WorldWideScience

Sample records for cementitious waste option

  1. Cementitious waste option scoping study report

    International Nuclear Information System (INIS)

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period

  2. Cementitious waste option scoping study report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.

  3. Direct cementitious waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Dafoe, R.E.; Losinski, S.J.

    1998-02-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste and casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.

  4. Direct cementitious waste option study report

    International Nuclear Information System (INIS)

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste and casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032

  5. Leaching from cementitious waste forms in belowground vaults

    International Nuclear Information System (INIS)

    Solidification and/or stabilization with cementitious materials prior to burial is one option for disposal of liquid hazardous and radioactive wastes. A common design for disposal of cementitious waste forms is to pour the material into large belowground vaults. The leaching performance of partially degraded monolithic vaults is examined quantitatively for facilities located in humid to semiarid climates. Development of perched water on the vault roof leading to fracture flow through the structure is predicted for a wide range of climate and design conditions. Leaching controlled by diffusion in matrix blocks out to fractures is examined parametrically in relation to water flux rate and crack spacing. Depending upon the parameters examined, release rate may be controlled by water flux rate or diffusion. Under some circumstances, contaminant release rates and exit concentrations are predicted to be inversely related. In this situation, minimization of release does not result in the lowest predicted groundwater concentrations below the vault

  6. Wastes options

    International Nuclear Information System (INIS)

    After a description of the EEC environmental policy, some wastes families are described: bio-contaminant wastes (municipal and industrial), hospitals wastes, toxic wastes in dispersed quantities, nuclear wastes (radioactive and thermal), plastics compounds wastes, volatiles organic compounds, hydrocarbons and used solvents. Sources, quantities and treatments are given. (A.B.). refs., figs., tabs

  7. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  8. Computer Modeling of Leaching of Heavy Metal from Cementitious Waste

    OpenAIRE

    Peng Hu; Wei Dai

    2013-01-01

    Thermodynamic equilibrium model was used to simulate the results of leaching heavy metal from cementitious wastes. Modeling results of the leached major element concentrations for samples agreed well with the leaching test using the set of pure minerals and solid solutions present in the database. The model revealed Pb and Cd were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd exist as discrete particles in the cement pores. Precipitation w...

  9. Characteristics of Cast Stone cementitious waste form for immobilization of secondary wastes from vitrification process

    Science.gov (United States)

    Chung, Chul-Woo; Um, Wooyong; Valenta, Michelle M.; Sundaram, S. K.; Chun, Jaehun; Parker, Kent E.; Kimura, Marcia L.; Westsik, Joseph H.

    2012-01-01

    The high-temperature in vitrification process of radioactive wastes could cause radioactive technetium ( 99Tc) in secondary liquid wastes to become volatile. Solidified cementitious waste forms at low temperature were developed to immobilize radioactive secondary waste. This research focuses on the characterization of a cementitious waste form called Cast Stone. Properties including compressive strength, surface area, phase composition, and technetium leaching were measured. The results indicate that technetium diffusivity is affected by simulant type. Additionally, ettringite and AFm (Al 2O 3-Fe 2O 3-mono) main crystalline phases were formed during hydration. The Cast Stone waste form passed the qualification requirements for a secondary waste form, which are compressive strength of 3.45 MPa and technetium diffusivity of 10 -9 cm 2/s. Cast Stone was found to be a good candidate for immobilizing secondary waste streams.

  10. Mixed waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.B.; Kirner, N.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  11. Computer Modeling of Leaching of Heavy Metal from Cementitious Waste

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2013-07-01

    Full Text Available Thermodynamic equilibrium model was used to simulate the results of leaching heavy metal from cementitious wastes. Modeling results of the leached major element concentrations for samples agreed well with the leaching test using the set of pure minerals and solid solutions present in the database. The model revealed Pb and Cd were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd exist as discrete particles in the cement pores. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution.

  12. Evolution of 99Tc Species in Cementitious Nuclear Waste Form

    International Nuclear Information System (INIS)

    Technetium (Tc) is produced in large quantities as a fission product during the irradiation of 235U-enriched fuel for commercial power production and plutonium genesis for nuclear weapons. The most abundant isotope of Tc present in the wastes is 99Tc because of its high fission yield (∼6%) and long half-life (2.13x105 years). During the Cold War era, generation of fissile 239Pu for use in America's atomic weapons arsenal yielded nearly 1900 kg of 99Tc at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington State. Most of this 99Tc is present in fuel reprocessing wastes temporarily stored in underground tanks awaiting retrieval and permanent disposal. After the wastes are retrieved from the storage tanks, the bulk of the high-level waste (HLW) and lowactivity waste (LAW) stream is scheduled to be converted into a borosilicate glass waste form that will be disposed of in a shallow burial facility called the Integrated Disposal Facility (IDF) at the Hanford Site. Even with careful engineering controls, volatilization of a fraction of Tc during the vitrification of both radioactive waste streams is expected. Although this volatilized Tc can be captured in melter off-gas scrubbers and returned to the melter, some of the Tc is expected to become part of the secondary waste stream from the vitrification process. The off-gas scrubbers downstream from the melters will generate a high pH, sodium-ammonium carbonate solution containing the volatilized Tc and other fugitive species. Effective and cost-efficient disposal of Tc found in the off-gas scrubber solution remains difficult. A cementitious waste form (Cast Stone) is one of the nuclear waste form candidates being considered to solidify the secondary radioactive liquid waste that will be generated by the operation of the waste treatment plant (WTP) at the Hanford Site. Because Tc leachability from the waste form is closely related with Tc speciation or oxidation state in both the simulant and

  13. Weathering Effect on 99Tc Leachability from Cementitious Waste Form

    International Nuclear Information System (INIS)

    The mass transfer of contaminants from the solid phase to the waste form pore water, and subsequently out of the solid waste form, is directly related to the number and size distribution of pores as well as the microstructure of the waste form. Because permeability and porosity are controlled by pore aperture size, pore volume, and pore distribution, it is important to have some indication of how these characteristics change in the waste form during weathering. Knowledge of changes in these key parameters can be used to develop predictive models that estimate diffusivity or permeability of radioactive contaminants can be used to develop predictive models that estimate diffusivity or permeability of radioactive contaminants from waste forms for long-term performance assessment. It is known that dissolution or precipitation of amorphous/crystalline phases within waste forms alters their pore structure and controls the transport of contaminants our of waste forms. One very important precipitate is calcite, which is formed as a result of carbonation reactions in cement and other high-alkalinity waste forms. Enhanced oxidation can also increase Tc leachability from the waste form. To account for these changes, weathering experiments were conducted in advance to increase our understating of the long-term Tc leachability, especially out of the cementitious waste form. Pore structure analysis was characterized using both N2 absorption analysis and XMT techniques, and the results show that cementitious waste form is a relatively highly-porous material compared to other waste forms studied in this task, Detailed characterization of Cast Stone chunks and monolith specimens indicate that carbonation reactions can change the Cast Stone pore structure, which in turn may correlate with Tc leachability. Short carbonation reaction times for the Cast Stone causes pore volume and surface area increases, while the average pore diameter decreases. Based on the changes in pore volumes

  14. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  15. Cementitious Grout for Closing SRS High Level Waste Tanks - 12315

    International Nuclear Information System (INIS)

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. Ancillary equipment abandoned in the tanks will also be filled to the extent practical. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and to be chemically reducing with a reduction potential (Eh) of -200 to -400. Grouts with this chemistry stabilize potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted to support the mass placement strategy developed by

  16. Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization

    International Nuclear Information System (INIS)

    This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete

  17. Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.F.; Kirkpatrick, R.J.; Mason, T.O.; Brough, A.

    1995-07-01

    This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete.

  18. Appraisal of a cementitious material for waste disposal: Neutron imaging studies of pore structure and sorptivity

    International Nuclear Information System (INIS)

    Cementitious materials are conventionally used in conditioning intermediate and low level radioactive waste. In this study a candidate cement-based wasteform has been investigated using neutron imaging to characterise the wasteform for disposal in a repository for radioactive materials. Imaging showed both the pore size distribution and the extent of the cracking that had occurred in the samples. The rate of the water penetration measured both by conventional sorptivity measurements and neutron imaging was greater than in pastes made from Ordinary Portland Cement. The ability of the cracks to distribute the water through the sample in a very short time was also evident. The study highlights the significant potential of neutron imaging in the investigation of cementitious materials. The technique has the advantage of visualising and measuring, non-destructively, material distribution within macroscopic samples and is particularly useful in defining movement of water through the cementitious materials.

  19. TMT abnormal wastes disposal options

    International Nuclear Information System (INIS)

    A substantial quantity of high beta-gamma/high-TRU contaminated wastes are expected from cleanup activities of Unit 2 of the Three Mile Island Nuclear Power Station. Those wastes are not disposable because of present regulatory constraints. Therefore, they must be stored temporarily. This paper discusse three options for storage of those wastes at the Idaho National Engineering Laboratory: (a) storage in temporary storage casks, (b) underground storage in vaults, and (c) storage in silos at a hot shop. Each option is analyzed and evaluated. Also included is a discussion of future disposal strategies, which might be pursued when a suitable federal or commercial repository is built

  20. Cementitious Composites for Immobilization of Radioactive Waste into Final Wasteform

    International Nuclear Information System (INIS)

    Research and development works are important on universal cementation technological processes to achieve maximal conditioning efficiency for various type wastes such as saline liquid radioactive waste (LRW), where the variants of cement composition formulations, modes of cement compounds preparation and types of equipment are minimised. This work presents the results of development of multi-component cement compositions for the complex of technological processes of different types of radioactive waste (RAW) cementation: concentrated saline LRW, concentrated boron-containing saline LRW, LRW with high surface active substances content, with residues, liquid organic radioactive waste, spent ion-exchange resins and filter-perlite powder, ash residues from solid radioactive waste (SRW) combustion, mixed closely packed and large-fragmented SRW. The research has found technological parameters of equipment and cement compositions providing reliable RAW cementation. Continuous and periodic cycle plants were developed for LRW cementation by mixing. Pouring and penetration methods were developed for SRW cementation. Based on compliance with equipment parameters, methods and cement grouts were selected for most effective technological processes of cementation. Formulations of cement compositions were developed to provide reliable preparation of cement compounds with maximal waste loading at required cement compound quality. The complex of technological processes of cementation using multi-component cement compositions allows highly efficient treatment of the wide range of RAW including problematic waste streams and wastes generated in small amounts. Rational reduction of cementation variants significantly increases economical efficiency of immobilisation. (author)

  1. Low-alkaline cementitious grout for high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    The stratum disposal system for high-level nuclear waste mainly involves the use of natural bedrock, called the natural barrier, and over pack and the buffer, those are designated as the artificial barrier. Grouting technology is indispensable for the environment that the crack and the underground water flow of the bedrock bring about mass transport, also ratio active component. However, typical cementitious grout material is strongly alkaline and the alkalinity that it imparts to the barrier material, especially to mineral substances in the bedrock or buffer, is suspected to compromise the performance of the barrier system over the long term. In order to avoid this undesirable alkaline influence, we have developed a procedure for reducing the alkaline state in cementitious materials by employing high volumes of additives such as pozzolanic materials. In this paper, we discuss the basic properties of low-alkaline cementitious grout, and explain how to select and mix appropriate proportions of grout to accomplish the end-objective, i.e., develop an efficient stratum disposal system. We also elaborate on progress achieved in research on this topic over the last two years. (author)

  2. Heat of Hydration of Low Activity Cementitious Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Nasol, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  3. Impact of cementitious materials decalcification on transfer properties: application to radioactive waste deep repository

    International Nuclear Information System (INIS)

    Cementitious materials have been selected to compose the engineering barrier system (EBS) of the French radioactive waste deep repository, because of concrete physico-chemical properties: the hydrates of the cementitious matrix and the pH of the pore solution contribute to radionuclides retention; furthermore the compactness of these materials limits elements transport. The confinement capacity of the system has to be assessed while a period at least equivalent to waste activity (up to 100.000 years). His durability was sustained by the evolution of transfer properties in accordance with cementitious materials decalcification, alteration that expresses structure long-term behavior. Then, two degradation modes were carried out, taking into account the different physical and chemical solicitations imposed by the host formation. The first mode, a static one, was an accelerated decalcification test using nitrate ammonium solution. It replicates the EBS alteration dues to underground water. Degradation kinetic was estimated by the amount of calcium leached and the measurement of the calcium hydroxide dissolution front. To evaluate the decalcification impact, samples were characterized before and after degradation in term of microstructure (porosity, pores size distribution) and of transfer properties (diffusivity, gas and water permeability). The influence of cement nature (ordinary Portland cement, blended cement) and aggregates type (lime or siliceous) was observed: experiments were repeated on different mortars mixes. On this occasion, an essential reflection on this test metrology was led. The second mode, a dynamical degradation, was performed with an environmental permeameter. It recreates the EBS solicitations ensured during the re-saturation period, distinguished by the hydraulic pressure imposed by the geologic layer and the waste exothermicity. This apparatus, based on triaxial cell functioning, allows applying on samples pressure drop between 2 and 10 MPa and

  4. The microbiology of the Maqarin site, Jordan -- A natural analogue for cementitious radioactive waste repositories

    International Nuclear Information System (INIS)

    The Maqarin site, Jordan is being studied as a natural analogue of a cementitious radioactive waste repository. The microbiology has been studied and diverse microbial populations capable of tolerating alkaline pH were detected at all sampling localities. Dissolved organic carbon was identified as the potentially most important reductant with sulfate identified as the main oxidant, both supply energy for microbial life. Calculations on upper limits of microbial numbers were made with a microbiology code (MGSE) using existing information but the results are overestimates when compared with field observations. This indicates that the model is very conservative and that more information on, for example, carbon sources is required

  5. Study on rich alumina alkali-activated slag clay minerals cementitious materials for immobilization of radioactive waste

    International Nuclear Information System (INIS)

    The composition and some properties of its pastes of rich alumina alkali-activated slag clay minerals (RAAASCM) cementitious materials for immobilization of radioactive waste are studied. Experimental results show that heat activated kaolinite, Xingjiang zeolite, modified attapulgite clay are better constituents of RAAASCM. RAAASCM cementitious materials pastes exhibit high strength, low porosity, fewer harmful pore, and high resistance to sulphate corrosion as well as gamma irradiation. The Sr2+, Cs+ leaching portion of the simulated radioactive waste forms based on RAAASCM, is low

  6. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  7. DURABILITY OF GREEN CONCRETE WITH TERNARY CEMENTITIOUS SYSTEM CONTAINING RECYCLED AGGREGATE CONCRETE AND TIRE RUBBER WASTES

    Directory of Open Access Journals (Sweden)

    MAJID MATOUQ ASSAS

    2016-06-01

    Full Text Available All over the world billions of tires are being discarded and buried representing a serious ecological threat. Up to now a small part is recycled and millions of tires are just stockpiled, landfilled or buried. This paper presents results about the properties and the durability of green concrete contains recycled concrete as a coarse aggregate with partial replacement of sand by tire rubber wastes for pavement use. Ternary cementious system, Silica fume, Fly ash and Cement Kiln Dust are used as partial replacement of cement by weight. Each one replaced 10% of cement weight to give a total replacement of 30%. The durability performance was assessed by means of water absorption, chloride ion permeability at 28 and 90 days, and resistance to sulphuric acid attack at 1, 7, 14 and 28 days. Also to the compression behaviors for the tested specimens at 7, 14, 28 and 90 days were detected. The results show the existence of ternary cementitious system, silica fly ash and Cement Kiln Dust minimizes the strength loss associated to the use of rubber waste. In this way, up to 10% rubber content and 30% ternary cementious system an adequate strength class value (30 MPa, as required for a wide range of common structural uses, can be reached both through natural aggregate concrete and recycled aggregate concrete. Results also show that, it is possible to use rubber waste up to 15% and still maintain a high resistance to acid attack. The mixes with 10%silica fume, 10% fly ash and 10% Cement Kiln Dust show a higher resistance to sulphuric acid attack than the reference mix independently of the rubber waste content. The mixes with rubber waste and ternary cementious system was a lower resistance to sulphuric acid attack than the reference mix.

  8. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger Ray

    2002-08-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing an overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  9. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.R.

    2002-05-15

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  10. Entombment Using Cementitious Materials: Design Considerations and International Experience

    International Nuclear Information System (INIS)

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective

  11. Implications of the use of low-pH cementitious materials in high activity radioactive waste repositories

    International Nuclear Information System (INIS)

    One of the most accepted engineering construction concepts for high radioactive nuclear waste of underground repositories considers the use of low pH cementitious materials, in order to avoid the formation of an alkaline plume fluid which perturbs one of the engineered barriers of the repository, the bentonite. The accepted solution to maintain the bentonite stability, which is function of the pH, is to develop cementitious materials that generate pore waters with pH ≤ 11, because the corrosion velocity of the clay is significantly reduced below this value. The IETcc-CSIC has focused the research activity on low-pH cementitious materials using two cements: Ordinary Portland Cements (OPC) and Calcium Aluminates Cements (CAC). In both cases, the achievement of a low-pH environment implies the use of high content of mineral admixtures to prepare the binder. Obviously, the inclusion of high contents of mineral admixtures in the cement formulation modifies most of the concrete 'standard' properties and the microstructure of the obtained cement products. When designing a concrete based on low-pH binders, not only the functional requirements have to be reached but also the modifications of the basic properties of the concrete must be taken into account. Besides, due to the location and the long service life of this type of products, their durability properties must be also guaranteed. This paper deals with the procedure followed in the design of a specific application of low pH cements; for instance, the shotcrete plug fabrication. The challenge of this type of use (shotcreting) is more complex taking into account that requires the employment of additives that must be compatible with the concrete mixture. Furthermore, their effectiveness must be assured without increase the pH above the admissible levels. Therefore, their compatibility with admixtures is tested in the present work. The compliance of the requirements for a shotcrete plug was evaluated at laboratory scale

  12. Modelling Long-Term Evolution of Cementitious Materials Used in Waste Disposal

    International Nuclear Information System (INIS)

    This report summarizes the latest developments at SCK-CEN in modelling long-term evolution of cementitious materials used as engineered barriers in waste disposal. In a first section chemical degradation of concrete during leaching with rain and soil water types is discussed. The geochemical evolution of concrete thus obtained forms the basis for all further modelling. Next we show how the leaching model is coupled with a reactive transport module to determine leaching of cement minerals under diffusive or advective boundary conditions. The module also contains a simplified microstructural model from which hydraulic and transport properties of concrete may be calculated dynamically. This coupled model is simplified, i.e. abstracted prior to being applied to large-scale concrete structures typical of a near-surface repository. Both the original and simplified models are then used to calculate the evolution of hydraulic, transport, and chemical properties of concrete. Characteristic degradation states of concrete are further linked to distribution ratios that describe sorption onto hardened cement via a linear and reversible sorption process. As concrete degrades and pH drops the distribution ratios are continuously updated. We have thus integrated all major chemical and physical concrete degradation processes into one simulator for a particular scale of interest. Two simulators are used: one that can operate at relatively small spatial scales using all process details and another one which simulates concrete degradation at the scale of the repository but with a simplified cement model representation. (author)

  13. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Piepho, M.G. [Daniel B. Stephens & Associates, Inc., Richland, WA (United States)

    1997-12-31

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It`s possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties.

