100 km east of the

  9. L'imaginaire du volcan

    OpenAIRE

    Bertrand, Dominique; Bosquet, Marie-Françoise; Bozzetto, Roger; Chamart, Gabrielle; Chelebourg, Christian; Chenet-Faugeras, Françoise; Collot, Michel; Cornille, Jean-Louis; Gaillard, Aurélia; Lavocat, Françoise; Frank LESTRINGANT; Racault, Jean-Michel; SHINODA, Chiwaki; Sylvos, Françoise; Tardieu, Jean-Pierre

    2016-01-01

    Quelle force naturelle pouvait, mieux que le volcan, devenir la métaphore vive de l'enthousiasme poétique ? Auteur du paysage qu'il remodèle après l'avoir détruit, sculpteur de laves autant qu'objet pittoresque, le volcan est dans la littérature un actant essentiel, un relais de l'auteur, comme le montre ce voyage dans la mémoire des représentations volcaniques.

  10. Sismos y volcanes en Colombia

    OpenAIRE

    Duque Escobar, Gonzalo

    2010-01-01

    Notas sobre las zonas de amenaza sísmica y principales fuentes sísmicas de Colombia, y los segmentos volcánicos de los Andes colombianos con los principales volcanes activos, de conformidad con los estudios del Ingeominas. Anexos a títulos con sus correspondientes enlaces, para ofrecer artículos relacionados con sismos y volcanes, en los que se consideran aspectos de interés para la gestión del riesgo sísmico y volcánico en Colombia

  11. Petrographic and geochemical characterization of the Triassic and Jurassic magmatic and volcanic rocks of southeastern Ecuador

    Science.gov (United States)

    Villares, Fabián; Eguez, Arturo; Yanez, Ernesto

    2014-05-01

    Formely, the subandean zone in the southeastern Ecuador involved large volcanic and magmatic rocks included in the Misahualli Formation and Zamora batholith, both as expression of the Jurassic cal-alcaline volcanic arc. The aim of the project carried out by the INIGEMM (Instituto Nacional de Investigación Geológico Minero Metalúrgico) was discriminate the volcanic products including a continuous set going from basalts to ryolithes and volcanoclastic rocks. Geochemical characterization was done using representative 16 whole - rock chemical analysis. The oldest rocks of the investigated area called Pachicutza Unit, include greenish to black, massive basalts and basaltic andesites, locally showing pillows structures. The texture is aphanitic to microporphyritic with slight crystal growth of plagioclase and pyroxenes. The Unit include also local pyroclastic breccias and tuffs showing variable skarnification related to the intrusion of the jurassic Zamora Batholith. Two samples of basalts show tholeiitic affinity, corresponding to an N- MORB, probably representing an early stage in opening of a regional Triassic rift reported since Colombia to Peru in the Andes. These geochemical characteristics are similar to the amphibolites of Monte Olivo Unit in the Real Cordillera. The Jurassic large volcanic assembly of the Misahualli Formation was also differenciated. Basal volcanics include green, subporphyritic andesites and volcanic breccias possibly generated at an early stage of the volcanic arc, caused by a change of extensive to compressive regime. Continental volcano sedimentary and sedimentary rock were discriminate as Nueva Esperanza and Suarez Units, respectively. The volcanosedimentary sequence include massive to laminate tuffs and tuffites of intermediate composition. The sediments of the Suarez Unit include dominant conglomerats and sandstones of fluvial domain. The regional volcanic sequence is completed by the Las Peñas Unit that includes aphanitic to

  12. The Quaternary volcanic rocks of the northern Afar Depression (northern Ethiopia): Perspectives on petrology, geochemistry, and tectonics

    Science.gov (United States)

    Hagos, Miruts; Koeberl, Christian; van Wyk de Vries, Benjamin

    2016-05-01

    The northern Afar Depression is one of the most volcano-tectonically active parts of the East African Rift system, a place where oceanic rifting may be beginning to form an incipient oceanic crust. In its center, over an area that is ∼80 km long and ∼50 km wide, there are seven major NNW-SSE-aligned shield volcanoes/volcanic edifices surrounded by compositionally distinct fissure-fed basalts. The Quaternary lavas in this area range from transitional to tholeiitic basalts, with significant across-axis variation both in mineralogy and chemistry. The variation in the contents of the major elements (TiO2, Al2O3, and Fe2O3), incompatible trace elements (Nd, Hf, Th, Ta), and the contents and ratios of the rare earth elements (REE) (e.g., (La/Yb)n = 5.3-8.9) indicate some variation in the petrogenetic processes responsible for the formation of these basalts. However, the variation in isotopic compositions of the mafic lavas is minimal (87Sr/86Sr = 0.7036-0.7041, 143Nd/144Nd = 0.51286-0.51289), which suggests only one source for all the Danakil Depression basalts. These basalts have isotope and incompatible trace element ratios that overlap with those of the Oligocene High-Ti2 flood basalts from the Ethiopian Plateau, interpreted as being derived from the last phase/tail of the Afar mantle plume source. Moreover, the Ce/Pb, Ba/U ratios indicate that the involvement of continental crust in the petrogenesis of the basaltic rocks is minimal; instead, both depth and degree of melting of the source reservoir underneath the northern Afar Depression played a major role for the production of incompatible element-enriched basalts (e.g., AleBagu Shield basalts) and the incompatible element-depleted tholeiitic basalts (e.g., Erta'Ale and Alu Shield basalts).

  13. Various depths of origin of clinopyroxene megacrysts from Cenozoic alkaline lavas of occurrences in Lower Silesia (SW Poland)

    Science.gov (United States)

    Lipa, Danuta; Puziewicz, Jacek; Ntaflos, Theodoros; Woodland, Alan

    2016-04-01

    The Polish part of Central European Volcanic Province consists of more than 300 outcrops of Cenozoic volcanic rocks (Badura et al., 2006). Some of these alkaline lavas contain mantle xenoliths and megacrysts of clinopyroxene and plagioclase. We studied clinopyroxene megacrysts from three sites in Lower Silesia: (1) the Księginki nephelinite (Lubań-Frydlant volcanic complex, dated at 34.6  3.1 Ma), (2) the Ostrzyca Proboszczowicka basanite (Złotoryja-Jawor complex, probably of Miocene age) and (3) the Lutynia basanite (Lądek Zdrój volcanic complex, dated at 4.56  0.2 Ma; K-Ar datings after Pécskay & Birkenmajer, 2013). We determined major (electron microprobe) and trace (LA-ICP-MS) element compositions, Fe3+/ƩFe (Mössbauer spectroscopy), as well as 87Sr/86Sr and 143Nd/144Nd isotopic ratios. The megacrysts from Księginki are typically up to 5 cm and have the composition of diopside and augite (Puziewicz et al., 2011), Mg# 0.79 - 0.87, Fe3+/ƩFe 0.31 - 0.36, 87Sr/86Sr 0.703323 - 0.703496 and 143Nd/144Nd 0.512890 - 0.512904. Typical REE concentrations are 0.78 - 10.5 x PM, TE patterns show strong negative Pb and weaker Sr, Zr anomalies. The megacrysts from Ostrzyca are up to 3 cm, have the composition of diopside (Lipa et al., 2014), Mg# 0.61 - 0.70, Fe3+/ƩFe 0.38 - 0.45, 87Sr/86Sr 0.703221 - 0.703226 and 143Nd/144Nd 0.512906 - 0.512911. Typical REE values range from 1.81 to 22.9 x PM, TE patterns show strong negative Pb and weaker Ti anomalies and characteristic positive Ta, Zr, Hf anomalies. Megacrysts from Lutynia, up to 4 cm, have the composition of augite and diopside, Mg# from 0.77 - 0.97, Fe3+/ƩFe 0.33 - 0.37, 87Sr/86Sr 0.703261 - 0.703295 and 143Nd/144Nd 0.512898 - 0.512910. REE concentrations vary from 0.52 to 7.8 x PM, but one megacryst shows strong depletion in LREE (to 0.01 x PM). TE patterns reveal strong negative Pb and weaker Sr, Zr, Y anomalies and the LREE depleted megacryst has positive Pb anomaly. The knowledge on Fe3+/ƩFe allowed

  14. Recurrence models of volcanic events: Applications to volcanic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M. [Los Alamos National Lab., Las Vegas, NV (United States); Picard, R.; Valentine, G. [Los Alamos National Lab., NM (United States); Perry, F.V. [New Mexico Univ., Albuquerque, NM (United States)

    1992-03-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  15. Recurrence models of volcanic events: Applications to volcanic risk assessment

    International Nuclear Information System (INIS)

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km2 area of Yucca Mountain by ascending basalt magma was bounded by the range of 10-8 to 10-10 yr-12. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site

  16. Fluidal deep-sea volcanic ash as an indicator of explosive volcanism (Invited)

    Science.gov (United States)

    Clague, D. A.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2013-12-01

    Fluidal glassy lava fragments are now known to be abundant at sites of submarine eruptions including the mid-ocean ridge system, near-ridge seamount chains, mid-plate volcanoes and the submarine rifts of ocean islands, deep-sea (4200m) alkalic lava fields, back-arc spreading centers, and arc volcanoes. Fluidal fragments at these diverse settings have compositions including basanite, tholeiite, boninite, andesite, dacite, and rhyolite. Fragments include straight, bent, curved, and coiled Pele's hair; flat, curved, twisted, folded, bent, or keeled ribbons; and flat, curved, or intensely folded limu o Pele. Most of these morphologies attach to blocky glass fragments. The fluidal fragments from different settings and depths are strikingly similar in morphology with variable vesicularity and particle thickness. They have been sampled flat and steep, rocky to sediment-covered substrates. Two different mechanisms are proposed to explain their origin: magmatic-volatile fragmentation during eruption and sea floor lava-water interactions. Volatiles in the melts and ambient water are present in all submarine volcanic settings, making it difficult to separate their role in forming the fragments. Submarine bubble-burst (strombolian) activity has been observed in situ at an active vent at -1200m on West Mata Volcano. However, lava-water interaction at elevated pressure has not been observed to make such fluidal fragments except in laboratory simulations. Lava-water interaction models suggest that pore water in sediment trapped beneath advancing lava flows migrates into the overlying flow where it expands to steam, and the expanding steam bubble escapes explosively through the flow top to form the fluidal fragments. This is different from the hollow (water-filled) pillars that form in inflating flows as trapped water escapes. Pillars grow upwards at contacts between flow lobes, thus the water exiting through pillars never enters (or exits) the molten lava flow interior. Another

  17. Cenozoic foreland basin evolution during Andean shortening in the Malargüe region of western Argentina (35°S)

    Science.gov (United States)

    Ramirez, S. G.; Horton, B. K.; Fuentes, F.

    2015-12-01

    Cenozoic clastic deposits in western Argentina provide key opportunities to evaluate the timing and duration of Andean deformation and uplift. We studied the Malargüe segment of the Andean foreland basin at 35°S to better understand latest Cretaceous to Pliocene deformation and eastward propagation of Andean retroarc shortening. Our multi-technique approach included logging of a well-exposed ~1500m Paleocene-Miocene stratigraphic succession, paleocurrent measurements, conglomerate clast counts, and detrital zircon U-Pb geochronological analyses of basin fill exposed in the Sosneado region along the Rio Atuel. The Pircala and Coihueco Formations define the lowermost ~180 m of the section and are represented by fine to medium sandstones, siltstones, claystones and marls interpreted as distal fluvial floodplain and localized lacustrine deposits. Pircala paleocurrents show a major reversal from west- to east-directed flow. These finer deposits of the lower succession are separated from the overlying coarser-grained ~800 m thick Agua de la Piedra Formation by a conspicuous unconformity that spans up to roughly 20 Myr. The Agua de la Piedra Formation is composed of upward-coarsening amalgamated beds of massive medium to coarse sandstones and lenticular conglomerates interpreted as a prograding proximal fluvial to alluvial fan system. Conglomerate clast counts show initial dominance by Mesozoic detritus from the pre-Andean Neuquen basin system, with a progressive upsection increase in Cenozoic volcanic detritus from the Andean magmatic arc. Collectively, the paleocurrents, clast compositions, sedimentary facies associations, and emerging U-Pb results suggest a long-term shift, commencing in the Paleocene, from eastern cratonic sources to magmatic-arc and thrust-belt sources during a systematic eastward propagation of deformation, with a pronounced phase of Miocene magmatism and shortening that incorporated the proximal foreland basin into the advancing thrust belt.

  18. Geochemistry of the Ophiolite and Island-Arc Volcanic Rocks in the Mianxian-Lueyang Suture Zone,Southern Qinling and Their Tectonic Significance

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ultrabasic rocks in the Mianxian-Lueyang ophiolitic melange zone include harzburgite and dunite which exhibit LREE depletion with remarkable positive Eu anomaly.The diabase dike swarm shows LREE enrichment but slightly negative Eu anomaly.Metamorphosed volcanic rocks can be divided into two groups in terms of their REE geochemistry and trace element ratios of Ti/V,Th/Ta,Th/Yb and Ta/Yb.One is ths MORB-type basalt with LREE depletion,representing the fragments of oceanic crust and implying an association of the MORB-type ophiolite and an ancient ocean basin between the Qinling and Yangtze plates during the Middle Paleozoic-Early Mesozoic era.The oter comprises the island-arc volcanic rocks including tholeiitic basalt and a large amount of calc-alkaline intermediate-acic volcanic rock,which could not be the component of the ancient oceanic crust but the result of magmatism at the continental margin.This indicates that the Mianxian-Lueyang limited ocean basin had undergone a whole process of development,evolution and vanishing from Devonian-Cretaceous to Permian.And the Qinling area had becone an independent lithospheric microplate,on the southern side of which there were exhibited the tectonic characteristics of active continental margins during the Late Paleozoic-Early Mesozoic.That is to say.the Qinling cannot be simply considered as a result of collision between the Yangtze and North China plates.

  19. A quantitative model for volcanic hazard assessment

    OpenAIRE

    Marzocchi, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Sandri, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Furlan, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia

    2006-01-01

    Volcanic hazard assessment is a basic ingredient for risk-based decision-making in land-use planning and emergency management. Volcanic hazard is defined as the probability of any particular area being affected by a destructive volcanic event within a given period of time (Fournier d’Albe 1979). The probabilistic nature of such an important issue derives from the fact that volcanic activity is a complex process, characterized by several and usually unknown degrees o...

  20. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  1. Evolution and genesis of volcanic rocks from Mutnovsky Volcano, Kamchatka

    Science.gov (United States)

    Simon, A.; Yogodzinski, G. M.; Robertson, K.; Smith, E.; Selyangin, O.; Kiryukhin, A.; Mulcahy, S. R.; Walker, J. D.

    2014-10-01

    This study presents new geochemical data for Mutnovsky Volcano, located on the volcanic front of the southern portion of the Kamchatka arc. Field relationships show that Mutnovsky Volcano is comprised of four distinct stratocones, which have grown over that past 80 ka. The youngest center, Mutnovsky IV, has produced basalts and basaltic andesites only. The three older centers (Mutnovsky I, II, III) are dominated by basalt and basaltic andesite (60-80% by volume), but each has also produced small volumes of andesite and dacite. Across centers of all ages, Mutnovsky lavas define a tholeiitic igneous series, from 48-70% SiO2. Basalts and basaltic andesites have relatively low K2O and Na2O, and high FeO* and Al2O3 compared to volcanic rocks throughout Kamchatka. The mafic lavas are also depleted in the light rare earth elements (REEs), with chondrite-normalized La/Sm arc volcanic rocks worldwide. Radiogenic isotope ratios (Sr, Nd, Pb, Hf) are similar for samples from all four eruptive centers, and indicate that all samples were produced by melting of a similar source mixture. No clear age-progressive changes are evident in the compositions of Mutnovsky lavas. Mass balance and assimilation-fractional crystallization (AFC) modeling of major and rare earth elements (REEs) indicate that basaltic andesites were produced by FC of plagioclase, clinopyroxene and olivine from a parental basalt, combined with assimilation of a melt composition similar to dacite lavas present at Mutnovsky. This modeling also indicates that andesites were produced by FC of plagioclase from basaltic andesite, combined with assimilation of dacite. Dacites erupted from Mutnovsky I and II have low abundances of REEs, and do not appear to be related to mafic magmas by FC or AFC processes. These dacites are modeled as the products of dehydration partial melting at mid-crustal levels of a garnet-free, amphibole-bearing basaltic rock, which itself formed in the mid-crust by emplacement of magma that

  2. Volcanic ash - Terrestrial versus extraterrestrial

    Science.gov (United States)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  3. Lung problems and volcanic smog

    Science.gov (United States)

    ... www.ncbi.nlm.nih.gov/pubmed/17650330 . Volcanic Air Pollution -- A Hazard in Hawai'i. U.S. Geological Survey. Last updated October 2004. U.S. Geological Survey Fact Sheet 169-197. Accessed April 22, 2012. Available at: ...

  4. Infrasound research of volcanic eruptions

    Science.gov (United States)

    Marchetti, Emanuele; Ripepe, Maurizio

    2016-04-01

    Volcanic eruptions are efficient sources of infrasound produced by the rapid perturbation of the atmosphere by the explosive source. Being able to propagate up to large distances from the source, infrasonic waves from major (VEI 4 or larger) volcanic eruptions have been recorded for many decades with analogue micro-barometers at large regional distances. In late 1980s, near-field observations became progressively more common and started to have direct impact on the understanding and modeling of explosive source dynamics, to eventually play a primary role in volcano research. Nowadays, infrasound observation from a large variety of volcanic eruptions, spanning from VEI 0 to VEI 5 events, has shown a dramatic variability in terms of signature, excess pressure and frequency content of radiated infrasound and has been used to infer complex eruptive source mechanisms for the different kinds of events. Improved processing capability and sensors has allowed unprecedented precise locations of the explosive source and is progressively increasing the possibility to monitor volcanoes from distant records. Very broadband infrasound observations is also showing the relation between volcanic eruptions and the atmosphere, with the eruptive mass injection in the atmosphere triggering acoustic-gravity waves which eventually might control the ash dispersal and fallout.

  5. Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks

    Science.gov (United States)

    Yu, Jin-Hai; Xu, Xisheng; O'Reilly, Suzanne Y.; Griffin, W. L.; Zhang, Ming

    2003-03-01

    A large suite of lower crustal xenoliths from Cenozoic basaltic rocks from three widely spaced localities in the eastern part of the South China Block (SCB; Xilong, Qilin and Leizhou) and two localities (Nushan and Guizishan) close to the suture between the North and South China Blocks in Southeast China has been studied in detail. They are used to define the nature of the lower crust beneath these regions and to define two distinct types of lithospheric domains resulting from different tectonic episodes. Lower crustal xenoliths from the Nushan area have distinctive petrologic and geochemical (including isotopic) characteristics indicating formation by underplating of continental basaltic magmas around the crust-mantle boundary. Geochemistry of these granulites demonstrates that an isotopically enriched old source component had played a significant role in the formation of the Nushan xenoliths. The lower crustal xenoliths from the South China Block reveal different origins and source compositions from those from the Nushan area. The South China Block xenoliths are considered to be derived from the underplating of continental arc-type basaltic magmas, but also show evidence of significant assimilation and fractional crystallisation (AFC) that produced abundant cumulates and fractionated liquids with strong crustal contamination signatures. They are geochemically and isotopically similar to the outcropping Late Mesozoic gabbros and basalts in the same region and are inferred to be their underplated high-pressure analogues and products of AFC with the lower crustal sources parental to the more silicic Mesozoic outcropping magmatic rocks. These Mesozoic basaltic magmas from the South China Block are geochemically distinct from the Cenozoic basaltic volcanics in this region, indicating a secular source change from a continental arc setting to an intraplate extensional regime. This significant change from Mesozoic to Cenozoic may indicate eastward movement of the

  6. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  7. Experimental generation of volcanic lightning

    Science.gov (United States)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel; Kueppers, Ulrich; Scheu, Bettina; Dingwell, Donald B.

    2014-05-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity. Direct measurement of the electric potential at the crater, where the electric activity in the volcanic plume is first observed, is severely impeded, limiting progress in its investigation. We have achieved volcanic lightning in the laboratory during rapid decompression experiments of gas-particle mixtures under controlled conditions. Upon decompression (from ~100 bar argon pressure to atmospheric pressure), loose particles are vertically accelerated and ejected through a nozzle of 2.8 cm diameter into a large tank filled with air at atmospheric conditions. Because of their impulsive character, our experiments most closely represent the conditions encountered in the gas-thrust region of the plume, when ash is first ejected from the crater. We used sieved natural ash with different grain sizes from Popocatépetl (Mexico), Eyjafjallajökull (Iceland), and Soufrière Hills (Montserrat) volcanoes, as well as micrometric glass beads to constrain the influence of material properties on lightning. We monitored the dynamics of the particle-laden jets with a high-speed camera and the pressure and electric potential at the nozzle using a pressure transducer and two copper ring antennas connected to a high-impedance data acquisition system, respectively. We find that lightning is controlled by the dynamics of the particle-laden jet and by the abundance of fine particles. Two main conditions are required to generate lightning: 1) self-electrification of the particles and 2) clustering of the particles driven by the jet fluid dynamics. The relative movement of clusters of charged particles within the plume generates the gradient in electrical potential, which is necessary for lightning. In this manner it is the gas-particle dynamics together with the evolving particle-density distribution within different regions of

  8. Cenozoic structures and the tectonic evolution of the eastern North Sea

    DEFF Research Database (Denmark)

    Clausen, O.R.; Nielsen, S.B.; Egholm, D.L.;

    2011-01-01

    of relaxation inversion (Nielsen et al. 2005). In conclusion, the Cenozoic structures in the North Sea area do not generally support ideas on Neogene basement tectonism. References: Clausen, O. R. and M. Huuse (1999). "Topography of the Top Chalk surface on- and offshore Denmark." Marine and Petroleum Geology......Abundant seismic sections and well data from the Cenozoic succession in the eastern North Sea area generally reveal normal faulting, salt tectonics and localized tectonic inversion. However, inferences on the Cenozoic dynamic evolution of the region require thorough analysis of interactions between...... detachment surfaces withinthe sedimentary succession and basement structures. Here we define basement structures by offsets in the pre Zechstein succession. Cover structures are confined to the post Zechstein succession, or part hereof, and detach internally along surfaces in the post Zechstein succession...

  9. Cenozoic tectonic evolution of the Bohai Bay Basin and its coupling relationship with Pacific Plate subduction

    Science.gov (United States)

    Liang, Jintong; Wang, Hongliang; Bai, Ying; Ji, Xinyuan; Duo, Xuemei

    2016-09-01

    The Bohai Bay Basin is a Mesozoic-Cenozoic rift basin in eastern China. Based mainly on a balanced-section analysis, this study compares the spatio-temporal differences of tectonic evolution in relation to strike-slip faults among different depressions within the basin. In combination with the analysis of subsidence characteristics, the study also attempts to clarify the Cenozoic tectonic evolution of the basin and its coupling relationship with the subduction of the Pacific Plate. It was found that: (1) the strike-slip faults were activated generally from south to north and from west to east during the Cenozoic; (2) there is a negative correlation between the intensity of tectonic activity in the Bohai Bay Basin and subduction rate of the Pacific Plate; and (3) the migration direction of the basin depocenters is consistent with the direction of Pacific Plate subduction.

  10. Geochemistry and Petrogenesis of Volcanic Rocks in the Yeba Formation on the Gangdise Magmatic Arc, Tibet

    Institute of Scientific and Technical Information of China (English)

    Geng Quanru; Pan Guitang; Jin Zhenmin; Wang Liquan; Liao Zhongli

    2005-01-01

    The Early Jurassic bimodal volcanic rocks in the Yeba Formation, situated between Lhasa, Dagzê and Maizhokunggar, composed of metabasalt, basaltic ignimbrite, dacite, silicic tuff and volcanic breccia, are an important volcanic suite for the study of the tectonic evolution of the Gangdise magmatic arc and the Mesozoic Tethys. Based on systematic field investigations, we carried out geochemical studies on representative rock samples. Major and trace element compositions were analyzed for these rock samples by XRF and ICP-MS respectively, and an isotope analysis of Rb-Sr and Sm-Nd was carried out by a MAT 262 mass spectrograph. The results show that the SiO2 contents in lava rocks are 41 %-50.4 % and 64 %-69 %, belonging to calc-alkaline basalt and dacite. One notable feature of the basalt is its low TiO2 content, 0.66 %-1.01 %, much lower than those of continental tholeiite. The ΣREE contents of basalt and dacite are 60.3-135 μg/g and 126.4-167.9 μg/g respectively. Both rocks have similar REE and other trace element characteristics, with enriched LREE and LILE relative to HREE and HFS, similar REE patterns without Eu anomaly. The basalts have depleted Ti, Ta and Nb and slightly negative Nb and Ta anomalies, with Nb*=0.54-1.17 averaging 0.84. The dacites have depleted P and Ti and also slightly negative Nb and Ta anomalies, with Nb*=0.74-1.06 averaging 0.86. Major and trace elemental and isotopic studies suggest that both basalt and dacite originated from the partial melting of the mantle wedge at different degrees above the subduction zone. The spinal lherzolite in the upper mantle is likely to be their source rocks, which might have been affected by the selective metasomatism of fluids with crustal geochemistry. The LILE contents of both rocks were affected by metamorphism at later stages. The Yeba bimodal volcanic rocks formed in a temporal extensional situation in a mature island arc resulting from the Indosinian Gangdise magmatic arc.

  11. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus

    Science.gov (United States)

    Hoernle, Kaj; Hauff, Folkmar; van den Bogaard, Paul; Werner, Reinhard; Mortimer, Nick; Geldmacher, Jörg; Garbe-Schönberg, Dieter; Davy, Bryan

    2010-12-01

    Here we present the first radiometric age data and a comprehensive geochemical data set (including major and trace element and Sr-Nd-Pb-Hf isotope ratios) for samples from the Hikurangi Plateau basement and seamounts on and adjacent to the plateau obtained during the R/V Sonne 168 cruise, in addition to age and geochemical data from DSDP Site 317 on the Manihiki Plateau. The 40Ar/ 39Ar age and geochemical data show that the Hikurangi basement lavas (118-96 Ma) have surprisingly similar major and trace element and isotopic characteristics to the Ontong Java Plateau lavas (ca. 120 and 90 Ma), primarily the Kwaimbaita-type composition, whereas the Manihiki DSDP Site 317 lavas (117 Ma) have similar compositions to the Singgalo lavas on the Ontong Java Plateau. Alkalic, incompatible-element-enriched seamount lavas (99-87 Ma and 67 Ma) on the Hikurangi Plateau and adjacent to it (Kiore Seamount), however, were derived from a distinct high time-integrated U/Pb (HIMU)-type mantle source. The seamount lavas are similar in composition to similar-aged alkalic volcanism on New Zealand, indicating a second wide-spread event from a distinct source beginning ca. 20 Ma after the plateau-forming event. Tholeiitic lavas from two Osbourn seamounts on the abyssal plain adjacent to the northeast Hikurangi Plateau margin have extremely depleted incompatible element compositions, but incompatible element characteristics similar to the Hikurangi and Ontong Java Plateau lavas and enriched isotopic compositions intermediate between normal mid-ocean-ridge basalt (N-MORB) and the plateau basement. These younger (˜52 Ma) seamounts may have formed through remelting of mafic cumulate rocks associated with the plateau formation. The similarity in age and geochemistry of the Hikurangi, Ontong Java and Manihiki Plateaus suggest derivation from a common mantle source. We propose that the Greater Ontong Java Event, during which ˜1% of the Earth's surface was covered with volcanism, resulted from a

  12. Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcanic and volcano-sedimentary sequence of Chotanagpur Granite Gneiss Complex

    Indian Academy of Sciences (India)

    Ashima Saikia; Bibhuti Gogoi; Mansoor Ahmad; Talat Ahmad

    2014-07-01

    The Bathani volcanic and volcano-sedimentary (BVS) sequence is a volcanic and volcano-sedimentary sequence, best exposed near Bathani village in Gaya district of Bihar. It is located in the northern fringe of the Chotanagpur Granite Gneiss Complex (CGGC). The volcano-sedimentary unit comprises of garnet-mica schist, rhyolite, tuff, banded iron formation (BIF) and chert bands with carbonate rocks as enclaves within the rhyolite and the differentiated volcanic sequence comprises of rhyolite, andesite, pillow basalt, massive basalt, tuff and mafic pyroclasts. Emplacement of diverse felsic and mafic rocks together testifies for a multi-stage and multi-source magmatism for the area. The presence of pillow basalt marks the eruption of these rocks in a subaqueous environment. Intermittent eruption of mafic and felsic magmas resulted in the formation of rhyolite, mafic pyroclasts, and tuff. Mixing and mingling of the felsic and mafic magmas resulted in the hybrid rock andesite. Granites are emplaced later, crosscutting the volcanic sequence and are probably products of fractional crystallization of basaltic magma. The present work characterizes the geochemical characteristics of the magmatic rocks comprising of basalt, andesite, rhyolite, tuff, and granite of the area. Tholeiitic trend for basalt and calc-alkaline affinities of andesite, rhyolite and granite is consistent with their generation in an island arc, subduction related setting. The rocks of the BVS sequence probably mark the collision of the northern and southern Indian blocks during Proterozoic period. The explosive submarine volcanism may be related to culmination of the collision of the aforementioned blocks during the Neoproterozoic (1.0 Ga) as the Grenvillian metamorphism is well established in various parts of CGGC.

  13. The Cenozoic geological evolution of the Central and Northern North Sea based on seismic sequence stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Jordt, Henrik

    1996-03-01

    This thesis represents scientific results from seismic sequence stratigraphic investigations. These investigations and results are integrated into an ongoing mineralogical study of the Cenozoic deposits. the main results from this mineralogical study are presented and discussed. The seismic investigations have provided boundary conditions for a forward modelling study of the Cenozoic depositional history. Results from the forward modelling are presented as they emphasise the influence of tectonics on sequence development. The tectonic motions described were important for the formation of the large oil and gas fields in the North Sea.

  14. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    Science.gov (United States)

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  15. Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic

    Science.gov (United States)

    Baatsen, Michiel; van Hinsbergen, Douwe J. J.; von der Heydt, Anna S.; Dijkstra, Henk A.; Sluijs, Appy; Abels, Hemmo A.; Bijl, Peter K.

    2016-08-01

    Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate a global geographical reconstruction for the middle-late Eocene. The generalised procedure is also reusable to create reconstructions for other time slices within the Cenozoic, suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth-age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicate that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain

  16. Present-day climatic equivalents of European Cenozoic climates

    Science.gov (United States)

    Utescher, Torsten; Mosbrugger, Volker; Ivanov, Dimiter; Dilcher, David L.

    2009-07-01

    Recently, continental climate evolution in Central Europe over the last 45 Ma has been reconstructed from the palaeobotanical record using a Nearest Living Relative methodology (Coexistence Approach; CA). The reconstructed climate curves document in detail the transition from almost tropical conditions in the Mid-Eocene to a temperate climate at the Pliocene/Pleistocene transition. The observed climatic shifts are primarily expressed as non-proportional changes of the different variables taken into account. In the present study a published palaeoclimate data set for a total of 42 macrofloras complemented by new calculations is used as base to analyse the climatic space in which a fossil flora existed. To define these spaces CA intervals calculated for 3 temperature (mean annual temperature, cold and warm month mean) and 3 precipitation variables (mean annual precipitation, mean monthly precipitation of the driest and of the wettest month) are combined. Using a global gridded climatology (10' resolution), this climate space is then utilized to identify Recent climate analogues with respect to the variables regarded. For 18 macrofloras climatic analogue regions with respect to 6 variables are identified on the globe. For 16 macrofloras, analogues exist when three temperature parameters and mean annual precipitation are regarded. No Recent equivalents are found in 8 cases. This corroborates the assumption of the temporary existence of non-analogue climates in the Cenozoic. As shown by multivariate statistics the observed anomalies with respect to present-day conditions basically refer to high winter temperatures. Deploying a GIS, the Recent climate analogues can be presented as sets of grid cells for each flora that can be mapped on a globe. Once identified, these regions can be merged with adequate thematic layers to assess additional proxy data for the palaeofloras. To exemplify the procedure Koeppen climate type, numbers of days with ground frost, as well as

  17. Guanamiru, l'homme-volcan

    OpenAIRE

    Collot, Michel

    2016-01-01

    Comment fabriquer un volcan portatif ? Où trouver un cratère en kit ? Comment faut-il l’emballer pour qu’il supporte un voyage transcontinental ? Où peut-on assister à des éruptions de charité ? Comment devient-on un homme-volcan ? Y a-t-il un remède contre les crises de mégalomanie éruptive ? A toutes ces questions brûlantes, Supervielle a tenté de répondre dans son premier roman, L'Homme de la pampa. C’est l’époque où, après avoir refoulé pendant près de quarante ans sous une croûte épaisse...

  18. Anomalous diffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2015-01-01

    Volcanic seismicity at Mt. Etna is studied. It is found that the associated stochastic process exhibits a subdiffusive phenomenon. The jump probability distribution well obeys an exponential law, whereas the waiting-time distribution follows a power law in a wide range. Although these results would seem to suggest that the phenomenon could be described by temporally-fractional kinetic theory based on the viewpoint of continuous-time random walks, the exponent of the power-law waiting-time distribution actually lies outside of the range allowed in the theory. In addition, there exists the aging phenomenon in the event-time averaged mean squared displacement, in contrast to the picture of fractional Brownian motion. Comments are also made on possible relevances of random walks on fractals as well as nonlinear kinetics. Thus, problems of volcanic seismicity are highly challenging for science of complex systems.

