WorldWideScience

Sample records for cementless forged titanium

  1. Study on the Forging Processes of Titanium Golf Woods Head

    Institute of Scientific and Technical Information of China (English)

    Hsu; Quang-cherng

    2002-01-01

    This paper describes the titanium forging processes a pplied in the golf club head forgings. Generally speaking, titanium has poor for geability and therefore the threshold to invest in the titanium forging operatio n is high. Process parameters have been discussed and computer simulation on the forging processes has been conducted and compared with the forging practices. N ormally, titanium rod was preferred billet on titanium golf club head forging, w hich is the case on iron head, but it is not appropr...

  2. Initial mechanical stability of cementless highly-porous titanium tibial components

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Brandon [Los Alamos National Laboratory; Amer, Luke D [Los Alamos National Laboratory; Warren, Christopher P [Los Alamos National Laboratory; Cornwell, Phillip [Los Alamos National Laboratory; Meneghini, R Michael [UNIV OF CONNECTICUT HEALTH CENTER

    2008-01-01

    Cementless fixation in total knee replacement has seen limited use since reports of early failure surfaced in the late 80s and early 90s. However the emergence of improved biomaterials, particularly porous titanium and tantalum, has led to a renewed interest in developing a cementless tibial component to enhance long-term survivorship of the implants. Cement is commonly employed to minimize micromotion in new implants but represents a weak interface between the implant and bone. The elimination of cement and application of these new biomaterials, which theoretically provide improved stability and ultimate osseointegration, would likely result in greater knee replacement success. Additionally, the removal of cement from the procedure would help minimize surgical durations and get rid of the time needed for curing, thereby the chance of infection. The purpose of this biomechanical study was twofold. The first goal was to assess whether vibration analysis techniques can be used to evaluate and characterize initial mechanical stability of cementless implants more accurately than the traditional method of micromotion determination, which employs linear variable differential transducers (LVDTs). Second, an evaluative study was performed to determine the comparative mechanical stability of five designs of cementless tibial components under mechanical loading designed to simulate in vivo forces. The test groups will include a cemented Triathlon Keeled baseplate control group, three different 2-peg cementless baseplates with smooth, mid, and high roughnesses and a 4-peg cement/ess baseplate with mid-roughness.

  3. Forming of Hollow Shaft Forging From Titanium Alloy Ti6Al4V by Means of Rotary Compression

    Directory of Open Access Journals (Sweden)

    Tomczak J.

    2015-04-01

    Full Text Available This paper presents chosen results of theoretical-experimental works concerning forming of hollow shafts forgings from titanium alloys, which are applied in aviation industry. At the first stage of conducted analysis, the forging forming process was modeled by means of finite element method. Calculations were made using software Simufact Forming. On the basis of performed simulations optimal parameters of rotary compression process were determined. Next, experimental tests of forging forming in laboratory conditions were made. For the research needs, a forging aggregate, designed by the Authors, was used. Conducted research works confirmed the possibility of metal forming (by means of rotary compression of hollow shafts from hard workable titanium alloys. Numerous advantages of rotary compression process, make it attractive both for low series production (aircraft industry and for mass production (automotive industry.

  4. Cementless Titanium Mesh Fixation of Osteoporotic Burst Fractures of the Lumbar Spine Leads to Bony Healing: Results of an Experimental Sheep Model

    Directory of Open Access Journals (Sweden)

    Anica Eschler

    2016-01-01

    Full Text Available Introduction. Current treatment strategies for osteoporotic vertebral compression fractures (VCFs focus on cement-associated solutions. Complications associated with cement application are leakage, embolism, adjacent fractures, and compromise in bony healing. This study comprises a validated VCF model in osteoporotic sheep in order to (1 evaluate a new cementless fracture fixation technique using titanium mesh implants (TMIs and (2 demonstrate the healing capabilities in osteoporotic VCFs. Methods. Twelve 5-year-old Merino sheep received ovariectomy, corticosteroid injections, and a calcium/phosphorus/vitamin D-deficient diet for osteoporosis induction. Standardized VCFs (type AO A3.1 were created, reduced, and fixed using intravertebral TMIs. Randomly additional autologous spongiosa grafting (G1 or no augmentation was performed (G2, n=6 each. Two months postoperatively, macroscopic, micro-CT and biomechanical evaluation assessed bony consolidation. Results. Fracture reduction succeeded in all cases without intraoperative complications. Bony consolidation was proven for all cases with increased amounts of callus development for G2 (58.3%. Micro-CT revealed cage integration. Neither group showed improved results with biomechanical testing. Conclusions. Fracture reduction/fixation using TMIs without cement in osteoporotic sheep lumbar VCF resulted in bony fracture healing. Intravertebral application of autologous spongiosa showed no beneficial effects. The technique is now available for clinical use; thus, it offers an opportunity to abandon cement-associated complications.

  5. Cementless total hip arthroplasty with the rectangular titanium Zweymuller stem. A concise follow-up, at a minimum of fifteen years, of a previous report.

    Science.gov (United States)

    Grübl, Alexander; Chiari, Catharina; Giurea, Alexander; Gruber, Martin; Kaider, Alexandra; Marker, Martina; Zehetgruber, Harald; Gottsauner-Wolf, Florian

    2006-10-01

    Between October 1986 and November 1987, 208 total hip arthroplasties were performed with use of the cementless Zweymüller stem and a threaded cup in 200 consecutive patients. Of 102 patients (108 hips) who were available for follow-up at a minimum of 180 months postoperatively, eighty-three (eighty-nine hips) had the primary joint replacement still intact. No stem had been revised because of aseptic loosening, but we found various degrees of osteolysis around sixteen (18%) of the implants. The probability of survival of the stem at fifteen years was 0.98 (95% confidence interval, 0.96 to 1.00). The probability of survival of the cup was 0.85 (95% confidence interval, 0.79 to 0.91). PMID:17015598

  6. Effects of femoral component material properties on cementless fixation in total hip arthroplasty. A comparison study between carbon composite, titanium alloy, and stainless steel.

    Science.gov (United States)

    Otani, T; Whiteside, L A; White, S E; McCarthy, D S

    1993-02-01

    Carbon-fiber-reinforced-carbon composite material is an attractive implant material because its modulus of elasticity can be made similar to that of cortical bone. This study investigated the effect of femoral prosthesis elastic modulus on cementless implant fixation. Distal, as well as proximal, relative micromovements between implant and bone were measured in two testing protocols (axial-load and torsional-load), comparing identically shaped carbon composite (modulus of elasticity = 18.6 GPa), Ti6Al4V (100 GPa), and 630 stainless steel (200 GPa) prostheses. In the axial-load test, proximal mediolateral micromotions were significantly larger in the flexible composite stem than in the two metals. In the torsional-load test, rotational micromotions and "slop" displacements in the flexible stem were significantly larger proximally and significantly smaller distally than in the two metals. While these results suggest that proximal stress transfer may be improved by a flexible stem, they raise the possibility of increased proximal micromotion, and suggest that improved proximal fixation may be necessary to achieve clinical success with flexible composite femoral components.

  7. Achieving Fine Beta Grain Structure in a Metastable Beta Titanium Alloy Through Multiple Forging-Annealing Cycles

    Science.gov (United States)

    Zafari, Ahmad; Ding, Yunpeng; Cui, Jianzhong; Xia, Kenong

    2016-07-01

    A coarse-grained (order of 1 mm) Ti-5553 metastable beta alloy was subjected to multiple passes of low-temperature forging and multiple forging plus annealing cycles, respectively. In the forging only processing, strain was concentrated in the shear bands formed and accumulated with each forging pass, resulting in a heterogeneous microstructure and eventual cracking along the shear bands. In contrast, the introduction of a short beta annealing after each forging step led to fine recrystallized grains (50 to 100 µm) formed in the shear bands, and a uniformly refined beta grain structure after four cycles. This is attributed to the strengthening effect of the fine grains, causing redistribution of most severe strains to the coarse grain region in the subsequent forging, consistent with the simulated results by finite element analysis. The analyses of the microstructures and simulated strain distributions revealed that the critical strain for recrystallization is between 0.2 and 0.5 and the strain to fracture to be ~0.8 to 0.9. The fine-grained (50 to 100 µm) beta alloy, however, fractured at a much smaller strain of <0.4 during the next forging step, owing to the formation of stress-induced martensitic α″ which is more prevalent in fine grains than in coarse ones.

  8. Good performance of a titanium femoral component in cementless hip arthroplasty in younger patients: 97 arthroplasties followed for 5-11 years

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Jensen, Frank Krieger; Poulsen, Klaus;

    2003-01-01

    We performed 97 uncemented primary total hip arthroplasties in 80 patients having an average age of 50 years. The femoral implant was a titanium stem with a proximal circumferential plasma spray-coating. Three different acetabular components were used: a threaded and partly porous-coated design i...

  9. Microstructural evolutions in warm compression of Betacez and 6246 titanium alloys and influence of the forging on the transformation {beta} {yields} {alpha}; Evolutions microstructurales en compression a chaud des alliages de titane Betacez et 6246 et influence du forgeage sur la transformation {beta} {yields} {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Chaussy Mraizika, F.

    1996-06-26

    The relations between the thermomechanical ranges and the microstructures of titanium alloys are still insufficient. This work proposes to improve the knowledge of structural state coming from the {beta} forging and the ulterior transformation {beta} to {alpha}+{beta}. The influence of the two parameters, rate and strain speed, on the microstructural and textural evolutions appear during the forging and also during the {beta}/{alpha} transformation are systematically studied. The two titanium alloys which are studied are Betacez titanium alloy and the 6246 titanium alloy. (N.C.)

  10. Instant forgedUI starter

    CERN Document Server

    Luiz, Joseandro

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.The book is a Starter guide to learning ForgedUI. This book will start by unfolding the installation and creating a simple application using Titanium and ForgedUI, followed by taking you through the features to model an engaging UI and generate multi-platform code with Titanium, while covering the best design practice for Apple and Android application development. Last but not least, you will also come across the available resources where you can

  11. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  12. Antibacterial Efficacy of a New Gentamicin-Coating for Cementless Prostheses Compared to Gentamicin-Loaded Bone Cement

    NARCIS (Netherlands)

    Neut, Danielle; Dijkstra, Rene J. B.; Thompson, Jonathan I.; van der Mei, Henny C.; Busscher, Henk J.

    2011-01-01

    Cementless prostheses are increasingly popular but require alternative prophylactic measures than the use of antibiotic-loaded bone cements. Here, we determine the 24-h growth inhibition of gentamicin-releasing coatings from grit-blasted and porous-coated titanium alloys, and compare their antibacte

  13. Large head metal-on-metal cementless total hip arthroplasty versus 28mm metal-on-polyethylene cementless total hip arthroplasty: design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    van Raaij Jos JAM

    2008-10-01

    Full Text Available Abstract Background Osteoarthritis of the hip is successfully treated by total hip arthroplasty with metal-on-polyethylene articulation. Polyethylene wear debris can however lead to osteolysis, aseptic loosening and failure of the implant. Large head metal-on-metal total hip arthroplasty may overcome polyethylene wear induced prosthetic failure, but can increase systemic cobalt and chromium ion concentrations. The objective of this study is to compare two cementless total hip arthroplasties: a conventional 28 mm metal-on-polyethylene articulation and a large head metal-on-metal articulation. We hypothesize that the latter arthroplasties show less bone density loss and higher serum metal ion concentrations. We expect equal functional scores, greater range of motion, fewer dislocations, fewer periprosthetic radiolucencies and increased prosthetic survival with the metal-on-metal articulation. Methods A randomized controlled trial will be conducted. Patients to be included suffer from non-inflammatory degenerative joint disease of the hip, are aged between 18 and 80 and are admitted for primary cementless unilateral total hip arthroplasty. Patients in the metal-on-metal group will receive a cementless titanium alloy acetabular component with a cobalt-chromium liner and a cobalt-chromium femoral head varying from 38 to 60 mm. Patients in the metal-on-polyethylene group will receive a cementless titanium alloy acetabular component with a polyethylene liner and a 28 mm cobalt-chromium femoral head. We will assess acetabular bone mineral density by dual energy x-ray absorptiometry (DEXA, serum ion concentrations of cobalt, chromium and titanium, self reported functional status (Oxford hip score, physician reported functional status and range of motion (Harris hip score, number of dislocations and prosthetic survival. Measurements will take place preoperatively, perioperatively, and postoperatively (6 weeks, 1 year, 5 years and 10 years. Discussion

  14. Cementless isoelastic RM total hip prosthesis1

    OpenAIRE

    Bombelli, Renato; Mathys, Robert

    1982-01-01

    Some surgeons are beginning to doubt the reliability of bone cement in joint replacements. In 1967 Robert Mathys conceived the idea of an isoelastic prosthesis made of plastic, which would anchor into the bone without cement. He developed the idea by extensive tests in animals and, in 1973, the first human RM cementless hip prosthesis was inserted by E Morscher. In this paper the concept of the cementless isoelastic prosthesis is developed by Robery Mathys, and Professor Bombelli records his ...

  15. Forging process design for risk reduction

    Science.gov (United States)

    Mao, Yongning

    In this dissertation, forging process design has been investigated with the primary concern on risk reduction. Different forged components have been studied, especially those ones that could cause catastrophic loss if failure occurs. As an effective modeling methodology, finite element analysis is applied extensively in this work. Three examples, titanium compressor disk, superalloy turbine disk, and titanium hip prosthesis, have been discussed to demonstrate this approach. Discrete defects such as hard alpha anomalies are known to cause disastrous failure if they are present in those stress critical components. In this research, hard-alpha inclusion movement during forging of titanium compressor disk is studied by finite element analysis. By combining the results from Finite Element Method (FEM), regression modeling and Monte Carlo simulation, it is shown that changing the forging path is able to mitigate the failure risk of the components during the service. The second example goes with a turbine disk made of superalloy IN 718. The effect of forging on microstructure is the main consideration in this study. Microstructure defines the as-forged disk properties. Considering specific forging conditions, preform has its own effect on the microstructure. Through a sensitivity study it is found that forging temperature and speed have significant influence on the microstructure. In order to choose the processing parameters to optimize the microstructure, the dependence of microstructure on die speed and temperature is thoroughly studied using design of numerical experiments. For various desired goals, optimal solutions are determined. The narrow processing window of titanium alloy makes the isothermal forging a preferred way to produce forged parts without forging defects. However, the cost of isothermal forging (dies at the same temperature as the workpiece) limits its wide application. In this research, it has been demonstrated that with proper process design, the die

  16. Titanium

    Science.gov (United States)

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  17. 锻造工艺对大规格 TC17钛合金棒材组织及性能的影响%Effect of Forging Process on Microstructure and Mechanical Properties of TC17 Titanium Alloy Bars

    Institute of Scientific and Technical Information of China (English)

    岳旭; 冯浩; 马恩惠; 李巍; 马宝军; 董洁; 李渭清

    2013-01-01

    通过两种工艺锻制了矱350 mm的大规格TC17钛合金棒材,比较了经两种工艺锻制的棒材的显微组织、力学性能及探伤杂波水平。研究结果表明,在单相区采用镦拔变形使变形量大于60%,并在两相区进行拔长,使变形量大于65%,再经840℃×2 h/AC +800℃×4 h/WC +630℃×8 h/AC 热处理,可得到各项力学性能均符合 GJB 2218 A-2008标准要求且探伤杂波水平可达矱3.2 mm -9~-12 dB的矱350 mm TC17钛合金棒材。%Forging ф350 mm TC17 titanium alloy bars through two schemes , then compared the microstructures , mechanical properties and flaw detection levels of the bars .The results show that , deformed more than 60% using upsetting and stretching forging process in single-phase region and then deformed more than 65% using stretching forging process in dual-phase region , continued with the heat treatment of 840℃×2 h/AC+800℃×4 h/WC+630℃×8 h/AC, the mechanical properties of bars could meet the GJB 2218 A-2008 standard and the flaw detection level was ф3.2 mm -9~-12 dB .

  18. Bone remodeling around cementless tantalum cups

    NARCIS (Netherlands)

    Grillo, J. -C.; Flecher, X.; Bouvenot, J.; Argenson, J. -N.

    2008-01-01

    Purpose of the study.-Most studies have reported a significant decrease in periacetabular bone stock one year after implantation of a cementless cup. The purpose of this work was to study the bone-implant interface of the tantalum cup using plain X-rays and dual-energy X-ray absorptiometry (DEXA). M

  19. Osseointegration: a review of the fundamentals for assuring cementless skeletal fixation

    Directory of Open Access Journals (Sweden)

    Isaacson BM

    2014-04-01

    Full Text Available Brad M Isaacson,1,2 Sujee Jeyapalina3,4 1Henry M Jackson Foundation for the Advancement of Military Medicine, 2The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, MD, USA; 3Department of Orthopedics, 4Orthopedic Research Laboratory, University of Utah, Salt Lake City, UT, USA Abstract: Direct skeletal fixation, termed osseointegration, has expanded in the last century and includes use in total joint replacements, the edentulous mandible and maxilla, and percutaneous osseointegrated prosthetics. Although it is well known that titanium and bone have the ability to form a durable bone–implant interface, new applications have emerged in the field of orthopedics, which requires a more thorough assessment of the literature. This review aims to introduce the basic biological principles for attaining osseointegration and discusses the major factors for assuring successful cementless fixation. Keywords: osseointegration, bone, skeletal attachment, total joint replacements, dental implants, percutaneous

  20. A Femur-Implant Model for the Prediction of Bone Remodeling Behavior Induced by Cementless Stem

    Institute of Scientific and Technical Information of China (English)

    He Gong; Lingyan Kong; Rui Zhang; Juan Fang; Meisheng Zhao

    2013-01-01

    Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue,as well as the selection of an appropriate implant in terms of architecture and material.In this paper,a finite element model of proximal femur was develop.ed to simulate the structures of internal trabecular and cortical bones by incorporating quantitative bone functional adaptation theory with finite element analysis.Cementless stems made of titanium,two types of Functionally Graded Material (FGM) and flexible 'iso-elastic' material as comparison were implanted in the structure of proximal femur respectively to simulate the bone remodeling behaviors of host bone.The distributions of bone density,von Mises stress,and interface shear stress were obtained.All the prosthetic stems had effects on the bone remodeling behaviors of proximal femur,but the degrees of stress shielding were different.The amount of bone loss caused by titanium implant was in agreement with the clinical observation.The FGM stems caused less bone loss than that of the titanium stem,in which FGM I stem (titanium richer at the top to more HAP/Col towards the bottom) could relieve stress shielding effectively,and the interface shear stresses were more evenly distributed in the model with FGM I stem in comparison with those in the models with FGM II (titanium and bioglass) and titanium stems.The numerical simulations in the present study provided theoretical basis for FGM as an appropriate material of femoral implant from a biomechanical point of view.The next steps are to fabricate FGM stem and to conduct animal experiments to investigate the effects of FGM stem on the remodeling behaviors using animal model.

  1. Modified cementless total coxofemoral prosthesis: development, implantation and clinical evaluation

    Directory of Open Access Journals (Sweden)

    S.A. Arias

    2013-12-01

    Full Text Available The aim of this study was to modify canine coxofemoral prostheses and the clinical evaluation of the implantation. Fifteen canine hips and femora of cadavers were used in order to study the surface points of modification in prostheses and develop a perforation guide. Femoral stems and acetabular components were perforated and coated with biphasic calcium phosphate layer. Twelve young adult male mongrel dogs were implanted with coxofemoral prostheses. Six were operated upon and implanted with cemented canine modular hip prostheses, establishing the control group. The remaining six were implanted with a novel design of cementless porous tricalcic phosphate-hydroxyapatite coated hip prostheses. Clinical and orthopedic performance, complications, and thigh muscular hypotrophy were assessed up to the 120th post-operatory day. After 120 days, animals with cementless prostheses had similar clinical and orthopedic performance compared to the cemented group despite the increased pain thigh hypotrophy. Animals that underwent cementless hip prosthesis evidenced more pain, compared to animals with cemented hip prosthesis that required longer recuperation time. No luxations, two fractures and two isquiatic neurapraxies were identified in the course of the study. Using both the cemented and the bioactive coated cementless model were suitable to dogs, showing clinical satisfactory results. Osseointegration and biological fixation were observed in the animals with the modified cementless hip prosthesis.

  2. Modeling of Closed-Die Forging for Estimating Forging Load

    Science.gov (United States)

    Sheth, Debashish; Das, Santanu; Chatterjee, Avik; Bhattacharya, Anirban

    2016-05-01

    Closed die forging is one common metal forming process used for making a range of products. Enough load is to exert on the billet for deforming the material. This forging load is dependent on work material property and frictional characteristics of the work material with the punch and die. Several researchers worked on estimation of forging load for specific products under different process variables. Experimental data on deformation resistance and friction were used to calculate the load. In this work, theoretical estimation of forging load is made to compare this value with that obtained through LS-DYNA model facilitating the finite element analysis. Theoretical work uses slab method to assess forging load for an axi-symmetric upsetting job made of lead. Theoretical forging load estimate shows slightly higher value than the experimental one; however, simulation shows quite close matching with experimental forging load, indicating possibility of wide use of this simulation software.

  3. Short term results of cementless total hip arthroplasty in sicklers

    Directory of Open Access Journals (Sweden)

    Yash Gulati

    2015-01-01

    Conclusion: THA in sicklers involves considerable challenge for the orthopedic surgeon. Management requires a multidisciplinary approach involving the anesthetist, hematologist and the orthopedic surgeon. Contrary to previous reports, THA in sicklers now has a predictable outcome especially with the use of cementless implants.

  4. Design optimization of cementless metal-backed cup prostheses using the concept of functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Hedia, H S; El-Midany, T T; Shabara, M A N; Fouda, N [Production Engineering and M/C Design Department, Faculty of Engineering, Mansoura University, Mansoura (Egypt)

    2006-09-15

    Metal backing has been widely used in acetabular cup design. A stiff backing for a polyethylene liner was initially believed to be mechanically favourable. Yet, recent studies of the load transfer around acetabular cups have shown that a stiff backing causes two problems. It generates higher stress peaks around the acetabular rim than those caused by full polyethylene cups and reduces the stresses transferred to the dome of the acetabulum causing stress shielding. The aim of this study is to overcome these two problems by improving the design of cementless metal-backed acetabular cups using the two-dimensional functionally graded material (FGM) concept through finite-element analysis and optimization techniques. It is found that the optimal 2D FGM model must have three bioactive materials of hydroxyapatite, Bioglass and collagen. This optimal material reduces the stress shielding at the dome of the acetabulum by 40% and 37% compared with stainless steel and titanium metal backing shells, respectively. In addition, using the 2D FGM model reduces the maximum interface shear stress in the bone by 31% compared to the titanium metal backing shell.

  5. Relationship among forging technology, structure and properties of TC21 alloy bars

    Institute of Scientific and Technical Information of China (English)

    QU Heng-lei; LI Hui; ZHANG Ying-nan; GUO Hong-chao; ZHOU Yi-gang; ZHOU Lian; ZHAO Yong-qing; ZENG Wei-dong; FENG Liang; YANG Yan-qing; CHEN Jun; YU Han-qing

    2005-01-01

    As candidate of structural material for advanced domestic aircraft, a new high strength and toughness titanium alloy TC21 was studied focusing on forging technology and microstructure as well as mechanical properties.Two specification ingots and bars were adopted. The results show that basket-weave microstructure is obtained in bars produced by beta finish-forging method; while duplex or tri-modal microstructure appears in bars manufactured by near-beta forging technology. Essential reason affecting structure characteristics is the difference in forging tem perature and deformation amount. Variation in lamellar spacing results in fluctuation of properties corresponding to basket-weave microstructure; however, ideal matching of properties can be reached by near-beta forging.

  6. Bone ingrowth through porous titanium granulate around a femoral stem: histological assessment in a six-month canine hemiarthroplasty model.

    Science.gov (United States)

    Turner, Thomas M; Urban, Robert M; Hall, Deborah J; Andersson, Gunnar B J

    2007-01-01

    The procedure of using of porous titanium granules for cementless fixation of a hip replacement femoral stem was studied in a hemiarthroplasty model in 10 canines for 6 months. A vibrating instrument was used to facilitate both the delivery and distribution of the irregularly shaped porous titanium granules into the femoral canal as well as the subsequent insertion of a titanium alloy stem into the intramedullary bed of granules. Histological examination revealed lamellar bone formation through the mantle of porous titanium granules in continuity with the surrounding cortex resulting in the formation of an integrated mantle of bone and titanium granulate around the prosthesis. PMID:17578819

  7. The evaluation of Ontario Forge Company as a qualified forging vendor

    Energy Technology Data Exchange (ETDEWEB)

    West, A.J.; Odegard, B.C.

    1981-10-12

    There has been a long standing need to develop a second source of WR quality forgings for the manufacturing of J-line hardware at RF. With this objective, Ontario Forge Company was recently evaluated to determine if their equipment and skills were compatible with the forging requirements. The results of this evaluation were compared to test results on WR forgings of a similar design produced by Precision Forge Company. The Ontario Forge Company forgings exhibited mechanical properties, grain flow and microstructures equivalent to those of Precision Forge Company. The Ontario Forge Company performance on this contract justifies the qualification of their process for producing non-critical reservoir forgings. Qualifying Ontario Forge Company for critical reservoir forgings is recommended only after sufficient production experience and storage data is acquired.

  8. Laser repair hardfacing of titanium alloy turbine

    OpenAIRE

    A. Klimpel; D. Janicki; A. Lisiecki; A. Rzeźnikiewicz

    2011-01-01

    Purpose: of this paper: work out repair technology of worn abutments of aircraft jet engine blades forged of titanium alloy WT3-1.Design/methodology/approach: The study were based on the analysis of laser HPDL powder surfacing of titanium alloy plates using wide range chemical composition consumables of titanium alloys and mixtures of pure titanium and spherical powder of WC indicated that very hard and highest quality deposits are provided by powder mixture of 40-50%Ti+60-50%WC.Findings: It ...

  9. Interface Micromotion of Cementless Hip Stems in Simulated Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Mohammed R.A. Kadir

    2009-01-01

    Full Text Available Problem statement: The design of hip prostheses has evolved over time due to various complications found after hip replacement surgery. The currently commercially available cementless femoral stems can be categorized into one of three major types, straight cylindrical, tapered rectangular and anatomical. Each type proposes a unique concept to achieve primary stability-a major requirement for bone healing process. Virtual analyses have been made on individual implants, but comparison between the three major types is required to determine the strength and weaknesses of the design concepts. Approach: Three types of implants were modeled in three dimensions-the straight cylindrical, rectangular taper and anatomical. The size of the three implants was carefully designed to fit and fill the canal of a femur reconstructed from a computed tomography image dataset. Hip arthroplasty was simulated virtually by inserting the hip stem into the femoral canal. Finite element method was used in conjunction with a specialized sub-routine to measure micromotion at the bone-implant interface under loads simulating physiological walking and stair-climbing. Another sub-routine was used to assign bone properties based on the grayscale values of the CT image. Results: All the three types of cementless hip stems were found to be stable under both walking and stair climbing activities. Large micromotion values concentrated around the proximal and distal part of the stems. Conclusion/Recommendations: The three major types of hip stems were compared in this study and all of them were found to be stable after simulated physiological activities.

  10. Superior fixation of pegged trabecular metal over screw-fixed pegged porous titanium fiber mesh

    OpenAIRE

    Stilling, Maiken; Madsen, Frank; Odgaard, Anders; Rømer, Lone; Andersen, Niels Trolle; Rahbek, Ole; Søballe, Kjeld

    2011-01-01

    Background and purpose Lasting stability of cementless implants depends on osseointegration into the implant surface, and long-term implant fixation can be predicted using radiostereometric analysis (RSA) with short-term follow-up. We hypothesized that there would be improved fixation of high-porosity trabecular metal (TM) tibial components compared to low-porosity titanium pegged porous fiber-metal (Ti) polyethylene metal backings. Methods In a prospective, parallel-group, randomized unblind...

  11. Do Rerevision Rates Differ After First-time Revision of Primary THA With a Cemented and Cementless Femoral Component?

    DEFF Research Database (Denmark)

    Gromov, Kirill; Pedersen, Alma B; Overgaard, Søren;

    2015-01-01

    Worldwide use of cementless fixation for total hip arthroplasty (THA) is on the rise despite some evidence from the world's registries suggesting inferior survivorship compared with cemented techniques. The patterns of bone loss associated with failed cementless and cemented THAs may prejudice...

  12. Prediction of dynamic recrystalization and grain size of TC21 titanium alloy in βforging%TC21钛合金β锻动态再结晶行为及晶粒尺寸预测

    Institute of Scientific and Technical Information of China (English)

    余新平; 董洪波

    2015-01-01

    By using Gleeble3500 thermal simulation experiment machine , the isothermal and constant strain rate compression test of TC21 titanium alloy was conducted ,and its dynamic recrystallization behaviors were investigated with the deformation temper‐ature from 960℃ to 1020℃ and the strain rate of 0.001s-1 ,0.01s-1 ,0.1s-1 ,1s-1 . The results show that the dynamic recov‐ery and dynamic recrystallization phenomena occur in TC21 .It is found that ,when the strain rate is less than 0.1s-1 at a certain temperature , the grain size after dynamic recrystallization increases with the decreasing in the strain rate ;When the strain rate is 1s-1 ,almost the dynamic recovery exclusively occurs ;When the strain rate is constant ,with the increase of the temperature , the grain size by dynamic recrystallization is larger ;According to the relation between the flow stress and the temperature as well as strain rate ,the activation energy Q=258.6kJ/mol for TC21 dynamic recrystallization was obtained ;Via the analysis of ther‐mal simulation experiment data , the evolution model of dynamic recrystallization was established . Finally , both the grain size and the volume fraction of dynamic recrystallization in 975 ℃ hot forming were predicted based on DEFORM‐3D software . The relative error for grain size is within ± 10% ,and the accuracy of the model was verified .%采用Gleeble‐3500热模拟实验机对TC21钛合金进行等温恒应变速率的热模拟压缩实验,研究其在变形温度960℃~1020℃,应变速率0.001s-1、0.01s-1、0.1s-1、1s-1条件下的动态再结晶行为。结果表明, TC21钛合金在变形过程中存在动态回复、动态再结晶现象。当温度一定时,在应变速率≤0.1s-1情况下,随着应变速率的降低,动态再结晶晶粒尺寸变大;在应变速率为1s-1时,变形过程几乎只发生动态回复;当应变速率一定时,随着温度的升高,动态再结晶晶粒尺寸变大。

  13. Artificial neural network modeling of phase volume fraction of Ti alloy under isothermal and non-isothermal hot forging conditions

    International Nuclear Information System (INIS)

    An artificial neural network (ANN) model was applied to simulate the phase volume fraction of titanium alloy under isothermal and non-isothermal hot forging condition. For isothermal hot forging process, equilibrium phase volume fraction at specific temperature was predicted. For this purpose, chemical composition of six alloy elements (i.e. AI, Y, Fe, 0, N, and C) and specimen temperature were chosen as input parameter. After that, phase volume fraction under non-isothermal condition was simulated again. Input parameters consist of initial phase volume fraction, equilibrium phase volume fraction at specific temperature, cooling rate, and temperature.The ANN model was coupled with the FE simulation in order to predict the variation of phase volume fraction during non-isothermal forging. Ti-6AI-4Y alloy was forged under isothermal and non-isothermal condition and then, the resulting microstructures were compared with simulated data

  14. THE HIGH VOLUME REUSE OF HYBRID BIOMASS ASH AS A PRIMARY BINDER IN CEMENTLESS MORTAR BLOCK

    Directory of Open Access Journals (Sweden)

    Cheah Chee Ban

    2014-01-01

    Full Text Available High Calcium Wood Ash (HCWA and Pulverised Fuel Ash (PFA are by-products from the wood biomass and coal energy production which are produced in large quantity with combined annual production of 500 million tonnes. This poses a serious problem for disposal of the waste material especially at places where land is scarce. The prescribed study was aimed to examine the mineralogical phases and their respective amount present in the industrial wastes which governs the hydration mechanism towards self-sustained solidification of the ashes when used in combination. Besides, the influence of various forming pressure and hydrothermal treatment temperature on mechanical strength performance of HCWA-PFA cementless mortar blocks was also examined. In the study, the mechanical strength of the HCWA-PFA cementless mortar block produced using various forming pressure and hydrothermal treatment temperature was assessed in terms of compressive strength and dynamic modulus. The results of the study are indicative that HCWA is rich in calcium oxide and potassium oxide content. This enables the hybridization of HCWA with the amorphous silica and alumina rich PFA to form a solid geopolymer binder matrix for fabrication of cementless mortar block. Throughout the study, dimensionally and mechanically stable HCWA-PFA geopolymer mortar blocks were successfully produced by press forming and hydrothermal treatment method. Based on statistical analysis, the hydrothermal treatment temperature has a statistically insignificant effect on the mechanical strength of the HCWA-PFA cementless mortar blocks. The dominant factor which governs the mechanical strength of the HCWA-PFA cementless mortar blocks was found to be the hydraulic forming pressure. Moreover, it was found that hybridized HCWA-PFA can be recycled as the sole binder for fabrication of cementless concrete block which is a useful construction material.

  15. Isothermal precision forging of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy impeller with twisted blades

    Institute of Scientific and Technical Information of China (English)

    SHAN De-bin; SHI Ke; XU Wen-chen; L(U) Yan

    2006-01-01

    Ti-6.5Al-3.5Mo-1.5Zr-0.3Si (TC11) alloy impeller is an important part in the airspace engine that serves under severe working conditions, and it requires excellent mechanical properties and high dimensional precision. However, the integral titanium alloy impeller is difficult to precisely forge because of its complex shape and poor formability. In order to develop optimum forging process of this kind of complex parts, the deformation characteristics of TC11 alloy under isothermal compressing conditions were studied. Furthermore, an alternative material, namely pure lead, was selected to model the forming process of the impeller and investigate metal flow during forging. Based on the research, local loading method was determined to forge the TC11 alloy impeller precisely under isothermal condition. The dimensional accuracy, mechanical properties and microscopic structure of the forged product satisfy operating requirements.

  16. Study of bone remodeling of two models of femoral cementless stems by means of DEXA and finite elements

    Directory of Open Access Journals (Sweden)

    López-Prats Fernando

    2010-05-01

    Full Text Available Abstract Background A hip replacement with a cemented or cementless femoral stem produces an effect on the bone called adaptive remodelling, attributable to mechanical and biological factors. All of the cementless prostheses designs try to achieve an optimal load transfer in order to avoid stress-shielding, which produces an osteopenia. Long-term densitometric studies taken after implanting ABG-I and ABG-II stems confirm that the changes made to the design and alloy of the ABG-II stem help produce less proximal atrophy of the femur. The simulation with FE allowed us to study the biomechanical behaviour of two stems. The aim of this study was, if possible, to correlate the biological and mechanical findings. Methods Both models with prostheses ABG-I and II have been simulated in five different moments of time which coincide with the DEXA measurements: postoperative, 6 months, 1, 3 and 5 years, in addition to the healthy femur as the initial reference. For the complete comparative analysis of both stems, all of the possible combinations of bone mass (group I and group II of pacients in two controlled studies for ABG-I and II stems, respectively, prosthetic geometry (ABG-I and ABG-II and stem material (Wrought Titanium or TMZF were simulated. Results and Discussion In both groups of bone mass an increase of stress in the area of the cancellous bone is produced, which coincides with the end of the HA coating, as a consequence of the bottleneck effect which is produced in the transmission of loads, and corresponds to Gruen zones 2 and 6, where no osteopenia can be seen in contrast to zones 1 and 7. Conclusions In this study it is shown that the ABG-II stem is more effective than the ABG-I given that it generates higher tensional values on the bone, due to which proximal bone atrophy diminishes. This biomechanical behaviour with an improved transmission of loads confirmed by means of FE simulation corresponds to the biological findings obtained with

  17. High-energy rate forgings of wedges :

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  18. RESEARCH ON KNOWLEDGE-BASED CAPP SYSTEM FOR ROTOR FORGING

    Institute of Scientific and Technical Information of China (English)

    Wang Leigang; Deng Dongrnei; Liu Zhubai

    2000-01-01

    Guided by developing forging technology theory,designing rules on rotor forging process are summed up.Knowledge-based CAPP system for rotor forging is created.The system gives a rational and optimum process.

  19. METHODS OF COMPARATIVE APPRAISAL OF TITANIUM ALLOYS ABILITY TO THERMAL STRENGTHENING AS A RESULT OF HIGH-TEMPERATURE THERMOMECHANICAL PROCESSING

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2011-01-01

    Full Text Available The methods, enabing to produce the comparative appraisal of the titanium alloy ability to harden as a result of high-temperature thermal-mechanical processing depending on temperature and rate of deformation at forging, is developed.

  20. Effect of rotator cuff dysfunction on the initial mechanical stability of cementless glenoid components

    NARCIS (Netherlands)

    D.R. Suárez (Daniel); E.R. Valstar (Edward); J.C. Linden (Jacqueline); F. van Keulen (Fred); P.M. Rozing (Piet)

    2009-01-01

    textabstractThe functional outcome of shoulder replacement is related to the condition of the rotator cuff. Rotator cuff disease is a common problem in candidates for total shoulder arthroplasty; this study relates the functional status of the rotator cuff to the initial stability of a cementless gl

  1. A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses

    NARCIS (Netherlands)

    Neut, D.; Dijkstra, R. J. B.; Thompson, J. I.; Kavanagh, C.; van der Mei, H. C.; Busscher, H. J.

    2015-01-01

    A degradable, poly (lactic-co-glycolic acid) (PLGA), gentamicin-loaded prophylactic coating for hydroxyapatite (HA)-coated cementless hip prostheses is developed with similar antibacterial efficacy as offered by gentamicin-loaded cements for fixing traditional, cemented prostheses in bone. We descri

  2. Research on Forging Die Design Ontology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wenlei; FAN Yushun

    2006-01-01

    Forging die design is heavily dependent on engineers' experiences. But traditional AI technologies can barely provide a standard knowledge representation style for knowledge transferring. This paper introduces ontology into forging die design. 3-layer forging die design ontology is built, which includes Meta-ontology, Domain-ontology and Bottom ontology. Further, by conceptualization, the concepts and their relations are formally addressed by primitives such as Term, Relation and Function etc, which are explicitly expressed by concept tree. Bottom ontology uses Knowledge Item and Prototype to represent and capture general knowledge for knowledge reuse and share. Forging die design ontology building approach is discussed for standard knowledge representation, knowledge mine and knowledge driven CAD design etc. And OWL language is employed for integration among different domain ontologies integration. Finally a locomotive forging die KBE system is presented to demonstrate this approach.

  3. Mechanics and forming theory of liquid metal forging

    Institute of Scientific and Technical Information of China (English)

    罗守靖; 姜巨福; 王迎; 藤东东

    2003-01-01

    On the basis of steel liquid forging and aluminium alloy liquid forging, liquid metal forging was investigated, such as the assembly model, metal plastic flowing, the force-displacement curves, the harmonious equation, calculation of value of altitude deformation and determination of specific pressure of liquid metal forging. On the basis of the theory of metal plastic forming and the characteristics of liquid metal forging, the achievements on the mechanics and forming theory of liquid metal forging were given out by combining the theory and experiments systematically, and an important preparation for establishing liquid metal forging theory was suggested.

  4. Forces at the Main Mechanism of a Railbound Forging Manipulator

    OpenAIRE

    Florian Ion Tiberiu Petrescu; Relly Victoria Virgil Petrescu

    2015-01-01

    Forging manipulators have become more prevalent in the industry today. They are used to manipulate objects to be forged. The most common forging manipulators are moving on a railway to have a greater precision and stability. They have been called the railbound forging manipulators. In this paper we determine the driving forces of the main mechanism from such manipulator. Forces diagram shows a typical forging manipulator, with the basic motions in operation process: walking, motion of the ton...

  5. Forging of FeAl intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L. [UNAM, Cuernavaca (Mexico). Lab. de Cuernavaca; Schneibel, J.H. [Oak Ridge National Lab., TN (United States)

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  6. Near Net Shape Manufacturing of New Titanium Powders for Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    This factsheet describes a research project whose goal is to develop a manufacturing technology to process new titanium powders into fully consolidated near net shape components for industrial applications. This will be achieved using various technologies, including press and sinter, pneumatic isostatic forging (PIF), hot isostatic pressing (HIP), and adiabatic compaction.

  7. Powder Forging of a Motorcycle Connecting Rod

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A motorcycle connecting rod is one of the major moving parts affecting the engine performance. The traditional manufacturing process results in material waste and excessive machining. A new method of hot forging P/M has been proposed and studied experimentally. In order to achieve uniform density, the punch was divided into three parts to consolidate the loose powder. The multistage movement of the three parts of the punch, called synchronous compaction, results in the desired uniform density. Powder flow during consolidation was illustrated and the density distribution of the compacts was measured. A set of forging dies with flash was used to produce densification and deformation of the sintered compact. Then a set of flashless forging dies was designed to obtain the desired shape and dimensions of the connecting rod. The effects of forging temperature and initial compact density on densification were evaluated through hot forging experiments. Based on properties achieved, Fe-C-Cu-Mo was selected as the alloy powder. Through testing and metallographic observation the physical and mechanical properties of the connecting rod produced by the P/M hot forging were found to be superior to those manufactured by the traditional method.

  8. Effect of proximal femoral osteoporosis on cementless hip arthroplasty: A short-term clinical analysis

    Institute of Scientific and Technical Information of China (English)

    LOU Xian-feng; LI Yu-hong; LIN Xiang-jin

    2007-01-01

    Objective: The aim of this retrospective investigation was to explore the influence of femoral osteoporosis on short-term curative effects of cementless hip arthroplasty and to evaluate the femoral metaphyseal bone mineral density (BMD) for femoral osteoporosis in order to guide prosthesis choice and rehabilitation. Methods: We performed 127 total arthroplasty operations between June 1999 to February 2003 and investigated 49 cementless hip replacements with the Metalcancellous cementless Lubeck Ⅱ system being used in all hips. There were twenty men and twenty-nine women whose mean age at the time of the operation was 60 years (range, 52~81 years). The patients were divided into osteoporosis or normal groups according to the femoral metaphyseal BMD measured preoperatively. The average duration of follow-up was 30 months (range, 8~52 months). We evaluated all of the patients from a clinical standpoint with use of a standard-terminology questionnaire with respect to the short-term curative effects and patients' satisfaction. Hip pain status and functional ability were important indicators of treatment efficacy. Results: Harris hip score and patients' satisfaction in femoral osteoporosis patients who underwent noncemented hip arthroplasty were lower (P=0.004, P=0.03) while the incidence of thigh pain was higher (P=0.03) than the patients with non-osteoporosis. Conclusion: The higher incidence of pain, as well as the decrease in function experienced by the patients in osteoporosis group, supports the case that cementless arthroplasty is not a better choice for those patients and that we had better select prosthesis based on the femoral metaphyseal BMD.

  9. Cementless Hip Arthroplasty in Southern Iran, Midterm Outcome and Comparison of Two Designs

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Shahcheraghi

    2015-09-01

    Full Text Available Background: Cementless hip prosthesis was designed to provide biologic fixation, without the use of cement. The second generation components have shown more reliable bone ingrowths and survival rates. We are reporting a midterm result of two designs of cementless prosthesis in a unique culture with different social habits and expectations. Methods: 52 primary cementless total hip arthroplasty in 42 patients with the mean age of 48.8 years were retrospectively studied. Two groups of prosthesis had been implanted: Harris-Galante II (HGII in 15 and Versys-Trilogy (V-T in 37 hips, both from Zimmer company. The patients were assessed clinically, radiographically and with Harris hip score, SF36, WOMAC, and MACTAR questionnaires, with 65 months (26-136 mean follow-up. Results: All the V-T prostheses had survived well. Eight of HG II were revised by the last follow-up in 19-102 months. All had undergone acetabular revision and 2 combined with femoral revision. Broken tines of HGII cups were seen in 4 radiographs. The 65 months overall survival was 96.2% for femoral and 84.6% for acetabular components. 90% had good or excellent Harris hip scores. The functional scores were poorer in the HG II group. Pain relief and improved walking were the two main patients’ expectations fulfilled in 97.6% and 92.8%, respectively. Conclusions: The outcome of cementless total hip arthroplasty (THA is satisfactory and comparable with the literature based on the results of function and survival of this small comparative group. The use of HGII acetabular component should be abandoned.