  14. PHREEQC modelling of leaching of major elements and heavy metals from cementitious waste forms

    International Nuclear Information System (INIS)

    In this study, Ca, Mg, Al, and Pb concentrations leached from un-carbonated and carbonated ordinary Portland cement - dried waste incinerator bottom ash samples during single extraction tests (EN12457 test) at a pH from 1 to 12, were modelled using the geochemical code PHREEQC. A good agreement was found between modelling results and experiments in terms of leached concentrations for Ca, Mg, and Al by defining a single set of pure mineralogical phases for both the un-carbonated and carbonated (three levels) samples. The model also predicted well the observed decrease in Ca leaching with increasing carbonation. Modelling results further revealed that leaching of Pb is not controlled by dissolution/precipitation of pure Pb containing minerals only (carbonates and (hydr)oxides). The addition of solid solutions (calcite-cerrusite and gibbsite-ferri-hydrite-litharge solid solutions) and adsorption reactions on amorphous Fe- and Al-oxides improved the model representation of the experimentally observed amphoteric leaching profile of Pb from the cementitious material. (authors)

  15. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    Science.gov (United States)

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material. PMID:27198634

  16. Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM)

    International Nuclear Information System (INIS)

    Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO2 and CaCO3. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 μm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO2, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO2 footprint and the environmental impact of concrete. -- Highlights: •Three different samples of PV nano-silica sludge (nSS) were fully characterized. •nSS is composed of agglomerates of nano-particles like SiO2 and CaCO3. •Dispersability studies demonstrated that nSS agglomerates are broken to nano-size. •nSS can be classified as a

  17. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE@@@s Waste Disposal/Tank Closure Efforts @@@ 15436

    International Nuclear Information System (INIS)

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox @@ @@Version 2.0@@@ which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance

  18. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE’s Waste Disposal/Tank Closure Efforts – 15436

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Heather [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, Frank [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Langton, Christine [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, Kevin [Vanderbilt Univ./CRESP, Nashville, TN (United States); Kosson, David [Vanderbilt Univ./CRESP, Nashville, TN (United States); Samson, Eric [SIMCO Technologies, Inc. (United States); Mallick, Pramod [US DOE, Washington, DC (United States)

    2015-01-27

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance

  19. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC

    International Nuclear Information System (INIS)

    A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6 M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO42- ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca3(AsO4)2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr

  20. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC.

    Science.gov (United States)

    Halim, Cheryl E; Short, Stephen A; Scott, Jason A; Amal, Rose; Low, Gary

    2005-10-17

    A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO4(2-) ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca3(AsO4)2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr. PMID:16043281

  1. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  2. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of keff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  3. Vitrified waste option study report

    International Nuclear Information System (INIS)

    A open-quotes Settlement Agreementclose quotes between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032

  4. Vitrified waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, D.A.; Kimmitt, R.R.

    1998-02-01

    A {open_quotes}Settlement Agreement{close_quotes} between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032.

  5. Cement Waste Matrix Evaluation and Modelling of the Long Term Stability of Cementitious Waste Matrices

    International Nuclear Information System (INIS)

    Cement based materials are often used as a solidification matrix for wet radioactive waste from nuclear power plants such as ion exchange resins, sludge and evaporator concentrates. The mechanical and chemical properties of the cement-waste matrix are affected by the type and the concentration of the waste. For this reason the recipe used in the solidification process has to be carefully adjusted to respond to the variations of the waste. At the Ringhals Nuclear Power Plant (RNPP) an evaporator was to be taken into operation during the mid 2005. As a result of this process an evaporator concentrate containing boric acid was expected. The aims of the present study were to develop a recipe for the solidification of artificial evaporator concentrates, (AEC), containing H3BO3 and measure the compressive strength of the waste/cement matrix over a period of 4 years. The confirmation of the previously reported retarding properties of H3BO3 and the studies of AEC without H3BO3 were also included as a part of this work. Finally, thermodynamic calculations were used as a tool in order to predict the evolution of the mineralogy and integrity for the different cement-waste specimens over very long periods of time, i.e. up to about 100 000 years. The most important finding was that when an optimized waste/cement matrix recipe was used the compressive strength increased during the entire 4 year period and no signs of degradation were noticed. It was also found that the long-term performance of the waste matrices is to a large extent site-specific. In general, the composition of the infiltrating water is more influential than the waste matrices, both on the degradation of the waste matrices itself as well as on the engineered barriers. (author)

  6. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials

    NARCIS (Netherlands)

    Qian, S.; Zhou, J.; Rooij, M.R. de; Schlangen, E.; Ye, G.; Breugel, K. van

    2009-01-01

    The self-healing behavior of a series of pre-cracked fiber reinforced strain hardening cementitious composites incorporating blast furnace slag (BFS) and limestone powder (LP) with relatively high water/binder ratio is investigated in this paper, focusing on the recovery of its deflection capacity.

  7. French programs for advanced waste management options

    International Nuclear Information System (INIS)

    Several organizations (CEA, CNRS, EdF, etc.) are cooperating in France on accelerator-driven systems. The major motivation is the investigation of innovative options for the radioactive waste management. The paper describes the ongoing activities and future directions of the cooperative efforts. 11 refs., 3 figs

  8. Development of a sorption data base for the cementitious near-field of a repository for radioactive waste

    International Nuclear Information System (INIS)

    The migration of radionuclides within a repository for radioactive waste is retarded due to interaction with the engineered barrier system. Sorption processes play a decisive role in the retardation of radionuclides in the repository environment, and thus, the development of sorption data bases (SDBs) is an important task and an integral part of performance assessment. The methodology applied in the development of a SDB for the cementitious near-field of a repository for long-lived intermediate-level waste is presented in this study. The development of such a SDB requires knowledge of the chemical conditions of the near-field and information on the uptake process of radionuclides by hardened cement paste. The principles upon which the selection of the 'best available' laboratory sorption values is based are outlined. The influence of cellulose degradation products, cement additives and cement-derived colloids on the sorption behaviour of radionuclides is addressed in conjunction with the development of the SDB. (author)

  9. Current chemical recycling options for polyurethane waste

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Kruliš, Zdeněk; Prokop, Jiří; Holler, Petr; Látalová, Petra

    Praha : Ústav makromolekulární chemie AV ČR, 2010. ML_3. ISBN 978-80-85009-62-0. [Workshop "Career in Polymers" /2./. 23.07.2010-24.07.2010, Praha] R&D Projects: GA MPO 2A-2TP1/135 Institutional research plan: CEZ:AV0Z40500505 Keywords : chemical recycling options * polyurethane waste * recycling Subject RIV: CD - Macromolecular Chemistry

  10. Cementitious Materials in Safety Cases for Geological Repositories for Radioactive Waste: Role, Evolution and Interactions. A Workshop organised by the OECD/NEA Integration Group for the Safety Case and hosted by ONDRAF/NIRAS. Cementitious materials in safety cases for radioactive waste: role, evolution and interactions

    International Nuclear Information System (INIS)

    The OECD Nuclear Energy Agency (NEA) Integration Group for the Safety Case (IGSC) organised a workshop to assess current understanding on the use of cementitious materials in radioactive waste disposal. The workshop was hosted by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Ondraf/Niras), in Brussels, Belgium on 17-19 November 2009. The workshop brought together a wide range of people involved in supporting safety case development and having an interest in cementitious materials: namely, cement and concrete experts, repository designers, scientists, safety assessors, disposal programme managers and regulators. The workshop was designed primarily to consider issues relevant to the post-closure safety of radioactive waste disposal, but also addressed some related operational issues, such as cementitious barrier emplacement. Where relevant, information on cementitious materials from analogous natural and anthropogenic systems was also considered. This report provides a synthesis of the workshop, and summarises its main results and findings. The structure of this report follows the workshop agenda: - Section 2 summarises plenary and working group discussions on the uses, functions and evolution of cementitious materials in geological disposal, and highlights key aspects and discussions points. - Section 3 summarises plenary and working group discussions on interactions of cementitious materials with other disposal system components, and highlights key aspects and discussions points. - Section 4 summarises the workshop session on the integration of issues related to cementitious materials using the safety case. - Section 5 presents the main conclusions from the workshop. - Section 6 contains a list of references. - Appendix A presents the workshop agenda. - Appendix B contains the abstracts and, where provided, technical papers supporting oral presentations at the workshop. - Appendix C contains the abstracts and, where provided, technical

  11. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Directory of Open Access Journals (Sweden)

    Sociu F.

    2013-07-01

    Full Text Available Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa, to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  12. An investigation of magnox sludge and alumino-ferric floc waste simulate, immobilised by a cementitious matrix

    International Nuclear Information System (INIS)

    Magnox sludge and alumino ferric floc simulates, prepared using non-radioactive tracers were immobilised by a cementitious system. Formulation design aimed at optimising pollutant leaching with permeability and compressive strength as secondary considerations. The behaviour of the products under accelerated weathering conditions was investigated. The study was divided into two parts: Formulation design in Phase I and the systematic testing of the optimum formulations under freeze-thaw, and hydration -dehydration conditions in Phase 2. Analytical method development for leachate analysis continued through both Phases. The Barnwood method of leach testing was used. The immobilised waste had good physical properties (i.e. high strength and low permeability) and a significant improvement was achieved during the course of the work in the leach rates of the tracers, particularly of caesium and strontium. (author)

  13. DEMONSTRATION OF LEACHXS/ORCHESTRA CAPABILITIES BY SIMULATING CONSTITUENT RELEASE FROM A CEMENTITIOUS WASTE FORM IN A REINFORCED CONCRETE VAULT

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Meeussen, J.; Sloot, H.

    2010-03-31

    The objective of the work described in this report is to demonstrate the capabilities of the current version of LeachXS{trademark}/ORCHESTRA for simulating chemical behavior and constituent release processes in a range of applications that are relevant to the CBP. This report illustrates the use of LeachXS{trademark}/ORCHESTRA for the following applications: (1) Comparing model and experimental results for leaching tests for a range of cementitious materials including cement mortars, grout, stabilized waste, and concrete. The leaching test data includes liquid-solid partitioning as a function of pH and release rates based on laboratory column, monolith, and field testing. (2) Modeling chemical speciation of constituents in cementitious materials, including liquid-solid partitioning and release rates. (3) Evaluating uncertainty in model predictions based on uncertainty in underlying composition, thermodynamic, and transport characteristics. (4) Generating predominance diagrams to evaluate predicted chemical changes as a result of material aging using the example of exposure to atmospheric conditions. (5) Modeling coupled geochemical speciation and diffusion in a three layer system consisting of a layer of Saltstone, a concrete barrier, and a layer of soil in contact with air. The simulations show developing concentration fronts over a time period of 1000 years. (6) Modeling sulfate attack and cracking due to ettringite formation. A detailed example for this case is provided in a separate article by the authors (Sarkar et al. 2010). Finally, based on the computed results, the sensitive input parameters for this type of modeling are identified and discussed. The chemical speciation behavior of substances is calculated for a batch system and also in combination with transport and within a three layer system. This includes release from a barrier to the surrounding soil as a function of time. As input for the simulations, the physical and chemical properties of the

  14. Radioactive waste management turning options into solution

    International Nuclear Information System (INIS)

    Most of the statements from representatives of different countries and institutions focused on the status of high level radioactive waste management, including spent fuel repositories. Speakers dealing with such topics were representatives from countries applying nuclear power for electricity production. They all reported about there national programs on technical and safety aspects of radioactive waste management. The panel discussion extended to questions on political sensitivities and public acceptance; in this respect, interesting developments are taking place in Finland and Sweden. It is expected that Finland will operate a final repository for spent fuel in 10 - 15 years from now, followed close by Sweden. Other countries, however, face decisions by policy makers and elected officials to postpone dealing with waste disposal concerns. In this connection there is relevant experience in our country, too - even in the absence of spent fuel or other high level waste to be dealt with. During personal discussions with representatives of other countries not using nuclear power it was confirmed that there are similar or shared experiences. Development of publicly -accepted solutions to radioactive waste management remains an important issue. Independent of the amount or the activity of radioactive waste, the public at large remains skeptical despite the agreement among experts that disposal can be safe, technically feasible and environmentally sound. In countries not using nuclear power there are only small quantities of low and intermediate level radioactive waste. Therefore, international co-operation among such countries should be an option. There was common understanding by representatives from Norway, Italy and Austria that international co-operation should be developed for treatment and disposal of such waste. For the moment however it has to be accepted that, for political reasons, it is not possible. Forced to deal with the lack of near-term solutions, the

  15. Contribution to the French program dedicated to cementitious and clayey materials behavior in the context of Intermediate Level Waste management - Hydrogen transfer and materials durability

    Science.gov (United States)

    Bary, B.; Bouniol, P.; Chomat, L.; Dridi, W.; Gatabin, C.; Imbert, C.; L´Hostis, V.; Le Bescop, P.; Muzeau, B.; Poyet, S.

    2013-07-01

    This article illustrates a contribution of the CEA Laboratory of Concrete and Clay Behavior (“LECBA”s) for the assessment and modeling of the Long-Term behavior of cementitious and clayey materials in the context of nuclear ILW (Intermediate Level Waste) management. In particular, we aim at presenting two main topics that are studied at the Lab. The first one is linked to safety aspects and concern hydrogen transfer within cementitious as well as clayey materials (host rock for French nuclear waste disposal). The second point concerns the assessment of durability properties of reinforced concrete structures in the disposal (pre-closure and post-closure) conditions. Experimental specific tests and phenomenological modelling are presented.

  16. Review of options for managing iodine-125 wastes

    International Nuclear Information System (INIS)

    Data on the nature, radioactive content and management options used for I-125 wastes that are produced in England and Wales and fall within the provisions of the Radioactive Substances Act 1960 have been collated. The options for, and impacts of the disposal of these wastes have been reviewed and discussed. In addition storage for decay has been reviewed. The necessary storage requirements and methods of storage for the various waste forms have been examined. Conclusions are drawn with respect to the potential/suitability of the various waste management options. (author)

  17. Performance of Waste Glass Powder (WGP) Supplementary Cementitious Material (SCM) - Workability and Compressive Strength

    OpenAIRE

    Borosnyói, A; Kara, P; Mlinárik, L; Kaše, K

    2013-01-01

    Ecological and environmental benefits support the use of waste glass powder (WGP) as supplementary cementing material by the decrease of the amount of landfills, by the reduction of non-renewable natural resource consumption, by the reduction of energy demand for cement production (less cement is needed), and the reduction of greenhouse gas emission. Laboratory tests were carried out on cement paste specimens, in which waste glass powder (WGP) addition was used as a supplementary cem...

  18. Characterization, Improvement and Long Term Evaluation Of Cementitious Waste Products. An Indian Scenario

    International Nuclear Information System (INIS)

    Cement is a very good matrix for immobilization for different types of wastes. In India, the cementation process has been adopted and used for the last four decades. Depending on the waste composition, there is need to formulate the cement waste matrix appropriately to ensure adequate compressive strength and chemical durability. This has been achieved by using different additives/backfill materials during the cementation process with cements for example Ordinary Portland Cement (OPC) and Slag Based Cements (SBC). Backfill materials studied include vermiculite and bentonite. They were evaluated for sorption characteristics, particle size distribution, water equilibration, etc. They were incorporated in the OPC-CWP (Cement Waste Product) with various waste compositions. The composition developed for ILW generated during reprocessing and during spent solvent hydrolysis were successfully adopted on a plant scale. Some of the compositions which are being developed are also in the process of being adopted in-plant. The long-term evaluation study of the CWP was carried out at actual site conditions where CWP in carbon steel drum, plastic drums and bare CWP were disposed in 2001 and removed in 2010: parameters including compressive strength and release of activity to the soil were measured. (author)

  19. Analysis of radioactive waste storage options in the Vinca institute

    International Nuclear Information System (INIS)

    Vinca Institute acted for many years as national storage facility for the radioactive waste from all institutional (medical, military, etc.) activities. The current situation of the interim storage facilities is not satisfactory from a safety point of view. Moreover, additional wastes will have to be processed and stored. In order to improve waste management at the Vinca Institute, a IAEA TC Project SCG/4/031 has been initiated. The paper contains the results of this project with regard to the identification and assessment of waste storage options and described the procedure for the selection of options for the interim storage of radioactive wastes at the Vinca Institute, Methodology to be used for the comparison of waste storage options is Multi-Attribute-Utility-Analysis. (author)

  20. DURABILITY OF GREEN CONCRETE WITH TERNARY CEMENTITIOUS SYSTEM CONTAINING RECYCLED AGGREGATE CONCRETE AND TIRE RUBBER WASTES

    OpenAIRE

    MAJID MATOUQ ASSAS

    2016-01-01

    All over the world billions of tires are being discarded and buried representing a serious ecological threat. Up to now a small part is recycled and millions of tires are just stockpiled, landfilled or buried. This paper presents results about the properties and the durability of green concrete contains recycled concrete as a coarse aggregate with partial replacement of sand by tire rubber wastes for pavement use. Ternary cementious system, Silica fume, Fly ash and Cement Kiln Dust are used a...