  19. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness.

  20. Understanding Volcanic Conduit Dynamics: from Experimental Fragmentation to Volcanic Eruptions

    Science.gov (United States)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The investigation of conduit dynamics at high pressure, under controlled laboratory conditions is a powerful tool to understand the physics behind volcanic processes before an eruption. In this work, we analyze the characteristics of the seismic response of an "experimental volcano" focusing on the dynamics of the conduit behavior during the fragmentation process of volcanic rocks. The "experimental volcano" is represented by a shock tube apparatus, which consists of a low-pressure voluminous tank (3 x 0.40 m), for sample recovery; and a high-pressure pipe-like conduit (16.5 x 2,5 cm), which represents the volcanic source mechanism, where rock samples are pressurized and fragmented. These two serial steel pipes are connected and sealed by a set of diaphragms that bear pressures in a range of 4 to 20 MPa. The history of the overall process of an explosion consists of four steps: 1) the slow pressurization of the pipe-like conduit filled with solid pumice and gas, 2) the sudden removal of the diaphragms, 3) the rapid decompression of the system and 4) the ejection of the gas-particle mixture. Each step imprints distinctive features on the microseismic records, reflecting the conduit dynamics during the explosion. In this work we show how features such as waveform characteristics, the three components of the force system acting on the conduit, the independent components of the moment tensor, the volumetric change of the source mechanism, the arrival time of the shock wave and its velocity, are quantified from the experimental microseismic data. Knowing these features, each step of the eruptive process, the conduit conditions and the source mechanism characteristics can be determined. The procedure applied in this experimental approach allows the use of seismic field data to estimate volcanic conduit conditions before an eruption takes place. We state on the hypothesis that the physics behind the pressurization and depressurization process of any conduit is the same

  1. Amazonian volcanic activity at the Syrtis volcanic province, Mars

    Science.gov (United States)

    Platz, Thomas; Jodlowski, Piotr; Fawdon, Peter; Michael, Greg; Tanaka, Kenneth

    2014-05-01

    The Syrtis Major volcanic province, including the entire Syrtis Major Planum, is located near the Martian highland/lowland transitional zone west of Isidis Planitia. It covers ≡7.4×105 km2 and contains two low-shield volcanic edifices with N-S elongated calderas named Nili and Meroe Paterae. The estimated thickness of erupted material in the province ranges from approximately 0.5 km to 1.0 km with a total volume of about 1.6-3.2×105 km3 [1]. The timing of volcanic activity in the Syrtis Major volcanic province has been suggested to be restricted to the Hesperian Period [1-4]. In the geological map of Greeley and Guest [2], volcanic material of Syrtis Major was assigned an Hesperian age based on the density of observed craters larger than 5 km in diameter. Using the same crater density range, recent studies of Hiesinger et al. [1] and Tanaka et al. [3] and Tanaka et al. [4] assigned an Early Hesperian and Early to Late Hesperian age, respectively, for the entire province. In this study we mapped lava flows, lava channels, and major lava-flow margins and report model ages for lava-flow formation and caldera segments of Nili and Meroe Paterae. The objective of this ongoing survey is to better understand the eruption frequency of this volcanic province. In total, we mapped 67 lava flows, caldera segments, and intra-crater fillings of which 55 were dated. Crater size-frequency distributions (CSFD) were mapped on HRSC and CTX imagery using CraterTools [5]. CSFDs were analyzed and model ages determined in Craterstats [6] using the production and chronology functions of Ivanov [7] and Hartmann and Neukum [8], respectively. A detailed description of the utilization of the crater-counting technique and its limitations with respect to small-scale mapping is given in Platz et al. [9]. Model ages range between 838 Ma (Middle Amazonian) to 3.6 Ga (Late Hesperian). In our survey, a broad age peak occurs between 2 to 2.6 Ga, continuously declining thereafter. We note that

  2. Uranium deposits in volcanic rocks

    International Nuclear Information System (INIS)

    Twenty-eight papers were presented at the meeting and two additional papers were provided. Three panels were organized to consider the specific aspects of the genesis of uranium deposits in volcanic rocks, recognition criteria for the characterization of such deposits, and approaches to exploration. The papers presented and the findings of the panels are included in the Proceedings. Separate abstracts were prepared for each of these papers

  3. Volcanism in Elysium Planitia, Mars

    Science.gov (United States)

    Mouginis-Mark, P. J.

    1984-01-01

    Geomorphic mapping revealed that the three volcanic constructs within Elysium Planitia (Hecates Tholus, elysium Mons and Albor Tholus) are very different in their overall morphology and represent three distinct types of martian volcano. Hecates Tholus was found to possess the most likely possible example of a young, explosively generated, air fall deposit, while the volume of magma erupted from Elysium Mons appears to have been orders of magnitude larger than that erupted from Albor Tholus. A primary aim of the regional geological analysis of Elysium Planitia is to further understand the volcanic and tectonic evolution of the area by the identification and interpretation of individual lava flows and their source vents. Lava flow size, spatial distribution, flow direction and the stratigraphic relationships of these lava flows to adjacent structural features were all measured. The topographic form of Elysium Mons has totally controlled the flow direction of lava flows within Elysium Planitia. Lava flows from Elysium Mons can be traced for distances of 150 to 250 km in a radial direction from the volcano. Parasitic vents located beyond the recognizable volcanic construct also conform to this radial pattern. A second unusual characteristic of the Elysium Planitia region is the high frequency of occurrence of sinuous channels that are morphologically similar to lunar sinuous rilles.

  4. Bayesian analysis of volcanic eruptions

    Science.gov (United States)

    Ho, Chih-Hsiang

    1990-10-01

    The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.

  5. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia

    NARCIS (Netherlands)

    van Hinsbergen, D.J.J.; Lippert, P.; Dupont-Nivet, G.; McQuarrie, N.; Doubrovine, P.V.; Spakman, W.; Torsvik, T.H.

    2013-01-01

    Cenozoic convergence between the Indian and Asian plates produced the archetypical continental collision zone comprising the Himalaya mountain belt and the Tibetan Plateau. How and where India–Asia convergence was accommodated after collision at or before 52 Ma remains a long-standing controversy. S

  6. Late Cenozoic tectonic deformation across the northern foreland of the Chinese Tian Shan

    NARCIS (Netherlands)

    Li, CX.; Guo, ZJ.; Dupont-Nivet, G.

    2011-01-01

    To understand the reactivation and intensified uplift of the Tian Shan range in the Cenozoic, the age of development of the associated series of anticlinal belts formed in the southern and northern foreland basins must be constrained. To estimate the shortening magnitude and rates in the northern fo

  7. Correcting the Cenozoic δ18O deep-sea temperature record

    NARCIS (Netherlands)

    Oerlemans, J.

    2004-01-01

    The oxygen isotope signal in benthic foraminifera from deep-sea cores is mainly determined by deep-ocean temperature and land ice volume. Separating the temperature and ice volume signals is a key step in understanding the evolution of Cenozoic climate. Except for the last few million years, fluctua

  8. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia

    NARCIS (Netherlands)

    Hinsbergen, D.J.J. van; Lippert, P.C.; Dupont-Nivet, G.; McQuarrie, N.; Doubrovine, P.V.; Spakman, W.; Torsvik, T.H.

    2012-01-01

    Cenozoic convergence between the Indian and Asian plates produced the archetypical continental collision zone comprising the Himalaya mountain belt and the Tibetan Plateau. How and where India–Asia convergence was accommodated after collision at or before 52 Ma remains a long-standing controversy. S

  9. The Amazonian Craton and its influence on past fluvial systems (Mesozoic-Cenozoic, Amazonia)

    NARCIS (Netherlands)

    C. Hoorn; M. Roddaz; R. Dino; E. Soares; C. Uba; D. Ochoa-Lozano; R. Mapes

    2010-01-01

    The Amazonian Craton is an old geological feature of Archaean/Proterozoic age that has determined the character of fluvial systems in Amazonia throughout most of its past. This situation radically changed during the Cenozoic, when uplift of the Andes reshaped the relief and drainage patterns of nort

  10. Reappraisal of the significance of volcanic fields

    Science.gov (United States)

    Cañón-Tapia, Edgardo

    2016-01-01

    "Volcanic field" is a term commonly used to loosely describe a group of volcanoes. Often, it is implicitly assumed that the volcanoes on a volcanic field are small, monogenetic and dominantly basaltic, but none of those attributes is indispensable on some definitions of the term. Actually, the term "volcanic field" can be used to describe a group of purely monogenetic edifices, a group of mixed monogenetic and polygenetic edifices, or even a group formed only by purely polygenetic edifices. Differences between each of those alternatives might be important, but the extent to which those differences are truly relevant remains still to be explored. Furthermore, there are several limitations on the current knowledge of this type of volcanic activity that explain the lack of a comprehensive effort to study volcanic fields in global contexts. In this work, issues concerning current definitions of a volcanic field are examined, and some criteria that can be used to distinguish volcanic fields from non-field volcanoes are suggested. Special attention is given to the role played by spatial scale on such a distinction. Also, the tectonic implications of their spatial distribution are explored. In particular, it is shown that volcanic fields are an important component of volcanic activity at a global scale that is closely associated to diffuse plate boundaries, and might well be considered the archetypical volcanic form of such tectonic scenarios.

  11. Uranium mineralization in fluorine-enriched volcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  12. Uranium mineralization in fluorine-enriched volcanic rocks

    International Nuclear Information System (INIS)

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements

  13. Late Cenozoic sedimentation in Pilot Knob Valley, California

    Science.gov (United States)

    Rittase, W. M.; Walker, J. D.; Kirby, E.; Andrew, J.; Wan, E.

    2012-12-01

    In Pilot Knob Valley (PKV), active inversion of a Pliocene-mid Pleistocene basin presents the opportunity to understand the spatial and temporal development of an enigmatic basin astride a major transform boundary in California. Here, a ~1000-m-thick package of exposed Late Cenozoic strata has been uplifted and tilted to the northeast. Based on new age and provenance data, we adopt the name Pilot Knob formation (PKfm) to describe much of these exposed rocks north of the Garlock fault (GF) and east of Christmas Canyon gate. Post-Miocene development of PKV is strongly influenced by the sinistral GF, the newly identified Marine Gate fault (MGF) and dextral Eastern California shear zone. The PKfm consists of three lithofacies members, from base to top: (1) rocks derived from Eagle Crags to the south; (2) Randsburg Wash lacustrine rocks; and (3) an upper member derived from the Slate Range. Tephrochronologic data from four PKfm ash samples brackets deposition of lacustrine Randsburg Wash Member rocks between 3.7-3.1 Ma and lacustrine rocks of the Slate Range Member between 1.2-0.6 Ma. A fifth tephrochronologic sample from lacustrine-distal alluvial sediments south of the GF near Christmas Canyon brackets deposition of a possible PKfm facies at ~3.1 Ma. A 3-stage tectonic model for northern PKV explains changing provenance patterns. Prior to ~3.1 Ma, the western PKV paleo-low lay north of the current GF adjacent to the southern Slate Range and connected to Searles Valley. The MGF cuts adjacent to the southern face of the Slate Range and southern Searles Valley with up to 7.5 km of sinistral oblique-normal slip between ~5-2.5 Ma. Eagle Crags fanglomerate deposition may continue after 3.7 Ma west of the Randsburg Wash-Searles Valley spillway, but these rocks have been eroded away. By ~3.7 Ma, northward progradation of Eagle Crags fanglomerate waned and lacustrine sediments were deposited north of the GF and east of the Randsburg Wash-Searles Valley spillway. At ~3.1 Ma

  14. Volcanic processes in the Solar System

    Science.gov (United States)

    Carr, M.H.

    1987-01-01

    This article stresses that terrestrial volcanism represents only part of the range of volcanism in the solar system. Earth processes of volcanicity are dominated by plate tectonics, which does not seem to operate on other planets, except possibly on Venus. Lunar volcanicity is dominated by lava effusion at enormous rates. Mars is similar, with the addition to huge shield volcanoes developed over fixed hotspots. Io, the moon closest to Jupiter, is the most active body in the Solar System and, for example, much sulphur and silicates are emitted. The eruptions of Io are generated by heating caused by tides induced by Jupiter. Europa nearby seems to emit water from fractures and Ganymede is similar. The satellites of Saturn and Uranus are also marked by volcanic craters, but they are of very low temperature melts, possibly of ammonia and water. The volcanism of the solar system is generally more exotic, the greater the distance from Earth. -A.Scarth

  15. Volcanic caves of East Africa - an overview

    OpenAIRE

    Jim W. Simons

    1998-01-01

    Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA) for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and are...

  16. Cenozoic stratigraphic development in the north Chilean forearc: Implications for basin development and uplift history of the Central Andean margin

    Science.gov (United States)

    Hartley, Adrian J.; Evenstar, Laura

    2010-11-01

    Analysis of the Cenozoic stratigraphic development of the forearc of northern Chile between 18°S and 23°30'S, allows constraints to be placed on the timing and nature of basin formation and the uplift history of the Central Andes. Chronostratigraphic charts have been constructed from 20 lithostratigraphic sections distributed throughout the forearc. Sections were taken from the Longitudinal Valley, Central Depression, Calama Basin, Salar de Atacama, Precordillera and the western flank of the Western Cordillera. Correlation and timing of events is largely based on the presence of dated volcanic horizons in all the studied sections. Three chronostratigraphic units are defined based upon the presence of regional unconformities. Deposition of the Late Eocene to Early Miocene chronostratigraphic unit (38-19 Ma) commenced across an irregular unconformity surface between ˜ 38 and 30 Ma with alluvial fan and fluvial sediments derived from the east interbedded with rhyolitic ignimbrites. Aggradation after 25 Ma resulted in development of a large broad basin over much of northern Chile that expanded eastwards through onlap onto basement. Deposition terminated around 19 Ma with the development of an angular unconformity over much, but not all of the study area. During deposition of the Early to Late Miocene chronostratigraphic unit (18-10 Ma) emergent volcanic source areas to the east provided catchments for large fluvial systems that drained westwards into endorheic ephemeral lacustrine basins. Fold growth affected sedimentation restricting accommodation space to small intra-thrust basins in the Precordillera and localised disruption and unconformity development in the Longitudinal Valley. The Late Miocene to present day chronostratigraphic unit (10-0 Ma) followed the development of a regional angular unconformity at 10 Ma. Sedimentation was restricted to a series of thrust-bounded endorheic basins in both the Central Depression and the Precordillera sourced from the east

  17. Petrology, Geochemistry and Nd-Sr-Pb Isotopic Properties of Volcanic Rocks in Daheishan Island, Penglai, Shandong Province

    Institute of Scientific and Technical Information of China (English)

    Fu Yongtao; Li Anchun

    2003-01-01

    The major elements, trace elements, K-Ar age and Sr-Nd-Pb isotopic systems of the Cenozoic volcanic rocks in Daheishan Island and Cishan, Penglai, Shandong Province are measured. The volcanic rocks ( olivine-nephelinite and nepheline-basanite ) in Daheishan Island erupted periodically in an interval of 0.32 Ma, from 8.72 Ma, 8.39 Ma, 8.08 Ma to 7.73 Ma. The volcanic rocks are all rich in light REEs. They are similar to the OIB-type alkali basalt in the trace elements normalized model by primordial mantle: rich in high field elements such as Nb and Ta, and imcompatible elements such as Cs, Rb, Ba, Th, U. The volcanic rocks show a depletion of K and Rb elements. It is suggested by the trace elements that the olivine-nephelinite in Daheishan Island is originated from deep resources under the continental mantle. ε Nd (0) values of the volcanic rocks in Daheishan Island and Cisban are 5.31 ~ 8.51 and 7.33 respectively, suggesting that the volcanic rocks are from the depleted mantle resources, which have higher Sm/Nd ratios than the CHUR. 143Nd /144Nd ratios of Daheishan Island olivine-nephelinite and Cishan alkali basalts are 0.512 910 ~ 0.513 074 and 0.513 014 respectively. The 87Sr /86Sr of Daheishan Island volcanic rocks are lower than that of Cishan, 0.703 427 ~ 0.703 482 and 0.703 895 respectively. The Daheishan Island olivinenephelinite has the Pb isotopic values as follows: 206Pb /204pb = 18.028 9 ~ 17.972 8, 207Pb /204pb= 15.435 8 ~ 15.402 2 and 208Pb /204Pb = 38.087 6 ~ 37.997 5, lower than those of Cishan basanite. The Cishan basanite has 206Pb /204pb = 18.240 1, 207Pb /204Pb = 15.564 5 and 208Pb /204pb = 38.535. The authors suggest that the olivine-nephelinite in Daheishan Island is similar to the E-type MORB or Hawaii OIB, and the alkali basalts in Cishan similar to the Kerguelen OIB. The dominant mantle components of DM+PREMA and perhaps DM ( Dupal type ) are the dominant mantle components for volcanic rocks in Daheishan Island and Cishan. The

  18. Nephelometric Dropsonde for Volcanic Ash Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes could enable unprecedented observations of...

  19. Long-lived explosive volcanism on Mercury

    OpenAIRE

    Thomas, Rebecca J.; Rothery, David A.; Conway, Susan J.; Anand, Mahesh

    2014-01-01

    The duration and timing of volcanic activity on Mercury are key indicators of the thermal evolution of the planet and provide a valuable comparative example for other terrestrial bodies. The majority of effusive volcanism on Mercury appears to have occurred early in the planet's geological history (~4.1–3.55 Ga), but there is also evidence for explosive volcanism. Here we present evidence that explosive volcanism occurred from at least 3.9 Ga until less than a billion years ago and so was sub...

  20. Catastrophic volcanic collapse: relation to hydrothermal processes.

    Science.gov (United States)

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  1. Volcanic hazards and public response

    Science.gov (United States)

    Peterson, Donald W.

    1988-05-01

    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  2. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  3. Thermal vesiculation during volcanic eruptions

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  4. Water in volcanic glass: From volcanic degassing to secondary hydration

    Science.gov (United States)

    Seligman, Angela N.; Bindeman, Ilya N.; Watkins, James M.; Ross, Abigail M.

    2016-10-01

    Volcanic glass is deposited with trace amounts (0.1-0.6 wt.%) of undegassed magmatic water dissolved in the glass. After deposition, meteoric water penetrates into the glass structure mostly as molecular H2O. Due to the lower δD (‰) values of non-tropical meteoric waters and the ∼30‰ offset between volcanic glass and environmental water during hydration, secondary water imparts lighter hydrogen isotopic values during secondary hydration up to a saturation concentration of 3-4 wt.% H2O. We analyzed compositionally and globally diverse volcanic glass from 0 to 10 ka for their δD and H2Ot across different climatic zones, and thus different δD of precipitation, on a thermal conversion elemental analyzer (TCEA) furnace attached to a mass spectrometer. We find that tephrachronologically coeval rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), while a few equatorial glasses have little change in δD (‰). We compute a magmatic water correction based on our non-hydrated glasses, and calculate an average 103lnαglass-water for our hydrated felsic glasses of -33‰, which is similar to the 103lnαglass-water determined by Friedman et al. (1993a) of -34‰. We also determine a smaller average 103lnαglass-water for all our mafic glasses of -23‰. We compare the δD values of water extracted from our glasses to local meteoric waters following the inclusion of a -33‰ 103lnαglass-water. We find that, following a correction for residual magmatic water based on an average δD and wt.% H2Ot of recently erupted ashes from our study, the δD value of water extracted from hydrated volcanic glass is, on average, within 4‰ of local meteoric water. To better understand the difference in hydration rates of mafic and felsic glasses, we imaged 6 tephra clasts ranging in age and chemical composition with BSE (by FEI SEM) down to a submicron resolution. Mafic tephra

  5. Geochemical Characteristics and Metallogenesis of Volcanic Rocks as Exemplified by Volcanic Rocks in Ertix,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘铁庚; 叶霖

    1997-01-01

    Volcanic rocks in Ertix,Xinjiang,occurring in the collision zone between the Siberia Plate and the Junggar Plate,are distributed along the Eritix River Valley in northern Xinjiang.The volcanic rocks were dated at Late Paleozoic and can be divided into the spilite-keratophyre series and the basalt-andesite series.The spilite-keratophyre series volcanic rocks occur in the Altay orogenic belt at the southwest margin of the Siberia Plate.In addition to sodic volcanic rocks.There are also associated potassic-sodic volcanic rocks and potassic volcanic rocks.The potassic-sodic volcanic rocks occur at the bottom of the eruption cycle and control the distribution of Pb and Zn deposits.The potassic volcanic rocks occur at the top of the eruption cycle and are associated with Au and Cu mineralizations.The sodic volcanic rocks occur in the middle stage of eruption cycle and control the occurrence of Cu(Zn) deposits.The basalt-andesite series volcanic rocks distributed in the North Junggar orogenic belt at the north margin of the Junggar-Kazakstan Plate belong to the potassic sodic volcain rocks.The volcanic rocks distributed along the Ulungur fault are relatively rich in sodium and poor in potassium and are predominated by Cu mineralization and associated with Au mineralization.Those volcanic rocks distributed along the Ertix fault are relatively rich in K and poor in Na,with Au mineralization being dominant.

  6. Volcanic Winter and Cold Tropical Uplands in Late Paleozoic Pangaea: A Thought Experiment

    Science.gov (United States)

    Heavens, N. G.; Soreghan, G. S.

    2014-12-01

    The Late Paleozoic Ice Age (LPIA) was the Earth's most recent icehouse climate prior to the Cenozoic. At present, it is generally accepted that the latitudinal gradient in climate conditions was similar to the present icehouse. High-latitude ice sheets occasionally advanced into the mid-latitudes and retreated once more, but the tropics were warmer or similar in climate to the tropics during the Plio-Pleistocene. Recently, this idea has been challenged by sedimentological evidence of glaciation and dry weathering in upland areas of the tropics as well as geochemical evidence for cold tropical oceans that is consistent with the sedimentological evidence. These observations challenge current qualitative and quantitative models of Late Paleozoic climate, implying tropical climate may have been up to 15 degrees Celsius colder than the present day at some point during the LPIA. Here we consider whether the disparity between evidence for equatorial cold in Pangaea and current models can be explained by explosive volcanic activity associated with events such as the Hercynian orogen or the Kennedy-Connors-Auburn Silicic Large Igneous Province. We find that the necessary radiative forcing for glaciation in low-latitude upland areas could be generated by explosive volcanic activity one to two orders of magnitude greater than the present day, perturbing a baseline climate with mid-latitude glaciation in both hemispheres. Such a forcing would have potentially significant impacts on the carbon cycle and ice sheet dynamics, but these effects are not likely to be unambiguously detectable in the record. Instead, we argue that measurements of mass independent fractionation of S in lacustrine sediments or other deposits sampling meteoric water would be the least ambiguous test of a hypothetical volcanic driver for late Paleozoic cold. This work was supported in part by the National Science Foundation, EAR-1337463.

  7. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa

    Science.gov (United States)

    Bonnefille, Raymonde

    2010-07-01

    This paper reviews information on past vegetation of tropical Africa during the Cenozoic, focused upon the last 10 Ma, a time spanning hominid record in Central and East Africa. Summary of palaeobotanical data collected at terrestrial sites are compared with new results on the long term evolution of the continental vegetation zones documented from marine pollen record of two deep sea cores recovered from the Atlantic and Indian Oceans. Section 2 includes a summary of modern distribution of vegetation belts in the African continent and a synthesis of the results of both macrobotanical (fossil wood, leaves and fruits) and microbotanical (mainly pollen) studies presented according to time scale and geographical location. The main features emphasized by the palaeobotanical results are 1) seasonal vegetation and climate documented as soon as the Eocene in Tanzania 2) well diversified forests existing in northern West Ethiopia during the Oligocene 3) high temporal and spatial variabilities of forests composition during the Miocene when deciduous Legume woodland was documented in Ethiopia whereas wetter evergreen forests existed in Western Kenya 4) lack of evidence for an evergreen forest belt, continuous from Western Congo to East Africa. Section 3 presents new original pollen data recovered from a long core in the Gulf of Aden documenting large scale past vegetation changes in East Africa during the last 11 Ma. These results are discussed in comparison with a summarized long pollen sequence previously published from a marine core offshore the Niger delta. This comparison illustrates variations in geographical distribution of large vegetation zone at the continental scale, through time. In Section 4, vegetation changes registered during the last 10 Ma are discussed in relation with the results of isotopic studies and an updated presentation of hominids evolution in Africa. Several changes are shown in the marine records. An expansion of savanna/grassland is shown at 10

  8. Geochemistry of the Caledonian Basic Volcanic Rocks at the South Margin of the Qinling Orogenc Belt,and Its Tectonic Implications

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The geochemistry of the basic volcanic rocks at the south margin of the Qinling orogenic belt(SMQOB) suggests that they were formed in an intraplate tectonic setting.The REE distribution patterns show these rocks are strongly enriched in LREE with high ∑REE, and their trace elements geochemistry is similar to that of contimental flood basalt.All the above evidence suggests that the Caledonian basic volcanic rocks in the SMQOB were tholeiitic basalts formed in an intraplate spreading-initial rift tectonic setting.The characteristics of regional geology and geochemistry indicate that there was an intraplate spreading-rift tectonic setting between the South Qingling block and the Yangtze block in the Caledonian epoch.The dynamic spreading in this district began in the Early Caledonian and then the intraplate spreadinginitial rifts were formed in the Late Caledonian.As a result of spreading of the Tethys and geodynamic processes in deep mantle ,the Mianlue-Huashan oceanic basin was formed between the Qinling block and the Yangtze block in Devonian,and the Qinling microplate was separated from the northern part of the Yangtze plate.

  9. Post-rift volcanic structures of the Pernambuco Plateau, northeastern Brazil

    Science.gov (United States)

    Buarque, Bruno V.; Barbosa, José A.; Magalhães, José R. G.; Cruz Oliveira, Jefferson T.; Filho, Osvaldo J. Correia

    2016-10-01

    The Pernambuco marginal basin is located on the eastern continental margin of northeastern Brazil, covers an area of 20,800 km2, and represents one of the most prominent frontiers for deep water oil and gas exploration off the Brazilian coast. The onshore region of this basin was highly affected by extrusive and intrusive magmatism during the Upper Albian, and the relation of that event with the volcanic structures observed in the offshore sector has not been thoroughly characterized to date. This study aims to characterize the major extrusive and intrusive volcanic structures of the offshore portion of this basin, which is dominated by the Pernambuco Plateau, and its stratigraphic relations. A set of 143 2D multichannel seismic sections that cover the Pernambuco Plateau region are used to interpret the major tectono-stratigraphic sequences and describe the distribution of volcanoes, sills, vent complexes and related volcaniclastic sequences. The interpretations are supported by aeromagnetic and gravimetric geophysical surveys. Volcanoes are classified into two groups that differ in terms of their morphology: shield-like structures and cone-shaped volcanic structures. Sill intrusions are mainly identified beneath the volcanic structures and are characterized by high-amplitude reflectors with short extensions and abrupt terminations. Volcaniclastic sequences are found adjacent to the volcanoes and are characterized by high-amplitude, disrupted reflections with local chaotic configurations. Vent complexes are classified on the basis of their morphologies as either eye-shaped or crater-shaped. The volcanic features identified within the available seismic dataset are concentrated in two main areas: in the centre of the plateau and near its northeastern border. These two regions are host basement outer highs and are surrounded by hyper-extended continental crust, which forms the plateau itself. The extrusive and intrusive features described in the offshore region were

  10. Epithermal gold-siver deposits in the western United States: time-space products of evolving plutonic, volcanic and tectonic environments

    Science.gov (United States)

    Berger, B.R.; Bonham, H.F.

    1990-01-01

    The western United States has been the locus of considerable subaerial volcanic and plutonic igneous activity since the mid-Mesozoic. After the destruction of the Jurassic-Cretaceous magmatic arc-trench system, subduction was re-established in the Late Mesozoic with low-angle underthrusting of the oceanic plate beneath western North America. This resulted in crustal shortening during the Late Cretaceous to Early Tertiary and removal of the mantle lithosphere west of the Rocky Mountains. Commencing in the Eocene, flat subduction ceased, the volcanic arc began to re-establish itself along the continental margin, and the hingeline along the steepening subducting plate migrated from east to west. The crust east of the migrating hingeline was exposed to hot asthenosphere, and widespread tectonics and volcanic activity resulted. Hydrothermal activity accompanied the volcanism resulting in numerous epithermal gold-silver deposits. The temporal and spatial distributions of epithermal deposits in the region are therefore systematic and can be subdivided into discrete time intervals which are related to widespread changes in magmatic activity. Time intervals selected for discussion are Pre-Cenozoic, 66-55 Ma, 54-43 Ma, 42-34 Ma, 33-24 Ma, 23-17 Ma, and tectonic context of the western United States provides a unified framework in which to understand and explore for epithermal type deposits. ?? 1990.

  11. Petrology and petrogenesis of the Eocene Volcanic rocks in Yildizeli area (Sivas), Central Anatolia, Turkey

    Science.gov (United States)

    Doğa Topbay, C.; Karacık, Zekiye; Genç, S. Can; Göçmengil, Gönenç

    2015-04-01

    Yıldızeli region to the south of İzmir Ankara Erzincan suture zone is situated on the large Sivas Tertiary sedimentary basin. After the northern branch of the Neotethyan Ocean was northerly consumed beneath the Sakarya Continent, a continent - continent collision occurred between the Anatolide- Tauride platform and Pontides and followed a severe intermediate magmatism during the Late Cretaceous- Tertiary period. This created an east-west trending volcanic belt along the whole Pontide range. In the previous studies different models are suggested for the Eocene volcanic succession such as post-collisional, delamination and slab-breakoff models as well as the arc model for its westernmost parts. We will present our field and geochemical data obtained from the Yıldızeli and its surroundings for its petrogenesis, and will discuss the tectonic model(s) on the basis of their geochemical/petrological aspects. Cenozoic volcanic sequences of Yıldızeli region which is the main subject of this study, overlie Pre-Mesozoic crustal meta-sedimentary group of Kırşehir Massif, Ophiolitic mélange and Cretaceous- Paleocene? flysch-like sequences. In the northern part of Yıldızeli region, north vergent thrust fault trending E-W seperates the ophiolitic mélange complex from the Upper Cretaceous-Paleocene and Tertiary formations. Volcano-sedimentary units, Eocene in age, of the Yıldızeli (Sivas-Turkey) which are intercalated with sedimentary deposits related to the collision of Anatolide-Tauride and a simultaneous volcanic activity (i.e. the Yıldızeli volcanics), exposed throughout a wide zone along E-W orientation. Yıldızeli volcanics consist of basalts, basaltic-andesites and andesitic lavas intercalated flow breccias and epiclastic, pyroclastic deposits. Basaltic andesite lavas contain Ca-rich plagioclase + clinopyroxene ± olivine with minor amounts of opaque minerals in a matrix comprised of microlites and glass; andesitic lavas are generally contain Ca

  12. Late Cenozoic sedimentary process and its response to the slip history of the central Altyn Tagh fault, NW China

    Institute of Scientific and Technical Information of China (English)

    陈正乐; 张岳桥; 陈宣华; 王小凤; A.S.Ramon; W.B.Zack

    2001-01-01

    The ENE-striking Altyn Tagh fault (ATF), extending along the northern edge of the Tibetan Plateau, is one of the major important strike-slip faults, and has been known as one of the key areas to debate the eastward extrusion and crustral shortening models of the Tibetan Plateau during and after India-Asia collision. This paper mainly presents new evidence of Late Cenozoic sedimentary process to reconstruct the slip history of the ATF during the Late Cenozoic. Field measurements and laboratory analyses of the sedimentary characteristics in the Late Cenozoic basins in the central Altyn Tagh fault suggest that Late Cenozoic sedimentary sequence should be divided into three units according to facies changes. The paleo-topography reconstruction shows that the sedimentation in these basins was tightly related with the fault, indicating that the ATF has experienced at least three stages of strike slipping in the Late Cenozoic. New geological data from the Late Cenozoic sedimentary basins and the formation of th

  13. Relationship between earthquake and volcanic eruption inferred from historical records

    Institute of Scientific and Technical Information of China (English)

    陈洪洲; 高峰; 吴雪娟; 孟宪森

    2004-01-01

    A large number of seismic records are discovered for the first time in the historical materials about Wudalianchi volcanic group eruption in 1720~1721, which provides us with abundant volcanic earthquake information. Based on the written records, the relationship between earthquake and volcanic eruption is discussed in the paper. Furthermore it is pointed that earthquake swarm is an important indication of volcanic eruption. Therefore, monitoring volcanic earthquakes is of great significance for forecasting volcanic eruption.

  14. Late Cenozoic onset of the latitudinal diversity gradient of North American mammals

    Science.gov (United States)

    Marcot, Jonathan D.; Fox, David L.; Niebuhr, Spencer R.

    2016-06-01

    The decline of species richness from equator to pole, or latitudinal diversity gradient (LDG), is nearly universal among clades of living organisms, yet whether it was such a pervasive pattern in the geologic past remains uncertain. Here, we calculate the strength of the LDG for terrestrial mammals in North America over the past 65 My, using 27,903 fossil occurrences of Cenozoic terrestrial mammals from western North America downloaded from the Paleobiology Database. Accounting for temporal and spatial variation in sampling, the LDG was substantially weaker than it is today for most of the Cenozoic and the robust modern LDG of North American mammals evolved only over the last 4 My. The strength of the LDG correlates negatively with global temperature, suggesting a role of global climate patterns in the establishment and maintenance of the LDG for North American mammals.