  10. Intelligent Control of a Novel Hydraulic Forging Manipulator

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-01-01

    Full Text Available The increased demand for large-size forgings has led to developments and innovations of heavy-duty forging manipulators. Besides the huge carrying capacity, some robot features such as force perception, delicacy and flexibility, forging manipulators should also possess. The aim of the work is to develop a heavy-duty forging manipulator with robot features by means of combination of methods in mechanical, hydraulic, and control field. In this paper, through kinematic analysis of a novel forging manipulator, control strategy of the manipulator is proposed considering the function and motion of forging manipulators. Hybrid pressure/position control of hydraulic actuators in forging manipulator is realized. The feasibility of the control method has been verified by the experiments on a real prototype of the novel hydraulic forging manipulator in our institute. The intelligent control of the forging manipulator is performed with programmable logic controller which is suitable for industrial applications.

  11. Residual stress in 7449 aluminium alloy forgings

    International Nuclear Information System (INIS)

    The through thickness residual stress distributions within three 120 mm thick rectilinear forgings, made from the high strength aluminium alloy 7449 have been measured using both neutron diffraction and deep hole drilling. Neutron diffraction measurements were made on two instruments, one using a pulsed spallation neutron source, the other a steady state reactor source. Heat treatment of the forgings included a rapid quench into cold water and it was the residual stresses arising from this step that were initially measured. Neutron diffraction measurements indicated large magnitude (>250 MPa) tensile residual stresses in the centre of an as quenched forging, balanced by surface regions stressed in compression (<-200 MPa). Sufficient measurements were made to permit the description of the residual stress distribution using area maps. Two forgings were stress relieved by cold compression immediately after quenching. The degree of plastic strain was either 2.5% or 4%, and was applied by a single application of force in the short transverse direction. Cold compressed forgings were found to have far lower residual stress when compared to the as quenched condition. The amount of cold compression was found to cause an insignificant difference in the final residual stress distribution. The neutron diffraction results are compared to measurements made by deep hole drilling and a new incremental variation of the technique. The deep hole was drilled through the centre of the forgings in the short transverse direction. Multiple neutron diffraction measurements were also made on the extracted cores from the deep hole measurements to assess the variation of the unstrained lattice parameter through the thickness of the forgings.

  12. International cooperation in cold forging technology

    DEFF Research Database (Denmark)

    Bay, Niels; Lange, K

    1992-01-01

    of the ICFG are personally elected by the Plenary as experts within the field, often representing national groups within cold forging. The main work within the ICFG is carried out in its subgroups which are established by the Plenary to collect, compile and evaluate data and eventually also produce data...... by cooperative activities or by instigating national research. These subgroups have produced 9 data sheets and 7 guidelines on subjects such as materials, tool design and construction, calculation methods for cold forging tools, manufacture of slugs, lubrication aspects and small quantity production. Plenary...

  13. Dynamic Recrystallization Behavior of Microalloyed Forged Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Jin; CHEN Jun; ZHAO Zhen; RUAN Xue-yu

    2008-01-01

    The dynamic recrystallization behavior of microalloyed forged steel was investigated with a compression test in the temperature range of 1 223--1 473 K and a strain rate of 0. 01--5 s-1. Activation energy was calculated to be 305. 9 kJ/mol by regression analysis. Modeling equations were developed to represent the dynamic reerystalliza-tion volume fraction and grain size. Parameters of the modeling equations were determined as a function of the Zener-Hollomon parameter. The developed modeling equation will be combined with finite element modeling to prediet microstructural change during the hot forging processing.

  14. Impact of Temperature on Cooling Structural Variation of Forging Dies

    Science.gov (United States)

    Piesova, Marianna; Czan, Andrej

    2014-12-01

    The article is focused on the issue of die forging in the automotive industry. The cooling effect of temperature on the structure of forged die are under review. In the article, there is elaborated the analysis of theoretical knowledge in the field, focusing on die forging and experimentally proven effect of the cooling rate on the final structure of forged dies made of hypoeutectic carbon steel C56E2.

  15. Titanium 2013

    Science.gov (United States)

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  16. Stainless steel forgings for nuclear chemical plants

    International Nuclear Information System (INIS)

    This Specification covers detailed requirements for the supply of austenitic stainless steel forgings used in radioactive and corrosive areas within the Nuclear Industry. With the exception of 316S51 the materials specified are all suitable for contact with nitric acid, 316S51 being included as suitable for use in contact with sodium and other alkali metals at elevated temperatures. (author)

  17. Sinter forging of zirconia toughened alumina

    NARCIS (Netherlands)

    He, Y.J.; Winnubst, A.J.A.; Verweij, H.; Burggraaf, A.J.

    1994-01-01

    Sinter forging experiments have been carried out on powder compacts of zirconia toughened alumina (ZTA) Ceramics Alumina-15 wt% zirconia was prepared by a gel precipitation method and calcined at temperatures of 900 or 1100°C. Full densification of ZTA ceramics was obtained within 15 min at 1400°C a

  18. Modelling and Testing of Friction in Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2007-01-01

    Knowledge about friction is still limited in forging. The theoretical models applied presently for process analysis are not satisfactory compared to the advanced and detailed studies possible to carry out by plastic FEM analyses and more refined models have to be based on experimental testing. The...

  19. Radiographic and clinical analysis of cementless acetabular fixation in total hip arthroplasty

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; PEI Fu-xing; YANG Jing; SHEN Bin; SHI Rui

    2005-01-01

    Objective: To investigate the factors affecting the fixation, loosening and therapeutic effect of cementless acetabular prosthesis through following up the patients with total hip arthroplasty clinically and radiographically.Methods: From February 1998 to May 1999, 139 patients (148 hips) underwent total hip arthroplasty with cementless acetabular prosthesis in our department. In this study, the clinical therapeutic effect and the anteroposterior radiographs of the pelvis and anteroposterior and lateral radiographs of the hips of 109 patients (116 hips) made before operation, at 1 week, 3, 6, and 12 months after operation and annually thereafter were analyzed retrospectively. The clinical therapeutic effects were evaluated with Harris hip score. Radiographs were used to observe the position of prostheses and the bone changes around the implant, and to measure the wearing speed and direction of the acetabular cup. All evaluations were made by an independent examiner who did not participate in the operation. The patients were followed up for 5-6 years.Results: The mean Harris score was 44 points (range, 10-70 points) before operation, but it increased to 92.4 points (range, 80-100 points) at the latest review after operation, which was significantly higher than that before operation (P<0.05). No acetabular component was revised because of infection or aseptic loosening. And no acetabular component migrated. There was no revision of fixed acetabular component because of pelvic osteolysis secondary to polyethylene wear. The mean linear wear rate was 0.15 mm per year. All the acetabular prostheses were classified as stable on the radiographs.Conclusions: In terms of fixation, total hip arthroplasty with cementless acetabular components was successful. Although there is no aseptic loosening and a low incidence of osteolysis at the latest follow-up evaluation, polyethylene wear cannot be avoided and can lead to expansile osteolysis near the cups. This kind of osteolysis

  20. Stable Fixation of a Cementless, Proximally Coated, Double Wedged, Double Tapered Femoral Stem in Total Hip Arthroplasty

    DEFF Research Database (Denmark)

    Nebergall, Audrey K; Rolfson, Ola; Rubash, Harry E;

    2016-01-01

    BACKGROUND: The objective of this 5-year prospective study of 51 hips was to assess migration of a cementless tapered femoral stem using radiostereometric analysis (RSA), plain radiographs (radiolucencies), and patient-reported outcome measures (PROMs). METHODS: Forty-seven patients (51 hips...

  1. Effects of Materials of Cementless Femoral Stem on the Functional Adaptation of Bone

    Institute of Scientific and Technical Information of China (English)

    He Gong; Wei Wu; Juan Fang; Xin Dong; Meisheng Zhao; Tongtong Guo

    2012-01-01

    The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone.The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem,flexible 'iso-elastic' stem,one-dimensional Functionally Graded Material (FGM) stem and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis.The distributions of bone density,von Mises stress,and interface shear stress were obtained.The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials,thus the host bone is well preserved.Accordingly,the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view.The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants,which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.

  2. The use of cementless acetabular component in revision surgery without pelvic discontinuity.

    Science.gov (United States)

    Cherubino, Paolo; D'Angelo, Fabio; Surace, Michele Francesco; Murena, Luigi; Vulcano, Ettore

    2010-10-01

    Reconstruction of the failed acetabular component in total hip arthroplasty (THA) can be challenging. Although there are multiple reconstructive options available, a cementless acetabular component inserted with screws has been shown to have good intermediate-term results and is the reconstructive method of choice for the majority of acetabular revisions This reconstruction is feasible provided at least 50% of the implant contacts host bone. When such contact is not possible, and there is adequate medial and peripheral bone, techniques using alternative uncemented implants can be used for acetabular reconstruction. An uncemented cup can be placed at a "high hip center." Alternatively, the acetabular cavity can be progressively reamed to accommodate extra-large cups. Oblong cups, which take advantage of the oval-shaped cavity resulting from many failed acetabular components, can also be used. The success of these cementless techniques depends on the degree and location of bone loss. The correct indication to revision and the choice of the correct implant is the keystone for the success of this type of surgery and follows an accurate preoperative planning in order to understand the specific pathologic scenario. The aim of this paper is to review some technical options for the revision of the acetabular component also taking into account our personal experiences and series. PMID:21082580

  3. Modelling of defects in ingot forging

    DEFF Research Database (Denmark)

    Christiansen, Peter

    ductile damage criteria, it is found that the normalized Cockcroft & Latham criterion is most suited for modelling damage in bulk metal forming, if the forming fracture limit diagram can be described by a straight line having a slope of -1/2. A damage criterion independent of slope is presented. Often...... are in closer agreement with the general understanding of the ingot forging process. Therefore porous metal plasticity should not be used solely when evaluating the soundness of the final, forged ingot based on FEM simulations. Based on an analysis of forming fracture limit diagrams combined with uncoupled...... the forming fracture limit diagram consists of two straight lines intersecting one another in the principal strain space along a line corresponding to uniaxial tension. If the slopes of the two lines are -1/2 and -1, which is often encountered in practice, an uncoupled ductile damage criterion is introduced...

  4. A Knowledge base model for complex forging die machining

    CERN Document Server

    Mawussi, Kwamiwi; 10.1016/j.cie.2011.02.016

    2011-01-01

    Recent evolutions on forging process induce more complex shape on forging die. These evolutions, combined with High Speed Machining (HSM) process of forging die lead to important increase in time for machining preparation. In this context, an original approach for generating machining process based on machining knowledge is proposed in this paper. The core of this approach is to decompose a CAD model of complex forging die in geometric features. Technological data and topological relations are aggregated to a geometric feature in order to create machining features. Technological data, such as material, surface roughness and form tolerance are defined during forging process and dies design. These data are used to choose cutting tools and machining strategies. Topological relations define relative positions between the surfaces of the die CAD model. After machining features identification cutting tools and machining strategies currently used in HSM of forging die, are associated to them in order to generate mac...

  5. Influence of Forging on Static Pricing Scheme for Priority Services

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-cheng; SHI Bing-xin; YANG Xue-nan; LI Bo

    2005-01-01

    The influence of ISP's ( internet service provider) forging on static pricing scheme for priority services is analyzed. If ISP is honest, besides the price, after users enter the network market, it can't affect the market; if it forges, it can change its utility. The economical analysis proves that forging is possible, when ISP gains more than its loss, ISP will take the action. In response to forging, users may adapt their traffic allocation vectors to maximize their net benefit. If users will submit more traffic or in higher priority service class, ISP gains from the behavior, if users will submit less traffic or even exits the market, ISP 's utility decrease. The market is completely different from before, forging changes the market. Several examples are presented to illustrate the results. At the same time, how the utility function and the willingness to pay affect forging is discussed.

  6. Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kervick, R.; Blue, C. A.; Kadolkar, P. B.; Ando, T.; Lu, H.; Nakazawa, K.; Mayer, H.; Mochnal, G.

    2006-06-01

    Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capital equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.

  7. Isothermal and Near Isothermal Processing of Titanium Alloys

    Directory of Open Access Journals (Sweden)

    T. Raghu

    2011-01-01

    Full Text Available Isothermal and near isothermal forging are specialized metal processing techniques which are used for producing critical aeroengine components out of advanced materials such as titanium alloys. The process can be used to produce net / near net shape components leading to optimum utilization of materials. As titanium alloys are highly sensitive to temperature and strain rate, these processes help to deform them under slow and controlled strain rates.  Further, these processes can be combined with other conventional and non conventional metal forming processes to refine the microstructure. For example, multiaxial isothermal forging coupled with pack rolling can be used to produce thin sheets out of titanium alloys with submicron grain size. The refined structure exhibits superplastic characteristics at low temperatures and high strain rates. This lower temperature superplastic characteristic can be exploited to establish technologies for producing various components. The paper throws light on the capabilities of isothermal forging process and its variants.Defence Science Journal, 2011, 61(1, pp.72-80, DOI:http://dx.doi.org/10.14429/dsj.61.321

  8. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  9. European Community research on forging of magnesium alloys (MagForge): state of affairs

    NARCIS (Netherlands)

    Sillekens, W.H.; Chevaleyre, F.; Gantar, G.

    2009-01-01

    While the interest in wrought magnesium applications is growing, forging of magnesium alloys in Europe and beyond is still restricted to a few specialized companies that operate for niche markets. Technical matters that relate to this are underdeveloped mechanical properties of available feedstock m

  10. Sinopec,China Gas Forge Strategic Partnership

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Sinopec entered into a strategic cooperation agreement with China Gas Holdings Limited in Beijing on Novemberl, under which both parties will forge a strategic partnership in the natural gas field. Meanwhile, Sinopec will subscribe a total of 210 million new shares at a subscription price of HK$0.61 per share, and the number of shares involved accounts for 11.87% of the total issued capital and 10.61% of the enlarged total capital of China Gas, thus enabling Sinopec to become the second largest shareholder of China Gas.

  11. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai;

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  12. 76 FR 168 - Heavy Forged Hand Tools From China

    Science.gov (United States)

    2011-01-03

    ... antidumping duty order on imports of heavy forged hand tools from China (65 FR 48962). Following second five... continuation of the antidumping duty orders on imports of heavy forged hand tools from China (71 FR 8276). The... part 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this...

  13. Kinematics at the Main Mechanism of a Railbound Forging Manipulator

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2015-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Heavy payload forging manipulators are mainly characterized by large load output and large capacitive load input. The relationship between outputs and inputs will greatly influence the control and the reliability. Forging manipulators have become more prevalent in the industry today. They are used to manipulate objects to be forged. The most common forging manipulators are moving on a railway to have a greater precision and stability. They have been called the railbound forging manipulators. In this paper we analyze the general kinematics of the main mechanism from a such manipulator. Kinematic scheme shows a typical forging manipulator, with the basic motions in operation process: walking, motion of the tong and buffering. The lifting mechanism consists of several parts including linkages, hydraulic drives and motion pairs. The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed. An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed. These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators.

  14. Examples on cold forged aluminium components in automotive industry

    DEFF Research Database (Denmark)

    Bay, Niels; Kolsgaard, A.

    2000-01-01

    The present paper describes the possibilites of applying cold forging for manufacturing of light weight components in aluminium. A short description of the basic cold forming processes forms the basis for describing the great variety in design of cold forged components. Examples are mainly taken...... from automotive industry but in a few cases also from other industrial sectors to show the possibilities....

  15. Numerical Analysis on Rotary Forging Mechanism of a Flange

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical simulation on the rotary forging process of a flange is conducted by three-dimensional rigid-plastic finite element method. The states of stress and strain rate in the workpiece are analyzed and the forging mechanism of the flange is revealed. Moreover, the influence of the die configuration on the material flow is also analyzed.

  16. Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Mark T. Whittaker

    2015-08-01

    Full Text Available Although originally discovered in the 18th century [1], the titanium industry did not experience any significant advancement until the middle of the 20th century through the development of the gas turbine engine [2]. Since then, the aerospace sector has dominated worldwide titanium use with applications in both engines and airframe structures [3]. The highly desirable combination of properties, which include excellent corrosion resistance, favourable strength to weight ratios, and an impressive resistance to fatigue, has led to an extensive range of applications [4], with only high extraction and processing costs still restricting further implementation. [...

  17. Total hip arthroplasty in patients with avascular necrosis of the hip. Follow-up observations on cementless and cemented operations.

    Science.gov (United States)

    Katz, R L; Bourne, R B; Rorabeck, C H; McGee, H

    1992-08-01

    Thirty-one patients with avascular necrosis of the hip were treated by 34 total hip arthroplasties (THAs). All patients were observed prospectively with a minimum two-year follow-up evaluation (average, 46 months; range, 24-84 months). Twenty had cemented arthroplasties using contemporary cementing techniques. This included insertion of a medullary plug, cleansing of the canal with a medullary brush, pulsatile lavage irrigation, and insertion of the cement with a cement gun. In 14 hips, a cementless prosthesis was used. Patients were rated using a modified Harris hip score. Sequential postoperative roentgenograms were analyzed in each patient. The overall Harris hip score ratings were 88 in the cemented and 84 in the noncemented groups. Mechanical failure with loosening of the femoral component occurred in one patient who developed deep sepsis. Significant thigh pain occurred in four patients in the noncemented group. Previous studies in the literature have generally reported unfavorable results in patients with avascular necrosis of the hip treated with THA. Using cementless and cemented fixation with contemporary cementing techniques, improved results can be expected. A high incidence of thigh pain (29%) in the cementless group remains a problem. PMID:1499201

  18. Migration pattern of cementless press fit cups in the presence of stabilizing screws in total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Zilkens C

    2011-03-01

    Full Text Available Abstract The aim of this study was to evaluate the initial acetabular implant stability and late acetabular implant migration in press fit cups combined with screw fixation of the acetabular component in order to answer the question whether screws are necessary for the fixation of the acetabular component in cementless primary total hip arthroplasty. One hundred and seven hips were available for follow-up after primary THA using a cementless, porous-coated acetabular component. A total of 631 standardized radiographs were analyzed digitally by the "single-film-x-ray-analysis" method (EBRA. One hundred 'and one (94.4% acetabular components did not show significant migration of more than 1 mm. Six (5.6% implants showed migration of more than 1 mm. Statistical analysis did not reveal preoperative patterns that would identify predictors for future migration. Our findings suggest that the use of screw fixation for cementless porous- coated acetabular components for primary THA does not prevent cup migration.

  19. Migration pattern of cementless press fit cups in the presence of stabilizing screws in total hip arthroplasty.

    Science.gov (United States)

    Zilkens, C; Djalali, S; Bittersohl, B; Kälicke, T; Kraft, C N; Krauspe, R; Jäger, Marcus

    2011-03-28

    The aim of this study was to evaluate the initial acetabular implant stability and late acetabular implant migration in press fit cups combined with screw fixation of the acetabular component in order to answer the question whether screws are necessary for the fixation of the acetabular component in cementless primary total hip arthroplasty. One hundred and seven hips were available for follow-up after primary THA using a cementless, porous-coated acetabular component. A total of 631 standardized radiographs were analyzed digitally by the "single-film-x-ray-analysis" method (EBRA). One hundred and one (94.4 %) acetabular components did not show significant migration of more than 1 mm. Six (5.6%) implants showed migration of more than 1 mm. Statistical analysis did not reveal preoperative patterns that would identify predictors for future migration. Our findings suggest that the use of screw fixation for cementless porous-coated acetabular components for primary THA does not prevent cup migration. PMID:21486725

  20. Deformation and Densification Laws of Powder Cold Forging

    Institute of Scientific and Technical Information of China (English)

    YU Shihao; HUA Lin; LI Yongzhi; YAN Shiwei; LIU Yongjun

    2007-01-01

    The deformation and densification laws of preform upsetting and closed-die forging were researched based on experimental results of cold forging of deoxidized Fe powder sintering porous material under different initial conditions such as friction factor, ratio between height and diameter and relative density.The fracture limit criteric for powder cold-forging upsetting and the limit strain curve were achieved. The effect of friction factor, ratio between height and diameter and relative density on fracture strain limitation was emphatically analyzed. The limit process parameter curves for the deformation of upsetting were also confirmed.Laws of deformation, densification and density distribution for closed-die forging of powder perform during cold-forging were further analyzed and discussed with the help of experimental phase analysis. As a result,this experiment established theoretical foundations for the design of preform and die as well as optimization of technological process parameters.

  1. Advanced numerical models for the thermo-mechanical-metallurgical analysis in hot forging processes

    Science.gov (United States)

    Ducato, Antonino; Fratini, Livan; Micari, Fabrizio

    2013-05-01

    In the paper a literature review of the numerical modeling of thermo-mechanical-metallurgical evolutions of a metal in hot forging operations is presented. In particular models of multiaxial loading tests are considered for carbon steels. The collected examples from literature regard phases transformations, also martensitic transformations, morphologies evolutions and transformation plasticity phenomena. The purpose of the tests is to show the correlation between the mechanical and the metallurgical behavior of a carbon steel during a combination of several types of loads. In particular a few mechanical tests with heat treatment are analyzed. Furthermore, Ti-6Al-4V titanium alloy is considered. Such material is a multi-phasic alloy, at room temperature made of two main different phases, namely Alpha and Beta, which evolve during both cooling and heating stages. Several numerical applications, conducted using a commercial implicit lagrangian FEM code are presented too. This code can conduct tri-coupled thermo-mechanical-metallurgical simulations of forming processes. The numerical model has been used to carry out a 3D simulation of a forging process of a complex shape part. The model is able to take into account the effects of all the phenomena resulting from the coupling of thermal, mechanical and metallurgical events. As simulation results strongly depend on the accuracy of input data, physical simulation experiments on real-material samples are carried out to characterize material behavior during phase transformation.

  2. Development and production of nuclear valves. Forging and welding. Pt. 2

    International Nuclear Information System (INIS)

    The first part of this work deals with the obtainment of the austenitic stainless steel DIN 1.4541 (AISI 321) stabilized titanium for Atucha II nuclear valves. The second part presented herein, continued with the development process and part of the production of the bodies' forging and valves leads. This development has been also carried out in the country and a detailed set up of the process with its corresponding Inspection and Assay Program was needed. The last part of this stage has been initiated at the welding process, so it was necessary to develop specific welding procedures to qualify them and use the equipment specially applied to this requirement. The set of assays and criteria certification for the qualifications is presented. (Author)

  3. Laser repair hardfacing of titanium alloy turbine

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2011-12-01

    Full Text Available Purpose: of this paper: work out repair technology of worn abutments of aircraft jet engine blades forged of titanium alloy WT3-1.Design/methodology/approach: The study were based on the analysis of laser HPDL powder surfacing of titanium alloy plates using wide range chemical composition consumables of titanium alloys and mixtures of pure titanium and spherical powder of WC indicated that very hard and highest quality deposits are provided by powder mixture of 40-50%Ti+60-50%WC.Findings: It was found that it is possible to achieve high quality deposits, free of any defects. HPDL technology can be used to repair worn turbine blade.Research limitations/implications: It was found that it is possible to repair the worn areas abutments of blades of zero compression stage of aircraft engine turbine by HPDL laser surfacing with using composite powder mixture of 50%Ti+50%WC as an additional material.Practical implications: The technology can be applied for repair worn abutments of aircraft jet engine blades.Originality/value: Repairing worn abutments of aircraft jet engine blades.

  4. Medium carbon vanadium micro alloyed steels for drop forging

    Energy Technology Data Exchange (ETDEWEB)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-12-31

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author) 17 refs., 19 figs., 5 tabs.

  5. Study on the isothermal forging process of MB26 magnesium alloy adaptor

    Directory of Open Access Journals (Sweden)

    Xu Wenchen

    2015-01-01

    Full Text Available The isothermal forging process is an effective method to manufacture complex-shaped components of hard-to-work materials, such as magnesium alloys. This study investigates the isothermal forging process of an MB26 magnesium alloy adaptor with three branches. The results show that two-step forging process is appropriate to form the adaptor forging, which not only improves the filling quality but also reduces the forging load compared with one-step forging process. Moreover, the flow line is distributed along the contour of the complex-shaped adaptor forging.

  6. Biomechanical evaluation of adjunctive cerclage wire fixation for the prevention of periprosthetic femur fractures using cementless press-fit total hip replacement.

    Science.gov (United States)

    Christopher, Scott A; Kim, Stanley E; Roe, Simon; Pozzi, Antonio

    2016-08-01

    Periprosthetic femoral fractures are a common complication associated with cementless press-fit total hip arthroplasty. The use of prophylactic cerclage wire fixation has been advocated to reduce this complication. The objective of this study was to evaluate whether a double loop cerclage wire, used as adjunctive fixation, increased the peak torsional load to failure in femora implanted with press-fit cementless stems. Peak torsional load to failure was compared between femora without adjunctive fixation and femora receiving a 1 mm double loop cerclage wire placed proximally to the lesser trochanter. Femora treated with adjunctive cerclage wire fixation failed at 20% greater peak torque (P = 0.0001). In conclusion, a double loop cerclage wire may aid in the prevention of periprosthetic fractures associated with press-fit cementless femoral stems. PMID:27387718

  7. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    Science.gov (United States)

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  8. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    Science.gov (United States)

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  9. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    Directory of Open Access Journals (Sweden)

    Mohd Yusof Baharuddin

    2014-01-01

    Full Text Available Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

  10. Failure of Polyethylene Inlays in Cementless Total Hip Arthroplasty: A Retrieval Analysis

    Directory of Open Access Journals (Sweden)

    Ulrike Mueller

    2016-01-01

    Full Text Available A retrieval analysis has been performed on 50 polyethylene inlays of cementless screw ring implants (Mecring, Mecron, Berlin, Germany to investigate the failure mechanism of this specific open cup hip arthroplasty design that has shown a high clinical failure rate. Design-specific damage modes like rim creep, collar fatigue, and backside wear were assessed. Furthermore, the inlays were measured using a CMM to determine deformation. In 90% backside wear was observed and collar fatigue occurred in 68% of the cases. Rim creep was present in 38% of the polyethylene inlays. In 90% of the cases the cup opening diameter was 32.1 mm or less and 46% had a diameter less than 32 mm. It seems that creep and deformation of the polyethylene leads to a reduced diameter at the cup opening and consequently decreased clearance. To avoid this type of failure, polyethylene inlays should be supported at the back by the cup to reduce the risk of ongoing creep deformation.

  11. Critical current densities in Bi-2223 sinter forgings.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Fisher, B. L.; Goretta, K. C.; Harris, N. C.; Murayama, N.

    1999-07-23

    (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) bars, prepared by sinter forging, exhibited good phase purity and strong textures with the c axes of the Bi-2223 grains parallel to the forging direction. The initial zero-field critical current density (J{sub c}) of the bars was 10{sup 3} A/cm{sup 2}, but because the forged bars were uncoated, this value decreased with repeated thermal cycling. J{sub c} as a function of applied magnetic field magnitude and direction roughly followed the dependencies exhibited by Ag-sheathed Bi-2223 tapes, but the forged bars were more strongly dependent on field strength and less strongly dependent on field angle.

  12. Valley Forge National Historical Park Tract and Boundary Data

    Data.gov (United States)

    National Park Service, Department of the Interior — This is an ESRI polygon shapefile of tracts for Valley Forge NHP (VAFO). Tracts shown on inset maps A, B, and C were spatially adjusted (i.e., rubbersheeted) to...

  13. New titanium and titanium/hydroxyapatite coatings on ultra-high-molecular-weight polyethylene-in vitro osteoblastic performance

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M A; Lopes, M A; Santos, J D; Fernandes, M H [Department of Metallurgical and Materials Engineering, Materials Section-Faculty of Engineering, University of Porto (Portugal); Gomes, P S [Laboratory of Pharmacology and Cellular Biocompatibility-Faculty of Dental Medicine, University of Porto (Portugal); Vila, M; Silva, R F, E-mail: mhfernandes@fmd.up.p [Department of Ceramics and Glass Engineering, University of Aveiro, CICECO (Portugal)

    2010-06-15

    The development of optimized hip joint materials is one of the most challenging opportunities in prosthetic technologies. In current approaches, ultra-high-molecular-weight polyethylene (UHMWPE) has been a favorite material for the acetabular component and, regarding the cementless technique, several coating options may be considered to contain and stabilize bearing surfaces and establish an improved interface with bone. In this work, newly developed constructs of UHMWPE coated with either commercially pure titanium (cpTi-UHMWPE), by DC magnetron sputtering, or with commercially pure titanium and hydroxyapatite (cpTi/HA-UHMWPE), by DC/RF magnetron co-sputtering, have been prepared and biologically characterized with human bone marrow-derived osteoblastic cultures. The cpTi-UHMWPE samples allowed a high cell growth and the expression of the complete osteoblastic phenotype, with high alkaline phosphatase activity, expression of osteogenic-associated genes and evident cell-mediated mineralization of the extracellular matrix. In comparison, the cpTi/HA-UHMWPE samples reported lower cell proliferation but earlier cell-mediated matrix mineralization. Accordingly, these newly developed systems may be suitable candidates to improve the osteointegration process in arthroplastic devices; nevertheless, further biological evaluation should be conducted.

  14. FORGE Enabling FIRE Facilities for the eLearning Community

    OpenAIRE

    Fourmaux, Olivier; Rahman, Mohammed Yasin; Tranoris, Christos; Pareit, Daan; Gerwen, Jono,; Jourjon, Guillaume; Collins, Diarmuid; Marquez-Barja, Johann,

    2016-01-01

    International audience; Many engineering students at third-level institutions across the world will not have the advantage of using real-world experimentation equipment, as the infrastructure and resources required for this activity are too expensive. This paper explains how the FORGE (Forging Online Education through FIRE) FP7 project transforms Future Internet Research and Experimentation (FIRE) testbed facilities into educational resources for the eLearning community. This is achieved by p...

  15. Engineering of forged products of microalloyed constructional steels

    OpenAIRE

    J. Adamczyk; M. Opiela

    2006-01-01

    Purpose: Effect of the thermo-mechanical treatment conditions on the structure and mechanical properties of the forged elements of constructional C-Mn steels with Ti, V, B and N microadditions.Design/methodology/approach: Metallography, electron microscopy, tensile test, hardness measurements, hardenability calculations, Charpy-V tests have been used.Findings: The thermo-mechanical treatment allows to obtain the fine-grained austenite structure during hot plastic deformation, and gives forged...

  16. A multicenter approach evaluating the impact of vitamin E-blended polyethylene in cementless total hip replacement

    Directory of Open Access Journals (Sweden)

    Marcus Jäger

    2014-04-01

    Full Text Available Since polyethylene is one of the most frequently used biomaterials as a liner in total hip arthroplasty, strong efforts have been made to improve design and material properties over the last 50 years. Antioxidants seems to be a promising alternative to further increase durability and reduce polyethylene wear in long term. As of yet, only in vitro results are available. While they are promising, there is yet no clinical evidence that the new material shows these advantages in vivo. To answer the question if vitamin-E enhanced ultra-high molecular weight polyethylene (UHMWPE is able to improve long-term survivorship of cementless total hip arthroplasty we initiated a randomized long-term multicenter trial. Designed as a superiority study, the oxidation index assessed in retrieval analyses of explanted liners was chosen as primary parameter. Radiographic results (wear rate, osteolysis, radiolucency and functional outcome (Harris Hip Scores, University of California-Los Angeles, Hip Disability and Osteoarthritis Outcome Score, Visual Analogue Scale will serve as secondary parameters. Patients with the indication for a cementless total hip arthroplasty will be asked to participate in the study and will be randomized to either receive a standard hip replacement with a highly cross-linked UHMWPE-X liner or a highly cross-linked vitamin-E supplemented UHMWPE-XE liner. The follow-up will be 15 years, with evaluation after 5, 10 and 15 years. The controlled randomized study has been designed to determine if Vitamin-E supplemented highly cross-linked polyethylene liners are superior to standard XLPE liners in cementless total hip arthroplasty. While several studies have been started to evaluate the influence of vitamin-E, most of them evaluate wear rates and functional results. The approach used for this multicenter study, to analyze the oxidation status of retrieved implants, should make it possible to directly evaluate the ageing process and development

  17. Total hip arthroplasty with cementless cups and femoral head autografts for patients with hip dysplasia and osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    吴立东; 金礼斌; 严世贵; 杨泉森; 戴雪松; 王祥华

    2004-01-01

    Objective:To evaluate the outcome of total hip arthroplasty (THA) with cementless cups and femoral head autografts for patients with hip dysplasia and osteoarthritis.Methods: Between 1995 and 2002, we implanted 23cementless cups and femoral head autografts in 20 patients with hip dysplasia and osteoarthritis. In this study, a retrospective study was made on 21 hips in 20 patients (18females and 2 males, aged 50 years on an average) with developmental hip dysplasia treated by THA with acementless cup and femoral head autograft. The acetabular cup was placed at the level of the true acetabuinm and all the patients required autogenous femoral head grafts due to acetabular deficiency. The average rate of the acetabular cup covered by the femoral head autograft was 31%(ranging from 10% to 45%). Eight hips had less than 25%cup coverage and thirteen between 25% and 50%. The average follow-up period was 4.7 years (range, 1-8 years).The replacing outcome was evaluated by modified Harris hip score. Preoperative and follow-up radiographs were made.Results: All the autografts were united to the host bones. No autograft was collapsed or no component from the hip was loosed in all the patients. According to the modified Harris hip score, the average hip score increased from 46 before operation to 89 at the final review. Before operation, the leg-length discrepancy was greater than 2 cm in all the patients except one with bilateral hip dysplasia.After operation, only 2 out of 20 patients had a leg-length discrepancy greater than 1 cm. Three hips showed minor bone resorption in the lateral portion of the graft, which did not support the cup. Three hips developed Grade 1Brooker heterotopic ossification and one developed Grade 2.Conclusions: THA with a cementless cup and a femoral head autograft for patients with osteoarthritis resulted from hip dysplasia can result in favorable outcomes. This method can provide reliable acetabular fixation and restore the acetabular bone stock in

  18. RIGID-PLASTIC MECHANICAL MODEL FOR THE FORGING METHOD WITH HORIZONTAL V-SHAPED ANVIL

    Institute of Scientific and Technical Information of China (English)

    LIU Zhubai; NI Liyong; LIU Guohui; ZHANG Yongjun; ZHU Wenbo

    2006-01-01

    In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method,through the change of anvils shape, is able to control fibrous tissue direction, to improve the anisotropy of mechanical properties of axial forgings, to realize uniform forging. Therefore, the forging method can overcome the defect that conventional forging methods produce. The mechanism of the forging method with horizontal V-shaped anvil and the process of metal deformation are analyzed. The agreement of theoretical analysis with experimental study verifies the fact that the forging method with horizontal V-shaped anvil can control effectively the mechanical properties of axial forgings.

  19. The dimensional accuracy of preparation of femoral cavity in cementless total hip arthroplasty

    Institute of Scientific and Technical Information of China (English)

    WU Li-dong (吴立东); HAHNE H.J.; HASSENPFLUG J.

    2004-01-01

    Objective: To observe the accuracy of femoral preparation and the position of the cementless prosthesis in femoral cavity, and to compare the results between the computer-assisted surgical group (CASPAR) and the conventional group. Methods: Ten femoral components were implanted either manually or by CASPAR in cadaver femurs. The specimens were cut to 3 mm thick slices. Microradiograms of every slice were sent to a computer for analysis with special software (IDL). The gaps and the medullary cavities between component and bone, the direct bone contact area of the implant surface,the gap width and the percentage of gap and bone contact area were measured in every slice. Results: In the proximal implant coated with HA of the CASPAR group, the average percentage of bone contact reached 93.2% (ranging from 87.6% to 99.7%); the average gap percentage was 2.9% (ranging from 0.3% to 7.8%); the maximum gap width was 0.81 mm and the average gap width was only 0.20 mm. While in the conventional group, the average percentage of bone contact reached 60.1% (ranging from 49.2% to 70.4%); the average gap percentage was 32.8% (ranging from 25.1% to 39.9%); the maximum gap width was 2.97 mm and the average gap width was 0.77 mm. The average gap around the implant in the CASPAR group was only 9% of that in the manual group; the maximum and average gap widths were only about 26% of those in the manual group. On the other hand, the CASPAR group showed 33% higher bone contact than the manual group. Conclusion: With the use of robotics-assisted system, significant progress can be achieved for femoral preparation in total hip arthroplasty.

  20. The dimensional accuracy of preparation of femoral cavity in cementless total hip arthroplasty

    Institute of Scientific and Technical Information of China (English)

    吴立东; HAHNEH.J.; HASSENPFLUGJ.

    2004-01-01

    Objective: To observe the accuracy of femoral preparation and the position of the cementless prosthesis in femoral cavity, and to compare the results between the computer-assisted surgical group (CASPAR) and the conventional group. Methods: Ten femoral components were implanted either manually or by CASPAR in cadaver femurs. The specimens were cut to 3mm thick slices. Microradiograms of every slice were sent to a computer for analysis with special software (IDL). The gaps and the medullary cavities between component and bone, the direct bone contact area of the implant surface, the gap width and the percentage of gap and bone contact area were measured in every slice. Results: In the proximal implant coated with HA of the CASPAR group, the average percentage of bone contact reached 93.2% (ranging from 87.6% to 99.7%); the average gap percentage was 2.9% (ranging from 0.3% to 7.8%); the maximum gap width was 0.81mm and the average gap width was only 0.20mm. While in the conventional group, the average percentage of bone contact reached 60.1% (ranging from 49.2% to 70.4%); the average gap percentage was 32.8% (ranging from 25.1% to 39.9%); the maximum gap width was 2.97mm and the average gap width was 0.77mm. The average gap around the implant in the CASPAR group was only 9% of that in the manual group; the maximum and average gap widths were only about 26% of those in the manual group. On the other hand, the CASPAR group showed 33% higher bone contact than the manual group. Conclusion: With the use of robotics-assisted system, significant progress can be achieved for femoral preparation in total hip arthroplasty.

  1. Treatment of Hip Dysplasia in a Dog after a Failed Triple Pelvic Osteotomy with a Zurich Cementless Total Hip Replacement

    Directory of Open Access Journals (Sweden)

    SY Heo and H.B Lee*

    2013-07-01

    Full Text Available An Alaskan Malamute (2-year-old, castrated male, 41kg was referred with bilateral hind limb lameness. The dog had a history of a bilateral triple pelvic osteotomy (TPO to correct hip dysplasia one year previously, a surgery that was unsuccessful. On physical examination, pain and crepitus were noted in both hip joints. There was hip joint subluxation and mild degenerative changes bilaterally seen by radiograph. A Zurich cementless total hip replacement (ZCTHR was planned for the right hind limb. After a craniolateral approach, an acetabular cup and a cementless femoral stem were implanted. The femoral head was placed in the femoral stem, and the prosthetic joint was then reduced. At a 9 month postoperative checkup, there was no pain on palpation or manipulation of the right pelvic limb, and the range of motion was within normal limits. On radiological examination, there was no implant loosening. The ZCTHR can thus be applied in a failed TPO patient as a revision surgery.

  2. Engineering of forged products of microalloyed constructional steels

    Directory of Open Access Journals (Sweden)

    J. Adamczyk

    2006-02-01

    Full Text Available Purpose: Effect of the thermo-mechanical treatment conditions on the structure and mechanical properties of the forged elements of constructional C-Mn steels with Ti, V, B and N microadditions.Design/methodology/approach: Metallography, electron microscopy, tensile test, hardness measurements, hardenability calculations, Charpy-V tests have been used.Findings: The thermo-mechanical treatment allows to obtain the fine-grained austenite structure during hot plastic deformation, and gives forged elements obtaining: yield point Rp0,2 over 690 MPa, UTS over 770 MPa, hardness 220 up to 250 HB and breaking energy KV over 180J after high tempering.Research limitations/implications: It is predicted TEM investigations on structure of the forged elements after thermo-mechanical treatment.Practical implications: Investigations carried out showed full usability of micro-alloyed steels for producing forged machine parts with the high strength and cracking resistance, using the energy-saving thermo-mechanical treatment method.Originality/value: Production conditions of energy-saving thermo-mechanical treatment of forged elements of HSLA constructional steels – with the diversified hardenability, were presented.

  3. Refinement of steel microstructure by free-forging

    Directory of Open Access Journals (Sweden)

    D. Jandová

    2006-04-01

    Full Text Available Purpose: Refinement of austenitic steel and low alloyed C-Mn-Si-Nb steel microstructure by free-forging.Design/methodology/approach: In this study severe hot deformation was applied on low alloyed 0.2C-1.5Mn-2Si-0.05Nb steel and austenitic 0.07C-18Cr-2Mn.-10Ni steel. Steels were processed in a full-hydraulic press. Different temperatures of preheating, dwells and strain levels were applied. Microstructure was characterised using optical metallography, scanning and transmission electron microscopy.Findings: After optimization of processing fine grained structures with convenient phase composition were obtained. Multiple free-forging followed by recrystallization annealing was successfully used for refinement of austenitic Cr-Ni steel and improvement of mechanical properties. While free-forging of low alloyed C-Mn-Si-Nb steel still has not satisfied expected increase of strength and ductility.Research limitations/implications: Free-forging usually results in formation of very heterogeneous structures. In submitted study relatively fine grained and uniform structures were obtained. Grain size below a few micrometers can not be probably achieved using above mentioned technology.Originality/value: Obtained results can be used for development of forging technology in service conditions.

  4. Precision forging technologies for magnesium alloy bracket and wheel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fundamental investigations on precision forging technology of magnesium alloys were studied. As-cast billet prestraining and a new concept of hollow billet were proposed in order to reduce the maximum forming load. A scheme of isothermal forming and the use of combined female dies were adopted, which can improve the die filling capacity and ensure the manufacture of high quality forgings. By means of the developed technique, AZ80 alloy wheel and AZ31 alloy bracket were produced successfully at suitable process parameters and applied in the automotive industries. The results show that the hot compression of AZ80 magnesium alloy has the peak flow stresses of pre-strained alloy with finer grain, which are lower by 20% than those of as-cast alloy under the same deformation conditions. The forming load is related to contact area and average positive stress on interface during forging process.

  5. Basic rules for rheologic forging process of semisolid alloy

    Institute of Scientific and Technical Information of China (English)

    Shuming Xing; Lizhong Zhang; Jianbo Tan; Chuanlin Zheng; Hanwu Liu; Peng Zhang; Yunhui Du

    2004-01-01

    Semisolid mold forging is a major type of semisolid processing, which is different from neither traditional mold forging nor traditional permanent casting. However, processing defects are often seen in work pieces because of lacking available rules for the process design and control. Some basic rules for the process design and control, simply named the shortest flowing length, pressure filling and the minimum uplifting mold pressure, are advanced in the paper based on amount of researches and experiments. The equations to determine the major process parameters are given out such as the filling pressure, forming pressure and locking mold pressure for the process design and control. The rules and equations are experimentally proved available and applicable by several actual work pieces produced by the semisolid forging process.

  6. Titanium and titanium alloys fundamentals and applications

    CERN Document Server

    Peters, Manfred

    2003-01-01

    This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.

  7. Enhancement of mechanical properties of alloy steels on hot forging

    International Nuclear Information System (INIS)

    The paper present the results of an investigation into the effects of the basic parameters of high-temperature thermomechanical treatment (HTTMT) under hot forging. It is shown that forging in open dies of 45Kh, 20Kh13 and 08Kh18N10T steel blanks following the established HTTMT modes improves the ultimate strength by 46, 56 and 2% respectively, and yield limit - by 65, 66 and 14%, as compared with their production in compliance with factory modes, preserving the level of ductility and impact strength

  8. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.;

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models the...... number of forming cycles is calculated first to crack initiation and then during crack growth to fatal failure. An investigation of a critical die insert in an industrial cold-forging tool as regards the influence of notch radius, the amount and method of pre-stressing and the selected tool material is...

  9. The State of the Art in Cold Forging Lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    1994-01-01

    The manufature of components in steel, aluminium and copper alloys by cold forging production has increased ever since the 1950's. Typical processes are forward rod extrusion and backward can extrusion, upsetting, ironing, tube extrusion and radial extrusion. The tribological conditions in cold...... the conversion coatings are based on zinc phosphates but different requirements to the coating properties have to be met in different cold forging operations. This is obtained by adopting different oxidants leading to different composition, layer thickness and morphology of the conversion coatings. Concerning......, i.e. phosphate coating, calcium aluminate coating and aluminium fluoride coating. Alternative lubricants and their application are also described....