  1. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    International Nuclear Information System (INIS)

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  2. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  3. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  4. Magnesium alloy and graphite wastes encapsulated in cementitious materials - Experimental approach

    International Nuclear Information System (INIS)

    Magnesium alloys (Mg-0.8%Zr and Mg-1.2%Mn) and graphite from spent nuclear fuel, that have been used in the former French gas cooled reactors, have been stored together in AREVA La Hague plant. The recovery and packaging of these wastes is currently studied and several solutions are under consideration. One of the developed solutions would be to mix these wastes in a grout composed of industrially available cement, e.g. OPC (Ordinary Portland Cement), OPC blended with blast furnace slag or aluminous cement. Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of magnesium hydroxide (Mg(OH)2, Brucite) resulting in a slow process of corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, it is important to select a cement matrix capable of lowering the corrosion kinetics of magnesium alloys. This is especially true when magnesium alloys are conditioned together with graphite wastes. Indeed, galvanic coupling phenomena may increase early age corrosion of the mixed waste, as magnesium and graphite will be found in electrical contact in the same electrolyte. Many types of common cements have been tested. All of them have shown strong hydrogen production when magnesium alloys and graphite are conditioned together into such cement pastes. Corrosion patterns, observed and analyzed by SEM/EDS, at the metal-binder interfaces, reveal important corrosion products layers as well as bubbles and cracks in the binder. Attempts to reduce corrosion by lowering water to cement ratio have been performed. W/C ratios as low as 0.2 have been tested but galvanic corrosion is not significantly reduced at early age when compared to a common ratio of 0.4. Best results were obtained by the use of laboratory synthesized tricalcium silicate (C3S) with an ordinary W/C ratio of 0.4 and also with white Portland clinker ground without additives such as gypsum and grinding agent. (authors)

  5. The options for solidifying low level waste

    International Nuclear Information System (INIS)

    A review is given of the methods of solidifying low level radioactive waste. The four main types of solidification agents used are bitumen (asphalt), portland cement (with or without additives), gypsum cement and vinyl-ester resin. The following properties of wastes solidified using these agents are discussed: leach resistance; thermal stability; mechanical strength; radiation stability; resistance to chemical or biological attack; sensitivity to variations in radwaste chemistry or mixing ratio; free water in the waste form after curing. (U.K.)

  6. Engineering assessment of mixed waste management options

    International Nuclear Information System (INIS)

    An engineering assessment of the low-level radioactive mixed waste (contains both radioactive and hazardous constituents) management program at Los Alamos National Laboratory was performed during the summer and fall of 1989. The assessment was aimed at developing recommendations for upgrading existing or developing new mixed waste treatment, storage, characterization, and disposal capabilities at the facility. The assessment was initiated with a comparison of actual waste containers in storage to (1) the records maintained on those wastes and to (2) planning estimates of the types and rates of mixed wastes produced. The various types of mixed waste, calculated in this study to be generated at an annual rate of 160 cubic meters (projected from 1989 data), were categorized into 30 groupings of similar characteristics. These groupings were further combined by the types of treatment required to allow the waste to be disposed in accordance with EPA requirements. Three broad categories of treatment needs were thus generated and potential treatment processes and methods to satisfy these needs were identified. On-site laboratory capabilities to perform analytical characterization of mixed waste were reviewed

  7. Hot isostatic press waste option study report

    International Nuclear Information System (INIS)

    A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065

  8. Hot isostatic press waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065.

  9. Options for the treatment and solidification of organic radioactive wastes

    International Nuclear Information System (INIS)

    The nuclear fuel cycle generates a variety of low and intermediate level solid and liquid organic radioactive wastes. Suitable management includes interim storage, treatment and immobilization prior to disposal of the conditioned waste. This report deals with the treatment and conditioning of organic radioactive wastes for storage and disposal. The wastes considered in the report arise from nuclear fuel cycle operations, including fuel fabrication, reactor operation, fuel reprocessing, decontamination operations, and from fuel cycle research and development. Liquid organic wastes typically include lubricating and hydraulic fluids from reactor operation, solvents and diluents from fuel reprocessing, scintillation fluids from analytical laboratories, dry cleaning solvents and miscellaneous organic solvents from decontamination and decommissioning activities. Solid wastes consist of cellulosic materials, such as paper, rags and wood, and a variety of plastic and rubber items, such as polyvinyl chloride (PVC), polyethylene (PE), neoprene and natural rubber. These arise from reactor operation and maintenance and from glove box use in fuel fabrication and reprocessing. Most organic wastes contain only low levels of β/γ-activity and are substantially α-free. A lesser, but not inconsiderable, volume of organic waste is contaminated to higher levels with α-emitting transuranic (TRU) elements. Options for the treatment of organic wastes are influenced principally by the physical and chemical composition of each waste stream, whereas they may all be treated under similar conditions of radiological protection due to the absence of levels of β/γ-activity which would require shielding. Various options for conditioning the waste will depend on whether the waste is destined for storage or disposal; on the nuclide type and content; and on the activity levels in the immobilized waste, since these factors influence the type of repository to which the waste may be disposed. The

  10. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  11. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  12. Levelized cost-risk reduction prioritization of waste disposal options

    International Nuclear Information System (INIS)

    The prioritization of solid waste disposal options in terms of reduced risk to workers, the public, and the environment has recently generated considerable governmental and public interest. In this paper we address the development of a methodology to establish priorities for waste disposal options, such as incineration, landfills, long-term storage, waste minimization, etc. The study is one result of an overall project to develop methodologies for Probabilistic Risk Assessments (PRAs) of non-reactor nuclear facilities for the US Department of Energy. Option preferences are based on a levelized cost-risk reduction analysis. Option rankings are developed as functions of disposal option cost and timing, relative long- and short-term risks, and possible accident scenarios. We examine the annual costs and risks for each option over a large number of years. Risk, in this paper, is defined in terms of annual fatalities (both prompt and long-term) and environmental restoration costs that might result from either an accidental release or long-term exposure to both plant workers and the public near the site or facility. We use event timing to weigh both costs and risks; near-term costs and risks are discounted less than future expenditures and fatalities. This technique levels the timing of cash flows and benefits by converting future costs and benefits to present value costs and benefits. We give an example Levelized Cost-Benefit Analysis of incinerator location options to demonstrate the methodology and required data

  13. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics.

    Science.gov (United States)

    Zhang, Na; Liu, Xiaoming; Sun, Henghu; Li, Longtu

    2011-01-15

    Red mud is generated from alumina production, and its disposal is currently a worldwide problem. In China, large quantities of red mud derived from bauxite calcination method are being discharged annually, and its utilization has been an urgent topic. This experimental research was to evaluate the feasibility of blends red mud derived from bauxite calcination method with other industrial wastes for use as a cementitious material. The developed cementitious material containing 30% of the bauxite-calcination-method red mud possessed compressive strength properties at a level similar to normal Portland cement, in the range of 45.3-49.5 MPa. Best compressive strength values were demonstrated by the specimen RSFC2 containing 30% bauxite-calcination-method red mud, 21% blast-furnace slag, 10% fly ash, 30% clinker, 8% gypsum and 1% compound agent. The mechanical and physical properties confirm the usefulness of RSFC2. The hydration characteristics of RSFC2 were characterized by XRD, FTIR, (27)Al MAS-NMR and SEM. As predominant hydration products, ettringite and amorphous C-S-H gel are principally responsible for the strength development of RSFC2. Comparing with the traditional production for ordinary Portland cement, this green technology is easier to be implemented and energy saving. This paper provides a key solution to effectively utilize bauxite-calcination-method red mud. PMID:20932639

  14. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  15. Hanford Waste Vitrification Plant capacity increase options

    International Nuclear Information System (INIS)

    Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package

  16. ASSESSMENT OF NUCLEAR WASTE REPOSITORY OPTIONS USING THE ER APPROACH

    OpenAIRE

    DONG-LING XU

    2009-01-01

    Two technically feasible nuclear waste repository options have been identified in Belgium. To select one for implementation, a study was carried out to compare the public perception and acceptance of the two options. In this paper, it is described how the study and selection process can be supported, and how the diversity and uncertainty in public opinions can be rationally modeled and analyzed by applying the Evidential Reasoning (ER) approach. The ER approach is a recent advancement for mul...

  17. Research Progresses of New Type Alkali-activated Cementitious Material Catalyst

    Directory of Open Access Journals (Sweden)

    ZHANG Yao-Jun, YANG Meng-Yang, KANG Le, ZHANG Li, ZHANG Ke

    2016-03-01

    Full Text Available Alkali-activated solid aluminosilicate-based cementitious material is one of prospective research fields of advanced inorganic non-metallic materials. Its classification, preparation process, formation mechanism, and potential applications are reviewed in this paper. It is considered that its microstructure and chemical characteristics intensively depend on the raw materials and synthesis conditions. Geopolymers derive from alkali-activated metakaolin or fly ash with low calcium content, while the amorphous calcium silicate hydrate (C-S-H gels root in the chemical-activated solid wastes of granular blast furnace slag, steel slag and other solid aluminosilicate wastes with high calcium contents. Even though durability of alkali-activated cementitious materials as the building structure materials has been widely studied in the past decades, the intrinsic brittleness still restricts their applications in the field of civil and building engineering. Therefore, exploration of a new applied approach is by far the best option. In recent years, many researches report that the alkali-activated cementitious materials are used as novel precursors and catalysts for some kinds of heterogeneous reactions. The latest research progresses on alkali-activated cementitious material-based catalysts are discussed.

  18. Comparative evaluation of radioactive waste management options. Final report

    International Nuclear Information System (INIS)

    A comprehensive presentation of the various radioactive waste options under debate has not been made so far, let alone a comparative evaluation of the options with respect to their substantiated or assumed advantages or drawbacks. However, any appropriate discussion about the pros and cons of the specific options for final decision making has to be based on a comprehensive knowledge base drawn from profound comparative evaluation of essential options. Therefore, the study reported in this publication was to serve three major purposes: Presentation of the conditions and waste management policies and approaches in selected countries, in order to compile information about the various policy goals and the full scope of argumentation, as well as the range of individual arguments used for or against specific options. - Derivation of a methodology for evaluation, including development of criteria for a comparative and qualitative evaluation of options. - Identification of possible implications for a waste management strategy for Germany, derived from the results of the comparative evaluation and the examination of the reasonings and argumentation used in the various countries. (orig./CB)

  19. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  20. Immobilized low-level waste disposal options configuration study

    International Nuclear Information System (INIS)

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed

  1. Immobilized low-level waste disposal options configuration study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  2. Clean option: An alternative strategy for Hanford Tank Waste Remediation

    International Nuclear Information System (INIS)

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ''clean option'' discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms

  3. Cementitious Barriers Partnership Scm Paste Samples Exposed To Aggressive Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-01

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the United States Department of Energy (US DOE) Office of Waste Processing. The objective of the CBP project is to develop a set of tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in nuclear applications.

  4. Cementitious barriers partnership transport properties of damaged materials

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the United States Department of Energy (US DOE) Office of Waste Processing. The objective of the CBP project is to develop a set of tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in nuclear applications.

  5. Three basic options for the management of PWR waste

    International Nuclear Information System (INIS)

    Relying on the national practices of France, Germany and Belgium, three reference management routes for PWR wastes were drawn up and subsequently evaluated in terms of costs and radiological impact. It was thus demonstrated that safety regulations and technical redundancies, especially for off-gas treatment, liquid waste processing and dry solid waste treatment, play an important part in the cost associated with each route. The analysis of the different treatment options for mixed solid low level waste highlighted the low cost effectiveness of incineration as compared to compaction. Whatever the scenario investigated, the disposal costs of PWR wastes proved to be quite marginal in the overall cost. The radiological impact associated with each route was assessed through individual doses resulting from liquid and gaseous effluents. This theoretical exercise included some sensitivity studies performed on a selection of important parameters

  6. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  7. Costs of mixed low-level waste stabilization options

    International Nuclear Information System (INIS)

    Selection of final waste forms to be used for disposal of DOE's mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability

  8. Options for Healthcare Waste Management and Treatment in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Healthcare waste management and treatment is one of the national priority tasks of China's Tenth Five-Year Plan.Numerous installations disposing medical waste have already operated the project or under construction to the operation in 2006. This paper focuses on the assessment of existing and fu~re options to handle medical waste (MW). Internationally available and so far in China applied technologies and management practice are analysed, including the problems how to materials. Non-hazardous MW can be managed and treated in analogue to municipal solid waste (MSW). In most of the European countries decentralised hospital incinerators have been, because of high operation costs and pollution problems,widely banned and replaced by pre-treatment technologies at the source and centralised incineration plants for hazardous MW.Information for adapting and further developing MW management solutions and treatment technologies in China and applying the most appropriate MWM practice is provided.

  9. Representing value judgements in the evaluation options for nuclear waste

    International Nuclear Information System (INIS)

    In this report we show how the concept of Best Practical Environmental Option for nuclear waste management may be articulated using the methods of Multi-attribute Value Analysis. The concept of characteristic weights is introduced to represent differences of opinion on the relative importance of different factors that may reasonably be held, and show how these may be used to summarise information for decision-makers in a concise way. (author)

  10. Municipal solid waste to energy plants - the best technical options

    International Nuclear Information System (INIS)

    After years of stagnation the municipal solid waste to energy plants is reaffirming as a valid disposal solution. The sell of the electric energy produced at an economically rewarding value and the last regulations on flue gas emissions have strongly influenced the technological development. The article proposes a plant scheme considered complete and optimal and in particular illustrates the options that inspired it and the related justifications

  11. An environmental analysis for comparing waste management options and strategies.

    Science.gov (United States)

    Marchettini, N; Ridolfi, R; Rustici, M

    2007-01-01

    The debate on different waste management practices has become an issue of utmost importance as human activities have overloaded the assimilative capacity of the biosphere. Recent Italian law on solid waste management recommends an increase in material recycling and energy recovery, and only foresees landfill disposal for inert materials and residues from recovery and recycling. A correct waste management policy should be based on the principles of sustainable development, according to which our refuse is not simply regarded as something to eliminate but rather as a potential resource. This requires the creation of an integrated waste management plan that makes full use of all available technologies. In this context, eMergy analysis is applied to evaluate three different forms of waste treatment and construct an approach capable of assessing the whole strategy of waste management. The evaluation included how much investment is needed for each type of waste management and how much "utility" is extracted from wastes, through the use of two indicators: Environmental yield ratio (EYR) and Net eMergy. Our results show that landfill is the worst system in terms of eMergy costs and eMergy benefits. Composting is the most efficient system in recovering eMergy (highest EYR) from municipal solid waste (MSW) while incineration is capable of saving the greatest quantity of eMergy per gram of MSW (highest net eMergy). This analysis has made it possible to assess the sustainability and the efficiency of individual options but could also be used to assess a greater environmental strategy for waste management, considering a system that might include landfills, incineration, composting, etc. PMID:16765586

  12. Criteria and options used in Argentina for radioactive waste disposal

    International Nuclear Information System (INIS)

    The author describes the radiation safety criteria applied to the disposal of radioactive waste by the Argentine authorities and the options adopted to meet those criteria. The multiple barrier concept is used, in other words, independent and redundant geological and engineering barriers such that failure of one does not jeopardize the safety of the system as a whole. For high level waste, the following options have been selected: (a) complete isolation of the wastes (covered with about 10 cm lead) during the first thousand years; (b) incorporation of the waste in a vitreous matrix with a leaching rate of less than 4x10-4 g/cm2 per year; (c) disposal in stable geological granite formations at a depth of at least 500 m in areas of little existing or potential mining interest, with a hydraulic conductivity of about 10-9m/s or less, located outside seismic zones; and (d) sealing of the facility with bentonite having a high ion exchange capacity. (author). 13 refs, 1 tab

  13. Review of durability of cementitious engineered barriers in repository environments

    International Nuclear Information System (INIS)

    This report is concerned with the durability of cementitious engineered barriers in a repository for low and intermediate level nuclear waste. Following the introduction the second section of the review identifies the environmental conditions associated with a deep, hard rock repository for ILW and LLW that are relevant to the durability of cementitious barriers. Section three examines the microstructure and macrostructure of cementitious materials and considers the physical and chemical processes of radionuclide immobilization. Potential repository applications and compositions of cementitious materials are reviewed in Section four. The main analysis of durability is dealt with in Section five. The different types of cementitious barrier are considered separately and their most probable modes of degradation are analysed. Concluding remarks that highlight critical technical matters are given in Section six. (author)

  14. Long-term alteration of cementitious materials

    International Nuclear Information System (INIS)

    Long-term alteration of cementitious materials in the geological condition has been discussed for the safety assessment of radioactive waste disposal. This paper describes the status of understanding long-term chemical alteration of cement, by reviewing some of our investigations on this issue in which we developed a thermodynamic incongruent C-S-H dissolution/precipitation model and a reactive transport calculation code. Alteration of C-S-H gel in a saline groundwater and the change of chemical barrier performance of cementitious materials due to the alteration are also discussed. Some key issues to be discussed further are given and suggested for the future studies on the long-term alteration of cementitious materials in the repository environment. (author)

  15. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  16. Long Term Behaviour of Cementitious Materials in the Korean Repository Environment

    International Nuclear Information System (INIS)