  15. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    , faulting), tectonic disturbance related to ocean opening could be responsible for deposition of thick Paleocene wedges along the western coast of Norway. During subsequent Cenozoic periods domal structures in the Norwegian shelf are a proof for mild and protracted compression. However, depositional......) changed the erosional regime in western Scandinavia from fluvial (inefficient in tectonically stable settings, almost regardless of the amount of precipitation) to glacial. Glacial erosion is much more effective and is apparently able to outpace tectonic processes responsible for development of high...... topography. Therefore, a hypothesis of climate control on erosion and deposition during the Cenozoic history of western Scandinavia and adjacent sedimentary basins emerges. This theory is further supported by higher sediment input and pronounced progradation patterns of the Molo Formation (deposited during...

  16. LATE CREATACEOUS-CENOZOIC SEDIMENTS OF THE BAIKAL RIFT BASIN AND CHANGING NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Viktor D. Mats

    2015-09-01

    Full Text Available The late Cretaceous-Cenozoic sediments of fossil soils and weathering crusts of the Baikal rift have been subject to long-term studies. Based on our research results, it is possible to distinguish the following litho-stratigraphic complexes which are related to particular stages of the rift development: the late Cretaceous–early Oligocene (crypto-rift Arheo-baikalian, the late Oligocene–early Pliocene (ecto-rift early orogenic Pra-baikalian, and the late Pliocene-Quaternary (ecto-rift late orogenic Pra-baikalian – Baikalian complexes. Changes of weathering modes (Cretaceous-quarter, soil formation (Miocene-quarter and differences of precipitation by vertical and lateral stratigraphy are analysed with regard to specific features of climate, tectonics and facial conditions of sedimentation. Tectonic phases are defined in the Cenozoic period of the Pribaikalie.

  17. The Norwegian Danish Basin: A key to understanding the Cenozoic in the eastern North Sea

    Science.gov (United States)

    Rasmussen, Thomas L.; Clausen, Ole R.; Andresen, Katrine J.; Goledowski, Bartosz

    2015-04-01

    The Danish part of Norwegian-Danish Basin, which constitutes the eastern part of the North Sea Basin, has been the key area for sequence stratigraphic subdivision and analysis of the Cenozoic succession since the mid 1990's. Widespread 3D seismic data, in the central parts of the North Sea Basin, as well as more scattered 3D seismic data in the Danish part of the Norwegian-Danish Basin, have given a more detailed understanding of the sequences and indicate that climate is tenable for the origin of Cenozoic sequence boundaries. The previous sequence stratigraphic interpretations have been an integrated part of an ongoing debate concerning vertical movements of the Fennoscandian shield versus the impact of climate and erosion. A newly accessed coherent regional 2D and reprocessed 3D seismic data set, in the Norwegian part of the Norwegian-Danish Basin, constitute the database for a new sequence stratigraphic analysis of the entire area. The objective of the new study is to test previous subdivisions and introduce a coherent 3D sequence stratigraphic analysis and depositional model for the entire Norwegian-Danish Basin. This analysis is necessary to get out of the stalemate with the uplift discussion. The study shows that the original subdivision by Michelsen et al. (1995, 1998) stands. However, revision of few a sequence boundaries may have to be adjusted due to new biostratigraphic information published. Furthermore, high-angle clinoforms and geomorphological transport complexes observed in the Danish North Sea Basin can be traced into the Norwegian sector. This together with the recognition of several other high-angle clinoform complexes, and their associated seismic facies distribution maps and thickness-maps, enhances the level of detail and constrains the previous published paleogeographic reconstructions of the Cenozoic. The geometry of the Cenozoic infill, in the Norwegian part of the Norwegian-Danish Basin, is here interpreted to be controlled by relative sea

  18. Petrography, Geochemistry and Petrogenesis of Volcanic Rocks, NW Ghonabad, Iran

    Directory of Open Access Journals (Sweden)

    Sedigheh Zirjanizadeh

    2016-07-01

    Full Text Available Introduction The study area is located in NW Gonabad, Razavi Khorasan Province, northern Lut block and eastern Iran north of the Lut Block. Magmatism in NW Gonabad produced plutonic and volcanic rock associations with varying geochemical compositions. These rocks are related to the Cenozoic magmatic rocks in Iran and belong to the Lut Block volcanic–plutonic belt. In this study, petrogenesis of volcanic units in northwest Gonabad was investigated. The volcanic rocks are andesites/trachyandesites, rhyolites, dacites/ rhyodacites and pyroclastics.These rocks show porphyritic, trachytic and embayed textures in phenocrysts with plagioclase, sanidine and quartz (most notably in dacite and rhyolite, hornblende and rare biotite. The most important alteration zones are propylitic, silicification and argillic.Four kaolinite- bearing clay deposits have been located in areas affectedby hydrothermal alteration of Eocene rhyolite, dacite and rhyodacite. Analytical techniques Five samples were analyzed for major elements by wavelength dispersive X-ray fluorescence (XRF and six samples were analyzed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS in the Acme Laboratories, Vancouver (Canada.Sr and Nd isotopic compositions were determined for four whole-rock samples at the Laboratório de GeologiaIsotópica da Universidade de Aveiro, Portugal. Results Petrography. The rocks in this area are consist of trachyte, andesite/ trachyandesite, dacite/ rhyodacite, principally as ignimbrites and soft tuff. The textures of phenocrysts are mainly porphyritic, glomerophyric, trachytic and embayed textures in plagioclase, hornblende and biotite. The groundmasses consist of plagioclase and fine-grainedcrystals of hornblende. Plagioclase phenocrysts and microlitesare by far the most abundant textures in andesite - trachyandesites (>25% and in size from 0.01 to 0.1mm. Euhedral to subhedral hornblende phenocrysts areabundant (3-5%and 0.1 to 0

  19. Cenozoic evolution of Neotethys and implications for the causes of plate motions

    OpenAIRE

    McQuarrie, N.; J. M. Stock; Verdel, C.; B. P. Wernicke

    2003-01-01

    Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations and new estimates of crustal shortening in Iran define the Cenozoic history of the Neotethyan ocean between Arabia and Eurasia. The new constraints indicate that Arabia-Eurasia convergence has been fairly constant at 2 to 3 cm/yr since 56 Ma with slowing of Africa-Eurasia motion to

  20. Assessing volcanic hazards with Vhub

    Science.gov (United States)

    Palma, J. L.; Charbonnier, S.; Courtland, L.; Valentine, G.; Connor, C.; Connor, L.

    2012-04-01

    Vhub (online at vhub.org) is a virtual organization and community cyberinfrastructure designed for collaboration in volcanology research, education, and outreach. One of the core objectives of this project is to accelerate the transfer of research tools to organizations and stakeholders charged with volcano hazard and risk mitigation (such as volcano observatories). Vhub offers a clearinghouse for computational models of volcanic processes and data analysis, documentation of those models, and capabilities for online collaborative groups focused on issues such as code development, configuration management, benchmarking, and validation. Vhub supports computer simulations and numerical modeling at two levels: (1) some models can be executed online via Vhub, without needing to download code and compile on the user's local machine; (2) other models are not available for online execution but for offline use in the user's computer. VHub also has wikis, blogs and group functions around specific topics to encourage collaboration, communication and discussion. Some of the simulation tools currently available to Vhub users are: Energy Cone (rapid delineation of the impact zone by pyroclastic density currents), Tephra2 (tephra dispersion forecast tool), Bent (atmospheric plume analysis), Hazmap (simulate sedimentation of volcanic particles) and TITAN2D (mass flow simulation tool). The list of online simulations available on Vhub is expected to expand considerably as the volcanological community becomes more involved in the project. This presentation focuses on the implementation of online simulation tools, and other Vhub's features, for assessing volcanic hazards following approaches similar to those reported in the literature. Attention is drawn to the minimum computational resources needed by the user to carry out such analyses, and to the tools and media provided to facilitate the effective use of Vhub's infrastructure for hazard and risk assessment. Currently the project

  1. Unusual evolution of silica-under- and -oversaturated alkaline rocks in the Cenozoic Ambohimirahavavy Complex (Madagascar): Mineralogical and geochemical evidence

    Science.gov (United States)

    Estrade, Guillaume; Béziat, Didier; Salvi, Stefano; Tiepolo, Massimo; Paquette, Jean-Louis; Rakotovao, Soatsitohaina

    2014-10-01

    The almost unknown Ambohimirahavavy ring complex in the Cenozoic alkaline province of northwestern Madagascar has recently attracted considerable interest because of the discovery of important rare-metal mineralization. The complex consists of arc-shaped bodies made up of silica-under- and -oversaturated syenites and extremely evolved peralkaline granitic dykes, as well as several mafic to felsic volcanic units, including basalt, phonolite and trachyte, all of which have an alkaline affinity. Uranium-lead zircon ages of 24.2 ± 0.6 Ma and 23.5 ± 6.8 Ma have been obtained for nepheline syenites and peralkaline granitic dykes, respectively, which, together with field data and ages of neighboring complexes, support emplacement controlled by regional lithospheric structures, rather than an evolving hot spot. Whole-rock major and trace-element and Sr-Nd isotopic data for the mafic suite suggest that the parental melt of this complex was generated by low degrees of melting of a metasomatized mantle source with residual amphibole. Fractional crystallization of this alkali basaltic melt likely produced the silica-undersaturated suite. We propose that the silica-oversaturated suite evolved from the undersaturated melt after contamination of the latter by crustal material. Further evolution to peralkaline compositions in both suites is attributed mainly to plagioclase and alkali feldspar segregation. Nepheline and feldspar compositions, as well as considerations of mineral equilibria among mafic silicates and Fe-Ti oxide minerals indicate crystallization temperatures of 1000 to 700 °C and an oxygen fugacity of 0.4 to 0.8 log units below the fayalite-magnetite-quartz (FMQ) buffer at 1 kbar for the silica-undersaturated melt, and temperatures of 860 to 570 °C and an oxygen fugacity of 1.5 to 3.8 log units below FMQ for the oversaturated syenitic melt. The undersaturated melt evolved towards a more peralkaline composition. Crystallization of arfvedsonite plus aegirine

  2. The Curious Decoupling of Magmatism and Plate Tectonics During the Cenozoic in Western North America: Insight From the NAVDAT Database

    Science.gov (United States)

    Glazner, A. F.; Walker, J. D.; Farmer, G. L.; Bowers, T. D.

    2004-12-01

    Since the widespread acceptance of plate tectonics, magmatism in the western U.S. has been explained by subduction along the west coast of North America and destruction of the subduction system by development of the San Andreas transform fault system. However, re-analysis of space-time patterns of magmatism in western North America calls many of these inferred patterns of magmatism into question. Animation of space-time patterns found in the developing NAVDAT dataset (which currently hosts about 10,000 Cenozoic age and/or geochemical analyses; navdat.geongrid.org), demonstrates that: (1) subduction-type (e.g., intermediate) volcanism is poorly linked to the subduction system; (2) there is little evidence that slab windows controlled magmatism; (3) magmatism was clearly migratory, but not in ways that can be explained by plate-tectonic processes; and (4) magmatism was migratory at length scales ranging from 1000s of km (continental) to 10s of km (county). Several space-time patterns are evident in the NAVDAT animations, including: (1) a sweep from Montana into Nevada from 50 to about 20 Ma; (2) a clockwise sweep around the Colorado Plateau from New Mexico to southern Nevada, from about 30 to 15 Ma; (3) a burst of magmatism at about 16 Ma in northern Nevada, followed by outward sweeps to Yellowstone, central Oregon, and the Sierra Nevada; (4) a burst of magmatism in the Sierra Nevada at 3.5 Ma; and (5) several local migrations, including from Phoenix north onto the Colorado Plateau and from the San Francisco Bay area north to the Geysers geothermal field. Some of these patterns have been tied to specific events (e.g., impingement of the Yellowstone plume and Pliocene delamination), but the others are difficult to relate to plate-tectonic events. They may be caused by local tectonic events (propagating rifts?), minor convective rolls in the asthenosphere, lithospheric delamination, or delamination of a flat Laramide slab. Whatever their origin, database animation

  3. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  4. Cenozoic Mineralization in China, as a Key to Past Mineralization and a Clue to Future Prospecting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many Cenozoic metal deposits have been found during the past decade. Among them, the Fuwan Ag deposit in Guangdong is the largest Ag deposit in China. Besides, the largest Cu deposit of China in Yulong, Tibet, the largest Pb-Zn deposit of China in Jinding, Yunnan, and the largest Au deposit of China in Jinguashi,Taiwan, were also formed in the Cenozoic. Why so many important "present" deposits formed during such a short period of geological history is the key problem. The major reason is that different tectonic settings control different kinds of magmatic activity and mineralization at the same time. In southwestern China, porphyry-type Cu deposits such as Yulong were formed during the early stage of the Himalayan orogeny, sediment-hosted Pb-Zn deposits such as Jinding were formed within intermontane basins related to deep faults, and carbonatite-related deposits such as the Maoniuping REE deposit and alkalic magmatic rock-related deposits such as the Beiya Au deposit originated from the mantle source. In southeastern China, the Fuwan Ag deposit was related to continental rifting which was triggered by the mantle plume. In Taiwan, the Jinguashi Au deposit was formed during the subduction process of an oceanic plate beneath a continental plate. Besides, the features such as the diversification, inheritance, large size, deep source of metals and fluids of the Cenozoic (Present or Recent ) mineralization can be used as a key to the search for past deposits.

  5. Cenozoic Antarctic DiatomWare/BugCam: An aid for research and teaching

    Science.gov (United States)

    Wise, S.W.; Olney, M.; Covington, J.M.; Egerton, V.M.; Jiang, S.; Ramdeen, D.K.; ,; Schrader, H.; Sims, P.A.; Wood, A.S.; Davis, A.; Davenport, D.R.; Doepler, N.; Falcon, W.; Lopez, C.; Pressley, T.; Swedberg, O.L.; Harwood, D.M.

    2007-01-01

    Cenozoic Antarctic DiatomWare/BugCam© is an interactive, icon-driven digital-image database/software package that displays over 500 illustrated Cenozoic Antarctic diatom taxa along with original descriptions (including over 100 generic and 20 family-group descriptions). This digital catalog is designed primarily for use by micropaleontologists working in the field (at sea or on the Antarctic continent) where hard-copy literature resources are limited. This new package will also be useful for classroom/lab teaching as well as for any paleontologists making or refining taxonomic identifications at the microscope. The database (Cenozoic Antarctic DiatomWare) is displayed via a custom software program (BugCam) written in Visual Basic for use on PCs running Windows 95 or later operating systems. BugCam is a flexible image display program that utilizes an intuitive thumbnail “tree” structure for navigation through the database. The data are stored on Micrsosoft EXCEL spread sheets, hence no separate relational database program is necessary to run the package

  6. Biogeographical consequences of Cenozoic tectonic events within East Asian margins: a case study of Hynobius biogeography.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available Few studies have explored the role of Cenozoic tectonic evolution in shaping patterns and processes of extant animal distributions within East Asian margins. We select Hynobius salamanders (Amphibia: Hynobiidae as a model to examine biogeographical consequences of Cenozoic tectonic events within East Asian margins. First, we use GenBank molecular data to reconstruct phylogenetic interrelationships of Hynobius by bayesian and maximum likelihood analyses. Second, we estimate the divergence time using the bayesian relaxed clock approach and infer dispersal/vicariance histories under the 'dispersal-extinction-cladogenesis' model. Finally, we test whether evolutionary history and biogeographical processes of Hynobius should coincide with the predictions of two major hypotheses (the 'vicariance'/'out of southwestern Japan' hypothesis. The resulting phylogeny confirmed Hynobius as a monophyletic group, which could be divided into nine major clades associated with six geographical areas. Our results show that: (1 the most recent common ancestor of Hynobius was distributed in southwestern Japan and Hokkaido Island, (2 a sister taxon relationship between Hynobius retardatus and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene, (3 ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China, 'Korean Peninsula and northeastern China' as well as northeastern Honshu during the Late Eocene-Late Miocene. Our findings suggest that Cenozoic tectonic evolution plays an important role in shaping disjunctive distributions of extant Hynobius within East Asian margins.

  7. A Prediction of Increase in Subglacial Volcanism Beneath the West Antarctic Ice Sheet (WAIS) as Future Deglaciation Caused by Ocean Circulation Proceeds

    Science.gov (United States)

    Behrendt, J. C.; LeMasurier, W. E.

    2015-12-01

    Many decades of aeromagnetic surveying (e.g. Behrendt, 1964; 2013; and others) over the West Antarctic Ice sheet (WAIS) have shown >1000 high amplitude, shallow source magnetic anomalies interpreted as as indicating subglacial volcanic centers of late Cenozoic age to presently active. Similar anomalies exist over exposed volcanic rocks bordering the WAIS in places.Recent papers (e.g. Wouters et al., 2015; Paolo, et al.; 2015 and others) based on satellite altimetry have shown dramatic thinning and retreat of ice shelves, particularly those bordering the Amundsen and Bellingshausen Seas, caused by melting from circulation of warming sea water. Previous workers have shown that when ice shelves collapse, the ice streams previously dammed by them accelerate an order of magnitude higher velocity, and surface elevation decreases. GRACE satellite interpretations (e.g. Velicogna et al., and others) indicate mass loss of WAIS in recent years.The bed elevation beneath the WAIS deepens inland from the Amundsen and Bellingshausen coasts, although high relief volcanic topography is present in a number of areas beneath the ice.Crowley et a. (2015) have shown that glacial cycles may drive production of oceanic crust by lowering pressure in the mantle resulting in increased melting and magma production. Increased volcanism due to deglaciation in Iceland has apparently produced increased in volcanic activity there. Deglaciation of the Norwegian continental shelf has resulted in faulting of the sea floor and similar faulting has been reported of the Ross Sea shelf following deglaciation there.I suggest here that as the WAIS collapses in the future resulting from climate change, an increase in volcanic activity beneath the ice might be expected. This may provide a feedback mechanism for increase in ice melting.

  8. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  9. Climatic Impact of Volcanic Eruptions

    Directory of Open Access Journals (Sweden)

    Gregory A. Zielinski

    2002-01-01

    Full Text Available Volcanic eruptions have the potential to force global climate, provided they are explosive enough to emit at least 1–5 megaton of sulfur gases into the stratosphere. The sulfuric acid produced during oxidation of these gases will both absorb and reflect incoming solar radiation, thus warming the stratosphere and cooling the Earth’s surface. Maximum global cooling on the order of 0.2–0.3°C, using instrumental temperature records, occurs in the first 2 years after the eruption, with lesser cooling possibly up to the 4th year. Equatorial eruptions are able to affect global climate, whereas mid- to high-latitude events will impact the hemisphere of origin. However, regional responses may differ, including the possibility of winter warming following certain eruptions. Also, El Niño warming may override the cooling induced by volcanic activity. Evaluation of different style eruptions as well as of multiple eruptions closely spaced in time beyond the instrumental record is attained through the analysis of ice-core, tree-ring, and geologic records. Using these data in conjunction with climate proxy data indicates that multiple eruptions may force climate on decadal time scales, as appears to have occurred during the Little Ice Age (i.e., roughly AD 1400s–1800s. The Toba mega-eruption of ~75,000 years ago may have injected extremely large amounts of material into the stratosphere that remained aloft for up to about 7 years. This scenario could lead to the initiation of feedback mechanisms within the climate system, such as cooling of sea-surface temperatures. These interacting mechanisms following a mega-eruption may cool climate on centennial time scales.

  10. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean

    Science.gov (United States)

    Hall, Robert

    2012-10-01

    The heterogeneous Sundaland region was assembled by closure of Tethyan oceans and addition of continental fragments. Its Mesozoic and Cenozoic history is illustrated by a new plate tectonic reconstruction. A continental block (Luconia-Dangerous Grounds) rifted from east Asia was added to eastern Sundaland north of Borneo in the Cretaceous. Continental blocks that originated in western Australia from the Late Jurassic are now in Borneo, Java and Sulawesi. West Burma was not rifted from western Australia in the Jurassic. The Banda (SW Borneo) and Argo (East Java-West Sulawesi) blocks separated from western Australia and collided with the SE Asian margin between 110 and 90 Ma, and at 90 Ma the Woyla intra-oceanic arc collided with the Sumatra margin. Subduction beneath Sundaland terminated at this time. A marked change in deep mantle structure at about 110°E reflects different subduction histories north of India and Australia since 90 Ma. India and Australia were separated by a transform boundary that was leaky from 90 to 75 Ma and slightly convergent from 75 to 55 Ma. From 80 Ma, India moved rapidly north with north-directed subduction within Tethys and at the Asian margin. It collided with an intra-oceanic arc at about 55 Ma, west of Sumatra, and continued north to collide with Asia in the Eocene. Between 90 and 45 Ma Australia remained close to Antarctica and there was no significant subduction beneath Sumatra and Java. During this interval Sundaland was largely surrounded by inactive margins with some strike-slip deformation and extension, except for subduction beneath Sumba-West Sulawesi between 63 and 50 Ma. At 45 Ma Australia began to move north; subduction resumed beneath Indonesia and has continued to the present. There was never an active or recently active ridge subducted in the Late Cretaceous or Cenozoic beneath Sumatra and Java. The slab subducted between Sumatra and east Indonesia in the Cenozoic was Cretaceous or older, except at the very western end

  11. Variations in Cenozoic seawater uranium reconstructed from well preserved aragonitic fossil corals

    Science.gov (United States)

    Gothmann, A. O.; Higgins, J. A.; Bender, M. L.; Stolarski, J.; Adkins, J. F.; McKeon, R. E.; Farley, K. A.; Wang, X.; Planavsky, N.

    2015-12-01

    U/Ca ratios were measured in a subset (n ≈ 30) of well preserved scleractinian fossil corals previously described by Gothmann et al. (2015) in order to investigate Cenozoic changes in seawater [U]. He/U dating studies and measurements of 234U/238U and δ238/235U provide constraints on fossil coral U preservation. He/U ages also demonstrate the ability of well preserved coral aragonite to retain most of its radiogenic He over million year timescales. We find that fossil coral U/Ca has increased by a factor of ~4 between the Early Cenozoic and today. This number is calculated from the change in seawater [Ca2+] implied by brine inclusions and other proxies, and the assumption that the U/Ca in shallow water corals equals the seawater ratio. The change cannot be attributed to a dependence of coral U uptake on seawater pH or [CO32-] (e.g., Inoue et al., 2011), which would lead to a decrease in U/Ca going forward in time. Instead, we suggest that seawater [U] has increased since the Early Cenozoic. Possible explanations for the inferred change include: (1) a small decrease in uranium uptake in suboxic and anoxic sediments over the Cenozoic, (2) a decrease in the rate of low-temperature hydrothermal alteration, and associated U uptake, over the Cenozoic, and (3) a decrease in U removal from seawater resulting from an increase in UO2-CO3 complexation, as originally suggested by Broecker (1971). References: Broecker, W. S. (1971) A Kinetic Model for the Chemical Composition of Sea Water. Quaternary Research, 1, 188-207. Gothmann, A.M., Stolarski, J., Adkins, J.F., Dennis, K.J., Schrag, D.P., Schoene, B., Bender, M.L. (2015) Fossil corals as an archive of secular variations in seawater chemistry. Geochimica et Cosmochimica Acta, 160, 188-208. Inoue, M., Suwa, R., Suzuki, A., Sakai, K., and Kawahata, H., (2011) Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophysical Research Letters 38, 12801-12804.

  12. Constraining the vertical surface motions of the Hampshire Basin, south England During the Cenozoic

    Science.gov (United States)

    Smith, Philip; England, Richard; Zalasiewicz, Jan

    2016-04-01

    The potential effect of rising sea level on the UK has received considerable attention in recent years. However, the ongoing long-term changes in surface topography of the UK driven by regional tectonics and the mechanisms responsible are not fully understood. It is thought that glacial loading/unloading is the primary influence. However, this is inconsistent with present-day vertical surface motions recorded from Continuous Global Positioning Stations (CGPS) across the UK. The lateral variations in the present day motions are too complex to be explained by glacial isostatic rebound. We are investigating the hypothesis that the vertical motions of SE England also reflect the long term tectonic history by backstripping the Cenozoic geological record. So far the Paleogene stratigraphic record of the Hampshire basin in southern England has been investigated and using a series of deep boreholes that reach the chalk basement, a 2-D backstripping method has been applied. Subsidence analysis of cliff sections and boreholes reveal the Hampshire Basin was tectonically subsiding at a steady rate from 56.5Ma and any major periods of uplift and denudation to the present day state must have occurred from the mid Oligocene onwards. At this time the northern and western regions of the UK were believed to be uplifting as evidenced by heavy mineral transport directionns and sediment drainage patterns. A rapid increase in tectonic subsidence from 42Ma recorded by the three Isle of Wight sections in close proximity to an existing Variscan fault, thought to reactivate as a thrust during the Cenozoic, suggests a compressional stress regime in this region. The stress pattern observed from the tectonic subsidence data and evidence from drainage patterns supports a model in which the UK was uplifting in the north and west while the south east was subsiding. As this pattern is similar to the present day vertical surface motions and pre-dates glaciation, we propose glacial unloading as a

  13. The Birimian volcanism in the northeastern Ivory-Coast, evidence for two distinct volcano-tectonic phases in the geodynamical evolution during the Palaeo-Proterozoic; Le volcanisme birimien du nord-est de la Cote-d`Ivoire, mise en evidence de deux phases volcano-tectoniques distinctes dans l`evolution geodynamique du Paleoproterozoique

    Energy Technology Data Exchange (ETDEWEB)

    Pouclet, A.; Vidal, M. [Orleans Univ., 45 (France); Delor, C.; Simeon, Y. [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France); Alric, G.

    1996-12-31

    In the northeastern Ivory-Coast, volcanic formations having different geochemical features are located in the Haute-Comoe volcano-sedimentary Birimian terrains (Palaeo-Proterozoic). They consist of tholeiites belonging to greenstone belts and showing an oceanic magmatic signature, andesitic calc-alkaline lavas interbedded in the sediments of the Haute-Comoe Basin and related to an active margin-type magmatic genesis, and rhyodacitic intrusions spatially and geochemically linked to granitoid plutons. The magmatic characterization, in terms of geotectonic contexts leads to the following scheme: formation of the greenstone belts in a juvenile oceanic context with building of oceanic plateau (2.195 Ga), genesis of granitoid batholites with metamorphose the belts and beget a first continental crust (2.15 Ga), opening of a sedimentary basin in a shear-zone corridor with local production of calc-alkaline volcanism due to heat transfer along a major lithospheric fault (2.15 - 2.10 Ga), shortening of the basin with leucogranite intrusions in the same transcurrent context (2.09 Ga). This geodynamical scheme takes account of the distinction between two major volcano-tectonic phases: a tholeiitic phase with the greenstone belt formation and then, a calc-alkaline phase linked to the structural evolution of the sedimentary basin. This model could be applied to other Ivory-Coast Birimian terrains, but it is necessary to distinguish the volcanics and the sediments belonging to the greenstone belts and those of the basins which were emplaced between the batholiths. (authors). 78 refs., 9 figs., 1 tab.

  14. Tectonic and magmatic evolution of the northwestern Basin and Range and its transition to unextended volcanic plateaus: Black Rock Range, Nevada

    Science.gov (United States)

    Lerch, D.W.; Miller, E.; McWilliams, M.; Colgan, J.

    2008-01-01

    The seismically active eastern and western margins of the northern Basin and Range have been extensively studied, yet the northwestern margin of the province remains incompletely understood. The Black Rock Range of northwestern Nevada straddles the transition from the Basin and Range province to the south and east, and flat-lying volcanic plateaus to the west. This poorly understood range preserves a remarkably complete record of Cenozoic magmatism and provides an important window into the pre-Miocene history of the unextended volcanic plateaus of northeastern California and southern Oregon. Geologic mapping and 40Ar/39Ar geochronology from the northern Black Rock Range document three significant episodes of Eocene to middle Miocene volcanism. Eocene (35 Ma) basalts directly overlie Mesozoic granites and arc-related volcanic and sedimentary rocks. Locally erupted Oligocene to early Miocene (27-21 Ma) bimodal volcanic rocks comprise the bulk of the Cenozoic section and conformably overlie the Eocene basalt flows. These bimodal units include rhyolitic lavas, variably welded rhyolitic ash flows, unwelded ash-fall deposits, and thin basalt flows. In the neighboring Pine Forest Range ???20 km to the north, similar Oligocene to early Miocene units are overlain by more than 500 m of ca. 16.4 Ma Steens-equivalent basalt flows and are capped by ca. 16 Ma rhyolitic ash-flow tuffs. In the northern Black Rock Range, the ca. 16.4 Ma middle Miocene basalts are absent from the section, and a 16.2 Ma rhyolitic ash-flow tuff directly overlies the early Miocene flows. Basaltic and rhyolitic volcanic products in the northern Black Rock Range span 35-16 Ma, with many of the Oligocene volcanic units derived from local vents and dikes. Despite the map-scale complexities of locally derived lava flows, the Cenozoic section is broadly conformable and dips gently (???5??-10??) to the northwest. The region experienced no significant tilting between 35 and 16 Ma, with moderate tilting (???5

  15. A unique opportunity to reconstruct the volcanic history of the island of Nevis, Lesser Antilles

    Science.gov (United States)

    Saginor, I.; Gazel, E.

    2012-12-01

    ), or volcanic hazards (Simpson and Shepard, 2002), rather than petrology and volcanic history. Fourth, there is significant major element variation within the Lesser Antilles volcanic chain (Brown, et al., 1977), with alkali lavas dominant in the South and tholeiitic in the North. In addition to arc-wide variations, there is a fairly dramatic increase in silica content in the vicinity around Nevis. St. Kitts is known to have basalts (Toothill et al., 2007), while are completely absent from Nevis, a mere 3 km to the southeast (Hutton and Nockolds, 1978; current fieldwork). Since the depth to the subducting slab does not change significantly along the arc (Bengoubou-Valerius et al., 2008), these variations may instead correlate to the age of the lavas themselves. Sampling an intact drill core is an efficient way to investigate the temporal evolution of a volcano. Fifth, St. Eustatius, St. Kitts, and Nevis occupy the same volcanic feature as seen in Google Earth ocean floor bathymetry, providing a unique opportunity to study along strike geochemical variations within a narrow geographic region.

  16. MISR Observations of Etna Volcanic Plumes

    Science.gov (United States)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-01-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.

  17. Cenozoic lithospheric evolution of the Bohai Bay Basin, eastern North China Craton: Constraint from tectono-thermal modeling

    Science.gov (United States)

    Liu, Qiongying; He, Lijuan; Huang, Fang; Zhang, Linyou

    2016-01-01

    It is well established that the lithosphere beneath the eastern North China Craton (NCC) had been thinned before the Cenozoic. A 2D multi-phase extension model, in which the initial crustal and lithospheric thicknesses are variable, is presented to reconstruct the initial thicknesses of the crust and lithosphere in the early Cenozoic and to further investigate the lithospheric evolution beneath the eastern NCC through the Cenozoic. We conduct thermal modeling along three profiles from east to west in the Bohai Bay Basin, which is the center of the lithospheric destruction and thinning of the NCC. Using multiple constraints, such as tectonic subsidence, the present-day heat flow and the Moho depth, we determine the initial crustal and lithospheric thicknesses of the Bohai Bay Basin before the Cenozoic rift to be 33-36 km and 80-105 km, respectively. The model results show that the most rapid lithospheric thinning during the Cenozoic occurred in the middle Eocene for most depressions, and the thinning activity ceased at the end of the Oligocene, reaching a minimum lithospheric thickness of 53-74 km, followed by a thermal relaxation phase. Combined with previous studies, we infer that the lithosphere beneath the eastern NCC experienced two stages of alternating thinning and thickening: notable thinning in the Early Cretaceous and Paleogene, and thickening in the Late Cretaceous and late Cenozoic. We believe that thermo-chemical erosion, together with extension, was probably the major mechanism of the significant lithospheric removal during the Mesozoic, whereas the Cenozoic lithospheric thinning was mainly dominated by tectonic extension in the eastern NCC; lithospheric thickening was generally a result of thermal cooling.

  18. Toward Forecasting Volcanic Eruptions using Seismic Noise

    CERN Document Server

    Brenguier, Florent; Campillo, Michel; Ferrazzini, Valerie; Duputel, Zacharie; Coutant, Olivier; Nercessian, Alexandre

    2007-01-01

    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.

  19. Volcanic caves of East Africa - an overview

    Directory of Open Access Journals (Sweden)

    Jim W. Simons

    1998-01-01

    Full Text Available Numerous Tertiary to recent volcanoes are located in East Africa. Thus, much of the region is made up volcanic rock, which hosts the largest and greatest variety of East Africas caves. Exploration of volcanic caves has preoccupied members of Cave Exploration Group of East Africa (CEGEA for the past 30 years. The various publications edited by CEGEA are in this respect a treasure troves of speleological information. In the present paper an overview on the most important volcanic caves and areas are shortly reported.