  10. The prediction of the evolution of grain size of land-gear forging during the die-forging process

    Directory of Open Access Journals (Sweden)

    Lin Gao

    2015-01-01

    Full Text Available The land-gear forgings are the most important structure parts, made of high strength steel 300M. Because of the bad service environment, the microstructure and performance of the part are very strict requirements. In this article the evolution of grain size during the die-forging process is predicted, the volume fraction of dynamic recrystallization, grain refinement and development of grain size in-homogeneity, and the affection of billet shape on the grain size distribution are analyzed. The simulated results show that the grain size differences on the different billet positions are very large at the deformation beginning. But in final forging stage, the difference of the average grain size is smaller. At some center zones of the part the maximum difference of grain size is bigger than 100 μm.

  11. 77 FR 14445 - Application for a License To Export Steel Forging

    Science.gov (United States)

    2012-03-09

    ... FR 49139 (Aug. 28, 2007). Information about filing electronically is available on the NRC's public... COMMISSION Application for a License To Export Steel Forging Pursuant to 10 CFR 110.70(b) ``Public Notice of... Spain. December 15, 2011 head steel head steel February 7, 2012 forging. forging will be XR175...

  12. Chinese titanium industry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>The effects of the financial crisis on the titanium industry are visible: investment plans for titanium smelting and processing have basically come to a halt in 2009, and projects under construction were also delayed. However, the

  13. Modelling of the radial forging process of a hollow billet with the mandrel on the lever radial forging machine

    Science.gov (United States)

    Karamyshev, A. P.; Nekrasov, I. I.; Pugin, A. I.; Fedulov, A. A.

    2016-04-01

    The finite-element method (FEM) has been used in scientific research of forming technological process modelling. Among the others, the process of the multistage radial forging of hollow billets has been modelled. The model includes both the thermal problem, concerning preliminary heating of the billet taking into account thermal expansion, and the deformation problem, when the billet is forged in a special machine. The latter part of the model describes such features of the process as die calibration, die movement, initial die temperature, friction conditions, etc. The results obtained can be used to define the necessary process parameters and die calibration.

  14. Titanium hermetic seals

    Science.gov (United States)

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  15. Numerical modelling of damage evolution in ingot forging

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels Oluf;

    2015-01-01

    The ingot forging process is numerically simulated applying both the Shima-Oyane porous plasticity model as a coupled damage model and the uncoupled normalized Cockcroft & Latham criterion. Four different cases including two different lower die angles (120º and 180º) and two different sizes of fe...

  16. Forging Consensus for Implementing Youth Socialization Policy in Northwest China

    Science.gov (United States)

    Fairbrother, Gregory P.

    2011-01-01

    The goal of this article is to examine how the provincial education media in China play a role of forging consensus among local actors responsible for the implementation of new centrally-promulgated youth socialization policy. In doing so, it also explores the tension among three of the Chinese state's claims to legitimacy: economic development,…

  17. Fractography analysis of tool samples used for cold forging

    DEFF Research Database (Denmark)

    Dahl, K.V.

    2002-01-01

    Three fractured tool dies used for industrial cold forging have been investigated using light optical microscopy and scanning electron microscopy. Two of the specimens were produced using the traditional Böhler P/M steel grade s790, while the lastspecimen was a third generation P/M steel produced...... resistance towards abrasive wear compared with the traditional P/M steel....

  18. Parallelisation of seismic algorithms using PVM and FORGE

    NARCIS (Netherlands)

    Wedemeijer, H.; Cox, H.L.H.; Verschuur, D.J.; Ritsema, I.L.

    1996-01-01

    The processing of seismic data, for the imaging of the earth's subsurface, is pushing current computational possibilities to the limit. In this paper results are presented obtained by optimisation and parallelisation of two innovative seismic algorithms with the use of PVM and FORGE. It shows that w

  19. Family Health and Financial Literacy--Forging the Connection

    Science.gov (United States)

    Braun, Bonnie; Kim, Jinhee; Anderson, Elaine A.

    2009-01-01

    Families are at-risk of or experiencing a diminished quality of living and life in current economic times and difficult decisions are required. Health and financial literacy are the basis for wise personal and public decision making. Family and consumer sciences (FCS) professionals can forge connections between health and financial literacy to…

  20. Industrial forging applications of shaping simulation using modeling clay

    Science.gov (United States)

    Ravassard, P.; Bournicon, C.

    1982-09-01

    The use of Plasticine and similar modeling materials to simulate forgings is advocated. It permits low cost studies of complex processes for manufacturing or training purposes without interfering with work schedules of real machines. Criteria for choosing a clay, construction of dies, equipment, and laboratory procedures are described.

  1. Hot Forging of Nitrogen Alloyed Duplex Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    P.Chandramohan; S.S. Mohamed Nazirudeen; S.S. Ramakrishnan

    2007-01-01

    Duplex stainless steels are gaining global importance because of the need for a high strength corrosion resistant material. Three compositions of this group were selected with three different nitrogen contents viz, 0.15 wt pct (alloy 1), 0.23 wt pct (alloy 2) and 0.32 wt pct (alloy 3). The steels were melted in a high frequency induction furnace and hot forged to various reductions from 16% to 62%. In this work, the effect of hot forging on the ferrite content, hardness, yield strength, impact strength and grain orientation (texture) were studied. Fracture analysis on all the forged specimens using SEM reveals that a size reduction of 48% results in maximum ductility and impact strength as well as minimal ferrite content and grain size. Thus the mechanical properties are found to have a direct correlation to ferrite content and grain size. The highest impact strength was observed in specimens with the smallest grain size, which was observed in specimens forged to 48% reduction in size.

  2. Delayed cementless total hip arthroplasty for neglected dislocation of hip combined with complex acetabular fracture and deficient bone stock

    Directory of Open Access Journals (Sweden)

    Gavaskar Ashok S

    2012-12-01

    Full Text Available 【Abstract】Total hip arthroplasty (THA for an un-treated acetabular fracture is technically challenging and the long-term result is not so favorable. A 45-year-old fe-male patient with untreated column and comminuted poste-rior wall fracture of the acetabulum was treated in our insti-tution by reconstruction of the posterior wall using iliac strut autograft and plate stabilization of the posterior col-umn with cancellous grafting and cementless THA in a single stage. At 3 years’ follow-up, the patient was independently mobile without limb length discrepancy. Radiological evalu-ation showed well integrated components and bone grafts. No evidence of aseptic loosening or osteolysis was found. This report aims to emphasize that bony acetabular recon-struction allows the use of primary hip components, which improves prosthesis longevity and preserves bone stock for a future revision. Key words: Acetabulum; Fractures, bone; Hip dislocation; Arthroplasty, replacement, hip

  3. Delayed cementless total hip arthroplasty for neglected dislocation of hip combined with complex acetabular fracture and deficient bone stock

    Institute of Scientific and Technical Information of China (English)

    Ashok S Gavaskar; Naveen Chowdary Tummala

    2012-01-01

    Total hip arthroplasty (THA) for an untreated acetabular fracture is technically challenging and the long-term result is not so favorable.A 45-year-old female patient with untreated column and comminuted posterior wall fracture of the acetabulum was treated in our institution by reconstruction of the posterior wall using iliac strut autograft and plate stabilization of the posterior column with cancellous grafting and cementless THA in a single stage.At 3 years' follow-up,the patient was independently mobile without limb length discrepancy.Radiological evaluation showed well integrated components and bone grafts.No evidence of aseptic loosening or osteolysis was found.This report aims to emphasize that bony acetabular reconstruction allows the use of primary hip components,which improves prosthesis longevity and preserves bone stock for a future revision.

  4. Forging tools modification with graphene-like solid lubricant nanoparticles

    Directory of Open Access Journals (Sweden)

    V. Leshchynsky

    2010-11-01

    Full Text Available Purpose: Working conditions of forging tools have become severer with the years. To increase their wear andheat resistance the surface of the tool is coated by CVD/PVD methods. Relatively high friction coefficientof coatings results in high friction losses and low durability of coating films due to high shear stress at tool–workpiece interface. That is why improved self-lubricating system should be developed. Combination of moderncoatings (nanostructured, nanolayers, nanocomposites, etc. with self-lubricating tool design and application ofsolid lubricant MoS2 and WS2 graphene-like nanoparticles is very promising and effective way to solve existingforging tool problems.Design/methodology/approach: Laser micro-machining technology was applied to fabricate the network ofmicro-channels which serve like reservoirs for encapsulation of solid lubricant nanoparticles into tool body.Wide ranges of tribological tests on T-10 ball-on-disc tester were carried out to define the optimal geometryand network configuration of micro-channels ensuring generation of a lubricious transfer film at the tribologicalcontact.Findings: As a result, increased tool durability and high forging precision could be reached. Analysis of failuremechanisms for different forging tools were carried out. It was found that one of the important reasons of toolwear is a high friction coefficient between treated material and the tool. Graphene-like nanoparticles of MoS2solid lubricant were produced by Rolling Cleavage Technology. Paper consist SEM, TEM and AFM analysis ofapplied coatings and solid lubricant particles.Research limitations/implications: The continuous supply to a sliding area of nanoparticles will be for thefirst time applied to decrease high shear stress at an interface between forging tool and treated material.Thenext research step will be the transfer of the developed methods of self-lubrication from samples to real coldforging tools.Originality/value: Analysis of

  5. HEAT TREATMENT BEHAVIOR OF CAN-FORGED TITANIUM ALUMINIDE ALLOY IN (α+γ) REGION

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Titaniumaluminidebasedaloyhasbeencon-sideredasapromisinghightemperaturematerial,especialyforrotarycomponents.Havingbeenstudie...

  6. Titanium condenser tubes

    International Nuclear Information System (INIS)

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack an copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection were observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling. (Kako, I.)

  7. Intra-articular injection of tranexamic acid via a drain plus drain-clamping to reduce blood loss in cementless total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Mutsuzaki Hirotaka

    2012-09-01

    Full Text Available Abstract Background Patients undergoing cementless total knee arthroplasty (TKA sometimes suffer large blood loss. In a retrospective study, we explored whether postoperative intra-articular retrograde injection of tranexamic acid (TA and leaving a drain clamp in place for 1 h reduced blood loss. Patients and methods Patients (n = 140 treated with unilateral primary cementless TKA (posterior cruciate ligament retained were divided into two groups: those who had an intra-articular injection of TA (1000 mg and drain clamping for 1 h postoperatively (study group, n = 70 and those who were not given TA and did not undergo clamping of their drains (control group, n = 70. Postoperative total blood loss, volume of drainage, hemoglobin level, transfusion amounts and rates, D-dimer level at postoperative day (POD 7, and complications were recorded. Results Total blood loss, total drainage, mean transfusion volume, and transfusion rates were lower in the study group than in controls (P P P  Conclusions Immediately postoperative intra-articular retrograde injection of TA and 1 h of drain-clamping effectively reduced blood loss and blood transfusion after cementless TKA. We believe that this method is simple, easy, and suitable for these patients.

  8. The Influence of Technological Conditions of the Process of Cogging in Flat Dies on the Quality of Two-Phase Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Dyja Н.

    2016-06-01

    Full Text Available To create a rational technology of cogging process and to determinate the optimal values of the angles of tilt and single reduction the stress-strain state (SSS of the blank during cogging in the flat dies was analyzed. By using the finite element method and program MSC.SuperForge quantitative data are obtained and the basic patterns of distribution of SSS, the temperature during the simulation of tilting in flat dies with different angles of tilting and the amount of reduction were established. Sustainable experimental-industrial technology of forging of two-phase titanium alloys was developed and tested.

  9. Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine

    Science.gov (United States)

    Lewis, J. C.; Kenny, J. T.

    1976-01-01

    Sustained load crack growth data for Ti-6Al-4V titanium alloy in hydrazine per MIL-P-26536 and refined hydrazine are presented. Fracture mechanics data on crack growth thresholds for heat-treated forgings, aged and unaged welds, and aged and unaged heat-affected zones are reported. Fracture mechanics design curves of crack growth threshold stress intensity versus temperature are generated from 40 to 71 C.

  10. Performance Assessment Method for a Forged Fingerprint Detection Algorithm

    Science.gov (United States)

    Shin, Yong Nyuo; Jun, In-Kyung; Kim, Hyun; Shin, Woochang

    The threat of invasion of privacy and of the illegal appropriation of information both increase with the expansion of the biometrics service environment to open systems. However, while certificates or smart cards can easily be cancelled and reissued if found to be missing, there is no way to recover the unique biometric information of an individual following a security breach. With the recognition that this threat factor may disrupt the large-scale civil service operations approaching implementation, such as electronic ID cards and e-Government systems, many agencies and vendors around the world continue to develop forged fingerprint detection technology, but no objective performance assessment method has, to date, been reported. Therefore, in this paper, we propose a methodology designed to evaluate the objective performance of the forged fingerprint detection technology that is currently attracting a great deal of attention.

  11. Prevention of thinning at disc center during rotary forging

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the simulation and analysis of the rotary forging of a disc using a finite element method, which re veals the thinning at the disc center is caused by higher radial and tangential tensile stresses resulting from the local loading of a rotary die and acting at the center of a workpiece, and proposes a new design of rotary die with a hole opened in its center to prevent the continuous occurrence of shortening in the axial direction and elongation in the tan gential and radial directions, and concludes from simulation results that the rotary die with a hole opened in its center is effective for prevention of thinning or cracking at the center of a disc during rotary forging.

  12. Constitutive Equation of Superalloy In718 in Hammer Forging Process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A constitutive equation reflecting the flow behavior ofSuperalloy In718 during the counter-blow hammer forging process was developed in terms of the relationship of flow stress and hot-deformation parameters, such as strain, strain rate, and deformation temperature. A new simplified approach for the complex multi-pass stress-strain curves has been attempted. The simulation curves calculated by constitutive equation are consistent with the experimental data.

  13. Microstructure control techniques in primary hot working of titanium alloy bars: A review

    Directory of Open Access Journals (Sweden)

    Guo Lianggang

    2016-02-01

    Full Text Available How to control the microstructure of titanium alloy bars is important to fabricating high-performance aerial forgings. This paper gives a thorough survey of the manufacturing methods and microstructure control techniques for titanium alloy bars. It summarizes the effects of processing parameters on the mechanisms and laws of microstructure evolution during β working and (α + β working, including the kinetics and grains size of dynamic recrystallization (DRX during β deformation and the kinetics and grains size of spheroidization during (α + β deformation. The trends in microstructure control techniques are presented for fabricating titanium alloy bars with high efficiency, low cost, and high quality by means of β/(α + β working, and the puzzles and challenges in the future are also pointed out.

  14. Development of the Dynamic Globularization Prediction Model for Ti-17 Titanium Alloy Using Finite Element Method

    Science.gov (United States)

    Jia, Zhiqiang; Zeng, Weidong; Xu, Jianwei; Zhou, Jianhua; Wang, Xiaoying

    2015-04-01

    In this work, a finite element method (FEM) model for predicting dynamic globularization of Ti-17 titanium alloy is established. For obtaining the microstructure evolution during dynamic globularization under varying processing parameters, isothermal hot compression tests and quantitative metallographic analysis were conducted on Ti-17 titanium alloy with initial lamellar microstructure. The prediction model, which quantitatively described the non-linear relationship between the dynamic globularization fraction and the deformation strain, temperature, and strain rate, was developed on the basis of the Avrami equation. Then the developed model was incorporated into DEFORM software as a user subroutine. Finally, the large-sized step-shaped workpiece was isothermally forged and corresponding FEM simulation was conducted to verify the reliability and accuracy of the integrated FEM model. The reasonable coincidence of the predicted results with experimental ones indicated that the established FEM model provides an easy and a practical method to predict dynamic globularization for Ti-17 titanium alloy with complex shape.

  15. Microstructure control techniques in primary hot working of titanium alloy bars:A review

    Institute of Scientific and Technical Information of China (English)

    Guo Lianggang; Fan Xiaoguang; Yu Gaofeng; Yang He

    2016-01-01

    How to control the microstructure of titanium alloy bars is important to fabricating high-performance aerial forgings. This paper gives a thorough survey of the manufacturing meth-ods and microstructure control techniques for titanium alloy bars. It summarizes the effects of pro-cessing parameters on the mechanisms and laws of microstructure evolution during b working and (a+b) working, including the kinetics and grains size of dynamic recrystallization (DRX) during b deformation and the kinetics and grains size of spheroidization during (a+b) deformation. The trends in microstructure control techniques are presented for fabricating titanium alloy bars with high efficiency, low cost, and high quality by means of b/(a+b) working, and the puzzles and chal-lenges in the future are also pointed out.

  16. Superplasticity in titanium alloys

    OpenAIRE

    J. Sieniawski; Motyka, M.

    2007-01-01

    Purpose: The paper reports characteristic of superplasticity phenomenon in titanium alloys and possibility of its applications.Design/methodology/approach: The main objective of the paper is to show features of superplastic forming of titanium alloys and current research trends aiming at widespread application of this technology.Findings: In the paper characteristic of selected superplastic titanium alloys was presented. The effect of microstructural parameters on superplasticity was consider...

  17. Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy

    Science.gov (United States)

    Reyes, L. A.; Páramo, P.; Salas Zamarripa, A.; de la Garza, M.; Guerrero-Mata, M. P.

    2016-01-01

    The microstructure evolution of nickel-based superalloys has a great influence on the mechanical behavior during service conditions. Microstructure modification and the effect of process variables such as forging temperature, die-speed, and tool heating were evaluated after hot die forging of a heat-resistant nickel-based alloy. Forging sequences in a temperature range from 1253 to 1323 K were considered through experimental trials. An Avrami model was applied using finite element data to evaluate the average grain size and recrystallization at different evolution zones. It was observed that sequential forging at final temperatures below 1273 K provided greater grain refinement through time-dependent recrystallization phenomena. This investigation was aim to explore the influence of forging parameters on grain size evolution in order to design a fully homogenous and refined microstructure after hot die forging.

  18. Investigation of the influence of hybrid layers on the life time of hot forging dies

    Directory of Open Access Journals (Sweden)

    S. Legutko

    2013-04-01

    Full Text Available The paper deals with the issues related in the process of drop forging with special attention paid to the durability of forging tools. It presents the results of industrial investigation of the influence of hybrid layers on hot forging dies. The effectiveness of hybrid layers type nitrided layer/PVD coating applied for extending the life of forging tools whose working surfaces are exposed to such complex exploitation conditions as, among others, cyclically varying high thermal and mechanical loads, as well as intensive abrasion at raised temperature. The examination has been performed on a set of forging tools made of Unimax steel and intended for forging steel rings of gear box synchronizer in the factory FAS in Swarzedz (Poland.

  19. Production of ultra-pure steel intended for forged elements

    Directory of Open Access Journals (Sweden)

    A. Michaliszyn

    2012-12-01

    Full Text Available Purpose: The purpose of this research is to analyse the technology of making ultra-pure steel intended for casting forging ingots. Forging ingots, whose mass amounts to 8 Mg, are cast using the bottom pouring method after vacuum steel degassing in the ladle.Design/methodology/approach: Data from 24 melts were analysed. Researchers studied not only the final content of oxygen, sulphur and hydrogen after vacuum steel refinement but also the quantitative amount of nonmetallic inclusions in forgings made of ingots. A simulation was also conducted. Its purpose was to assess the optimal share of bauxite in the production of refining slag. The simulation was performed using thermodynamic software called FactSage 5.5.Findings: Analysing the final concentration of oxygen dissolved in liquid steel led to a conclusion that approx. 90% of analysed types of steel can be categorized as ultra-pure. The simulation results concerning refining slag formation show that the use of bauxite as a slag forming additive lead to an increase in the liquid phase, and what follows, a decrease in the share of solid precipitations – including the precipitations of lime.Research limitations/implications: It was concluded that all stages of ultra-pure steel production must be conducted conscientiously and meticulously. It is also necessary to improve the conditions of vacuum steel refining process by equipping steelworks with a new vacuum device, e.g. of VOD type.Practical implications: If all stages of steel making are conducted conscientiously and meticulously and the steelworks are equipped with a device for vacuum steel refinement, then the produced steel (from the point of view of quality can be competitive in the market of the ultra-pure steel intended for forged products.Originality/value: The simulation results concerning the production of refining slag show that the use of bauxite as a slag forming material leads to an increase in the share of liquid phase. Refining

  20. Measurement and Analysis on Hardness and Residual Stress of Heavy Forging after Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The hardness and residual stress in the forging for cold roller during low temperature tempering, and the relationship of residual stress and cooling temperature of high temperature tempering for heavy forgings were studied. The stress relaxation constant at low temperature tempering and the elasto-plastisity inversion temperature at high temperature tempering were found. The results are of great importance to determine rational tempering cooling process of heavy forgings.

  1. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO2. The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  2. A forgótőke és elemeinek értelmezése, valamint a forgótőke-menedzsment

    OpenAIRE

    Pupos, Tibor; Peter, Zsolt; Kis-Simon, Tunde; Arnold, Gor

    2010-01-01

    Többéves kutatómunkánk eredményei alapján – jelen tanulmányban – az elméleti összefüggések tisztázásával definiáljuk a forgótőke, az idényszerűen jelentkező forgóeszközök, a forgóbefektetés, a nettó forgótőke, működő tőke és ezekkel összefüggésben a forgótőke-menedzsment fogalmakat. A forgótőke-menedzsment nem egyéb, mint a termelési folyamat gazdaságtana. Mint diszciplína, a termelési folyamat gazdasági vetületét veszi alapul, a körforgás elemeivel és a forgótőkével való gazdálkodás – készle...

  3. Experimental and Numerical Analyses of the Pull-out Response of a Steel Post/Bovine Bone Cementless Fixation

    Institute of Scientific and Technical Information of China (English)

    Khaled Gammoudi; Mohamed Kharrat; Maher Dammak

    2012-01-01

    Effect of initial interference fit on pull-out strength in cementless fixation between bovine tibia and smooth stainless steel post was investigated in this study.Compressive behavior of bovine spongious bone was studied using mechanical testing in order to evaluate the elastic-plastic properties in different regions of the proximal tibia.Friction tests were carried out in the aim to evaluate the friction behavior of the contact between bovine spongious bone and stainless steel.A cylindrical stainless steel post inserted in a pre-drilled bovine tibia with an initial interference fit was taken as an in vitro model to assess the contribution of post fixation to the initial stability of the Total Knee Arthroplasty (TKA) tibial component.Pull-out experiments were carried out for different initial interference fits.Finite Element Models (FEM) using local elastic-plastic properties of the bovine bone were developed for the analysis of the experimental ultimate pull-out force results.At the post/bone interface,Coulomb friction was considered in the FEM calculations with pressure-dependent friction coefficient.It was found that the FEM results of the ultimate force are in good agreement with the experimental results.The analysis of the FEM interfacial stresses indicates that the micro-slip initiation depends on the local bone properties.

  4. Correlative analysis of MRI-evident abductor hip muscle degeneration and power after minimally invasive versus conventional unilateral cementless THA.

    Science.gov (United States)

    Vasilakis, Ioannis; Solomou, Ekaterini; Vitsas, Vasilis; Fennema, Peter; Korovessis, Panagiotis; Siamblis, Dimitrios K

    2012-12-01

    The 2 main null hypotheses of this study were: (1) the 4-year surgical trauma-related degeneration within the hip abductor muscles after a minimally invasive approach to total hip arthroplasty would be similar to that following a conventional approach; and (2) no differences in perioperative blood loss or postoperative hip pain would be observed between the minimally invasive and conventional approaches.In 40 consecutive randomly selected adult patients with unilateral primary hip osteoarthritis, a cementless Zweymüller-Plus THA (Smith & Nephew Orthopaedics, Baar, Switzerland) was implanted by a single surgeon in 1 institution during the same period. Twenty patients underwent a minimally invasive approach (group A), and 20 patients underwent a conventional anterolateral approach (group B). Four years postoperatively, the operated and contralateral nonoperated hips of 37 available patients from both groups were examined with magnetic resonance imaging to show any changes in the gluteus medius and tensor fascia latae. Simultaneously, hip abductor power was measured bilaterally in both groups. Anthropometric data, blood loss, Short Form 36 self-assessment questionnaire, visual analog pain score, and walking distance were also analyzed.The reliability of magnetic resonance imaging and hip abductor power measurements was high. No difference was found in hip abductor power on the operated side between the 2 groups, whereas hip abductor power on the nonoperated side was significantly higher in both groups. This study revealed no mechanical and functional benefits in favor of patients undergoing minimally invasive vs conventional total hip arthroplasty.

  5. The effects of pulsed low frequency magnetic field in early rehabilitation of patients with cementless total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar

    2006-01-01

    Full Text Available Introduction: Early rehabilitation of patients with cementless total hip arthroplasty (cTHA includes different physical modalities and pulsed low frequency magnetic field (PLFMF, which effects have not been explored yet. Objective: To investigate the effects of PLFMF which was applied in different doses in early rehabilitation of patients with cTHA. Method: Prospective, controlled, clinical study included 90 patients, divided in three groups with 30 patients each. First two groups were treated with high (group A or low (group B doses of PLFMF, in addition to kinesitherapy. Control group C was treated only with kinesitherapy. Study was completed in three weeks. Results: Subjects of group A had significantly lower pain than group B (p<0.01 and group C (p<0.001 subjects in the first postoperative week. Pain in group B subjects was significantly lower than in group C in all three postoperative weeks (p<0.01. In relation to other two groups, subjects of group A had higher hip Harris score values at the end of the third postoperative week (p<0.05, and they were faster on 10-meter distance at the end of the first postoperative week (p<0.01. Conclusion: PLFMF used in low and high doses for patients with cTHA had significant effects on pain abatement, especially at higher doses. Improvement of function was earlier and more manifested in the group treated with high doses of PLFMF.

  6. TITANIUM DAN PADUAN TITANIUM MATERIAL PILIHAN KEDOKTERAN GIGI MASA DEPAN

    OpenAIRE

    Bambang Irawan

    2015-01-01

    Nowadays, Titanium is used for dental implants, orthodontic wires an denture bases. In Indonesia they have been widely use especially for the orthodontic treatment. Survey conducted by students from University of Indonesia showed that users have little understanding in properties of Titanium. The article describes various matters on characteristic of Titanium. Titanium has low density, low elastic modulus, high tensile strength make attractive for use in dentistry. Titanium forms a very stabl...

  7. Modeling Cavitation in ICE Pistons Made with Isothermal Forging

    Directory of Open Access Journals (Sweden)

    V.V. Astanin

    2014-07-01

    Full Text Available Possible causes for cavitations in parts made with an Al-Si eutectic alloy AK12D (AlSi12 were explored with mathematical and physical modeling with involved acoustic emission. Pores were formed from micro-cracks, which appear during the early stages of a deformation process, with the help of micro-stresses appearing at phase boundaries (Al/Si interface due to thermal expansion. At the design stage of isothermal forgings of such products it is recommended to provide a scheme of the deformed shape, which is under uniform compression, to compensate for the inter-phase stresses.

  8. A new Friction and Lubrication Test for Cold Forging

    DEFF Research Database (Denmark)

    Bay, Niels; Wibom, Ole; Aalborg Nielsen, J

    1995-01-01

    This paper presents a new friction and lubrication test for cold forging. The test allows controlled variation of the surface expansion in the range 0-2000%, the tool temperature in the range 20-270°C and the sliding length between 0 and infinite. Friction is decreasing with increasing temperature...... in the range 30-150°C. Above this temperature range friction increases. As regards lubricant performance Lubrication Limit Curves (LLC) are plotted in a sliding length-surface enlargement diagram with the tool temperature as a parameter. Larger tool temperature implies lower acceptable surface...

  9. Environmentally Benign Lubricant Systems For Cold, Warm And Hot Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2010-01-01

    The growing awareness of environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has initiated ever increasing efforts to develop new, environmentally benign tribological systems for metal forming. The present...... paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging. The paper is an extract of the keynote paper [3] written by the author together with eight co-authors referring to collected papers and other information from more than 30 different...

  10. Two-stage revision surgery with preformed spacers and cementless implants for septic hip arthritis: a prospective, non-randomized cohort study

    Directory of Open Access Journals (Sweden)

    Logoluso Nicola

    2011-05-01

    Full Text Available Abstract Background Outcome data on two-stage revision surgery for deep infection after septic hip arthritis are limited and inconsistent. This study presents the medium-term results of a new, standardized two-stage arthroplasty with preformed hip spacers and cementless implants in a consecutive series of adult patients with septic arthritis of the hip treated according to a same protocol. Methods Nineteen patients (20 hips were enrolled in this prospective, non-randomized cohort study between 2000 and 2008. The first stage comprised femoral head resection, debridement, and insertion of a preformed, commercially available, antibiotic-loaded cement hip spacer. After eradication of infection, a cementless total hip arthroplasty was implanted in the second stage. Patients were assessed for infection recurrence, pain (visual analog scale [VAS] and hip joint function (Harris Hip score. Results The mean time between first diagnosis of infection and revision surgery was 5.8 ± 9.0 months; the average duration of follow up was 56.6 (range, 24 - 104 months; all 20 hips were successfully converted to prosthesis an average 22 ± 5.1 weeks after spacer implantation. Reinfection after total hip joint replacement occurred in 1 patient. The mean VAS pain score improved from 48 (range, 35 - 84 pre-operatively to 18 (range, 0 - 38 prior to spacer removal and to 8 (range, 0 - 15 at the last follow-up assessment after prosthesis implantation. The average Harris Hip score improved from 27.5 before surgery to 61.8 between the two stages to 92.3 at the final follow-up assessment. Conclusions Satisfactory outcomes can be obtained with two-stage revision hip arthroplasty using preformed spacers and cementless implants for prosthetic hip joint infections of various etiologies.

  11. Forging; Heat Treating and Testing; Technically Oriented Industrial Materials and Process 1: 5898.05.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course provides students with advanced and exploratory experience in the area of plastic deformation of metals and in the changing of the physical characteristics of metals by the controlled application and timed removal of heat. Course content includes goals, specific objectives, safety in forge work, forging tools and equipment, industrial…

  12. Investigations on Forging Dies with Ceramic Inserts by means of Finite-Element-Analysis

    Science.gov (United States)

    Behrens, B.-A.; Schäfer, F.; Bistron, M.

    2007-05-01

    The tools in hot forging processes are exposed to high thermal and mechanical loadings. Tempering of the tool edge layer occurs as a result of thermal loadings. This leads to a gradual hardness loss of the tool material and increase of wear over forging cycles. Hence, the tool life in hot forging is mainly limited by wear. An extension of the die service life can be achieved by the use of ceramic inserts. The integration of ceramics into the die base plate made of hot-work steel is realised by active brazing, whereby it possible to apply ceramic in region with high wear. It has to be ensured in the design process of ceramic inserts for forging dies that no critical tensile stresses occur in the ceramics. A reliable design of the ceramic inserts is possible only through consideration of brazing and forming process. The development of a Finite-Element-model for the design of forging dies with ceramic inserts is the intention of the work presented in this paper. At first the forging process with a conventional die is analyzed concerning abrasive die wear to identify regions with high wear risk applying a modified Archard model. Based on the results of wear calculation, a forging die with ceramic inserts is investigated in terms of joint stresses at the end of the active brazing process. Subsequently, the forging process considering the residual stresses caused by joining is simulated in order to obtain the die stress in use.

  13. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

    Science.gov (United States)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.

    2016-06-01

    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  14. MM 99.58 Physical modelling of Hammerhead forging, Vertical and Lateral load history

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Eriksen, Morten; Wanheim, Tarras;

    1999-01-01

    The present report presents a laboratory setup with hammerhead forging, where the vertical and lateral force history is obtained under different process conditions......The present report presents a laboratory setup with hammerhead forging, where the vertical and lateral force history is obtained under different process conditions...

  15. A New Method for Controlling Billet Temperature During Isothermal Die Forging of a Complex Superalloy Casing

    Science.gov (United States)

    Lin, Y. C.; Wu, Xian-Yang

    2015-09-01

    Isothermal die forging is one of near net-shape metal-forming technologies. Strict control of billet temperature during isothermal die forging is a guarantee for the excellent properties of final product. In this study, a new method is proposed to accurately control the billet temperature of complex superalloy casing, based on the finite element simulation and response surface methodology (RSM). The proposed method is accomplished by the following two steps. Firstly, the thermal compensation process is designed and optimized to overcome the inevitable heat loss of dies during hot forging. i.e., the layout and opening time of heaters assembled on die sleeves are optimized. Then, the effects of forging speed (the pressing velocity of hydraulic machine) and its changing time on the maximum billet temperature are discussed. Furthermore, the optimized forging speed and its changing time are obtained by RSM. Comparisons between the optimized and conventional die forging processes indicate that the proposed method can effectively control the billet temperature within the optimal forming temperature range. So, the optimized die forging processes can guarantee the high volume fraction of dynamic recrystallization, and restrict the rapid growth of grains in the forged superalloy casing.

  16. Research on Double CCD Dimensional Metrology Applying in Large Forge Piece

    International Nuclear Information System (INIS)

    As development of computer vision, stereoscopic vision sensors have been used more and more widely, and double CCD vision sensor with its simplicity of operator, highaccuracy and high-efficiency has been used in many spheres. It can be used in dimensional metrology of large forge piece, which greatly improves the efficiency and accuracy of large forge piece measurement

  17. RESEARCH ON THE WARM FORGING OF ALUMINUM ALLOYS:DEVELOPMENT OF A FORMULA TO DESCRIBE THE SOFTENING BEHAVIOR OF A2011 IN FORGING PROCESS

    Institute of Scientific and Technical Information of China (English)

    X.H. Zhang, K. Osakada; X. Y. Ruan

    2003-01-01

    To understand the forming behaviour of aluminum alloys, the upsetting test of alu-minum alloys at evaluated temperature is conducted. Because in warm forging theflow stress decreases with increasing straining, which is so-called work softening, noappropriate material formulation is available. For the evaluation of flow stress ofaluminum alloys in warm forging processes, in this paper, a formula is derived byanalyzing the stress data measured at various temperatures. It is demonstrated thatthe formula fits the flow stress obtained from experiment.

  18. RESEARCH ON INFLUENCE OF TEMPERATURE ON A PRECISION FORGING PROCESS OF BLADE WITH A TENON

    Institute of Scientific and Technical Information of China (English)

    Y.L. Liu; H. Yang; T. Gao; M. Zhan; W. Cai

    2005-01-01

    The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The unevenness of temperature distribution has a great effect on mechanical properties and the microstructure of materials. So it is necessary to consider the influence of temperature on the precision forging process of blades. Taking a blade with a tenon into consideration, a 3D mechanical model in precision forging is built up. The distribution laws of temperature field and the influence of the temperature on the equivalent stress in the process are obtained by using 3-D coupled thermo-mechanical FEM code developed by the authors. The results obtained illustrate that the influence of the temperature field on the blade forging process is considerable. The achievements of predicting microstructure and mechanical properties for forged blades is significant.

  19. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R. [University of Missouri-Kansas City; Bergen, R. [Precision Metal Products; Balch, D. K. [Sandia Natl Laboratory

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  20. Process Design for Hot Forging of Asymmetric to Symmetric Rib-web Shaped Steel

    Directory of Open Access Journals (Sweden)

    H. Cho

    2003-01-01

    Full Text Available The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. Therefore, multi stage forging and also die design for each stage are necessary for the production process. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out using commercial FEM code, DEFORMTM-2D. Modification of the design and repeated simulation was carried out on the basis of the simulation results. For comparison with the simulation results, a flow analysis experiment using plasticine was also carried out. The results of the flow analysis experiment showed good agreement with those of the simulation.

  1. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-09-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  2. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  3. Titanium allergy: A literature review

    Directory of Open Access Journals (Sweden)

    Manish Goutam

    2014-01-01

    Full Text Available Titanium has gained immense popularity and has successfully established itself as the material of choice for dental implants. In both medical and dental fields, titanium and its alloys have demonstrated success as biomedical devices. Owing to its high resistance to corrosion in a physiological environment and the excellent biocompatibility that gives it a passive, stable oxide film, titanium is considered the material of choice for intraosseous use. There are certain studies which show titanium as an allergen but the resources to diagnose titanium sensivity are very limited. Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium.

  4. Effects of trace TiB and TiC on microstructure and tensile properties of β titanium alloy

    International Nuclear Information System (INIS)

    In the present work, a β titanium alloy reinforced by trace TiB whiskers and TiC particles was fabricated by common casting and hot-forging. For comparative study, the unreinforced titanium matrix alloy was also fabricated by the same casting and forging process. The microstructure, room temperature, tensile properties and fracture characteristics of the composite and the matrix alloy are presented and discussed. Microstructural analysis of the composite revealed that the reinforcements were uniformly dispersed after forging. The size of the β grains in the composite was refined after solution treatment under the β field. The secondary α lath was also refined during aging heat treatment by the addition of trace boron and carbon. The results of the tensile tests show that the improvement in the strength of the composite can be attributed to the refinement in the grain size and the secondary α lath, while the remarkable reduction in the ductility can be ascribed to the cracking of the reinforcements and the decohesion at the interface between the reinforcements and the matrix

  5. Functional and radiographic evaluation and quality of life analysis after cementless total hip arthroplasty with ceramic bearings: minimum of 5 years follow-up

    Directory of Open Access Journals (Sweden)

    Rafael Borghi Mortat

    2013-12-01

    Full Text Available Objective: The aim of the study is to analyze and correlate functional and radiographic results and quality of life in patients undergoing cementless total hip arthroplasty with ceramic surface, performed at Hospital Servidor Publico de Sao Paulo from 2001 to 2006. Methods: We retrospectively analyzed 35 hips treated with cementless total hip arthroplasty with ceramic surfaces with a minimum follow-up of 5 years. Functional evaluation was based on the Harris Hip Score (HHS. Radiographic evaluation was based on the method proposed by Charles Engh for evaluation of femoral osseointegration and on DeLee and Charnley zones for acetabulum. Quality of life was assessed by SF-36 questionnaire. Results: The HHS presented excellent and good results in 91% of patients postoperatively (mean of 93.14 points HHS. As for radiographic evaluation, we found excellent results in 100% of evaluated hips (proven osseointegration. SF-36 scores were not compared to the control group for the following components: pain, vitality, mental health and social aspects. The difference between HHS pre and postoperatively had a statistically significant correlation with physical functioning of the SF-36. Conclusion: Total hip arthroplasty with ceramic surface is a treatment that enables functional improvement of the hip and increases quality of life of patients to levels close to those of people without joint diseases.

  6. Five-year results of a cementless short-hip-stem prosthesis

    Directory of Open Access Journals (Sweden)

    Ralf H. Wittenberg

    2013-03-01

    Full Text Available Hip prosthesis stems with a short stem length and proximal fixation geometry support a bone-preserving and muscle-sparing implantation and should also allow for revision surgery with a standard hip stem. We present 250 prospectively documented clinical and radiological results from the Metha Short Hip Stem prosthesis (B. Braun-Aesculap, Tuttlingen, Germany after an average follow-up of 4.9 years. The average patient age at surgery was 60 years. Indication for total hip replacement was primary osteoarthrosis (OA (78% of patients, OA based on developmental dyspla- sia of the hip (16%, and other indications (6%. At the last follow-up, the average Harris Hip Score was 97 points. 85% of patients were very satisfied and 14% were satisfied after surgery, whereas 1% were dissatisfied. Pain according to the Visual Analogue Scale improved from 7.4 (min 1.6, max 9.5 pre-operatively to 0.23 (min 0, max 6.6. No joint dislocations occurred when predominantly using 28 mm and 32 mm prosthesis heads. Nine short-stems were revised: three after bacterial infections, two after primary via valsa with penetration of the femoral cortex two and three months after surgery, and three after early aseptic cases of loosening within the first year. A further nine osseously consolidated short-stems had to be replaced due to breakage of the modular titanium cone adapter after an average of 3.1 years (min 1.9, max 4.4. All surgical revisions were performed using primary standard stems. Without taking the material-related adapter failures into account, a five year Kaplan-Meier survival rate of 96.7% (95% confidence interval 93.4-98.3 was determined for the short-stem prostheses. There were no radiological signs of loosening in any of the short-stem prostheses at the last examination. Fine sclerotic lines were detected in Gruen’s AP zones 1 (19% and 2 (10.5%, individual hypertrophies in zone 3 (3.5%, fine seams in zones 4 (5.5% and 5 (4%, without pedestal formations in zone 4

  7. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study.

    Science.gov (United States)

    Rezaei, Farshid; Hassani, Kamran; Solhjoei, Nosratollah; Karimi, Alireza

    2015-12-01

    Total hip replacement (THR) has been ranked within the most typical surgical processes in the world. The durability of the prosthesis and loosening of prosthesis are the main concerns that mostly reported after THR surgeries. In THR, the femoral prosthesis can be fixed by either cement or cementless methods in the patient's bones. In both procedures, the stability of the prosthesis in the hosted bone has a key asset in its long-term durability and performance. This study aimed to execute a comparative finite element simulation to assess the load transfer between the prosthesis, which is made of carbon/PEEK composite and stainless steel/titanium, and the femur bone. The mechanical behavior of the cortical bone was assumed as a linear transverse isotropic while the spongy bone was modeled like a linear isotropic material. The implants were made of stainless steel (316L) and titanium alloy as they are common materials for implants. The results showed that the carbon/PEEK composites provide a flatter load transfer from the upper body to the leg compared to the stainless steel/titanium prosthesis. Furthermore, the results showed that the von Mises stress, principal stress, and the strain in the carbon/PEEK composites prosthesis were significantly lower than that made of the stainless steel/titanium. The results also imply that the carbon/PEEK composites can be applied to introduce a new optimum design for femoral prosthesis with adjustable stiffness, which can decrease the stress shielding and interface stress. These findings will help clinicians and biomedical experts to increase their knowledge about the hip replacement.

  8. LASER GAS NITRIDING OF TITANIUM AND TITANIUM ALLOYS

    OpenAIRE

    J. J. DAI; Hou, S. Q.

    2009-01-01

    Titanium and titanium alloys are widely used in many fields due to some of their characteristics such as light density, high strength, and excellent corrosion resistance. However, poor mechanical performances limit their practical applications. Laser gas nitriding is a promising method used to improve the surface properties of components. Recent developments on laser gas nitriding of titanium and titanium alloys are reviewed. The processing parameters have important effects on the resulting c...

  9. Research on Energy-Saving Production Scheduling Based on a Clustering Algorithm for a Forging Enterprise

    Directory of Open Access Journals (Sweden)

    Yifei Tong

    2016-02-01

    Full Text Available Energy efficiency is a buzzword of the 21st century. With the ever growing need for energy efficient and low-carbon production, it is a big challenge for high energy-consumption enterprises to reduce their energy consumption. To this aim, a forging enterprise, DVR (the abbreviation of a forging enterprise, is researched. Firstly, an investigation into the production processes of DVR is given as well as an analysis of forging production. Then, the energy-saving forging scheduling is decomposed into two sub-problems. One is for cutting and machining scheduling, which is similar to traditional machining scheduling. The other one is for forging and heat treatment scheduling. Thirdly, former forging production scheduling is presented and solved based on an improved genetic algorithm. Fourthly, the latter is discussed in detail, followed by proposed dynamic clustering and stacking combination optimization. The proposed stacking optimization requires making the gross weight of forgings as close to the maximum batch capacity as possible. The above research can help reduce the heating times, and increase furnace utilization with high energy efficiency and low carbon emissions.

  10. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  11. 3D Finite Element Analysis of Spider Non-isothermal Forging Process

    Science.gov (United States)

    Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing

    2016-06-01

    The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.

  12. Manufacturing involving forging of multiple objects in contact

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, W.; Martins, P.A.F.;

    Finite element modeling of multi-object manufacturing processes is presented with supporting experiments. The underlying finite element implementation is based on the flow formulation and further coupled with thermal and electrical models to accomplish electro-thermo-mechanical simulation. All...... three models are implemented with contact algorithms that can take care of the interactions between multiple objects. Focusing on the mechanical aspects, this presentation includes simulations and experiments designed for testing mechanical contact between plastically deforming parts of similar...... and dissimilar materials. While being plastically deformed against each other under increasing forging load, the parts dynamically develop their mutual contact interfaces. Comparisons of the final geometry as well as force-displacement curves are evaluated. The potential of simulated applications are discussed...