    The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. After the selection of the final candidate site for low- and intermediate-level waste (LILW) disposal in Korea, a construction and operation license was issued for the Wolsong LILW Disposal Center (WLDC) for the first stage of disposal. Underground silo type disposal has been determined for the initial phase. The engineered barrier system of the disposal silo consists of waste packages, disposal containers, backfills, and a concrete lining. Main objective of our study in this IAEA-CRP is to investigate closure concepts and cementitious backfill materials for the closure of silos. For this purpose, characterisation of cementitious materials, development of silo closure concept, and evaluation of long-term behaviour of cementitious materials, including concrete degradation in repository environment, have been carried out. The overall implementation plan for the CRP comprises performance testing for the physic-chemical properties of cementitious materials, degradation modelling of concrete structures, comparisons of performance for silo closure options, radionuclide transport modelling (considering concrete degradation in repository conditions), and the implementation of an input parameter database and quality assurance for safety/performance assessment. In particular, the concrete degradation modelling study has been focused on the corrosion of reinforcement steel induced by chloride attack, which was of primary concern in the safety assessment of the WLDC. A series of electrochemical experiments were conducted to investigate the effect of dissolved oxygen, pH, and Cl on the corrosion rate of reinforcing steel in a concrete structure saturated with groundwater. Laboratory-scale experiments and a thermodynamic modelling were performed to understand the porosity change of cement pastes, which were prepared using

  17. Burning of actinides: A complementary waste management option?

    International Nuclear Information System (INIS)

    The TRU actinide are building up at a rate of about 90 tHM per year. Approximately 45 tHM will remain occluded in the spent fuel structures, leaving about 45 tHM available; 92% as recycled plutonium and 8% as minor actinides (neptunium, americium, curium) immobilized in vitrified waste. There is renewed interest in partitioning and transmutation (P and T), largely because of difficulties encountered throughout the world in finding suitable geologic formations in locations which are acceptable to the public. In 1988, the Japanese Atomic Energy Commission launched a very important and comprehensive R and D program. The general strategy of introducing Partitioning and Transmutation (P and T) as an alternative waste management option is based on the radiological benefit which is expected from such a venture. The selection of the actinides and long-lived fission products which are beneficial to eliminate by transmutation depends upon a number of technical factors, including hazard and decontamination factors, and the effect of geological confinement. There are two ways to approach the separation of minor actinides and long-lived fission products from reprocessing streams: by modifying the current processes in order to reroute the critical nuclides into a single solution, for example high-level liquid waste, and use this as a source for partitioning processes; and by extension of the conventional PUREX process to all minor actinides and long-lived fission products in second generation reprocessing plants. Prior to the implementation of one of these schemes, it seems obvious to improve the separation yield of plutonium from HLW within the presently running plants. Actinide P and T is not an alternative long-term waste management option. Rather, it is a complementary technique to geologic disposal capable of further decreasing the radiological impact of the fuel cycle over the very long term. 1 tab

  18. Options for the decontamination of alpha-bearing liquid wastes

    International Nuclear Information System (INIS)

    This document reviews the processes potentially available, and their state of development, for the removal of alpha activity from aqueous waste streams. In present practice, most such streams are treated by precipitation, usually with an iron hydroxide, but the potential role and limitations of other precipitants, of ion exchange techniques and solvent extraction are also discussed as well as newer electrochemical methods. Because of the importance of precipitation, and the fact the α-activity often occurs in suspended form in wastes, the methods for solids separation and concentration are considered in some detail, together with other physical processes such as evaporation. The equipment and operational aspects are also discussed, particularly for precipitation, ion exchange and solvent extraction treatments. The conclusions relate to an extensive table in which the different methods are compared. The optimum treatment or combination of treatments will depend on the waste stream and other circumstances (particularly on the chemical and radiological constituents of the waste, and its rate of arising) and the aim of this work is to give an initial guide to the choice among the options. (author)

  19. Impact of cementitious materials decalcification on transfer properties: application to radioactive waste deep repository; Influence de la decalcification de materiaux cimentaires sur les proprietes de transfert: application au stockage profond de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Perlot, C

    2005-09-15

    Cementitious materials have been selected to compose the engineering barrier system (EBS) of the French radioactive waste deep repository, because of concrete physico-chemical properties: the hydrates of the cementitious matrix and the pH of the pore solution contribute to radionuclides retention; furthermore the compactness of these materials limits elements transport. The confinement capacity of the system has to be assessed while a period at least equivalent to waste activity (up to 100.000 years). His durability was sustained by the evolution of transfer properties in accordance with cementitious materials decalcification, alteration that expresses structure long-term behavior. Then, two degradation modes were carried out, taking into account the different physical and chemical solicitations imposed by the host formation. The first mode, a static one, was an accelerated decalcification test using nitrate ammonium solution. It replicates the EBS alteration dues to underground water. Degradation kinetic was estimated by the amount of calcium leached and the measurement of the calcium hydroxide dissolution front. To evaluate the decalcification impact, samples were characterized before and after degradation in term of microstructure (porosity, pores size distribution) and of transfer properties (diffusivity, gas and water permeability). The influence of cement nature (ordinary Portland cement, blended cement) and aggregates type (lime or siliceous) was observed: experiments were repeated on different mortars mixes. On this occasion, an essential reflection on this test metrology was led. The second mode, a dynamical degradation, was performed with an environmental permeameter. It recreates the EBS solicitations ensured during the re-saturation period, distinguished by the hydraulic pressure imposed by the geologic layer and the waste exothermicity. This apparatus, based on triaxial cell functioning, allows applying on samples pressure drop between 2 and 10 MPa and

  20. A Real Options Approach to Nuclear Waste Disposal in Sweden

    International Nuclear Information System (INIS)

    This report is concerned with an investigation of how the real options approach can be useful for managerial decisions regarding the phase-out of nuclear power generation in Sweden. The problem of interest is the optimal time-schedule for phase-out activities, where the optimal time-schedule is defined in purely economical terms. The approach taken is actual construction and application of three real options models, which capture different aspects of managerial decisions. The first model concerns when investments in deep disposal facilities should optimally be made. Although the model is a rough simplification of reality, the result is clear. It is economically advantageous to postpone deep disposal forever. The second model focuses on how the uncertainty of future costs relates to managerial investment decisions. Construction of this model required some creativity, as the nuclear phase-out turns out to be quite a special project. The result from the second model is that there can be a value associated with deferral of investments due to the uncertainty of future costs, but the result is less clear-cut compared to the first model. In the third model, we extend an approach suggested by Louberge, Villeneuve and Chesney. The risk of a nuclear accident is introduced through this model and we develop its application to investigate the Swedish phase-out in particular, which implies that waste continuously disposed. In the third model, focus is shifted from investment timing to implementation timing. The results from the third model are merely qualitative, as it is considered beyond the scope of this work to quantitatively determine all relevant inputs. It is concluded that the phase-out of nuclear power generation in Sweden is not just another area of application for standard real options techniques. A main reason is that although there are a lot of uncertain issues regarding the phase-out, those uncertainties do not leave a lot of room for managerial flexibility if

  1. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    OpenAIRE

    Sociu F.; Georgescu R.; Toma R.; Barariu Gh.; Fako R.

    2013-01-01

    Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa), to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module) where it is intended to rema...

  2. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    -profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.

  3. A multi-criteria decision analysis assessment of waste paper management options

    International Nuclear Information System (INIS)

    Highlights: ► Isolated communities have particular problems in terms of waste management. ► An MCDA tool allowed a group of non-experts to evaluate waste management options. ► The group preferred local waste management solutions to export to the mainland. ► Gasification of paper was the preferred option followed by recycling. ► The group concluded that they could be involved in the decision making process. - Abstract: The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making

  4. A multi-criteria decision analysis assessment of waste paper management options

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, Deirdre [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Cooke, David [Department of Design, Development, Environment and Materials, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)

    2013-03-15

    Highlights: ► Isolated communities have particular problems in terms of waste management. ► An MCDA tool allowed a group of non-experts to evaluate waste management options. ► The group preferred local waste management solutions to export to the mainland. ► Gasification of paper was the preferred option followed by recycling. ► The group concluded that they could be involved in the decision making process. - Abstract: The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making.

  5. 327 Building liquid waste handling options modification project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  6. Technological options for management of hazardous wastes from US Department of Energy facilities

    International Nuclear Information System (INIS)

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables

  7. Current situation of Islamabad solid waste dumpsite and options for improvement

    International Nuclear Information System (INIS)

    A study was undertaken to assess the existing situation of H-12 dumpsite, where solid waste from Islamabad City is being dumped since 1988, and to propose options for its improvement. The study methodology involved collection of baseline information, topographical survey, analysis of leachate samples, characterization of incoming waste and evaluation of options for rehabilitation and improvement of the site. The results of the study revealed that solid waste dumped at the H-12 dumpsite, which currently receives about 320 tons of solid waste daily, covers an area of 22.4 hectares. The corresponding volume and weight of the waste were found to be 0.45 million m3 and 0.143 million tons, respectively. Specific weight and moisture content of the old dumped waste were found to be 22 percent and 320 kg/m3, respectively. Analysis of leachate samples collected from the dumpsite were found to be highly contaminated. Characterization of solid waste delivered at the site showed that it mainly comprises a mix of construction and demolition waste, food waste and hospital waste thus indicating that material recovery operations would not be feasible. In order to improve and rehabilitate the dumpsite with a view to mitigate its adverse environmental impacts, three options were considered. These include (a) improvement and rehabilitation of the site without making provision for further inflow of waste; (b) improvement and rehabilitation of the dumpsite with provision to receive the waste for a period of another 10 years; and (c) shifting the dumped waste to the proposed Kurri Landfill site. Technical and financial aspects of all the three options are described and recommendations regarding the most environment friendly option are presented. (author)

  8. BIO-METHANATION AS AN OPTION FOR DOMESTIC SOLID WASTE PROCESSING METHOD IN DHARAMSALA, NORTHERN INDIA

    OpenAIRE

    KHOLIAVKO T.

    2015-01-01

    The bio-methanation as an option for domestic solid waste processing method in Dharamsala, Northern India is presented in terms of energy specifications, economic costs, environmental and additional impacts.

  9. Cementitious Barriers Partnership Accomplishments And Relevance To The DOE Complex

    International Nuclear Information System (INIS)

    The Cementitious Barriers Partnership (CBP) was initiated to reduce risk and uncertainties in the performance assessments that directly impact U.S. Department of Energy (DOE) environmental cleanup and closure programs. The CBP is supported by the DOE Office of Environmental Management (DOE-EM) and has been specifically addressing the following critical EM program needs: (i) the long-term performance of cementitious barriers and materials in nuclear waste disposal facilities and (ii) increased understanding of contaminant transport behavior within cementitious barrier systems to support the development and deployment of adequate closure technologies. To accomplish this, the CBP has two initiatives: (1) an experimental initiative to increase understanding of changes in cementitious materials over long times (> 1000 years) over changing conditions and (2) a modeling initiative to enhance and integrate a set of computational tools validated by laboratory and field experimental data to improve understanding and prediction of the long-term performance of cementitious barriers and waste forms used in nuclear applications. In FY10, the CBP developed the initial phase of an integrated modeling tool that would serve as a screening tool which could help in making decisions concerning disposal and tank closure. The CBP experimental programs are underway to validate this tool and provide increased understanding of how CM changes over time and under changing conditions. These initial CBP products that will eventually be enhanced are anticipated to reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the DOE assessment process. These tools have application to low activity waste forms, high level waste tank closure, D and D and entombment of major nuclear facilities, landfill waste acceptance criteria, and in-situ grouting and immobilization of vadose zone contamination. This paper

  10. Alternative disposal options for alpha-mixed low-level waste

    International Nuclear Information System (INIS)

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option

  11. Alternative disposal options for alpha-mixed low-level waste

    International Nuclear Information System (INIS)

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas systems with secondary waste management problems. In the United States, public perception of offgas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option

  12. Alternative disposal options for alpha-mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Sherick, M.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  13. Modelling approach to LILW-SL repository safety evaluation for different waste packing options

    International Nuclear Information System (INIS)

    The key objective of the work described here was to support the identification of a preferred disposal concept and packaging option for low and short-lived intermediate level waste (LILW-SL). The emphasis of the assessment, conducted on behalf of the Slovenian radioactive waste management agency (ARAO), was the consideration of several waste treatment and packaging options in an attempt to identify optimised containment characteristics that would result in safe disposal, taking into account the cost-benefit of alternative safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes, including drums with unconditioned ion exchange resins in over-packed tube type containers (TTCs). For decommissioning wastes, the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers (HIC). In relation to operational wastes, three main options were foreseen. The first is over-packing of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralization, and cementation of the dry resins into drums grouted into high integrity containers and the third is direct disposal of TTCs into high integrity containers without additional treatment. The long-term safety of radioactive waste repositories is usually demonstrated with the support of a safety assessment. This normally includes modelling of radionuclide release from a multi-barrier near-surface or deep repository to the geosphere and biosphere. For the current work, performance assessment models were developed for each combination of siting option, repository design and waste packaging option. Modelling of releases from the engineered containment system (the 'near-field') was undertaken using the AMBER code. Detailed unsaturated water flow modelling was undertaken using the

  14. REFERENCE CASES FOR USE IN THE CEMENTITIOUS BARRIERS PARTNERSHIP

    International Nuclear Information System (INIS)

    The Cementitious Barriers Project (CBP) is a multidisciplinary cross cutting project initiated by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (1) a common set of system configurations to illustrate the methods and tools developed by the CBP, (2) a common basis for evaluating methodology for uncertainty characterization, (3) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, and (4) a basis for experiments and model validation, and (5) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (1) a cementitious low activity waste form in a reinforced concrete disposal vault, (2) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (3) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations

  15. REFERENCE CASES FOR USE IN THE CEMENTITIOUS BARRIERS PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2009-01-06

    The Cementitious Barriers Project (CBP) is a multidisciplinary cross cutting project initiated by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (1) a common set of system configurations to illustrate the methods and tools developed by the CBP, (2) a common basis for evaluating methodology for uncertainty characterization, (3) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, and (4) a basis for experiments and model validation, and (5) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (1) a cementitious low activity waste form in a reinforced concrete disposal vault, (2) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (3) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations.

  16. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia

    International Nuclear Information System (INIS)

    Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in a centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used

  17. The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities In Assessing The Degradation Of Cementitious Barriers

    International Nuclear Information System (INIS)

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in Kd/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software

  18. The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities in Assessing the Degradation of Cementitious Barriers - 13487

    International Nuclear Information System (INIS)

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in Kd/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software

  19. The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities In Assessing The Degradation Of Cementitious Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. III [Savannah River Site (SRS), Aiken, SC (United States); Brown, K. G. [Vanderbilt University, Nashville, TN (United States); Kosson, D. S. [Vanderbilt University, Nashville, TN (United States); Garrabrants, A. C. [Vanderbilt University, Nashville, TN (United States); Sarkar, S. [Vanderbilt University, Nashville, TN (United States); van der Sloot, H. [Hans van der Sloot Consultancy (The Netherlands); Meeussen, J. C.L. [Nuclear Research and Consultancy Group, Petten (The Netherlands); Samson, E. [SIMCO Technologies Inc. , 1400, boul. du Parc - Technologique , Suite 203, Quebec (Canada); Mallick, P. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Suttora, L. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Esh, D. W. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Fuhrmann, M. J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Philip, J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States)

    2013-01-11

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in Kd/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software

  20. The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities in Assessing the Degradation of Cementitious Barriers - 13487

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.; Burns, H.H.; Langton, C.; Smith, F.G. III [Savannah River National Laboratory, Savannah River Site, Aiken SC 29808 (United States); Brown, K.G.; Kosson, D.S.; Garrabrants, A.C.; Sarkar, S. [Vanderbilt University, Nashville, TN (United States); Van der Sloot, H. [Hans Van der Sloot Consultancy (Netherlands); Meeussen, J.C.L. [Nuclear Research and Consultancy Group, Petten (Netherlands); Samson, E. [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Suite 203, Quebec (Canada); Mallick, P.; Suttora, L. [United States Department of Energy, 1000 Independence Ave. SW, Washington, DC (United States); Esh, D.W.; Fuhrmann, M.J.; Philip, J. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2013-07-01

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in K{sub d}/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP

  1. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. PMID:26522806

  2. Ancient analogues concerning stability and durability of cementitious wasteform

    International Nuclear Information System (INIS)

    The history of cementitious materials goes back to ancient times. The Greeks and Romans used calcined limestone and later developed pozzolanic cement by grinding together lime and volcanic ash called open-quotes pozzolanclose quotes which was first found near Port Pozzuoli, Italy. The ancient Chinese used lime-pozzolanic mixes to build the Great Wall. The ancient Egyptians used calcined impure gypsum to build the Great Pyramid of Cheops. The extraordinary stability and durability of these materials has impressed us, when so much dramatically damaged infrastructure restored by using modern portland cement now requires rebuilding. Stability and durability of cementitious materials have attracted intensive research interest and contractors' concerns, as does immobilization of radioactive and hazardous industrial waste in cementitious materials. Nuclear waste pollution of the environment and an acceptable solution for waste management and disposal constitute among the most important public concerns. The analogy of ancient cementitious materials to modern Portland cement could give us some clues to study their stability and durability. This present study examines selected results of studies of ancient building materials from France, Italy, China, and Egypt, combined with knowledge obtained from the behavior of modern portland cement to evaluate the potential for stability and durability of such materials in nuclear waste forms

  3. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    International Nuclear Information System (INIS)

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications

  4. Microbiological activities in a shallow-ground repository with cementitious wasteform

    International Nuclear Information System (INIS)

    Cementitious wasteform with immobilised nuclear power plant operational radioactive waste disposed in a near surface testing repository for about 20 years have been analysed for microbiological activities. Clean cultures were selected from the main metabolic groups expected within repository environment e.g. anaerobic de-nitrifying, fermenting, sulphur-reducing, iron-reducing, and oxidizing, thio-bacterium and mushrooms. Microbiological species were identified within cementitious wasteform, in the clayey soil near the wasteform and in the contacting water. The most populated medium was the soil with microbial populations Bacillus, Pseudomonas and Micrococcus, and densities of populations up to 3.6*105 colony/g. Microbial populations of generic type Bacillus, Pseudomonas, Rhodococcus, Alcaligenes, Micrococcus, Mycobacterium, and Arthrobacter were identified within cementitious wasteform. Populations of Arthrobacter, Pseudomonas, Alcaligenes, Rhodococcus, Bacillus and Flavobacterium were identified in the water samples contacting the cementitious wasteform. Microbiological species identified are potential destructors of cementitious wasteform and containers. (authors)

  5. Hot Issue and Burning Options in Waste Management: A Social Cost Benefit Analysis of Waste-to-Energy in the UK.

    OpenAIRE

    Jamasb, Tooraj; Kiamil, H.; Nepal, R.