  20. Helium isotope studies of the mantle xenoliths and megac-rysts from the Cenozoic basalts in the eastern China

    Institute of Scientific and Technical Information of China (English)

    LI; Yanhe

    2002-01-01

    [1]Molan, E., Zhao Dasheng, The Cenozoic Basalts and Plutonic Xenoliths in the Eastern China (in Chinese), Beijing: Scien-ce Press, 1987.[2]Liu Ruoxin, ed. The Chronology and the Geochemistry of the Cenozoic Volcanic Rocks in the Eastern China (in Chinese), Beijing: Seismology Press, 1992.[3]Liu, C. Q., Masuda, A., Xie, G. H., Isotope and trace element geochemistry of alkali basalts and associated megacrysts from the Huangyishan volcano, Kuandian, Liaoning, NE China, Chem. Geol., 1991, 97: 219-231.[4]Liu Congqiang, Masuda, A., Xie Guanghong, REE, Sr and Nd isotope geochemistry of the mantle xenoliths from Huan-gyishan basalt in Kuandian of Liaoning, Geological Sciences (in Chinese), 1994, 28(3): 228-234.[5]Xie Guanghong, Zhang Ming, Liu Congqiang, Mantle enrichment events and hydrated minerals-- The evidence from mantle xenoliths and high-pressure megacrysts, in the Geochemistry of the Mantle Fluids and the Asthenosphere (Asthe-noliths) (in Chinese) (eds. Du Letian et al.), Beijing: Geological Publishing House, 1996, 272-310.[6]Du Letian, Geochemistry of Mantle Fluids and Asthenosphere (Asthenoliths) (in Chinese), Beijing: Geological Publishing House, 1996.[7]Xia Qunke, Chen Daogong, Deloule, E. et al., Hydrogen isotope compositions of mantle-derived mica megacrysts from ion microprobe analysis, Science in China, Ser. D, 1999, 42(4): 392-398.[8]Zheng Jianping, Lu Fengxiang, O'Reilly, S. Y. et al., The mantle transformation and replacement in the eastern North China: Laser probe study on clinopyroxenes, Science in China (in Chinese), Ser, D, 2000, 30(4): 373-382.[9]Ozima, M., Podosek, F. A., Noble gas geochemistry, New York: Cambridge Univ. Press, 1983.[10]Anderson, D. L., Helium-3 from the mantle: Primordial signal or cosmic dust? Science, 1993, 261: 170-176.[11]Kurz, M., Jenkins, W. J., Hart, S. R. et al., Helium isotopic variations in volcanic rocks from Loihi Seamount and the is-land of Hawaii, Earth Planet Sci. Lett

  1. On the Role of Climate Forcing by Volcanic Sulphate and Volcanic Ash

    OpenAIRE

    Baerbel Langmann

    2014-01-01

    There is overall agreement that volcanic sulphate aerosols in the stratosphere can reduce solar radiation reaching the earth’s surface for years, thereby reducing surface temperatures, affecting global circulation patterns and generally the global climate system. However, the response of the climate system after large volcanic eruptions is not fully understood and global climate models have difficulties to reproduce the observed variability of the earth system after large volcanic eruptions u...

  2. Mantle Response to Collision, Slab Breakoff & Lithospheric Tearing in Anatolian Orogenic Belts, and Cenozoic Geodynamics of the Aegean-Eastern Mediterranean Region

    Science.gov (United States)

    Dilek, Yildirim; Altunkaynak, Safak

    2010-05-01

    The geochemical and temporal evolution of the Cenozoic magmatism in the Aegean, Western Anatolian and peri-Arabian regions shows that plate tectonic events, mantle dynamics, and magmatism were closely linked in space and time. The mantle responded to collision-driven crustal thickening, slab breakoff, delamination, and lithospheric tearing swiftly, within geologically short time scales (few million years). This geodynamic continuum resulted in lateral mantle flow, whole-sale extension and accompanying magmatism that in turn caused the collapse of tectonically and magmatically weakened orogenic crust. Initial stages of post-collisional magmatism (~45 Ma) thermally weakened the orogenic crust in Tethyan continental collision zones, giving way into large-scale extension and lower crustal exhumation via core complex formation starting around 25-23 Ma. Slab breakoff was the most common driving force for the early stages of post-collisional magmatism in the Tethyan mountain belts in the eastern Mediterranean region. Magmatic rocks produced at this stage are represented by calc-alkaline-shoshonitic to transitional (in composition) igneous suites. Subsequent lithospheric delamination or partial convective removal of the sub-continental lithospheric mantle in collision-induced, overthickened orogenic lithosphere caused decompressional melting of the upwelling asthenosphere that in turn resulted in alkaline basaltic magmatism (punctuated by the collisional accretion of several ribbon continents (i.e. Pelagonia, Sakarya, Tauride-South Armenian) to the southern margin of Eurasia, and by related slab breakoff events. Exhumation of middle to lower crustal rocks and the formation of extensional metamorphic domes occurred in the backarc region of this progressively southward-migrated trench and the Tethyan (Afro-Arabian) slab throughout the Cenozoic. Thus, slab retreat played a major role in the Cenozoic geodynamic evolution of the Aegean and Western Anatolian regions. However

  3. Volcanic and sedimentary-rock aquifers

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Volcanic and sedimentary-rock aquifers in the states of Montana, Wyoming, Idaho, Nevada, California, Oregon, and...

  4. Volcanics in the Gulf Coast [volcanicg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The volcanic provinces are modified after Plate 2, Principal structural features, Gulf of Mexico Basin (compiled by T.E. Ewing and R.F. Lopez) in Volume J, The...

  5. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  6. A multi-isotope approach to understanding the evolution of Cenozoic magmatism in the northeastern Basin and Range: Results from igneous rocks in the Albion-Raft River-Grouse Creek metamorphic core complex

    Science.gov (United States)

    Konstantinou, A.; Strickland, A.; Miller, E. L.

    2012-12-01

    Deep crustal rocks exposed by extensional processes in metamorphic core complexes provide a unique opportunity to address the magmatic and isotopic evolution of the crust and assess the relative crust versus mantle contributions in Cenozoic igneous rocks exposed in the complexes. The Albion-Raft River-Grouse Creek metamorphic core complex exposes mid-crustal rocks that resided at depths of ~15-20 km before the onset of Cenozoic extension. Three major Cenozoic magmatic events are represented in the complex and have been studied using multiple isotopic systems (whole rock Sr and Nd coupled with the Oxygen isotopes in zircon). These three major events are: (1) 42-31 Ma intrusion of a composite plutonic complex of calc-alkaline composition that intrudes both upper crustal rocks (~5-10 km depth) and deeper rocks. (2) A 32-25 Ma plutonic complex, with evolved calc-alkaline composition that intruded in the middle crust (~12-15 km depth), and (3) A 10-8 Ma bimodal (basalt-rhyolite) suite of volcanic rocks that contain high-T anhydrous mineral assemblages erupted across the complex. The pre-extensional crust consisted of an upper crust composed primarily of Neoproterozoic through Triassic metasedimentary rocks (schist and quartzite at its base and limestone at its top). The middle crust consists of late Archean orthogneiss with evolved composition (metamorphosed peraluminous granite) with average 87Sr/86Sr40~0.800, ɛNd40~ -43.4 and δ18Ozirc ~5.7‰. The lower crust is inferred to have been composed of Precambrian intermediate composition igneous rocks with average 87Sr/86Sr40~0.750, ɛNd40~ -37.5 and δ18Ozirc ~5.9‰, and Precambrian mafic rocks with average 87Sr/86Sr40~0.717, ɛNd40~ -25 and δ18Ozirc ~7.0‰. Existing and new data indicate that the 42-31 Ma upper crustal plutonic complex ranges in isotopic composition from 87Sr/86Sri=0.709-0.712, ɛNdi=-15 to -25 and δ18Ozirc 4.7-6.5‰. The composition of the 32-25 Ma middle crustal plutonic complex ranges from 87Sr

  7. Medical effects of volcanic eruptions

    Science.gov (United States)

    Baxter, Peter J.

    1990-09-01

    Excluding famine and tsunamis, most deaths in volcanic eruptions have been from pyroclastic flows and surges (nuées ardentes) and wet debris flows (lahars). Information on the causes of death and injury in eruptions is sparse but the available literature is summarised for the benefit of volcanologists and emergency planners. In nuées, thermal injury may be at least as important as asphyxia in causing immediate deaths. The high temperature of the gases and entrained particles readily causes severe burns to the skin and the air passages and the presence of both types of injury in an individual may combine to increase the delayed mortality risk from respiratory complications or from infection of burns. Trauma from missiles or body displacement is also common, but the role of asphyxiant or irritant gases, and steam, remains unclear. The ratio of dead: injured is much higher than in other natural disasters. At the periphery of a nuée being protected inside buildings which remain intact appears to greatly increase the chances of survival. In lahars, infected wounds and crush injury are the main delayed causes of death, and the scope for preventive measures, other than evacuation, is small. The evidence from Mount St. Helens, 1980, and other major eruptions indicates that, although mortality is high within the main zone of devastation and in the open, emergency planning should concentrate on the periphery of a nuée where preventive measures are feasible and could save many lives in densely populated areas.

  8. Crossing the glass transition during volcanic eruptions

    OpenAIRE

    Richard, Dominique

    2015-01-01

    Predicting the occurrence and the evolving nature of volcanic eruptions remains an outstanding challenge. The complexity of volcanic Systems requires the use of many different approaches to gain a more profound understanding of the interplay of parameters such as magma temperature, composition, volatile content, cooling rate and viscosity as they interactively control the rheology of magma. This study focusses on three different scenarios in which the glass transition, a kinetic boundar...

  9. Volcanic ash detection by GPS signal

    OpenAIRE

    Aranzulla, M.; Dipartimento di Fisica e Astronomia, Università di Catania; Cannavò, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Scollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Puglisi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Immè, G.; sita` degli studi di Catania

    2013-01-01

    We investigate the ability of GPS to detect volcanic plumes at Mt. Etna, Italy. We use a robust statistical approach to highlight whether the presence of a volcanic plume in the atmosphere may really affect the GPS undifferenced post-fit phase residuals. The proposed method has been tested for the September 4–5, 2007 activity of Mt. Etna. This eruption produced powerful lava fountains forming a weak, a few kilometers high plume for several hours, representing typical a...

  10. The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone

    Science.gov (United States)

    Guo, Pengyuan; Niu, Yaoling; Sun, Pu; Ye, Lei; Liu, Jinju; Zhang, Yu; Feng, Yue-xing; Zhao, Jian-xin

    2016-01-01

    in the Cenozoic. This recent/current metasomatic process also explains the strong decoupling of the abundances and ratios of incompatible elements (e.g., Rb/Sr, Sm/Nd, Lu/Hf, La/Sm, Sm/Yb) from Sr-Nd-Hf isotopes because of the inadequate time for radiogenic ingrowth. In this case, we emphasize that the Cenozoic volcanism in eastern China (including the CIM basalts) is a special consequence of plate tectonics. Because of the known presence of subducted oceanic lithosphere beneath eastern China and because of the close resemblance of the intra-plate CIM alkaline basalts with the present-day ocean island basalts (OIBs) in terms of incompatible element systematics, we emphasize the potential role of subducted ocean crust in mantle source regions of oceanic basalts, including E-MORBs (enriched type mid-ocean ridge basalts) and OIBs, but low-F melt metasomatism in the source regions is required as the principal enrichment mechanism because otherwise it is unlikely to produce incompatible-element enriched signature in E-MORB and OIB.

  11. Lunar volcanism in space and time

    Science.gov (United States)

    Head, J. W., III

    1976-01-01

    The role of lunar volcanism in the history of the moon is documented using lunar-orbit and earth-based data along with characterizations derived from Apollo and Luna sample-return missions. Characteristics of mare and highland volcanic features are described, Apollo and Luna results are discussed, and the characteristics of other mare deposits and of other highland features of possible volcanic origin are summarized. Major conclusions are that: (1) there is little unequivocal morphologic evidence for highland volcanism, (2) lunar mare lavas appear to have originated from depths of 100 to 500 km, (3) impact melting does not appear to have been a factor in the generation of mare lavas, (4) mare volcanism was characterized by massive outpourings of very fluid volatile-poor lava analogous to terrestrial flood basalts, (5) mare volcanism took place from 3.83 to about 2.5 billion years ago, (6) the preferential occurrence of mare deposits in large impact basins appears to be generically unrelated to basin formation, and (7) a thicker farside crust may be responsible for the distinctive nearside-farside asymmetry of mare deposits.

  12. Volcanic loading: The dust veil index

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, H.H. [Univ. of East Anglia, Norwich (United Kingdom). Climatic Research Unit

    1985-09-01

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  13. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    Science.gov (United States)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  14. Ar-Ar geochronology of Late Mesozoic volcanic rocks from the Yanji area,NE China and tectonic implications

    Institute of Scientific and Technical Information of China (English)

    LI ChaoWen; GUO Feng; FAN WeiMing; GAO XiaoFeng

    2007-01-01

    Ar-Ar dating results of late Mesozoic-Cenozoic volcanic rocks from the Yanji area, NE China provide a new volcano-sedimentary stratigraphic framework. The previously defined "Triassic-Jurassic" volcanic rocks(including those from Sanxianling, Tuntianying, Tianqiaoling and Jingouling Fms.)were erupted during 118-106Ma,corresponding to Early Cretaceous. The new eruption age span is slightly younger than the main stage(130-120 Ma)of the extensive magmatism in the eastern Central Asian Orogenic Belt and its adjacent regions. Subduction-related adakites occurring in the previously defined Quanshuicun Fm. Were extruded at ca.55 Ma. Based on these new Ar-Ar ages, the late Mesozoic to Palaeocene volcano-sedimentary sequences is rebuilt as:Tuopangou Fm., Sanxianling/Tuntianying Fm.(118-115 Ma),Malugou/Tianqiaoling Fm.(K1),Huoshanyan/Jingouling Fm.(108-106 Ma),Changcai Fm.(K2),Quanshuicun Fm.(~55 Ma)and Dalazi Fm. Our results suggest that subduction of the Palaeo-Pacific Ocean beneath the East Asian continental margin occurred during 106to 55 Ma. Consistent with the paleomagnetic observations and magmatic records which indicated that the Izanagi-Farallon ridge subduction beneath the southwestern Japan took place during 95-65 Ma.

  15. Ar-Ar geochronology of Late Mesozoic volcanic rocks from the Yanji area, NE China and tectonic implications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ar-Ar dating results of late Mesozoic-Cenozoic volcanic rocks from the Yanji area, NE China provide a new volcano-sedimentary stratigraphic framework. The previously defined “Triassic-Jurassic” volcanic rocks (including those from Sanxianling, Tuntianying, Tianqiaoling and Jingouling Fms.) were erupted during 118―106 Ma, corresponding to Early Cretaceous. The new eruption age span is slightly younger than the main stage (130―120 Ma) of the extensive magmatism in the eastern Central Asian Orogenic Belt and its adjacent regions. Subduction-related adakites occurring in the previously defined Quanshuicun Fm. were extruded at ca. 55 Ma. Based on these new Ar-Ar ages, the late Mesozoic to Palaeocene volcano-sedimentary sequences is rebuilt as: Tuopangou Fm., Sanxianling/Tuntianying Fm. (118―115 Ma), Malugou/Tianqiaoling Fm. (K1), Huoshanyan/Jingouling Fm. (108―106 Ma), Changcai Fm. (K2), Quanshuicun Fm. (~55 Ma) and Dalazi Fm. Our results suggest that subduction of the Pa- laeo-Pacific Ocean beneath the East Asian continental margin occurred during 106 to 55 Ma, consistent with the paleomagnetic observations and magmatic records which indicated that the Izanagi-Farallon ridge subduction beneath the southwestern Japan took place during 95―65 Ma.

  16. Impact of rock uplift on rates of late Cenozoic Rocky Mountain river incision

    Science.gov (United States)

    Riihimaki, Catherine A.; Anderson, Robert S.; Safran, Elizabeth B.

    2007-09-01

    The high relief of the modern Rocky Mountain landscape formed in the late Cenozoic by downcutting of a fluvial network that links a series of easily eroded sedimentary basins across relatively resistant crystalline cores of adjacent ranges. Using a numerical model of fluvial erosion and the flexural isostatic response to the associated unloading, we first calculate the expected pattern and pace of incision caused by rock uplift related to migration of the Yellowstone hot spot and to growth of the northern portion of the Rio Grande rift. Calculated incision rates are <60 m/Myr, and total depth of erosion of sedimentary basins is <300 m, well below the long-term incision rates and amounts of erosion interpreted from the geologic record. Broad-scale tilting of the region toward the east, accomplished by a gradient in rock uplift of ˜1 km along the north-south axis of the central Rockies, declining to zero 1000 km to the east, can account for the additional erosion needed to match observations. In each modeling scenario, stream incision is nonsteady, with rock uplift outpacing erosion for <1 Myr in perimeter basins and 1-5 Myr in interior basins. Three factors dominate the spatial and temporal pattern of regional landscape evolution: (1) the time since uplift began, (2) the uplift pattern, and (3) the distribution of relatively resistant bedrock within the region. Our results suggest that the spatial variability in late Cenozoic exhumation can be explained by a long-lived transience in the stream network response to these various late Cenozoic geophysical events.

  17. Mechanisms of Cenozoic deformation in the Bohai Basin, Northeast China: Physical modelling and discussions

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Jianxun; ZHOU; Jiansheng

    2006-01-01

    The Bohai Basin is a Cenozoic petroliferous extensional basin in China and has apparent geometrical and kinematic similarities with the other Meso-Cenozoic extensional basins located along the eastern margin of Eurasian Plate. However, the deformation mechanisms of the basin are still in dispute. Physcial modelling referring to the Huanghua Depression, located in the central part of the Bohai Basin was conducted employing four sets of planar sandbox experimental models with different extension directions. Only experimental results of the model with N-S extension show good structural similarity with the depression. The results also indicate that complex variations of fault strike in a rift basin are not necessarily the results of complex kinematic mechanisms or polyphase deformation. Based on comparison of experimental results with the actual structures and the good structural similarity between Huanghua Depression and the whole Bohai Basin, it is concluded that the Bohai Basin was formed by the N-S extension. The strike slip deformation along the NNE-trending border faults of the basin resulted from the N-S extension and played the role of lateral transformation for the N-S extension. In addition, according to the apparent geometrical and kinematic similarities among the Bohai Basin and other Meso-Cenozoic extensional basins located along the eastern margin of the Eurasian Plate, it is proposed that: (1) this "N-S extension" model provides a better kinematic interpretation for the formation of Bohai Basin and the other adjacent basins located along the eastern margin of the Eurasian Plate; and (2) the N-S extension was probably the effect of the "slab window" formed by the subduction of the nearly E-W trending oceanic ridge between the Kula and Pacific Plates. The "slab window" effect can also provide reasonable explanations for the phenomena that initial rifting ages of basins become progressively younger westwards along the eastern margin of the Eurasian Plate

  18. Late Cenozoic fire enhancement response to aridification in mid-latitude Asia: Evidence from microcharcoal records

    Science.gov (United States)

    Miao, Yunfa; Fang, Xiaomin; Song, Chunhui; Yan, Xiaoli; Zhang, Ping; Meng, Qingquan; Li, Fang; Wu, Fuli; Yang, Shengli; Kang, Shuyuan; Wang, Yuanping

    2016-05-01

    Fire provides an important indicator of paleoclimatic change. However, little information relating to late Cenozoic fire history has been gathered in mid-latitude Asia (including Inner Asia and East Asia), a key region for understanding the development of the arid-monsoon climate system as well as the driving forces behind it. Here we first report the records of microcharcoal concentrations (MC) covering the Holocene (10-0 ka) and late Pleistocene (0.8-0 Ma), which we use to analyze the fire activity patterns at an orbital time scale; then we compile the late Cenozoic MC record to investigate the long-term fire history by analyzing four cores from the Yangtze River Delta (YRD) area, East Asia (representing 8-0 Ma) and three sites in Inner Asia (representing 18-2 Ma). The results show that the (i) MC remained higher during the relatively dry late Holocene/glacial stages than that during the humid middle Holocene/interglacial stages at individual sites; (ii) MC increased with time in both Inner Asia and East Asia after 18 and 8 Ma, respectively; and (iii) MC always remained higher in the dry Inner Asia than in the contemporaneous wet East Asia. All these characteristics imply that late Cenozoic fire occurrence in mid-latitude Asia experienced a gradual increasing trend along with the global temperature/ice volume change, and indicates a continuous aridification trend across mid-latitude Asia. The global cooling, rather than the Tibetan Plateau uplift, might have played a key role in this observed trend.

  19. On-and offshore tephrostratigraphy and -chronology of the southern Central American Volcanic Arc (CAVA)

    Science.gov (United States)

    Schindlbeck, J. C.; Kutterolf, S.; Hemming, S. R.; Wang, K. L.

    2015-12-01

    Including the recently drilled CRISP sites (IODP Exp. 334&344) the deep sea drilling programs have produced 69 drill holes at 29 Sites during 9 Legs at the Central American convergent margin, where the Cocos plate subducts beneath the Caribbean plate. The CAVA produced numerous plinian eruptions in the past. Although abundant in the marine sediments, information and data regarding large late Cenozoic explosive eruptions from Costa Rica, Nicaragua, Honduras, El Salvador, and Guatemala remain very sparse and discontinuous on land. We have established a tephrostratigraphy from recent through Miocene times from the unique archive of ODP/IODP sites offshore Central America in which we identify tephra source regions by geochemical fingerprinting using major and trace element glass shard compositions. Here we present first order correlations of ­~500 tephra layers between multiple holes at a single site as well as between multiple sites. We identified ashes supporting Costa Rican (~130), Nicaraguan (17) and Guatemalan (27) sources as well as ~150 tephra layers from the Galápagos hotspot. Within our marine record we also identified well-known marker beds such as the Los Chocoyos tephra from Atitlán Caldera in Guatemala and the Tiribi Tuff from Costa Rica but also correlations to 15 distinct deposits from known Costa Rican and Nicaraguan eruptions within the last 4.1 Ma. These correlations, together with new radiometric age dates, provide the base for an improved tephrochronostratigraphy in this region. Finally, the new marine record of explosive volcanism offshore southern CAVA provides insights into the eruptive history of long-living volcanic complexes (e.g., Barva, Costa Rica) and into the distribution and frequency of large explosive eruptions from the Galápagos hotspot. The integrated approach of Ar/Ar age dating, correlations with on land deposits from CAVA, biostratigraphic ages and sediment accumulation rates improved the age models for the drilling sites.

  20. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon

    Science.gov (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard

    2015-09-01

    Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32° S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (∼73 Ma) to Eocene (∼39 Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (∼36 Ma) to Early Miocene (∼17 Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ∼20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (-3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2

  1. FORMATION AND EVOLUTION OF THE CENOZOIC THRUST FOLD BELT IN JINPING, SICHUAN

    Institute of Scientific and Technical Information of China (English)

    LIAO Zhongli; DENG Yongfu; LIAO Guangyu

    2003-01-01

    The Jinping orogenic belt in Sichuan, China consists mainly of the Jinpingshan intracontinental thrust-nappe belt, foreland thrust-nappe belt and foreland uplift belt. Based on analyses about the characteristics of the structural units in this area, the authors propose in this paper that Chapuzi-Bazhe revival fault belt is the regional boundary fault, and points out that after the formation of the Pre-Sinian basement, the western edge of the Yangtze paraplatform was turned into the passive continental margin in Sinian to Triassic, then into the Mesozoic collision orogenic belt, and finally into the Cenozoic orogenic belt through intracontinental orogeny.

  2. Greater India Basin Hypothesis and A Two-Stage Cenozoic Collision Between India and Asia

    OpenAIRE

    D. J. J. van Hinsbergen; Lippert, P.C.; Dupont-Nivet, G.; McQuarrie, N.; Doubrovine, P. V.; Spakman, W.; T. H. Torsvik

    2013-01-01

    Cenozoic convergence between the Indian and Asian plates produced the archetypical continental collision zone comprising the Himalaya mountain belt and the Tibetan Plateau. How and where India–Asia convergence was accommodated after collision at or before 52 Ma remains a long-standing controversy. Since 52 Ma, the two plates have converged up to 3,600 ± 35 km, yet the upper crustal shortening documented from the geological record of Asia and the Himalaya is up to approximately 2,350-km less. ...

  3. Wrench-Slip Reversals and Structural Inversions: Cenozoic Slide-Rule Tectonics in Sundaland

    OpenAIRE

    Tjia, H.D.

    2014-01-01

    DOI: 10.17014/ijog.v1i1.174Most of continental Southeast Asia, that is, Sundaland and Indosinia, achieved a relative tectonic stability by the beginning of the Cenozoic. Since then a strong tectonic activity in Sundaland has been restricted to existing regional fault zones and to regional slow, vertical crustal movements elsewhere that produced small to very large sedimentary basins. On the other hand, regional deformation of Indosinia as a consequence of ductile shearing has continued into t...

  4. New Eocene damselflies and first Cenozoic damsel-dragonfly of the isophlebiopteran lineage (Insecta: Odonata).

    Science.gov (United States)

    Garrouste, Romain; Nel, André

    2015-01-01

    The study of a new specimen of Petrolestes hendersoni from the Eocene Green Formation allows a more precise description of the enigmatic damselfly and the diagnosis of the Petrolestini. Petrolestes messelensis sp. nov. is described from the Eocene Messel Formation in Germany, extending the distribution of the Petrolestini to the European Eocene. The new damsel-dragonfly family Pseudostenolestidae is described for the new genus and species Pseudostenolestes bechlyi, from the Eocene Messel Formation. It is the first Cenozoic representative of the Mesozoic clade Isophlebioptera. PMID:26624314

  5. Review of the upper Cenozoic stratigraphy overlying the Columbia River Basalt Group in western Idaho

    International Nuclear Information System (INIS)

    This report is a synthesis of information currently available on the rocks that stratigraphically overlie the Columbia River Basalt Group in Idaho. The primary objective is to furnish a brief but comprehensive review of the literature available on upper Cenozoic rocks in western Idaho and to discuss their general stratigraphic relationships. This study also reviews the derivation of the present stratigraphy and notes weaknesses in our present understanding of the geology and the stratigraphy. This report was prepared in support of a study to evaluate the feasibility of nuclear waste storage in the Columbia River Basalt Group of the Pasco Basin, Washington

  6. MESOZOIC-CENOZOIC INVERSION OFTHE TURPAN-HAMI BASIN, NORTHWEST CHINA

    Institute of Scientific and Technical Information of China (English)

    CaoDaiyong; QianGuangmo; ZhangPengfei; MeiMeitang; JinKuili; TangYuegang

    1996-01-01

    The Turpan-Hami basin, rich in coal and petroleum, is a superimposedbasin of three types basins in different tectonic environments. This coal, oil and gasbasin has undergone a complex tectonic-sedimentary evolution, in which two important stages were the negative inversion from a foredeep to a extensional basin duringEarly Mesozoic and the positive inversion to a thrust foreland basin in Late MesozoicEarly Cenozoic. The early normal faults residues are recognized with the addition oftectonic-sedimentary analysis to confirm the basin extension during Jurassic time andits tectonic inversion subsequently.

  7. Long-term Stability of Global Erosion Rates and Weathering Fluxes during late Cenozoic Cooling

    OpenAIRE

    Willenbring, J.K.; Friedhelm von Blanckenburg

    2009-01-01

    Over geologic timescales, removal of atmospheric CO2 by weathering of silicate rocks balances CO2 input from the Earth´s interior. The coincidence of global cooling and the rise of mountain belts during the late Cenozoic has led geologists to suggest feedbacks between these two events. A centerpiece of t5his hypothesis was partially founded on observations of a young (0-5 My) 4-fold increase in global sedimentation rates, which seemed like a clear proxy for increased denudation and uplift of ...

  8. Magma types and mantle sources of the Bárðarbunga volcanic system, Iceland

    Science.gov (United States)

    Halldórsson, Sæmundur; Rubin, Ken; Sverrisdóttir, Guðrún; Sigurðsson, Gylfi

    2015-04-01

    The Bárðarbunga volcanic system (BVS) represents one of the largest volcanic systems in Iceland, extending ~190 km from the northern boundary of Torfajökull in the south to Dyngjufjöll Ytri in the north, and intersecting the largely ice-covered Bárðarbunga volcano. The extensive length of the BVS thus allows sampling of an unusually large section of the mantle underlying Iceland's Eastern rift zone. Perhaps surprisingly, the degree of mantle source heterogeneity beneath the BVS remains poorly known. We have recently undertaken a detailed study of the BVS because such data are fundamental for understanding the magmatic history and magma delivery system beneath of the BVS, including those that led to recent volcanism north of Dyngjujökull. Here, we present major and trace element analyses, as well as high-precision Pb isotope analyses, of several Holocene lava flows from the Dyngjuháls area and from rocks representing the basement, flanks and nunataks of the ice-free part of the Bárðarbunga volcano. We compare these data to those on a suite of recently collected fissure basalts from the Veiðivötn fissure swarm in the south and the new lava north of Dyngjujökull in order to study the geochemical characteristics of the BVS as a whole. The BVS has generated fairly primitive tholeiites (MgO ~6-9 wt.%) throughout the Holocene. Evolved basaltic compositions (MgO ≤6 wt.%) that are often associated with large and mature caldera systems in Iceland (e.g., Krafla and Askja), appear to be notably absent in the BVS within our current sample set (although might still exist in the largely ice-covered Bárðarbunga volcano). Significantly, no highly evolved rocks (dacite, rhyolite) have been associated with the BVS. It is therefore unlikely that a long-lived and relatively shallow (18.40. In contrast, subglacial formations in the Dyngjuháls region, form a single trend with 206Pb/204Pb always melts to the BVS, in different proportions in space and time. However

  9. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    Science.gov (United States)

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  10. A new back-and-forth iterative method for time-reversed convection modeling: Implications for the Cenozoic evolution of 3-D structure and dynamics of the mantle

    Science.gov (United States)

    Glišović, Petar; Forte, Alessandro M.

    2016-06-01

    The 3-D distribution of buoyancy in the convecting mantle drives a suite of convection-related manifestations. Although seismic tomography is providing increasingly resolved images of the present-day mantle heterogeneity, the distribution of mantle density variations in the geological past is unknown, and, by implication, this is true for the convection-related observables. The one major exception is tectonic plate motions, since geologic data are available to estimate their history and they currently provide the only available constraints on the evolution of 3-D mantle buoyancy in the past. We developed a new back-and-forth iterative method for time-reversed convection modeling with a procedure for matching plate velocity data at different instants in the past. The crucial aspect of this reconstruction methodology is to ensure that at all times plates are driven by buoyancy forces in the mantle and not vice versa. Employing tomography-based retrodictions over the Cenozoic, we estimate the global amplitude of the following observables: dynamic surface topography, the core-mantle boundary ellipticity, the free-air gravity anomalies, and the global divergence rates of tectonic plates. One of the major benefits of the new data assimilation method is the stable recovery of much shorter wavelength changes in heterogeneity than was possible in our previous work. We now resolve what appears to be two-stage subduction of the Farallon plate under the western U.S. and a deeply rooted East African Plume that is active under the Ethiopian volcanic fields during the Early Eocene.

  11. Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history

    Science.gov (United States)

    Fielding, C.R.; Whittaker, J.; Henrys, S.A.; Wilson, T.J.; Nash, T.R.

    2007-01-01

    A new stratigraphic model is presented for the evolution of the Cenozoic Victoria Land Basin of the West Antarctic Rift, based on integration of seismic reflection and drilling data. The Early Rift phase (?latest Eocene to Early Oligocene) comprises wedges of strata confined by early extensional faults, and which contain seismic facies consistent with drainage via coarse-grained fans and deltas into discrete, actively subsiding grabens and half-grabens. The Main Rift phase (Early Oligocene to Early Miocene) comprises a lens of strata that thickens symmetrically from the basin margins into a central depocenter, and in which stratal events pass continuously over the top of the Early Rift extensional topography. Internal seismic facies and lithofacies indicate a more organized, cyclical shallow marine succession, influenced increasingly upward by cycles of glacial advance and retreat into the basin. The Passive Thermal Subsidence phase (Early Miocene to ?) comprises an evenly distributed sheet of strata that does not thicken appreciably into the depocentre, with more evidence for clinoform sets and large channels. These patterns are interpreted to record accumulation under similar environmental conditions but in a regime of slower subsidence. The Renewed Rifting phase (? to Recent, largely unsampled by coring thus far) has been further divided into 1, a lower interval, in which the section thickens passively towards a central depocentre, and 2. an upper interval, in which more dramatic thickening patterns are complicated by magmatic activity. The youngest part of the stratigraphy was accumulated under the influence of flexural loading imposed by the construction of large volcanic edifices, and involved minimal sediment supply from the western basin margin, suggesting a change in environmental (glacial) conditions at possibly c. 2 Ma.