  13. Carbide Coating Preparation of Hot Forging Die by Plasma Processing

    Institute of Scientific and Technical Information of China (English)

    DU Wenhua; DU Cong; WANG Huachang; WANG Hongfu; WANG Junyuan

    2012-01-01

    To meet the performance requirements of hot forging die heat resistant layer,the Ni60-SiC coating,Ni60-Cr3C2 coating,and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC,10%Cr3C2,30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding,respectively.Microstructure of each carbide coating was analyzed,micro-hardness was tested,and mainly thermal parameters of coating were detected.The experimental results show that using plasma spray welding,the performance of 70%Ni60/30%SiC powder is the best,and its micro-hardness can achieved 1100HV,showing good thermal-physical property.

  14. Mechanism of Annealing Softening of Rolled or Forged Tool Steel

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to reduce hardness of rolled or forged steels after annealing and improve processability, the diameter and dispersity of carbides were measured by SEM and quantitative metallography. The microstructure of annealed steel was analyzed by TEM. The effects of the factors such as solute atoms, carbides, grain boundary and interphase boundary were studied. The mechanism of annealing softening of steels was analyzed on the examples of steels H13, S5, S7, X45CrNiMo4, which are treated with new technology. The results showed that the softening of H13, S7, S5 is easier obtained by isothermal or slow cooling annealing from slightly below A1, but hardness of X45CrNiMo4 after annealing is reduced effectively by obtaining coarse lamellar pearlite. Economic results can be obtained from good processability.

  15. Large forged components in mechanical engineering and container construction

    International Nuclear Information System (INIS)

    The most modern metallurgical processes are used for the manufacture of large unmachined components, in order to fulfil the qualitative requirements, which have risen enormously in step with the required sizes. The material characteristics determined by various test procedures, such as fracture mechanics, permit an estimate to be made of the permissible size of faults. A large number of heat treatable steels are available for concrete applications. The list starts with the unalloyed and low alloy steels for small diameters and low requirements, and ends with the 3 1/2% NiCrMoV steels for the largest diameters and highest requirements regarding strength and ductility. It is shown from the example of crankshafts that the characteristics in use in concrete applications can be appreciably improved by suitable measures of heat treatment or on the machined forged part. (orig./IHOE)

  16. Approximate-model Based Estimation Method for Dynamic Response of Forging Processes

    Institute of Scientific and Technical Information of China (English)

    LEI Jie; LU Xinjiang; LI Yibo; HUANG Minghui; ZOU Wei

    2015-01-01

    Many high-quality forging productions require the large-sized hydraulic press machine (HPM) to have a desirable dynamic response. Since the forging process is complex under the low velocity, its response is difficult to estimate. And this often causes the desirable low-velocity forging condition difficult to obtaln. So far little work has been found to estimate the dynamic response of the forging process under low velocity. In this paper, an approximate-model based estimation method is proposed to estimate the dynamic response of the forging process under low velocity. First, an approximate model is developed to represent the forging process of this complex HPM around the low-velocity working point. Under guaranteeing the modeling performance, the model may greatly ease the complexity of the subsequent estimation of the dynamic response because it has a good linear structure. On this basis, the dynamic response is estimated and the conditions for stability, vibration, and creep are derived according to the solution of the velocity. All these analytical results are further verified by both simulations and experiment. In the simulation verification for modeling, the original movement model and the derived approximate model always have the same dynamic responses with very small approximate error. The simulations and experiment finally demonstrate and test the effectiveness of the derived conditions for stability, vibration, and creep, and these conditions will benefit both the prediction of the dynamic response of the forging process and the design of the controller for the high-quality forging. The proposed method is an effective solution to achieve the desirable low-velocity forging condition.

  17. Effect of Technical Quality of Thermomechanical Die Forging of AA2099 Alloy

    Directory of Open Access Journals (Sweden)

    Łukaszek-Sołek A.

    2014-10-01

    Full Text Available The paper presents the results of investigations of a multicomponent third-generation aluminium alloy, classified as AA2099. The actual forging conditions were determined basing on the assessment of the quality of side surface of specimens subjected to compression in Gleeble 3800 simulator and on flow curves of the alloy, as well as numerical modelling of forging process performed with application of QForm 3D v.7 software. Compression tests were realized at temperatures 400-500 °C, with a strain rate of 0.001-100 s-1, up to a specified constant true strain value of 0.9. Microstructure examination in as-delivered state was performed with application of Leica DM 4000M optical microscope. The obtained results of isothermal deformation of specimens were correlated with the analysis of a characteristic layered pancake-type microstructure. The simulation of die forging of a complex-shape forging (high-current contact tip used in power engineering at the temperature 500 °C, was performed. The shape of a forging makes it possible to fully analyse the influence of thermomechanical process conditions on technical quality of a product. The simulation of forging process showed full correctness of material flow, with no signs of instability. At the same time, the analysis of investigations allowed to prepare and realize the industrial forging trials for a forging of a very complex shape, in a single step, at the temperature 500 °C, with application of thermomechanical treatment. The forging attained high quality of shape and surface. Directional specimens were taken, in order to be subjected to microstructure examination and hardness testing. The data obtained from industrial tests, combined with the results of testing using Gleeble simulator as well as from numerical modelling, make up the guidelines for mechanical processing of AA2099 alloy at the temperatures 470-500 °C.

  18. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  19. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  20. Follow-up of hearing thresholds among forge hammering workers

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, A.A.; Mikael, R.A.; Faris, R. (Ain Shams Univ., Abbasia, Cairo (Egypt))

    1989-01-01

    Hearing threshold was reexamined in a group of forge hammering workers investigated 8 years ago with consideration of the age effect and of auditory symptoms. Workers were exposed to impact noise that ranged from 112 to 139 dB(A)--at an irregular rate of 20 to 50 drop/minute--and a continuous background noise that ranged from 90 to 94 dB(A). Similar to what was observed 8 years ago, the present permanent threshold shift (PTS) showed a maximum notch at the frequency of 6 kHz and considerable elevations at the frequencies of 0.25-1 kHz. The age-corrected PTS and the postexposure hearing threshold were significantly higher than the corresponding previous values at the frequencies 0.25, 0.5, 1, and 8 kHz only. The rise was more evident at the low than at the high frequencies. Temporary threshold shift (TTS) values were significantly less than those 8 years ago. Contrary to the previous TTS, the present TTS were higher at low than at high frequencies. Although progression of PTS at the frequencies 0.25 and 0.5 kHz was continuous throughout the observed durations of exposure, progression at higher frequencies occurred essentially in the first 10 to 15 years of exposure. Thereafter, it followed a much slower rate. Tinnitus was significantly associated with difficulty in hearing the human voice and with elevation of PTS at all the tested frequencies, while acoustic after-image was significantly associated with increment of PTS at the frequencies 0.25-2 kHz. No relation between PTS and smoking was found. PTS at low frequencies may provide an indication of progression of hearing damage when the sensitivity at 6 and 4 kHz diminishes after prolonged years of exposure. Tinnitus and acoustic after-image are related to the auditory effect of forge hammering noise.

  1. Characterization of large 2219 aluminum alloy hand forgings for the space shuttle solid rocket booster

    Science.gov (United States)

    Brennecke, M. W.

    1978-01-01

    The mechanical properties, including fracture toughness, and stress corrosion properties of four types of 2219-T852 aluminum alloy hand forgings are presented. Weight of the forgings varied between 450 and 3500 lb at the time of heat treatment and dimensions exceeded the maximum covered in existing specifications. The forgings were destructively tested to develop reliable mechanical property data to replace estimates employed in the design of the Space Shuttle Solid Rocket Booster (SRB) and to establish minimum guaranteed properties for structural refinement and for entry into specification revisions. The report summarizes data required from the forgers and from the SRB Structures contractor.

  2. The Effect of Corner Radii and Part Orientation on Stress Distribution of Cold Forging Die

    Directory of Open Access Journals (Sweden)

    Ahmad B.  Abdullah

    2008-01-01

    Full Text Available One of the most critical problems in cold forging is the huge stresses generated from the deformation of metal leads to die failure. The distribution of stresses mainly depends on geometry of the die. An approach to optimal design in cold forging die geometry and orientation are presented in this paper. The impression cold forging dies of the Universal joint was generated using three-dimensional CAD modeling software, SolidWorks. This CAD modeling software coupled with FEA tools, COSMOSWorks. The paper emphasizes on effect of the corner radius and dies orientation on stress distribution.

  3. Microstructural evolution and mechanical properties of hypereutectic Al–Si alloy processed by liquid die forging

    Indian Academy of Sciences (India)

    F F Wu; S T Li; G A Zhang; F Jiang

    2014-08-01

    The microstructural evolution and mechanical properties of a hypereutectic Al–Si alloy processed by liquid die forging were investigated. It is found that the grain size of the primary Si was significantly reduced by liquid die forging with increased pressure. The volume fraction of eutectic silicon was decreased with increased pressure. By liquid die forging with pressure up to 180 MPa, the average size of the primary Si was reduced to about 18 m, which results in the remarkable increase in the fracture strength and hardness of the hypereutectic Al–Si alloy.

  4. Productive Machining of Titanium Alloys

    OpenAIRE

    Čejka, Libor

    2013-01-01

    This diploma thesis is focused on a productive machining of titanium alloys. At the beginning it deals about titanium and its alloys. It describes chip generation mechanism, tool blunting and surface quality. Further it contains modern strategies of efficient titanium alloys machining. Then it analyzes contemporary manufacturing technology of hinge made of titanium alloy Ti-6Al-4V in Frentech Aerospace s.r.o. company, and at the end finds possibility of savings by inovation of roughing process.

  5. High-temperature Titanium Alloys

    OpenAIRE

    A.K. Gogia

    2005-01-01

    The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase eq...

  6. Titanium metal: extraction to application

    Energy Technology Data Exchange (ETDEWEB)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  7. Industrial experience with titanium

    International Nuclear Information System (INIS)

    Titanium is a reference material for the construction of waste containers in the Canadian Nuclear Fuel Waste Management Program. It has been in industrial service for over 30 a, often in severe corrosion environments, but it is still considered a relatively exotic material with limited operating history. This has arisen because of the aerospace applications of this material and the misconception that the high strength-to-weight ratio dominates the choice of this material. In fact, the advantage of titanium lies in its high reliability and excellent corrosion resistance. It has a proven record in seawater heat exchanger service and a demonstrated excellent reliability even in polluted water. For many reasons it is the technically correct choice of material for marine applications. In this report we review the industrial service history of titanium, particularly in hot saline environments, and demonstrate that it is a viable waste container material, based upon this industrial service history and operating experience. (author)

  8. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  9. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    Science.gov (United States)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  10. Mandibular reconstruction with a bioactive-coated cementless Ti6Al4V modular endoprosthesis in Macaca fascicularis

    NARCIS (Netherlands)

    Chanchareonsook, N.; Tideman, H.; Lee, S.; Hollister, S.J.; Flanagan, C.; Jansen, J.A.

    2014-01-01

    The titanium mandibular modular endoprosthesis fixed with polymethylmethacrylate cement in the medullary space of the mandible has been introduced in previous studies. However, the internal parts of these devices have been found to be prone to loosening and wound dehiscence. The current study introd

  11. Machining of Titanium Alloys

    OpenAIRE

    Karásek, Jan

    2008-01-01

    The main goal of this work is the analysis of manufacturing costs for the component of wheel´s blower. Followed by setting up the size of specific cutting force for milling operation of the titanium alloy Ti-Al6-Mo2-Cr2-Fe-Si, the used tool was a milling cutter which is made out of sintered carbide with conical and spherical face. The final values which are at intervals of 1500 to 1800 MPa were compared with the values of the Sandvik Coromant firm kc = 1690 MPa, for titanium alloy with the st...

  12. Titanium alkoxide compound

    Science.gov (United States)

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  13. Sensitivity Analysis Based Multiple Objective Preform Die Shape Optimal Design in Metal Forging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the deformation uniformity of the final forging at the same time so that a more high integrate quality of the final forging can be obtained. The total objective was assembled by the shape and uniformity objective using the weight adding method. The preform die shape is presented by cubic B-spline curves. The control points of B-spline curves are used as the design variables. The forms of the total objective function, shape and uniformity sub-objective function are given. The sensitivities of the total objective function and the sub-objective functions with respect to the design variables are developed. Using this method, the preform die shape of an H-shaped forging process is optimally designed. The optimization results are very satisfactory.

  14. Theoretical and experimental research of hammer forging process of RIM from AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    A. Gontarz

    2014-10-01

    Full Text Available The results of theoretical analysis and experimental tests of hammer forging process of rim part from AZ31 magnesium alloy are presented in this paper. On the basis of numerical simulation results, the analysis of limiting phenomena was made. These phenomena include: possibility of overlapping presence, not filling of die impression, overheating of material and cracks. The results of theoretical analysis provided the support for planning of experimental tests in industrial conditions. Forging tests were conducted in one of Polish forming plants, applying steam-air hammer of blow energy 63 kJ. On the basis of experimental verification, it was stated that it is possible to obtain rim forging from AZ31 alloy of assumed quality in the hammer forging process.

  15. Accuracy Assessment Points for Valley Forge National Historical Park Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This shapefile includes the accuracy assessment points used to assess the association-level vegetation map of Valley Forge National Historic Park developed by the...

  16. Spatial Vegetation Data for Valley Forge National Historical Park Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — The vegetation and landcover of Valley Forge National Historical Park (VAFO) were mapped to the association level of the National Vegetation Classification System...

  17. Prediction of Grain Size for Blade Precision Forging Process under Thermo-Mechanical Coupling

    Institute of Scientific and Technical Information of China (English)

    He YANG; Yuli LIU; Wang CAI; Mei ZHAN

    2003-01-01

    Blade precision forging is a high temperature and large plastic deformation process. Interaction of deformation andheat conduction results in producing large temperature unevenness inside the billet. The unevenness has a greateffect on the mechanical prop

  18. Field Plot Points Modified for Valley Forge National Historical Park Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This shapefile includes the locations of vegetation classification sampling plots used to develop an association-level vegetation classification of Valley Forge...

  19. Application of CAD/CAE/CAM in forging process: a review

    International Nuclear Information System (INIS)

    Forging can be described as the process in which metal is plastically deformed with application of huge pressure. The process not only changes the shape but also improves the properties of the forged parts due to grain size refinement. Conventionally, the empirical trial and error method has been applied, but recently there are various tools are employed to improved product quality and economic of the process. For example, Computer Aided Design (CAD) is widely used in modeling of the process, while Computer Aided Engineering (CAE) tools have been utilized in analyzing the process. To physically demonstrate the process, Computer Aided Manufacturing (CAM) such as CNC machine has been exploited. In order to improve forging process efficiency, an integrated system that combines all advantages of CAD, CAM and CAE need to be developed. This paper presents an overview of computer aided simulation such as CAD, CAE and CAM application in forging process. (Author)

  20. Crack path in aeronautical titanium alloy under ultrasonic torsion loading

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2016-01-01

    Full Text Available This paper discusses features of fatigue crack initiation and growth in aeronautical VT3-1 titanium alloy under pure torsion loading in gigacycle regime. Two materials: extruded and forged VT3-1 titanium alloys were studied. Torsion fatigue tests were performed up to fatigue life of 109 cycles. The results of the torsion tests were compared with previously obtained results under fully reversed axial loading on the same alloys. It has been shown that independently on production process as surface as well subsurface crack initiation may appear under ultrasonic torsion loading despite the maximum stress amplitude located at the specimen surface. In the case of surface crack initiation, a scenario of crack initiation and growth is similar to HCF regime except an additional possibility for internal crack branching. In the case of subsurface crack, the initiation site is located below the specimen surface (about 200 μm and is not clearly related to any material flaw. Internal crack initiation is produced by shear stress in maximum shear plane and early crack growth is in Mode II. Crack branching is limited in the case of internal crack initiation compared to surface one. A typical ‘fish-eye’ crack can be observed at the torsion fracture surface, but mechanism of crack initiation seems not to be the same than under axial fatigue loading.

  1. Recrystallization behavior of Ti40 burn-resistant titanium alloy during hot working process

    Institute of Scientific and Technical Information of China (English)

    Yun-jin Lai; She-wei Xin; Ping-xiang Zhang; Yong-qing Zhao; Fan-jiao Ma; Xiang-hong Liu; Yong Feng

    2016-01-01

    The recrystallization behavior of deformed Ti40 alloy during a heat-treatment process was studied using electron backscatter dif-fraction and optical microscopy. The results show that the microstructural evolution of Ti40 alloy is controlled by the growth behavior of grain-boundary small grains during the heating process. These small grains at the grain boundaries mostly originate during the forging proc-ess because of the alloy’s inhomogeneous deformation. During forging, the deformation first occurs in the grain-boundary region. New small recrystallized grains are separated from the parent grains when the orientation between deformation zones and parent grains exceeds a certain threshold. During the heating process, the growth of these small recrystallized grains results in a uniform grain size and a decrease in the av-erage grain size. The special recrystallization behavior of Ti40 alloy is mainly a consequence of the alloy’s highβ-stabilized elemental con-tent and high solution strength of theβ-grains, which partially explains the poor hot working ability of Ti-V-Cr-type burn-resistant titanium alloys. Notably, this study on Ti40 burn-resistant titanium alloy yields important information related to the optimization of the microstruc-tures and mechanical properties.

  2. Avantages de l'emploi du magnésium forgé pour l'allègement des véhicules [ MagForge: Magnesium forged components for the automotive industry

    NARCIS (Netherlands)

    Chevaleyre, F.; Popescu, M.; Sillekens, W.H.; Ferreres, I.; Kurz, G.; Gourdin, P.; Gantar, G.

    2010-01-01

    This project, under 6th framework programme of the European Commission, aims to provide SME's with the cost-effective knowledge to provide the automotive industry with light forged magnesium-based alloys components. Low density, high mechanical properties and total recyclability pairing with the adv

  3. Influence of processing parameters on microstructure and tensile properties of TG6 titanium alloy

    International Nuclear Information System (INIS)

    Research highlights: → This paper highlights the relationships among processing parameters, microstructure and tensile properties of TG6 high temperature titanium alloy. → The microstructural evolutions under different processing parameters were studied by the quantitative metallography, and the effects of microstructure on room and high temperature tensile properties of TG6 alloy were analysed by SEM and TEM. → Linear relationships of elongation vs. volume fraction of primary α phase and ultimate tensile strength vs. thickness of lamellar α phase were determined. - Abstract: Near-isothermal forging of the TG6 titanium alloy was conducted on microprocessor-controlled 630 ton hydraulic press at the deformation temperatures ranging from 850 deg. C to 1045 deg. C, the strain rates of 0.0008 s-1, 0.003 s-1 and 0.008 s-1 and the deformation degree from 10% to 70%, and then different double heat treatments were applied to the forged specimens. The microstructural evolutions were researched by optical microscope and the microstructural features, i.e. volume fraction of primary α phase and thickness of lamellar α phase, were measured by means of the image analysis software. The room and high temperature tensile properties were obtained for all the specimens. Effects of microstructure on the properties were analysed by scanning electronic microscope. It was found that tenslie properties depended on microstructural features strongly. The plots of ultimate tensile strength vs. thickness of α lamellae and elongation vs. volume fraction of primary α phase produced straight lines. The liner equations were determined by fitting the experimental date, respectively. Compared to other parameters, heat treatment had more influence on the tensile strength and the tensile plasticity was more sensitive to the forging temperature.

  4. FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe

    Science.gov (United States)

    Wang, Shenglong; Yu, Xiaoyi; Yang, Bin; Zhang, Mingxian; Wu, Huanchun

    2016-08-01

    AP1000 primary coolant pipes must be manufactured by integral forging technology according to the designer—Westinghouse Electric Co. The characteristics of these large, special-shaped pipes create nonuniform temperatures, effective stress, and effective strain during shaping of the pipes. This paper presents a three-dimensional finite element simulation (3D FEM) of the integral forging process, and qualitatively evaluates the likelihood of forging defects. By analyzing the evolution histories of the three field variables, we concluded that the initial forging temperature should be strictly controlled within the interval 1123 K to 1423 K (850 °C to 1150 °C) to avoid second-phase precipitation. In the hard deformation zones, small strains do not contribute to recrystallization resulting in coarse grains. Conversely, in the free deformation zone, the large strains can contribute to the dynamic recrystallization, favoring grain refinement and closure of voids. Cracks are likely to appear, however, on the workpiece surface when forging leads to large deformations. Based on the simulation results, an eligible workpiece with good mechanical properties, few macroscopic defects, and favorable grain size has been successfully forged by experiments at an industrial scale, which validates the FEM simulation.

  5. FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe

    Science.gov (United States)

    Wang, Shenglong; Yu, Xiaoyi; Yang, Bin; Zhang, Mingxian; Wu, Huanchun

    2016-10-01

    AP1000 primary coolant pipes must be manufactured by integral forging technology according to the designer—Westinghouse Electric Co. The characteristics of these large, special-shaped pipes create nonuniform temperatures, effective stress, and effective strain during shaping of the pipes. This paper presents a three-dimensional finite element simulation (3D FEM) of the integral forging process, and qualitatively evaluates the likelihood of forging defects. By analyzing the evolution histories of the three field variables, we concluded that the initial forging temperature should be strictly controlled within the interval 1123 K to 1423 K (850 °C to 1150 °C) to avoid second-phase precipitation. In the hard deformation zones, small strains do not contribute to recrystallization resulting in coarse grains. Conversely, in the free deformation zone, the large strains can contribute to the dynamic recrystallization, favoring grain refinement and closure of voids. Cracks are likely to appear, however, on the workpiece surface when forging leads to large deformations. Based on the simulation results, an eligible workpiece with good mechanical properties, few macroscopic defects, and favorable grain size has been successfully forged by experiments at an industrial scale, which validates the FEM simulation.

  6. Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.

    Science.gov (United States)

    Rice, R. W.

    1972-01-01

    Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-

  7. The effect of abductor muscle and anterior-posterior hip contact load simulation on the in-vitro primary stability of a cementless hip stem

    Directory of Open Access Journals (Sweden)

    Frei Hanspeter

    2010-06-01

    Full Text Available Abstract Background In-vitro mechanical tests are commonly performed to assess pre-clinically the effect of implant design on the stability of hip endoprostheses. There is no standard protocol for these tests, and the forces applied vary between studies. This study examines the effect of the abductor force with and without application of the anterior-posterior hip contact force in the in-vitro assessment of cementless hip implant stability. Methods Cementless stems (VerSys Fiber Metal were implanted in twelve composite femurs which were divided into two groups: group 1 (N = 6 was loaded with the hip contact force only, whereas group 2 (N = 6 was additionally subjected to an abductor force. Both groups were subjected to the same cranial-caudal hip contact force component, 2.3 times body weight (BW and each specimen was subjected to three levels of anterior-posterior hip contact load: 0, -0.1 to 0.3 BW (walking, and -0.1 to 0.6 BW (stair climbing. The implant migration and micromotion relative to the femur was measured using a custom-built system comprised of 6 LVDT sensors. Results Substantially higher implant motion was observed when the anterior-posterior force was 0.6BW compared to the lower anterior-posterior load levels, particularly distally and in retroversion. The abductor load had little effect on implant motion when simulating walking, but resulted in significantly less motion than the hip contact force alone when simulating stair climbing. Conclusions The anterior-posterior component of the hip contact load has a significant effect on the axial motion of the stem relative to the bone. Inclusion of the abductor force had a stabilizing effect on the implant motion when simulating stair climbing.

  8. Movement Synchrony Forges Social Bonds across Group Divides

    Science.gov (United States)

    Tunçgenç, Bahar; Cohen, Emma

    2016-01-01

    Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one's in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs. PMID:27303341

  9. Strain-induced grain growth of cryomilled nanocrystalline Al in trimodal composites during forging

    Energy Technology Data Exchange (ETDEWEB)

    Yao, B. [Advanced Materials Processing and Analysis Center, and Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Simkin, B.; Majumdar, B. [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Smith, C.; Bergh, M. van den [DWA Aluminum Composites, Chatsworth, CA 91311 (United States); Cho, K. [Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Sohn, Y.H., E-mail: Yongho.Sohn@ucf.edu [Advanced Materials Processing and Analysis Center, and Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer Grain growth of cryomilled nanocrystalline aluminum during hot forging. Black-Right-Pointing-Pointer Use of hollow cone dark field imaging technique in TEM for grain size measurement. Black-Right-Pointing-Pointer Grain growth model of strain, strain rate and temperature for forging optimization. - Abstract: Grain growth of nanocrystalline aluminum ({sup nc}Al) in trimodal Al metal-matrix-composites (MMCs) during hot forging was investigated. The {sup nc}Al phase formed through cryomilling of inert gas-atomized powders in liquid nitrogen has an average grain size down to 21 nm, exhibits excellent thermal stability. However, substantial grain growth of {sup nc}Al up to 63 nm was observed when the Al MMCs were thermo-mechanically processed even at relatively low temperatures. Grain growth of the cryomilled {sup nc}Al phase in trimodal Al MMCs after hot forging was documented with respect to temperature ranging from 175 Degree-Sign C to 287 Degree-Sign C, true strain ranging from 0.4 to 1.35 and strain rate ranging from 0.1 to 0.5 s{sup -1}. Hollow cone dark field imaging technique was employed to provide statistically confident measurements of {sup nc}Al grain size that ranged from 21 to 63 nm. An increase in forging temperature and an increase in true strain were correlated with an increase in grain size of {sup nc}Al. Results were correlated to devise a phenomenological grain growth model for forging that takes strain, strain rate and temperature into consideration. Activation energy for the grain growth during thermo-mechanical hot-forging was determined to be 35 kJ/mol, approximately a quarter of activation energy for bulk diffusion of Al and a half of activation energy for static recrystallization.

  10. Making randomised trials more efficient: report of the first meeting to discuss the Trial Forge platform.

    Science.gov (United States)

    Treweek, Shaun; Altman, Doug G; Bower, Peter; Campbell, Marion; Chalmers, Iain; Cotton, Seonaidh; Craig, Peter; Crosby, David; Davidson, Peter; Devane, Declan; Duley, Lelia; Dunn, Janet; Elbourne, Diana; Farrell, Barbara; Gamble, Carrol; Gillies, Katie; Hood, Kerry; Lang, Trudie; Littleford, Roberta; Loudon, Kirsty; McDonald, Alison; McPherson, Gladys; Nelson, Annmarie; Norrie, John; Ramsay, Craig; Sandercock, Peter; Shanahan, Daniel R; Summerskill, William; Sydes, Matt; Williamson, Paula; Clarke, Mike

    2015-06-05

    Randomised trials are at the heart of evidence-based healthcare, but the methods and infrastructure for conducting these sometimes complex studies are largely evidence free. Trial Forge ( www.trialforge.org ) is an initiative that aims to increase the evidence base for trial decision making and, in doing so, to improve trial efficiency.This paper summarises a one-day workshop held in Edinburgh on 10 July 2014 to discuss Trial Forge and how to advance this initiative. We first outline the problem of inefficiency in randomised trials and go on to describe Trial Forge. We present participants' views on the processes in the life of a randomised trial that should be covered by Trial Forge.General support existed at the workshop for the Trial Forge approach to increase the evidence base for making randomised trial decisions and for improving trial efficiency. Agreed upon key processes included choosing the right research question; logistical planning for delivery, training of staff, recruitment, and retention; data management and dissemination; and close down. The process of linking to existing initiatives where possible was considered crucial. Trial Forge will not be a guideline or a checklist but a 'go to' website for research on randomised trials methods, with a linked programme of applied methodology research, coupled to an effective evidence-dissemination process. Moreover, it will support an informal network of interested trialists who meet virtually (online) and occasionally in person to build capacity and knowledge in the design and conduct of efficient randomised trials.Some of the resources invested in randomised trials are wasted because of limited evidence upon which to base many aspects of design, conduct, analysis, and reporting of clinical trials. Trial Forge will help to address this lack of evidence.

  11. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    Energy Technology Data Exchange (ETDEWEB)

    Wojtaszek, Marek, E-mail: mwojtasz@metal.agh.edu.pl; Śleboda, Tomasz

    2014-12-05

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography.

  12. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  13. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Directory of Open Access Journals (Sweden)

    Werner E.

    2010-06-01

    Full Text Available To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a shows the forged part and 1(b the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and

  14. Casting and Mechanized Titanium Restorations

    OpenAIRE

    Madrigal, A.; Lopez, I; Suarez, MJ; Salido, MP.

    2002-01-01

    INTRODUCTION: New materials and methods for clinical dentistry are continuously being introduced. There is a growing interest in the use of titanium as a restorative material for several reasons: its relatively low cost, favorable physical properties and biocompatibility. However, titanium is technically more difficult to handle than conventional metal alloys. There are two fabrication methods for titanium restorations: casting and mechanized (a combination of machine duplication and spark er...

  15. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  16. Effect of Die Strength and Work Piece Strength on the Wear of Hot Forging Dies

    Science.gov (United States)

    Levy, B. S.; Van Tyne, C. J.

    2015-01-01

    The effect of the strength ratio extracted from an Archard model for wear is used to describe the wear rates expected in hot forging dies. In the current study, the strength ratio is the strength of the hot forging die to the strength of the work piece. Three hot forging die steels are evaluated. The three die steels are FX, 2714, and WF. To determine the strength of the forging die, a continuous function has been developed that describes the yield strength of three die steels for temperatures from 600 to 700 °C and for times up to 20 h (i.e., tempering times of up to 20 h). The work piece material is assumed to be AISI 1045. Based on the analysis, the wear resistance of WF should be superior and FX should be slightly better than 2714. Decreasing the forging temperature increases the strength ratio, because the strength of the die surface increases faster than the flow strength of AISI 1045. The increase in the strength ratio indicates a decrease in the expected wear rate.

  17. Manufacturing of Nanostructured Rings from Previously ECAE-Processed AA5083 Alloy by Isothermal Forging

    Directory of Open Access Journals (Sweden)

    C. J. Luis

    2013-01-01

    Full Text Available The manufacturing of a functional hollow mechanical element or ring of the AA5083 alloy previously equal channel angular extrusion (ECAE processed, which presents a submicrometric microstructure, is dealt with. For this purpose, the design of two isothermal forging dies (preform and final shape is carried out using the design of experiments (DOE methodology. Moreover, after manufacturing the dies and carrying out tests so as to achieve real rings, the mechanical properties of these rings are analysed as well as their microstructure. Furthermore, a comparison between the different forged rings is made from ECAE-processed material subjected to different heat treatments, previous to the forging stage. On the other hand, the ring forging process is modelled through the use of finite element simulation in order to improve the die design and to study the force required for the isothermal forging, the damage value, and the strain the material predeformed by ECAE has undergone. With this present research work, it is intended to improve the knowledge about the mechanical properties of nanostructured material and the applicability of this material to industrial processes that allow the manufacturing of functional parts.

  18. New design of process for cold forging to improve multi-stage gas fitting

    Directory of Open Access Journals (Sweden)

    Han-Sung Huang

    2016-04-01

    Full Text Available This work develops a process that solves the problem of the formation of cracks inside forged gas fittings in the cold forging process that arises from poor forging process design. DEFORM-3D forming software was utilized, and macroscopic experiments with optical microscopy and scanning electron microscopy were conducted to investigate the processed structures and the distribution therein of metal flow lines, and to find the internal micro-cracks to determine whether the cold forging process is reasonable. Analytical results herein demonstrate that the stress and strain inside the gas fitting can be elucidated using metal forming software. Together with experimental results, they demonstrate that a concentration of stress damages the workpiece in the forming process. Moreover, as metal flow lines become narrower, the workpiece becomes more easily damaged. Consequently, the improved cold forging process that is described in this work should be utilized to reduce the occurrence of fine cracks and defects. Planning for proper die design and production, increasing the quality of products, and reducing the number of defective products promote industrial competitiveness.

  19. Forging of Naval Brass (ASTM B16) - Finite Element Analysis using Ls Dyna

    Science.gov (United States)

    Subha Sankari, T.; Sangavi, S.; Paneerselvam, T.; Venkatraman, R.; Venkatesan, M.

    2016-09-01

    Forging is one of the important manufacturing process in which products like connecting rod, transmission shaft, clutch hubs and gears are produced. Finite element analysis (FEA) in forming techniques is of recent interest for the optimal design and determination of right manufacturing forming process. The data from the numerical results can help in providing the information for selecting the ideal process conditions. Thus aside from experimental values, simulation by the finite element analysis software's such as LS DYNA can be used for the analysis of strain distribution in forging processes. In the present work, Finite element simulation of open die forging of naval brass (ASTM B16) is done at an optimal temperature. An advanced multi physics simulation software package by the Livermore software technology cooperation LSTC - LS DYNA is utilized for the simulation of forging process. For the forging validation, experiment is conducted with a cylindrical billet having height 45 mm and diameter of 40mm. The numerical results are compared with that of experimental results carried out at the same temperature and dimensions for validation. The distribution of strain is analyzed. Energy analysis due to impact load is detailed. The simulation results are found to be in good agreement with the experimental results.

  20. Filling Rules of Bevel Gears in the Closed-die Cold Forging

    Institute of Scientific and Technical Information of China (English)

    Huamin LIU; Liangju HUANG; Shenhua YANG; Shihong ZHANG

    2005-01-01

    The closed-died cold forging technology of the bevel gears used in Jada car was investigated. With the analysis of the strain field and velocity field of the plastic deformation and the endured forces of the dies, the filling rules forthe metal were analyzed by the elastic-plastic finite element method (FEM). The results show that there is a great difference among closed-die cold forging, extrusion and forging, as far as the metal flowing is concerned. The outer addendum cannot be filled completely in the closed-die cold forging of the bevel gears, and the round angle will be formed. But it does not influence the application of the bevel gears. At the beginning, the rigid area is formed in the cavity of the lower die. And then it will move upwards to supply the metal for the gear filling. For the closed-die cold forging of the bevel gears, the force acting on the upper die and the lower die is significantly different.

  1. Influence of the Constitutive Flow Law in FEM Simulation of the Radial Forging Process

    Directory of Open Access Journals (Sweden)

    Olivier Pantalé

    2013-01-01

    Full Text Available Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking into account the strain rate seems to be well adapted for representing the material behavior even if the process is performed under cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the importance of the flow law in the effectiveness of the model, our purpose in this paper is to analyze the influence of the use of an elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have selected two different laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms of forging force, product's thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we denote a fairly good agreement between the results obtained using both laws.

  2. Microstructure Evolution of Multi-Heat Forging and Numerical Simulation for 316LN Steel

    Directory of Open Access Journals (Sweden)

    Duan Xing-Wang

    2014-02-01

    Full Text Available Microstructure evolution has been studied by multi-heat forging experiments and numerical simulation in order to determine the reasonable forging technology of 316 LN steel. The microstructure evolution models were obtained by hot compressive tests and heat treatment tests of 316 LN steels. The one-heat and three-heat upsetting experiments were carried on. Meanwhile, the corresponding numerical simulations were performed. The results show that, the grain uniformity of three-heat upsetting is much better that of one-heat upsetting. The average grain size of three-heat upsetting is smaller than that of one-heat upsetting. So, the forging technology of multi-heat and little deformation should be adopted for 316 LN steel forging. By comparing experimental average grain sizes with simulated average grain sizes for three-heat upsetting, it is found that the simulated values are in agreement with experimental values, which shows that the numerical simulation can be employed to predict the forging microstructure evolution of 316 LN steel.

  3. Controlled Forging of a Nb Containing Microalloyed Steel for Automotive Applications

    Science.gov (United States)

    Nakhaie, Davood; Hosseini Benhangi, Pooya; Fazeli, Fateh; Mazinani, Mohammad; Zohourvahid Karimi, Ebrahim; Ghandehari Ferdowsi, Mahmoud Reza

    2012-12-01

    Controlled forging of microalloyed steels is a viable economical process for the manufacture of automotive parts. Ferrite grain refinement and precipitation hardening are the major microstructural parameters to enhance the mechanical properties of the forged components. In the current study, a modified thermomechanical treatment for additional ferrite grain refinement is developed by exploiting the effect of Nb in increasing the T NR (no recrystallization temperature) and via phase transformation from a pancaked austenite. This is accomplished by performing the final passes of forging below the T NR temperature followed by a controlled cooling stage to produce a mixture of fine grained ferrite, small scaled acicular ferrite as well as a limited amount of martensite. The effect of processing parameters in terms of forging strain, cooling rate and aging condition on the microstructure and mechanical properties of a medium carbon, Nb containing microalloyed steel is investigated. An attempt is made to identify a suitable microstructure that provides a proper combination of high strength and good impact toughness. The processing-microstructure relationships for the proposed novel forging procedure are discussed, and directions for further improvements are outlined.

  4. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    International Nuclear Information System (INIS)

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the γ matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.

  5. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  6. Chemical changes of titanium and titanium dioxide under electron bombardment

    OpenAIRE

    Romins Brasca; Luciana Ines Vergara; Mario César Guillermo Passeggi; Julio Ferrón

    2007-01-01

    The electron induced effect on the first stages of the titanium (Ti0) oxidation and titanium dioxide (Ti4+) chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+).

  7. Evaluation of Die Chilling Effects during Forging of Nimonic-80A Superalloy

    International Nuclear Information System (INIS)

    Nimonic-80A is a kind of nickel-based superalloys which is used in high temperature components of land gas turbines. In this paper, the influence of four design factors: die temperature, strain rate, friction coefficient and geometry size of ring sample over the variation of internal diameters (VID) and forging load (FL) was studied. It was done by means of design methodology based on DOE-designated full factorial and FE simulations. FEM and experimental results showed that the variation of internal diameters and forging load had inverse proportion to the die temperature. Regression models were developed by using the response surface methodology (RSM) for VID and FL. Rate of the dynamic recrystallization varied depending on different amounts of die temperature. The results can be used in the semi-isothermal forging of complex part of the Nimonic-80A.

  8. Numerical simulation of the dynamic recrystallization behaviour in hot precision forging helical gears

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-01-01

    Full Text Available In hot precision forging helical gears, the dynamic recrystallization phenomena will occur, which affect the microstructure of the formed part and in turn decide their mechanical properties. To investigate the effect of deformation temperature on the dynamic recrystallization in hot precision forging helical gears, a three dimensional (3D finite element (FE model was created by coupling the thermo-mechanical model with the microstructure evolution model developed based on the hot compressive experimental data of 20CrMnTiH steel. The hot precision forging process was simulated and the effect laws of the deformation temperature on the microstructure evolution the formed part were investigated. The results show that the dynamic recrystallization volume fraction and the average grain sizes increased with the increasing deformation temperature and the higher deformation temperature is beneficial to dynamic recrystallization and grain refinement.

  9. Design of relief-cavity in closed-precision forging of gears

    Institute of Scientific and Technical Information of China (English)

    左斌; 王宝雨; 李智; 郑明男; 朱小星

    2015-01-01

    To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine (VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.

  10. Analysis Of Potentiometric Methods Used For Crack Detection In Forging Tools

    Science.gov (United States)

    Pilc, Jozef; Drbúl, Mário; Stančeková, Dana; Varga, Daniel; Martinček, Juraj; Kuždák, Viktor

    2015-12-01

    Increased use of forging tools in mass production causes their increased wear and creates pressure to design more efficient renovation process. Renovation is complicated because of the identification of cracks expanding from the surface to the core material. Given that the production of forging tools is expensive, caused by the cost of tool steels and the thermo-chemical treatment, it is important to design forging tool with its easy renovation in mind. It is important to choose the right renovation technology, which will be able to restore the instrument to its original state while maintaining financial rentability. Choosing the right technology is difficult because of nitrided and heat-treated surface for high hardness and wear resistance. Article discusses the use of non-destructive method of detecting cracks taking into account the size of the cracks formed during working process.

  11. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  12. Design of Controlled Processing Conditions for Drop Forgings Made of Microalloy Steel Grades for Mining Industry

    Directory of Open Access Journals (Sweden)

    Skubisz P.

    2015-04-01

    Full Text Available Effect of plastic processing and controlled cooling on microstructure and mechanical properties of experimental steel grades with microalloyed with Ti, V and/or Nb, varying in the content of Mo is presented as an offer for mining industry for replacement traditionally heat-treatable hardenability grades. The goal of the work is producing microstructure condition, which after controlled hot forging and direct heat treatment, involving quenching and self-tempering, are meant to provide good combination of mechanical properties, such as TYS 800 MPa, UTS 1050 MPa, elongation to fracture at least A5 15% and/or impact strength at room temperature KCV 60 J/cm2. Hardenability assessment and dilatometric examination allowed formulation of direct heat treatment guidelines, taking into consideration fields of temperature and strain in a typical hot forging process, estimated numerically, with the use of plastometric tests results, as well as the use of unique cooling cycles after forging.

  13. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  14. Finite element simulation of stretch forging using a mesh condensation method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to reduce the computation time of finite element simulations of stretch forging process,a mesh condensation method is presented and applied to a three-dimensional rigid-viscoplastic finite element program.In this method,a conventional mesh for the whole zone of a workpiece is condensed to a computational mesh for the active deformation zone.Two vital problems are solved,which are automatic construction of the computational mesh and treatment of interfaces between the deformation zone and the rigid zone.The mesh condensation method is compared with conventional finite element method by simulations of a six-bite stretch forging process.Some simulation results including forging load,temperature distribution and effective strain distribution are illustrated.The efficiency and accuracy of this method are verified.

  15. Heuristic algorithm for planning and scheduling of forged pieces heat treatment

    Directory of Open Access Journals (Sweden)

    R. Lenort

    2012-04-01

    Full Text Available The paper presents a heuristic algorithm for planning and scheduling of forged pieces heat treatment which allows maximizing the capacity exploitation of the heat treatment process and the entire forging process. Five Focusing Steps continuous improvement process was selected as a methodological basis for the algorithm design. Its application was supported by simulation experiments performed on a dynamic computer model of the researched process. The experimental work has made it possible to elicit the general rules for planning and scheduling of the heat treatment process of forged pieces which reduce losses caused by equipment conversion and setup times, and which increase the throughput of this process. The HIPO diagram was used to design the algorithm.

  16. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    The objective of this thesis is to fundamentally study the influence of die surface vibration on friction under low frequency in metal forging processes. The research includes vibrating tool system design for metal forming, theoretical and experimental investigations, and finite element simulations...... to 50% with vibration being applied in forming process. Furthermore, by using finite element method, a series of the simulations of the cold forging process under die surface excitation have been implemented in order to further understand the influence of vibration on friction, especially the influence...... is undergoing vibration. In the experiments, die surface orientation, frequency and amplitude of vibration, vibrating wave form and the direction of vibration has been taken into account as the parameters which influence friction behaviour in forging process. The results reveal that friction could be reduced up...

  17. Application of geometric midline yield criterion to analysis of three-dimensional forging

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wen; WANG Gen-ji; LIU Xiang-hua; WANG Guo-dong

    2008-01-01

    A kinematically admissible continuous velocity field was proposed for the analysis of three-dimensional forging. The linear yield criterion expressed by geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane, called GM yield criterion for short, was firstly applied to analysis of the velocity field for the forging. The analytical solution of the forging force with the effects of external zone and bulging parameter is obtained by strain rate inner product. Compression tests of pure lead are performed to compare the calculated results with the measured ones. The results show that the calculated total pressures are higher than the measured ones whilst the relative error is no more than 9.5%. It is implied that the velocity field is reasonable and the geometric midline yield criterion is available. The solution is still an upper-bound one.

  18. Development of a 3D Finite Element code for Forging - An overview of the Brite/Euram project EFFORTS

    DEFF Research Database (Denmark)

    Bay, Niels; Andreasen, Jan Lasson; Olsson, David Dam;

    2001-01-01

    equations for flow stress in cold as well as hot forging, determination of interface conditions, i.e. friction and heat transfer in cold and hot forging. The developments are validated by physical and numerical modeling and finally verified by analysis of some complex industrial examples....