    2008-01-01

    The growing stream of municipal solid waste requires a sustainable waste management strategy. Meanwhile, addressing climate change and security of energy supply concerns require increased use of low-carbon and domestic sources of energy. This paper assesses the economic and policy aspects of waste management options focusing on waste to energy (WtE). We conclude that high levels of WtE and recycling are compatible as waste treatment options. We also present a social cost-benefit analysis of w...

  6. A Multi-Criteria Decision Analysis of Waste Treatment Options for Food and Biodegradable Waste Management in Japan

    Directory of Open Access Journals (Sweden)

    Micky A. Babalola

    2015-10-01

    Full Text Available Dealing with large-scale Food and Biodegradable Waste (FBW often results in many logistical problems and environmental impacts to be considered. These can become great hindrances when the integration of solid waste management is concerned. Extra care is needed to plan such waste disposal or treatment services and facilities, especially with respect to the ecological impact. Decision-making with regards to the sustainable use of these facilities also involves tradeoffs between a number of conflicting objectives, since increasing one benefit may decrease the others. In this study a Multi-Criteria Decision Analysis (MCDA is presented to evaluate different waste management options and their applicability in Japan. The analytical process aims at selecting the most suitable waste treatment option, using pairwise comparisons conducted within a decision hierarchy that was developed through the Analytical Hierarchy Process (AHP. The results of this study show that anaerobic digestion should be chosen as the best FBW treatment option with regards to resource recovery. The study also presents some conditions and recommendations that can enhance the suitability of other options like incineration and composting.

  7. Non-deposit system option for waste management on small islands.

    Science.gov (United States)

    Vilms, Monica; Voronova, Viktoria

    2016-08-01

    This paper analyses waste management on small islands (on a global scale these are micro-islands). In the context of the paper, small islands are islands that have an area less than 50 km(2) The study presents an overview of the problems connected with waste transport from islands to the mainland. Waste generation on islands is very much related to tourists. If tourists do not handle waste properly, it will cause problems. Four small Estonian islands in the range of 3-19 km(2) are studied in detail. For these and other small islands, the main problem is the waste produced by tourists, or related to tourists and waste transport to the mainland. Currently, the local municipality has to arrange and finance waste transport. In fact, and based on the polluter-pays principle, the tourists should bear the cost of waste management. There are different tax options available in order to collect the money from tourists - waste tax, harbour tax, tourist tax, donations, environmental tax and others. The study results revealed that the best possible solution for Estonian islands may be a non-deposit system - including an additional charge on ferry ticket prices. The extra money should cover the costs of waste management and waste shipping. The tourists arriving in their own boats should pay a harbour tax, which includes a waste tax to compensate for the cost of waste management. PMID:27344037

  8. Analysis on the characteristics of geologic disposal waste arising from various partitioning and conditioning options

    International Nuclear Information System (INIS)

    Highlights: • We model and compare four P&C (partitioning and conditioning) options. • Vitrification options could increase the utilization of space in repository. • Removal of Sr&Cs/MA bring benefits for repository in the near/long term respectively. • The limit of linear thermal power challenges the benefits of vitrification options. • Ventilation and time management are effective to reduce the linear thermal power. - Abstract: Siting a nuclear geological repository entails high economic, social, and political costs. The concept of expanding the capacity of repository is of great interest to the nuclear industry. Partitioning and conditioning (P&C) technology of high level radioactive liquid waste (HLLW) is expected to be effective to mitigate the burden of repository by removal of some elements from disposal waste and reducing the repository size necessitated to emplace the waste forms. The impacts of P&C technology on the characteristics of disposal waste are discussed in this paper. Four P&C options are assumed in the analysis: (1) Spent fuel once through, to dispose spent fuel directly; (2) Conventional reprocessing, to dispose vitrified HLLW glass; (3) Reprocessing plus long-lived nuclides partitioning, to dispose waste streams without minor actinides (MAs), rare earth elements (REs), Tc and Pu; (4) Reprocessing plus high thermal output nuclides separation, to dispose waste streams without Sr&Cs. The partitioning scheme is based on China’s TRPO full partitioning process and its experimental results. The waste conditioning and disposal is in accordance with the specifications of Yucca Mountain Repository. The content of disposal waste stream in each option is presented and its characteristics, such as mass, volume, linear loading capacity, thermal power and linear thermal power, are identified

  9. Electrochemical migration technique to accelerate ageing of cementitious materials

    OpenAIRE

    Abbas Z.; Tang L; Babaahmadi A.

    2013-01-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for acceler...

  10. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  11. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  12. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  13. An option for the management of radioactive waste in Argentina

    International Nuclear Information System (INIS)

    Argentina has an active nuclear program, started in the 50's, which includes two nuclear power plants (NPPs) in operation and one under construction, providing 12% of power generated in the country. Together with eight research reactors, complete facilities at the front and back end of the fuel cycle, such as radioisotope production plants and supporting laboratories in four atomic centers with an extensive research and development (R and D) program and an independent nuclear regulatory authority, constitute the backbone of the country's nuclear activities, employing in total approximately 4500 people. These activities, together with the future decommissioning of nuclear facilities, generate a considerable amount of nuclear waste which needs to be treated properly according to international practices and standards. The safe management of these wastes has being always one of Comision Nacional de Energia Atomica's (CNEA) top priorities. (author)

  14. A PC-based software package for modeling DOE mixed-waste management options

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Headquarters and associated contractors have developed an IBM PC-based software package that estimates costs, schedules, and public and occupational health risks for a range of mixed-waste management options. A key application of the software package is the comparison of various waste-treatment options documented in the draft Site Treatment Plans prepared in accordance with the requirements of the Federal Facility Compliance Act of 1992. This automated Systems Analysis Methodology consists of a user interface for configuring complexwide or site-specific waste-management options; calculational algorithms for cost, schedule and risk; and user-selected graphical or tabular output of results. The mixed-waste management activities modeled in the automated Systems Analysis Methodology include waste storage, characterization, handling, transportation, treatment, and disposal. Analyses of treatment options identified in the draft Site Treatment Plans suggest potential cost and schedule savings from consolidation of proposed treatment facilities. This paper presents an overview of the automated Systems Analysis Methodology

  15. Waste management options to reduce greenhouse gas emissions from paper in Australia

    International Nuclear Information System (INIS)

    A lifecycle assessment to estimate greenhouse gas emissions in Australia from the paper cycle is summarised. The greenhouse gas emissions from paper in Australia in 1999/2000 were estimated to be 12.1 million tonnes (Mt) of CO2 equivalent. Nearly half of this amount consisted of CH4 emissions from landfilled waste paper. Various waste management options were modelled to investigate the greenhouse impact of a tonne of paper over its whole lifecycle. Options that keep paper out of landfills significantly reduce greenhouse emissions, waste-to-energy recovery being most effective. Recycling is also beneficial, and is of particular interest from a management perspective because it can be controlled by the pulp and paper industry. These findings can be extended to other wood-based and organic wastes. (Author)

  16. Municipal waste processing: Technical/economic comparison of composting and incineration options

    International Nuclear Information System (INIS)

    The first part of this paper which assessed the state-of-the-art of municipal waste composting and incineration technologies indicated that the advanced level of available technologies in this field now allows the realization of reliable and safe plants. This second part of the paper deals with the economics of the composting and incineration options. Cost benefit analyses using the discounted cash flow method are made for waste processing plants featuring composting alone, incineration only and mixed composting and incineration. The economic analyses show that plants employing conventional composting techniques work well for the case of exclusively organic waste materials. Incineration schemes are shown to be economically effective when they incorporate suitable energy recovery systems. The integrated composting-incineration waste processing plant appears to be the least attractive option in terms of economics. Current R ampersand D activities in this field are being directed towards the development of systems with lower environmental impacts and capital and operating costs

  17. Facts and solutions. Comparison of injection and other waste processing options

    International Nuclear Information System (INIS)

    An overview is given of options to process wastes from natural gas and petroleum exploration activities. Also attention is paid to the environmental effects. In a separate report insight is given into the attitudes, opinions and perceptions on the possibility to store wastes from the exploration activities in the deep underground, e.g. by means of injection. The insight is based on interviews with experts in the petroleum and natural gas exploration industry and results of a workshop

  18. Are ORCs a Good Option for Waste Heat Recovery in a Petroleum Refinery?

    OpenAIRE

    Mazetto, Bruno Mitsuo; Silva, Julio Augusto Mendes da; Junior, Silvio De Oliveira

    2015-01-01

    The studies regarding Organic Rankine Cycles (ORCs) have been intensified due to the capacity of these systems to convert low-grade energy sources such as geothermal, solar and industrial waste heat into electricity. In this work optimized configurations of ORCs are compared with conventional options of industrial waste heat recovery such as preheating of boiler feed water and cooling of the gas turbine inlet air using an absorption chiller. The study was focused on the recovery of thermal ex...

  19. Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle

    Science.gov (United States)

    Linne, Diane L.; Palaszewski, Bryan A.; Gokoglu, Suleyman; Gallo, Christopher A.; Balasubramaniam, Ramaswamy; Hegde, Uday G.

    2014-01-01

    The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.

  20. Standard Waste Box Lid Screw Removal Option Testing

    International Nuclear Information System (INIS)

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  1. Standard Waste Box Lid Screw Removal Option Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  2. Shale: an overlooked option for US nuclear waste disposal

    Science.gov (United States)

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  3. Evaluation of Iranian Leopold Matrix application in the Environmental Impact Assessment (EIA of solid waste management options in Birjand city

    Directory of Open Access Journals (Sweden)

    S Valizadeh

    2015-08-01

    Full Text Available Background and Objective: Significant increase in population and as a result, the production of excessive waste has recently made attention to municipal solid waste management a necessary issue. The objective of this study was to use matrix-based EIA process in order to determine best waste management option in Birjand City and to suggest appropriate solutions to managers and planners of this city. Materials and Methods: Assessing the environmental impacts of waste management options was done using Iranian Leopold Matrix. Through this method, the environmental impacts of waste management options were determined in the Birjand City. The options were Open dumping, Recycling, Composting, and Sanitary damping. Results: The results indicated that Open dumping with a final score of -3.06 had the highest environmental impact and was introduced as the fourth preference. In addition, composting with final score of -2.34 has the lowest environmental impact compared with other options. Conclusion: About 76.95% of the composition of municipal solid waste of Birjand City is household waste; therefore, putrescible organic materials are the predominant waste. Thus, according to the results of the Iranian Leopold matrix method, composting option was introduced as the first priority and the most logical option for waste management in the Birjand City.

  4. Nuclear Waste Vitrification in the U.S.: Recent Developments and Future Options

    International Nuclear Information System (INIS)

    Nuclear power plays a key role in maintaining current world wide energy growth while minimizing the greenhouse gas emissions. A disposition path for used nuclear fuel (UNF) must be found for this technology to achieve its promise. One likely option is the recycling of UNF and immobilization of the high-level waste (HLW) by vitrification. Vitrification is the technology of choice for immobilizing HLW from defense and commercial fuel reprocessing around the world. Recent advances in both recycling technology and vitrification show great promise in closing the nuclear fuel cycle in an efficient and economical fashion. This article summarizes the recent trends developments and future options in waste vitrification for both defense waste cleanup and closing the nuclear fuel cycle in the U.S.

  5. Solidification of radioactive liquid wastes. A comparison of treatment options for spent resins and concentrates

    International Nuclear Information System (INIS)

    Ion exchange is one of the most common and effective treatment methods for liquid radioactive waste. However, spent ion exchange resins are considered to be problematic waste that in many cases require special approaches and pre-conditioning during its immobilization to meet the acceptance criteria for disposal. Because of the function that they fulfill, spent ion exchange resins often contain high concentrations of radioactivity and pose special handling and treatment problems. Another very common method of liquid radioactive waste treatment and water cleaning is the evaporation or diaphragm filtration. Both treatment options offer a high volume reduction of the total volume of liquids treated but generate concentrates which contain high concentrations of radioactivity. Both mentioned waste streams, spent resins as well as concentrates, resulting from first step liquid radioactive waste treatment systems have to be conditioned in a suitable manner to achieve stable waste products for final disposal. The most common method of treatment of such waste streams is the solidification in a solid matrix with additional inactive material like cement, polymer etc. In the past good results have been achieved and the high concentration of radioactivity can be reduced by adding the inactive material. On the other hand, under the environment of limited space for interim storage and the absence of a final repository site, the built-up of additional volume has to be considered as very critical. Moreover, corrosive effects on cemented drums during long-term interim storage at the surface have raised doubts about the long-term stability of such waste products. In order to avoid such disadvantages solidification methods have been improved in order to get a well-defined product with a better load factor of wastes in the matrix. In a complete different approach, other technologies solidify the liquid radioactive wastes without adding of any inactive material by means of drying

  6. Acoustic Emission Monitoring of Cementitious Wasteforms

    International Nuclear Information System (INIS)

    A summary is presented of the potential of non-destructive acoustic emission (AE) method to be applied for structures immobilising nuclear wastes. The use and limitations of the method are discussed with given examples of experimental configurations and results obtained from AE monitoring and data analysis of two different processes addressing particular issues related to the nuclear waste immobilisation. These are (a) corrosion of aluminium, classified as intermediate level waste (ILW) in the UK, encapsulated in cementitious structures and (b) partial melting and solidification during cooling of granite at a pressure of 0.15 GPa which simulates the conditions in a deep borehole disposal of canisters of vitrified high level waste (HLW). Methodology for analysis of the collected data and characterisation of the potential AE sources is performed at different steps including simple signals count and more complex signal parameter-based approach and advanced signal processing. The AE method has been shown as a potential tool for monitoring and inspection of structures immobilising nuclear wastes in relation to the time progress of different interactions of the waste with the encapsulating matrix or the wasteform with the hosting environment for permanent disposal. (author)

  7. Options for management of municipal solid waste in New York City: A preliminary comparison of health risks and policy implications

    OpenAIRE

    Moy, Pearl; Krishnan, Nikhil; Ulloa, Priscilla; Cohen, Steven; Brandt-Rauf, Paul W.

    2007-01-01

    Landfill disposal and waste-to-energy (WTE) incineration remain the two principal options for managing municipal solid waste (MSW). One critical determinant of the acceptability of these options is the different health risks associated with each. In this analysis relying on published data and exposure modeling, we have performed health risk assessments for landfill disposal versus WTE treatment options for the management of New York City’s MSW. These are based on the realistic scenario of usi...

  8. Fracture propagation in cementitious materials

    DEFF Research Database (Denmark)

    Skocek, Jan

    Mechanical behavior of structures made from cementitious materials has been successfully modeled using non-linear fracture mechanics in recent decades. On the structural scale, an assumption of homogeneity of the material is valid and well established theories can be applied. However, if focus is...... materials needs to be able to take this complexity into account. In this thesis, two frameworks for prediction of strengths of cementitious materials are developed. The rst one relates the strength of materials with aggregates with the properties of the matrix and distribution of aggregates. The second one...