  12. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  13. Two Cenozoic tectonic events of N-S and E-W extension in the Lhasa Terrane: Evidence from geology and geochronology

    Science.gov (United States)

    Huang, Feng; Xu, Ji-Feng; Chen, Jian-Lin; Wu, Jian-Bin; Zeng, Yun-Chuan; Xiong, Qiu-Wei; Chen, Xue-Feng; Yu, Hong-Xia

    2016-02-01

    Cenozoic active structures in the Tibetan Plateau are mainly regional N-S trending extensional faults and grabens, and E-W trending extensional tracks that are related to the transition from syn- to post-collision between India and Asia. E-W trending tracks are parallel to the direction of Neo-Tethyan oceanic convergence and consist of extensional volcanic-sedimentary basins and magmatic dykes in the southern Lhasa Terrane, Tibet. N-S trending tracks comprise faults and grabens, which are widely developed in Tibet. It remains unknown how and when the geodynamic transition from E-W to N-S trending tectonic tracks occurred. This study describes both E-W and N-S trending tectonic tracks identified at Dazi area of southern Lhasa Terrane, where E-W trending mafic dykes intruded a granitoid and late-stage N-S trending felsic dykes cut across E-W trending mafic dykes. Zircons from four granitoid samples yield consistent crystallization ages of ca. 60 Ma and positive εHf(t) values (~+ 9). An altered dioritic vein, which cuts the mafic dykes, yields an age of ca. 53 Ma. These new dating results indicate that E-W trending dykes, which formed due to regional N-S extension, were emplaced between 60 and 53 Ma. In addition, two N-S trending monzonitic porphyritic dykes, which cut the mafic dykes, yield U-Pb zircon ages of ca. 17 Ma with moderate positive εHf(t) values (+ 3 to + 9.6), as well as a NNE-SSW trending quartz monzonitic dyke, which cuts all other types of dykes, yields U-Pb ages of ca. 13 Ma. This suggests that E-W extension took place between 17 and 13 Ma. These results, in combination with existing age data for Gangdese granitoids and mafic magmatism, indicate the occurrence of two major extensional events at 60-53 Ma and 17-13 Ma. In turn, this implies that the transition from E-W to N-S trending tectonic and the onset of E-W extension occurred at ca. 17 Ma or slightly earlier. Paleocene granitoids have geochemical characteristics that are indicative of both

  14. Geochemistry of quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas

    Science.gov (United States)

    Wheller, G. E.; Varne, R.; Foden, J. D.; Abbott, M. J.

    1987-06-01

    Volcanic rocks of the Sunda and Banda arcs range from tholeiitic through calcalkaline and shoshonitic to leucititic, the widest compositional span of mafic magmatism known from an active arc setting. Mafic rocks in our data set, which includes 315 new analyses of volcanic rocks from twelve Quaternary volcanoes, including Batu Tara in the previously geochemically unknown Flores-Lembata arc sector, are generally similar to those from other island arcs: most contain Flores arc sectors each comprise volcanoes which become progressively more K-rich eastwards, culminating in the leucitite volcanoes Muriah, Soromundi and Sangenges, and Batu Tara, respectively. In the most easterly Banda sector, the volcanics vary from high- to low-K eastwards around the arc. Correlations between geochemistry and 87Sr/ 86Sr values show separate trends for each of the four arc sectors, believed to be the result of involvement of at least three geochemically and isotopically distinct components in the source regions of the arc magmatism. A dominant source component with a low K content and a low 87Sr/ 86Sr value, and common to all sectors, is probably peridotitic mantle. A second component, with low K content but high 87Sr/ 86Sr value, appears to be crustal material. This component is most apparent in the Banda sector, in keeping with that sector's tectonic setting close to Precambrian Australian continental crust, but it is also present to lesser extents in the West Java and Flores sectors. However, the most marked geochemical and isotopic variations shown by the arc volcanics are primarily due to the involvement of a third component, which is rich in K-group elements but has relatively low 87Sr/ 86Sr values. This component appears to be mantle-derived and is least overprinted by crustal material in the Bali sector volcanics where the Pb, Be, U-Th and O isotope characteristics of the rocks support the suggestion that their genesis has not involved incorporation of recently subducted

  15. Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (western Turkey) using cosmogenic 3He and 10Be

    Science.gov (United States)

    Heineke, Caroline; Niedermann, Samuel; Hetzel, Ralf; Akal, Cüneyt

    2015-04-01

    ., Bridgland, D., Demir, T., Scaillet, S. and Rowbotham, G. (2006). Late Cenozoic uplift of western Turkey: Improved dating of the Kula Quaternary volcanic field and numerical modelling of the Gediz River terrace staircase. Global and Planetary Change, 51, 131-171.

  16. Role of volcanism in climate and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, D.I.

    1981-01-01

    Several major episodes of Tertiary explosive volcanism coincided with sharply lowered temperature as inferred from oxygen-isotope composition of foraminiferal tests in deep-sea cores. At these times, fossil floras in the western interior recorded significant changes. Reductions in taxa that required warmth occurred early in the Paleogene. Later, taxa that demand ample summer rain were reduced during a progressive change reflecting growth of the subtropic high. Other ecosystem changes that appear to have responded to volcanically induced climatic modifications include tachytely in Equidae (12 to 10 m.y. B.P.), rapid evolution of grasses (7 to 5 m.y. B.P.), evolution of marine mammals, and plankton flucuations. Although Lake Cretaceous extinctions commenced as epeiric seas retreated, the pulses of sharply lowered temperature induced by explosive volcanism, together with widespread falls of volcanic ash, may have led to extinction of dinosaurs, ammonites, cycadeoids, and other Cretaceous taxa. earlier, as Pangaea was assembled, Permian extinctions resulted not only from the elimination of oceans, epeiric seas, and shorelines, and the spread of more-continental climates, bu also from the climatic effects of major pulses of global volcanism and Gondwana glaciation.

  17. Volcanic iodine monoxide observed from satellite

    Science.gov (United States)

    Schönhardt, Anja; Richter, Andreas; Theys, Nicolas; Burrows, John P.

    2016-04-01

    Halogen species are injected into the atmosphere by volcanic eruptions. Previous studies have reported observations of chlorine and bromine oxides in volcanic plumes. These emissions have a significant impact on the chemistry within the plume as well as on upper troposphere and lower stratosphere composition, e.g. through ozone depletion. Volcanic halogen oxides have been observed from different platforms, from ground, aircraft and from satellite. The present study reports on satellite observations of iodine monoxide, IO, following the eruption of the Kasatochi volcano, Alaska, in August 2008. Satellite measurements from the SCIAMACHY sensor onboard ENVISAT are used. In addition, the volcanic IO plume is also retrieved from GOME-2 / MetOP-A measurements. Largest IO column amounts reach up to more than 4×1013 molec/cm2, the results from both instruments being consistent. The IO plume has a very similar shape as the BrO plume and is observed for several days following the eruption. The present observations are the first evidence that besides chlorine and bromine oxides also iodine oxides can be emitted by volcanic eruptions. This has important implications for atmospheric composition and background iodine levels. Together with the simultaneous observations of BrO and SO2, iodine monoxide columns can possibly provide insights into the composition of the magma.

  18. Volcanic effects on climate: revisiting the mechanisms

    Directory of Open Access Journals (Sweden)

    H.-F. Graf

    2007-03-01

    Full Text Available The characteristics of planetary wave energy propagation are being compared based on NCEP reanalysis data from 1958 to 2002 between boreal winters after strong volcanic eruptions, non-volcanic winters and episodes of strong polar vortex lasting at least 30 days. It shows that in the volcanically disturbed winters much more planetary wave energy is produced in the troposphere, passes through the lowermost stratosphere and enters the upper stratosphere than in any other times. This is contradicting earlier interpretations and model simulations. Possibly the observed El Ninos coinciding with the three significant eruptions in the second half of the 20th century contributed to the planetary wave energy. In order to produce the observed robust climate anomaly patterns in the lower troposphere, these planetary waves are suggested to be reflected near the stratopause instead of breaking. While a strong polar vortex is observed after volcanic eruptions in the stratosphere and in the troposphere, specific episodes of strong polar vortex regime exhibit much stronger anomalies and different dynamics. Hence it is suggested that the climate effects of volcanic eruptions are not being explained by the excitation of inherent zonal mean variability modes such as Strong Polar Vortex or Northern Annular Mode, but rather is another mode that possibly reflects upon the North Atlantic Oscillation.

  19. Volcanic effects on climate: revisiting the mechanisms

    Directory of Open Access Journals (Sweden)

    H.-F. Graf

    2007-08-01

    Full Text Available The characteristics of planetary wave energy propagation are being compared based on NCEP reanalysis data from 1958 to 2002 between boreal winters after strong volcanic eruptions, non-volcanic winters and episodes of strong polar vortex lasting at least 30 days. It shows that in the volcanically disturbed winters much more planetary wave energy is produced in the troposphere, passes through the lowermost stratosphere and enters the upper stratosphere than in any other times. This is contradicting earlier interpretations and model simulations. Possibly the observed El Ninos coinciding with the three significant eruptions in the second half of the 20th century contributed to the planetary wave energy. In order to produce the observed robust climate anomaly patterns in the lower troposphere, these planetary waves are suggested to be reflected near the stratopause instead of breaking. While a strong polar vortex is observed after volcanic eruptions in the stratosphere and in the troposphere, specific episodes of strong polar vortex regime exhibit much stronger anomalies and different dynamics. Hence it is suggested that the climate effects of volcanic eruptions are not being explained by the excitation of inherent zonal mean variability modes such as Strong Polar Vortex or Northern Annular Mode, but rather is another mode that possibly reflects upon the North Atlantic Oscillation.

  20. Magnetostratigraphy of Late Cenozoic fossil mammals in the northeastern margin of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A number of fossil mammals have been found in the very thick Cenozoic stratigraphy of the Guide Basin in the northeastern margin of the Tibetan Plateau. Some of these are of great significance in mammal evolution and stratigraphic correlation on and around the Tibetan Plateau and North China. However, the chronology of these mammals is poorly constrained. Dating of the mammals will not only place precise age constraints on the mammals, but also provide much information on the related stratigraphy that records the uplift process of the Tibetan Plateau. Detailed paleomagnetism of the upper part of the Cenozoic stratigraphy at He'erjia and Lajigai north of Guide County has revealed magnetic chrons that can be correlated to Gauss and 3An chrons, determining the section spanning about 3.1-6.5 Ma and the first, second and third layers of fossil mammals at about 5.25, 5.1 and 4.4 Ma, respectively. Ages of the significant genus Gazella kueitensis and the Chinese elephant Anancus sinensis are firstly constrained at about 5.25 MaBP and 4.4 Ma, respectively. The mammalian evolution and the associated increase in coarse sediments and sedimentation rate may suggest that the northeastern Tibetan Plateau was uplifted rapidly at that time, and the eastern Tibetan Plateau with its neighboring regions was not high enough to stop mammal exchange between the northern and southern sides of the Tibetan Plateau.

  1. Cenozoic macroevolution in the deep-sea microfossil record: can we let go of species richness?

    Science.gov (United States)

    Hannisdal, Bjarte; Liow, Lee Hsiang

    2014-05-01

    The deep-sea microfossil record is an outstanding resource for the study of macroevolutionary changes in planktonic groups. Studies of plankton evolution and its possible link to climate changes over the Cenozoic have typically targeted apparent trends in species richness. However, most species are rare, and fossil richness is particularly vulnerable to the imperfections (incompleteness, reworking, age and taxonomic errors) of existing microfossil occurrence databases. Here we use an alternative macroevolutionary quantity: Summed Common Species Occurrence Rate (SCOR). By focusing on the most commonly occurring species, SCOR is decoupled from species richness, robust to preservation/sampling variability, yet sensitive to relative changes in the overall abundance of a group. Numerical experiments are used to illustrate the sampling behavior of SCOR and its relationship to (sampling-standardized) species richness. We further show how SCOR estimated from the NEPTUNE database (ODP/DSDP) can provide a new perspective on long-term evolutionary and ecological changes in major planktonic groups (e.g. coccolithophores and forams). Finally, we test possible linkages between planktonic SCOR records and proxy reconstructions of climate changes over the Cenozoic.

  2. The uplifting process of the Bogda Mountain during the Cenozoic and its tectonic implication

    Institute of Scientific and Technical Information of China (English)

    WANG ZongXiu; LI Tao; ZHANG Jin; LIU YongQing; MA ZongJin

    2008-01-01

    Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China The Tianshan Mountains have undergone its initial orogeny, extension adjusting and re-orogeny since the Late Paleozoic. The re-orogeny and uplifting process of the orogeny in the Mesozoic and Cenozoic are two of most important events in the geological evolution of Euro-Asian continent, which resulted in the formation of the present range-and-basin pattern in topography of the Tianshan Mountains and its adjacent areas. Thermochronology results by the method of fission-track dating of apatite suggest three obvious uplifting stages of the Bogad Mountain Chain re-orogeny during the Cenozoic, i.e. 5.6-19 Ma, 20-30 Ma, and 42-47 Ma. The strongest uplifting stage of the mountain is the second one at 20-30 Ma, when the mountain uplifted as a whole, and the beginning of re-orogeny was no less than 65Ma. Furthermore, our studies also show that the uplifting types of the mountain are variable in the different time periods, including uplifting of mountain as a whole and differential uplifting. The apparently diversified uplifting processes of the mountain chain are characterized by the migration (or transformation) of the uplifting direction of the mountain from west to east and from north to south, and the main process of mountain extending is from north to south.

  3. Structural deformation pattern within the NW Qaidam Basin in the Cenozoic era and its tectonic implications

    Science.gov (United States)

    Mao, Liguang; Xiao, Ancheng; Zhang, Hongwei; Wu, Zhankui; Wang, Liqun; Shen, Ya; Wu, Lei

    2016-09-01

    The Qaidam Basin is located in the northeastern Tibetan Plateau and provides an excellent field laboratory in understanding the history and mechanism of the plateau growth. It deformed widely over the northwest during the Cenozoic but with little thrust loading along the margins, where no foreland depression is observed. Based on satellite images, seismic and borehole data, we investigated the structural deformation pattern (including the structural style and timing of deformation) and its formation mechanism within the northwestern Qaidam Basin during the Cenozoic era. Mapping of surface geology shows that the modern Qaidam Basin is characterized by five SE-trending anticlinal belts. Each belt consists of several right-step en echelon anticlines with plenty of normal and strike-slip faults crossing the crests. Those anticlines are generally dominated by double fault systems at different depths: an upper thrust fault system, controlling the anticlines identified on the surface and a lower dextral transpressional fault system characterized by typical flower structures. They are separated by weak layers in the upper Xiaganchaigou or the Shangganchaigou formations. The upper system yields shortening strain 2-5 times larger than that of the lower system and the additional strain is interpreted to be accommodated by hinge-parallel elongation in the upper system. Growth strata indicate that deformation within the Qaidam Basin initiated in the middle Miocene ( 15 Ma) and accelerated in the late Miocene ( 8 Ma). A simple Riedel-P-Shear model is used to explain the deformation mechanism within the northwestern Qaidam Basin.

  4. Biostratigraphy and geochronology of the late Cenozoic of Córdoba Province (central Argentina)

    Science.gov (United States)

    Cruz, Laura Edith

    2013-03-01

    In the last twenty years, several geological and stratigraphical studies have been undertaken in Córdoba Province, and they have provided useful bases for biostratigraphic work in the late Cenozoic. However, paleontological contributions have been limited to preliminary analyses of mammal assemblages, or specific discoveries. The aim of this work is to contribute to biostratigraphic knowledge of Argentina through the study of late Cenozoic mammals from Córdoba Province. Five localities have been analyzed: San Francisco, Miramar, Río Cuarto, Isla Verde, and Valle de Traslasierra. Through biostratigraphic analysis the first records of several taxa were established, and mammal assemblages with the description and correlation of the sedimentary strata were confirmed. Finally, three Assemblage Zones (Biozonas de Asociación) were proposed: 1) Neosclerocalyptus paskoensis-Equus (Amerhippus) assemblage zone with type area and profile based on the San Francisco locality, referred to the Lujanian (late Pleistocene-early Holocene), and comparable to the Equus (Amerhippus) neogeus Biozone of Buenos Aires Province; 2) Neosclerocalyptus ornatus-Catonyx tarijensis assemblage zone with type area and profile based on the San Francisco locality, referred to the Ensenadan (early Pleistocene) and comparable to the Mesotherium cristatum Biozone of Buenos Aires Province, and 3) Nonotherium hennigi-Propanochthus bullifer assemblage zone with type area and profile based on the Los Sauces river, Valle de Traslasierra, referred to the Montehermosan-Chapadmalalan interval (Pliocene), and comparable to the Trigodon gaudryi, Neocavia depressidens and/or Paraglyptodon chapadmalensis Biozones of Buenos Aires Province.

  5. Cenozoic vertical motions in the Moray Firth Basin associated with initiation of the Iceland Plume

    Science.gov (United States)

    Mackay, L. M.; Turner, J.; Jones, S. M.; White, N. J.

    2005-10-01

    It is likely that the Iceland mantle plume generated transient uplift across the North Atlantic region when it initiated in earliest Cenozoic time. However, transient uplift recorded in sedimentary basins fringing the region can be overprinted by the effects of permanent uplift. Identifying and quantifying transient uplift can only be achieved in areas which have a well-constrained stratigraphic record and across which the relative importance of permanent and transient uplift varies (e.g., the Moray Firth Basin, North Sea). By analyzing the subsidence of 50 boreholes from the Moray Firth Basin (MFB), residual vertical motions unrelated to rifting have been isolated. Transient uplift of 180-425 m occurred during Paleocene times. The western MFB has also been affected by permanent Cenozoic uplift, with denudation decreasing from 1.3 ± 0.1 km in the west of the basin to zero denudation east of 1°W. Dynamic support above the Iceland Plume led to transient uplift of the entire MFB in early Paleocene times, peaking in latest Paleocene times. In early Eocene times the effect of the plume waned, and subsidence occurred. Paleocene permanent uplift of the NW British Isles is generally accepted to have been due to magmatic underplating of the crust emplaced during the British Tertiary Igneous Province (61-58.5 Ma). The cause of Neogene uplift events is poorly understood, but it could also be associated with the Iceland Plume.

  6. The uplifting process of the Bogda Mountain during the Cenozoic and its tectonic implication

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Tianshan Mountains have undergone its initial orogeny, extension adjusting and re-orogeny since the Late Paleozoic. The re-orogeny and uplifting process of the orogeny in the Mesozoic and Cenozoic are two of most important events in the geological evolution of Euro-Asian continent, which resulted in the formation of the present range-and-basin pattern in topography of the Tianshan Mountains and its adjacent areas. Thermochronology results by the method of fission-track dating of apatite suggest three obvious uplifting stages of the Bogad Mountain Chain re-orogeny during the Cenozoic, i.e. 5.6-19 Ma, 20-30 Ma, and 42-47 Ma. The strongest uplifting stage of the mountain is the second one at 20 -30 Ma, when the mountain uplifted as a whole, and the beginning of re-orogeny was no less than 65 Ma. Furthermore, our studies also show that the uplifting types of the mountain are variable in the dif-ferent time periods, including uplifting of mountain as a whole and differential uplifting. The apparently diversified uplifting processes of the mountain chain are characterized by the migration (or transfor-mation) of the uplifting direction of the mountain from west to east and from north to south, and the main process of mountain extending is from north to south.

  7. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    and intensity of climate variations boosted significantly [26]. Tectonism and climate as factors controlling sediment production Tectonic surface uplift would increase river power, cause river incision and increase hillslope gradients above the threshold for occurrence of landslides. In that case tectonic...... of the Cretaceous and Cenozoic ocean basins. Tectonophysics, 1988. 155(1-4): p. 27-48. 7. Doré , A.G., et al., Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: pros, cons and some new ideas. Spec. Pub. Geol. Soc. London, 2008. 306: p. 1-26. 8. Nielsen, S.B., et al., Plate......-A comment regarding the isostasy-climate-erosion hypothesis by Nielsen et al. 2008. Journal of Geodynamics, 2009. 48(2): p. 95-100. 18. Nielsen, S.B., et al., Reply to comment regarding the ICE-hypothesis. Journal of Geodynamics, 2009. 48(2): p. 101-106. 19. Chalmers, J.A., et al., The Scandinavian...

  8. Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean

    Science.gov (United States)

    O'Regan, M.; Moran, K.; Backman, J.; Jakobsson, M.; Sangiorgi, F.; Brinkhuis, Henk; Pockalny, Rob; Skelton, Alasdair; Stickley, Catherine E.; Koc, N.; Brumsack, Hans-Juergen; Willard, Debra A.

    2008-01-01

    Drilling results from the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the early Miocene. Detailed micropaleontological and sedimentological data from sediments surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the early Miocene. The coincidence in timing between the end of compression and the start of rapid early Miocene subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and early Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.

  9. On tectonic movement in the South China Sea during the Cenozoic

    Institute of Scientific and Technical Information of China (English)

    LIN Changsong; CHU Fengyou; GAO Jinyao; TAN Yonghua

    2009-01-01

    The tectonic movement taking place at the end of Cretaceous and the beginning of Cenozoic had opened the Ce-nozoic phase of polycyclic tectonic movements, then the whole crust of the South China Sea had been mainly subjected to the regional stress field of tectonic tension, which was characterized by rifting depression. Seven times of regional tectonic movement and sedimentation had been assembled into a geological development history of polycyclic oscillation. Especially, the tectonic movements were strongly intensified at the end of Cretacious and the beginning of Paleagene, between Late Eocene and Mid-Oligocene, during Mid- and Late Miocene. These three times of tectonic movement had built the most important regional tectonic interfaces in the South China Sea. Crust movements of the South China Sea were the result and epitome of interaction of the Eurasia, Pacific and Indo-Australia plates, that is, they were introduced by polycyclic changes of directions, rates and strengths of lithospheric movements and asthenospheric flows across the Pacific and Indo-Australia plates.

  10. Late cenozoic magmatism in the South Patagonian batholith: SHRIMP U-Pb zircon age evidence

    International Nuclear Information System (INIS)

    The North Patagonian Batholith (NPB) has a zonal age pattern which includes a well defined belt of Miocene and Mio-Pliocene plutons in its central portion (Pankhurst et al., 1999) which are spatially, and probably genetically related to the Liquine-Ofqui Fault Zone. Previous geochronological studies in the Southern Patagonian Batholith (SPB), as summarized by Bruce et al. (1991), have yielded 9 late Cenozoic K-Ar or Ar-Ar ages out of a total of 116 age determinations. None of these young ages correspond to U-Pb determinations on zircons, and some of the young ages correspond to satellite plutons east of the SPB proper, such as the Torres del Paine intrusion. In this paper we present the first late Cenozoic SHRIMP U-Pb zircon ages in the area of the SPB. The morphology of the analysed zircon crystals is described and leads to some inferences on the methodology and on the geological interpretation of the obtained ages (au)

  11. Progress and outlook of uranium exploration in meso-cenozoic basins in north China

    International Nuclear Information System (INIS)

    Through the efforts in last decades on the research of geology setting and regional assessment for uranium exploration in the Meso-Cenozoic basins in North China, rich accomplishment have been gotten in metallogenic theory, temporal and spatial distribution pattern, zone division, Classification, mineralization of different type, ore-controlling factors, metallogenic model, principle of valuation and prognostication, exploration criteria and great breakthrough in the prospecting of key areas. However, the extensive territory make the effort limited only to some region, the exploration level is fairly lower in the whole country, and there is wide space for uranium exploration. The further exploration should be basically guided by 'highlighting the exploration of key areas, strengthening the evaluation of regional potential and accelerating the implementation of new reserve bases' and persisted in principle of 'deployment with different level and execution according to region' and oriented with different types of deposit by 'wholly evaluation and systematic exploration'. By deploying the new effort frame in large base exploration, regional evaluation and solving the important geological and geophysical problem, we can put forward the uranium exploration in Meso-Cenozoic basins in North China. (author)

  12. Paleomagnetic constraints on the late Cretaceous and Cenozoic tectonics of southeastern Asia

    Science.gov (United States)

    Achache, José; Courtillot, Vincent; Besse, Jean

    1983-04-01

    Many features of the Cenozoic tectonic history of central and southeastern Asia can be understood as direct consequences of the thrust and penetration of India into Asia. Recent indentation experiments with plasticine (Tapponnier et al. [7]) have extended this idea and have led to the prediction of a pattern of large rotations and displacements of continental blocks that can be tested by paleomagnetism. The available Cretaceous and Cenozoic paleomagnetic data from this part of the world have been reviewed and a new APWP for Eurasia has been constructed for reference. The negligible rotation of South China and large clockwise rotation of Indochina are consistent with the model, i.e., with an history of large-scale left-lateral strike-slip motion along the Altyn Tagh and Red River faults. Data from Malaya and Borneo can be reconciled with the model, although in a less straightforward fashion. The large counter clockwise rotation of South Tibet implies that it rotated in sympathy with India during the collision and suggests that future indentation experiments should include this feature. Finally a middle Cretaceous reconstruction of the south margin of Asia is proposed. One interesting result is the restored continuity of geological features in Tibet and Indochina, with active subduction of oceanic (Indian plate) crust taking place to the south at subtropical latitudes.

  13. Sequence of the Cenozoic Mammalian Faunas of the Linxia Basin in Gansu, China

    Institute of Scientific and Technical Information of China (English)

    DENG Tao; WANG Xiaoming; NI Xijun; LIU Liping

    2004-01-01

    In the Linxia Basin on the northeast margin of the Tibetan Plateau, the Cenozoic strata are very thick and well exposed. Abundant mammalian fossils are discovered in the deposits from the Late Oligocene to the Early Pleistocene.The Dzungariotheriurn fauna comes from the sandstones of the Jiaozigou Formation, including many representative Late Oligocene taxa. The Platybelodon fauna comes from the sandstones of the Dongxiang Formation and the conglomerates of the Laogou Formation, and its fossils are typical Middle Miocene forms, such as Hemicyon, Amphicyon, Platybelodon,Choerolophodon, Anchitherium, and Hispanotherium. The Hipparion fauna comes from the red clay of the Liushu and Hewangjia Formations, and its fossils can be distinctly divided into four levels, including three Late Miocene levels and one Early Pliocene level. In the Linxia Basin, the Hipparion fauna has the richest mammalian fossils. The Equus fauna comes from the Wucheng Loess, and it is slightly older than that of the classical Early Pleistocene Nihewan Fauna. The mammalian faunas from the Linxia Basin provide the reliable evidence to divide the Cenozoic strata of this basin and correlate them with European mammalian sequence.

  14. Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry

    Science.gov (United States)

    Leat, Philip T.; Day, Simon J.; Tate, Alex J.; Martin, Tara J.; Owen, Matthew J.; Tappin, David R.

    2013-09-01

    New multibeam bathymetry data are presented for the South Sandwich intra-oceanic arc which occupies the small Sandwich plate in the South Atlantic, and is widely considered to be a simple end-member in the range of intra-oceanic arc types. The images show for the first time the distribution of submarine volcanic, tectonic and erosional-depositional features along the whole length of the 540 km long volcanic arc, allowing systematic investigation of along-arc variations. The data confirm that the volcanic arc has a simple structure composed of large volcanoes which form a well-defined volcanic front, but with three parallel cross-cutting seamount chains extending 38-60 km from near the volcanic front into the rear-arc. There is no evidence for intra-arc rifting or extinct volcanic lines. Topographic evidence for faulting is generally absent, except near the northern and southern plate boundaries. Most of the volcanic arc appears to be built on ocean crust formed at the associated back-arc spreading centre, as previously proposed from magnetic data, but the southern part of the arc appears to be underlain by older arc or continental crust whose west-facing rifted margin facing the back-arc basin is defined by the new bathymetry. The new survey shows nine main volcanic edifices along the volcanic front and ca. 20 main seamounts. The main volcanoes form largely glaciated islands with summits 3.0-3.5 km above base levels which are 2500-3000 m deep in the north and shallower at 2000-2500 m deep in the south. Some of the component seamounts are interpreted to have been active since the last glacial maximum, and so are approximately contemporaneous with the volcanic front volcanism. Seven calderas, all either submarine or ice-filled, have been identified: Adventure volcano, a newly discovered submarine volcanic front caldera volcano is described for the first time. All but one of the calderas are situated on summits of large volcanoes in the southern part of the arc, and

  15. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  16. Geochemical Characteristics of Volcanic Rocks from the Southern Okinawa Trough and its Implications for Tectono-magmatic Evolution

    Science.gov (United States)

    Shinjo, R.; Hokakubo, S.; Haraguchi, S.; Matsumoto, T.; Woodhead, J.

    2003-12-01

    The Okinawa Trough is a site of ongoing backarc rifting behind the Ryukyu arc-trench system. Recent intensive surveys, including submersible dives, at the southern Okinawa Trough (SOT) have revealed details of bathymetric, geological, and geophysical features. Here, we present the petrological and geochemical characteristics of volcanic rocks collected during these cruises, and discuss its relation to the evolutionary stage of rifting. Based on bathymetirc and magmatic features, SOT can be divided into two (i.e., eastern and western) segments with non-transform offset at ˜ 123.5° E. The eastern segment represents a well-developed rift system with E-W-trending central graben and separated NE-SW-trending volcanic front; these two features merge at ˜ 125° E. In contrast, the western segment is in the incipient rifting stage; rift axis exists close to 100 km contour of the Wadati-Benioff zone. The most notable feature is the presence of 'abnormal' volcanic chain (Cross Backarc Volcanic Trail, CBVT), which trends NE-SW and is obviously oblique to the axial trend. All rocks are subalkaline, but range from basalt to rhyolite; dacite-rhyolite are dominant in the eastern volcanic front and CBVT. Basalts from both segments are low-K tholeiites; they have high abundance of LILEs relative to HFSEs, negative Nb anomalies on MORB-normalized diagrams, and range of 143Nd/144Nd (0.5128-0.5129) and 87Sr/86Sr (0.7034-0.7048). Pb isotope systematics indicate 206Pb/204Pb=18.398-18.582, 207Pb/204Pb=15.594-15.652 and 208Pb/204Pb=38.570-38.912, clearly above the Northern Hemisphere Reference Line. These elemental and isotopic variations are compatible with derivation from Indian Ocean MORB-like mantle with strong overprint of subduction components from the slab. There is clear difference among more felsic rocks between two segments. At similar silica contents, most of felsic rocks from the western segment, including CBVT rhyolites, have higher LILE contents, 87Sr/86Sr and 208Pb/204Pb

  17. Archaean associations of volcanics, granulites and eclogites of the Belomorian province, Fennoscandian Shield and its geodynamic interpretation

    Science.gov (United States)

    Slabunov, Alexander

    2013-04-01

    An assembly of igneous (TTG-granitoids and S-type leucogranites and calc-alkaline-, tholeiite-, kometiite-, boninite- and adakite-series metavolcanics) and metamorphic (eclogite-, moderate-pressure (MP) granulite- and MP amphibolite-facies rocks) complexes, strikingly complete for Archaean structures, is preserved in the Belomorian province of the Fennoscandian Shield. At least four Meso-Neoarchaean different-aged (2.88-2.82; 2.81-2.78; ca. 2.75 and 2.735-2.72 Ga) calc-alkaline and adakitic subduction-type volcanics were identified as part of greenstone belts in the Belomorian province (Slabunov, 2008). 2.88-2.82 and ca. 2.78 Ga fore-arc type graywacke units were identified in this province too (Bibikova et al., 2001; Mil'kevich et al., 2007). Ca.2.7 Ga volcanics were generated in extension structures which arose upon the collapse of an orogen. The occurrence of basalt-komatiite complexes, formed in most greenstone belts in oceanic plateau settings under the influence of mantle plumes, shows the abundance of these rocks in subducting oceanic slabs. Multiple (2.82-2.79; 2.78-2.76; 2.73-2.72; 2.69-2.64 Ga) granulite-facies moderate-pressure metamorphic events were identified in the Belomorian province (Volodichev, 1990; Slabunov et al., 2006). The earliest (2.82-2.79 Ga) event is presumably associated with accretionary processes upon the formation of an old continental crust block. Two other events (2.78-2.76; 2.73-2.72 Ga) are understood as metamorphic processes in suprasubduction setting. Late locally active metamorphism is attributed to the emplacement of mafic intrusions upon orogen collapse. Three groups of crustal eclogites with different age were identified in the Belomorian province: Mesoarchaean (2.88-2.86 and 2.82-2.80 Ga) eclogites formed from MORB and oceanic plateau type basalts and oceanic high-Mg rocks (Mints et al., 2011; Shchipansky at al., 2012); Neoarchaean (2.72 Ga) eclogites formed from MORB and oceanic plateau type basalts. The formation of

  18. Measurement of radioactivity in volcanic products

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Jun

    1988-10-01

    Radioactivity in volcanic products was measured for obtaining new knowledge about volcano. A distribution map of /sup 2//sup 2//sup 8/Ra//sup 2//sup 2//sup 6/Ra in the volcanic products of Japanese Islands volcanic front was prepared. From the map, it was understood that only Izu-Mariana Arc was different from other series of vocanos. Concerning Volcano Sakurajima, /sup 2//sup 2//sup 2/Rn//sup 2//sup 2//sup 0/Rn ratio in the pumice produced by the eruption was measured for studying its change with days after creation. Regarding the lava of Miyake Island, change of /sup 2//sup 1//sup 4/Bi with time was measured. 3 figures.

  19. Structural framework and Mesozoic Cenozoic evolution of Ponta Grossa Arch, Paraná Basin, southern Brazil

    Science.gov (United States)

    Strugale, Michael; Rostirolla, Sidnei Pires; Mancini, Fernando; Portela Filho, Carlos Vieira; Ferreira, Francisco José Fonseca; de Freitas, Rafael Corrêa

    2007-09-01

    The integration of structural analyses of outcrops, aerial photographs, satellite images, aeromagnetometric data, and digital terrain models can establish the structural framework and paleostress trends related to the evolution of Ponta Grossa Arch, one of the most important structures of the Paraná Basin in southern Brazil. In the study area, the central-northern region of Paraná State, Brazil, the arch crosses outcropping areas of the Pirambóia, Botucatu, and Serra Geral Formations (São Bento Group, Mesozoic). The Pirambóia and Botucatu Formations are composed of quartz sandstones and subordinated siltstones. The Serra Geral Formation comprises tholeiitic basalt lava flows and associated intrusive rocks. Descriptive and kinematic structural analyses reveal the imprint of two brittle deformation phases: D1, controlled by the activation of an extensional system of regional faults that represent a progressive deformation that generated discontinuous brittle structures and dike swarm emplacement along a NW-SE trend, and D2, which was controlled by a strike-slip (transtensional) deformation system, probably of Late Cretaceous-Tertiary age, responsible for important fault reactivation along dykes and deformation bands in sandstones.