  19. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai;

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  20. Titanium dioxide nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Ioan, E-mail: roman@metav-cd.ro [S.C. METAV-Research and Development S.R.L., Bucharest, 31C. A. Rosetti, 020011 (Romania); Trusca, Roxana Doina; Soare, Maria-Laura [S.C. METAV-Research and Development S.R.L., Bucharest, 31C. A. Rosetti, 020011 (Romania); Fratila, Corneliu [Research and Development National Institute for Nonferrous and Rare Metals, Pantelimon, 102 Biruintei, 077145 (Romania); Krasicka-Cydzik, Elzbieta [University of Zielona Gora, Department of Biomedical Engineering Division, 9 Licealna, 65-417 (Poland); Stan, Miruna-Silvia; Dinischiotu, Anca [University of Bucharest, Department of Biochemistry and Molecular Biology, 36-46 Mihail Kogalniceanu, 050107 (Romania)

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550 °C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50 nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005–0.1 mg/mL. - Highlights: • Titania nanotubes (TNTs) on Ti, Ti6Al4V and Ti6Al7Nb substrates were prepared. • Quantitative dependences of anodization conditions on TNT features were established. • Morphology and electrochemical tests revealed inhomogeneity of TNT/Ti6Al7Nb films. • Particular characteristics of TNT films induce electrochemical sensitivity to ALP. • Annealed TNT/Ti impedimetric sensitivity towards ALP was demonstrated and quantified.

  1. Titanium for salt water service

    International Nuclear Information System (INIS)

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  2. THE FORMING OF MAGNESIUM ALLOY FORGINGS FOR AIRCRAFT AND AUTOMOTIVE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Anna Dziubińska

    2016-09-01

    Full Text Available The paper presents the theoretical and technological aspects of forming magnesium alloy parts for aircraft and automotive applications. The main applications of magnesium alloys in the aircraft and automotive industries are discussed. In addition, the forging technology for magnesium alloys is generally described, with a particular emphasis on wrought alloys. A brief outline of the state of the art in the forging of magnesium alloys is given based on a survey of the specialist literature and the results of previous research by the authors.

  3. An upper bound solution for closed die sinter forging of hexagonal shapes

    Indian Academy of Sciences (India)

    R K Ranjan; S Kumar

    2004-06-01

    The paper reports on an investigation into the various aspects of closed die cold forging of hexagonal powder preforms, which have been compacted and sintered from atomized powder. It is found that for certain dimensional ratios of the preform, the die pressure is minimum. An attempt has been made determine the die pressures developed during the closed die forging of the hexagonal powder preform by using an upper bound approach. The results so obtained are discussed critically to illustrate the interaction of various process parameters involved and are presented graphically.

  4. High speed forging of solid powder discs of large slenderness ratio

    Indian Academy of Sciences (India)

    R K Ranjan; S Kumar

    2004-10-01

    The paper reports an investigation into the forging of a solid powder circular disc with large slenderness ratio (L/D) between two flat dies at high speed. The deformation pattern during the operation is influenced by many factors, which interact with one another in a complex manner. The decisive factors are the interfacial conditions, initial relative density of the preform and the geometry of the preform. An attempt has been made to determine the die pressures developed during such forging, using an upper bound approach. The results so obtained are presented graphically and discussed critically to illustrate the interaction of various process parameters involved.

  5. Development and production of LP rotor forgings made from 670 ton ingot

    International Nuclear Information System (INIS)

    We have been produced mono block low-pressure turbine rotor shaft forgings for the nuclear power plant from ingot weight of up to 600 ton. However, increasing the generator capacity, more than 600 ton ingot shall be necessary to produce them. The Japan Steel Works, Ltd. has manufactured the trial mono block low-pressure turbine rotor shaft forging which diameter of φ3.2m from 670 ton ingot. We have confirmed that the internal quality by ultrasonic examination and the mechanical properties of 670 ton ingot is as same as that of 600 ton ingot. (author)

  6. Hot Cutting of Real-Time Cast-Forged GS Ductile Iron for Automotive Rods

    Science.gov (United States)

    Fouilland, Laurence; Mansori, Mohamed El

    2011-01-01

    In the global economy context, automotive industry suppliers have to keep a constant advance on products design and manufacturing process. Concerning automotive rods, the substitution of forged steel by spherical graphite iron (SG iron) with high mechanical properties constitutes a valid economic alternative. Such rods are produced using a complex coupled process: casting and forging followed by an austempered heat treatment. The forging operation is capable to shape the cast rod which introduces hot deformation to increase mechanical properties of net-shape SG iron rod. However, the intermediate re-heating between casting and forging must be avoided to keep competitive manufacturing costs. A major concern of this new process development is the cracks produced in rod's surface which are consecutive to hot spruing involved after casting operations. This issue is addressed in this paper which discusses the physical mechanisms involved in the hot ductile damage of SG iron. Hot cutting tests were performed to simulate the spruing operation which shows the close interactions between microstructure, machining parameters and resulting damages. The damage mechanisms in terms of crack initiation and its growth have been studied with respect to the constituent phases (austenite+graphite nodules), the cut surface morphology and the hot cutting performance.

  7. Open die forging of large shafts with porosity defects – physical and numerical modelling

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels;

    2013-01-01

    The aim and scope of this paper is centered to analyze the influence of the geometry of V-shaped dies on the closure of internal centerline porosity defects in ingots during multistep open-die forging. The investigation is performed with small scale physical models made from lead using V-shaped d...

  8. The Ties That Bind: How Social Capital Is Forged and Forfeited in Teacher Communities

    Science.gov (United States)

    Bridwell-Mitchell, E. N.; Cooc, North

    2016-01-01

    The effects of social capital on school improvement make it important to understand how teachers forge, maintain, or forfeit collegial relationships. Two common explanations focused on formal organizational features and individual characteristics do not address how social capital accrues from informal dynamics of teachers' interactions in…

  9. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... in the Federal Register on November 17, 2009 (74 FR 59254). At the request of the State agency and a... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site...

  10. Path planning and kinematics simulation of surfacing cladding for hot forging die

    Directory of Open Access Journals (Sweden)

    Wang Huajun

    2015-01-01

    Full Text Available During the course of their work, a variety of damage and failure of hot forging die occurs and seriously affect the service life. Multi-layer metal hot forging die with functionally graded material structure can effectively extend the service life. In this paper, According to the needs of strengthening forging cavity, the CAD model of surfacing forming center was designed. Based on technological requirements of surface cladding for die cavity, the coupled movement equation of weld torch was established, and the trajectory of welding positioner and Cartesian robot kinematics was solved. The weld torch path was planned, according to the typical methods used in plane welding, and the surfacing path data was extracted by the secondary development of UG/OPEN. Then the kinematics solver program, which can output the control function of motion simulation, was written in MATLAB to solve the kinematics equation. Finally, in UG NX7.5, the kinematics simulation model was built to verify the correctness of mathematical model and the rationality of welding path planning. The above studies can provide a technical support for the die repair and manufacturing of a multilayer metal forging die.

  11. Current steel forgings and their properties for steam generator of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Tomoharu; Murai, Etsuo; Sato, Ikuo [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Suzuki, Kimiaki; Kusuhashi, Mikio; Tsukada, Hisashi [Japan Steel Works Ltd., Tokyo (Japan)

    2001-06-01

    On the steel forging (SF) elements for steam generator (SG) of the pressurized water type light water reactor (PWR), from a viewpoint of upgrading in their improvements of design and materials, here were described on three materials such as integrated steel forgings, high strength steel forgings, and vacuum carbon deoxidisation (VCD) steel forgings. On production of SG, by using the integrated SF, not only structural soundness of SG is upgraded, but also inspections containing inspections under production and usage become easier, to bring minimization of maintenance inspection and reduction of exposure under operation. And, in order to reduce weight of SG and upgrade seismic resistance, SA508, a Cl.3a high strength SF (620 MPa class in tensile strength) is used for some nuclear plants. Here were introduced material properties of this SF and described its chemical components and heat treatment condition. And, as a method to reduce macro- and micro-segregation of materials and to upgrade homogeneity of material property, a method combined deoxidisation of steel due to carbon monoxide reaction with crystal grain minimization due to addition of aluminum was investigated. In addition, properties of a low Si-SA508 Cl.3 steel using this method was compared with that of usual SA508 Cl.3 steel. (G.K.)

  12. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  13. Physical modeling and numerical simulation of V-die forging ingot with central void

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels;

    2014-01-01

    Numerical simulation and physical modeling performed on small-scale ingots made from pure lead, having a hole drilled through their centerline to mimic porosity, are utilized to characterize the deformation mechanics of a single open die forging compression stage and to identify the influence...

  14. Prediction of grain size for large-sized aluminium alloy 7050 forging during hot forming

    Institute of Scientific and Technical Information of China (English)

    YI You-ping; FU Xin; CUI Jin-dong; CHEN Hua

    2008-01-01

    A numerical approach for process optimization and microstructure evolution of lager-sized forging of aluminium alloy 7050 Was proposed, which combined a commercial FEM code Deform 3D with empirical models. To obtain the parameters of empirical constitutive equation and dynamic recrystallization models for aluminium alloy 7050. the isothermal compression tests of 7050 samples were performed on Gleeble-1500 thermo-simulation machine in the temperature range of 250-450 ℃ and strain rate of 0.01-10 S-1, and the metallograph analysis of the samples were carried out on a Leica DMIRM image analyzer. The simulation results show that the dynamic recrystallization in the central area of the billet occurs more easily than that on the edge. Repetitious upsetting and stretching processes make the billet deform adequately. Among several forging processes e. g. upsetting, stretching, rounding and flatting. the stretching process is the most effective way to increase the effective strain and refine the microstructure of the billet. As the forging steps increase, the effective strain rises significantly and the average grain size reduces sharply. Recrystallized volume fractions in most parts of the final forging piece reach 100% and the average grain size reduces to 10 μm from initial value of 90 um.

  15. Social Work and Engineering Collaboration: Forging Innovative Global Community Development Education

    Science.gov (United States)

    Gilbert, Dorie J.

    2014-01-01

    Interdisciplinary programs in schools of social work are growing in scope and number. This article reports on collaboration between a school of social work and a school of engineering, which is forging a new area of interdisciplinary education. The program engages social work students working alongside engineering students in a team approach to…

  16. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2010-11-01

    ... stainless steel flanges from India and Taiwan (65 FR 49964). Following second five-year reviews by Commerce... duty orders on imports of forged stainless steel flanges from India and Taiwan (71 FR 3457, January 23... part 201), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74...

  17. 76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2011-02-15

    ... reviews, * * *'' (76 FR 5331). Accordingly, pursuant to section 751(c) of the Tariff Act of 1930 (19 U.S.C... COMMISSION Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade... steel flanges from India and Taiwan would be likely to lead to continuation or recurrence of...

  18. Fabrication Improvement of Cold Forging Hexagonal Nuts by Computational Analysis and Experiment Verification

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2015-01-01

    Full Text Available Cold forging has played a critical role in fasteners and has been applied to the automobile industry, construction industry, aerospace industry, and living products so that cold forging presents the opportunities for manufacturing more products. By using computer simulation, this study attempts to analyze the process of creating machine parts, such as hexagonal nuts. The DEFORM-3D forming software is applied to analyze the process at various stages in the computer simulation, and the compression test is also used for the flow stress equation in order to compare the differences between the experimental results and the equation that is built into the computer simulation software. At the same time, the metallography and hardness of experiments are utilized to understand the cold forging characteristics of hexagonal nuts. The research results would benefit machinery businesses to realize the forging load and forming conditions at various stages before the fastener formation. In addition to planning proper die design and production, the quality of the produced hexagonal nuts would be more stable to promote industrial competitiveness.

  19. Effect of key factors on cold orbital forging of a spur bevel gear

    Institute of Scientific and Technical Information of China (English)

    庄武豪; 董丽颖

    2016-01-01

    Cold orbital forging is an advanced spur bevel gear forming technology. Generally, the spur bevel gear in the cold orbital forging process is formed by two steps: the preforming step and the final step. Due to the great importance of the final step to gear forming and its complication with interactive factors, this work aims at examining the influence of key factors on the final step in cold orbital forging of a spur bevel gear. Using the finite element (FE) method and control variate method, the influence rules of four key factors, rotation velocity of the upper tool,n, feeding velocity of the lower tool,v, tilted angle of the upper tool,γ, friction factor between the tools and the billet,m, on the geometry and the deformation inhomogeneity of the cold orbital forged gear are thoroughly clarified. The research results show that the flash becomes more homogeneous with increasingv, increasingm, decreasing n or decreasingγ. And the deformation of the gear becomes more homogeneous with increasingv, decreasingn or decreasingγ. Finally, a corresponding experiment is conducted, which verifies the accuracy of FE simulation conclusions.

  20. T & I--Metalworking, Forging. Kit No. 55. Instructor's Manual [and] Student Learning Activity Guide.

    Science.gov (United States)

    Lake, Robert J.

    An instructor's manual and student activity guide on forging are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry (metalworking). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home…

  1. Beta titanium alloys and their role in the titanium industry

    Science.gov (United States)

    Bania, Paul J.

    1994-07-01

    The class of titanium alloys generically referred to as the beta alloys is arguably the most versatile in the titanium family. Since these alloys offer the highest strength-to-weight ratios and deepest hardenability of all titanium alloys, one might expect them to compete favorably for a variety of aerospace applications. To the contrary, however, except for one very successful application (Ti-13V-11Cr-3Al on the SR-71), the beta alloys have remained a very small segment of the industry. As a perspective on this situation, this article reviews some past and present applications of titanium alloys. It also descibes some unique new alloys and applications that promise to reverse historical trends.

  2. Diffusion bonding of titanium-titanium aluminide-alumina sandwich

    Energy Technology Data Exchange (ETDEWEB)

    Wickman, H.A.; Chin, E.S.C. [Army Research Lab., Watertown, MA (United States); Biederman, R.R. [Worcester Polytechnic Inst., MA (United States)

    1995-12-31

    Diffusion bonding of a metallic-intermetallic-ceramic sandwich is of interest for potential armor applications. Low cost titanium, titanium diboride reinforced titanium aluminide (Ti-48at.%Al), and aluminum oxide are diffusion bonded in a vacuum furnace between 1,000 C and 1,400 C. Metallographic examination of the prior bonding interface showed excellent metallurgical coupling between the Ti-48at.%Al composite and the low cost Ti. A series of microstructures representative of phases consistent with a hypothetical Ti-Al-B phase diagram is visible. The alumina-Ti-48at.%Al interfacial bond is achieved through penetration of titanium-aluminum phases into the existing alumina porosity. A detailed microstructural analysis identifying mechanisms of interfacial bonding will be presented for each interfacial zone.

  3. The wear mechanism of hybrid layer “PN+CrN” during the hot forging process

    Directory of Open Access Journals (Sweden)

    J.A. Smolik

    2011-12-01

    Full Text Available Purpose: One of the most perspective development directions of surface engineering is related to hybrid technologies, which best fulfil the expectations of the industry concerning the obtainment of adequate properties of the surface of tools and machine components. The best known and widely employed hybrid technology of surface treatment using the diffusion phenomenon is the combination of gas nitriding or plasma nitriding (PN+CrN followed by the deposition of hard, wear resistant coatings by the PVD methods. In this paper the wear mechanisms of forging dies, covered with the PN+CrN hybrid layer were analysed.Design/methodology/approach: The hybrid layers PN+CrN selected for testing were obtained by means of a multi-stage technology of surface treatment encompassing plasma nitriding (PN and arc-evaporation process. Maintenance tests were conducted at Institut für Umformtechnik und Umformmaschinen in Hannover, according to different forging time.Findings: It was demonstrated that the dominating mechanisms of the wear process of forging dies covered with the PN+CrN hybrid layer are: thermo-mechanical fatigue of the CrN coating and thermo-mechanical fatigue and plastic deformation of steel substrate.Research limitations/implications: The CrN coating is of great importance in the wear process of forging dies covered with the PN+CrN hybrid layer. Very important in the die wear process is the resistance of the CrN coating to brittle cracking. CrN coating reduces, and as a result significantly limits, stresses initiated in the substrate in the forging process by the operation of external impacts. According to the results of simulation tests, 3 µm-thick CrN coating limits stresses initiated in material and hence reduces the possibility of plastic deformation occurrence in substrate.Practical implications: The obtained results of the tests have been practically applied in the surface engineering laboratory to develop modern surface engineering

  4. The use of β titanium alloys in the aerospace industry

    Science.gov (United States)

    Boyer, R. R.; Briggs, R. D.

    2005-12-01

    Beta titanium alloys have been available since the 1950s (Ti-13V-11Cr-3Mo or B120VCA), but significant applications of these alloys, beyond the SR-71 Blackbird, have been slow in coming. The next significant usage of a β alloy did not occur until the mid-1980s on the B-1B bomber. This aircraft used Ti-15V-3Cr-3Al-3Sn sheet due to its capability for strip rolling, improved formability, and higher strength than Ti-6Al-4V. The next major usage was on a commercial aircraft, the Boeing 777, which made extensive use of Ti-10V-2Fe-3Al high-strength forgings. Ti-15V-3Cr-3Al-3Sn environmental control system ducting, castings, and springs were also used, along with Ti-3Al-8V-6Cr-4Mo-4Zr (β-C) springs. Beta-21S was also introduced for high-temperature usage. More recent work at Boeing has focused on the development of Ti-5Al-5Mo-5V-3Cr, a high-strength alloy that can be used at higher strength than Ti-10V-2Fe-3Al and is much more robust; it has a much wider, or friendlier, processing window. This, along with additional studies at Boeing, and from within the aerospace industry in general will be discussed in detail, summarizing applications and the rationale for the selection of this alloy system for aerospace applications.

  5. Dual Action of Lysophosphatidate-Functionalised Titanium: Interactions with Human (MG63) Osteoblasts and Methicillin Resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Skindersø, Mette Elena; Krogfelt, Karen Angeliki; Blom, Ashley;

    2015-01-01

    Titanium (Ti) is a widely used material for surgical implants; total joint replacements (TJRs), screws and plates for fixing bones and dental implants are forged from Ti. Whilst Ti integrates well into host tissue approximately 10% of TJRs will fail in the lifetime of the patient through a process...... known as aseptic loosening. These failures necessitate revision arthroplasties which are more complicated and costly than the initial procedure. Finding ways of enhancing early (osseo)integration of TJRs is therefore highly desirable and continues to represent a research priority in current biomaterial...

  6. Electrochemical process of titanium extraction

    Institute of Scientific and Technical Information of China (English)

    CH. RVS. NAGESH; C. S. RAMACHANDRAN

    2007-01-01

    A wide variety of processes are being pursued by researchers for cost effective extraction of titanium metal. Electrochemical processes are promising due to simplicity and being less capital intensive. Some of the promising electrochemical processes of titanium extraction were reviewed and the results of laboratory scale experiments on electrochemical reduction of TiO2 granules were brought out. Some of the kinetic parameters of the reduction process were discussed while presenting the quality improvements achieved in the experimentation.

  7. Low cost titanium--myth or reality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Paul C.; Hartman, Alan D.; Hansen, Jeffrey S.; Gerdemann, Stephen J.

    2001-01-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium, and titanium cost has prevented its use in non-aerospace applications including the automotive and heavy vehicle industries.

  8. 大型活塞杆锻件的研制%Development & Manufacture of Large Piston Rod Forging

    Institute of Scientific and Technical Information of China (English)

    涂政; 张承峰; 赵林武

    2014-01-01

    In the process of development and manufacture of the piston rod forging , by means of optimizing chemi-cal composition proportioning , selecting feasible forge forming process , and cooling with uniform velocity , each per-formance index for the piston rod forging can meet technical requirements .%在活塞杆锻件的研制过程中,优化化学成分配比,选择合理的锻造成型方法,淬火时匀速冷却,使得活塞杆锻件的各项指标均满足技术要求。

  9. TC17 titanium alloy laser melting deposition repair process and properties

    Science.gov (United States)

    Liu, Qi; Wang, Yudai; Zheng, Hang; Tang, Kang; Li, Huaixue; Gong, Shuili

    2016-08-01

    Due to the high manufacturing cost of titanium compressor blisks, aero engine repairing process research has important engineering significance and economic value. TC17 titanium alloy is a rich β stable element dual α+β phase alloy whose nominal composition is Ti-5Al-2Sn-2Zr-4Mo-4Cr. It has high mechanical strength, good fracture toughness, high hardenability and a wide forging-temperature range. Through a surface response experiment with different laser powers, scanning speeds and powder feeding speeds, the coaxial powder feeding laser melting deposition repair process is studied for the surface circular groove defects. In this paper, the tensile properties, relative density, microhardness, elemental composition, internal defects and microstructure of the laser-repaired TC17 forging plate are analyzed. The results show that the laser melting deposition process could realize the form restoration of groove defect; tensile strength and elongation could reach 1100 MPa and 10%, which could reach 91-98% that of original TC17 wrought material; with the optimal parameters (1000 W-25 V-8 mm/s), the microhardness of the additive zone, the heat-affected zone and base material is evenly distributed at 370-390 HV500. The element content difference between the additive zone and base material is less than ±0.15%. Due to the existence of the pores 10 μm in diameter, the relative density could reach 99%, which is mainly inversely proportional to the powder feeding speed. The repaired zone is typically columnar and dendrite crystal, and the 0.5-1.5 mm-deep heat-affected zone in the groove interface is coarse equiaxial crystal.

  10. Tensile and impact behaviour of sinter-forged Cr, Ni and Mo alloyed powder metallurgy steels

    International Nuclear Information System (INIS)

    Sintered and forged low-alloy P/M steels containing Cr, Ni and Mo were subjected to tensile, hardness and impact tests, in order to understand the influence of the alloying elements and microstructure on their mechanical properties. Elemental powders of atomized iron, graphite, chromium, nickel and molybdenum were mixed in suitable proportions using a ball mill, compacted and sintered in order to yield the following alloy compositions: Fe-0.2%C, Fe-0.2%C-1%Cr, Fe-0.2%C-1%Cr-2%Ni, Fe-0.2%C-2%Ni and Fe-0.2%C-2%Ni-1.5%Mo. Cylindrical compacts of 24 mm diameter and 32 mm height were prepared from the powder mixes in a 1000 kN hydraulic press using suitable cylindrical die-punch combination. Sintering of the ceramic-coated cylindrical preforms was carried out at 1000 ± 10 oC in a muffle furnace for a period of 120 min. Immediately after sintering, the cylindrical compacts were hot upset forged and drawn into square cross-section bars of density values to near-theoretical using a 2000 kN friction screw press. The size of the bars was maintained as 10 x 10 x 110 mm for preparing tensile specimen and 12 x 12 x 70 mm for impact specimen. Standard tensile and impact specimens were machined off from the forged square rods. Standard procedure was followed for conducting tensile test and impact test on the forged alloys. Hardness of the hot forged alloys was also measured using Rockwell hardness tester. Microstructures of the alloys were examined for correlating with the mechanical properties. Fractographs of the fractured surfaces of the tensile specimens were obtained using a scanning electron microscope. From the present study, it is contended that the alloying elements Cr, Ni and Mo have strong influence on the tensile and impact properties of the low-alloy steels studied. Among all the five alloys considered, the steel with chromium addition has exhibited the highest tensile strength with the corresponding impact strength being the least. The same alloy has also been

  11. Cell response of anodized nanotubes on titanium and titanium alloys.

    Science.gov (United States)

    Minagar, Sepideh; Wang, James; Berndt, Christopher C; Ivanova, Elena P; Wen, Cuie

    2013-09-01

    Titanium and titanium alloy implants that have been demonstrated to be more biocompatible than other metallic implant materials, such as Co-Cr alloys and stainless steels, must also be accepted by bone cells, bonding with and growing on them to prevent loosening. Highly ordered nanoporous arrays of titanium dioxide that form on titanium surface by anodic oxidation are receiving increasing research interest due to their effectiveness in promoting osseointegration. The response of bone cells to implant materials depends on the topography, physicochemistry, mechanics, and electronics of the implant surface and this influences cell behavior, such as adhesion, proliferation, shape, migration, survival, and differentiation; for example the existing anions on the surface of a titanium implant make it negative and this affects the interaction with negative fibronectin (FN). Although optimal nanosize of reproducible titania nanotubes has not been reported due to different protocols used in studies, cell response was more sensitive to titania nanotubes with nanometer diameter and interspace. By annealing, amorphous TiO2 nanotubes change to a crystalline form and become more hydrophilic, resulting in an encouraging effect on cell behavior. The crystalline size and thickness of the bone-like apatite that forms on the titania nanotubes after implantation are also affected by the diameter and shape. This review describes how changes in nanotube morphologies, such as the tube diameter, the thickness of the nanotube layer, and the crystalline structure, influence the response of cells.

  12. Interfacial oxidations of pure titanium and titanium alloys with investments.

    Science.gov (United States)

    Ban, S; Watanabe, T; Mizutani, N; Fukui, H; Hasegawa, J; Nakamura, H

    2000-12-01

    External oxides of a commercially pure titanium (cpTi), Ti6Al4V alloy, and an experimental beta-type titanium alloy (Ti 53.4 wt%, Nb 29 wt%, Ta 13 wt%, and Zr 4.6 wt%) were characterized after heating to 600, 900, 1150, and 1400 degrees C in contact with three types of investments (alumina cement, magnesia cement, and phosphate-bonded) in air. XRD studies demonstrated that MgO, Li2TiO3 and/or Li2Ti3O7 were formed through reactions with the metal and the constituents in the magnesia cement-investment after heating to 900, 1150, and 1400 degrees C. Except for these conditions, TiO2 (rutile) was only formed on cpTi. For titanium alloys, the other components apart from Ti also formed simple and complex oxides such as Al2O3 and Al2TiO5 on Ti6Al4V, and Zr0.25Ti0.75Nb2O7 on the beta-type titanium alloy. However, no oxides containing V or Ta were formed. These results suggest that the constituents of titanium alloys reacted with the investment oxides and atmospheric oxygen to form external oxides due to the free energy of oxide formation and the concentration of each element on the metal surface.

  13. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  14. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  15. Experimental Study and Numerical Simulation of the Casting-Forging Complex Near Net Forming of Alternator Claw-pole

    Institute of Scientific and Technical Information of China (English)

    J.L.Song; D.J.Hu; Q.C.Wang; H.Q.Chen; H.G.Guo

    2004-01-01

    As a newly developed precision technology, casting-forging complex near net forming process is utilized to produce complex components with a short lead time, low cost and high precision, thus to accelerate the response speed of the market and enhance the competitive power of products. In this paper, the casting-forging complex near net forming process of alternator claw pole was developed and investigated with a combination of experimental and numerical simulation method. Qualified near net workpiece was manufactured, mechanical parameter and relative field information during the forming process was also obtained. While the alternator claw-pole is processed with this technology, the forming force is small, the process is short and the quality of forgings is perfect. Therefore, the complex casting-forging near net forming process of claw-pole is an energy and material saving technology, which will have a vast developing and application prospect in the future.

  16. Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process

    Institute of Scientific and Technical Information of China (English)

    Mohammadmehdi Shabani; Mohammad Hossein Paydar; Mohammad Mohsen Moshksar

    2014-01-01

    The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, tempera-ture, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently com-pared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.

  17. Production of titanium dioxide

    International Nuclear Information System (INIS)

    Titanium dioxide pigments provide whiteness and opacity to a vast range of everyday products from coatings and plastics to inks and even cosmetics and food. Manufacturing takes place using two different processes - the so called 'sulphate' and 'chloride' routes - to produce more than 4.5 million t per year worldwide. Both routes start from impure TiO2 based feedstocks containing moderately enhanced concentrations of radionuclides of natural origin. Experts from the TiO2 production industry and feedstock suppliers are assisting the IAEA in the development of a Safety Report concerning exposure to NORM within the TiO2 industry. The data assessment shows that, for both process routes, most of the radioactivity reports to the solid process wastes and there are no areas of concern related to products, co-products or liquid or gaseous effluents for production units operating to current environmental standards. Risk assessments for the landfill disposal of solid process waste similarly did not indicate any areas of concern where current waste management practices were followed. Process deposits, typically scale material, can exhibit enhanced activity concentrations of radium. Specific management practices such as controlled vessel entry to restrict worker exposure to these materials may be necessary. With such measures, it is considered unlikely that a worker would receive an annual effective dose exceeding 1 mSv. (author)

  18. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel;

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  19. Thermodynamic analysis of production of high purity titanium by thermal decomposition of titanium iodide

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-hu; WANG Hua; LIU Yi-min; FANG Min

    2009-01-01

    High purity titanium was prepared by thermal decomposition of titanium iodide. The feasible synthetic route and optimum decompositon temperaure were obtained by thermodynamic analysis in the process of thermal decomposition of titanium iodide and nucleation growth theory. The temperature for the formation of titanium iodide is in the range of 800-900 K, at which a large amount of titanium iodide vapour can be obtained. The decomposition temperature of titanium iodide is in the range of 1 300-1 500 K, at which a favourable decomposition rate can be achieved. The experiment results show that the purity of the produced titanium is more than 99.995%.

  20. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...... the experimental work carried out in order to establish the models. The constitutive equations represent the materials properties mathematically and define the relationships between load, deformation, lifetime cycles, crack growth rates and stress intensities.......In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes...

  1. Volume calculation of the spur gear billet for cold precision forging with average circle method

    Institute of Scientific and Technical Information of China (English)

    Wangjun Cheng; Chengzhong Chi; Yongzhen Wang; Peng Lin; Wei Liang; Chen Li

    2014-01-01

    Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy. For the purpose of precisely calculating the volume of cylindrical spur gear billet in cold precision forging, a new theoretical method named average circle method was put forward. With this method, a series of gear billet volumes were calculated. Comparing with the accurate three-dimensional modeling method, the accuracy of average circle method by theoretical calculation was estimated and the maximum relative error of average circle method was less than 1.5%, which was in good agreement with the experimental results. Relative errors of the calculated and the experimental for obtaining the gear billet volumes with reference circle method are larger than those of the average circle method. It shows that average circle method possesses a higher calculation accuracy than reference circle method (traditional method), which should be worth popularizing widely in calculation of spur gear billet volume.

  2. Simulative Testing of Friction and Lubrication in Cold Forging of Steel and Aluminum

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels; Aida, Tetsuo;

    2012-01-01

    A new, simulative test of friction and lubrication in cold forging is developed by the authors. The test is based on a backward can extrusion process in which the workpiece rotates relatively to the conical punch. An analytical model is presented determining the friction stress from the measured...... torque during testing combined with an analysis of the sliding velocity distribution along the punch nose. The latter is determined by FE analysis of the test. Results show friction stress for unalloyed low C-steel provided with different types of lubricants, i.e. phosphate coating plus soap, phosphate...... coating plus MoS2 and single bathe lubrication with PULS and aluminum provided with 6 different lubricant systems. The new test is so severe, that it is possible to break down the best lubrication systems for cold forging of steel and aluminum....

  3. A New Cold Rotary Forging Technology for Automotive Starter Guiding Cylinder with Internal Helical Involute Spline

    Directory of Open Access Journals (Sweden)

    Wang Ping

    2016-01-01

    Full Text Available A new cold rotary forging technology of the internal helical involute spline was presented based on an analysis of the structure of automotive starter guide cylinder. 3D rigid-plastic finite element model was employed. Billet deformation, Billet equivalent stress and forming load were investigated under the DEFORM 3D software environment, then the forming process parameters were applied in the forming trials, and the simulation results are conformed with the experimental results. The validity of 3D finite element simulation model has been verified. The research results show that the proposed cold rotary forging technology can be efficient in handling of the forming manufacturing problems of automobile starter guide cylinder with internal helical involute spline.

  4. Effect of interfacial friction during forging of solid powder discs of large slenderness ratio

    Indian Academy of Sciences (India)

    R K Ranjan; S Kumar

    2004-10-01

    The paper reports an investigation into the effect of interfacial friction law during the forging of a powder circular disc with large slenderness ratio (L/D) between two flat dies. The deformation pattern during the operation is influenced by many factors, which interact with each other in a complex manner. The relative velocity between the work piece material and the die surface, together with high interfacial pressure and/or deformation modes, creates the conditions essential for adhesion in addition to sliding. The decisive factors are the interfacial conditions, initial relative density of the preform and geometry of the preform. An attempt has been made to determine the most realistic interfacial friction law and die pressures developed during such forging using an upper bound approach. The results so obtained are presented graphically and discussed critically to illustrate the interaction of various interfacial friction laws involved.

  5. HYDROGEN EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEELS

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M

    2008-03-28

    The effect of hydrogen on the fracture toughness properties of Types 304L, 316L and 21-6-9 forged stainless steels was investigated. Fracture toughness samples were fabricated from forward-extruded forgings. Samples were uniformly saturated with hydrogen after exposure to hydrogen gas at 34 MPa or 69 and 623 K prior to testing. The fracture toughness properties were characterized by measuring the J-R behavior at ambient temperature in air. The results show that the hydrogen-charged steels have fracture toughness values that were about 50-60% of the values measured for the unexposed steels. The reduction in fracture toughness was accompanied by a change in fracture appearance. Both uncharged and hydrogen-charged samples failed by microvoid nucleation and coalescence, but the fracture surfaces of the hydrogen-charged steels had smaller microvoids. Type 316L stainless steel had the highest fracture toughness properties and the greatest resistance to hydrogen degradation.

  6. MODELING OF MICROSTRUCTURAL EVOLUTION IN MICROALLOYED STEEL DURING HOT FORGING PROCESS

    Institute of Scientific and Technical Information of China (English)

    J. Wang; J. Chen; Z. Zhao; X.Y. Ruan

    2006-01-01

    The microstructural evolution of microalloyed steel during hot forging process was investigated using physical simulation experiments. The dynamic recrystallized fraction was described by modifying Avrami's equation, the parameters of which were determined by single hit compression tests. Double hit compression tests were performed to model the equation describing the static recrystallized fraction, and the obtained predicted values were in good agreement with the measured values. Austenitic grain growth was modeled as: Dinc5=D05 +1.6×1032t·exp(-716870/RT) using isothermal tests. Furthermore, an equation describing the dynamic recrystallized grain size was given as Ddyn=3771·Z-0.2.The models of microstructural evolution could be applied to the numerical simulation of hot forging.

  7. Influence of Heat Treatment on Residual Stress in Cold-Forged Parts

    Directory of Open Access Journals (Sweden)

    Frederico Ozanan Neves

    2014-01-01

    Full Text Available Residual stresses are those stresses that remain in a body when there is no external load applied. Numerous factors can induce residual stresses in the material, including cold forming. Thermal treatments of steel are widely used because they can improve the mechanical properties of the steel, such as toughness, tenacity, and resistance; however, thermal treatments can also produce residual stresses. This study aims to analyze the residual stresses present in a cold-forged part after heat treatments. Half-cylinder samples of AISI 1045 steel were cold-forged, and a wedge tool was pressed into their surface, causing a strain gradient. The samples were then heat-treated by annealing, normalizing, quenching, or quenching and tempering. A numerical simulation was also performed to aid in choosing the measurement points in the samples. The results show that residual stresses are dependent on the heat treatment and on the intensity and nature of previous residual stresses in the body.

  8. Qualification of laser based additive production for manufacturing of forging Tools

    Directory of Open Access Journals (Sweden)

    Junker Daniel

    2015-01-01

    Full Text Available Mass customization leads to very short product life cycles, so the costs of a tool have to be amortized with a low number of workpieces. Especially for highly loaded tools, like those for forging, that leads to expensive products. Therefore more economical production processes for tool manufacturing have to be investigated. As laser additive manufacturing is already used for the production of moulds for injection moulding, this technology maybe could also improve the forging tool production. Within this paper laser metal deposition, which is industrially used for tool repair, will be investigated for the use in tool manufacturing. Therefore a mechanical characterization of parts built with different laser process parameters out of the hot work tool steel 1.2709 is made by upsetting tests and hardness measurements. So the influence of the additive manufacturing process on the hardness distribution is analysed.

  9. Research on Thermal Wear of Cast Hot Forging Die Steel Modified by Rare Earths

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Thermal wear of cast hot-forging die steel modified by rare earths(RE) was studied and compared with commercially used die steels. The function of RE and the mechanism of thermal wear of cast steel modified by RE were discussed. The results showed that with increasing content of RE, the wear rate of cast steel reduced at first and then increased. By adding 0.05%(mass fraction) RE, the cast hot-forging die steel with optimum thermal wear resistance was obtained, which was better than that of H13 and 3Cr2W8V. The large amount of coarse inclusions, (RE)2O2S, resulted from excessive RE, which obviously deteriorated thermal wear resistance. The mechanism of thermal wear of the modified cast die steel is oxidation wear and oxide fatigue delamination. The wear debris are lumps of Fe2O3 and Fe3O4.

  10. Influence of the hydrostatic stress component on critical surface expansion in forging compound products

    DEFF Research Database (Denmark)

    Vorm, T; Bay, Niels; Wanheim, Tarras

    1974-01-01

    One of the most important process parameters in making compound products is the expansion of the bonding surface. Bonding is not obtained until a critical surface expansion, characteristic of the deformation process, is reached. This paper deals with an experimental investigation of the influence...... of a superimposed hydrostatic pressure on the critical surface expansion during a forging process. The critical surface expansion appears to decrease with increasing hydrostatic pressure. This may be due to the fact that the close contact between the materials necessary to obtain bonding is created by a micro......-extrusion of the surfaces into each other. This may explain why the bond strength achieved by different processes, such as forging and extrusion, is quite different for the same value of the surface expansion....

  11. Tool Path Design of Incremental Open-Die Disk Forging Using Physical Modeling

    Science.gov (United States)

    Lee, Sung-Uk; Yang, Dong-Yol

    A small-batch product of large-sized parts is usually manufactured using incremental open-die forging. In order to control the overall change in the shape of a part, it is essential to be able to predict the shape changes that occur during each step. This paper addresses shape changes of a material according to the forging path. Rapid prediction of metal flows for continuing incremental deformation using theoretical methods is difficult. Accordingly, instead of a theoretical approach, an experiment that tests the tendency of the metal flow for development of forming processes is required. For the sake of convenience, simulative experiments are carried out using plasticine at room temperature. In present study, the tool movement is dominant parameters to with respect to changing the shape of the workpiece.

  12. Fiber reinforced titanium alloy composites

    International Nuclear Information System (INIS)

    The more important titanium matrix composites studied to date are composed of titanium alloy matrices, such as Ti 6Al--4V, reinforced with filaments of boron, silicon carbide, or sapphire, as well as with wires of beryllium or refractory metal alloys. The primary fabrication techniques for these materials involve vacuum hot pressing at 1300 to 16000F, alternate layers of titanium alloy matrix foils, and suitably aligned filament mats. The more ductile reinforcements such as beryllium, have been incorporated into titanium matrix composites by coextrusion. Fabrication of composite gas turbine engine fan blades from both boron (SiC coated) and beryllium reinforced Ti 6Al--4V alloy is described. Feasibility studies have been made in the fabrication of Boron/Ti 6Al--4V composite rings for possible gas turbine engine disc applications. Mechanical properties of various titanium matrix composite systems are presented and demonstrate the attractive elevated temperature properties of some systems to 10000F. (35 fig, 6 tables) (U.S.)

  13. Cementless anatomical prosthesis for the treatment of 3-part and 4-part proximal humerus fractures: cadaver study and prospective clinical study with minimum 2 years followup

    Directory of Open Access Journals (Sweden)

    Obert Laurent

    2016-01-01

    Full Text Available Introduction: The purpose of this study was to evaluate the functional and radiological outcomes of a cementless, trauma-specific locked stem for 3- and 4-part proximal humeral fractures. Materials and methods: This study consisted of two parts: a cadaver study with 22 shoulders and a multicenter prospective clinical study of 23 fracture patients evaluated at least 2 years after treatment. In the cadaver study, the locked stem (HumelockTM, FX Solutions and its instrumentation were evaluated. In the clinical study, five senior surgeons at four different hospitals performed the surgical procedures. An independent surgeon evaluated the patients using clinical (Constant score, QuickDASH and radiological (X-rays, CT scans outcome measures. Results: The cadaver study allowed us to validate the height landmarks relative to the pectoralis major tendon. In the clinical study, at the review, abduction was 95° (60–160, forward flexion was 108° (70–160, external rotation (elbow at body was 34° (0–55, the QuickDASH was 31 (4.5–59, the overall Constant score was 54 (27–75, and the weighted Constant score was 76 (31.5–109. Discussion: This preliminary study of hemiarthroplasty (HA with a locked stem found results that were at least equivalent to published series. As all patients had at least a 2-year follow-up, integration of the locked stem did not cause any specific complications. These results suggest that it is possible to avoid using cement when hemiarthroplasty is performed for the humeral stem. This implant makes height adjustment and transosseous suturing of the tuberosities more reproducible.

  14. Estudo da estabilidade dos componentes na artroplastia total do joelho sem cimento Study on implant stability in cementless total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Luís Eduardo Passarelli Tírico

    2012-01-01

    Full Text Available OBJETIVO: Comparar dois métodos de avaliação da estabilidade dos componentes tibial e femoral nas artroplastias de joelho não cimentadas com plataforma rotatória. MÉTODOS: Para isso foram avaliados 20 pacientes (20 joelhos através de uma análise de radiografias dinâmicas com intensificador de imagem e manobras de estresse em varo e valgo, que foram comparadas com radiografias estáticas em frente e perfil dos joelhos, analisadas por dois cirurgiões experientes, cegos um em relação ao outro. RESULTADOS: Os resultados das análises estáticas e dinâmicas foram comparados e demonstraram forte correlação estatística (pObjetives: Determine the stability of tibial and femoral components of 20 cementless knee arthroplasties with rotating platform. METHODS: The 20 patients (20 knees underwent an analysis of dynamic radiographs with an image amplifier and maneuvers of varus and valgus which were compared to static frontal and lateral radiographs of the knees and analyzed by two experienced surgeons in a double-blind way. RESULTS: We could observe in this study that both methods showed very similar results for the stability of the tibial and femoral components (p<0,001 using the Kappa method for comparison. CONCLUSION: The tibial component was more unstable in relation to the femoral component in both static and dynamic studies. Level of evidence IV, Case Series.

  15. Effect of isothermal forging on microstructure and fatigue behavior of blended elemental Ti-6Al-4V powder compacts

    Science.gov (United States)

    Weiss, I.; Eylon, D.; Toaz, M. W.; Froes, F. H.

    1986-03-01

    The effect of isothermal hot forging (IHF) on microstructure, pore closure, and tensile and fatigue properties of Ti-6A1-4V blended elemental cold pressed and sintered powder compacts was investigated. Two types of sponge fines were used: (a) high chloride produced by the Hunter sodium reduction process (HP) and (b) low chloride produced by the electrolytic process (EP). The as-sintered HP compacts were 99 pct dense while the EP compacts were only 92 pct dense. All sintered preforms were isothermally hot forged below the beta transus temperature and reached almost full density. The microstructure of the HP forged compacts consisted of fine equiaxed alpha, while the EP forged compacts exhibited a coarse lenticular alpha structure after 30 pct reduction and a partially recrystallized structure after 68 pct reduction. It was found that EP compacts forged to a 30 pct reduction exhibited a low fatigue limit of 172 MPa (25 ksi), since the lenticular alpha morphology and the residual porosity resulted in premature fatigue crack initiation. On the other hand, a higher fatigue strength of 485 MPa (70 ksi) was obtained for EP compacts forged to a 78 pct reduction due to the mixed equiaxed/lenticular alpha morphology as well as removal of stress concentration features such as interparticle pore interfaces.

  16. Numerical simulation and experimental study for the die forging process of a high-speed railway brake disc hub

    Science.gov (United States)

    Sun, Mingyue; Xu, Bin; Zhang, Long; LI, Dianzhong

    2013-05-01

    With the aim of manufacturing a near-net shape forging product of a brake disk hub for the high-speed railway, the die forging process was designed and optimized in this study. Firstly, based on the measured stress-strain curves at different strain rates and the thermal-physical parameters of 40Cr A steel, a finite element model for the forging process of a high-speed railway brake disc hub was established. Then, the temperature, stress and strain fields were studied and analyzed at the pre-forging and the finial-forging stages. Besides, in order to trace the stress and strain evolution, five points at different positions were chosen on the billet, and the comparison of the state conditions was made among these points. The results have demonstrated that the product can be well formed by an elaborately designed three-stage forging process, which may reduce the metal machine allowance and the producing cost effectively. Finally, an industrial trial was made and a machined product with sound quality was obtained.

  17. Titanium, Sinusitis, and the Yellow Nail Syndrome

    OpenAIRE

    Berglund, Fredrik; Carlmark, Björn

    2010-01-01

    Yellow nail syndrome is characterized by nail changes, respiratory disorders, and lymphedema. In a yellow nail patient with a skeletal titanium implant and with gold in her teeth, we found high levels of titanium in nail clippings. This study aims to examine the possible role of titanium in the genesis of the yellow nail syndrome. Nail clippings from patients with one or more features of the yellow nail syndrome were analyzed by energy dispersive X-ray fluorescence. Titanium was regularly fou...