  9. Solidification of radioactive liquid wastes, Treatment options for spent resins and concentrates - 16405

    International Nuclear Information System (INIS)

    Ion exchange is one of the most common and effective treatment methods for liquid radioactive waste. However, spent ion exchange resins are considered to be problematic waste that in many cases require special approaches and pre-conditioning during its immobilization to meet the acceptance criteria for disposal. Because of the function that they fulfill, spent ion exchange resins often contain high concentrations of radioactivity and pose special handling and treatment problems. Another very common method of liquid radioactive waste treatment and water cleaning is the evaporation or diaphragm filtration. Both treatment options offer a high volume reduction of the total volume of liquids treated but generate concentrates which contain high concentrations of radioactivity. Both mentioned waste streams, spent resins as well as concentrates, resulting from first step liquid radioactive waste treatment systems have to be conditioned in a suitable manner to achieve stable waste products for final disposal. Spent resin and concentrate treatment often appear as a specific task in decommissioning projects, because in the past those waste streams typically had been stored in tanks for the lifetime of the plant and needs to be retrieved, conditioned and packed prior to dismantling activities. Additionally a large amount of contaminated liquids will be generated by utilizing decontamination processes and needs to be processed further on. Such treatment options need to achieve waste products acceptable for final disposal, because due to the closure of the site no interim storage can be envisaged. The most common method of treatment of such waste streams is the solidification in a solid matrix with additional inactive material like cement, polymer etc. In the past good results have been achieved and the high concentration of radioactivity can be reduced by adding the inactive material. On the other hand, under the environment of limited space for interim storage and the absence

  10. An informal judgment assessment of subsidence mitigation options for low-level radioactive waste management on the Nevada Test Site

    International Nuclear Information System (INIS)

    An assessment of options to mitigate the effects of subsidence at low-level radioactive waste disposal sites on the Nevada Test Site was conducted using an informal method of expert judgment. Mitigation options for existing waste cells and future waste cells were identified by a committee composed of knowledgeable personnel from the DOE and DOE-contractors. Eight ranking factors were developed to assess the mitigation options and these factors were scored through elicitation of consensus views from the committee. Different subsets of the factors were applied respectively, to existing waste cells and future waste cells, and the resulting scores were ranked using weighted and unweighted scores. These scores show that there is a large number of viable mitigation options and considerable flexibility in assessing the subsidence issue with a greater range of options for future waste cells compared to existing waste cells. A highly ranked option for both existing and future waste cells is covering the waste cells with a thick closure cap of native alluvium

  11. Municipal waste (Post 3RS) management options and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Results of a study of greenhouse gas (GHG) emissions associated with utilization of disposal technologies for municipal solid waste (MSW) and some of its important components were outlined. Waste utilization and disposal options being considered include anaerobic digestion, pyrolysis, fermentation, centralized composting, landfilling and incineration. All these techniques release carbon dioxide, methane and/or nitrous oxide, as well as other air pollutants. Among waste materials for disposal were considered paper, plastics, food and yard waste, wood residues, tires, and mixed or commingled MSW. GHG emissions associated with different production and utilization processes were estimated through a detailed analysis of the process. Results showed that conventional techniques of managing MSW such as landfill and incineration without recovery resulted in higher GHG emissions than alternate technologies such as incineration with energy recovery by refuse-derived fuel (RDF) in cement kilns and pyrolysis. 6 refs., 6 tabs

  12. Management of tritium-contaminated wastes a survey of alternative options

    International Nuclear Information System (INIS)

    The European Tritium Handling Experimental Laboratory (ETHEL) under construction on the site of Ispra Joint Research Centre of the Commission of European Communities has been commissioned to experimentally develop operational and environmental safety aspects related to the tritium technology in fusion, i.e. dealing with the behaviour and reliability of materials, equipment and containment systems under tritium impact. For this reason a part of the experimental activities to be performed in ETHEL will be devoted to laboratory research on tritiated waste management. However, since all experimental activities planned for the execution in ETHEL will by itselves generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need also to be defined. To attain this target an adequate background information must be provided, which is the intent of this report. Through an exhaustive literature survey tritiated waste management options till now investigated or currently applied in several countries have been assessed. A particular importance has been attached to the tritium leach test programmes, whose results enable to assess the tritium retention efficiency of the various waste immobilization options. The conclusions resulting from the overall assessment are presented

  13. Organic fraction of municipal solid waste from mechanical selection: biological stabilization and recovery options.

    Science.gov (United States)

    Cesaro, Alessandra; Russo, Lara; Farina, Anna; Belgiorno, Vincenzo

    2016-01-01

    Although current trends address towards prevention strategies, the organic fraction of municipal solid waste is greatly produced, especially in high-income contexts. Its recovery-oriented collection is a common practice, but a relevant portion of the biodegradable waste is not source selected. Mechanical and biological treatments (MBT) are the most common option to sort and stabilize the biodegradable matter ending in residual waste stream. Following the changes of the framework around waste management, this paper aimed at analyzing the quality of the mechanically selected organic waste produced in MBT plants, in order to discuss its recovery options. The material performance was obtained by its composition as well as by its main chemical and physical parameters; biological stability was also assessed by both aerobic and anaerobic methods. On this basis, the effectiveness of an aerobic biostabilization process was assessed at pilot scale. After 21 days of treatment, results proved that the biomass had reached an acceptable biostabilization level, with a potential Dynamic Respirometric Index (DRIP) value lower than the limit required for its use as daily or final landfill cover material. However, the final stabilization level was seen to be influenced by scaling factors and the 21 days of treatment turned to be not so adequate when applied in the existing full-scale facility. PMID:26377969

  14. Strontium Uptake by Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wieland,E.; Tits, J.; Kunz, D.; Dahn, R.

    2008-01-01

    Wet chemistry experiments and X-ray absorption fine structure (XAFS) measurements were carried out to investigate the immobilization of nonradioactive Sr and 85Sr in calcite-free and calcite-containing Portland cement. The partitioning of pristine Sr between hardened cement paste (HCP) and pore solution, and the uptake of 85Sr and nonradioactive Sr were investigated in batch-type sorption/desorption experiments. Sr uptake by HCP was found to be fast and nearly linear for both cements, indicating that differences in the compositions of the two cements have no influence on Sr binding. The partitioning of pristine Sr bound in the cement matrix and 85Sr between HCP and pore solution could be modeled in terms of a reversible sorption process using similar Kd values. These findings allow 85Sr uptake to be interpreted in terms of an isotopic exchange process with pristine Sr. Sr K-edge EXAFS measurements on Sr doped HCP and calcium silicate hydrate (C-S-H) samples reveal no significant differences in the local coordination environments of pristine Sr and Sr bound to the cement matrix upon sorption. The first coordination sphere consists of five to six oxygen atoms located at a distance of about 2.6 Angstroms, which corresponds to Sr-O distances in the hydration sphere of Sr2+ in alkaline solution. Sr binds to the cement matrix via two bridging oxygen atoms located at a distance of about 3.6 Angstroms. No further neighboring atoms could be detected, indicating that Sr is taken up as a partially hydrated species by HCP. Wet chemistry and spectroscopic data further indicate that Sr binding to C-S-H phases is likely to be the controlling uptake mechanism in the cement matrix, which allows Sr uptake by HCP to be predicted based on a Ca-Sr ion exchange model previously developed for Sr binding to C-S-H phases. The latter finding suggests that long-term predictions of Sr immobilization in the cementitious near field of repositories for radioactive waste can be based on a

  15. Pyrolysis Of Saudi Arabian Date Palm Waste: A Viable Option For Converting Waste Into Wealth

    KAUST Repository

    Hussain, Ahmad

    2014-11-01

    Saudi Arabia has about 23 million palm trees and it is the second largest producer of dates. The biomass from the trimmed branches of palm trees amount to more than 200,000 tons/year. This biomass waste can be used to produce many commercial products. There are several relevant technologies for conversion of biomass and solid wastes into higher value products. The starting point of the project is the pretreatment of palm solid wastes. Thermogravimetric analysis has been done to understand the pyrolysis behavior of palm date wastes. A fluidized bed (FB) has been designed and to study hydrodynamics and develop optimum conditions for the pyrolysis of palm wastes. A novel fluidized bed test rig has been designed and fabricated to carry out the pyrolysis of palm wastes. The pyrolysis is used to produce activated carbon and the waste can also be readily converted to liquid phenolic products. Liquid products are particularly interesting because they have a higher energy density and can be used to produce adhesives as well as biofuels for use in power generation and transport sector. Experimental results have indicated potential opportunities of using the date biomass waste as a potential fuel in the Kingdom of Saudi Arabia.

  16. Life cycle analysis of management options for organic waste collected in an urban area.

    Science.gov (United States)

    Di Maria, Francesco; Micale, Caterina

    2015-01-01

    Different options for managing the organic fraction (OF) of municipal solid waste generated in a given urban area were analyzed by life cycle assessment (LCA) for different source segregation (SS) intensities ranging from 0 to 52%. The best management option for processing the OF remaining in the residual organic fraction (ROF) for the different SS intensities was by incineration. Landfilling and mechanical biological treatment (MBT) of ROF gave higher impacts. Aerobic treatment alone or combined with anaerobic digestion (AD) for processing the source-segregated organic fraction (SSOF) led to relevant environmental impact reduction even if the difference between the two options was quite negligible. The weighted impact showed that scenarios using incineration always gave environmental gains, whereas there was a higher environmental burden with the scenarios using MBT. PMID:25060312

  17. Waste heat recovery options in a large gas-turbine combined power plant

    Science.gov (United States)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  18. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  19. A structured Approach for selecting the best option for active liquid waste treatment technology

    International Nuclear Information System (INIS)

    An initiative was launched to determine if contaminated groundwaters, currently treated at source by small facilities, can be transported and treated effectively by a liquid waste evaporator located in a central facility, designed to treat building effluents from reactor and laboratory drains, and decontamination activities. This paper is on the first of a two stage structured evaluation, consisting of a four-step process, namely, identification of the treatment options, identification of key performance aspects and associated measures, impact of the options on the performance aspects and an overall assessment. Six treatment options are identified for the two sources of groundwater involving transport of the waters over approximately a 3-km distance by a combination of existing and new pipelines. Five key performance aspects is assessed through a simple scoring methodology. Sensitivity of the overall scores to weighting is also assessed to demonstrate the flexibility of the approach. The paper summarizes the assessment that can lead options to arrive at the 'best' option for implementation. (author)

  20. Waste Not or Want Not? A Contingent Ranking Analysis of Curbside Waste Disposal Options

    OpenAIRE

    Caplan, Arthur J.; Grijalva, Therese; Paul M. Jakus

    2002-01-01

    Recent growth in the municipal solid waste (MSW) stream nationwide has prompted considerable research into alternative waste management programs that would divert a portion of the MSW stream from landfills. Using a sample of 350 individuals from a random digit-dialed telephone survey, a discrete choice contingent ranking approach is used to estimate household’s willingness-to-pay for various curbside trash-separation services in Ogden, Utah. Results indicate that Ogden residents are willing t...

  1. Final report, Task 2: alternative waste management options, Nuclear Fuel Services, Inc., high level waste

    International Nuclear Information System (INIS)

    Of the alternatives considered for disposal of the high-level waste in tanks 8D2 and 8D4, the following process is recommended: homogenization of the contents of tank 8D2, centrifugation of the sludge and supernate, mixing of the 8D4 acid waste with the centrifuged sludge, and converting the mixture to a borosilicate glass using the Hanford spray calciner/in-can melter

  2. The sustainable landfill bioreactor: a waste management option for the twenty first century

    International Nuclear Information System (INIS)

    Full text: According to the EU hierarchy of waste management, disposal of solid waste to landfill is the method of last resort. However landfilling is still a widely used disposal route in Europe and it will continue to be an important waste management option for many years, even though rising environmental standards continue to cause landfill disposal costs to rise. The traditional model of a landfill as a permanent waste deposit in which decomposition processes are minimised has given way to the concept of a controlled decomposition process managed as a large-scale bioreactor. The fundamental aim of the sustainable landfill is to optimise the natural degradation processes in the waste, to contain the products of degradation to prevent pollution of the environment and finally to use the residual organic matter as a soil conditioner. This paper discusses the legal and technical imperatives driving the development of the sustainable large-scale bioreactor concept of landfilling. key words: sustainable development, landfill, bioreactor, waste management

  3. Spent sealed radiation sources confinement: Options for their radioactive waste management

    International Nuclear Information System (INIS)

    Spent sealed sources produced as waste in nuclear application techniques, are one of the most relevant waste in the country. They are mainly used in industries as measurers and gauges; and also in medicine for radiotherapy treatment and radiodiagnosis. They are a relevant waste due to their attractiveness in metal recycling industry and their intrinsic risk because of their internal radiological content. Options, for their management as radioactive waste, offered in Chile by Chilean Commission for Nuclear Energy, CCHEN. is presented. CCHEN. is a government organization, which, among its objectives, is charged of providing health protection, safety and security to people, goods and environment The methodology followed in CCHEN., according to safety criteria, is based on International Atomic Energy Agency, IAEA, standards for treatment and conditioning in cementiceous matrices fit for technologies available in the country. Description and registry, of final product as waste package obtained, and its characteristics which comply with quality controls that assure the integrity of conditioned radioactive waste for disposal are also reported (AS)

  4. Electrochemical migration technique to accelerate ageing of cementitious materials

    International Nuclear Information System (INIS)

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium. (authors)

  5. Electrochemical migration technique to accelerate ageing of cementitious materials

    Science.gov (United States)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  6. Electrochemical migration technique to accelerate ageing of cementitious materials

    Directory of Open Access Journals (Sweden)

    Abbas Z.

    2013-07-01

    Full Text Available Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen’s micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  7. Cementitious Barriers Partnership FY2013 End-Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States); Kosson, D. S. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Brown, K. G. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Meeussen, J. C.L. [Nuclear Research and Consultancy Group (NRG), Petten (The Netherlands); van der Sloot, H. A. [Hans van der Sloot Consultancy, Langedijk (The Netherlands); Garboczi, E. J. [Materials & Construction Research Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2013-11-01

    hydraulic and constituent mass transfer parameters needed in modeling. Two CBP software demonstrations were conducted in FY2013, one to support the Saltstone Disposal Facility (SDF) at SRS and the other on a representative Hanford high-level waste tank. The CBP Toolbox demonstration on the SDF provided analysis on the most probable degradation mechanisms to the cementitious vault enclosure caused by sulfate and carbonation ingress. This analysis was documented and resulted in the issuance of a SDF Performance Assessment Special Analysis by Liquid Waste Operations this fiscal year. The two new software tools supporting chloride attack and dual-regime flow will provide additional degradation tools to better evaluate performance of DOE and commercial cementitious barriers. The CBP SRNL experimental program produced two patent applications and field data that will be used in the development and calibration of CBP software tools being developed in FY2014. The CBP software and simulation tools varies from other efforts in that all the tools are based upon specific and relevant experimental research of cementitious materials utilized in DOE applications. The CBP FY2013 program involved continuing research to improve and enhance the simulation tools as well as developing new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools through laboratory experiments and analysis of field specimens are ongoing and will continue into FY2014 to quantify and reduce the uncertainty associated with performance assessments. This end-year report summarizes FY2013 software development efforts and the various experimental programs that are providing data for calibration and validation of the CBP developed software.

  8. The Economic Analysis of Reversibility in the Radioactive Waste Disposal and the Real Options Theory

    International Nuclear Information System (INIS)

    Decision makers in the nuclear field have the difficult task of balancing the objectives of environmental protection and human safety with those of cost minimisation for the storage infrastructure. Both objectives interact in the optimisation issue of choosing the appropriate disposal stage according to a complex set of variables influencing the decision. Consequently the ability to adjust the disposal facilities according to the arrival of information over time is essential. In France, a 2006 Act institutes the reversible deep geological disposal as a norm, with different possible levels of retrievability of the radioactive waste packages. The reversibility in the gradual process of construction of a storage deposit is considered in order: i) to preserve some ability to take into account technological progress by considering the arrival of new information; ii) to allow future generations to make their own decisions about the storage of the waste. Moreover the exceptional dimension of temporality is important and must be taken into account in the decision process when defining the concept of reversibility. From the perspective of the economic evaluation of a reversible storage project, the multiplicity of uncertainties surrounding this issue renders the traditional method of calculating the net present value of the project irrelevant. Indeed, it tends to undervalue decisions, discounting the expected benefits and costs using exclusively the information available at the time at which the decision is taken, namely at the original date. The Real Options Theory provides a more complete framework for project valuation and decision making when uncertainty and flexibility are central to the decision issue. It makes the arrival of new information in the future possible and it permits to consider some decisions that are irrelevant or impossible to take at the initial date but that may be essential in the future. So there is a need to evaluate these options available to the

  9. Waste Separation Press (WSP): a mechanical pretreatment option for organic waste from source separation.

    Science.gov (United States)

    Jank, Anna; Müller, Wolfgang; Schneider, Irene; Gerke, Frederic; Bockreis, Anke

    2015-05-01

    An efficient biological treatment of source separated organic waste from household kitchens and gardens (biowaste) requires an adequate upfront mechanical preparation which possibly includes a hand sorting for the separation of contaminants. In this work untreated biowaste from households and gardens and the screen overflow >60mm of the same waste were mechanically treated by a Waste Separation Press (WSP). The WSP separates the waste into a wet fraction for biological treatment and a fraction of dry contaminants for incineration. The results show that it is possible to replace a hand sorting of contaminants, the milling and a screening of organic waste before the biological treatment by using the WSP. A special focus was put on the contaminants separation. The separation of plastic film from the untreated biowaste was 67% and the separation rate of glass was about 92%. About 90% of the organics were transferred to the fraction for further biological treatment. When treating the screen overflow >60mm with the WSP 86% of the plastic film and 88% of the glass were transferred to the contaminants fraction. 32% of the organic was transferred to the contaminants fraction and thereby lost for a further biological treatment. Additionally it was calculated that national standards for glass contaminants in compost can be met when using the WSP to mechanically treat the total biowaste. The loss of biogas by transferring biodegradable organics to the contaminants fraction was about 11% when preparing the untreated biowaste with the WSP. PMID:25761398

  10. Modelling approach to evaluate safety of LILW-SL disposal in slovenia considering different waste packaging options

    International Nuclear Information System (INIS)

    The long-term safety of radioactive waste repositories is usually demonstrated by means of a safety assessment which normally includes modelling of radionuclide release from a multi-barrier surface or deep repository to the geosphere and biosphere. The present quantitative evaluation performed emphasizes on contrasting disposal options under consideration in Slovenia and concerns siting, disposal concept (deep versus surface), and waste packaging. The assessment has identified a number of conditions that would lead to acceptable waste disposal solutions, while at the same time results also revealed options that would result in exceeding the radiological criteria. Results presented are the output of a collective effort of a Quintessa-led Consortium with SCK-CEN and Belgatom, in the framework of a recent PHARE project. The key objective of this work was to identify the preferred disposal concept and packaging option from a number of alternatives being considered by the Slovenian radioactive waste management agency (ARAO) for low and intermediate level short-lived waste (LILW-SL). The emphasis of the assessment was the consideration of several waste treatment and packaging options in an attempt to identify the minimum required containment characteristics which would result in safe disposal and the cost-benefit of additional safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes containing drums with unconditioned ion exchange resins in overpacked tube type containers (TTCs). For the former the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers. For the latter three options were foreseen. The first is overpacking of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralisation, and cementation of

  11. Life Cycle Assessment: A Tool for Evaluating and Comparing Different Treatment Options for Plastic Wastes from Old Television Sets

    OpenAIRE

    Dodbiba, G.; Furuyama, T.; Takahashi, K.; Sadaki, J; Fujita, T.

    2007-01-01

    In the present work, energy recovery and mechanical recycling, two treatment options for plastic wastes from discarded television sets, have been assessed and compared in the context of the life cycle assessment methodology (LCA). The environmental impact of each option was assessed by calculating the depletion of abiotic resources (ADP) and the global warming potential (GWP). Then, the indicators were compared, and the option with the smaller environmental impact was selected. The main findi...

  12. The influence of natural organic matter on radionuclide mobility under conditions relevant to cementitious disposal of radioactive wastes: a review of direct evidence

    OpenAIRE

    Stockdale, A.