  20. Surface Coatings on Lunar Volcanic Glasses

    Science.gov (United States)

    Wentworth, Susan J.; McKay, D. S.; Thomas,-Keprta, K. L.; Clemett, S. J.

    2007-01-01

    We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.

  1. Seismo-volcanic sources on Stromboli volcano

    Directory of Open Access Journals (Sweden)

    R. Luckett

    1996-06-01

    Full Text Available A detailed analysis of broadband seismic recordings leads to models of eruption mechanisms for Strombolian activity. The data used comprise signals from arrays of nine three-component seismometers and video recordings of visual eruptive activity with precise time reference. As a major tool particle motion analysis is used to locate the seismo-volcanic sources. Here, a surface correction is employed to account for the effects of the steep slopes of the volcanic edifice. After careful filtering of the data single seismic phases can be separated and linked to corresponding eruptive features.

  2. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  3. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  4. Emplacement Scenarios for Volcanic Domes on Venus

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Steve M.; Stofan, Ellen R.

    2012-01-01

    One key to understanding the history of resurfacing on Venus is better constraints on the emplacement timescales for the range of volcanic features visible on the surface. A figure shows a Magellan radar image and topography for a putative lava dome on Venus. 175 such domes have been identified with diameters ranging from 19 - 94 km, and estimated thicknesses as great as 4 km. These domes are thought to be volcanic in origin and to have formed by the flow of viscous fluid (i.e., lava) on the surface.

  5. Constraining the onset of flood volcanism in Isle of Skye Lava Field, British Paleogene Volcanic Province

    Science.gov (United States)

    Angkasa, Syahreza; Jerram, Dougal. A.; Svensen, Henrik; Millet, John M.; Taylor, Ross; Planke, Sverre

    2016-04-01

    In order to constrain eruption styles at the onset of flood volcanism, field observations were undertaken on basal sections of the Isle of Skye Lava Field, British Paleogene Volcanic Province. This study investigates three specific sections; Camus Ban, Neist Point and Soay Sound which sample a large area about 1500 km2 and can be used to help explain the variability in palaeo-environments at the onset of flood volcanism. Petrological analysis is coupled with petrophysical lab data and photogrammetry data to create detailed facies models for the different styles of initiating flood basalt volcanism. Photogrammetry is used to create Ortho-rectified 3D models which, along with photomontage images, allow detailed geological observations to be mapped spatially. Petrographic analyses are combined with petrophysical lab data to identify key textural variation, mineral compositions and physical properties of the volcanic rocks emplaced during the initial eruptions. Volcanism initiated with effusive eruptions in either subaerial or subaqueous environments resulting in tuff/hyaloclastite materials or lava flow facies lying directly on the older Mesozoic strata. Volcanic facies indicative of lava-water interactions vary significantly in thickness between different sections suggesting a strong accommodation space control on the style of volcanism. Camus Ban shows hyaloclastite deposits with a thickness of 25m, whereas the Soay Sound area has tuffaceous sediments of under 0.1m in thickness. Subaerial lavas overly these variable deposits in all studied areas. The flood basalt eruptions took place in mixed wet and dry environments with some significant locally developed water bodies (e.g. Camus Ban). More explosive eruptions were promoted in some cases by interaction of lavas with these water bodies and possibly by local interaction with water - saturated sediments. We record key examples of how palaeotopography imparts a primary control on the style of volcanism during the

  6. Are Cenozoic topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland

    Science.gov (United States)

    Christiansen, Eric H.; Haapala, Ilmari; Hart, Garret L.

    2007-08-01

    Eruptions of topaz rhyolites are a distinctive part of the late Cenozoic magmatic history of western North America. As many as 30 different eruptive centers have been identified in the western United States that range in age from 50 to 0.06 Ma. These rhyolite lavas are characteristically enriched in fluorine (0.2 to 2 wt.% in glass) and lithophile trace elements, such as Be, Li, Rb, Cs, Ga, Y, Nb, and Ta. REE patterns are typically flat with large negative Eu anomalies; negative Nb-Ta anomalies are small or nonexistent; and F/Cl ratios in glasses are high (> 3). These features, together with high Fe/Mg ratios and usually low fO 2, set them apart from subduction-related (I-type) silicic rocks. The rhyolites are metaluminous to only slightly peraluminous, lack indicator minerals of strongly peraluminous magmas, and have low P and B contents; these features set them apart from S-type silicic magmas. Instead, topaz rhyolites have the major and trace element, mineralogic, and isotopic characteristics of aluminous A-type or within-plate granites. Topaz rhyolites were formed during regional extension, lithospheric thinning, and high heat flow. Topaz rhyolites of the western United States crystallized under subsolvus conditions, and have quartz, sanidine, and Na-plagioclase as the principal phenocrysts. Fluorite is a common magmatic accessory, but magmatic topaz occurs only in a few complexes; both are mineralogical indicators of F-enrichment. Many also crystallized at relatively low fO 2 (near QFM) and contain mafic silicate minerals with high Fe/(Fe + Mg) ratios. Some crystallized at higher oxygen fugacities and are dominated by magnetite and have titanite as an accessory mineral. Post-eruption vapor-phase minerals include topaz, garnet, red Fe-Mn-rich beryl, bixbyite, pseudobrookite, and hematite. They are genetically related to deposits of Be, Mo, F, U, and Sn. Topaz rhyolites erupted contemporaneously with a variety of other igneous rocks, but most typically they form

  7. Late Palaeozoic-Cenozoic assembly of the Tethyan orogen in the light of evidence from Greece and Albania

    Science.gov (United States)

    Robertson, A. H. F.

    2012-04-01

    The objective here is to use the geology and tectonics of a critical part of the Tethyan orogen, represented by Greece and Albania, to shed light on the tectonic development of Tethys on a regional, to global scale, particularly the history of convergence during Late Palaeozoic to Cenozoic time. For Carboniferous time much evidence suggests that the Korabi-Pelagonian crustal unit as exposed in Albania and Greece formed above a northward-dipping subduction zone along the Eurasia continental margin, with Palaeotethys to the south. However, there is also some evidence of southward subduction beneath Gondwana especially from southern Greece and central southern Turkey. Palaeotethys is inferred to have closed in Europe as far to the east as the longitude of Libya, while remaining open beyond this. There is still uncertainty about the Pangea A-type reconstruction that would restore all of the present units in the area to within the E Mediterranean region, versus the Pangea B-type reconstruction that would require right-lateral displacement of exotic terranes, by up to 3,500 km eastwards. In either reconstruction, fragments of the Variscan collisional orogen are likely to have been displaced eastwards (variable distances) in the Balkan region prior to Late Permian-Early Triassic time. From ~Late Permian, the Greece-Albania crustal units were located in their present relative position within Tethys as a whole. From the mid-Permian, onwards the northern margin of Gondwana was affected by crustal extension. A Mesozoic ocean (Pindos-Mirdita ocean) then rifted during Early-Middle Triassic time, culminating in final continental break-up and seafloor spreading during the Late Triassic (Carnian-Norian). Subduction-influenced volcanics of mainly Early-Middle Triassic age probably reflect the extraction of magma from sub-continental lithosphere that was enriched in subduction-related fluids and volatiles during an earlier, ?Variscan subduction event. The existence of Upper Triassic

  8. U-Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59 Ga tholeiitic dyke swarms, and position of the Rio de la Plata Craton within the Columbia supercontinent

    Science.gov (United States)

    Teixeira, Wilson; D'Agrella-Filho, Manoel S.; Hamilton, Mike A.; Ernst, Richard E.; Girardi, Vicente A. V.; Mazzucchelli, Maurizio; Bettencourt, Jorge S.

    2013-08-01

    The Tandilia Terrane (southernmost fringe of the Rio de la Plata Craton) is an igneous and metamorphic complex produced by an accretionary orogeny (2.25-2.02 Ga). Calc-alkaline acidic dykes with E-W strike and a major shear zone with similar orientation are related with the late orogeny stage, as supported by field relations. In a previous study the acid dykes gave 40A-39Ar ages of 2007 ± 24 Ma to 2020 ± 24 Ma. A N and NW trending tholeiitic dyke swarm (Tandil swarm) is also present in the Tandilia Terrane. One sample from the NW-trending subset previously gave a U-Pb (ID-TIMS) baddeleyite age of 1588 ± 11 Ma. New precise U-Pb (ID-TIMS) baddeleyite dating of both N- and NW-trending Tandil dykes yielded crystallization ages of 1589 ± 3 Ma, 1588 ± 3 Ma and 1588 ± 3 Ma. Significantly older tholeiitic dykes known as the Florida swarm occur in the Northern Rio de la Plata Craton, for which a U-Pb (ID-TIMS) baddeleyite age of 1790 ± 5 Ma was previously reported. Consequently intermittent rifting (1.79, 1.59 Ga) took place after tectonic stabilization of the late Paleoproterozoic lithosphere (proto-Rio de la Plata Craton). The available geochemical data for the 1.59 Ga Tandil dykes define low- and high-TiO2 trends, although, only the low-TiO2 subgroup is firmly dated. Both the Tandil and Florida dykes have geochemical and Nd-Sr characteristics consistent with derivation from heterogeneous mantle sources that underwent metasomatic effects. The Tandil dykes may be linked with the 1.57 ± 0.02 Ga Capivarita anorthosite which occurs to the east of the northern part of the craton. Correlatives on other crustal blocks may include those in Baltica such as bimodal rock association (including the Breven-Hällefors and Åland-Åboland diabase dykes) and in the reconstructed Gawler Craton/NW Laurentia dolerites, bimodal magmatism and IOCG deposits. Contemporary within-plate bimodal associations are also present in the SW Amazonian Craton. Paleomagnetic data for the 1790 Ma

  9. Catalogue of the Mesozoic and Cenozoic holotypes in the collection of plant fossils in the Nationaal Natuurhistorisch Museum, Leiden

    NARCIS (Netherlands)

    Konijnenburg-van Cittert, van J.H.A.; Waveren, van I.M.; Jonckers, J.B.

    2004-01-01

    This is an inventory of the Mesozoic and Cenozoic type material in the original palaeobotanical collections of the Nationaal Natuurhistorisch Museum, Leiden, The Netherlands. In total 60 holotypes are documented and one is noted as missing from the collections. One new combination is made (Cinnamomu

  10. Geology, geochronology and geodynamic implications of the Cenozoic magmatic province in W and SE Ethiopia

    International Nuclear Information System (INIS)

    New K-Ar dates are presented for areas in W and SE Ethiopia. In the west, the dates distinguish the Geba Basalts of 40 to 32 Ma from the Welega Shield Volcanics which are shown to range from 11.2 + -2.2 to 7.8 + - 1.6 Ma. In SE Ethiopia, the Lower Stratoid flood basalts range from 30 + - 4.5 to 23.5 + - 4.5 Ma and are unconformably overlain by the Reira-Sanete shield volcanics which range from c. 15 to c. 2 Ma. The unconformity is marked by a palaeosol as are several of the intervals between the major volcanic stages of Ethiopia

  11. Geomagnetic imprint of the Persani volcanism

    Science.gov (United States)

    Besutiu, Lucian; Seghedi, Ioan; Zlagnean, Luminita; Atanasiu, Ligia; Popa, Razvan-Gabriel; Pomeran, Mihai; Visan, Madalina

    2016-04-01

    The Persani small volume volcanism is located in the SE corner of the Transylvanian Depression, at the north-western edge of the intra-mountainous Brasov basin. It represents the south-easternmost segment of the Neogene-Quaternary volcanic chain of the East Carpathians. The alkaline basalt monogenetic volcanic field is partly coeval with the high-K calc-alkaline magmatism south of Harghita Mountains (1-1.6 Ma). Its eruptions post-dated the calc-alkaline volcanism in the Harghita Mountains (5.3-1.6 Ma), but pre-dated the high-K calc-alkaline emissions of Ciomadul volcano (1.0-0.03 Ma). The major volcanic forms have been mapped in previous geological surveys. Still, due to the small size of the volcanoes and large extent of tephra deposits and recent sediments, the location of some vents or other volcanic structures has been incompletely revealed. To overcome this problem, the area was subject to several near-surface geophysical investigations, including paleomagnetic research. However, due to their large-scale features, the previous geophysical surveys proved to be an inappropriate approach to the volcanological issues. Therefore, during the summers of 2014 and 2015, based on the high magnetic contrast between the volcanic rocks and the hosting sedimentary formations, a detailed ground geomagnetic survey has been designed and conducted, within central Persani volcanism area, in order to outline the presence of volcanic structures hidden beneath the overlying deposits. Additionally, information on the rock magnetic properties was also targeted by sampling and analysing several outcrops in the area. Based on the acquired data, a detailed total intensity scalar geomagnetic anomaly map was constructed by using the recent IGRF12 model. The revealed pattern of the geomagnetic field proved to be fully consistent with the direction of magnetisation previously determined on rock samples. In order to enhance the signal/noise ratio, the results were further processed by

  12. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    Based on various lines of evidence such as the widespread occurrence of basalts, pumice, volcanic glass shards and their transformational products (zeolites, palagonites, and smectite-rich sediments), we suggest the presence of a volcanic province...

  13. El volcanismo cuaternario en el retroarco de Payenia: una revisión Retroarc Neogene volcanism at Payenia: A review

    Directory of Open Access Journals (Sweden)

    Eduardo J Llambías

    2010-10-01

    Full Text Available La provincia basáltica Payenia se desarrolló al pie de los Andes entre 33º40'S y 38ºS. Es una típica asociación de retroarco con dos picos de actividad, el más antiguo es mayormente mioceno (26 a 8 Ma y el más joven es Plioceno - Holoceno (The Payenia basaltic province is a typical retroarc association developed along the foothills of the Andes between 33º40'S and 38º00'S. It records two main events, an older, mostly Miocene one (26 to 8 Ma and a younger Pliocene to Holocene one (younger than 5 Ma. It covers an N-S lowland belt named here the central depression. To the North of 36°20'S, the region was described as Los Huarpes depression, a partially deformed sedimentary basin characterized by a 1000 m-thick, undifferentiated Cenozoic sequence. To the south, Upper Cretaceous to Lower Paleogene layers, instead of the undifferentiated Cenozoic deposits, are covered by basalts. The volcanism additionally covers the western side of the San Rafael Block as well as the fold and thrust belt of the Andean foothills. The Payenia province consists of more than 800 monogenetic basaltic cones, and scarce polygenetic volcanos fed by shallow magmatic chambers. Among the latter, the following examples can be mentioned: Miocene Chachahuén volcano (7 to 5 Ma, composed of andesites, rhyodacites and basalts with high-K and amphibole; Pliocene El Nevado volcano, with calc-alkaline, basaltic trachyandesites, trachytes, dacites and rhyolites; and Upper Pleistocene to Holocene Payún Matrú volcano, composed of trachytes, trachyandesites and trachybasalts. The southernmost area of the central depression is covered by the Pleistocene, Auca Mahuida basaltic shield (1.7 to 0.88 Ma, consisting of trachybasalts, basaltic trachyandesites and trachyandesites. This shield is aligned with Tromen and Domuyo volcanos, defining an NW-SE volcanic belt, oblique to the Andes, whose southern tip corresponds to the Cortaderas lineament. Some of the monogenetic cones are of

  14. Petrochemistry and origin of basalt breccia from Ban Sap Sawat area, Wichian Buri, Phetchabun, central Thailand

    Directory of Open Access Journals (Sweden)

    Phisit Limtrakun

    2013-08-01

    Full Text Available Thailand is usually considered to be controlled by escape tectonics associated with India-Asia collision during theLate Cenozoic, and basaltic volcanism took place in this extensional period. This volcanism generated both subaqueous andsubaerial lava flows with tholeiitic to alkalic basaltic magma. The subaqueous eruptions represented by the studied WichianBuri basalts, Ban Sap Sawat in particular, are constituted by two main types of volcanic lithofacies, including lava flows andbasalt breccias. The lava flows are commonly porphyritic with olivine and plagioclase phenocrysts and microphenocrysts,and are uncommonly seriate textured. The basalt breccias are strongly vitrophyric texture with olivine and plagioclasephenocrysts and microphenocrysts. Chemical analyses indicate that both lava flows and basalt breccias have similar geochemical compositions, signifying that they were solidified from the same magma. Their chondrite normalized REE patternsand N-MORB normalized patterns are closely analogous to the Early to Middle Miocene tholeiites from central Sinkhote-Alinand Sakhalin, northeastern margin of the Eurasian continent which were erupted in a continental rift environment. The originfor the Wichian Buri basalts show similarity of lava flows and basalt breccias, in terms of petrography and chemical compositions, signifying that they have been formed from the same continental within-plate, transitional tholeiitic magma.

  15. Petrography and petrology of Quaternary volcanic rocks from Ghezel Ghaleh, northwest Qorveh

    Directory of Open Access Journals (Sweden)

    Alireza Bajelan

    2014-10-01

    disequilibrium textures in the minerals (zoned state, solution and twinning shows a magmatic contamination in mixing volcanic mass. References Aldanmaz, E., Koprubasi, N.O., Gurer, F., Kaymakci, N. and Gournaud, A., 2006. geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos, 86 (1–2 pp. 50–76. De La Roche, H., Leterrier, J., Grand claude, P. and Marchel, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major elements, it’s relationships with current nomenclature. Chemical Geology, 29(1-4: 183–210. Hirschman, M., 1998. Origin of the transgressive granophyres in the layered series of the Skaergaard intrusion, East Greenland. In: D.J. Geist and C.M. White (Editors.. Journal of Volcanology and Geothermal Research, 52(1-3: 185–207. Irvine, T.N. and Baragar, W.R.A., 1971. A guide to chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 5(8: 448– 523. Moein Vaziri, H., 1997. The history of magmatism in Iran. Tehran University Press, Tehran, 440 pp. (in Persian Moein Vaziri, H. and Aminsobhani, A., 1985. Study of young volcanic region being involved in –Qorveh- Takab. Tehran University Press, Tehran, 350 pp. (in Persian Pearce, J.A. and Cann, J.R., 1973. Tectonic setting of basaltic volcanic rocks determind using traceelements analysis. Earth and Planetary Science Letters, 19(2: 290– 300. Pearce, J.A. and Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y and Nb variation in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1: 33– 47. Shelley, D. (Translated by Mohamadzadeh, F., 1993. Igneous and metamorphic rocks under the microscope, classification, textures, microstructures and mineral preferred-orientations. Chapman and Hall, Unwin, London, 445 pp.

  16. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  17. Monogenetic volcanism: personal views and discussion

    Science.gov (United States)

    Németh, K.; Kereszturi, G.

    2015-11-01

    Monogenetic volcanism produces small-volume volcanoes with a wide range of eruptive styles, lithological features and geomorphic architectures. They are classified as spatter cones, scoria (or cinder) cones, tuff rings, maars (maar-diatremes) and tuff cones based on the magma/water ratio, dominant eruption styles and their typical surface morphotypes. The common interplay between internal, such as the physical-chemical characteristics of magma, and external parameters, such as groundwater flow, substrate characteristics or topography, plays an important role in creating small-volume volcanoes with diverse architectures, which can give the impression of complexity and of similarities to large-volume polygenetic volcanoes. In spite of this volcanic facies complexity, we defend the term "monogenetic volcano" and highlight the term's value, especially to express volcano morphotypes. This study defines a monogenetic volcano, a volcanic edifice with a small cumulative volume (typically ≤1 km3) that has been built up by one continuous, or many discontinuous, small eruptions fed from one or multiple magma batches. This definition provides a reasonable explanation of the recently recognized chemical diversities of this type of volcanism.

  18. Monitoring and forecasting Etna volcanic plumes

    Science.gov (United States)

    Scollo, S.; Prestifilippo, M.; Spata, G.; D'Agostino, M.; Coltelli, M.

    2009-09-01

    In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i) downloading weather forecast data from meteorological mesoscale models; ii) running models of tephra dispersal, iii) plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv) publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  19. Organic Entrainment and Preservation in Volcanic Glasses

    Science.gov (United States)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  20. Investigation of thallium fluxes from subaerial volcanism-Implications for the present and past mass balance of thallium in the oceans

    Science.gov (United States)

    Baker, R.G.A.; Rehkamper, M.; Hinkley, T.K.; Nielsen, S.G.; Toutain, J.P.

    2009-01-01

    A suite of 34 volcanic gas condensates and particulates from Kilauea (Hawaii), Mt. Etna and Vulcano (Italy), Mt. Merapi (Indonesia), White Island and Mt. Nguaruhoe (New Zealand) were analysed for both Tl isotope compositions and Tl/Pb ratios. When considered together with published Tl-Pb abundance data, the measurements provide globally representative best estimates of Tl/Pb = 0.46 ?? 0.25 and ??205Tl = -1.7 ?? 2.0 for the emissions of subaerial volcanism to the atmosphere and oceans (??205Tl is the deviation of the 205Tl/203Tl isotope ratio from NIST SRM 997 isotope standard in parts per 10,000). Compared to igneous rocks of the crust and mantle, volcanic gases were found to have (i) Tl/Pb ratios that are typically about an order of magnitude higher, and (ii) significantly more variable Tl isotope compositions but a mean ??205Tl value that is indistinguishable from estimates for the Earth's mantle and continental crust. The first observation can be explained by the more volatile nature of Tl compared to Pb during the production of volcanic gases, whilst the second reflects the contrasting and approximately balanced isotope fractionation effects that are generated by partial evaporation of Tl during magma degassing and partial Tl condensation as a result of the cooling and differentiation of volcanic gases. Mass balance calculations, based on results from this and other recent Tl isotope studies, were carried out to investigate whether temporal changes in the volcanic Tl fluxes could be responsible for the dramatic shift in the ??205Tl value of the oceans at ???55 Ma, which has been inferred from Tl isotope time series data for ferromanganese crusts. The calculations demonstrate that even large changes in the marine Tl input fluxes from volcanism and other sources are unable to significantly alter the Tl isotope composition of the oceans. Based on modelling, it is shown that the large inferred change in the ??205Tl value of seawater is best explained if the oceans

  1. Implications of volcanic erratics in Quaternary deposits of North Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby; Larsen, Ole

    1982-01-01

    Erratic boulders, petrographically similar to the volcanics exposed around Kap Washington, are found on islands and along the coast much further to the east. Isotopic measurements on two such boulders show that these volcanic rocks are of the same age as the Kap Washington volcanics. The regional...

  2. Volcanic Ash Transport and Dispersion Forecasting

    Science.gov (United States)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  3. Volcanic Plume Chemistry: Models, Observations and Impacts

    Science.gov (United States)

    Roberts, Tjarda; Martin, Robert; Oppenheimer, Clive; Griffiths, Paul; Braban, Christine; Cox, Tony; Jones, Rod; Durant, Adam; Kelly, Peter

    2010-05-01

    Volcanic plumes are highly chemically reactive; both in the hot, near-vent plume, and also at ambient temperatures in the downwind plume, as the volcanic gases and aerosol disperse into the background atmosphere. In particular, DOAS (Differential Optical Absortpion Spectroscopy) observations have identified BrO (Bromine Monoxide) in several volcanic plumes degassing into the troposphere. These observations are explained by rapid in-plume autocatalytic BrO-chemistry that occurs whilst the plume disperses, enabling oxidants such as ozone from background air to mix with the acid gases and aerosol. Computer modelling tools have recently been developed to interpret the observed BrO and predict that substantial ozone depletion occurs downwind. Alongside these modelling developments, advances in in-situ and remote sensing techniques have also improved our observational understanding of volcanic plumes. We present simulations using the model, PlumeChem, that predict the spatial distribution of gases in volcanic plumes, including formation of reactive halogens BrO, ClO and OClO that are enhanced nearer the plume edges, and depletion of ozone within the plume core. The simulations also show that in-plume chemistry rapidly converts NOx into nitric acid, providing a mechanism to explain observed elevated in-plume HNO3. This highlights the importance of coupled BrO-NOx chemistry, both for BrO-formation and as a production mechanism for HNO3 in BrO-influenced regions of the atmosphere. Studies of coupled halogen-H2S-chemistry are consistent with in-situ Alphasense electrochemical sensor observations of H2S at a range of volcanoes, and only predict H2S-depletion if Cl is additionally elevated. Initial studies regarding the transformations of mercury within volcanic plumes suggest that significant in-plume conversion of Hg0 to Hg2+ can occur in the downwind plume. Such Hg2+ may impact downwind ecology through enhanced Hg-deposition, and causing enhanced biological uptake of

  4. Holocene explosive volcanism of the Jan Mayen (island) volcanic province, North-Atlantic

    Science.gov (United States)

    Gjerløw, Eirik; Haflidason, H.; Pedersen, R. B.

    2016-07-01

    The volcanic island Jan Mayen, located in the Norwegian-Greenland Sea, hosts the active stratovolcano of Beerenberg, the northernmost active subaerial volcano in the world. At least five eruptions are known from the island following its discovery in the 17th century, but its eruptive history prior to this is basically unknown. In this paper two sediment cores retrieved close to Jan Mayen have been studied in detail to shed light on the Holocene history of explosive volcanism from the Jan Mayen volcanic province. Horizons with elevated tephra concentrations were identified and tephra from these was analysed to determine major element chemistry of the tephra. The tephra chemistry was used to provide a link between the two cores and the land based tephra records from Jan Mayen Island. We managed to link two well-developed tephra peaks in the cores by their geochemical composition and age to Jan Mayen. One of these peaks represents the 1732 AD eruption of Eggøya while the other peak represents a previously undescribed eruption dated to around 10.3 ka BP. Two less prominent tephra peaks, one in each core, dated to approximately 2.3 and 3.0 ka BP, also have a distinct geochemical character linking them to Jan Mayen volcanism. However, the most prominent tephra layer in the cores located close to Jan Mayen and numerous other cores along the Jan Mayen ridge is the 12.1 ka BP Vedde Ash originating from the Iceland volcanic province. We find that the Holocene volcanism on Jan Mayen is much less explosive than volcanism in Iceland, and propose that either low amounts of explosive volcanic activity from the summit region of Beerenberg or small to absent glacier cover on Beerenberg is responsible for this.

  5. Structural Evolution of the Eastern Margin of Eurasia in Late Mesozoic and Cenozoic

    Institute of Scientific and Technical Information of China (English)

    A. P. Sorokin; T. V. Artyomenko

    2003-01-01

    This paper features the structural evolution of the eastern margin of Eurasia in Late Mesozoic and Cenozoic.It is characterized by three stages of development: the riftogenic stage (Jurassic-Early Cretaceous), the platform stage (Late Cretaceous) and the neotectonic one (Paleogene-Quarternary). The boundaries between these stages are distinctly fixed by the geological time limits of planetary range. It is demonstrated that the riftogenic and neotectonic stages were characterized by a high degree of geodynamic activity, and the platform one by a decrease in contrast of tectonic movements. The main river net was formed in the Early Cretaceous and in the Neogene. It experienced a serious reconstruction accompanied by the formation of the Amur River valley being similar to the modem one.

  6. Fluid Composititon and Carbon & Oxygen Isotope Geochemistry of Cenozoic Alkali Basalts in Eastern China

    Institute of Scientific and Technical Information of China (English)

    张铭杰; 王先彬; 等

    1999-01-01

    The fluid compositions of Cenozoic alkali basalts in eastern China have been determined by the pyrolysis-MS method,meanwhile the carbon and oxygen isotopic compositions of CO2 released from these samples at different heating temperatures have been analyzed by the vacuum step-heating method.The data show the volatiole heterogeneity in upper-mantle sources and different evolution trends of alkali basaltic magmas in eastern China,and these alkali basaltic magmas may be generated in the oxidizing milieu,as compared with mantle-derived xenoliths in these alkali basalts,and exotic volatile components were mixed into these magmas in the process of their formation and development.

  7. Late Cenozoic magnetic polarity stratigraphy in the Jiudong Basin, northern Qilian Mountain

    Institute of Scientific and Technical Information of China (English)

    赵志军; 方小敏; 李吉均

    2001-01-01

    Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are>11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.

  8. Thermal structure research on cenozoic in Songliao basin and Daxinganling Mountain

    International Nuclear Information System (INIS)

    Thermal history simulation of Apatite Fission Track shows the thermal structure history in Cenozoic and the relationship between Songliao Basin and Daxinganling Mountain. Uplift of Daxinganling reveals its act character; its velocity shows 5 decreasing phases and 4 increasing ones. Although basin evolvement is quite complex, it behaved as three uplifts and two sedimentations. It is considered here that the relationship between Songliao Basin and Daxinganling includes three styles and 4 phases, that is, basin uplifted with mountain during 65.5-50 Ma; basin subsided while mountain uplifted slowly and basin uplifted rapidly while mountain uplifted rapidly during 50-36 Ma; basin subsided slowly while mountain uplifted slowly and basin subsided rapidly while mountain uplifted rapidly during 36-5.83 Ma; the latest phase was the same with the first one. (authors)

  9. Geochemical Evolution and Environmental Changes of Qinghai—Xizang Plateau Since Late Cenozoic

    Institute of Scientific and Technical Information of China (English)

    余素华; 文启忠; 等

    1998-01-01

    Long-and short-term climatic curves were preliminarily established based on the comprehensive analysis of geochemical information since the Late Cenozoic in the Qinghai Xizang(Qinghai-Tibet)Plateau.The curves show that the climate in the plateau was alternatively dry-warm and cold-wet during the period of 30-3.4 Ma when the plateau was not uplifted to an enough altitude and the monsoon was not completely formed either,In the period of 3.4-0.73 Ma.the climate fluctuated between dry-cold and wet-warm when the plateau was rapidly uplifted and the Asian monsoon was consequently formed.Since 0.73 Ma.the climate became even drier when the plateau continuously rose.In the Holocene period.the climate alternatively changed with a complex model of being cool-dry,warm-wet and cold-wet.

  10. ESR dating of late Cenozoic molassic deposits in the Jiuxi Basin

    Institute of Scientific and Technical Information of China (English)

    史正涛; 业渝光; 赵志军; 方小敏; 李吉均

    2001-01-01

    In the Hexi Corridor, foreland depression at the north periphery of the Tibetan Plateau, late Cenozoic sediments can be divided into the lacustrine to deltaic Red Bed. The unconformably overlying coarse fan-conglomerate was shed from the northern plateau. This remarkable alternation of sedimentary environment and discontinuity reflect intensive rise of the plateau. Moreover, this suite of coarse molasses is divided into two formations as the Yumen conglomerate and the Jiuquan Gravel by another angular discontinuity. Tentatively, we applied ESR dating on this suite of molassic deposits at the Laojunmiao Section in the Jiuxi Basin, west of the Hexi Corridor, which shows that the bottom of the Yumen conglomerate and the Jiuquan Gravel are about 3.4 and 0.9 Ma respectively, indicating that the northern plateau at least experienced two intensive tectonic movements at about 3.5 and 0.9 Ma.

  11. Late Cenozoic tectonic deformation in the Tianshan Mountain and its foreland basins

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peizhen

    2004-01-01

    @@ The magnificent Tianshan Mountain has owned its respects and high praise since the beginning of ancient Chinese civilization. When the history wheeled into the 1990s, a large group of earth scientists once again focused their sights on the Tianshan Mountain, the most spectacular Cenozoic rejuvenated intra-plate mountain building. Why does such strong tectonic deformation occur in the continental interior several thousand kilometers away from plate boundaries? What are the pattern and magnitude of the tectonic deformation? What factors dominate tectonic deformation in the continental interior? How do the dynamic processes at the depth dictate tectonic deformation near the surface? The Tianshan Mountain provides a natural laboratory to answer these important scientific questions.

  12. Mesozoic-Cenozoic thermal history of Turpan-Hami Basin: apatite fission track constraints

    Institute of Scientific and Technical Information of China (English)

    ZHU Wenbin; WAN Jinglin; SHU Liangshu; SUN Yan; GUO Jichun; WANG Feng

    2005-01-01

    Apatite fission track dating is carried out on nine samples collected from the central part (Lianmuqin section) and from both northern and southern margins of Turpan-Hami Basin. The fission-track ages of seven Jurassic samples are distinctly younger than depositional ages. In contrast, the fission-track ages of two Cretaceous samples are older than, or as old as depositional ages. These observations indicate that the Jurassic samples have been annealed or partially annealed, whereas the Cretaceous samples have not been annealed.The further thermal modelling results show that Turpan-Hami Basin experienced a Late Cretaceous period (120-100 Ma) of tectonic uplift with rapid cooling and exhumation of sediments. The samples underwent a Cenozoic period of reburial and re-heating and were exhumed again at 10-8 Ma.

  13. International Database of Volcanic Ash Impacts

    Science.gov (United States)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  14. Sediment budget of cratons: insights from West Africa over the Cenozoic

    Science.gov (United States)

    Jean-Louis, G.; Chardon, D.; Rouby, D.; Beauvais, A.