  18. Lightweight Protective Coatings For Titanium Alloys

    Science.gov (United States)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  19. Implementation of the finite deformation plastic theory-Tensor derivative and metal forging simulation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It has been shown that the traditional small deformation plasticity can be transplanted to the finite deformation plasticity by using the logarithmic strain measure only. In this way, the mathematical problem of how to find the derivative of a tensor function arises. In this paper, a general method for finding the derivative of a tensor function is proposed. Several metal forging examples are given.During the calculation, the mesh regeneration is not even invoked.

  20. Influence of Heat Treatment on Residual Stress in Cold-Forged Parts

    OpenAIRE

    Frederico Ozanan Neves; Thiago Luis Lara Oliviera; Durval Uchoas Braga; Alex Sander Chaves da Silva

    2014-01-01

    Residual stresses are those stresses that remain in a body when there is no external load applied. Numerous factors can induce residual stresses in the material, including cold forming. Thermal treatments of steel are widely used because they can improve the mechanical properties of the steel, such as toughness, tenacity, and resistance; however, thermal treatments can also produce residual stresses. This study aims to analyze the residual stresses present in a cold-forged part after heat tre...

  1. Comparative analysis of wear mechanism of different types of forging dies

    OpenAIRE

    A. Mazurkiewicz; Smolik, J.

    2011-01-01

    Purpose: Hot working dies are influenced by three main factors causing their destruction: the cyclically changeable mechanical loads, intensive thermal shocks, as well as intensive friction, and erosion. The great variety of the shapes of forgings, the material they are made of (carbon steel, alloy steel, brass) and the precision of their production – whether they are supposed to undergo further treatment or are considered to be the final products – result in a variety of problems encountered...

  2. Research on Simulation of Giant Forging Hydraulic Press Decoupling Control for Synchronous Control System

    OpenAIRE

    Xinliang Liu; Yingjian Deng; Zhongwei Liu

    2013-01-01

    A giant forging hydraulic press active synchronous control system is a mutually-coupled multi-input and multi-output system. To solve the elimination of the multi-channel interference, a multiple-input and multiple-output mathematical model center on active-beam is established; multi-channel synchronous decoupling control strategy is studied. The simulation results show that: the system eliminates the role of strong interference between multi-channel accesses to very good inhibitory effect of...

  3. DYNAMIC SIMULATION OF MICROSTRUCTURE EVOLUTION DURING HOT FORGING FOR ENGINE STIGMATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Incorporated with constitutive relationship established by artificial neural networks (ANN), a coupled theroviscoplastic finite element procedure is developed for predicting the microstructure evolution in the hot forging process, considering the factors such as dynamic recrystallization, static recrystallization and grain growth etc. This software system is applied to predict the distributions of the grain size over the crosssection of stigmata, which is found to be in good agreement with the experimental results. The software can provide a fundament for optimizing technological parameters.

  4. Heat treatment of cold formed steel forgings for the automotive industry

    OpenAIRE

    B. Kosec; M. Brezigar; G. Kosec; J. Bernetic; M. Bizjak

    2007-01-01

    Purpose: In the Slovenian company ISKRA Avtoelektrika they manufacture, with the processes of cold forming, a great number of a different steel forgings for the Slovenian and European automotive industry. During their exploitation they are exposed to the high mechanical and temperature loads.Design/methodology/approach: A gas furnaces and devices play important role in the heat treatments of various metal parts for the automotive industry. Their thermotechnical characteristics have a great in...

  5. Heat treatment of cold formed steel forgings for the automotive industry

    Directory of Open Access Journals (Sweden)

    B. Kosec

    2007-06-01

    Full Text Available Purpose: In the Slovenian company ISKRA Avtoelektrika they manufacture, with the processes of cold forming, a great number of a different steel forgings for the Slovenian and European automotive industry. During their exploitation they are exposed to the high mechanical and temperature loads.Design/methodology/approach: A gas furnaces and devices play important role in the heat treatments of various metal parts for the automotive industry. Their thermotechnical characteristics have a great influence on the product quality and costs. The basic aim of our investigation work is to present the optimization of a device with emphasis on continuous control of working temperature.Findings: The efficiency and quality of the treatment were analysed with the use of: chemical analysis, hardness measurements, measurements of carbon and sulphur content in the surface layer, and metallographic examination methods.Research limitations/implications: For economical production of cold formed steel forgings for the automotive industry it is important that they have a long working life. The corresponding mechanical and thermal properties of the steel forgings are achieved by a heat treatment.Practical implications: As a practical example is presented an optimisation of the heat treatment procedure for typical cold formed steel forging for the automotive industry from the ISKRA Avtoelektrika production program. The practical result of the used heat treatment are the cold formed steel pinions with the surface hardness of approximately 65 HRC, and the case hardened depth of the surface layer approximately 0.7 mm.Originality/value: On the basis of the results of our technical investigation work and corresponding economical studies, the second device (of the same producer, type and capacity for the heat treatment was installed at the end of last year.

  6. Buster Die Shape Design of a Track Link Forging Using FEMBased Back-Tracing Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For the preform design of a complex track link forging, fifteen critical sections were selected for two dimensional back-tracing using FEM. The preform shapes of the critical sections are designed and integrated into an ideal 3D busting shape. The buster dies are finally designed according to the ideal busting shape with a little of modification. The 3D simulation of the busting stage is carried out.

  7. Research of upsetting ratio in forming processes on a three – slides forging press

    OpenAIRE

    W.S. Weroński; A. Gontarz; Z. Pater

    2006-01-01

    Purpose: The purpose of the presented in this work research was determining the limiting conditions of upsetting in three-slide forging press (TSFP). The free upsetting process and upsetting process in cylindrical impression were analyzed.Design/methodology/approach: The assumed purpose was confirmed in experimental research. For the case of upsetting in cylindrical impression, the research of limiting upsetting coefficients were made for different diameters and impression lengths. Findings:...

  8. Parallel investigation of double forged pure tungsten samples irradiated in three DPF devices

    Energy Technology Data Exchange (ETDEWEB)

    Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); A. Salam International Centre for Theoretical Physics, Trieste (Italy); Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Laas, T. [Institute of Mathematics and Natural Sciences, Tallinn University, Tallinn (Estonia); Shirokova, V., E-mail: veroonika.pelohh@gmail.com [Institute of Mathematics and Natural Sciences, Tallinn University, Tallinn (Estonia); Väli, B.; Paju, J. [Institute of Mathematics and Natural Sciences, Tallinn University, Tallinn (Estonia); Pimenov, V.N.; Demina, E.V.; Latyshev, S.V. [A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Niemela, J.; Crespo, M.-L.; Cicuttin, A. [A. Salam International Centre for Theoretical Physics, Trieste (Italy); Talab, A.A. [Atomic Energy Authority, NRC, Plasma Physics and Nuclear Fusion Department (Egypt); Pokatilov, A.; Parker, M. [AS Metrosert, Central Office of Metrology, Tallinn (Estonia); Tallinn University of Technology, Tallinn (Estonia)

    2015-08-15

    The double forged pure tungsten (W) samples (supplied by IAEA CRP from the FZJ team in Juelich, Germany) were irradiated in DPF (dense plasma focus) devices PF-12, “Bora” and PF-1000 by hot plasma and fast ion streams. We have used the following analytical methods: microscopy (optical and scanning electron), X-ray photoelectron spectroscopy, electrical conductivity and microroughness measurements. The damage dependence of the tungsten grades on irradiation conditions and power flux densities of irradiation processes is discussed.

  9. Thermal Forge Welding Simulations: A Weldability Study of X65 Pipeline Quality

    OpenAIRE

    Herikstad, Ruth Oftedal

    2011-01-01

    Shield active gas forge welding is a time-efficient welding technique for solid statewelding of pipelines. Pipes are first heated by induction or ohmic resistance, and areforged together using an active shielding gas to reduce surface oxides. The solid statewelding requires lower peak temperatures than fusion welding, reducing the graingrowth. The low peak temperature also makes this technique possible on oil rigs andvessels where the explosion risk is high. The cooling of the pipes after wel...

  10. Simulations and Experiments of the Nonisothermal Forging Process of a Ti-6Al-4V Impeller

    Science.gov (United States)

    Prabhu, T. Ram

    2016-09-01

    In the present study, a nonisothermal precision forging process of a Ti-6Al-4V first-stage impeller for the gas turbine engine was simulated using the finite element software. The simulation results such as load requirements, damage, velocity field, stress, strain, and temperature distributions are discussed in detail. Simulations predicted the maximum load requirement of about 80 MN. The maximum temperature loss was observed at the contour surface regions. The center and contour regions are the high-strained regions in the part. To validate the model, forging experiments mimicking simulations were performed in the α + β phases region (930 °C). The selected locations of the part were characterized for tensile properties at 27 and 200 °C, hardness, microstructure, grain size, and the amount of primary α phase based on the strain distribution results. The soundness of the forged part was verified using fluorescent penetrant test (Mil Std 2175 Grade A) and ultrasonic test (AMS 2630 class A1). From the experimental results, it was found that the variations in the hardness, tensile properties at room, and elevated temperature are not significant. The microstructure, grain size, and primary α phase content are nearly same.

  11. The coarsening effect of SA508-3 steel used as heavy forgings material

    Directory of Open Access Journals (Sweden)

    Dingqian Dong

    2015-01-01

    Full Text Available SA508Gr.3 steel is popularly used to produce core unit of nuclear power reactors due to its outstanding ability of anti-neutron irradiation and good fracture toughness. The forging process takes important role in manufacturing to refine the grain size and improve the material properties. But due to their huge size, heavy forgings cannot be cooled down quickly, and the refined grains usually have long time to grow in high temperature conditions. If the forging process is not adequately scheduled or implemented, very large grains up to millimetres in size may be found in this steel and cannot be eliminated in the subsequent heat treatment. To fix the condition which may causes the coarsening of the steel, hot upsetting experiments in the industrial production environment were performed under different working conditions and the corresponding grain sizes were measured and analysed. The observation showed that the grain will abnormally grow if the deformation is less than a critical value. The strain energy takes a critical role in the grain evolution. If dynamic recrystallization consumes the strain energy as much as possible, the normal grains will be obtained. While if not, the stored strain energy will promote abnormal growth of the grains.

  12. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    International Nuclear Information System (INIS)

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load

  13. Multipass forging of Inconel 718 in the delta-Supersolvus domain: assessing and modeling microstructure evolution

    Directory of Open Access Journals (Sweden)

    Zouari Meriem

    2014-01-01

    Full Text Available This work is focused on the evolution of the microstructure of Inconel 718 during multi-pass forging processes. During the forming process, the material is subjected to several physical phenomena such as work-hardening, recovery, recrystallization and grain growth. In this work, transformation kinetics are modeled in the δ-Supersolvus domain (T>Tsolvus where the alloy is single-phase, all the alloying elements being dissolved into the FCC matrix. Torsion tests were used to simulate the forging process and recrystallization kinetics was modeled using a discontinuous dynamic recrystallization (DDRX two-site mean field model. The microstructure evolution under hot forging conditions is predicted in both dynamic and post-dynamic regimes based on the initial distribution of grain size and the evolution of dislocation density distribution during each step of the process. The model predicts recrystallization kinetics, recrystallized grain size distribution and stress–strain curve for different thermo-mechanical conditions and makes the connection between dynamic and post-dynamic regimes.

  14. Effects of Forging Process Parameters on Microstructure Evolution of Aluminum Alloy 7050

    International Nuclear Information System (INIS)

    The objective of this work is to investigate the behavior of microstructure evolution of aluminum alloy 7050 under the condition of different forging process parameters by means of combining materials physical model with finite element code. For the purpose of establishing constitutive equation and physical model of microstructure evolution, the isothermal compression test were performed by machine Gleeble 1500 on the condition of temperatures ranging from 250 deg. C to 450 deg. C and constant strain rates of 0.01s-1, 0.1s-1, 1s-1 and 10s-1. The behaviors of microstructure evolutions of aluminum alloy 7050 under difference process parameters were studied by metallographic observations. The experiment results showed that recrystallization during forming process occurred at the critical strain and the volume fraction of recrystallization changed with the temperature and strain rate. According to the results of isothermal compression test, a constitutive equation and an empirical model of DRX were obtained. A finite element code DEFORM 3D was used to analyze the influence of different forging process parameters on the behavior of microstructure evolution in details. The present model and simulation method can be served as a useful tool to predict and control the properties and shape of aluminum alloy 7050 components during forging

  15. Current forgings and their properties for steam generator of nuclear plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio; Sato, Ikuo [Japan Steel Works Ltd., Muroran (Japan)

    1997-12-31

    Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order to decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.

  16. Wear Improvement of Tools in the Cold Forging Process for Long Hex Flange Nuts

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2015-09-01

    Full Text Available Cold forging has played a critical role in fasteners and has been widely used in automotive production, manufacturing, aviation and 3C (Computer, Communication, and Consumer electronics. Despite its extensive use in fastener forming and die design, operator experience and trial and error make it subjective and unreliable owing to the difficulty of controlling the development schedule. This study used finite element analysis to establish and simulate wear in automotive repair fastener manufacturing dies based on actual process conditions. The places on a die that wore most quickly were forecast, with the stress levels obtained being substituted into the Archard equation to calculate die wear. A 19.87% improvement in wear optimization occurred by applying the Taguchi quality method to the new design. Additionally, a comparison of actual manufacturing data to simulations revealed a nut forging size error within 2%, thereby demonstrating the accuracy of this theoretical analysis. Finally, SEM micrographs of the worn surfaces on the upper punch indicate that the primary wear mechanism on the cold forging die for long hex flange nuts was adhesive wear. The results can simplify the development schedule, reduce the number of trials and further enhance production quality and die life.

  17. Heat transfer coefficient for F.E analysis in the warm forging process

    Directory of Open Access Journals (Sweden)

    S.S. Kang

    2007-01-01

    Full Text Available Purpose: The Purpose of this paper is to obtain suitable convection and contact heat transfer coefficient forone-time finite element analysis in the warm forging process.Design/methodology/approach: To do this, the temperature of the tool used in the operation was measured witha thermocouple and repeated finite element analysis(FEA was performed using the experimentally calculatedcontact and cooling heat transfer coefficient. Also the surface temperature of the active tool was obtained bycomparing the measurement and analysis results and finally the contact heat transfer coefficient for one-time FEAwas completed by comparing the surface temperature between the repeated FEA and one-time FEA results.Findings: The acceptable convection heat transfer coefficients are from 0.3 to 0.8N/mm/s/K and the contactheat transfer coefficient of 6~9N/mm/s/K is appropriate for the warm forging process with flow-typelubrication conditions.Practical implications: A comparison of the temperatures from the repeated and one-time analysis allows anoptimum contact heat transfer coefficient for the one time finite element analysis to be determined.Originality/value: Several studies have been conducted with different conditions such as applied pressure andkind of lubricant, but no research has been conducted concerning the convection heat transfer coefficient in thewarm forging process. Also, comparative analysis concerning the reason for difference between experimentallydetermined contact heat transfer coefficient and practically adapted one has not been conducted, yet.

  18. Simulations and Experiments of the Nonisothermal Forging Process of a Ti-6Al-4V Impeller

    Science.gov (United States)

    Prabhu, T. Ram

    2016-06-01

    In the present study, a nonisothermal precision forging process of a Ti-6Al-4V first-stage impeller for the gas turbine engine was simulated using the finite element software. The simulation results such as load requirements, damage, velocity field, stress, strain, and temperature distributions are discussed in detail. Simulations predicted the maximum load requirement of about 80 MN. The maximum temperature loss was observed at the contour surface regions. The center and contour regions are the high-strained regions in the part. To validate the model, forging experiments mimicking simulations were performed in the α + β phases region (930 °C). The selected locations of the part were characterized for tensile properties at 27 and 200 °C, hardness, microstructure, grain size, and the amount of primary α phase based on the strain distribution results. The soundness of the forged part was verified using fluorescent penetrant test (Mil Std 2175 Grade A) and ultrasonic test (AMS 2630 class A1). From the experimental results, it was found that the variations in the hardness, tensile properties at room, and elevated temperature are not significant. The microstructure, grain size, and primary α phase content are nearly same.

  19. Effect of Alloying Elements on Thermal Wear of Cast Hot-Forging Die Steels

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-qi; CHEN Kang-min; CUI Xiang-hong; JIANG Qi-chuan; HONG Bian

    2006-01-01

    The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.

  20. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically...

  1. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium...

  2. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  3. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  4. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide...

  5. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  6. Photonuclear reactions on titanium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Belyshev, S. S. [Moscow State University (Russian Federation); Dzhilavyan, L. Z. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ishkhanov, B. S.; Kapitonov, I. M. [Moscow State University (Russian Federation); Kuznetsov, A. A., E-mail: kuznets@depni.sinp.msu.ru; Orlin, V. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  7. Mechanical properties of titanium connectors.

    Science.gov (United States)

    Neo, T K; Chai, J; Gilbert, J L; Wozniak, W T; Engelman, M J

    1996-01-01

    The tensile mechanical properties of welded titanium joints were studied, and intact titanium was used as controls. Welded joints were fabricated with either a stereographic laser-welding technique or a gas tungsten arc welding technique. The effect of heat treatment following a simulated porcelain application was also investigated. Heat-treated laser welds had significantly lower ultimate tensile strengths. Heat treatment had no effect on the modulus of elasticity or elongation, but generally significantly decreased the yield strength of the titanium specimens. The gas tungsten are welding specimens had significantly higher yield strengths and elastic moduli than the other two groups. The elongation of the control specimens was significantly greater than the elongation of the gas tungsten arc welding specimens, which was in turn significantly higher than that of the laser-welded specimens. PMID:8957877

  8. The use of a modular titanium endoprosthesis in skeletal reconstructions after bone tumor resections: method presentation and analysis of 37 cases

    Directory of Open Access Journals (Sweden)

    Croci Alberto Tesconi

    2000-01-01

    Full Text Available We analyzed 37 patients who underwent segmental wide resection of bone tumors and reconstruction with a modular titanium endoprosthesis at the Orthopaedic Oncology Group, between 1992 and 1998. Twelve patients were male and 25 were female, with a mean age of 30 years (9 - 81. The mean follow-up was 14 months (2 - 48. The diagnoses were: osteosarcoma (14 cases, metastatic carcinoma (10, Ewing's sarcoma (4, giant cell tumor (4, malignant fibrous histiocytoma (3, chondrosarcoma (1, and aneurysmal bone cyst (1. Eleven articulated total knee, 8 partial proximal femur with bipolar acetabulum, 8 partial proximal humerus, 3 total femur, 2 partial proximal tibia, 2 diaphyseal femur, 2 diaphyseal humerus, and 1 total proximal femur with cementless acetabulum endoprosthesis implant procedures were done. The complications related to the procedure included: infection (5 cases, dislocation (3, module loosening (1, and ulnar nerve paresthesia (1. We used the following criteria for the clinical evaluation: presence of pain, range of motion, reconstruction stability, surgical and oncologic complications, and patient acceptance. The results were good in 56.8% of the cases, regular in 32.4% and poor in 10.8%.

  9. Titanium 1990: Products and applications; Proceedings of the International Conference, Buena Vista, FL, Sept. 30-Oct. 3, 1990. Vols. 1 and 2

    International Nuclear Information System (INIS)

    The present conference on Ti-based products and their applications discusses Ti alloy products and applications in China and the USSR, the use of IMI 834 in aircraft engines, Ti-6Al-4V forgings with enhanced fatigue resistance, hydrogen embrittlement of titanium aluminides, cold-rolled Ti alloy foils, Ti alloy multiwall structures, leading-edge erosion of large Ti alloy blades, a novel Cu-Fe-Ti alloy, anodization of Ti for space applications, Ti alloy property improvement via ion implantation, and Co-W-Ti alloy electroplating. Also discussed are the backbone-process fabrication of Ti heat-exchanger tubes, fiber-delivery laser welding of Ti alloy tubing, a novel low-alloy/high-strength Ti composition, the weldability of titanium aluminide, the casting of dental Ti crowns, isothermal forging of Ti-alloy surgical implants, high-speed heat treatment for Ti alloys, cold-roll extrusion of Ti-6Al-4V cylinders, temperature profiles in Ti sponge production, and the superplasticity of eutectoidally decomposed Ti alloys

  10. Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si

    International Nuclear Information System (INIS)

    The effects of boron additions in an amount of 0.1–2 wt%, thermomechanical processing and heat treatment on microstructure and mechanical properties of a two-phase titanium alloy Ti–6.5Al–3.3Mo–0.3Si alloy have been investigated. Depending on the boron amount, the materials under study were divided into two groups: (1) boron modified alloys containing ~0.1 wt% of boron and (2) discontinuously reinforced metal matrix Ti–TiB based composites containing 1.5–2 wt% of boron. Boron additions led to formation of TiB whiskers, which were predominantly located along boundaries of prior β-grains and α-colonies resulting in refined as-cast microstructure. Multiple 3D forging at T=650–700 °C applied for the boron modified alloys resulted in formation of ultrafine-grained microstructure and intensive breaking of TiB whiskers. Tensile properties of the Ti–6.5Al–3.3Mo–0.3Si–0.2 wt% B alloy after multiple 3D forging followed by β-heat treatment were found to be appreciably higher than those of the alloy free of boron after the same processing route that was ascribed to better controlling the β-grain size during β heat treatment. The composite materials were subjected to multiple isothermal 2D forging at T=950 °C that provided effective alignment of TiB whiskers while retaining their high aspect ratio. The hot forged composites demonstrated appreciably higher strength, creep resistance in comparison with those of the base alloy without drastic reduction in ductility. The effect of TiB whiskers orientation and morphology on the tensile properties of the composite materials is discussed

  11. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  12. Nanodispersed boriding of titanium alloy

    International Nuclear Information System (INIS)

    The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemical-thermal treatment. The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. It is established that boriding of paste compounds allows obtaining the surface hardness within 30 - 29 GPa and with declining to 27- 26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where T2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30 - 110 μm) and transition zone (30 - 190 μm). Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2 - 3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening

  13. Nanodispersed boriding of titanium alloy

    Directory of Open Access Journals (Sweden)

    Kateryna O. Kostyk

    2015-12-01

    Full Text Available The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemo-thermal treatment. Aim: The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. Results: It is established that boriding of paste compounds allows obtaining the surface hardness within 30...29 GPa and with declining to 27...26 GPa in layer to the transition zone (with total thickness up to 110 μm owing to changes of the layer phase composition where Ti2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30...110 µm and transition zone (30...190 µm. Conclusions: Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2...3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening.

  14. Effect of titanium content and aging temperature on the properties of uranium-titanium alloys

    International Nuclear Information System (INIS)

    The mechanical properties and microstructures of four uranium-titanium alloys were examined as functions of titanium content and aging temperature. Titanium alloy content was varied from 0.41 to 0.79 weight percent. Aging temperatures from 350 to 4500C (all for six hours) were evaluated for each alloy in addition to tests in the unaged conditions. Titanium and aging temperature were both shown to be strong effects in determining alloy properties. It was determined that the uranium-0.41 weight percent titanium alloy underwent extensive age-hardening even though the alloy did not exhibit a martensitic microstructure characteristic of the alloys richer in titanium

  15. Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics

    Directory of Open Access Journals (Sweden)

    Klaus-Dieter Liss

    2016-07-01

    Full Text Available Titanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10-GPa range, and hence, it is necessary to investigate the phase diagrams of candidate materials under these extreme conditions. Here, we report on an in situ synchrotron X-ray diffraction study in a large-volume press of a modern (α2 + γ two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation γ → α2, rather than volumetric strain, expressed by the apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order, are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of γ. Upon heating under high pressure, both the eutectoid and γ-solvus transition temperatures are elevated, and a third, cubic β-phase is stabilized above 1350 K. Earlier research has shown that this β-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental β-phase is not present under operating conditions. Novel processing routes can be defined from these findings.

  16. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    Science.gov (United States)

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  17. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    Science.gov (United States)

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-08-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  18. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    R. Karthigeyan

    2013-01-01

    Full Text Available This paper deals with metal matrix composites (MMCs of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10 basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  19. 396柴油机连杆模锻成形工艺研究%Research on forming technology for 396 diesel engine connecting rod die forging

    Institute of Scientific and Technical Information of China (English)

    李志广; 安文忠; 刘振杰

    2013-01-01

    Taking 396 diesel engine connecting rod as a research object, the die forging forming process for the connecting rod formed on the die forging hammer with a relatively small blow energy of 30 kN was analyzed, meanwhile, the connecting rod die forging forming results on 30 kN and 50 kN die forging hammer were analyzed and compared separately. Through optimizing forging die design ( including optimizing the design of die forging process, pre-forging hot forging, finish-forging hot forging, punching the skins of pre-forging and finish-forging, pressure concave skins and flash gutter), the experiment results show that the quality rate of connecting rod die forging is improved from 94% to 98%, the production cycle of 300 pieces of die forging is reduced to 6 days at least, the efficiency of die forging is doubled, and the cost is reduced by 40% at least.%以396柴油机连杆为研究对象,针对该连杆在相对打击能量较小的30 kN模锻锤上的模锻成形工艺进行分析,比较了396柴油机连杆分别在30 kN模锻锤和50 kN模锻锤上的模锻成形效果,并对连杆锻模设计的相关内容:模锻工步、预锻热锻件形状、终锻热锻件形状、预锻和终锻的冲孔连皮、压凹连皮以及飞边槽等进行优化设计与实验验证.实验结果表明:连杆锻件合格品率由原94%提高到98%,减少锻造生产周期至少6天/300件,提高模锻效率至少1倍,锻造成本至少降低40%.

  20. 精密锻造技术的研究进展与发展趋势%Research Progress and Development Trend of the Precision Forging Technology

    Institute of Scientific and Technical Information of China (English)

    高峻; 李淼泉

    2015-01-01

    热精密锻造技术不仅能赋予零件近净复杂形状和尺寸,而且能使零件宏观性能在坯料性能基础上得到提高,是少无废料产生、绿色、节约型的高效高性能制造技术. 综述了热精密锻造技术的应用现状,介绍了热模锻造、等温锻造、基于数值模拟的预制坯优化设计和精密锻造全过程工艺优化设计的国内外研究现状,最后对热精密锻造技术发展方向进行了展望.%Hot precision forging technology is defined as a near net-shape forging operation which generates high-quali-ty parts concerning surface quality and dimensional accuracy. The mechanical properties of forgings are improved by hot precision forging. Precision forging is a highly efficient green manufacturing technology which eliminates or reduces genera-tion of waste, and saves raw material and cost. The paper introduced the current application status of hot precision forging technology, reviewed the current worldwide research status of hot-die forging, isothermal forging, design optimization of preformed forgings and process optimization of precision forging, and finally prospected the development tendencies of hot precision forging technology.

  1. Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure

    Directory of Open Access Journals (Sweden)

    Hong-wu Song

    2014-03-01

    Full Text Available The flow behavior and dynamic globularization of TC11 titanium alloy during subtransus deformation are investigated through hot compression tests. A constitutive model is established based on physical-based hardening model and phenomenological softening model. And based on the recrystallization mechanisms of globularization, the Avrami type kinetics model is established for prediction of globularization fraction and globularized grain size under large strain subtransus deformation of TC11 alloy. As the preliminary application of the previous results, the cogging process of large size TC11 alloy billet is simulated. Based on subroutine development of the DEFORM software, the coupled simulation of one fire cogging process is developed. It shows that the predicted results are in good agreement with the experimental results in forging load and microstructure characteristic, which validates the reliability of the developed FEM subroutine models.

  2. Derivation of uranium residual radioactive material guidelines for the Aliquippa Forge site

    Energy Technology Data Exchange (ETDEWEB)

    Monette, F.; Jones, L.; Yu, C.

    1992-09-01

    Residual radioactive material guidelines for uranium were derived for the Aliquippa Forge site in Aliquippa, Pennsylvania. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Aliquippa Forge site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Four potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium within 1,000 years, provided that the soil concentration of combined uranium (uranium-234, uranium-235, and uranium-238) at the Aliquippa Forge site does not exceed the following levels: 1,700 pCi/g for Scenario A (industrial worker: the expected scenario); 3,900 pCi/g for Scenario B (recreationist: a plausible scenario); 20 pCi/g for Scenario C (resident farmer using well water as the only water source: a possible but unlikely scenario), and 530 pCi/g for Scenario D (resident farmer using a distant water source not affected by site conditions as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234, uranium-235, and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr.

  3. Forging of eccentric co-extruded Al-Mg compounds and analysis of the interface strength

    Science.gov (United States)

    Förster, W.; Binotsch, C.; Awiszus, B.; Lehmann, T.; Müller, J.; Kirbach, C.; Stockmann, M.; Ihlemann, J.

    2016-03-01

    Within the subproject B3 of the Collaborative Research Center 692 it has been shown that Al-Mg compounds with a good bonding quality can be produced by hydrostatic coextrusion. During processing by forging, the aluminum sleeve is thinned in areas of high strains depending on the component geometry. To solve this problem an eccentric core arrangement during co-extrusion was investigated. Based on the results of FE-simulations, the experimental validation is presented in this work. Rods with an offset of 0.25, 0.5 and 0.75 mm were produced by eccentric hydrostatic co-extrusion. Ultrasonic testing was used to evaluate the bonding quality across the entire rods. For the forging investigations the basic process Rising was chosen. The still good bonding quality after forging was examined by dye penetrant testing and optical microscopy. For an optimal stress transfer between the materials across the entire component, a sufficient bonding between the materials is essential. To evaluate the interface strength, a special bending test was developed. For the conception of the bending specimens it was required to analyze the Rising specimens geometry. These analyses were performed using a reconstruction of the geometrical data based on computer tomography (CT) investigations. The comparison with the numerically deter-mined Rising specimen geometry shows good correlation. Parametric Finite Element Analyses of the bending test were used to develop the load case and the specimen geometry. By means of iterative adaption of load application, bearing and specimen geometry parameters, an advantageous stress state and experimentally applicable configuration were found. Based on this conception, the experimental setup was configured and bending tests were performed. The interface strength was deter-mined by the calculation of the maximum interlaminar interfacial tension stress using the experimental interface failure force and the bending FE model.

  4. Thermo-mechanical modeling of the electrically-assisted manufacturing (EAM) technique during open die forging

    Science.gov (United States)

    Salandro, Wesley A.

    This thesis contains all of the steps which allow the Electrically-Assisted Manufacturing (EAM) technique to be experimentally explored and analytically modeled for an electrically-assisted forging operation. Chapter 1 includes the problem statement, proposed solution, and literature reviews on EAM. Chapter 2 describes a thorough background on the EAM technique, highlights prior EAM research, and explains the research approach taken for this thesis. The coupled thermo-mechanical modeling strategy, along with the introduction of the Electroplastic Effect Coefficient (EEC) is provided in Chapter 3. Chapter 4 explains the two different approaches to determine the EEC profiles when modeling a particular metal. The simplified EAF mechanical model for electrically-assisted forging is presented in Chapter 5. Also in this chapter, the same modeling methodology (i.e. thermo-mechanical, EEC, etc.) is used to predict loads for an electrically-assisted bending (EAB) process. The following chapters explore how different material- and process-based parameters affect the EAF technique. Chapter 6 examines how different workpiece contact areas affect EAF effectiveness, along with an exploration of how well different metal forming lubricants perform with EAF. Chapter 7 explores if there is a difference in the thermal or mechanical profiles of specimens undergoing EAF forging tests with different average grain sizes. Chapter 8 examines the same effects as the previous chapter on specimens with varying levels of prior cold work. The materials- and process-based simplifications and sensitivities of the proposed modeling strategy are outlined in Chapter 9. Chapters 10-14 include the science behind the electroplastic effect, conclusions, future work, broader impacts, and intellectual merit, respectively. The overall intention of this thesis is to show the candidate's ability to take an idea for a new manufacturing process, prove that it works, and then understand and model the process

  5. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Shin-ichi, E-mail: yamaura@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Nakajima, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Satoh, Takenobu; Ebata, Takashi [Tohoku Steel, Co., Ltd., 23 Nishigaoka, Murata, Murata-machi, Shibata 989-1393 (Japan); Furuya, Yasubumi [North Japan Research Institute for Sustainable Energy, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan)

    2015-03-15

    Highlights: • The as-forged Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe{sub 1−x}Co{sub x} (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe{sub 25}Co{sub 75} alloy was 108 ppm and that of the as-cold rolled Fe{sub 25}Co{sub 75} alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe{sub 25}Co{sub 75} alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe{sub 25}Co{sub 75} and Fe{sub 20}Co{sub 80} alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction.

  6. Forging partnerships between rural women with chronic conditions and their health care providers.

    Science.gov (United States)

    Cudney, Shirley; Weinert, Clarann; Kinion, Elizabeth

    2011-03-01

    Successful adaptation to chronic illness is enhanced by active client-health care provider partnerships. The purposes of this article are to (a) examine the health care partnership needs of western rural women with chronic illness who participated in a computer-based support and education project, (b) describe how the role of the women in the partnership can be maximized by the use of a personal health record and improving health literacy, and (c) discuss ways health care providers can enhance their role in the partnership by careful listening and creating environments conducive to forging productive client-provider partnerships.

  7. New lubricant systems for cold and warm forging – advantages and limitations

    DEFF Research Database (Denmark)

    Bay, Niels

    2011-01-01

    The increasing focus on environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has strongly motivated the efforts to develop new, environmentally friendly tribological systems for metal forming production....... The present paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging by new, more harmless lubricants. Introduction of these new lubricants, however, has some drawbacks due to lower limits of lubrication leading to risk of pick-up, poor product...

  8. Research on Simulation of Giant Forging Hydraulic Press Decoupling Control for Synchronous Control System

    Directory of Open Access Journals (Sweden)

    Xinliang Liu

    2013-06-01

    Full Text Available A giant forging hydraulic press active synchronous control system is a mutually-coupled multi-input and multi-output system. To solve the elimination of the multi-channel interference, a multiple-input and multiple-output mathematical model center on active-beam is established; multi-channel synchronous decoupling control strategy is studied. The simulation results show that: the system eliminates the role of strong interference between multi-channel accesses to very good inhibitory effect of synchronization error, eliminating the system's external disturbance on the synchronization precision control impact.

  9. Simulated comparison on kinematics properties of two typical mechanisms of forging manipulator

    Science.gov (United States)

    Ren, Yunpeng; Lu, Chongshao; Han, Qingkai; Zhang, Tianxia; Wen, Bangchun

    2007-12-01

    The kinematics of two typical mechanisms is analyzed following the concept design of a 4MNm forging manipulator for a huge hydraulic press, i.e. a parallel links mechanism and a swing links mechanism. For the first kind of mechanism, when the jaw swings up and down, the swing angle is in proportion to the extending length of its driving hydraulic cylinder. For the second kind of mechanism, it is mostly difficult for the fluid driving control system to make sure three hydraulic pressure cylinders to keep moving synchronously. Based on these simulations and considering practical technological demands, the first kind of mechanism with parallel links is chosen as a better one.

  10. Backward can extrusion with conical,rotating punch as a cold forging tribology test

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels; Tetsuo, A.;

    2011-01-01

    with an analysis of the sliding velocity distribution along the punch nose. The latter is determined by FE analysis of the test. Results show friction stress for unalloyed low C-steel provided with different types of lubricants, e.g. phosphate coating plus soap, phosphate coating plus MoS2 and single bathe...... lubrication with PULS. The new test is so severe, that it is possible to break down the best lubrication systems for cold forging, such as phosphate coating plus soap and MoS2....

  11. Antimicrobial titanium/silver PVD coatings on titanium

    Directory of Open Access Journals (Sweden)

    Thull Roger

    2006-03-01

    Full Text Available Abstract Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous vaporisation of both metals in an inert argon atmosphere with a silver content of approximately 0.7 – 9% as indicated by energy dispersive X-ray analysis. On these surfaces microorganisms and eukaryotic culture cells were grown. Results The coatings released sufficient silver ions (0.5–2.3 ppb when immersed in PBS and showed significant antimicrobial potency against Staphylococcus epidermis and Klebsiella pneumoniae strains. At the same time, no cytotoxic effects of the coatings on osteoblast and epithelial cells were found. Conclusion Due to similar mechanical performance when compared to pure titanium, the TiAg coatings should be suitable to provide antimicrobial activity on load-bearing implant surfaces.

  12. Tribological Investigations of Hard-Faced Layers and Base Materials of Forging Dies with Different Kinds of Lubricants Applied

    Directory of Open Access Journals (Sweden)

    V. Lazić

    2010-12-01

    Full Text Available This paper gives a procedure for choosing the right technology for reparative hard facing of damaged forging dies. Since they are subject to impact loads and cyclic temperature elevations, forging dies should be made of steel that is able to withstand great impact loads, maintain good mechanical properties at elevated temperatures and that is resistant to wear and thermal fatigue. For these reasons, forging dies are made of conditionally weldable alloy tool steels; however it makes hard facing of damaged tools even more difficult. In this paper, wear resistance of base materials, hard-faced layers and heat-affected zones are tribologically investigated when two different lubricants - pure synthetical oil LM 76 and LM 76 with 6% molybdenum disulfide (MoS2 are applied. Tribological investigations have shown that the wear resistance of the hard faced layers is considerably greater than the wear resistance of the base material. However, the base material has better properties concerning friction.

  13. Investigations into Deformation Characteristics during Open-Die Forging of SiCp Reinforced Aluminium Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Deep Verma

    2013-01-01

    Full Text Available The deformation characteristics during open-die forging of silicon carbide particulate reinforced aluminium metal matrix composites (SiCp AMC at cold conditions are investigated. The material was fabricated by liquid stir casting method in which preheated SiC particles were mixed with molten LM6 aluminium casting alloy and casted in the silicon mould. Finally, preforms obtained were machined in required dimensions. Two separate cases of deformation, that is, open-die forging of solid disc and solid rectangular preforms, were considered. Both upper bound theoretical analysis and experimental investigations were performed followed by finite element simulation using DEFORM, considering composite interfacial friction law, barreling of preform vertical sides, and inertia effects, that is, effect of die velocity on various deformation characteristics like effective stress, strain, strain rate, forging load, energy dissipations, and height reduction. Results have been presented graphically and critically investigated to evaluate the concurrence among theoretical, experimental, and finite element based computational findings.

  14. Microstructural control in forged hardened-tempered 1050 steel for front-wheel hub for motor cars

    International Nuclear Information System (INIS)

    The application forged-normalized-hardened-tempered 1050 steel in the front-wheel-hub (FWH ) of modern motor-cars necessitates a controlled microstructure i.e a good tempered martensite. Research in areas of heat treatment and metallography is conducted on forged 1050 steel, for FWH of modern motor cars. Experiments are conducted by use of modern (high precision) microhardness machine and metallographic equipment. The microstructure is quantitatively analyzed; and the ASTM Grain Size No. is calculated to be 8. The microstructural analysis and the structure/property relationship reveal that the material: forged normalized hardened tempered 1050 steel, when heat treated under controlled conditions, is appropriate for application in FWH of modern motor cars. (author)

  15. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Elzbieta Dlugon; Wojciech Simka; Aneta Fraczek-Szczypta; Wiktor Niemiec; Jaroslaw Markowski; Marzena Szymanska; Marta Blazewicz

    2015-09-01

    This paper reports results of the modification of titanium surface with multiwalled carbon nanotubes (CNTs). The Ti samples were covered with CNTs via electrophoretic deposition (EPD) process. Prior to EPD process, CNTs were functionalized by chemical treatment. Mechanical, electrochemical and biological properties of CNT-covered Ti samples were studied and compared to those obtained for unmodified titanium surface. Atomic force microscopy was used to investigate the surface topography. To determine micromechanical characteristics of CNT-covered metallic samples indentation tests were conducted. Throughout electrochemical studies were performed in order to characterize the impact of the coating on the corrosion of titanium substrate. In vitro experiments were conducted using the human osteoblast NHOst cell line. CNT layers shielded titanium from corrosion gave the surface-enhanced biointegrative properties. Cells proliferated better on the modified surface in comparison to unmodified titanium. The deposited layer enhanced cell adhesion and spreading as compared to titanium sample.

  16. ROUGH SURFACES OF TITANIUM AND TITANIUM ALLOYS FOR IMPLANTS AND PROSTHESES

    OpenAIRE

    Conforto, Egle; Aronsson, Bjorn-Owe; Salito, A.; Crestou, Catherine; Caillard, Daniel

    2004-01-01

    Titanium and titanium alloys for dental implants and hip prostheses were surface-treated and/or covered by metallic or ceramic rough layers after being submitted to sand blasting. The goal of these treatments is to improve the surface roughness and, consequently, the osteointegration, the fixation and the stability of the implant. The microstructure of titanium and titanium alloys submitted to these treatments has been studied and correlated to their mechanical behavior. As treated/ covered a...

  17. Recycling potential of titanium alloys

    International Nuclear Information System (INIS)

    This study examines just how long one must contain radioactive titanium before it can be safely reprocessed. It was assumed that the spent first wall and blanket structural material would be completely reprocessed in a standard manufacturing facility capable of both primary and secondary fabrication. It was found that reprocessing could occur when the chemical hazard associated with inhalation was greater than the hazard associated with inhalating the same amount of radioactive species. This conclusion allowed the use of the threshold limiting value (TLV) to set a limit on the airborne concentration of the elements. Then by calculating the time required for that amount of material to decay to the same diluent factor indicated by the biological hazard potential (BHP) in air, the time for reprocessing was determined. Based on these assumptions, it was determined that it is feasible to think of titanium, and some of its alloying elements as being recyclable in a relatively short time period

  18. INVESTIGATION OF COMBUSTION IN TITANIUM-FERROSILICON SYSTEM

    OpenAIRE

    Shatokhin, Igor; Bigeev, Vahit; Shaymardanov, Kamil; Manashev, Ildar

    2013-01-01

    Results of self-sustaining combustion process in the titanium-ferrosilicon system investigations are presented. These data were used for experimental-industrial technology developing of production ferro silico titanium with high titanium content for steel alloying.

  19. Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luan, J.H.; Jiao, Z.B. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong (China); Chen, G. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong (China)

    2015-03-05

    Highlights: • Proper boron additions and heat-treatments improve the ductility of Ti64 alloys. • Coarse TiB precipitates embrittle the Ti64 alloys causing ductility loss. • Modified Ti64 forged alloys with high strength and high ductility are developed. - Abstract: The effects of boron additions on the microstructure and mechanical properties of forged Ti–6Al–4V alloys in different heat-treatment conditions have been characterized by both experimental studies and thermodynamic calculations. The results indicate a combination of proper post-forging treatments and B additions are helpful for control of the prior-β grain size and the volume fraction of α phase, thereby tuning the ductility of the forged Ti–6Al–4V alloys. However, the B-containing alloys exhibit a significant drop in ductility if the solutionizing temperature is too high, and this embrittlement is mainly due to the coarsening of brittle TiB borides. The mechanism in this case is due to the cleavage fracture of TiB rather than its debonding with the matrix, as indicated by the observation of the aligned TiB borides on the matching areas of both halves of the fracture surfaces. Thus, the TiB size and orientation, the prior-β grain size, and the volume fraction of the α phase all play important roles in controlling the mechanical properties of the forged Ti–6Al–4V alloys. The current findings shed light on the composition–microstructure–ductility relationship in the forged Ti–6Al–4V alloys.

  20. Dissimilar Welding of Titanium Alloys to Steels

    OpenAIRE

    Gao, Yefei; TSUMURA, Takuya; NAKATA, Kazuhiro

    2012-01-01

    This review summarizes the dissimilar welding of titanium alloys to steels over a period of ten recent years, involving the welding processes which are used for the dissimilar welding of titanium alloys to steels, the mechanical properties of the joints and the discussion for the forming mechanism of the interface. Reducing the formation of brittle intermetallic compound (IMC) is a key requirement in the dissimilar welding of titanium alloys to steels, because the strength of the welding join...

  1. New Policies on Titanium Import and Production

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> In order to crack down the smuggling of tita-nium products,improve the production and op-eration orders and guarantee a healthy devel-opment of the titanium industry in China,theState Economics and Trade Commission,theMinistry of Commerce,the General Admini-stration of Customs and four other governmentdepartments have jointly issued a Circular onthe Administration of Import,Production andOperation for Titanium Products.The circularstipulates as follows:

  2. Production of weldments from sintered titanium alloys

    OpenAIRE

    Kapustyan, A. YE.; A. V. Ovchinnikov; Vakulenko, I. A.