    2013-01-01

    A concept for the disposal of intermediate level radioactive wastes involves emplacement within a geological disposal facility, followed by backfilling of the facility with cement. When the closed facility is re-saturated with groundwater, this will create a high pH environment due to dissolution of the cement minerals. Dissolved organic matter (DOM; defined here as naturally occurring organic acids and humin) will be present in the groundwater at a concentration that reflects the host rock e...

  13. Experimental study and modelling of physico-chemical mechanisms of clay-concrete interactions in the radioactive waste geological disposal context

    International Nuclear Information System (INIS)

    These research works are carried out as part of the radioactive wastes geological disposal feasibility study. The current option developed by Andra, includes several cementitious materials in contact with the surrounding Callovo-Oxfordian (COX) (an argillite). Concretes and argillite present very different pore solutions (ionic concentrations and pH). Controlled by the concentrations differences, the aqueous species diffusion in the solids generates chemical and physical disturbances. This study is based on experimental, analytical and numerical works, in order to identify the mechanisms controlling the clayey environment influence on cementitious materials. (author)

  14. A comparison of costs associated with utility management options for dry active waste

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, C. [EPRI, Palo Alto, CA (United States)

    1995-12-31

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, all utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.

  15. A comparison of costs associated with utility management options for dry active waste

    International Nuclear Information System (INIS)

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it's evaluation of the mix of processing that will afford it the best long term economics and minimize it's risks for unforeseen costs. Whether disposal is available or not, all utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed

  16. Integrated model of Korean spent fuel and high level waste disposal options - 16091

    International Nuclear Information System (INIS)

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21. century. The model addresses alternative design concepts for disposal of SNF of different types (Candu, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model's results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses. (authors)

  17. A Study on Optimized Management Options for the Wolsong Low- and Intermediate - Level Waste Disposal Center in Korea - 13479

    International Nuclear Information System (INIS)

    The safe and effective management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Currently, for permanent disposal of low- and intermediate-level waste (LILW), the Wolsong LILW Disposal Center (WLDC) is under construction. It will accommodate a total of 800,000 drums at the final stage after stepwise expansion. As an implementing strategy for cost-effective development of the WLDC, various disposal options suitable for waste classification schemes would be considered. It is also needed an optimized management of the WLDC by taking a countermeasure of volume reduction treatment. In this study, various management options to be applied to each waste class are analyzed in terms of its inventory and disposal cost. For the volume reduction and stabilization of waste, the vitrification and plasma melting methods are considered for combustible and incombustible waste, respectively. (authors)

  18. Mixed waste treatment options for wastes generated at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    The Idaho National Engineering Laboratory has generated mixed wastes (MWs) during its daily operations. MWs contain both radioactive and hazardous components, as defined by the Department of Energy and the Environmental Protection Agency. Treatment and disposal of stored MWs, as well as future generated MWs, are required to meet all regulations specified by the regulating agencies. This report reviews proven and emerging technologies that can treat MWs. It also provides a method for selection of the appropriate technology for treatment of a particular waste stream. The report selects for further consideration various treatments that can be used to treat MWs that fall under Land Disposal Restrictions. The selection methodology was used to arrive at these treatments. 63 refs., 7 figs., 23 tabs

  19. REVIEW OF MECHANISTIC UNDERSTANDING AND MODELING AND UNCERTAINTY ANALYSIS METHODS FOR PREDICTING CEMENTITIOUS BARRIER PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Kosson, D.

    2009-11-30

    Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focus of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various

  20. Developing waste disposal options in the underground storage tank - integrated demonstration program

    International Nuclear Information System (INIS)

    The principal objective of the Underground Storage Tank - Integrated Demonstration (UST-ID Program is the demonstration and continued development of technologies suitable for the remediation of USTs. The most promising new technologies from industry, universities, national laboratories, and other government agencies are selected for demonstration, testing, and evaluation. The objective is the eventual transfer of new technologies as part of a system to full-scale remediation at US Department of Energy (DOE) sites and alternately into the private sector. Technologies under development in the UST-ID Program are targeted toward use in remediation actions at the following five DOE participant sites: Hanford, Fernald, Idaho, Oak Ridge, and Savannah River. Combined, these participant sites have more than 300 USTs containing more than 381,800 m3 (100 Mgal) of high-level and low-level radioactive liquid waste. This paper focuses on the Low-Level Waste Disposal area of the UST-ID, summarizing the two currently funded technology development projects: the Nitrate to Ammonia and Ceramic (NAC) Process and Polyethylene Encapsulation. Both technologies are considered options to the-current baseline disposal approaches being developed at the participant sites. For the Hanford Site, this baseline is a grout waste form that is nearing implementation for disposal of low-level liquid tank wastes

  1. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  2. Corrosion of cementitious materials under geological disposal conditions

    International Nuclear Information System (INIS)

    The long-term behavior of cementitious materials in high saline brines has been investigated by means of a time accelerating leaching experiment and by the geochemical modeling. The investigated materials, salt cement and oxychloride cement, were leached with a saturated NaCl solution and an 1P21 solution, likely to occur in salt and potash mines, used in Germany as repositories for radioactive and hazardous chemical wastes. The employed leaching experiment was developed at GRS specifically for boundary conditions of underground repositories. The experimentally observed reaction path was modeled using the computer code EQ3/6 and compared with results of a full-scale experiment in the Asse salt mine. A good agreement between experimental data and the modelling results was obtained. The employed experimental and modelling tools have proved to be suitable for the evaluation of the long-term stability of cementitious materials in repositories in salt formations. Considering the good agreement between the long lasting full-scale in-situ experiment and the time accelerating laboratory scale cascade experiments we conclude, that it is possible to predict the chemical behavior of cementitious materials in salt solutions. The cascade experiment is a fast method, that enables the prediction of the chemical changes in solution during the cement corrosion processes. For the investigated materials in contact to brines a good agreement between the experimental data and the modeling results was obtained. The existing thermodynamic database for the geochemical modeling however is still incomplete. Solubility data and dissolution models for CSH phases are incomplete or missing. The Pitzer coefficients of Si and Al still need to be determined more accurately. However the present state of the geochemical modeling with the existing database allows a valuable insight into the processes taking place along the reaction path in the extremely complex system. The employed experimental and

  3. Low level radioactive waste disposal: An evaluation of reports comparing ocean and land based disposal options

    International Nuclear Information System (INIS)

    This document evaluates reports presenting comparative assessments of land and sea disposal options for low and intermediate level radioactive waste. It was performed following a request by the LDC to the IAEA. In this evaluation, IAEA Safety Series No. 65 ''Environmental Assessment Methodologies for Sea Dumping of Radioactive Wastes'', was used as the main reference in reviewing the comparative assessments made to date. IAEA Safety Series No. 65 gives guidance on the performance of comparative assessments of the different options, and provides a list and scheme of factors to be considered. 5 studies were transmitted by the Contracting Parties and considered in this review. A larger number of reports was not considered in this effort on the basis that the evaluation would be most effective if directed at those studies which specifically compared ocean disposal with land based disposal in a consistent manner. It is not the purpose of this report to state whether one document is better than another or whether one report forms a good blueprint for future assessments. This would require a different type of review and is outside the scope of this document. Indeed since the purposes of the five reports were originally so different it would not be possible to produce such a ranking and any attempts in that direction would be very misleading. 11 refs, 3 tabs

  4. A new and superior ultrafine cementitious grout

    International Nuclear Information System (INIS)

    Sealing fractures in nuclear waste repositories concerns all programs investigating deep burial as a means of disposal. Because the most likely mechanism for contaminant migration is by dissolution and movement through groundwater, sealing programs are seeking low-viscosity sealants that are chemically, mineralogically, and physically compatible with the host rock. This paper presents the results of collaborative work directed by Sandia National Laboratories (SNL) and supported by Whiteshell Laboratories, operated by Atomic Energy of Canada, Ltd. The work was undertaken in support of the Waste Isolation Pilot Plant (WIPP), an underground nuclear waste repository located in a salt formation east of Carlsbad, NM. This effort addresses the technology associated with long-term isolation of nuclear waste in a natural salt medium. The work presented is part of the WIPP plugging and sealing program, specifically the development and optimization of an ultrafine cementitious grout that can be injected to lower excessive, strain-induced hydraulic conductivity in the fractured rock termed the Disturbed Rock Zone (DRZ) surrounding underground excavations. Innovative equipment and procedures employed in the laboratory produced a usable cement-based grout; 90% of the particles were smaller than 8 microns and the average particle size was 4 microns. The process involved simultaneous wet pulverization and mixing. The grout was used for a successful in situ test underground at the WIPP. Injection of grout sealed microfractures as small as 6 microns (and in one rare instance, 3 microns) and lowered the gas transmissivity of the DRZ by up to three orders of magnitude. Following the WIPP test, additional work produced an improved version of the grout containing particles 90% smaller than 5 microns and averaging 2 microns. This grout will be produced in dry form, ready for the mixer

  5. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    International Nuclear Information System (INIS)

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  6. Evaluation of waste management options in view of long-term maintenance-free landfills

    International Nuclear Information System (INIS)

    The present case study compares and evaluates different waste management options with special consideration to their long-term implications. Multiple scenarios of these options were created and investigated as to which of term best fulfilled the goals of the Austrian waste management act (Abfallwirtschaftgesetz, AWG). Serving as a basis for this study, an elaborated model of the Austrian waste management, as described in GUA and IFIP (1998, 'Management of Household and Household-like Waste in Austria'), was used. Alterations to the GUA and IFIP study were done in order to best fulfill the needs of this assessment. Household and household-like waste, as well as municipal sewage sludge have been defined as the system input. The following list of scenarios were investigated against an up-dated status-quo (P0): M1 maximum landfilling of untreated waste; M2a maximum incineration without any after treatment; M2b maximum incineration with cement stabilization of the residual material; M2c maximum high temperature process; M3a maximum mechanical-biological treatment with the light fraction from sorting and splitting processed in a fluidized-bed furnace; M3b maximum mechanical-biological treatment with the light fraction from sorting and splitting processed in a rotary kiln for use in the cement industry; M3c maximum mechanical-biological treatment with the high caloric heavy fraction after decomposition processed in a fluidized-bed furnace; M3d maximum mechanical-biological treatment with the high caloric heavy fraction after decomposition processed in a rotary kiln for use in the cement industry. In order to oblige to the precautionary principle of the AWG, each of the scenarios were investigated, with regards to the short, middle, and long-term landfills behaviors of the deposited residual material. The macro-economical Cost-Benefit-Analysis (CBA) was used in the assessment. Additionally a so-called 'modified-Cost-Effect-Analysis' (MCEA) was developed. Unlike the

  7. Options for Determining Equivalent MHTM (Metric Tons of Heavy Metal) for DOE High Level Waste

    International Nuclear Information System (INIS)

    Section 114(d) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), limits the overall capacity of the first repository to 70,000 metric tons of heavy metal (MTHM). Current DOE policy is to allocate DOE spent fuel and high-level waste (HLW) at 10 percent of the total, or 7,000 MTHM. For planning purposes, 4,667 MTHM will be allocated for HLW. While the NWPA provides a technical basis for determining the MTHM equivalence of HLW, it does not address the significant technical differences between DOE HLW and commercial spent nuclear fuel (SNF). Although more than 170,000 MTHM of DOE fuel has been reprocessed to produce the inventory of HLW, the amount of radioactive waste generated per metric ton of DOE fuel is only a few percent of that in a metric ton of commercial fuel. This study compares the results of four methods for determining the MTHM equivalence of DOE HLW. These methods include (1) using the actual weight of heavy metal in reprocessed DOE fuel, (2) assuming the historical equivalence of 0.5 MTHM/canister of vitrified DOE HLW, (3) comparing the total radioactivity in DOE HLW to the radioactivity of commercial SNF, and (4) comparing the total radiotoxicity of DOE HLW, as defined for those radionuclides identified in 10 CFR 20, with SNF at 1,000 and 10,000 years. This study concludes that either of the last two options would meet Congress's stated purposes of the NWPA, which are to (1) provide ''reasonable assurance that the public and the environment will be adequately protected from the hazards posed by high-level radioactive waste and such spent nuclear fuel as may be disposed of in a repository'', and (2) to ''define Federal policy for the disposal of such waste and spent fuel''

  8. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m{sup 3} of the 2,600 m{sup 3} of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to {approximately}5,400 m{sup 3}. This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) {sup 238}Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with {sup 238}Pu activity which exceeds allowable shipping limits by 10--100X. (2) {sup 241}Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by {approximately}3X. (3) {sup 239}Pu-contaminated combustible waste, mainly organic waste materials contaminated with {sup 239}Pu and {sup 241}Am, is estimated to exceed thermal load requirements by a factor of {approximately}2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum.

  9. Evaluation of Landfill Cover Design Options for Waste Disposal Sites in the Coastal Regions of Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2015-01-01

    Full Text Available Uncontrolled leachate generation from operational and closed waste disposal sites is a major environmental concern in the coastal regions of Ghana which have abundant surface water and groundwater resources. The Ghana Landfill Guidelines requires the provision of a final cover or capping system as part of a final closure plan for waste disposal sites in the country as a means of minimizing the harmful environmental effects of these emissions. However, this technical manual does not provide explicit guidance on the material types or configuration for landfill covers that would be suitable for the different climatic conditions in the country. Four landfill cover options which are based on the USEPA RCRA-type and evapotranspirative landfill cover design specifications were evaluated with the aid of the HELP computer program to determine their suitability for waste disposal sites located in the Western, Central and Greater Accra regions. The RCRA Subtitle C cover which yielded flux rates of less than 0.001 mm/yr was found to be suitable for the specific climatic conditions. The RCRA Subtitle D cover was determined to be unsuitable due to the production of very large flux rates in excess of 200 mm/yr. The results for the anisotropic barrier and capillary barrier covers were inconclusive. Recommendations for further study include a longer simulation period as well the study of the combined effects of different topsoil vegetative conditions and evaporative zone depths on the landfill water balance. The use of other water balance models such as EPIC, HYDRUS-2D and UNSAT-H for the evaluation of the evapotranspirative landfill cover design options should also be considered.

  10. Assessment of the long-term stability of cementitious barriers of radioactive waste repositories by using digital-image-based microstructure generation and reactive transport modelling

    International Nuclear Information System (INIS)

    Cement-based grout plays a significant role in the design and performance of nuclear waste repositories: used correctly, it can enhance their safety. However, the high water-to-binder ratios, which are required to meet the desired workability and injection ability at early age, lead to high porosity that may affect the durability of this material and undermine its long-term geochemical performance. In this paper, a new methodology is presented in order to help the process of mix design which best meets the compromise between these two conflicting requirements. It involves the combined use of the computer programs CEMHYD3D for the generation of digital-image-based microstructures and CrunchFlow, for the reactive transport calculations affecting the materials so simulated. This approach is exemplified with two grout types, namely, the so-called Standard mix 5/5, used in the upper parts of the structure, and the 'low-pH' P308B, to be injected at higher depths. The results of the digital reconstruction of the mineralogical composition of the hardened paste are entirely logical, as the microstructures display high degrees of hydration, large porosities and low or nil contents of aluminium compounds. Diffusion of solutes in the pore solution was considered to be the dominant transport process. A single scenario was studied for both mix designs and their performances were compared. The reactive transport model adequately reproduces the process of decalcification of the C-S-H and the precipitation of calcite, which is corroborated by empirical observations. It was found that the evolution of the deterioration process is sensitive to the chemical composition of groundwater, its effects being more severe when grout is set under continuous exposure to poorly mineralized groundwater. Results obtained appear to indicate that a correct conceptualization of the problem was accomplished and support the assumption that, in absence of more reliable empirical data, it might

  11. Techno-economical Analysis of High Level Waste Storage and Disposal Options

    International Nuclear Information System (INIS)

    Global warming and instability of gas and oil prices are redefining the role of nuclear energy in electrical energy production. A production of high-level radioactive waste (HLW), during the nuclear power plant operation and a danger of high level waste mitigation to the environment are considered by the public as a main obstacle of accepting the nuclear option. As economical and technical aspects of the back end of fuel cycle will affect the nuclear energy acceptance the techno-economical analysis of different methods for high level waste storage and disposal has to be performed. The aim of this paper is to present technical and economical characteristics of different HLW storage and disposal technologies. The final choice of a particular HLW management method is closely connected to the selection of a fuel cycle type: open or closed. Wet and dry temporary storage has been analyzed including different types of spent fuel pool capacity increase methods, different pool location (at reactor site and away from reactor site) as well as casks and vault system of dry storage. Since deep geological deposition is the only disposal method with a realistic potential, we focused our attention on that disposal technology. Special attention has been given to the new idea of international and regional disposal location. The analysis showed that a coexistence of different storage methods and deep geological deposition is expected in the future, regardless of the fuel cycle type. (author)

  12. Environmental assessment of different management options for individual waste fractions by means of life-cycle assessment modelling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2011-01-01

    , by means of LCA-modelling, aims at comparing the environmental performance of three major management options (landfilling, recycling and incineration or composting) for a number of individual waste fractions. The landfilling option is here approached comprehensively, accounting for all technical...... and environmental factors involved, including energy generation from landfill gas and storage of biogenic carbon. Leachate and gas emissions associated to each individual waste fraction have been estimated by means of a mathematical modelling. This approach towards landfilling emissions allows for a more precise...... quantification of the landfill impacts when comparing management options for selected waste fractions.Results from the life-cycle impact assessment (LCIA) show that the environmental performance estimated for landfilling with energy recovery of the fractions “organics” and “recyclable paper” is comparable...

  13. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author)

  14. Safety related technical and social aspects of monitoring for the final disposal of radioactive wastes with retrieval option

    International Nuclear Information System (INIS)

    The final disposal of radioactive wastes in deep geological formations is the preferred disposal option for high-level radioactive wastes. The implementation of final repository concepts is very often inducing societal opposition. This opposition is based on the skepticism in the public concerning the warranty of the required long-term safety. Actual final repository concepts therefore include retrieval options for the time of monitoring. The monitoring results are supposed to confirm the safety statements and enhance the public confidence. The contribution discusses the relation between these aims and the consequences for monitoring planning and implementation.