    2015-12-01

    The sediment load of rivers constitutes the material that builds the stratigraphic successions found from continental margins to the deep ocean. Measure of this flux is relevant to understanding continental controls on denudation, riverine transport and basin filling. An increasing number of sediment yield measures is available but whether these modern values can be extrapolated at geological timescales for large watersheds is still questioned. One reason is the lack of long-term data. Here, we present a sediment budget for Sub-Saharan West Africa over the Cenozoic to compare with the modern rates. The denudation of this cratonic area is constrained using three regional lateritic paleo-landsurfaces that formed during periods of enhanced weathering since the Paleocene-Eocene greenhouse peak. The 3D interpolation of these surfaces allowed building three successive denudation maps for the 45-24, 24-11 and 11-0 Ma intervals together with reconstructions of the paleo-drainage. The regional distribution of erosion suggests the influence of lithospheric deformation, concentrated around a southern marginal upwarp and eastern hotspot swells. The export of large-scale drainages was calculated by converting denudated volumes into sediment fluxes using the porosity and density of lateritic regolith. Exported volumes calculated for the Niger watershed fall within the same range as the Cenozoic clastic accumulations of the Niger delta. Comparisons also show that modern fluxes can be an order of magnitude above the long-term fluxes for moderately large watersheds but that modern and long-term yields are similar for the largest watersheds (e.g. Niger, Volta, Senegal). These results suggest that the export of very large cratonic watersheds is independent of the measurement timescale and that their modern yields can be extrapolated at long-timescale. Finally, it allows assessing the relative contribution of cratons, i.e. non-active orogenic areas, to the global sediment budgets at

  15. Disentangling Topographic and Climatic Change during the Late Cretaceous and Cenozoic in the Western US Cordillera

    Science.gov (United States)

    Snell, K. E.; Eiler, J. M.; Wernicke, B. P.; Peppe, D. J.; Fox, D. L.; Fetrow, A. C.; Passey, B. H.

    2014-12-01

    A diverse suite of tectonic and climatic drivers influenced the topographic evolution of the western USA Cordillera. Despite years of study, considerable uncertainty remains about fundamentals of this evolution, such as the timing and magnitude of maximum average elevations for the different physiographic provinces; the drivers and topographic effects of different episodes of extension during the Cenozoic; and the relative relief of peaks and intermontane basins within the Cordillera at different times and in different places. Numerous tectonic models have been developed to explain the evolution of the Cordillera, and understanding these details is key for distinguishing between these different models. In addition, the topographic changes in the Cordillera have important implications for regional and local climate of the western US at different times in the past, and may drive important differences in local climatic responses to global climate changes through the Cenozoic. The majority of the tools that currently exist for quantitatively reconstructing changes in topography through time and space rely on paleoclimate proxy data. Thus it is also important to be able to disentangle climatic change from elevation change in terrestrial paleoclimate records. To address some of these outstanding questions, we have generated and compiled paleotemperature estimates from the Late Cretaceous through the Miocene of the western US. In this presentation, we will focus on the latest installment of the project, which utilizes Oligocene paleotemperature records from central Utah and South Dakota and Miocene-Holocene paleotemperature records from Kansas. The data are dominantly composed of mean annual temperature estimates from leaf margin analysis and summer temperature estimates from carbonate clumped isotope thermometry. We will discuss how these data compare to temperature data from the Paleogene from the western US, what general trends exist within all the data and how these

  16. Cenozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    Science.gov (United States)

    Rouby, Delphine; Chardon, Dominique; Huyghe, Damien; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Ye, Jing; Dall'Asta, Massimo; Grimaud, Jean-Louis

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns. We analyzed this system combining onshore geology and geomorphology as well as offshore sub-surface data. Mapping and regional correlation of dated lateritic paleo-landscape remnants allows us to reconstruct two physiographic configurations of West Africa during the Cenozoic. We corrected those reconstitutions from flexural isostasy related to the subsequent erosion. These geometries show that the present-day drainage organization stabilized by at least 29 Myrs ago (probably by 34 Myr) revealing the antiquity of the Senegambia, Niger and Volta catchments toward the Atlantic as well as of the marginal upwarp currently forming a continental divide. The drainage rearrangement that lead to this drainage organization was primarily enhanced by the topographic growth of the Hoggar swell and caused a major stratigraphic turnover along the Equatorial margin of West Africa. Elevation differences between paleo-landscape remnants give access to the spatial and temporal distribution of denudation for 3 time-increments since 45 Myrs. From this, we estimate the volumes of sediments and associated lithologies exported by the West African Craton toward different segments of the margin, taking into account the type of eroded bedrock and the successive drainage reorganizations. We compare these data to Cenozoic accumulation histories in the basins and discuss their stratigraphic expression according to the type of margin segment they are preserved in.

  17. Origin of the Adventure Subglacial Trench linked to Cenozoic extension in the East Antarctic Craton

    Science.gov (United States)

    Cianfarra, P.; Salvini, F.

    2016-02-01

    The Antarctic plate occupies a unique geodynamic setting being mostly surrounded by divergent or transform margins. Major intracontinental basins and highlands characterize its bedrock, buried under the 34 Ma East Antarctic Ice Sheet (EAIS). Their formation atop of the cratonic lithosphere in the interior of East Antarctica remains a major open question. Post-Mesozoic intraplate extensional tectonic activity has been proposed for their development and is supported by this work. Here we focus on the Adventure Subglacial Trench (AST) whose origin is poorly constrained and controversial, as currently available geophysical models suggest either extensional or compressional tectonic origin. The AST is an over 250-km-long, 60-km-wide subglacial trough, elongated in the NNW-SSE direction adjacent to the westernmost flank of the Wilkes Subglacial Basin, and is parallel to regional scale alignments of magnetic and gravimetric anomalies. Geophysical campaigns allowed better definition of the AST physiography showing its typical half-graben geometry. The rounded morphology of the western flank of the AST was simulated through tectonic numerical modelling. We consider the subglacial landscape to primarily reflect a preserved relict of the tectonic processes affecting the interior of East Antarctica in the Cenozoic, due to the negligible erosion/deposition capability of the EAIS. The bedrock morphology was replicated through the activity of the listric Adventure Fault, characterized by a basal detachment at the base of the crust (34 km) and a vertical displacement of 2.5 km. This length suggests its regional/crustal importance. The predicted displacement is interpreted either as a newly formed fault or as the partial reactivation of a weaker zone along a major Precambrian crustal-scale tectonic boundary. The extensional regime in the AST is part of a more extensive 800-km long intraplate corridor characterized by nearly along-strike extension in Cenozoic times with a left

  18. Declining sensitivity of the carbonate compensation depth to sea level during the Cenozoic

    Science.gov (United States)

    Armstrong McKay, David I.; Tyrrell, Toby; Wilson, Paul A.

    2016-04-01

    Over the course of the Cenozoic the global carbonate compensation depth (CCD), the depth in the ocean below which carbonate deposited on the seafloor is not preserved, has shifted from a relatively shallow average position (~3000 to 3500 m in the equatorial Pacific) in the Palaeocene to a relatively deep position (~4600 m in the equatorial Pacific) today. Various hypotheses have been proposed to explain this shift, including increased input of terrestrial weathering products to the ocean, decreased bottom-water corrosivity due to increased ocean ventilation, and the decline of shelf carbonates leading to carbonate burial shifting to the deep ocean (known as 'shelf-basin carbonate burial fractionation'). Here we build on earlier attempts to quantify the impacts of carbonate burial fractionation on the CCD by analysing global hypsometric and carbonate burial data and determining the relationship between sea level, shelf carbonate burial extent, and the CCD. We show that if carbonate burial rates remain constant across the Cenozoic then carbonate burial fractionation can explain between 550 and 800 m of the long-term ~1600 m CCD deepening in the equatorial Pacific, ~430 m of which occurring across the Eocene-Oligocene Transition (EOT) ~34 million years ago when the CCD permanently deepened by ~500 m. This finding indicates that other processes dominated CCD change before and after the EOT and during events such as the Mid-Eocene Climatic Optimum (MECO), but a higher resolution global CCD record is required to better constrain the global magnitude of CCD change during these times. We find that the sensitivity of the CCD to sea level change was at its greatest prior to the EOT and then declined by approximately half due to the loss of extensive carbonate platforms at the end of the Eocene and the intersection of the CCD with large tracts of the abyssal plain.

  19. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.

    Science.gov (United States)

    Willenbring, Jane K; von Blanckenburg, Friedhelm

    2010-05-13

    Over geologic timescales, CO(2) is emitted from the Earth's interior and is removed from the atmosphere by silicate rock weathering and organic carbon burial. This balance is thought to have stabilized greenhouse conditions within a range that ensured habitable conditions. Changes in this balance have been attributed to changes in topographic relief, where varying rates of continental rock weathering and erosion are superimposed on fluctuations in organic carbon burial. Geological strata provide an indirect yet imperfectly preserved record of this change through changing rates of sedimentation. Widespread observations of a recent (0-5-Myr) fourfold increase in global sedimentation rates require a global mechanism to explain them. Accelerated uplift and global cooling have been given as possible causes, but because of the links between rates of erosion and the correlated rate of weathering, an increase in the drawdown of CO(2) that is predicted to follow may be the cause of global climate change instead. However, globally, rates of uplift cannot increase everywhere in the way that apparent sedimentation rates do. Moreover, proxy records of past atmospheric CO(2) provide no evidence for this large reduction in recent CO(2) concentrations. Here we question whether this increase in global weathering and erosion actually occurred and whether the apparent increase in the sedimentation rate is due to observational biases in the sedimentary record. As evidence, we recast the ocean dissolved (10)Be/(9)Be isotope system as a weathering proxy spanning the past approximately 12 Myr (ref. 14). This proxy indicates stable weathering fluxes during the late-Cenozoic era. The sum of these observations shows neither clear evidence for increased erosion nor clear evidence for a pulse in weathered material to the ocean. We conclude that processes different from an increase in denudation caused Cenozoic global cooling, and that global cooling had no profound effect on spatially and

  20. Using Spatial Density to Characterize Volcanic Fields on Mars

    Science.gov (United States)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  1. Electrical charging of ash in Icelandic volcanic plumes

    CERN Document Server

    Aplin, Karen L; Nicoll, Keri A

    2014-01-01

    The existence of volcanic lightning and alteration of the atmospheric potential gradient in the vicinity of near-vent volcanic plumes provides strong evidence for the charging of volcanic ash. More subtle electrical effects are also visible in balloon soundings of distal volcanic plumes. Near the vent, some proposed charging mechanisms are fractoemission, triboelectrification, and the so-called "dirty thunderstorm" mechanism, which is where ash and convective clouds interact electrically to enhance charging. Distant from the vent, a self-charging mechanism, probably triboelectrification, has been suggested to explain the sustained low levels of charge observed on a distal plume. Recent research by Houghton et al. (2013) linked the self-charging of volcanic ash to the properties of the particle size distribution, observing that a highly polydisperse ash distribution would charge more effectively than a monodisperse one. Natural radioactivity in some volcanic ash could also contribute to self-charging of volcan...

  2. Quaternary volcanism in the Acambay graben, Mexican Volcanic Belt: Re-evaluation for potential volcanic danger in central Mexico

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Pedrazzi, D.; Lacan, P.; Roldan-Quintana, J.; Ortuňo, M.; Zuniga, R. R.; Laurence, A.

    2015-12-01

    The Mexican Volcanic Belt (MVB) is best known for the major active stratovolcanoes, such as Popocatépetl, Citlaltépetl and Colima. The most common stratovolcanoes in this province are modest-size cones with heights of 800 to 1000 m. Examples are Tequila, Sangangüey, Las Navajas, Culiacán, La Joya, El Zamorano, Temascalcingo and Altamirano; these last two were formed within the Acambay Graben in central MVB. The Acambay graben (20 x 70 km) is 100 km to the NW of Mexico City, with E-W trending seismically active normal faults; in particular the Acambay-Tixmadejé fault related to a mB =7 earthquake in 1912. Within the graben there are many volcanic structures, including calderas, domes, cinder cones and stratovolcanoes; Temascalcingo and Altamirano are the largest, with about 800 and 900 m heights, respectively. Temascalcingo is mostly composed of dacitic lavas and block and ash flow deposits. Includes a 3 x 2.5 km summit caldera and a magmatic sector collapse event with the associated debris avalanche deposit. 14C ages of 37-12 ka correspond to the volcano's latest phases that produced pyroclastic deposits. A major plinian eruption formed the San Mateo Pumice with an age of <20 Ka. Altamirano volcano is poorly studied; it is andesitic-dacitic, composed of lavas, pyroclastic flow deposits, and pumice fallouts. Morphologically is better preserved than Temascalcingo, and it should be younger. 14C ages of 4.0-2.5 ka were performed in charcoal within pyroclastic flow deposits that apparently were erupted from Altamirano. An undated 3 m thick pumice fallout on the flanks of Altamirano volcano could be also Holocene. It represents a major explosive event. The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally thought as an inactive volcanic zone. The two major volcanoes, Temascalcingo and Altamirano, should be considered as dormant volcanoes that could restart activity at any time. We

  3. Volcanic Origin of Alkali Halides on Io

    Science.gov (United States)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  4. Learning to recognize volcanic non-eruptions

    Science.gov (United States)

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  5. Volcanic glass - an ideal paleomagnetic recording material?

    OpenAIRE

    Ferk, Annika

    2012-01-01

    Volcanic glass is often considered an ideal recording material for paleointensities. Experiments to determine the ancient field intensity are time consuming and mostly have low success rates. Studies have shown that the usage of glassy samples can increase success rates very much as the remanence carriers are in or close to the single domain range. Further, effects like magnetic anisotropy and cooling rate correction can be corrected for. The aim of this thesis is to clarify whether an ideal ...

  6. Tectonic Controls on Pyroclastic Volcanism on Mercury

    Science.gov (United States)

    Habermann, M.; Klimczak, C.

    2015-12-01

    Over much of Mercury's geologic history the planet has contracted as a response to cooling of its interior. Such contraction is evident as landforms formed by thrust faults, which have accommodated a radius decrease of ~5 km. Stresses from global contraction imposed on the lithosphere are not favorable for and prevent volcanism. Yet, there are examples on Mercury where pyroclastic deposits superpose thrust faults, indicating that explosive volcanism has occurred after the onset of global contraction. To better understand the spatial relationships of thrust faults with the pyroclastic vents, we used MESSENGER image data to categorize 343 vents by their occurrence either (1) within 30 km, (2) within 100 km, or (3) farther than 100 km from a thrust fault, using ArcGIS. Vents were also classified by their association with impact craters. Results show that 75% of all vents are located within impact structures, with 36% of vents within 30 km of thrust faults, 41% located farther than 30 but within 100 km of thrust faults, and 23% of vents are farther than 100 km from a thrust fault. To investigate whether this geospatial relationship is tectonically controlled, three areas —representing the three categories of vents— were mapped, and the locations and orientations of vents and faults were recorded. Stress changes around these faults were then numerically modeled with the COULOMB 3.4 software, using elastic rock properties, a background stress field, and fault size- and dislocation parameters applicable to conditions of Mercury's global contractional tectonic environment. Preliminary results indicate that stress changes can locally produce conditions beneficial for volcanism. Further modeling will determine if such beneficial conditions are geospatially correlated with the pyroclastic vents and thus enable a better understanding of pyroclastic volcanism on Mercury after the onset of global contraction.

  7. Modelling the atmospheric chemistry of volcanic plumes

    OpenAIRE

    Surl, Luke

    2016-01-01

    Abstract Volcanoes are the principal way by which volatiles are transferred from the solid Earth to the atmosphere-hydrosphere system. Once released into the atmosphere, volcanic emissions rapidly undergo a complex series of chemical reactions. This thesis seeks to further the understanding of such processes by both observation and numerical modelling. I have adapted WRF-Chem to model passive degassing from Mount Etna, the chemistry of its plume, and its influence on the ...

  8. Corrosion Properties of a Volcanic Hot Spring

    OpenAIRE

    Lichti, K. L.; Braham, V. J.; Engelberg, D.; Sanada, N.; Kurata, J.; Nanjo, H.; Ikeuchi, J.; Christenson, B.W.

    1998-01-01

    Volcanic hot pools on White Island, New Zealand provide ready access to acidic fluids at atmospheric pressure. These hot pools can be used to study the corrosion properties of construction materials that might be used for energy production from deep-seated and magma-ambient geothermal systems, or from shallow resources producing acidic fluids. corrosion results for a 1,hot pool are presented. A select group of moderate and high alloy materials appear suitable for energy plant applications. Ch...

  9. Minerogenesis of volcanic caves of Kenya.

    Directory of Open Access Journals (Sweden)

    Rossi Antonio

    2003-01-01

    Full Text Available Kenya is one of the few countries in which karst cavities are scarce with respect to volcanic ones, which are widespread throughout the whole country. The great variability in lava composition allowed the evolution of very different cavities, some of which are amongst the largest lava tubes of the world. As normal for such a kind of cave, the hosted speleothems and cave minerals are scarce but important from the minerogenetic point of view. Anyway up to present no specific mineralogical research have been carried out therein. During the 8th International Symposium on Volcanospeleology, held in Nairobi in February 1998, some of the most important volcanic caves of Kenya have been visited and their speleothems and/or chemical deposits sampled: most of them were related to thick guano deposits once present inside these cavities. Speleothems mainly consisted of opal or gypsum, while the deposits related to guano often resulted in a mixture of sulphates and phosphates. The analyses confirmed the great variability in the minerogenetic mechanisms active inside the volcanic caves, which consequently allow the evolution of several different minerals even if the total amount of chemical deposit is scarce. Among the observed minerals kogarkoite, phillipsite and hydroxyapophyllite, must be cited because they are new cave minerals not only for the lava tubes of Kenya, but also for the world cave environment. The achieved results are compared with the available random data from previous literature in order to allow an updated overview on the secondary cave minerals of Kenya.

  10. Venus volcanism: initial analysis from magellan data.

    Science.gov (United States)

    Head, J W; Campbell, D B; Elachi, C; Guest, J E; McKenzie, D P; Saunders, R S; Schaber, G G; Schubert, G

    1991-04-12

    Magellan images confirm that volcanism is widespread and has been fimdamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on Earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komatiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 Km(3)/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  11. Tracing acidification induced by Deccan volcanism

    Science.gov (United States)

    Font, Eric; Adatte, Thierry; Fantasia, Alicia; Ponte, Jorge; Florindo, Fabio; Abrajevitch, Alexandra; Samant, Bandana; Mohabey, Dhananjay; Thakre, Deepali

    2015-04-01

    The Deccan Volcanic Province (DVP) is constituted by three major phases of eruptions, for which the most voluminous - the Deccan Phase-2 - encompassed the Cretaceous-Paleogene (KT) boundary and has been pointed as the main contributor of the KT mass extinction. However, the mechanisms (including acidification) by which the massive Deccan Phase eruptions contributed to the end-Cretaceous global changes and to the controversial KT mass extinction are still poorly constrained. Here we identify the regional climate and environmental effects of the Deccan eruptions by studying the magnetic and mineral assemblages preserved in the lacustrine and continental intertrappeans sediments from the western Maharashtra Deccan Volcanic Provinces (DVP). To achieve this objective, we applied rock magnetic techniques coupled to scanning electron microscopy and diffuse reflectance spectrophotometry to samples collected in three different stratigraphic sections. Our results show that the main magnetic carriers of the Deccan lacustrine and continental sediments are represented by allogenic (detrital) magnetite and hematite inherited from the weathering of the surrounding underlying basaltic bedrocks. Iron sulphides (pyrrhotite or greigite) are accessorily observed. Interestingly, the Podgawan deposits show peculiar and very distinct magnetic and mineralogical signatures, including iron oxide reductive dissolution and widespread crystallisation of iron vanadates, that we interpreted as the effect of Deccan induced acidification. Keywords: Deccan Volcanic Province, intertrappean continental sediments, environmental magnetism Funded by FCT (PTDC/CTE-GIX/117298/2010)

  12. Venus volcanism: Initial analysis from Magellan data

    Science.gov (United States)

    Head, J.W.; Campbell, D.B.; Elachi, C.; Guest, J.E.; Mckenzie, D.P.; Saunders, R.S.; Schaber, G.G.; Schubert, G.

    1991-01-01

    Magellan images confirm that volcanism is widespread and has been fundamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on Earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komatiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 km3/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  13. A probabilistic approach to determine volcanic eruption centres of degraded volcanic edifices

    Science.gov (United States)

    Székely, B.; Karátson, D.

    2009-04-01

    It is often a difficult problem to determine the position of original eruption centres of degraded volcanic edifices. Beside of the destructive processes acting during the volcanic activity, subsequent erosion, mass movements and tectonic motions modify the spatial distribution of the volcanic features. The observations including dipping strata, clast orientations, lava flows, etc. made on the present surface are therefore biased by the post-eruptive processes making the reconstruction of the original volcanic pattern problematic. The different types of observations and their various error levels complicate the problem further. We propose a probabilistic approach to evaluate the different types of observations. Each observation type or even each observation may have their own error bars which can be taken into account in this scheme. The only assumption is that it is possible to determine the relative direction of the original volcanic centre based on the specific observation within a given angular accuracy. In our scheme a spatial probability density function (PDF) is assigned to each observation and the weighted sum of these PDFs results in a map. This integrated PDF map then can be evaluated to determine one or multiple eruption centres. In case of multiple centres further decision can be made on whether the various centres are only virtual, caused by subsequent tectonism or, on the contrary, the original setting had several eruption vents. This decision can be made on targeted grouping of PDFs of different types of observations or spatial selection. The resulting compound PDF maps may outline individual centres.

  14. Mesozoic extension and Cenozoic contraction in an intraplate setting (Maestrat basin, Iberian Chain, E Spain)

    Science.gov (United States)

    Nebot Miralles, M.; Guimerà Roso, J.

    2013-12-01

    The Iberian Chain, located in the eastern Iberian Peninsula, is a fold-and-thrust belt developed during the Cenozoic, because of the contractional inversion of the Mesozoic Iberian Rift System. The extension in the Iberian Chain took place in two major rifting cycles (late Permian to late Triassic and late Oxfordian to late Albian) followed by episodes of lower rifting activity (early and middle Jurassic, and late Albian to Maastrichtian). The Maestrat basin (containing up to 6.5 km of Mesozoic sediments) is one of the most subsident basins during the late Oxfordian to late Albian cycle. A system of listric extensional faults, which involve the basement, bounded the basin, and also divided it into minor sub-basins, containing different thicknesses of the Mesozoic sedimentary fill. An E-W-trending, N-verging, fold-and-thrust belt developed in the northern boundary of the basin, as the result of the Cenozoic inversion. This belt involved the Mesozoic cover in the northern -foreland- areas, with a detachment level located within the Triassic: in the Middle Muschelkalk (Middle Triassic) and Keuper (Upper Triassic), both formed by lutites and evaporites. Southwards, the thrust-system also involved the Variscan basement. A study of the region containing the transition between the thin-skinned and the thick-skinned areas is presented, based on seismic profiles, oil-exploration wells and field data. A progressive northward thickening of Jurassic and lower Cretaceous units, related to a S-dipping listric extensional fault located to the N, can be observed both in the field and the seismic profiles. In the Triassic rocks, depositional thickness variations in the Middle Muschelkalk unit are observed, related to sub-vertical faults active during the Triassic rifting. Salt anticlines, pillows and welds are also observed in the Middle Muschelkalk. These halocynetic structures developed during the Keuper, as it is deduced from the onlap geometries of the Keuper seismic reflectors

  15. Neogene volcanism in Gutai Mts. (Eastern Carpathains: a review

    Directory of Open Access Journals (Sweden)

    Marinel Kovacs

    2003-04-01

    Full Text Available Two types of volcanism developed in Gutâi Mts. (inner volcanic chain of Eastern Carpathians: a felsic, extensional/“back-arc” type and an intermediate, arc type. The felsic volcanism of explosive origin, consisting of caldera-related rhyolitic ignimbrites and resedimented volcaniclastics, had taken place during Early-Middle Badenian and Early Sarmatian. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The intermediate volcanism, consisting of extrusive (effusive and explosive and intrusive activity, had developed during Sarmatian and Pannonian (13.4-7.0 Ma. It is represented by typical calc-alkaline series, from basalts to rhyolites. Lava flows of basaltic andesites and andesites are predominant, often emplaced in subaqueous environment. Extrusive domes, mainly composed of dacites, are associated to the andesitic volcanic structures. The geochemical study on the volcanic rocks shows the calc-alkaline character of both felsic and intermediate volcanism and typical subduction zones geochemical signatures for the intermediate one. The felsic volcanism shows affinities with subduction-related rocks as well. The main petrogenetic process in Gutâi Mts. was crustal assimilation, strongly constrained by trace element and isotope geochemistry.

  16. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  17. Cenozoic foreland-basin evolution in the northern Andes : insights from thermochronology and basin analysis in the Eastern Cordillera, Colombia

    OpenAIRE

    Parra, Mauricio

    2009-01-01

    The modern foreland basin straddling the eastern margin of the Andean orogen is the prime example of a retro-arc foreland basin system adjacent to a subduction orogen. While widely studied in the central and southern Andes, the spatial and temporal evolution of the Cenozoic foreland basin system in the northern Andes has received considerably less attention. This is in part due to the complex geodynamic boundary conditions, such as the oblique subduction and accretion of the Caribbean plates ...

  18. Cenozoic Mammals and Climate Change: The Contrast between Coarse-Scale versus High-Resolution Studies Explained by Species Sorting

    OpenAIRE

    Donald Prothero

    2012-01-01

    Many paleontologists have noticed the broadly similar patterns between the changes in Cenozoic mammalian diversity and taxonomic dominance and climate changes. Yet detailed studies of fossil population samples with fine-scale temporal resolution during episodes of climate change like the Eocene-Oligocene transition in the White River Group, and the late Pleistocene at Rancho La Brea tar pits, demonstrates that most fossil mammal species are static and show no significant microevolutionary res...

  19. Stabilization of large drainage basins over geological time scales : Cenozoic West Africa, hot spot swell growth, and the Niger River

    OpenAIRE

    Chardon, Dominique; Grimaud, J. L.; Rouby, D.; BEAUVAIS, Anicet; Christophoul, F.

    2016-01-01

    Reconstructing the evolving geometry of large river catchments over geological time scales is crucial to constraining yields to sedimentary basins. In the case of Africa, it should further help deciphering the response of large cratonic sediment routing systems to Cenozoic growth of the basin-and-swell topography of the continent. Mapping of dated and regionally correlated lateritic paleolandscape remnants complemented by onshore sedimentological archives allows the reconstruction...

  20. Influence of margin segmentation and anomalous volcanism upon the break-up of the Hatton Bank rifted margin, west of the UK

    Science.gov (United States)

    Elliott, G. M.; Parson, L. M.

    2007-12-01

    leading to high melt production and subsidence rates forming the dipping reflectors. Shortly after break-up the eruption of Endymion Spur occurred. The nature of the magma erupted is unknown but from the steepness of the cones, it is inferred to be viscous and considering the setting, mostly likely a tholeiitic cumulate. A possible trigger for the Endymion Spur is the passage of a pulse of hotter than normal asthenospheric material along the margin, which interacted with lower crustal material to produce melt to feed the volcanic centres. Enhanced asthenospheric heat flow has been invoked to explain the V-shaped ridges along the present day Reykjanes Ridge and it is probable that the Endymion Spur represents previous such pulses along the margin/spreading axis. The location of the enhanced volcanism is itself controlled by crustal segmentation, with the Endymion Spur limited to the southern sector. The crustal thickness in this sector is approx. 2 to 3 km thinner than that found in the central segment, in which Endymion Spur is absent. The role of the segmentation along the margin has influenced the break-up style (presence or absence of SDR) and also the location and nature of post break-up volcanism.

  1. Volcanism, isostatic residual gravity and regional tectonic setting of the Cascade volcanic province

    Science.gov (United States)

    Blakely, R.J.; Jachens, R.C.

    1990-01-01

    A technique to locate automatically boundaries between crustal blocks of disparate densities was applied to upward continued isostatic residual gravity data. The boundary analysis delineates a narrow gravitational trough that extends the length of the Pliocene and Quaternary volcanic arc from Mount Baker in northern Washington to Lassen Peak in California. Gravitational highs interrupt the trough at two localities: a northwest trending high in southern Washington and a northeast trending high between Mount Shasta and Lassen Peak. The gravity sources may reflect upper crustal structures older than the High Cascades, possibly relicts from earlier accretionary events or more recent crustal deformation, that have actively influenced the spatial location of more recent volcanism. Much of the Pliocene and Quaternary volcanism of the Cascade arc has concentrated on or near contacts between crustal blocks of disparate density. These contacts may promote the ascension of magma to the Earth's surface. -from Authors

  2. The adsorption of HCl on volcanic ash

    Science.gov (United States)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  3. The Algerian Margin: an Example of a Reactivation in Compression of a Complex Cenozoic Passive Margin

    Science.gov (United States)

    Domzig, A.; Deverchere, J.; Yelles, K.; Govers, R.; Wortel, R.; Petit, C.; Cataneo, A.; Kherroubi, A.; Teams, M.

    2007-12-01

    The Western Mediterranean underwent a complex Cenozoic history involving subduction of the Tethys Ocean as well as subduction roll-back and associated opening of back-arc basins. During the Oligo-Miocene, the subduction roll-back to the south led to the collision of the Kabylies into the African plate, but subduction continued towards west, causing the Alboran slab to migrate towards the Gibraltar Arc. Northern Africa is at the southern border of this system and is therefore a major study area in the context of slow convergent plates to study the reactivation in compression of a Cenozoic passive margin but also the records of past geodynamic processes. This work aims to characterize the multi-scale structure of the offshore Algerian margin, based on the MARADJA'03 and MARADJA2/SAMRA'05 cruises data (multibeam bathymetry, seismic-reflection, side-scan sonar, backscattering, CHIRP, gravimetry). Tectonic (geomorphology, folds, faults) records reveal large recent and active structures as well as the geological inheritance of the margin. In western Algeria, slab roll-back is likely to have been accompanied by lithospheric tearing (STEP fault) as it has been modelled at a regional scale (Govers and Wortel, 2005): we provide first evidence for the presence of such structure(s) offshore Algeria. The geodynamical conditions have now changed, and we are facing new types of structures. Two main tectonic styles are identified: reverse to the centre and east; and strike-slip to the west. In Central Algeria, the compressional structures are active blind thrusts (Plio-Quaternary) verging to the north (opposite to pre-existing features) expressed as asymmetrical folds, sub-perpendicular to the convergence direction and often en echelon. These faults may all trigger M=6-7.5 earthquakes (e.g. Khair al Din fault near Algiers). Among them, the fault associated with the 2003 Boumerdes event (Mw=6.8) would continue to the surface by flats and ramps creating piggy-back basins or

  4. A Geomorphological Analysis of the Cenozoic Rejuvenation of the Southwestern Norwegian 'Passive' Margin

    Science.gov (United States)

    McDermott, Jeni; Redfield, Tim; Terje Osmundsen, Per; Arnhold, Chad; Conrad, Dan

    2015-04-01

    Although the Norwegian and Greenland rifted margins underwent Early Paleocene breakup, the southwestern Norwegian continental margin exhibits 2 to 3 km-high, sharply asymmetric seaward-facing escarpments and a 250+ km long topographic displacement gradient, a morphology not consistent with simple margin evolution models that predict subsidence and cooling as the dominate processes in tectonically-quiescent regions. Such atypical margins present a paradox: How is high, rugged topography along rifted margins maintained for tens to hundreds of millions of years after the cessation of extension? Recent work indicates the offshore crustal thinning gradient, a measure of the length from the continental escarpment to the location of the maximum crustal thickness, may play a controlling role: where the gradient is sharp the topography is most elevated; where gentle, the escarpments are lower. Although controversy remains, it is generally accepted, based on offshore geophysical data and onshore geomorphology, thermochronology, and structural geology, that the southwestern Norwegian escarpment has undergone topographic rejuvenation during the Cenozoic. Although several mechanistic models invoking various contributions of active tectonism have been proposed, from remnant topography recently carved by extensive glaciation to active uplift along large-scale onshore margin-parallel faults, the rejuvenating mechanism has not been resolved. Non-glacial components of rock column uplift may possibly be occurring today: tectonic control of major drainage patterns has been proposed and recent work in the Møre-Trøndelag Fault Complex provides compelling evidence for discrete fault-bound tectonic blocks with unique exhumation histories. We are seeking to constrain the primary mode of Cenozoic deformation along the western Norwegian continental rifted margin by utilizing a tiered approach with distinct but complementary techniques encompassing tectonic geomorphology, structural geology

  5. Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan: Hot and weak material hypothesis

    Science.gov (United States)

    Takada, Youichiro; Fukushima, Yo

    2014-05-01

    With spaceborne interferometric synthetic aperture radar (InSAR) analysis, we found that the 2011 Mw 9.0 Tohoku earthquake in Japan (March 11, 2011) has triggered unprecedented subsidence of multiple volcanoes. Similar phenomenon has been reported for the 2010 Mw 8.8 Maule earthquake (Pritchard et al., 2013). We used SAR data acquired before and after the mainshock by ALOS (PALSAR). By removing long wave-length phase trend from InSAR images, we obtained the localized subsidence signals at five active volcanoes: Mt. Akitakoma, Mt. Kurikoma, Mt. Zao, Mt. Azuma, and Mt. Nasu. All of them belong to the volcanic front of Northeast Japan. The subsidence areas exhibit elliptic shape elongated in the North-South direction - perpendicular to the principal axis of the extensional stress change due to the Tohoku earthquake. Major axis of the ellipse reaches 15 - 20 km, and the amount of subsidence is up to 15 cm (Mt. Azuma). GPS data from two volcanoes also indicate surface subsidence consistent with the satellite radar observations. Furthermore, the GPS data show that the subsidence occurred immediately after the earthquake. A common feature of the five volcanoes is their high geothermal activity. The areas of high geothermal gradient and high thermal water temperature are in good agreement with the area of subsidence detected by InSAR. Also, the Late Cenozoic calderas cluster around the subsidence regions, which implies that hot plutonic bodies once intruded are still hot and highly deformable even now. According to numerical modelling, the observed subsidence can be explained by the co-seismic response of fluid-filled ellipsoid beneath each volcano. We confirmed that the surface subsidence is also caused by the ellipsoid filled with elastic body of low shear strength. We further checked that an ellipsoid is more effective to cause the subsidence than a sphere when the ellipsoid is elongated perpendicular to the tension axis of the imposed stress. References: Takada, Y. and

  6. Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry

    OpenAIRE

    Leat, Philip T; Day, Simon J; Tate, Alex J.; Martin, Tara J; Owen, Matthew J; Tappin, David R.