    2014-01-01

    Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original subst...

  3. PRODUCTION OF WELDMENTS FROM SINTERED TITANIUM ALLOYS

    OpenAIRE

    A. YE. Kapustyan; A. V. Ovchinnikov; Vakulenko, I. A.

    2014-01-01

    Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original subst...

  4. Gait analysis after total knee arthroplasty with cemented versus cementless type%骨水泥型与非骨水泥型全膝关节置换后的步态差异

    Institute of Scientific and Technical Information of China (English)

    张旻; 江澜; 沈晓艳

    2011-01-01

    背景:全膝关节置换已经被证明是一种有效治疗膝骨性关节炎的方法,但是不同类型的全膝关节置换假体固定方式术后所产生的膝关节下肢生物力学差异至今仍不明确.目的:通过三维步态分析骨水泥固定和非骨水泥固定两种不同的全膝关节置换术后患者的膝关节生物力学差异.方法:分别选取骨水泥型全膝关节置换以及非骨水泥型全膝关节置换患者各16例,通过测力台以及三维步态分析系统比较2组患者术前以及术后3个月的膝关节生物力学变化并进行对比.结果与结论:与手术前相比两组患者术后步速及步长均明显增加,支撑相在整个步态周期中的百分比明显减小, 膝关节屈在支撑相及摆动相中最大屈曲角度均明显增加,膝关节外翻角度增加.两种患者术后膝关节内翻角度以及膝关节内收力矩均明显减小.提示,骨水泥型与非骨水泥型全膝关节置换术均能有效改善膝骨性关节炎患者的步行能力以及下肢关节功能,两者间未见明显生物力学差异.%BACKGROUND: Total knee arthroplasty (TKA) has been proved to be a very effective method for patients with knee osteoarthritis. But the biomedical changes at knee joint between two different types of TKA (cemented and cementless) after operation remain not clear.OBJECTIVE: To explore the different biomechanical changes between the cemented and cementless TKA through three-dimensional gait analysis.METHODS: A total of 16 knee osteoarthritis patients treated with cemented TKA and 16 with cementless TKA were included.Force plates and three-dimensional gait analysis system were used to compare differences in biomechanics before and 3 months after operations.RESULTS AND CONCLUSION: Both groups showed significant increased walking speed and stride length, but decreased percentage of stance phase in gait cycle after operation, significant increased knee flexion angle in stance phase and swing

  5. Selection of the optimal hard facing (HF technology of damaged forging dies based on cooling time t8/5

    Directory of Open Access Journals (Sweden)

    D. Arsić

    2016-01-01

    Full Text Available In exploitation, the forging dies are exposed to heating up to very high temperatures, variable loads: compressive, impact and shear. In this paper, the reparatory hard facing of the damaged forging dies is considered. The objective was to establish the optimal reparatory technology based on cooling time t8/5 . The verification of the adopted technology was done by investigation of the hard faced layers microstructure and measurements of hardness within the welded layers’ characteristic zones. Cooling time was determined theoretically, numerically and experimentally.

  6. Coupled Thermo-Mechanical Modeling of Long Cone-Shaped Forging Based on Rigid Visco-Plastic FEM

    Institute of Scientific and Technical Information of China (English)

    刘雪峰; 汪凌云; 张利

    2002-01-01

    Based on synthetically considering the coupled thermo-mechanical relations between temperature and deforming, a numerical simulation of the forging process for the special long cone-shaped workpiece of Al-5.44Mg-2.15Li-0.12Zr alloy at high temperature was conducted by using the rigid visco-plastic finite element method. The relations between the total load and the displacement during the forging, and the distributions of stress, strain, temperature and strain rate, which can provide useful information for the process design, are obtained.

  7. 2005 Xi'an International Titanium Conference

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ First Circular Call for Papers In the 98' Xi'an International Titanium Conference (XITC'98), more than 300 representatives of the research and industry circles from 12 countries were gathered in Xi'an to exchange the new progress on titanium R&D and industrialization. XITC'98played an important role in promoting titanium R&D for the world, especially for China. In order to let the people engaged in titanium industry know more Chinese and the world titanium industry, promote the exchange and cooperation of the world titanium circle, we decide to hold the 2005 Xi'an International titanium Conference (XITC'05), which will be held on October 16~19, 2005 in Xi'an, China. The conference will provide a forum on the exchange and discussion of new ideas and achievements related to the aspects of titanium technology and industry in recent years. At the same time, the 12th China National Conference on Titanium will be held on October 19~23, 2005 in the same place after XITC'05.

  8. Appcelerator Titanium patterns and best practices

    CERN Document Server

    Pollentine, Boydlee

    2013-01-01

    The book takes a step-by-step approach to help you understand CommonJS and Titanium architecture patterns, with easy to follow samples and plenty of in-depth explanations If you're an existing Titanium developer or perhaps a new developer looking to start off your Titanium applications "the right way", then this book is for you. With easy to follow examples and a full step-by-step account of architecting a sample application using CommonJS and MVC, along with chapters on new features such as ACS, you'll be implementing enterprise grade Titanium solutions in no time. You should have some JavaSc

  9. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  10. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  11. FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.

    Science.gov (United States)

    Beaulieu, Chandree L; Majewski, Jacek; Schwartzentruber, Jeremy; Samuels, Mark E; Fernandez, Bridget A; Bernier, Francois P; Brudno, Michael; Knoppers, Bartha; Marcadier, Janet; Dyment, David; Adam, Shelin; Bulman, Dennis E; Jones, Steve J M; Avard, Denise; Nguyen, Minh Thu; Rousseau, Francois; Marshall, Christian; Wintle, Richard F; Shen, Yaoqing; Scherer, Stephen W; Friedman, Jan M; Michaud, Jacques L; Boycott, Kym M

    2014-06-01

    Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE's impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally.

  12. Automatic manipulator for severe forging works; 3K sagyo no jidoka ni katsuyakusuru tanzoyo manipurator

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, T.; Obitsu, K.; Arakawa, T.; Maezato, N. [Meidensha Corp., Tokyo (Japan)

    1997-06-30

    The manipulator with automatic operation function and teaching function was developed for work handling between forging lines. This manipulator is composed of a main body, hand, joy-stick operation equipment and manipulator controller. The arm has horizontal articulated structures such as the 1st axis for vertical motion, 2nd and 3rd axes for horizontal swing and 4th axis for horizontal swing of an end effector as hand. The hand is safeguarded with several measures against heat, dust, water, vibration and impact to directly grasp forging works around 1250degC. The joy- stick operation equipment indicates motions in joint angle, orthogonal and tool coordinate systems. The dust-proof manipulator controller is equipped with a heat exchanger and cooler for cooling of the inside of the controller. The manipulator is controlled by 4 CPUs such as man-machine CPU, servo computing CPU, computing CPU for interpolation and CPU for a display panel to achieve high speed processing and module structure. 7 figs., 4 tabs.

  13. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    Science.gov (United States)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  14. A Method For Producing Hollow Shafts By Rotary Compression Using A Specially Designed Forging Machine

    Directory of Open Access Journals (Sweden)

    Tomczak J.

    2015-09-01

    Full Text Available The paper presents a new method for manufacturing hollow shafts, where tubes are used as billet. First, the design of a specially designed forging machine for rotary compression is described. The machine is then numerically tested with regard to its strength, and the effect of elastic strains of the roll system on the quality of produced parts is determined. The machine’s strength is calculated by the finite element method using the NX Nastran program. Technological capabilities of the machine are determined, too. Next, the results of the modeling of the rotary compression process for a hollow stepped shafts by the finite element method are given. The process for manufacturing hollow shafts was modeled using the Simufact.Forming simulation program. The FEM results are then verified experimentally in the designed forging machine for rotary compression. The experimental results confirm that axisymmetric hollow shafts can be produced by the rotary compression method. It is also confirmed that numerical methods are suitable for investigating both machine design and metal forming processes.

  15. Forging Ahead

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Recent moves have put the North Korean nuclear issue on the fast track to final settlement After a five-month stalemate, the United StatesandNorthKorea final-ly surmounted the first obstacle in the “action for action” phase in resolving the latter’s nucl

  16. Seam-welded titanium tube as well as titanium tubesheet for all-titanium condenser of power plants

    International Nuclear Information System (INIS)

    Most of the thermal and nuclear power plants in Japan are located on the coast line, and steam turbine condenser and heat exchanger use a great quantity of sea water for cooling. This paper describes about thin wall welded tube for all-titanium condenser, development of technology for manufacturing titanium tubesheet, and the present situation of application

  17. [Experimental research on porcelain fused to the surface of pure titanium and titanium alloys].

    Science.gov (United States)

    Wang, D; Ai, S; Xu, J

    1995-07-01

    Titanium material has been widely used in prosthodontics since the end of 1980s. However, the research on porcelain fused to the surfaces of titanium material was quite few. This article introduced the technological process of low-fusing dental porcelain--Ceratin fused to pure titanium and titanium alloys. The values of the bond strength of Ceratin and titanium substrates were obtained by shearing test with INSTRON Model-1185. The average value of the shearing strength between TA2 and Ceratin was 31. 01MPa. The corresponding value between TC4 and Ceratin was 33.73MPa. The interface between Ceratin and titanium substrate was observed with scanning electron microscope (SEM). The results of this research proposed that it is hopeful that Ceratin is used as special procelain with titanium material.

  18. Minimal stress shielding with a Mallory-Head titanium femoral stem with proximal porous coating in total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Lombardi Adolph V

    2009-12-01

    Full Text Available Abstract Background As longevity of cementless femoral components enters the third decade, concerns arise with long-term effects of fixation mode on femoral bone morphology. We examined the long-term consequences on femoral remodeling following total hip arthroplasty with a porous plasma-sprayed tapered titanium stem. Methods Clinical data and radiographs were reviewed from a single center for 97 randomly selected cases implanted with the Mallory-Head Porous femoral component during primary total hip arthroplasty. Measurements were taken from preoperative and long-term follow-up radiographs averaging 14 years postoperative. Average changes in the proximal, middle and diaphyseal zones were determined. Results On anteroposterior radiographs, the proximal cortical thickness was unchanged medially and the lateral zone increased 1.3%. Middle cortical thickness increased 4.3% medially and 1.2% laterally. Distal cortical thickness increased 9.6% medially and 1.9% laterally. Using the anteroposterior radiographs, canal fill at 100 mm did not correlate with bony changes at any level (Spearman's rank correlation coefficient of -0.18, 0.05, and 0.00; p value = 0.09, 0.67, 0.97. On lateral radiographs, the proximal cortical thickness increased 1.5% medially and 0.98% laterally. Middle cortical thickness increased 2.4% medially and 1.3% laterally. Distal cortical thickness increased 3.5% medially and 2.1% laterally. From lateral radiographs, canal fill at 100 mm correlated with bony hypertrophy at the proximal, mid-level, and distal femur (Spearman's rank correlation coefficient of 0.85, 0.33, and 0.28, respectively; p value = 0.001, 0.016, and 0.01, respectively. Conclusion Stress shielding is minimized with the Mallory-Head titanium tapered femoral stem with circumferential proximal plasma-sprayed coating in well-fixed and well-functioning total hip arthroplasty. Additionally, the majority of femora demonstrated increased cortical thickness in all zones

  19. Impaction grafting in the femur in cementless modular revision total hip arthroplasty: a descriptive outcome analysis of 243 cases with the MRP-TITAN revision implant

    Directory of Open Access Journals (Sweden)

    Wimmer Matthias D

    2013-01-01

    .1% after 8.7 years]. Radiologic evaluation showed no significant change in axial implant migration (4.3% vs. 9.3%; p = 0.19 but a significant reduction in proximal stress shielding (5.7% vs. 17.9%; p  Conclusion We present the largest analysis of the impaction grafting technique in combination with cementless distal diaphyseal stem fixation published so far. Our data provides initial evidence of improved bone regeneration after graft augmentation of metaphyseal bone defects. The data suggests that proximal metaphyseal graft augmentation is beneficial for large metaphyseal bone defects (Paprosky types IIC and III and stem diameters of 17 mm and above. Due to the limitations of a retrospective and descriptive study the level of evidence remains low and prospective trials should be conducted.

  20. Casting of Titanium and its Alloys

    OpenAIRE

    R. L. Saha; K. T. Jacob

    1986-01-01

    Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  1. Casting of Titanium and its Alloys

    Directory of Open Access Journals (Sweden)

    R. L. Saha

    1986-04-01

    Full Text Available Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  2. Mineral resource of the month: titanium

    Science.gov (United States)

    Gambogi, Joseph

    2011-01-01

    Titanium is hip - at least when it comes to airplanes and jewelry. Known for its high strength-to weight ratio and its resistance to corrosion, titanium and its alloys can also be found in everything from knee replacements to eyeglass frames to baseball bats to fighter planes.

  3. Amorphouslike diffraction pattern in solid metallic titanium

    DEFF Research Database (Denmark)

    Wang, Y.; Fang, Y.Z.; Kikegawa, T.;

    2005-01-01

    Amorphouslike diffraction patterns of solid elemental titanium have been detected under high pressure and high temperature using in situ energy-dispersive x-ray diffraction and a multianvil press. The onset pressure and the temperature of formation of amorphous titanium is found to be close...

  4. Appcelerator Titanium business application development cookbook

    CERN Document Server

    Bahrenberg, Benjamin

    2013-01-01

    Presented in easy to follow, step by step recipes, this guide is designed to lead you through the most important aspects of application design.Titanium developers who already have a basic knowledge of working with Appcelerator Titanium but want to further develop their knowledge for use with business applications

  5. Titanium tetrachloride burns to the eye.

    OpenAIRE

    Chitkara, D K; McNeela, B. J.

    1992-01-01

    We present eight cases of chemical burns of the eyes from titanium tetrachloride, an acidic corrosive liquid. However it causes severe chemical burns which have a protracted course and features more akin to severe alkali burns. Injuries related to titanium tetrachloride should be treated seriously and accordingly appropriate management is suggested.

  6. Titanium plasma produced by a nitrogen laser

    International Nuclear Information System (INIS)

    Titanium plasmas produced in vacuum and in air by radiation from a nitrogen laser focused onto a solid titanium target are studied spectroscopically. The energy deposition is more effective than in other cases since the wavelength of the laser is in the vicinity of Ti resonance lines. (orig.)

  7. Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety

    Science.gov (United States)

    Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety David N. Kuhn, USDA ARS SHRS, Miami FL Sometimes it's hard to see the value and application of genomics to real world problems. How will sequencing the cacao genome affect West African farmers? Thi...

  8. Automated Determination of the Power Required and Selection of Electric Motors for Forging Fly-Press Mechanisms

    Directory of Open Access Journals (Sweden)

    K. Karakoulidis

    2015-06-01

    Full Text Available The current work deals with appropriate selection of electric motors for forging fly-press machines. To solve the equation of motion of the electric drive of these mechanisms characterized by impact (pulsating load and presence of flywheel, numerical methods (calculus have been used.

  9. Forging the Future between Two Different Worlds: Recent Chinese Immigrant Adolescents Tell Their Cross-Cultural Experiences

    Science.gov (United States)

    Li, Jun

    2009-01-01

    In order to understand the interplay of culture and mind in immigrant adolescent learning and psychological adjustment, this multiple-case qualitative study examined salient home and school experiences told by recent Chinese immigrant youth in semistructured interviews and narrative essays. Forging the future between two different worlds defined,…

  10. The Invalidation Analysis of a Working 5 CrMnMo Forging Die and Ways of Precaution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The paper introduced the 5 CrMnMo steel, including the chemical composition, the heat treatment technology, the forging die working condition, and the invalidation form (such as the cavity arris wear, the cavity subsidence, the cold and the heat fatigue crackle). Then gave some precautions for prolonging the mould life by improving the heat treatment technology.

  11. Influence of Single and Double Stage Forging on Cutting Forces of Al 7075/BSF Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    R.Karthigeyan

    2014-05-01

    Full Text Available In the present study, an attempt has been made to investigate the influence of the forging parameters on cutting forces for different cutting speed, depth of cut, and feed rate during machining of Al 7075 alloy and Al 7075 alloy with short basalt fiber reinforced metal matrix composites. The experiments were conducted by using a lathe machine with tool dynamometer setup.

  12. The present status of dental titanium casting

    Science.gov (United States)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  13. Stress-corrosion cracking of titanium alloys.

    Science.gov (United States)

    Blackburn, M. J.; Feeney, J. A.; Beck, T. R.

    1973-01-01

    In the light of research material published up to May 1970, the current understanding of the experimental variables involved in the stress-corrosion cracking (SCC) behavior of titanium and its alloys is reviewed. Following a brief summary of the metallurgy and electrochemistry of titanium alloys, the mechanical, electrochemical, and metallurgical parameters influencing SCC behavior are explored with emphasis on crack growth kinetics. Macro- and microfeatures of fractures are examined, and it is shown that many transgranular SCC failures exhibit morphological and crystallographic features similar to mechanical cleavage failures. Current SCC models are reviewed with respect to their ability to explain the observed SCC behavior of titanium and its alloys. Possible methods for eliminating or minimizing stress corrosion hazards in titanium or titanium alloy components are described.

  14. [Use of titanium alloys for medical instruments].

    Science.gov (United States)

    Feofilov, R N; Chirkov, V K; Levin, M V

    1977-01-01

    On the ground of an analysis into properties of titanium and its alloys the fields of their possible utilization for making various medical instruments are proposed. Because of their insufficient hardness and wear-resistance the titanium alloys cannot be recommended for making medical instruments with thin cutting edges. For the reasons of their insufficient strength, low wear-resistance and substandard modulus of elasticity, it is inexpedient to use titanium alloys in making many types of clamping medical instruments. Nor is it advisable to employ titanium alloys in handles of the instruments, for this may lead to a contact corrosion of their working parts. The use of titanium alloys is recommended for making bone-joining members, retracting medical instruments, of the spatula and speculum types, some kinds of non-magnetic pincers and ultrasonic medical instruments.

  15. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  16. Investigating the effect of variable gutter technique as a novel method on vertical flow of material in closed die forging processes

    Energy Technology Data Exchange (ETDEWEB)

    Pourbashiri, M.; Sedighi, M. [Iran University, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Recently, Variable gutter technique has been introduced as a novel method in order to reduce waste materials in closed-die forging processes. In this paper, the capability of this method is investigated for a family of forged parts that the vertical flow of material is the last stage of forming process. As a case study, using the variable gutter technique, the amount of waste material is decreased about 50% for a sample forged part with a local rising. The results of FVM simulations and experiments confirmed the effectiveness of the variable gutter technique in such forging processes. The vertical flow of material in the die cavity (h parameter), as a criterion, for different gutter width and thickness dimensions was examined by FVM simulations. The results shown that the gutter thickness has more effect on vertical flow of material than the gutter width. By decreasing the gutter thickness and increasing the gutter width, the amount of vertical flow of material is increased about 120% and 29%, respectively. Finally, A/H ratio (A = Max width of sectional area of a forged part, H = Max height of a forged part) is proposed as shape complexity factor of a forged part. The results of FVM simulations are indicated that for the ratio of A/H > 2, the variable gutter thickness technique is more effective and can be successfully used to reduce the amount of waste materials.

  17. Synthesis and physicochemical characterization of titanium oxide and sulfated titanium oxide obtained by thermal hydrolysis of titanium tetrachloride

    Directory of Open Access Journals (Sweden)

    H. Esteban Benito

    2014-09-01

    Full Text Available This work reports the synthesis of titanium oxide (TiO2 and sulfated titanium oxide (TiO2-SO4(2- obtained by thermal hydrolysis of titanium tetrachloride. Titanium hydroxide synthesized by this method was impregnated with a 1 N H2SO4 solution, to give amounts of sulfate ions (SO4(2- of 3 and 7 wt%. The synthesized samples were dried at 120 °C during 24 h and then calcined for 3 h at 400 °C. Thermal analyses, X-ray diffraction, nitrogen physisorption, infrared spectroscopy, potentiometric titration with n-butylamine, U.V.-visible diffuse reflectance spectroscopy and scanning electron microscopy were used to characterize the materials. The results of physicochemical characterization revealed that a mixture of crystalline structures, anatase, brookite and rutile developed in the titanium oxide, stabilizing the anatase structure in the sulfated titanium oxides, and coexisting with a small amount of brookite structure. The synthesized mesoporous materials developed specific surface areas between 62 and 70 m² g-1, without detecting an important influence of sulfation on this parameter. The presence of sulfate ions improved the acidity of titanium oxide and modified the characteristics of light absorption in the 425-600 nm region, which suggests the possibility of using these materials in reactions assisted by visible light.

  18. Texture evolution in upset-forged P/M and wrought tantalum: Experimentation and modeling

    International Nuclear Information System (INIS)

    Preferred orientations in polycrystalline materials can significantly affect their physical and mechanical response through the retention of anisotropic properties inherent to the single crystal. In this study the texture evolution in upset-forged PIM and wrought tantalum was measured as a function of initial texture, compressive strain, and relative position in the pressing. A / duplex fiber texture parallel to the compression axis was generally observed, with varying degrees of a radial component evident in the wrought material. The development of deformation textures derives from restricted crystallographic slip conditions that generate lattice rotations, and these grain reorientations can be modeled as a function of the prescribed deformation gradient. Texture development was simulated for equivalent deformations using both a modified Taylor approach and a viscoplastic self-consistent (VPSC) model. A comparison between the predicted evolution and experimental results shows a good correlation with the texture components, but an overly sharp prediction at large strains from both the Taylor and VPSC models

  19. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    Science.gov (United States)

    Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  20. Finite element simulation on press forging of magnesium alloy AZ31 sheets

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Press forging of rectangular box of magnesium alloy AZ31 sheets was investigated at elevated temperatures.The characteristics of metal flow were analyzed on the basis of finite element method(FEM)and experiments.Effects of friction factor and sidewall thickness on metal flow and boss forming were investigated by FEM.The results indicate that the bosses and the sidewall of the rectangular box are formed unevenly due to the uneven flow of the metal.The increase in friction factor at die/sheet interface improves the metal flow pattem and the efficiency of boss forming,but reduces the sidewall uniformity.Decrease in sidewall thickness enhances boss forming efficiency,whereas the punch load increases in this case.The present work can provide rcasonable parameters and design guideline for the practical press foxing process of magnesium alloy sheets.

  1. Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kerry Barnett

    2003-03-01

    Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience with a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process

  2. Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Grain size and texture changes of magnesium alloy AZ31 were studied in multidirectional forging(MDF) under decreasing temperature conditions. MDF was carried out up to large cumulative strains of 4.8 with changing the loading direction during decrease in temperature from pass to pass. MDF can accelerate the uniform development of fine-grained structures and increase the plastic workability at low temperatures. As a result, the MDFed alloy shows excellent higher strength as well as moderate ductility at room temperature even at the grain size below 1 μm. Superplastic flow takes place at 423 K and depends on the anisotropy of MDFed samples. The mechanisms of strain-induced free-grained structure development and of the plastic deformation were discussed in detail.

  3. The computer-aided hot-forging simulation of P/M connecting rods

    Science.gov (United States)

    Jinka, Ashoka G. K.

    1995-08-01

    Computer-aided engineering simulation techniques using a computational method are increasingly being applied to the simulation of powder metallurgy (P/M) component processing. This emerging area of applied research in the P/M industry offers the promise of a cheaper and more reliable route to part design, analysis, and development. In order to meet this goal, simulation tools that take into account the physics and mechanics of the deformation process have to be developed. This article reports one such simulation procedure as applied to the hot forging of a P/M connecting rod on a three-dimensional model. This review focuses briefly on the development of a new model, which in the study is basedon the finite-element method. Thestudy brings out a perspective for understanding the mechanical behavior of the porous material within the scope of a P/M industrial component such as a connecting rod.

  4. Seasonal food use by white-tailed deer at Valley Forge National Historical Park, Pennsylvania, USA

    Science.gov (United States)

    Cypher, Brian L.; Yahner, Richard H.; Cypher, Ellen A.

    1988-03-01

    Food habits of white-tailed deer ( Odocoileus virginianus) were examined from January to November 1984 via fecal-pellet analysis at Valley Forge National Historical Park (VFNHP), which represents an “island” habitat for deer surrounded by extensive urbanization, in southeastern Pennsylvania. In addition, use of fields by deer was compared to food habits. Herbaceous vegetation (forbs, leaves of woody plants, and conifer needles) was the predominant food type in all seasons except fall. Acorns and graminoids (grasses and sedges) were important food resources in fall and spring, respectively. Use of woody browse (twigs) was similar among seasons. Field use was relatively high during fall, winter without snow cover (deer at VFNHP indicate the year-round importance of nonwoody foods and field habitats to deer populations on public lands such as national parks in the northeastern United States.

  5. Friction and Adhesion in Dry Warm Forging of Magnesium Alloy with Coated Tools

    Science.gov (United States)

    Matsumoto, Ryo; Kawashima, Hiroaki; Osakada, Kozo

    In order to develop forging process of magnesium alloys without lubrication, frictional behavior of magnesium alloy AZ31B (Mg-3%Al-1%Zn) is evaluated by a tapered plug penetration test under dry condition. The cemented tungsten carbide (WC) plugs polished to be a mirror-like surface are coated with diamond-like carbon (DLC) and TiAlN by physical vapor deposition (PVD). The cylindrical hollow billets of AZ31B are penetrated by the tapered plugs at a temperature of 200°C. The surface roughness of the hole of the billet, the adhesion length of AZ31B on the plug surface and the penetration load are measured. Compared with WC and TiAlN coating, it is found that DLC coating is effective in preventing AZ31B from adhering to the tool surface and reducing the penetration load.

  6. Microstructural evolution of Mg-7Al-2Sn Mg alloy during multi-directional impact forging

    Directory of Open Access Journals (Sweden)

    M.G. Jiang

    2015-09-01

    Full Text Available Multi-directional impact forging (MDIF was applied to a Mg-7Al-2Sn (wt.% Mg alloy to investigate its effect on the microstructural evolution. MDIF process exhibited high grain refinement efficiency. After MDIF 200 passes, the grain size drastically decreased to 20 µm from the initial coarse grains of ~500 µm due to dynamic recrystallization (DRX. Meanwhile, original grain boundaries remained during MDIF and large numbers of fine spherical β-Mg17Al12 particles dynamically precipitated along the original grain boundaries with high Al concentration, acting as effective pinning obstacles for the suppression of DRXed grain growth. Besides, micro-cracks nucleated during MDIF and propagated along the interface between the remained globular or cubic Al-Mn particles and Mg matrix.

  7. High temperature strain hardening behavior in double forged and potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Hua, E-mail: shenghualjh@gmail.com [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Van Oost, Guido [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Zhurkin, Evgeny [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Experimental Nuclear Physics Department, K-89, Faculty of Physics and Mechanics, Saint-Petersburg State Polytechnical University, 29 Polytekhnicheskaya Str., 195251 St. Petersburg (Russian Federation); Terentyev, Dmitry [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Dubinko, Vladimir I. [NSC Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Uytdenhouwen, Inge [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Vleugels, Jozef [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven (Belgium)

    2014-01-15

    The strain-hardening behavior of two recently developed double forged and K-doped tungsten grades in the 300–2000 °C range was analyzed applying a phenomenological model describing the evolution of the flow stress as a function of the dislocation density. The applied model allowed establishing a correlation between the strain hardening curvature and the size of microstructural features controlling the dislocation multiplication. The obtained results demonstrated that plastic deformation was controlled by the resistance of the low angle grain boundaries below 1000 °C and the high angle grain boundaries at 1500 °C and above. The experimental results obtained at different loading rates showed that thermal activation was essential for the passage of dislocations through grain boundary interfaces at 1000 °C and above. The limitations of the applied model and need for further development of the physical model accounting for stress- and temperature-induced grain growth are discussed.

  8. Inner-product of strain rate vector through direction cosine in coordinates for disk forging

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wen; JIN Wen-zhong; WANG Lei; LIU Xiang-hua

    2006-01-01

    A new linear integration for plastic power was proposed. The effective strain rate for disk forging with bulge was expressed in terms of two-dimensional strain rate vector, and then its direction cosines were determined by the ratio of coordinate increments. Furthermore, inner-product of the vector for plastic power was term integrated by term and summed. Thereafter, through a formula for determination of bulge an analytical solution of stress effective factor was obtained. Finally, through compression tests, the calculated results of above formula were compared with those of Avitzur's approximate solution and total indicator readings of the testing machine. It is indicated that the calculated compression forces are basically in agreement with the measured ones if the pass reduction is less than 13.35%.However, when the reduction gets up to 25.34% and 33.12%, the corresponding errors between the calculated and measured results also get up to 6% and 13.5%, respectively.

  9. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in [Department of Mechanical Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi-642003 (India); Chandrasekar, P.; Chandramohan, P. [School of Engineering, Professional Group of Institutions, Coimbatore-641662 (India); Mohanraj, M. [Department of Mechanical Engineering, Info Institute of Engineering, Coimbatore-641107 (India)

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  10. Explosive Growth in China’s Titanium Industry in 2007

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The year 2007 has marked an important mile- stone in China’s titanium and titanium- processing industry with a doubled or redou- bled output of titanium or titanium alloys. China has become one of the world’s most

  11. Research of upsetting ratio in forming processes on a three – slides forging press

    Directory of Open Access Journals (Sweden)

    W.S. Weroński

    2006-04-01

    Full Text Available Purpose: The purpose of the presented in this work research was determining the limiting conditions of upsetting in three-slide forging press (TSFP. The free upsetting process and upsetting process in cylindrical impression were analyzed.Design/methodology/approach: The assumed purpose was confirmed in experimental research. For the case of upsetting in cylindrical impression, the research of limiting upsetting coefficients were made for different diameters and impression lengths. Findings: The obtained results showed large variety of limiting upsetting ratio depending on the analyzed impression geometrical parameters. It was stated, that there are 3 phenomena limiting the upsetting process in the die. The main phenomenon is the bar upsetting outside the impression. The upsetting processes in the impression are limited also by bar buckling outside the impression and overlapping inside the impressionResearch limitations/implications: The results of research allowed for stating that, besides the process geometrical parameters, friction conditions and type of the formed material influenced the limiting upsetting coefficients in the cylindrical impression. It is purposeful to make the further research determining quantitative and qualitative dependencies between these factors. Practical implications: The obtained results are the basis for designing of forming processes in TSFP in which the upsetting dominates. Especially it considers the elongated forgings and elongated preforms with thickeningsOriginality/value: The influence of the impression geometrical parameters on the limiting upsetting coefficients for the case of upsetting in cylindrical impression in TSFP has been analyzed in details. The dependencies, which should be used during designing of upsetting processes in TSFP were determined.

  12. FEM simulation for cold press forging forming of the round-fin heat sink

    Science.gov (United States)

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  13. Some Aspects of Hot Forging Characteristics Of Sintered Ultra – High Strength Ring Preforms

    Directory of Open Access Journals (Sweden)

    Sunil Pandey

    2016-07-01

    Full Text Available Present investigation pertains to assess the hot upset mode of forging characteristics of sintered P/M ring preforms of iron and AISI 4340 P/M steels containing 0.80, 1.20 and 1.60 percent chromium. P/M rings of iron and AISI 4340 grade of blended powders were prepared using suitable die set assembly on a 1.0 MN capacity hydraulic press. The ring geometries were aintained to outer Diameter: Inner Diameter: Height:: 8:4:2 and density in the range of 86 ±1 per cent of theoretical by employing controlled pressure in the range of 480 ±10 MPa and taking pre-weighed powders. These ring preforms were coated with indigenously developed ceramic coating to protect them against oxidation during sintering. These preforms were sintered in an electric muffle furnace at 11500 ±100C for a period of 100 minutes and subsequently hot upset forged to different height strain levels and quenched in linseed oil. Residual ceramic coating was gently machined off followed by dimensional and density measurements. Analysis of the experimental data has revealed that the rate of densification followed the second order polynomial of the form: Y = a0 + a1X + a2X 2; Where, Y = fractional theoretical density achieved, i.e., (ρf/ρth, X = the fractional height deformation. The values of „a0‟, „a1‟ and „a2‟ were dependent upon the composition. Further, the effect of chromium content in AISI 4340 steel was negligibly small on the relationship between per cent decrease in I.D. and the per cent height reduction.

  14. Adsorption of hydrogen in titanium

    International Nuclear Information System (INIS)

    In this work the absorption of hydrogen in titanium plates using a constant volume system has been realized. The changes of temperature and pressure were used to monitor the progress of the absorption. A stainless steel vacuum chamber with volume of 4,333 cm3 was used. A titanium sample of 45 x 5.4 x 0.3 cm was located in the center of the chamber. The sample was heated by an electrical source connected to the system. The sample was preconditioned with a vacuum-thermal treatment at 10-6 mbar and 800 Centigrade degrees for several days. Absorption was observed at room temperature and also at higher temperatures. The room temperature absorption was in the pressure range of 1.0 x 103 to 2.5 x 103 mbar, and other absorptions were from 180 to 630 Centigrade degrees at 3.5 x 10-1 to 1.3 x 103 mbar. It was found that the gas absorbed was function of the vacuum-thermal pre-conditioned treatment, pressure and temperature. When the first absorption was developed, additional absorptions were realized in short time. We measured the electrical resistivity of the sample in the experiments but we could not see important changes due to the absorption. (Author)

  15. 自由锻造液压机的技术现状及设计分析%Technique status and design analysis of free forging hydraulic press

    Institute of Scientific and Technical Information of China (English)

    谢广玉; 李秀珠; 胡海燕

    2013-01-01

    阐述了自由锻造液压机的发展过程和我国锻造压机的技术现状,对自由锻造液压机的几种结构型式和传动方式进行了比较,说明了锻造油压机的技术特点.%The developing process of free forging hydraulic press and technique status in China has been described in the text. Several structural modes and transmission modes of free forging hydraulic press have been compared, and the technical characteristics of forging hydraulic press have been introduced.

  16. DEVELOPMENT OF OXIDATION RESISTANT TITANIUM ALLOYS BY NIOBIUM ADDITION

    OpenAIRE

    Ackland, Graeme; Siemers, Carsten; Tegner, Bengt E.; Saksl, K.; Brunke, F.; Kohnke, M,

    2014-01-01

    The application of titanium alloys is limited to 550°C due to their poor oxidation resistance. It is known that the addition of niobium improves the oxidation resistance of titanium whereas elements like vanadium do not support titanium’s oxidation behaviour. Hence, the underlying mechanisms are not understood. In the present study, different binary titanium-niobium and titanium-vanadium alloys as well as commercially pure titanium were investigated. Oxidation experiments were carried out at ...

  17. Titanium Oxide: A Bioactive Factor in Osteoblast Differentiation

    OpenAIRE

    Santiago-Medina, P.; Sundaram, P.A.; Diffoot-Carlo, N.

    2015-01-01

    Titanium and titanium alloys are currently accepted as the gold standard in dental applications. Their excellent biocompatibility has been attributed to the inert titanium surface through the formation of a thin native oxide which has been correlated to the excellent corrosion resistance of this material in body fluids. Whether this titanium oxide layer is essential to the outstanding biocompatibility of titanium surfaces in orthopedic biomaterial applications is still a moot point. To study ...

  18. Structure and properties of Titanium for dental implants

    OpenAIRE

    GREGER, Miroslav; Černý, Martin; Kander, Ladislav; Kliber, Jiří

    2009-01-01

    This paper describes manufacture of nano-structural titanium, its structure and properties. Nano-titanium has higher specific strength properties than ordinary (coarse-grained) titanium. Nano-titanium was produced by the equal-channel angular pressing (ETAP) process. The research it self was focused on physical base of strengthening and softening processes and developments occurring at the grain boundaries during the ECAP process at half-hot temperature. Strength of nano-titanium ...

  19. Optimal Design of Fuel Injector Bodies Forging Die%喷油器体锻模优化设计

    Institute of Scientific and Technical Information of China (English)

    李志广; 刘碧芬; 宋伟民

    2014-01-01

    Objective This study used the fuel injector bodies die forging forming as the research object,analyzed and optimized the design of the forging die structure and size. Methods The original disadvantages of forging die design were a-voided by optimal design of forging die (especially the design optimization of the structure and size of lock, finishing im-pression, flash cave, gate and edge rolling impression, and optimization of the raw materials blanking specification accord-ing to the height of the edge rolling impression). Results The fuel injector body die forging forming process was improved, the metal difficult deformation area and deformation force were reduced, the consumption was reduced by 0. 15 kg/ piece, the rate of qualified products and the forging efficiency (the hammer speed was reduced by 3 ~ 5 times/ piece) were in-creased, the service life of die forging was at least doubled and the cost was reduced. Conclusion The fuel injector bodies forging die finally obtained had compact structure, enough strength and superior performance, which provide powerful refer-ence for the design and actual production of similar forging dies.%目的:以喷油器体模锻成形为研究对象,对锻模结构与尺寸进行分析和优化设计。方法通过优化锻模设计(尤其是优化锁扣、终锻模膛、飞边槽、钳口、滚挤模膛等结构与尺寸设计以及根据滚挤模膛高度尺寸优选原材料下料规格),克服原锻模设计的缺点。结果有效改善了喷油器体的模锻工艺性,减小了难变形区,减小了变形力,减少了原材料消耗0.15 kg /件,提高了合格品率,提高了锻造效率(减少打击次数3~5锤次/件),提高了锻模使用寿命至少1倍,以及降低了锻模与锻件成本等。结论最终获得的喷油器体锻模,结构高紧凑又强度足够,使用性能优越,可为类似锻模设计和实际生产提供了有力的参考依据。

  20. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  1. Titanium Content Control for Bearing Steel

    Institute of Scientific and Technical Information of China (English)

    WU Wei; LIU Yue; LIU Liu; XUE Zheng-liang

    2008-01-01

    On the basis of the thermodynamic analysis and fundamental study in the laboratory,the equilibrium of the Ti-Al-O system was investigated.The results showed that the equilibrium titanium content in the steel increased with the increase in the soluble aluminum content in the steel and the TiO2 content in the slag.Although the slag basicity decreased and Al2O3 content in the slag increased,the titanium content increased.Based on these results,the BOF smelting process of low titanium bearing steel was put forward.

  2. Titanium exposure and yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Ali Ataya

    2015-01-01

    Full Text Available Yellow nail syndrome is a rare disease of unclear etiology. We describe a patient who develops yellow nail syndrome, with primary nail and sinus manifestations, shortly after amalgam dental implants. A study of the patient's nail shedding showed elevated nail titanium levels. The patient had her dental implants removed and had complete resolution of her sinus symptoms with no change in her nail findings. Since the patient's nail findings did not resolve we do not believe titanium exposure is a cause of her yellow nail syndrome but perhaps a possible relationship exists between titanium exposure and yellow nail syndrome that requires further studies.

  3. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  4. Synthesis of Titanium Dioxide Nanocrystals with Controlled Crystal- and Micro-structures from Titanium Complexes

    OpenAIRE

    Makoto Kobayashi; Hideki Kato; Masato Kakihana

    2013-01-01

    Selective synthesis of titanium dioxide (TiO2) polymorphs including anatase, rutile, brookite and TiO2(B) by solvothermal treatment of water-soluble titanium complexes is described with a special focus on their morphological control. The utilization of water-soluble titanium complexes as a raw material allowed us to employ various additives in the synthesis of TiO2. As a result, the selective synthesis of the polymorphs, as well as diverse morphological control, was achieved.

  5. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S;

    2016-01-01

    and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although...... evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved....

  6. [Comparison of the biological tolerance of titanium and titanium alloys in human gingiva cell cultures].

    Science.gov (United States)

    Hehner, B; Heidemann, D

    1989-01-01

    Mirror-finished solid specimens of pure titanium and the titanium alloys Ti-6Al-4V as well as Ti-5Al-2.5Fe showed no effects on the growth behavior and cell morphology of human gingival epithelial cell and fibroblast cultures. The growth of the cells contacting all three materials was uninhibited. SEM revealed growth of fibroblasts on the surfaces of the specimens, too. No differences could be found between the biocompatibility of titanium alloys and that of pure titanium. The formation of a stable surface oxide layer providing resistance to corrosion may be decisive.

  7. Neutron scattering and models: Titanium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.

    1997-07-01

    Differential neutron elastic-scattering cross sections of elemental titanium were measured from 4.5 {r_arrow} 10.0 MeV in incident energy increments of {approx} 0.5 MeV. At each energy the measurements were made at forty or more scattering angles distributed between {approx} 17 and 160{degree}. Concurrently, differential neutron inelastic-scattering cross sections were measured for observed excitations of 0.975 {+-} 0.034, 1.497 {+-} 0.033, 2.322 {+-} 0.058, 3.252 {+-} 0.043, 3.700 {+-} 0.093, 4.317 {+-} 0.075 and 4.795 {+-} 0.100 MeV. All of the observed inelastically-scattered neutron groups were composites of contributions from several isotopes and/or levels. The experimental results were used to develop energy-average optical, statistical and coupled-channels models.

  8. TC17 Titanium Alloy Disk Forging%TC17钛合金一级轮盘锻造工艺研究应用

    Institute of Scientific and Technical Information of China (English)

    袁士翀; 陈金科; 曾菁; 赵选杰

    2011-01-01

    @@ TC17钛合金是一种富β稳定元素的α+β两相钛合金,其名义成分为Ti-5Al-2Sn-2Zr-4Mo-4Cr,具有高强度、高断裂韧性及高淬透性.美国已成功地将其用于军用和民用航空发动机的压气机盘、风扇盘等零件上.该合金一般在β相区锻造,锻后采用两重退火,从而获得网篮编织α组织,有很高的断裂韧性和蠕变抗力.

  9. Design of New Type of Float Forging Dies for Tractor Gear%新型拖拉机齿轮浮动式锻模设计

    Institute of Scientific and Technical Information of China (English)

    于金伟

    2011-01-01

    The problems in the former forging die of tractor driven cylindrical gears are discussed, a new typed structure of the forging die is proposed, with a float mould core and a float concave die, forging is formed within a closed ring cavity,the forged parts have no burrs, and the spare material is reduced by 80%, the material consumption and the production cost is greatly decreased.%论述了拖拉机圆柱从动齿轮坯原锻模存在的问题,提出了新型锻模结构,锻模采用浮动模芯和浮动凹模结构,锻件在一个封闭环形模腔中成形,锻件无飞边,敷料减少80%,显著降低了材料消耗和生产成本.

  10. Fracture Growth Testing of Titanium 6AL-4V in AF-M315E

    Science.gov (United States)

    Sampson, Jeffrey W.; Martinez, Jonathan; McLean, Christopher

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant in orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent flaws will not cause failure during the design life. Material property inputs for this analysis require testing to determine the stress intensity factor for environmentally-assisted cracking (K (sub EAC)) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched specimens SE(B) representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to the monopropellant at 50 degrees Centigrade for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor of the Ti 6Al-4V forged tank material when exposed to AF-M315E monopropellant was found to be at least 22.0 kilopounds per square inch. The stress intensity factor of the weld material was at least 31.3 kilopounds per square inch.

  11. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    Science.gov (United States)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  12. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    Science.gov (United States)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  13. Titanium Heat Pipe Thermal Plane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermacore Inc. proposes an innovative titanium heat pipe thermal plane for passive thermal control of individual cells within a fuel cell stack. The proposed...

  14. Titanium Heat Pipe Thermal Plane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of...

  15. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra;

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  16. Advanced Surface Engineering of Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    H. Dong

    2000-01-01

    Despite their outstanding combination of properties, titanium and its alloys are very susceptible to severe adhesive wear in rubbing with most engineering surfaces and can exhibit poorcorrosion resistance in some aggressive environments. Surface engineering research centred at the University of Birmingham has been focused on creating designer surfaces for titanium components via surface engineering.Great progress has been made recently through the development of such advanced surface engineering techniques as thermal oxidation, palladium-treated thermal oxidation, oxygen boost diffusion and duplex systems.Such advances thus provide scope for designing titanium components for a diversified range of engineering application, usually as direct replacements for steel components. By way of example, some of the successful steps towards titanium designer surfaces are demonstrated. To data, the potential of these advanced technologies has been realised first in auto-sport and off-shore industrials.

  17. Corrosion resistance of titanium alloys for dentistry

    International Nuclear Information System (INIS)

    Titanium and its alloys belong to biomaterials which the application scope in medicine increases. Some properties of the alloys, such as high mechanical strength, low density, low Young's modulus, high corrosion resistance and good biotolerance decide about it. The main areas of the application of titanium and its alloys are: orthopedics and traumatology, cardiosurgery, faciomaxillary surgery and dentistry. The results of investigations concerning the corrosion resistance of the technical titanium and Ti6Al14V alloy and comparatively a cobalt alloy of the Vitallium type in the artificial saliva is presented in the work. Significantly better corrosion resistance of titanium and the Ti6Al14V than the Co-Cr-Mo alloy was found. (author)

  18. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    Science.gov (United States)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  19. 大锻件锻压工艺及质量控制系统雏形的研究%Research on Forging Process and Original Quality Control System of Heavy Forgings

    Institute of Scientific and Technical Information of China (English)

    齐作玉; 张岗

    2015-01-01

    分析了我国大锻件产品质量长期难以稳定的原因。研究设计了大锻件锻压工艺及质量控制系统的雏形,介绍了系统设计原理和系统主要结构及组成。该系统解决了传统上工艺设计数据、生产操作数据和质量检验数据难以查询、关联、积累和分析的问题。%The reason that the quality of heavy forgings in China is difficult to maintain stable in a long time has been analyzed.The forging process and the original quality control system of heavy forgings have been researched. Meanwhile, the design principle and the main structure and composition for system have been introduced.The tradi-tional problems for process design data, production operation data and quality inspection data, which are difficult to inquire, relate, accumulate and analyze, have been solved.

  20. Microstructure and Slip Character in Titanium Alloys

    OpenAIRE

    Banerjee, D.; Williams, J. C.

    1986-01-01

    Influence of microstructures in titanium alloys on the basic parameters of deformation behaviour such as slip character, slip length and slip intensity have been explored. Commercial titanium alloys contain the hexagonal close packed (alpha) and body centred cubic (bita) phases. Slip in these individual phases is shown to be dependent on the nature of alloying elements through their effect on phase stability as related to decomposition into ordered or w structures. When alpha and bita coexist...

  1. Titanium dioxide nanoparticles: Occupational exposure limits

    OpenAIRE

    Anna Maria Świdwińska-Gajewska; Sławomir Czerczak

    2014-01-01

    Titanium dioxide (TiO2) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO2 nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titaniu...

  2. TEFLON VS TITANIUM PROSTHESES IN STAPES SURGERY

    OpenAIRE

    Rajesh Vishwakarma; Simple Patadia; Pratibha Goswami; Kalpesh Patel; Dipesh Darji

    2014-01-01

    BACKGROUND: Otosclerosis is one of the most leading causes of conductive hearing loss with intact tympanic membrane in adults. Stapes prostheses have seen many changes in its shape, design and material. Both Teflon and Titanium prostheses used in this study having different method of application are reviewed in detail. OBJECTIVE: To compare the outcomes of use of Teflon and Titanium prostheses in stapedotomy surgery in patients with conductive hearing loss. STUDY DESIGN: Prospective ...

  3. Functional studies of calcium enriched titanium surfaces.

    OpenAIRE

    Mihoc, R. I.

    2007-01-01

    There exists a clinical requirement for dental implants which will enhance the speed of achievement of osseointegration, its maintenance, and biological and physical properties. Whilst commercially pure titanium remains the material of choice for implant fabrication, a promising approach to enhancing its performance is the surface incorporation of metallic ions, or alkali modification of titanium. Osteoblast behaviour adjacent to the implant is a key factor in osseointegration and it is known...

  4. PRODUCTION OF WELDMENTS FROM SINTERED TITANIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. YE. Kapustyan

    2014-04-01

    Full Text Available Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original substance. Forming of blanks, whose chemical composition corresponded to BT1-0 alloy, was carried out using the powder metallurgy method. Compounds were obtained by flash welding without preheating. Microstructural investigations and mechanical tests were carried out. To compare the results investigations of BT1-0 cast alloy were conducted. Findings. Samples of welded joints of sintered titanium blanks from VT1-0 alloy using the flash butt welding method were obtained. During welding the microstructure of basic metal consisting of grains of an a-phase, with sizes 40...70 mkm, is transformed for the seam weld and HAZ into the lamellar structure of an a-phase. The remaining pores in seam weld were practically absent; in the HAZ their size was up to 2 mkm, with 30 mkm in the basic metal. Attainable level of mechanical properties of the welded joint in sintered titanium alloys is comparable to the basic metal. Originality. Structure qualitative changes and attainable property complex of compounds of sintered titanium alloys, formed as a result of flash butt welding were found out. Practical value. The principal possibility of high-quality compounds obtaining of sintered titanium alloys by flash welding is shown. This gives a basis for wider application of sintered titanium alloys due to long-length blanks production that are correspond to deformable strand semi finished product.

  5. 锻压模磨损的仿真预测%Simulation Forecast of Forging Die Wear

    Institute of Scientific and Technical Information of China (English)

    杨艳杰; 黄鹤辉; 尹辉俊

    2013-01-01

    Based on the revised Archard wear model,forging forming process of a commercial vehicle spring pad plate was simulated by using the finite element analysis software DEFORM-3D. Some factors caused die wear were basically analyzed. These results can offer some references for forecast of the similar forging die wear and service life.%基于Archard修正磨损模型,使用有限元分析软件DEFORM-3D,对某商用车弹簧垫板锻压成形过程进行了数值模拟,着重对造成模具磨损的一些因素进行了分析.结果对同类锻压模的磨损及其寿命预测具有一定的参考价值.

  6. TEFLON VS TITANIUM PROSTHESES IN STAPES SURGERY

    Directory of Open Access Journals (Sweden)

    Rajesh Vishwakarma

    2014-04-01

    Full Text Available BACKGROUND: Otosclerosis is one of the most leading causes of conductive hearing loss with intact tympanic membrane in adults. Stapes prostheses have seen many changes in its shape, design and material. Both Teflon and Titanium prostheses used in this study having different method of application are reviewed in detail. OBJECTIVE: To compare the outcomes of use of Teflon and Titanium prostheses in stapedotomy surgery in patients with conductive hearing loss. STUDY DESIGN: Prospective study SETTING: Tertiary referral centre METHODS: A prospective study of 50 patients of otosclerosis, who underwent stapedotomy at B.J.Medical College, Civil Hospital, Ahmedabad, with Teflon/Titanium prostheses, from June 2009-February 2012 was done. Follow up was done for a minimum period of 6 months. Revision cases were excluded. A comparison of prostheses was concluded by differences in AB (Air Bone Gap. RESULT: Postoperative ABG of 20db or less was seen in 96% in both groups. The mean postoperative ABGap was 8.2 dB and 11.5 dB for Teflon and Titanium group respectively. There was no statistically significance difference noted in ABGap between Teflon and Titanium pistons at 95% confidence limit at P<0.05. There was significant improvement of AC thresholds at each frequency except for above 4 kHz, in postoperative period. CONCLUSION: Both prostheses provide equal benefit to patients and there is no statistically significant difference between the uses of Teflon/Titanium prostheses. Long term results are still to be analyzed.

  7. Initial cytotoxicity of novel titanium alloys.

    Science.gov (United States)

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments. PMID:17385227

  8. Initial cytotoxicity of novel titanium alloys.

    Science.gov (United States)

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments.

  9. High Pressure in the Inner Wall of Phosphorus Machine Forging Companies%高压内壁除磷机在锻造企业的使用

    Institute of Scientific and Technical Information of China (English)

    孟立社

    2015-01-01

    Forging machine forging diameter pipe diameter forging machine equipment is the trend of development. Trail forging machine forging steel pipe can meet specific process requirements, but also to meet the accuracy requirements. Forged pipe can be effective, depends largely on the handling of phosphorus oxide in the tube sheet. High pressure inside wall function completely phosphorus and phosphorus in automatic condition, and faster, and phosphorus in temperature can be maintained in the range of process requirements.%应用径锻机锻管是径锻机设备发展的趋势。径锻机锻管既可满足特殊的用钢工艺需求,还可满足精度要求。锻管能否奏效,很大程度上取决于管坯内氧化皮磷片的处理情况。高压内壁除磷机能在全自动状况下彻底除磷,且速度较快、除磷中温度可保持在工艺要求的范围之内。

  10. Forging method for consolidating loose structure in steel ingot with v shape dies. V ji gata kanashiki ni yoru kokon no zagu acchaku tanzoho

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, K.; Noguchi, H. (Kawasaki Steel Corp., Tokyo (Japan)); Kato, K. (Tokyo Institute of Technology, Tokyo (Japan). Faculty of Engineering)

    1991-10-01

    A forging method effective for consolidating loose structure in steel ingot is proposed to measure distribution of deformation of round billets in forging with 135{degree} dies, using a model sample made by piling up extremely thin plasticine sheets and a moire technique. From the observation of moire fringes at the time of forging plane deformation, an octagonal forging method with billet rotation of 0-90-135-225{degree} is effective to consolidate the loose structure in the wide area of steel ingot axial region. Moreover, according to the axial distribution of moire stripes of three-dimensional deformation materials with axial direction elongation, it is necessary to axially shift the ingot fittingly in the cogging process. As a result of the cogging experiment using dummy steel ingot plasticine, a {1/4} full die-width shifting method is more effective than a full die-width shifting method in terms of strain distribution in the axial region. Furthermore, it is confirmed that in the forging of the actual steel ingot, loose structure of the steel ingot can be consolidated by the combined use of the octagonal forging method and the {1/4} full die-width shifting method. 13 refs., 10 figs.

  11. Contribution to the history of technology and weaponry: experimental forging of arrowheads using ancient iron bars

    Directory of Open Access Journals (Sweden)

    Renoux, Guillaume

    2009-12-01

    Full Text Available This study is devoted to experiments for defining the forging conditions of roman iron ingots (bars; its purpose is to obtain various arrow heads similar to those issued from the famous site of Uxellodunum (Le Puy d’Issolud, Lot, the last fight of Caesar in Gaul. The main part of work is realized with currency bars found in loads of roman shipwrecks, in Mediterranean Sea, near Les Saintes-Maries-de-la-Mer; two smaller bars are issued from the Pyrenean site of Le Couperé, near Saint-Bertrand-de-Comminges. Effects of the various parameters of forging conditions on metal are analyzed by optical microscopy; they let to reach the different typologies and microstructural features observed with antique arrow heads.

    Cette étude porte sur la recherche des conditions de forgeage optimales ayant conduit à la réalisation de pointes de flèche diverses, identiques à celles dont on dispose pour l’époque antique, parfois en grande abondance, comme cela est le cas pour le site du siège d’Uxellodunum, au Puy d’Issolud (Lot. L’expérimentation a été conduite avec le concours d’un taillandier spécialiste de la restitution d’armes anciennes. L’originalité du travail porte sur le choix du forgeage de barres archéologiques issues des épaves gisant au large des Saintes-Maries-de-la-Mer, en Méditerranée, et des fouilles du Couperé à Saint Bertrand de Comminges, dans les Pyrénées. La caractérisation métallographique préalable de ces barres nous a permis de suivre l’incidence des conditions de forgeage sur la microstructure des pointes de flèche réalisées. Les principaux faciès typologiques et microstructuraux des flèches antiques ont été reproduits, permettant ainsi d’affiner la connaissance technique du protocole de forgeage du fer, au début de notre ère.

  12. Ultrasonic Defect Characterization in Heavy Rotor Forgings by Means of the Synthetic Aperture Focusing Technique and Optimization Methods.

    Science.gov (United States)

    Fendt, Karl T; Mooshofer, Hubert; Rupitsch, Stefan J; Ermert, Helmut

    2016-06-01

    Ultrasonic nondestructive testing of steel forgings aims at the detection and classification of material inhomogeneities to ensure the components fitness for use. Due to the high price and safety critical nature of large forgings for turbomachinery, there is great interest in the application of imaging algorithms to inspection data. However, small flaw indications that cannot be sufficiently resolved have to be characterized using amplitude-based quantification. One such method is the distance gain size method, which converts the maximum echo amplitudes into the diameters of penny-shaped equivalent size reflectors. The approach presented in this contribution combines the synthetic aperture focusing technique (SAFT) with an iterative inversion scheme to locate and quantify small flaws in a more reliable way. Ultrasonic inspection data obtained in a pulse-echo configuration are reconstructed by means of an Synthetic Focusing Technique (SAFT). From the reconstructed data, the amount and approximate location of small flaws are extracted. These predetermined positions, along with the constrained defect model of a penny-shaped crack, provide the initial parametrization for an elastodynamic simulation based on the Kirchhoff approximation. The identification of the optimal parameter set is achieved through an iteratively regularized Gauss-Newton method. By testing the characterization method on a series of flat-bottom holes under laboratory conditions, we demonstrate that the procedure is applicable over a wide range of defect sizes. To show suitability for large forging inspection, we additionally evaluate the inspection data of a large generator shaft forging of 0.6-m diameter. PMID:27116736

  13. Requirements for forged and cast valves and pump casings for nuclear power plants - two ways to basic safety

    International Nuclear Information System (INIS)

    The concept of basic safety poses great requirements for the design, construction, selection of material and manufacture of components. The conversion of this concept into practice requires measures specific to these components. Similar components which are made by different processes of manufacture (forging, casting) require different methods. The suppliers of the valve industry must decide which method should be used to achieve the common aim of 'basic safety'. (orig.)

  14. Memories of Empire: Amateur Film and Displacement in Péter Forgács's Looming Fire

    OpenAIRE

    Beatriz Rodovalho

    2015-01-01

    Through the analysis of the installation Looming Fire – Stories From the Netherlands East Indies (Péter Forgács, 2013), this article investigates the new meanings mobilized by the reappropriation of amateur films produced in the heyday of the colonial exploitation of the Dutch East Indies, territory which today constitutes Indonesia. As these private records assume new territories of history and memory, we propose to study their various displacements. Along with films which reappropriate offi...

  15. Simulations and Experiments of Hot Forging Design and Evaluation of the Aircraft Landing Gear Barrel Al Alloy Structure

    Science.gov (United States)

    Ram Prabhu, T.

    2016-04-01

    In the present study, the hot forging design of a typical landing gear barrel was evolved using finite element simulations and validated with experiments. A DEFORM3D software was used to evolve the forging steps to obtain the sound quality part free of defects with minimum press force requirements. The hot forging trial of a barrel structure was carried out in a 30 MN hydraulic press based on the simulation outputs. The tensile properties of the part were evaluated by taking samples from all three orientations (longitudinal, long transverse, short transverse). The hardness and microstructure of the part were also investigated. To study the soundness of the product, fluorescent penetrant inspection and ultrasonic testing were performed in order to identify any potential surface or internal defects in the part. From experiments, it was found that the part was formed successfully without any forging defects such as under filling, laps, or folds that validated the effectiveness of the process simulation. The tensile properties of the part were well above the specification limit (>10%) and the properties variation with respect to the orientation was less than 2.5%. The part has qualified the surface defects level of Mil Std 1907 Grade C and the internal defects level of AMS 2630 Class A (2 mm FBh). The microstructure shows mean grain length and width of 167 and 66 µm in the longitudinal direction. However, microstructure results revealed that the coarse grain structure was observed on the flat surface near the lug region due to the dead zone formation. An innovative and simple method of milling the surface layer after each pressing operation was applied to solve the problem of the surface coarse grain structure.

  16. Effect of molybdenum addition on the mechanical properties of sinter-forged Fe–Cu–C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Sanjay S., E-mail: rathore.sanjaysingh@gmail.com; Salve, Milind M., E-mail: milindrowling@gmail.com; Dabhade, Vikram V., E-mail: vvdabfmt@iitr.ac.in

    2015-11-15

    Molybdenum provides solid solution strengthening, enhances hardenability and has thus been used to improve mechanical properties of ferrous alloys significantly. The present study reports the effect of molybdenum addition on the properties of sinter-forged Fe–Cu–C alloys prepared using elemental powders under various heat treatment conditions. The elemental powder mixtures were compacted at a pressure of 500 MPa followed by sintering at 1120 °C in N{sub 2}–20%H{sub 2} atmosphere. Further, the sintered compacts were immediately forged at the sintering temperature in a closed die. The sinter-forged compacts were further homogenized and then heat treated under different cooling rates. Enhancement of the mechanical properties (hardness and tensile strength) were observed with Mo addition and increase in severity of quench. Hardness of air cooled samples was slightly lower than that of the water quenched samples but comparable with oil quenched samples. However, no significant increase in hardness was observed beyond 1.5 wt% Mo addition for all cooling conditions. At higher molybdenum content ductility was retained due to stabilization of ferrite phase by molybdenum. The microstructural study showed mostly ferrite–pearlite structure in furnace cooled condition whereas a complex microstructure was observed in the faster cooling conditions. Grain refinement was also observed with molybdenum addition. - Highlights: • Mo (0.25–4.0 wt%) addition in sinter-forged Fe–2Cu–0.65C alloys was investigated. • Effect of heat treatment on mechanical properties and microstructure was discussed. • Hardness and strength increased with Mo addition at the expense of ductility. • Hardness in air cooled condition was comparable with oil/water cooled conditions.

  17. Effect of molybdenum addition on the mechanical properties of sinter-forged Fe–Cu–C alloys

    International Nuclear Information System (INIS)

    Molybdenum provides solid solution strengthening, enhances hardenability and has thus been used to improve mechanical properties of ferrous alloys significantly. The present study reports the effect of molybdenum addition on the properties of sinter-forged Fe–Cu–C alloys prepared using elemental powders under various heat treatment conditions. The elemental powder mixtures were compacted at a pressure of 500 MPa followed by sintering at 1120 °C in N2–20%H2 atmosphere. Further, the sintered compacts were immediately forged at the sintering temperature in a closed die. The sinter-forged compacts were further homogenized and then heat treated under different cooling rates. Enhancement of the mechanical properties (hardness and tensile strength) were observed with Mo addition and increase in severity of quench. Hardness of air cooled samples was slightly lower than that of the water quenched samples but comparable with oil quenched samples. However, no significant increase in hardness was observed beyond 1.5 wt% Mo addition for all cooling conditions. At higher molybdenum content ductility was retained due to stabilization of ferrite phase by molybdenum. The microstructural study showed mostly ferrite–pearlite structure in furnace cooled condition whereas a complex microstructure was observed in the faster cooling conditions. Grain refinement was also observed with molybdenum addition. - Highlights: • Mo (0.25–4.0 wt%) addition in sinter-forged Fe–2Cu–0.65C alloys was investigated. • Effect of heat treatment on mechanical properties and microstructure was discussed. • Hardness and strength increased with Mo addition at the expense of ductility. • Hardness in air cooled condition was comparable with oil/water cooled conditions

  18. Dependence of Microstructure on Solution and Aging Treatment for Near-β Forged TA15 Ti-Alloy

    Science.gov (United States)

    Sun, Zhichao; Wu, Huili; Ma, Xiaoyong; Mao, Xiaojun; Yang, He

    2016-08-01

    For TA15 Ti-alloy, a tri-modal microstructure was obtained via near-β forging combined with solution and aging treatment (SAT) with a short time of air cooling (AC) during forgings transferring before water quenching (WQ). The influence of SAT conditions on final microstructures via 970 °C/0.1 s-1/60%/(AC + WQ) and SAT was investigated. Solution temperature determined the proportion of α and β phases and mainly affected the volume fraction of secondary lamellar α. Solution time mainly influenced the morphology of secondary lamellar α. Solution cooling method was the main factor affecting the thickness of lamellar α. Lower cooling rate resulted in more and thicker lamellar α. Aging treatment had little influence on the volume fraction, size, and morphology of each phase in the microstructure. The main function of aging treatment was to homogenize and stabilize the microstructure. The volume fraction and thickness of lamellar α were increased, and the distribution homogeneity became better during aging. Under the given forging condition, the reasonable solution and aging conditions to obtain tri-modal microstructure were determined as 930 °C/1~2 h/AC + 550~600 °C/5 h/AC.

  19. Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianbo [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Bin [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wang, Yan [School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Liang, Xiaopeng; He, Yuehui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-09-15

    In this work, the effects of deformation on the microstructure and mechanical behaviors of TiAl alloy were investigated. Deformed microstructure observation was characterized by scanning electron microscopy, electron back scattered diffraction technique, transmission electron microscopy and DEFORM-3D software. Results indicated that the core area of the TiAl pancake was characterized by completely dynamically recrystallized microstructures, however some residual lamellar colonies can be observed near the edge area, which are primarily caused by a temperature drop and inhomogenous plastic flow. The main softening mechanism is dynamic recrystallization of γ grains. The as-forged alloy exhibited excellent mechanical properties at both room temperature and high temperature. Tensile test results showed that the ultimate tensile strength of the alloy increased from 832 MPa at room temperature to 853 MPa at 700 °C, while the elongation increased from 2.7% to 17.8%. Even at the temperature of 850 °C, the ultimate tensile strength maintained 404 MPa, and the elongation increased to 75%. The as-forged alloy also exhibited remarkable low-temperature superplasticity at 850 °C, with an elongation of 120%. - Highlights: • The core area of the TiAl pancake was characterized by DRX microstructure. • The elongation at RT is higher than that of other high Nb-containing TiAl alloys. • The forged alloy exhibited low-temperature superplasticity at 850 °C.

  20. 热锻件常见缺陷及防止方法%Hot Forging Common Defects and Prevention Methods

    Institute of Scientific and Technical Information of China (English)

    曹伟; 孙福勋

    2012-01-01

    The forging quality affects directly the performance of parts and service life. The paper analyses the reason of the heating control of oxidation, improper may cause the decarburization, excessive heat or burn, internal crack, heating distributed defects, of forging process prone to filling discontent, and fold, crack defects ,points out the reasons and puts forward the concrete prevention and solutions, and has important guiding role of ensure product quality and control forgings.%锻件质量的优劣直接影响着零件的性能及使用寿命。本文对加热控制不当可能导致的氧化、脱碳、过热或过烧、内部裂纹、加热不均匀等缺陷,对锻造过程容易出现的充填不满、折叠、裂纹等缺陷进行了研究分析,指出了产生的原因,提出了具体的预防、解决方案,对保证和控制锻件产品质量具有重要的指导作用。

  1. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    Science.gov (United States)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  2. The evolving role of health educators in advancing patient safety: forging partnerships and leading change.

    Science.gov (United States)

    Mercurio, Annette

    2007-04-01

    At least 1.5 million preventable injuries because of adverse drug events occur in the United States each year, according to an Institute of Medicine report. IOM and other organizations at the forefront of health care improvement emphasize that stronger partnerships between patients, their families, and health care providers are necessary to make health care safer. Health educators possess a skill set and an ethical framework that effectively equip them to advance patient and family-centered care and contribute in other significant ways to a safer health care system. Health educators in clinical settings are playing varied and significant roles in advancing patient safety. They are removing barriers to clear communication and forging partnerships between patients, their families, and staff. Health educators are leading patient safety culture change within their institutions and contributing to the shift from provider-centric to patient-centric systems. To expand their impact in improving patient safety, health educators in clinical settings are participating in public awareness campaigns. In seeking to enhance patient safety, health educators face a number of challenges. To successfully manage those, health educators must expand their knowledge, broaden connections, and engage patients and families in meaningful ways.

  3. Importance and role of grain size in free surface cracking prediction of heavy forgings

    International Nuclear Information System (INIS)

    The importance and role of grain size in predicting surface cracking of heavy forgings were investigated. 18Mn18Cr0.5N steel specimens with four different grain sizes were tensioned between 900 and 1100 °C at a strain rate of 0.1 s−1. The nucleation sites and crack morphology were analyzed through electron backscatter diffraction analysis, and the fracture morphology was examined using scanning electron microscopy. The nucleation sites were independent of the grain size, and cracks primarily formed at grain boundaries and triple junctions between grains with high Taylor factors. Grains with lower Taylor factors inhibited crack propagation. Strain was found to mainly concentrate near the grain boundaries; thus, a material with a larger grain size cracks more easily because there are fewer grain boundaries. Fine grains can be easily rotated to a lower Taylor factor to further inhibit cracking. The fracture morphology transformed from a brittle to ductile type with a lowering of grain size. At lower temperature, small dimples on the fracture surfaces of specimens with smaller grain sizes were left by single parent grains and the dimple edge was the grain edge. At higher temperature, dimples formed through void coalescence and the dimple edge was the tearing edge. Finally, the relationship between the reduction in area, grain size, and deformation temperature was obtained

  4. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  5. Microstructural evolution of a forged TiAl based alloy during heat treatment at subtransus temperature

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstmctural evolution of a forged TiA1 based alloy during heat treatment from 1180 ℃ to 1300 ℃ was investigated. The grain sizes of the alpha phases as wel1 as the sizes and the volume fractions of the gamma phases were eval-uated as a function of heat treatment temperature and time. When the alloys are isothermally heat treated at subtransustemperatures, the sizes of gamma phases(Dγ) increase slightly with heat treatment temperature and time and those of al-pha phases(Da) and the volume fractions of gamma phases(γ) vary significantly with holding time in the early stages ofheat treatments, but after heat treatments for 2 h, γ reveal little variations with holding times and Da approach limits,which can be described by Da0 = 0. 65Dγ/γ. Besides, it has been found that the alpha phases in the specimens heattreated at 1 260 ℃ and 1 300 ℃ contain lamellar structures, at low temperatures, however, appear featureless

  6. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy.

    Science.gov (United States)

    Čapek, Jaroslav; Kubásek, Jiří; Vojtěch, Dalibor; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-01-01

    An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard. PMID:26478385

  7. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy.

    Science.gov (United States)

    Čapek, Jaroslav; Kubásek, Jiří; Vojtěch, Dalibor; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-01-01

    An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.

  8. Forging Hispanic communities in new destinations: A case study of Durham, NC.

    Science.gov (United States)

    Flippen, Chenoa A; Parrado, Emilio A

    2012-03-01

    The Chicago School of urban sociology and its extension in the spatial assimilation model have provided the dominant framework for understanding the interplay between immigrant social and spatial mobility. However, the main tenets of the theory were derived from the experience of pre-war, centralized cities; scholars falling under the umbrella of the Los Angeles school have recently challenged the extent to which they are applicable to the contemporary urban form, which is characterized by sprawling, decentralized, and multi-nucleated development. Indeed, new immigrant destinations, such as those scattered throughout the American Southeast, are both decentralized and lack prior experience with large scale immigration. Informed by this debate this paper traces the formation and early evolution of Hispanic neighborhoods in Durham, NC, a new immigrant destination. Using qualitative data we construct a social history of immigrant neighborhoods and apply survey and census information to examine the spatial pattern of neighborhood succession. We also model the sorting of immigrants across neighborhoods according to personal characteristics. Despite the many differences in urban form and experience with immigration, the main processes forging the early development of Hispanic neighborhoods in Durham are remarkably consistent with the spatial expectations from the Chicago School, though the sorting of immigrants across neighborhoods is more closely connected to family dynamics and political economy considerations than purely human capital attributes. PMID:24482612

  9. Forging School-Scientist Partnerships: A Case of Easier Said than Done?

    Science.gov (United States)

    Falloon, Garry

    2013-12-01

    Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.

  10. Development and Evaluation of Titanium Spacesuit Bearings

    Science.gov (United States)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Raymond, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z-series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z-series space suit architecture allows us to reduce mass by an estimated 23 lbs per suit system compared to the previously used stainless steel bearing race designs, without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race- 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility (WSTF) that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approx. 3 years), design parameters for maximum contact stress need to be identified. To identify these design parameters, bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination and design around a cycle life requirement for an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an

  11. Corrosion Inhibition of Titanium in Artificial Saliva Containing Fluoride

    OpenAIRE

    Latifa KINANI; Abdelilah CHTAINI

    2007-01-01

    The objective of this study was to demonstrate the effect of eugenol on the titanium corrosion in artificial saliva enriched with eugenol at different concentration. The corrosion behaviour and titanium surface characterization were investigated by electrochemical measurements and SEM.

  12. Corrosion Inhibition of Titanium in Artificial Saliva Containing Fluoride

    OpenAIRE

    Latifa KINANI; Rachida NAJIH; Abdelilah CHTAINI

    2008-01-01

    The objective of this study was to demonstrate the effect of eugenol on the titanium corrosion in artificial saliva enriched with eugenol at different concentration. The corrosion behaviour and titanium surface characterization were investigated by electrochemical measurements and SEM.

  13. Thermodynamics Behavior of Titanium for BOF Smelting Bearing Steel

    Institute of Scientific and Technical Information of China (English)

    LIU Yue; WU Wei; LIU Liu; LIU Ming; LI Yang-zhou

    2006-01-01

    When titanium element appears in bearing steel, it is very easy to create titanium nitride inclusion, which reduces the fatigue life of bearing steel. Based on the production data of bearing steel produced by BOF, it is found that the titanium takes its source in bearing steel; the factors affecting titanium content, and the thermodynamics behavior of titanium under smelting condition were studied. The results show that the prime reasons of titanium content increment are the soluble aluminum content and the titanium oxide of slag. The comparison between the experimental data and theoretical ones shows that there is a big declination when the soluble aluminum content of steel is higher, which is caused by the nonequilibrium reaction of slag and steel. The apparent equilibrium distribution coefficient of titanium between slag and steel is obtained by use of experimental data.

  14. Speciation of titanium in solvent refined coal using SESC - INAA

    International Nuclear Information System (INIS)

    The preasphaltenes (Pa) separated from solvent refined coal (SRC-I) were fractionated by sequential elution solvent chromatography (SESC) on silica column into 10 fractions. Titanium was determined by instrumental neutron activation analysis (INAA), and was found to be concentrated in fractions 7-10. The preasphaltenes form stable complexes with bis (cyclopentadienyl) titanium(IV) dichloride (BTD), cyclopentadienyl titanium(IV) trichloride (CTT) and titanium(IV) oxide bis (acetylacetone) (TOBA). Preasphaltene titanium complexes (Pa-BTD, Pa-CTT, and Pa-TOBA) were fractionated using the SESC scheme, and the concentration of titanium in each fraction was determined. The mechanism for the reaction between titanium complexes (BTD, CTT or TOBA) and Pa was studied, and the existence of titanium phenoxide type complexes in SRC-I was proposed

  15. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.;

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  16. Advances of Titanium Alloys and Its Biological Surface Modification

    Institute of Scientific and Technical Information of China (English)

    XU Ke-wei; HUANG Ping

    2004-01-01

    This paper reviews the past, present and future of surface modification of titanium alloy from the point of view of preparation of hard tissue replacement implants. The development of titanium alloy is also described.

  17. Engineering titanium surfaces for improving osteointegration

    Science.gov (United States)

    Lu, Xiong

    Titanium is one of the most important metallic biomedical materials in clinical applications. One of the key issues for successful application of titanium is the interaction at the interface between the titanium and the bone. The present study focuses on improving the surfaces of titanium to achieve better capability to bond with natural bone (i.e. better osteointegration). The objectives of this work include: (1) Developing microfabrication methods to produce micropatterns on titanium surfaces for promoting osteointegration; (2) Studying the calcium phosphate (Ca-P) formation on the chemical treated titanium surface and elucidating the mechanism of precipitation theoretically; and (3) Evaluating osteoconductivity of engineering titanium surfaces in vitro and in vivo. Through mask electrochemical micromachining (TMEMM), jet electrochemical micromachining (Jet-EMM) and the confined etchant layer technique (CELT) were attempted to produce micropatterns on titanium surfaces. TMEMM has a high etching rate and good reproducibility and was used to produce micro-hole arrays on Ti plates for in vivo testing. The driving force and nucleation rate of Ca-P precipitation in simulated body fluid (SBF) were analyzed based on the classical crystallization theory. SBF supersaturation with respect to HA, OCP and DCPD (dicalcium phosphate) was carefully calculated, considering all the association/dissociation reactions of related ion groups in SBF. The analysis indicates that the nucleation rate of OCP is substantially higher than that of HA, while HA is most thermodynamically stable in SBF. DCPD precipitation is thermodynamically impossible in normal SBF, unless calcium and phosphate ion concentrations of SBF increase. Osteoconduction of Ti6Al4V surfaces under various conditions, including micro-patterned, alkali-treated, micro-patterned plus alkali-treated, and surfaces without any treatment, was evaluated. TMEMM was used to fabricate micro-hole arrays on the titanium alloy

  18. Laser induced single spot oxidation of titanium

    Science.gov (United States)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  19. Plasma Induced Grafting of PMMA onto Titanium Dioxide Powder

    Institute of Scientific and Technical Information of China (English)

    Zhong Shaofeng; Meng Yuedong; Ou Qiongrong; Xu Xu

    2005-01-01

    Grafting of polymer of methyl methacrylate (PMMA) onto titanium dioxide powder is investigated in this paper. The graft polymerization reaction is induced by dielectric-barrierdischarge produced N2 plasma treatment of titanium dioxide surfaces. IR, XPS and TGA results show that PMMA is grafted onto the surfaces of titanium dioxide powder. And crystal structure of the titanium dioxide powder observed with XRD spectra is unchanged after plasma graft polymerization.

  20. The Progress on Laser Surface Modification Techniques of Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    LIANG Cheng; PAN Lin; Al Ding-fei; TAO Xi-qi; XIA Chun-huai; SONG Yan

    2004-01-01

    Titanium alloy is widely used in aviation, national defence, automobile, medicine and other fields because of their advantages in lower density, corrosion resistance, and fatigue resistance etc. As titanium alloy is higher friction coefficients, weak wear resistance, bad high temperature oxidation resistance and lower biocompatibility, its applications are restricted. Using laser surface modification techniques can significantly improve the surface properties of titanium alloy. a review is given for progress on laser surface modification techniques of titanium alloy in this paper.

  1. ALLOYING OF TITANIUM BY OXYGEN DURING CHAMBER ELECTROSLAG REMELTING

    OpenAIRE

    RYABTSEV ANATOLIY D.; TROYANSKYY OLEKSANDR A.; PASHYNSKYI VOLODYMYR V.; SNIZHKO OLGA A.

    2014-01-01

    The paper presents the results of alloying titanium by oxygen in the process of chamber electroslag remelting. As an oxygen-containing ligature, we used the electrodes-satellite from the reaction mass residues mixture from the retort lid for magnesium thermal reduction of a titanium sponge, a specially prepared gaseous argon oxygen mixture containing 30% oxygen applied directly to the melting space, micro-size (10-15 mm) powder particles of titanium oxide and titanium oxide nanopowder with a ...

  2. Solvolysis of titanium tetrachloride in non-aqueous media as a method for producing titanium dioxide particles of different morphology

    OpenAIRE

    A. M Nemeryuk; M. M Lylina

    2015-01-01

    The processes of solvolysis of titanium tetrachloride in nonaqueous media were studied. The influence of the conditions of solvolysis on the size and morphology of the particles of titanium dioxide produced have been described.

  3. Individual prefabricated titanium implants and titanium mesh in skull base reconstructive surgery. A report of cases.

    Science.gov (United States)

    Schipper, J; Ridder, G J; Spetzger, U; Teszler, C B; Fradis, M; Maier, W

    2004-05-01

    Titanium implants can be shaped by traditional hand forming, press shaping, modular construction by welding, construction on full-size models shaped from CT coordinates and, most recently, by computer-assisted design and computer-assisted manufacturing (CAD/CAM) that consist in the direct prefabrication of individual implants by milling them out of a solid block of titanium. The aim of our study was to present a set of preliminary cases of an ongoing program of reconstructive procedures of the skull base using titanium implants. The subjects underwent ablative procedures of the skull base with reconstruction either by titanium mesh or individual prefabricated CAD/CAM implants. Six patients have been operated on successfully since 2000: two received prefabricated CAD/CAM titanium plates and four others underwent reconstruction with titanium mesh. The stability of CAD/CAM plates is superior to that of mesh, thus it is more useful in reconstructing large lesions of the frontal skull base and the temporal and occipital bones. Titanium mesh was successfully used for defects smaller than 100 cm(2) or where selected viscerocranial defects are complicated in design and less reproducible by CAD/CAM. The intraoperative design, shaping and adjustment characteristic of titanium mesh can be dispensed with when CAD/CAM implants are used. The 3-D data set used in the CAD/CAM process also operates in the navigated simulation and planning of the ablation contours, the latter being of great assistance in establishing the optimal future defect. As a disadvantage, CAD/CAM technology is more expensive than titanium mesh, and the process is time-consuming as it is carried out in advance of surgery.

  4. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  5. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  6. China Customs Removed the Import Tax on Titanium Slag

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The long waited solution to the problem relating to the import of titanium slag has finally resolved. According to China Customs report, the import of titanium slag no longer requires tax payment as from January 1, 2007. This decision will help with the healthy development of China’s titanium industry and increase China’s competitiveness in the international marketplace.

  7. Enhancing osseointegration using surface-modified titanium implants

    Science.gov (United States)

    Yang, Y.; Oh, N.; Liu, Y.; Chen, W.; Oh, S.; Appleford, M.; Kim, S.; Kim, K.; Park, S.; Bumgardner, J.; Haggard, W.; Ong, J.

    2006-07-01

    Osseointegrated dental implants are used to replace missing teeth. The success of implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. This review discusses the enhancement of osseointegration by means of anodized microporous titanium surfaces, functionally macroporous graded titanium coatings, nanoscale titanium surfaces, and different bioactive factors.

  8. Applications of Titanium Dioxide Photocatalysis to Construction Materials

    CERN Document Server

    Ohama, Yoshihiko

    2011-01-01

    Titanium dioxide photocatalysis is based on the semiconducting nature of its anatase crystal type. Construction materials with titanium photocatalyst show performances of air purification, self-cleaning, water purification, antibacterial action. This book describes principles of titanium dioxide photocatalysis, its applications to cementitious and noncementitious materials, as well as an overview of standardization of testing methods.

  9. Development and application of titanium alloy casting technology in China

    Institute of Scientific and Technical Information of China (English)

    NAN Hai; XIE Cheng-mu; ZHAO Jia-qi

    2005-01-01

    The development and research of titanium cast alloy and its casting technology, especially its application inaeronautical industry in China are presented. The technology of molding, melting and casting of titanium alloy, casting quality control are introduced. The existing problems and development trend in titanium alloy casting technology are also discussed.

  10. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  11. Titanium in fatigue critical military aircraft structure

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, F.

    1999-07-01

    This paper discusses the effect of fatigue requirements on titanium structure in military aircraft applications, specifically, fighter aircraft. The discussion covers how fatigue affects the design and analysis of detail parts, and how manufacturing processes affect the fatigue performance of titanium structure. Criteria for designing fighter aircraft have evolved from simple strength calculations to extremely complex computer generated analyses involving strength, durability, damage tolerance and fatigue. Fatigue life prediction is an important part of these analyses and dramatically affects the design and weight of fighter aircraft. Manufacturing processes affect fatigue performance both in a positive and negative manner. Designers must allow for the effect of these processes on titanium structure and consider the efficiency and economy of adding processes that increase fatigue life.

  12. Genotoxicity of titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2014-03-01

    Full Text Available Titanium dioxide nanoparticles (TiO2-NPs, <100 nm are increasingly being used in pharmaceuticals and cosmetics due to the unique properties derived from their small sizes. However, their large surface-area to mass ratio and high redox potential may negatively impact human health and the environment. TiO2-NPs can cause inflammation, pulmonary damage, fibrosis, and lung tumors and they are possibly carcinogenic to humans. Because cancer is a disease involving mutation, there are a large number of studies on the genotoxicity of TiO2-NPs. In this article, we review the results that have been reported in the literature, with a focus on data generated from the standard genotoxicity assays. The data include genotoxicity results from the Ames test, in vitro and in vivo Comet assay, in vitro and in vivo micronucleus assay, sister chromatid exchange assay, mammalian cell hypoxanthine-guanine phosphoribosyl transferase gene assay, the wing somatic mutation and recombination assay, and the mouse phosphatidylinositol glycan, class A gene assay. Inconsistent results have been found in these assays, with both positive and negative responses being reported. The in vitro systems for assessing the genotoxicity of TiO2-NPs have generated a greater number of positive results than the in vivo systems, and tests for DNA and chromosome damage have produced more positive results than the assays measuring gene mutation. Nearly all tests for measuring the mutagenicity of TiO2-NPs were negative. The current data indicate that the genotoxicity of TiO2-NPs is mediated mainly through the generation of oxidative stress in cells.

  13. Method for the production of strongly adhesive films on titanium and titanium alloys with a metallization process

    Science.gov (United States)

    Hahn, H. J.

    1986-01-01

    A process for the spray-application of a strongly adhesive, thick antifriction layer on titanium and titanium alloys is proposed. The titanium/titanium alloy component to be coated is first subjected to cleaning in a pickling bath with reducing additives and sand-blasting, then coated with an intermediate layer of nickel, after which the final layer is applied. The formation of TiNi at the interface ensures strong bonding of the antifriction layer.

  14. Titanium dioxide nanoparticles – Biological effects

    OpenAIRE

    Anna Maria Świdwińska-Gajewska; Sławomir Czerczak

    2014-01-01

    Titanium dioxide occurs as particles of various sizes. Particles of up to 100 nm, corresponding to nanoparticles, and in the size range of 0.1–3 mm are the most frequently used. Titanium dioxide in a bulk form is not classified as dangerous substance, nevertheless nanoparticles may cause adverse health effects. Inhalation exposure to nano-TiO2 causes pulmonary inflammation that may lead to fibrotic and proliferative changes in the lungs. Many studies confirm the genotoxic effect of TiO2, espe...

  15. Magnetically controlled recrystallization texture in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Molodov, D.A. [Inst. fuer Metallkunde und Metallphysik, RWTH Aachen (Germany); Sheikh-Ali, A.D. [National High Magnetic Field Lab. and FAMU-FSU Coll. of Engineering, Tallahassee, FL (United States)

    2004-07-01

    The annealing of cold rolled (82%) titanium sheet at 750 C in a magnetic field of 19.4 Tesla results in a distinct difference between texture peaks when the sample is tilted by +30 or -30 to the field direction around the rolling direction, i.e. c (<0001>)-axis of grains corresponding to one texture component is aligned normal to the field direction. This result is attributed to grain growth affected by an additional driving force arising in a magnetic field by the anisotropy of the magnetic susceptibility of titanium. (orig.)

  16. Powder injection molding of pure titanium

    Institute of Scientific and Technical Information of China (English)

    GUO Shibo; DUAN Bohua; HE Xinbo; QU Xuanhui

    2009-01-01

    An improved wax-based binder was developed for powder injection molding of pure titanium. A critical powder loading of 69 vol.% and a pseudo-plastic flow behavior were obtained by the feedstock based on the binder. The injection molding, debinding, and sintering process were studied. An ideal control of carbon and oxygen contents was achieved by thermal debinding in vacuum atmosphere (10-3 Pa). The mechanical properties of as-sintered specimens were less than those of titanium made by the conventional press-sintering process. Good shape retention and ±0.04 mm dimension deviation were achieved.

  17. Titanium nanostructural surface processing for improved biocompatibility

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO2 on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO2 by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration

  18. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.;

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  19. Hydrogen storage with titanium-functionalized graphene

    CERN Document Server

    Mashoff, Torge; Tanabe, Shinichi; Hibino, Hiroki; Beltram, Fabio; Heun, Stefan

    2013-01-01

    We report on hydrogen adsorption and desorption on titanium-covered graphene in order to test theoretical proposals to use of graphene functionalized with metal atoms for hydrogen storage. At room temperature titanium islands grow with an average diameter of about 10 nm. Samples were then loaded with hydrogen, and its desorption kinetics was studied by thermal desorption spectroscopy. We observe the desorption of hydrogen in the temperature range between 400K and 700 K. Our results demonstrate the stability of hydrogen binding at room temperature and show that hydrogen desorbs at moderate temperatures in line with what required for practical hydrogen-storage applications.

  20. Creating mobile apps with Appcelerator Titanium

    CERN Document Server

    Brousseau, Christian

    2013-01-01

    Creating Mobile Apps with Appcelerator Titanium provides a hands-on approach and working examples on creating apps and games as well as embedding them onto a social networking website. Developers can then move on from there to develop their own applications based on the ones they have developed throughout the course of this book.""Creating Mobile Apps with Appcelerator Titanium"" is for developers who have experience with modern languages and development environments. Also, if you are familiar with the concepts of Object-oriented Programming (OOP), reusable components, AJAX closures, and so on