    2013-01-01

    New multibeam bathymetry data are presented for the South Sandwich intra-oceanic arc which occupies the small Sandwich plate in the South Atlantic, and is widely considered to be a simple end-member in the range of intra-oceanic arc types. The images show for the first time the distribution of submarine volcanic, tectonic and erosional-depositional features along the whole length of the 540 km long volcanic arc, allowing systematic investigation of along-arc variations. The data confirm that ...

  7. The Satah Mountain and Baldface Mountain volcanic fields: Pleistocene hot spot volcanism in the Anahim Volcanic Belt, west-central British Columbia, Canada

    Science.gov (United States)

    Kuehn, Christian; Guest, Bernard; Russell, James K.; Benowitz, Jeff A.

    2015-03-01

    The Satah Mountain and Baldface Mountain volcanic fields (SMVF, BMVF) comprise more than three dozen small volcanic centers and erosional remnants thereof. These fields are located in the Chilcotin Highland of west-central British Columbia, Canada, and are spatially associated with the Anahim Volcanic Belt (AVB), a linear feature of alkaline to peralkaline plutonic and volcanic centers of Miocene to Holocene ages. The AVB has been postulated to be the track of a hot spot passing beneath the westward moving Cordilleran lithosphere. We test the AVB hot spot model by applying whole-rock 40Ar/39Ar geochronology ( n = 24) and geochemistry. Whole-rock chemical compositions of volcanic rock samples ( n = 59) from these two fields suggest a strong geochemical affinity with the nearby Itcha Range shield volcano; however, SMVF and BMVF centers are mostly small in volume (interaction of the potential hot spot with (pre)existing fracture systems in vicinity of the Itcha Range.

  8. Submarine intraplate volcanism in the South Pacific: Geological setting and petrology of the society and the austral regions

    Science.gov (United States)

    Hekinian, Roger; Bideau, Daniel; Stoffers, Peter; Cheminee, Jean Louis; Muhe, Richard; Puteanus, Doris; Binard, Nicolas

    1991-02-01

    The southeastern prolongations of the Society and Austral islands volcanic chains are terminated by several recent submarine volcanoes (300-3800 m in height) built on irregularly shaped crustal swells or bulges (3600-3950 m in depth). The crustal swells (about 100 km in width) is bounded by deeper abyssal hill regions (>4000 m in depth) where old volcanoes with thick Fe-Mn coatings are encountered. The rocks sampled on this ancient oceanic crust are depleted mid-ocean ridge basalts (MORBs) similar to modem volcanics encountered on the East Pacific Rise. The volcanics of the Society hot spot consist of ankaramites, picrites, alkali-basalts, basanites, tephrites, and trachytes. Highly vesiculated pillow lavas show a wide compositional range in their large ion lithophile elements (LILE) (K2O=1-4%, Nb=25-80 ppm, Zr=200-400 ppm, Ba=300-840 ppm) and compatible element variations (Mg #=40-70, Ni=80-500 ppm), and low Zr/Nb ratios (5-8). Low-K tholeiites (K2OSociety hot spot volcanoes by their lower Zr/Nb (3-5), Rb/Sr (Society volcanoes) have originated from the partial melting of mixed mantle sources made up of lherzolite (MORB mantle source) and another complementary source enriched in LREEs and Nb. A recycling of continental crust or pelagic sediments in subduction zones represents a possible supply of LREEs but not of Nb. Continental metasomatized peridotites and oceanic amphibole-peridotites such as Zabargad and St. Paul's Rocks samples were proposed as potential mantle sources for intraplate magmas. Using modal and chemical (Zr, Nb, Ce, and Yb) data available in the literature, a model of partial melting of a composite mantle, obtained by mixing homblendite (Queensland's xenoliths) and spinel-lherzolites, was tested as being a possible origin for the studied rocks. This model provides adequate Zr/Nb ratios and suggests that the Society mantle source contained smaller amount of homblendite (Society hot spot requires larger amount of LREEs than it is necessary for the

  9. Late Cretaceous intraplate silicic volcanism in the Lake Chad region: incipient continental rift volcanism vs. Cameroon Line volcanism

    Science.gov (United States)

    Shellnutt, G.; Lee, T. Y.; Torng, P. K.; Yang, C. C.

    2015-12-01

    The crustal evolution of west-central Africa during the Cretaceous was directly related to plate motion associated with the opening of the central Atlantic Ocean. Late Cretaceous (~66 Ma) to recent magmatism related to the Cameroon Line stretches from Northern Cameroon (i.e. Golda Zuelva) to the Gulf of Guinea (i.e. Pagalu) and is considered to be due to mantle-crust interaction. The volcanic rocks at Hadjer el Khamis, west-central Chad, are considered to be amongst the oldest volcanic rocks of the Cameroon Line but their relationship is uncertain because they erupted during a period of a regional extension associated with the opening of the Late Cretaceous (~75 Ma) Termit basin. The silicic volcanic rocks can be divided into a peraluminous group and a peralkaline group with both rock types having similar chemical characteristics as within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma and indicates the rocks erupted ~10 million years before the next oldest eruption attributed to the Cameroon Line. The Sr isotopes (i.e. ISr = 0.7050 to 0.7143) show a wide range but the Nd isotopes (i.e. 143Nd/144Ndi = 0.51268 to 0.51271) are more uniform and indicate that the rocks were derived from a moderately depleted mantle source. Major and trace elemental modeling show that the silicic rocks likely formed by shallow fractionation of a mafic parental magma where the peraluminous rocks experienced crustal contamination and the peralkaline rocks did not. The silicic rocks are more isotopically similar to Late Cretaceous basalts in the Doba and Bongor basins (i.e. ISr = 0.7040 to 0.7060; 143Nd/144Ndi = 0.51267 to 0.51277) of southern Chad than to rocks of the Cameroon Line (i.e. ISr = 0.7026 to 0.7038; 143Nd/144Ndi = 0.51270 to 0.51300). Given the age and isotopic compositions, it is likely that the silicic volcanic rocks of the Lake Chad area are related to Late Cretaceous extensional tectonics rather than to Cameroon Line magmatism.

  10. Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars

    Science.gov (United States)

    Michalski, Joseph. R.; Bleacher, Jacob E.

    2014-01-01

    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  11. Volcanic geology of Admiralty Bay, King George Island, Antarctica

    Institute of Scientific and Technical Information of China (English)

    邢光福; 王德滋; 金庆民; 沈渭洲; 陶奎元

    2002-01-01

    At Admiralty Bay of central King George Island, Keller Peninsula, Ullman Spur and Point Hennequin are main Tertiary volcanic terranes. Field investigation and isotopic datings indicate that, there occurred three periods of eruptions ( three volcanic cycles) and accompanying N-toward migration of the volcanic center on Keller Peninsula. After the second period of eruptions, the crater collapsed and a caldera was formed, then later eruptions were limited at the northern end of the peninsula and finally migrated to Ullman Spur. Thus Keller Peninsula is a revived caldera, and its volcanism migrated toward E with time. Point Hennequin volcanism happened more or less simultaneously with the above two areas, but has no clear relation in chemical evolution with them, frequently it belongs to another independent volcanic center.

  12. STRATIGRAPHIC CHARACTERISTICS OF THE MESOZOIC-CENOZOIC IN THE SOUTH SHETLAND ISLANDS, ANTARCTICA%西南极南设得兰群岛中新生代地层特征

    Institute of Scientific and Technical Information of China (English)

    王改云; 邓希光; 刘金萍; 杜民

    2013-01-01

    南设得兰群岛是晚中生代以来古太平洋板块向南极板块俯冲消减过程中形成的,目前对整个群岛的地层特征及沉积演化无统一认识.通过归纳总结国内外研究成果,认为该群岛出露的地层具明显的时空规律.群岛主体的西南部出露上侏罗统-下白垩统,发育海底扇、深海、斜坡裙、扇三角洲等沉积相,相伴随的火山作用主要为钙碱性玄武岩和玄武安山岩的喷发,记录了弧前盆地-火山岛弧的演化过程;群岛主体的东北部主要出露上白垩统-下渐新统,其中上白垩统-始新统发育一套玄武质熔岩、火山碎屑-沉积岩建造,为温暖气候下的陆相沉积,火山活动具有岛弧拉斑玄武岩与钙碱性火山岩的过渡性质.渐新统-下中新统则记录了从间冰期正常海相到冰期冰海相沉积的转变过程.%The South Shetland Islands were formed from the subduction of the palaeo-Pacific plate beneath the Antarctic Plate in the late Mesozoic.However,there are no comprehensive records of the stratigraphic characteristics and sedimentary evolution of the entire islands.We examined the distribution of strata by reviewing the literature on the islands published nationally and internationally.The exposed strata in the southwestern South Shetland Islands were mainly from the upper Jurassic-lower Cretaceous.The sedimentary facies included submarine fan,deep sea,marine slope apron,and fan delta.The volcanism was manifested by the eruption of alkaline basalt and basaltic andesite.The evolution from fore-arc basin to volcanic islands has been recorded.The strata in the northeastern South Shetland Islands is mainly upper Cretaceous to Neogene.The sedimentary environment of the upper CretaceousEocene is continental basin in warm climate.The lithology is mainly consisted of basaltic lava,pyroclastic debris and sedimentary rock.Geochemically,the volcanics were transitional from alkaline basalt to tholeiite.The Oligocene

  13. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10-8 events yr-1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  14. Distinguishing volcanic lithology using Self-Organizing Map

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Self-Organizing Map is an unsupervised learning algorithm. It has the ability of self-organization,self-learning and side associative thinking. Based on the principle it can identified the complex volcanic lithology. According to the logging data of the volcanic rock samples, the SOM will be trained, The SOM training results were analyzed in order to choose optimally parameters of the network. Through identifying the logging data of volcanic formations, the result shows that the map can achieve good application effects.

  15. Satellite data assimilation to improve forecasts of volcanic ash concentrations

    OpenAIRE

    Fu, Guangliang; Lin, Hai-Xiang; Heemink, Arnold; SEGERS Arjo; Prata, Fred; Lu, Sha

    2016-01-01

    Data assimilation is a powerful tool that requires available observations to improve model forecast accuracy. Infrared satellite measurements of volcanic ash mass loadings are often used as input observations into the assimilation scheme. However, these satellite-retrieved data are often two-dimensional (2D), and cannot be easily combined with a three-dimensional (3D) volcanic ash model to continuously improve the volcanic ash state in a data assimilation system. By integrating available data...

  16. First fossil evidence of Connaraceae R. Br. from Indian Cenozoic and its phytogeographical significance

    Science.gov (United States)

    Khan, Mahasin Ali; Bera, Subir

    2016-07-01

    Fossil leaflet impression described here as a new species Rourea miocaudata sp. nov., showing close resemblance with the modern leaflets of Rourea caudata Planch. (Connaraceae R. Br.), has been recorded from the lower part of the Siwalik sediments (Dafla Formation, middle-upper Miocene) exposed at the road-cutting section of Pinjoli area in West Kameng district, Arunachal Pradesh. The important morphological characters of the fossil are its narrow elliptic leaflet, cuneate base, long caudate apex, entire margin, eucamptodromous to brochidodromous secondary veins, presence of intersecondary veins, percurrent and reticulate tertiary veins and orthogonally reticulate quaternary veins. This is the first authentic record of the occurrence of leaflet comparable to R. caudata of Connaraceae from the Cenozoic sediments of India and abroad. At present R. caudata does not grow in India and is restricted only in southeast Asia especially in China and Myanmar. This taxon probably migrated to these southeast Asian regions after lower Siwalik sedimentation (middle-upper Miocene) due to climatic change caused by post-Miocene orogenic movement of the Himalaya. The recovery of this species and other earlier-described evergreen taxa from the same formation, suggests the existence of a tropical, warm and humid climatic conditions during the depositional period.

  17. Time series analysis of Cenozoic era sea level and paleotemperature data

    Science.gov (United States)

    Rosenfield, George H.; Huffman, Tod E.

    1983-01-01

    A statistical analysis of Cenozoic era sea level and paleotemperature data was performed to determine the cycles of each data set and the correspondence between them. Accordingly, each of the four time series were first analyzed independently in the univariate mode of a spectral analysis. The two basic data sets were then analyzed in a paired cross-spectral analysis. The prominent periodic cycles remaining in the data sets after linear trend removal, were: sea level surface from seismic stratigraphy--9.6 million years, updated version of sea level surface from seismic stratigraphy--9.5 million years, continental paleotemperatures from paleobotanical interpretations--9.6 million years, and marine paleotemperatures from foraminiferal isotopic data--12.7 million years. The cross-correlation properties between the data sets of continental paleotemperatures from paleobotanical interpretations and sea level surface from seismic stratigraphy at the common prominent period of 9.6 million years were: (1) The squared coherency value which measures cross correlation between the two data sets has the value 0.30, and (2) the amount by which the continental paleotemperatures from paleobotanical interpretations data lags the sea level surface from seismic stratigraphy data is 2.70 million years.

  18. Middle to late cenozoic geology, hydrography, and fish evolution in the American Southwest

    Science.gov (United States)

    Spencer, J.E.; Smith, G.R.; Dowling, T.E.

    2008-01-01

    An evaluation of the poorly understood Cenozoic hydrologic history of the American Southwest using combined geological and biological data yields new insights with implications for tectonic evolution. The Mesozoic Cordilleran orogen next to the continental margin of southwestern North America probably formed the continental divide. Mountain building migrated eastward to cause uplift of the Rocky Mountains during the Late Cretaceous to early Tertiary Laramide orogeny. Closed drainage basins that developed between the two mountain belts trapped lake waters containing fish of Atlantic affinity. Oligocene-Miocene tectonic extension fragmented the western mountain belt and created abundant closed basins that gradually filled with sediments and became conduits for dispersal of fishes of both Pacific and Atlantic affinity. Abrupt arrival of the modern Colorado River to the Mojave-Sonora Desert region at ca. 5 Ma provided a new conduit for fish dispersal. Great dissimilarities in modern fish fauna, including differences in their mitochondrial deoxyribonucleic acid (DNA), indicate that late Miocene runoff from the Colorado Plateau did not flow down the Platte or Rio Grande, or through the Lake Bonneville Basin. Fossil fishes from the upper Miocene part of the Bidahochi Formation on the Colorado Plateau have characteristics that reflect a habitat of large, swift-moving waters, and they are closely related to fossil fishes associated with the Snake and Sacramento Rivers. This evidence suggests that influx of fishes from the ancestral Snake River involved a major drainage, not merely small headwater transfers. ?? 2008 The Geological Society of America.

  19. Cenozoic rejuvenation events of Massif Central topography (France): Insights from cosmogenic denudation rates and river profiles

    Science.gov (United States)

    Olivetti, Valerio; Godard, Vincent; Bellier, Olivier

    2016-06-01

    The French Massif Central is a part of the Hercynian orogenic belt that currently exhibits anomalously high topography. The Alpine orogenesis, which deeply marked Western European topography, involved only marginally the Massif Central, where Cenozoic faulting and short-wavelength crustal deformation is limited to the Oligocene rifting. For this reason the French Massif Central is a key site to study short- and long-term topographic response in a framework of slow tectonic activity. In particular the origin of the Massif Central topography is a topical issue still debated, where the role of mantle upwelling is invoked by different authors. Here we present a landscape analysis using denudation rates derived from basin-averaged cosmogenic nuclide concentrations coupled with longitudinal river profile analysis. This analysis allows us to recognize that the topography of the French Massif Central is not fully equilibrated with the present base level and in transient state. Our data highlight the coexistence of out-of-equilibrium river profiles, incised valleys, and low cosmogenically derived denudation rates ranging between 40 mm/kyr and 80 mm/kyr. Addressing this apparent inconsistency requires investigating the parameters that may govern erosion processes under conditions of reduced active tectonics. The spatial distribution of denudation rates coupled with topography analysis enabled us to trace the signal of the long-term uplift history and to propose a chronology for the uplift evolution of the French Massif Central.

  20. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic

    Institute of Scientific and Technical Information of China (English)

    李吉均; 方小敏; 马海州; 朱俊杰; 潘保田; 陈怀录

    1996-01-01

    Studies of the geomorphology and stratigraphy in the upper reaches of the Yellow River during the late Cenozoic demonstrate that the period of 30 - 3.4 Ma is characterized by a relatively stable tectonic setting, a persistently hot climate and a wide distribution of inland basins. This long-term stable environment resulted in a planation surface, the main surface on the Qinghai-Xizang (Qingzang) Plateau, on which red earth crust and karst arc formed. Since 3.4 Ma, the Qingzang Plateau was "uplifted as a whole massif, accompanied by the dissection and disintegration of the main surface, termination of deposition and deformation of stratigraphy in red basins, increasing relief and commencing accumulation of inland molasse formation mainly of conglomerate. Subsequent strong uplift of the Qingzang Plateau at 2.5 Ma and 1.7-1.66 Ma led to cormation of the basic geomorphological configuration of the Qingzang Plateau and occurrence of the Yellow River. These three strong uplifts of the Qingzang Plateau between

  1. Features of Late Cenozoic Deepwater Sedimentation in Southern Qiongdongnan Basin,Northwestern South China Sea

    Institute of Scientific and Technical Information of China (English)

    Yuan Shengqiang; Yao Genshun; Lü Fuliang; Hu Bing; He Xiaosu; Wang Bin; Li Li

    2009-01-01

    Based on high resolution 2D and 3D seismic data acquired in recent years,using sequence stratigraphy analysis and geophysical methods,we discuss the features of Late Cenozoic deepwater sedimentation in the southern Qiongdongnan (琼东南) basin.The study area entered a bathyal slope environment in the Miocene.The channel developed in the Sanya (三亚) Formation was controlled by a fault break,and its shingled seismic characteristics represent multiple erosion and fill,which may indicate that turbidite current developed in the slope environment.The polygon faults found in mudstone of the Meishan (梅山) Formation represent the deepwater hungry sedimentary environment.The large-scale channels developed on the top of HuangUu (黄流) Formation could be the result of a big sea level drop and an increase of sediment supply.The fantastic turbidite channel developed in Late Quaternary in the slope environment has "fan-like" body and long frontal tiny avuision channel The analysis of these features suggests that the sediment supply of the study area in the post-rifting period was dominant from the Vietnam uplift in the southwest.These deepwater sedimentary features could be potential reservoirs or migration pathways for deepwater petroleum systems.

  2. High=porosity Cenozoic carbonate rocks of South Florida: progressive loss of porosity with depth

    Science.gov (United States)

    Halley, Robert B.; Schmoker, James W.

    1983-01-01

    Porosity measurements by borehole gravity meter in subsurface Cenozoic carbonates of South Florida reveal an extremely porous mass of limestone and dolomite which is transitional in total pore volume between typical porosity values for modern carbonate sediments and ancient carbonate rocks. A persistent decrease of porosity with depth, similar to that of chalks of the Gulf Coast, occurs in these rocks. Carbonate strata with less than 20% porosity are absent from the rocks studied here. Aquifers and aquicludes cannot be distinguished on the basis of porosity. Aquifers are not exceptionally porous when compared to other Tertiary carbonate rocks in South Florida. Permeability in these strata is governed more by the spacial distribution of pore space and matrix than by total volume of porosity present. Dolomite is as porous as, or slightly less porous than, limestones in these rocks. This observation places limits on any model proposed for dolomitization and suggests that dolomitization does not take place by a simple ion-for-ion replacement of magnesium for calcium. Dolomitization may be selective for less porous limestone, or it may involve the incorporation of significant amounts of carbonate as well as magnesium into the rock. The great volume of pore space in these rocks serves to highlight the inefficiency of early diagenesis in reducing carbonate porosity and to emphasize the importance of later porosity reduction which occurs during the burial or late near-surface history of limestones and dolomites.

  3. Glass melt inclusion in clinopyroxene from Linqu Cenozoic basalt, Shandong Province, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongfu; Eizo Nakamura; ZHANG Jin; Ishikawa Akira

    2006-01-01

    Cenozoic basalts from the Linqu County, Shandong Province, China entrain some clinopyroxene crystals, of which many contain abundant glass melt inclusions. These melt inclusions are extremely irregular in shape with most grain sizes in a range of 10-50 μm and coexist with low-Mg# olivines, labradorites and Ca-rich potassium feldspars. In-situ major and trace element analyses show that the glass melt inclusions are high in alkalis (Na2O+K2O > 10 wt%), SiO2 (>54 wt%), CaO and FeO (>4 wt%), but low in MgO (Mg# < 20), and have LREE enrichments ((Ce/Yb)cn = 11.6-16.4) and apparently positive Eu anomalies (Eu/Eu*>2), thus having phonolitic compositions. The compositional features of clinopyroxene crystals, glass melt inclusions and their coexistent minerals suggest that these melt inclusions were exotic melts in clinopyroxenes trapped prior to their entrainment in the host basalt. The discovery of these melt inclusions provides a new approach to further investigating the evolution of Meso- zoic lithospheric mantle beneath the southeastern North China Craton.

  4. Fission track dating of the Cenozoic uplift in Mabian area, southern Sichuan Province, China

    Institute of Scientific and Technical Information of China (English)

    AN YanFen; HAN ZhuJun; WAN JingLin

    2008-01-01

    The apparent ages of samples are obtained from fission track dating of apatite samples collected from the fault zones in Mabian area, southern Sichuan Province.In addition, thermal history is simulated from the obtained data by applying AFTSolve Program, to acquire the thermal evolution history of the samples.The result shows that tectonically the Mabian area was relatively stable between 25 and 3 Ma, compared to the inner parts and other marginal areas of the Tibetan Plateau.The studied area had little response to the rapid uplift events that occurred for several times in the Tibetan Plateau during 25-3 Ma.The latest thermal event related to the activity of the Lidian fault zone (about 8 Ma) is later than that of the Ebian fault zone (18-15 Ma ) to the west, indicating to some extent that the evolution of fault activity in the Mabian area has migrated from west to east.The latest extensive tectonic uplift occurred since about 3 Ma.As compared with the Xianshuihe fault zone, the Mabian area is closer to the eastern margin of the plateau, while the time of fast cooling event in this area is later than that in the southeast segment of the Xianshuihe fault zone (3.6-3.46 Ma).It appears to support the assumption of episodic uplift and stepwise outward extension of the eastern boundary of the Tibetan Plateau in late Cenozoic.

  5. Late Cenozoic Tectonic Deformation in the Dongsha Islands and Adjacent Sea Area

    Institute of Scientific and Technical Information of China (English)

    WU Shiguo(吴时国); LIU Zhan(刘展); WANG Wanyin(王万银); GUO Junhua(郭军华); T. Lüdmann; H. K. Wong

    2003-01-01

    Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post-fault sequences (V, VI, VII). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement (4.4-5.2 Ma) and Liuhua movement (1.4-1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato-tectonic events correlated to the main collision phases between the East China and Taiwan 5-3 and 3-0 Ma ago.

  6. First fossil evidence of Connaraceae R. Br. from Indian Cenozoic and its phytogeographical significance

    Indian Academy of Sciences (India)

    Mahasin Ali Khan; Subir Bera

    2016-07-01

    Fossil leaflet impression described here as a new species Rourea miocaudata sp. nov., showing close resemblance with the modern leaflets of Rourea caudata Planch. (Connaraceae R. Br.), has been recorded from the lower part of the Siwalik sediments (Dafla Formation, middle–upper Miocene) exposed at the road-cutting section of Pinjoli area in West Kameng district, Arunachal Pradesh. The importantmorphological characters of the fossil are its narrow elliptic leaflet, cuneate base, long caudate apex, entire margin, eucamptodromous to brochidodromous secondary veins, presence of intersecondary veins, percurrent and reticulate tertiary veins and orthogonally reticulate quaternary veins. This is the first authentic record of the occurrence of leaflet comparable to R. caudata of Connaraceae from the Cenozoic sediments of India and abroad. At present R. caudata does not grow in India and is restricted only in southeast Asia especially in China and Myanmar. This taxon probably migrated to these southeast Asian regions after lower Siwalik sedimentation (middle–upper Miocene) due to climatic change causedby post-Miocene orogenic movement of the Himalaya. The recovery of this species and other earlierdescribed evergreen taxa from the same formation, suggests the existence of a tropical, warm and humid climatic conditions during the depositional period.

  7. Environmental rock-magnetism of Cenozoic red clay in the South Pacific Gyre

    Science.gov (United States)

    Shimono, Takaya; Yamazaki, Toshitsugu

    2016-04-01

    Nonfossiliferous red clay can be used for elucidating long-range environmental changes, although such studies were limited so far because of the difficulty in precise age estimation and extremely low sedimentation rates. We conducted an environmental rock-magnetic study of Cenozoic red clay at the Integrated Ocean Drilling Program Site U1365 in the South Pacific Gyre. Magnetostratigraphy could be established only above ˜6 m below the seafloor (mbsf) (˜5 Ma). Below ˜6 mbsf, the ages of the cores were transferred from the published ages of nearby Deep Sea Drilling Project Site 596, which is based mainly on a constant Cobalt flux model, by intercore correlation using magnetic susceptibility and rare earth element content variation patterns. Rock-magnetic analyses including first-order reversal curve diagrams, the ratio of anhysteretic remanent magnetization susceptibility to saturation isothermal remanent magnetization (SIRM), and IRM component analyses revealed that magnetic minerals consist mainly of biogenic magnetite and terrigenous maghemite, and that the proportion of the terrigenous component increased since ˜23 Ma. We consider that the increase reflects a growth of eolian dust flux associated with a northward shift of Australia and the site to an arid region of the middle latitudes. The increase of the terrigenous component accelerated after ˜5 Ma, which may be associated with a further growth of the Antarctic glaciation at that time. This is coeval with the onset of the preservation of magnetostratigraphy, suggesting that the primary remanent magnetization is carried by the terrigenous component.

  8. The Cenozoic mantle magmatism and motion of lithosphere on the north margin of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    罗照华; 肖序常; 曹永清; 莫宣学; 苏尚国; 邓晋福; 张文会

    2001-01-01

    Geodynamic properties and evolution of the lithosphere on the north margin of the Tibetan Plateau are recently hot topics to geoscientists in the world. Have the northern plates been subducting underneath the Plateau? It is still an unsolved problem. One of the keys to solving this problem is to understand the genetic processes of Cenozoic magmas on the north margin of the Tibetan Plateau. However, there is no enough evidence supporting the subduction model. In contrast, a series of evidence indicates that collision-induced huge shearing faults and large-scale crust shortening played a main role in lithosphere motion on the north margin of the Tibetan Plateau. The mantle-derived igneous rocks strictly distribute at the intersections of large strike-slip faults on the north margin of the Plateau. Generation of magmas may be related to local exten-sional condition induced by strike-slipping faults, which lead to lithosphere gravitational instability and collapse, as well as upwelling of the deep hot materi

  9. Volcanic lightning on Venus and early Earth

    Science.gov (United States)

    Airey, Martin; Aplin, Karen

    2016-04-01

    Lightning may have been crucial in the development of life, as it enables key chemical reactions to occur. We cannot directly observe early Earth's hot, CO2-rich, atmosphere; however, similar conditions exist today on Venus, where there may be volcanic and/or meteorological lightning. Recent observations made by ESA's Venus Express satellite have provided evidence for active volcanism [1-3] and lightning discharges [e.g. 4], which may be volcanic in origin. This study uses laboratory experiments to simulate ash generation and to measure its electrical charging under typical atmospheric conditions for Venus and the early Earth (specifically the Hadean eon, up to 4 billion years ago, and the Archean eon, from 4 billion to 2.5 billion years ago). Ultimately the work will address the following questions: (a) is volcanic activity a feasible mechanism for lightning generation on Venus and early Earth, (b) how would these extreme paleo-environmental conditions affect lightning, (c) can the similarities in atmospheric conditions inform us of planetary evolutionary concepts, (d) could volcanic lightning have been important in the emergence of life on Earth, and (e) what are the wider implications for the likelihood of the emergence of life on other planets? A 1-litre atmospheric simulation chamber will be used to simulate the high-pressure, high-temperature, CO2-dominated atmospheres of the surface of early Earth, and Venus at ~10 km altitude (~5 MPa, 650 K) (where ash plume-forming eruptions on Venus are more likely to occur [5]). The chamber contains temperature/pressure monitoring and logging equipment, a collision apparatus to generate the charged rock fragments, and electrodes for charge measurement with an electrometer [6]. The planned experimental programme will measure the effects of varying temperature, pressure, atmospheric, and sample composition under a range of conditions appropriate to Venus and early Earth. Comparative work with present day Earth conditions

  10. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  11. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    Science.gov (United States)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  12. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  13. The Volcanic History of Mars and Influences on Carbon Outgassing

    Science.gov (United States)

    Bleacher, J. E.; Whelley, P.

    2015-12-01

    Exploration of Mars has revealed some of the most impressive volcanic landforms found throughout the solar system. Volatiles outgassed from volcanoes were likely to have strongly influenced atmospheric chemistry and affected the martian climate. On Earth the role of carbon involved in volcanic outgassing is strongly influenced by tectonic setting, with the greatest weight percent contributions coming from partial mantle melts associated with hot spot volcanism. Most martian volcanic centers appear to represent this style of volcanism. Thus, one important factor in understanding the martian carbon cycle through time is understanding this volatile's link to the planet's volcanic history. The identified volcanic constructs on Mars are not unlike those of the Earth suggesting similar magmatic and eruptive processes. However, the dimensions of many martian volcanic features are significantly larger. The distribution of volcanoes and volcanic deposits on Mars are not spatially or temporally uniform. Large volcanoes (> 100 km diameter) are spatially concentrated in volcanic provinces that likely represent focused upwellings or zones of crustal weakness that enabled magma ascension. Smaller (10s km diameters) volcanoes such as cones, low shields and fissures are often grouped into fields and their lava flows coalesce to produce low slope plains. In some cases plains lava fields are quite extensive with little to no evidence for the volcanic constructs. Although martian volcanism appears to have been dominated by effusive eruptions with likely contributions from passive degassing from the interior, explosive volcanic centers and deposits are known to exist. After the development of a martian crust the planet's volcanic style appears to have evolved from early explosive activity to effusive activity centered at major volcanoes to effusive distributed activity in fields. However, questions remain as to whether or not these styles significantly overlapped in time and if so

  14. Distribution and characteristics of volcanic reservoirs in China

    Institute of Scientific and Technical Information of China (English)

    HUANG Yulong; WANG Pujun; CHEN Shuming

    2009-01-01

    About forty productive oil/gas fields hosted in volcanic reservoirs have been found since 1957 in fourteen basins of China. They can be simply subdivided into two groups, the east and the west. Reservoir volcanic rocks of the east group are predominantly composed of Late Jurassic to Early Cretaceous rhyolite and Tertiary basalt, preferred being considered as rift type volcanics developed in the circum-Pacific tectonic regime. Those of the west are Permo-Carboniferous intermediate/basic volcanic rocks, being island-arc type ones developed in paleo-Asian Ocean tectonic regime.

  15. Geoprospective study of a nuclear waste repository: volcanic activity

    International Nuclear Information System (INIS)

    The first phase of the prospective study of disposal site evolution consists of analysing the various factors which may influence the repository, for instance the volcanic phenomena. The paper tries to estimate the potential for volcanic activity in France. Hypotheses on the geodynamics of volcanism lead to the conclusion that only the zones of the Chaine des Puys, Vivarais and Mont-Dore can be subject to volcanic activity in the considered time-span. This study was performed under cost-sharing contract with the European Atomic Energy Community in the framework of its R and D programme on ''Management and Storage of Radioactive Waste''

  16. Syn-volcanic cannibalisation of juvenile felsic crust: Superimposed giant 18O-depleted rhyolite systems in the hot and thinned crust of Mesoproterozoic central Australia

    Science.gov (United States)

    Smithies, R. H.; Kirkland, C. L.; Cliff, J. B.; Howard, H. M.; Quentin de Gromard, R.

    2015-08-01

    Eruptions of voluminous 18O-depleted rhyolite provide the best evidence that the extreme conditions required to produce and accumulate huge volumes of felsic magma can occur in the upper 10 km of the crust. Mesoproterozoic bimodal volcanic sequences from the Talbot Sub-basin in central Australia contain possibly the world's most voluminous accumulation of 18O-depleted rhyolite. This volcanic system differs from the better known, but geochemically similar, Miocene Snake River Plain - Yellowstone Plateau of North America. Both systems witnessed 'super' sized eruptions from shallow crustal chambers, and produced 18O-depleted rhyolite. The Talbot system, however, accumulated over a much longer period (>30 Ma), at a single depositional centre, and from a magma with mantle-like isotopic compositions that contrast strongly with the isotopically evolved basement and country-rock compositions. Nevertheless, although the Talbot rhyolites are exclusively 18O-depleted, the unavoidable inference of an 18O-undepleted precursor requires high-temperature rejuvenation of crust in an upper-crustal chamber, and in this respect the evolution of the Talbot rhyolites and 18O-depleted rhyolites of the Snake River Plain - Yellowstone Plateau is very similar. However, instead o