  15. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

  16. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume III. Preferred utilization options

    International Nuclear Information System (INIS)

    The technical, economic, environmental, and institutional considerations that must be resolved before implementing options to recover energy from the heated SRP effluent are examined. Detailed hypothetical siting options and expected economic returns are examined for power generation, prawn production, and one industrial park scenario. The likely indirect effects on regional population, income, taxes, and infrastructure requirements if the industrial park scenario is implemented are also projected. Recommendations for follow-on studies to make possible an informed go/no-go decision for implementing attractive waste heat options using reject SRP effluent are included

  17. Integrated vermi-pisciculture - an alternative option for recycling of solid municipal waste in rural India

    Energy Technology Data Exchange (ETDEWEB)

    Chirashree Ghosh [University of Delhi, New Delhi (India). School of Environmental Studies

    2004-05-01

    Vermicomposts as a biofertilizer can be a great option for pond manuring as they never cause any long term harm to the soil like chemical fertilizer. In this study vegetable and horticulture waste was used as an important media for vermiculture. Three separate cemented tanks (6 m{sup 3} each) were used in the system as control tank, vermicompost fertilized tank and inorganic fertilizer manured tank. Monoculture of fish was carried out with cat fish, Clarias batrachus. The produced earthworms were used as fish feed. Regular monitoring of water parameter was conducted in three different ponds. Specifically, the algal biomass variation was quite helpful in analysing the behavior of the ponds. NPK value of soil samples was analyzed intermittently to know the eutrophication level. Despite the hot summer temperature in northern part of India, which is not ideal for fish growth, we have recorded an encouraging growth performance in organic manured pond along with inorganic fertilizer treated and control pond. Among eutrophicated pond, the fish biomass from vermicompost fed pond showed an increasing trend compared to inorganic fertilizer treated pond. Water retention capacity of vermicompost pond soil was better in comparison to other ponds. Result shows that the low cost model by integrating two production system vermiculture and pisciculture could be a commercially and environmentally viable option. (author)

  18. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P; Smith, F. G. III

    2013-03-19

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative

  19. Service life prediction and cementitious composites

    DEFF Research Database (Denmark)

    Stoklund Larsen, E.

    The present Ph.D.thesis describes and discusses the applicability of a systematic methodology recommended by CIB W80/RILEM-PSL for sevice life prediction. The report describes the most important inherent and environmental factors affecting the service life of structures of cementitious composites....... On the basis of this discription of factors and experience from a test programme described in SBI Report 222, Service life prediction and fibre reinforced cementitious composites, the applicabillity of the CIB/RILEM methodology is discussed....

  20. Characterization and treatment options of solid residues from waste to energy plants

    International Nuclear Information System (INIS)

    Solid residues from waste to energy plants represent important byproducts of the thermal treatment process, with significant implications in all the procedures involved in the selection of alternative technological process options, in the achievement of the consensus of residents in the area and in decisions related to plant siting. Most recent restrictions broadly applied in the field of atmospheric emission limits have further increase their relative contribution to the environmental burden of the plant as a whole, particularly for certain toxic trace elements of interest removed with very high efficiencies from flue gas, most frequently through simple transfer rather than conversion and thus significantly enriched in the final residues of the removal process. Following a broad introduction on the main qualitative and quantitative characteristics of all the residues typically arising from waste to energy plants (furnace slag, flyash from particulate removal, ash from dry and semidry flue gas control operations, sludge from wet scrubbers blowdown treatment), the paper reports on the main technologies for their treatment and final disposal actually adopted in full scale applications, as well as on the alternatives that might be prospected in the near future for achieving further reductions in the total release of contaminants from the plant as a whole, in accordance with most recently proposed regulation strategies for industrial activities based on the IPPC approach (Integrated Pollution Prevention and Control)

  1. Risk perception of various technical options in the field of radioactive waste management

    International Nuclear Information System (INIS)

    The author's group had a wide ranging discussion of risk and, at the very end of the discussion got to the question that was posed to them, which is that of risk perception of various technical options in the field of radioactive waste management. Some of the points that were made in this discussion is a reality that the group, as decision-makers, have to deal with, and it has to be treated as a reality. Secondly, the scientist looks at risk from the classic definition of ''probability times consequences'', but the public only looks at the consequences side of the equation, and too often the probability of something happening is treated as a probability of one that it will actually happen. A third problem that was identified in this area is that often the efforts to make the disposal of waste safer may contribute, in the public mind, to the fact that the risk is even more hazardous. And the last problem is that people do not trust what a decision maker is saying when he talks about the fact that there is little probability of something happening. The group then went on to a discussion of how he should try to treat risk perception. One point that was made is that voluntary acceptance of a risk is important. A second point that was made on how to deal with risk perception problems is that the group could try to put the risk of radioactive waste disposal in the perspective of other risks to society, from the chemical industry for instance. The group also talked about the possibility of putting the benefits in perspective for people. Another point was that the group should have different communications strategies for different audiences. But, the more the public is involved in the decision making process, the more comfortable they are going to be with the risk, and the more consistent the perception of risk may be with the scientific definition thereof. In terms of new technologies, new innovations on the generation and management of waste, although these may actually

  2. Management options for food production systems affected by a nuclear accident. Task 6: landspreading as a waste disposal option for contaminated milk

    International Nuclear Information System (INIS)

    In the event of a nuclear accident, there may be significant quantities of agricultural produce that are contaminated with radionuclides and require disposal. The disposal of milk would be of particular concern, since the quantities of milk classed as waste could be substantial and extensive environmental damage could be caused if this was not disposed of appropriately. As part of contingency planning for potential nuclear accidents, the identification of practicable options for disposal of contaminated milk is therefore important. One of the potential options is disposal by landspreading. This report sets out the current legal position of the landspreading of contaminated milk on farmland, provides information on the current extent of landspreading by farmers and assesses the practicability of landspreading contaminated milk according to the following criteria: technical feasibility, capacity, cost, environmental impact, radiological impact and acceptability. Milk contaminated with radionuclides could be defined as a radioactive waste or an agricultural waste. If it were defined as a radioactive waste it would require disposal under the Radioactive Substances Act 1993. Decisions concerning the definition of contaminated milk area matter for the relevant government departments. In this report it was assumed that the milk would be defined as an agricultural waste. The Code of Good Agricultural Practice for the Protection of Water provides farmers with practical guidance for avoiding water pollution and the Code of Good Agricultural Practice for the Protection of Air provides them with practical guidance for avoiding air pollution. Farmers should follow both of these codes when landspreading milk. According to the Animal By-products Order, 1999 milk contaminated with radionuclides above the levels specified by the European Council at which marketing would be prohibited would constitute high risk material; landspreading would not then be permitted. This, however

  3. Accident analysis for the low-level mixed waste ''No-Flame'' option in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    This paper outlines the various steps pursued in performing a generic safety assessment of the various technologies considered for the low-level mixed waste (LLMW) ''No-Flame'' option in the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The treatment technologies for the ''No-Flame'' option differ from previous LLMW technologies analyzed in the WM PEIS in that the incineration and thermal desorption technologies are replaced by sludge washing, soil washing, debris washing, and organic destruction. A set of dominant waste treatment processes and accident scenarios were selected for analysis by means of a screening process. A subset of results (release source terms) from this analysis is presented

  4. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume II. Options for capturing the waste heat

    International Nuclear Information System (INIS)

    Options for utilizing the heated SRP effluent are investigated. The temperature and availability characteristics of the heated effluent are analyzed. Technical options for energy recovery are discussed. A number of thermodynamic cycles that could generate electrical power using the energy in the heated SRP effluent are described. Conceptual designs for SRP application of two attractive options are presented. Other direct uses for the heated effluent, as heat sources for agriculture and aquaculture options are discussed

  5. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    International Nuclear Information System (INIS)

    Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m3 each and placed in interim storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like 14C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of 14C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of 14C in comparison to the bulk 12C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of 14C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO2 as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a 14C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of the graphite in a long term stable glass matrix. The

  6. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina [CIEMAT, Av. Complutense, 22, 28040-MADRID (Spain); Fachinger, Johannes; Grosse, Karl-Heinz [Furnaces Nuclear Application Grenoble SAS (FNAG), 4, avenue Charles de Gaulle, 38800 Le Pont de Claix (France); Leganes Nieto, Jose Luis; Quiros Gracian, Maria [ENRESA, C/ Emilio Vargas,7 - 28043 - MADRID (Spain); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany)

    2012-07-01

    Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interim storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the

  7. Approaches to comparative risk assessments of national and international radioactive waste disposal options

    International Nuclear Information System (INIS)

    Pangea Resources International AG, Switzerland, has put forward the concept of an international geological repository in an Australian desert area, for final disposal of certain of the world's high-level radioactive wastes and surplus fissile materials. Already publicly contentious in Australia, the concept raises unusual issues in safety and environmental assessment. It is timely, therefore, to consider why and how an initial case for such a repository might be made, in comparison with national options for high-level waste disposal that it might displace. There are several stages ahead of development of a formal safety case for an international repository. The first, and almost certainly the most challenging, is winning of public and political acceptance in the host country that such a repository is the 'best' solution to a global problem. We consider the basic need to identify and encompass the concerns of widely disparate stakeholders - industry, governments, national and international regulators, environmental interest groups and the public at large - so that public and political debates can be informed effectively. Many key issues will require comparison both of risks arising from very different operations, and of dissimilar prospective safety performances of complete disposal systems over periods spanning thousands of generations. Nevertheless, we conclude that the validity of such a comparative assessment could be assured by consistent application of a judicious blend of assessment techniques across the alternatives. We also conclude that its usefulness as a vehicle for public discussion would be enhanced by careful attention to public concerns, and by transparently independent review by scientific, technical, sociological and ethical specialists. Copyright (2001) Material Research Society

  8. Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    start a nuclear power programme. The IAEA has published guidance on particular elements of radioactive waste and spent fuel management, such as establishing nuclear technical and regulatory infrastructure, relevant financing schemes, national policy and strategies, multinational approaches and other aspects linked to building nuclear power plants. The present publication is intended to provide a concise summary of key issues related to the development of a sound radioactive waste and spent nuclear fuel management system. It is designed to brief countries with small or newly established nuclear power programmes about the challenges of, and to describe current and potential alternatives for, managing spent fuel and radioactive waste arising during operation and decommissioning of nuclear power plants. The publication deals primarily with current technical options, but also considers possible future developments and discusses relevant legal, political, technical and safety issues. It identifies the role of, and potential actions to be adopted by, the international community, including the IAEA, in order to support the responsible introduction of nuclear power in interested countries

  9. Air pollution control residues from waste incineration: Current UK situation and assessment of alternative technologies

    International Nuclear Information System (INIS)

    Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable

  10. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea

    International Nuclear Information System (INIS)

    Highlights: → Various food waste disposal options were evaluated from the perspective of global warming. → Costs of the options were compared by the methodology of life cycle assessment and life cycle cost analysis. → Carbon price and valuable by-products were used for analyzing environmental credits. → The benefit-cost ratio of wet feeding scenario was the highest. - Abstract: The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO2 reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.

  11. Consultancy on 'Studies of innovative reactor technology options for effective incineration of radioactive waste'. Working material

    International Nuclear Information System (INIS)

    To meet expressed Member States' needs, the IAEA has initiated a Coordinated Research Project (CRP) on 'Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste'. The final goal of the CRP is to deepen the understanding of the dynamics of transmutation systems, e.g. the accelerator driven system, especially systems with deteriorated safety parameters, qualify the available methods, specify the range of validity of methods, and formulate requirements for future theoretical developments. Should transient experiments be available, the CRP will pursue experimental benchmarking work. In any case, based on the results, the CRP will conclude on the potential need of transient experiments and make appropriate proposals for experimental programs. The participants in the second Research Coordination Meeting (RCM) of the CRP (hosted by the Institute of Plasma Physics, Chinese Academy of Sciences, in Hefei, China, 22-26 November 2004) felt that the time interval between the second and the third RCM was too long, and suggested that an informal ad hoc meeting would be necessary to keep going the momentum of the CRP work. Hence, the main objective of the Consultancy was to provide the opportunity for such an ad hoc exchange of information. Specifically, the Consultancy: - Reviewed the status of the various benchmarks; - Discussed inter-comparisons of the various benchmark results; - Discussed and agreed on remaining activities; - Defined the work plan, responsibilities, and deadlines for drafting the final CRP report

  12. An informal expert judgment assessment of subsidence mitigation options for low-level radioactive waste management sites on the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M. [Los Alamos National Lab., NM (United States)]|[Dept. of Energy, Las Vegas, NV (United States). Nevada Operations Office; Leary, K. [Dept. of Energy, Las Vegas, NV (United States). Nevada Operations Office; Jacobson, R. [Desert Research Inst., Reno, NV (United States); Bensinger, H.; Dolenc, M. [Bechtel Nevada, Las Vegas, NV (United States)

    1999-03-01

    An assessment of options to mitigate the effects of subsidence at low-level radioactive waste disposal sites on the Nevada Test Site was conducted using an informal method of expert judgment. Mitigation options for existing waste cells and future waste cells were identified by a committee composed of knowledgeable personnel from the DOE and DOE-contractors. Eight ranking factors were developed to assess the mitigation options and these factors were scored through elicitation of consensus views from the committee. Different subsets of the factors were applied respectively, to existing waste cells and future waste cells, and the resulting scores were ranked using weighted and unweighted scores. These scores show that there is a large number of viable mitigation options and considerable flexibility in assessing the subsidence issue with a greater range of options for future waste cells compared to existing waste cells. A highly ranked option for both existing and future waste cells is covering the waste cells with a thick closure cap of native alluvium.

  13. Management options for food production systems affected by a nuclear accident. Task 5: disposal of waste milk to sea

    International Nuclear Information System (INIS)

    In emergency exercises, discharge to sea is often put forward as a disposal option for waste milk, the intention being to use the outfalls for coolant water or liquid effluent at nuclear installations. However, so far the legislative constraints and the practical and scientific limitations of this option have not been fully considered. This report sets out the current legal position and evaluates the practicability of transporting milk from an affected farm to a suitable coastal facility for disposal. The effect of discharging milk into coastal water bodies has also been considered, bearing in mind that after a serious accident disposals could continue for several weeks

  14. OVERVIEW OF THE U.S. DEPARTMENT OF ENERGY AND NUCLEAR REGULATORY COMMISSION PERFORMANCE ASSESSMENT APPROACHES: CEMENTITIOUS BARRIERS PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.

    2009-05-29

    Engineered barriers including cementitious barriers are used at sites disposing or contaminated with low-level radioactive waste to enhance performance of the natural environment with respect to controlling the potential spread of contaminants. Drivers for using cementitious barriers include: high radionuclide inventory, radionuclide characteristics (e.g., long half-live, high mobility due to chemical form/speciation, waste matrix properties, shallow water table, and humid climate that provides water for leaching the waste). This document comprises the first in a series of reports being prepared for the Cementitious Barriers Partnership. The document is divided into two parts which provide a summary of: (1) existing experience in the assessment of performance of cementitious materials used for radioactive waste management and disposal and (2) sensitivity and uncertainty analysis approaches that have been applied for assessments. Each chapter is organized into five parts: Introduction, Regulatory Considerations, Specific Examples, Summary of Modeling Approaches and Conclusions and Needs. The objective of the report is to provide perspective on the state of the practice for conducting assessments for facilities involving cementitious barriers and to identify opportunities for improvements to the existing approaches. Examples are provided in two contexts: (1) performance assessments conducted for waste disposal facilities and (2) performance assessment-like analyses (e.g., risk assessments) conducted under other regulatory regimes. The introductory sections of each section provide a perspective on the purpose of performance assessments and different roles of cementitious materials for radioactive waste management. Significant experience with assessments of cementitious materials associated with radioactive waste disposal concepts exists in the US Department of Energy Complex and the commercial nuclear sector. Recently, the desire to close legacy facilities has created

  15. Comments on the BfS draft report: comparative options evaluation - preliminary status: Step 1 - technical evaluation of the decommissioning options for the final repository for radioactive wastes Asse''. Status 25.11.2009 (AP-A7)

    International Nuclear Information System (INIS)

    The comments on the BfS draft report: comparative options evaluation - preliminary status of Step 1 - technical evaluation of the decommissioning options for the final repository for radioactive wastes Asse'' (status 25.11.2009) cover the following topics: Safety in the operational phase; environmental impacts in case of an uncontrollable brine intrusion; preliminary long-term safety assessment; feasibility; time required.

  16. Commercial high-level-waste management: options and economics. A comparative analysis of the ceramic and glass waste forms

    International Nuclear Information System (INIS)

    Results of an estimate of the waste management costs of the commercial high-level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20-year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. The estimated total cost (capital and operating) of the management in the ceramic form is $2.0 billion, and that of the glass form is $4.0 billion. Waste loading and waste form density are the driving factors in that the low-waste loading (25%) and relatively low density (3.1 g/cm3) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm3) characteristic of the glass form requires several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm3. The minimum-cost ceramic waste form has a 60 wt. % waste loading of commercial high-level waste and requires 25 years storage before emplacement in basalt with delayed backfill. Because of the process flexibility allowed by the availability of the high-waste loading of the ceramic form, the intermediate-level liquid waste stream can be mixed with the high-level liquid waste stream and economically processed and emplaced. The cost is greater by $0.3 billion than that of the best high-level liquid waste handling process sequence ($2.3 billion vs $2.0 billion), but this difference is less than the cost of the separate disposal of the intermediate-level liquid waste

  17. Commercial high-level-waste management: options and economics. A comparative analysis of the ceramic and glass waste forms

    Energy Technology Data Exchange (ETDEWEB)

    McKisson, R.L.; Grantham, L.F.; Guon, J.; Recht, H.L.

    1983-02-25

    Results of an estimate of the waste management costs of the commercial high-level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20-year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. The estimated total cost (capital and operating) of the management in the ceramic form is $2.0 billion, and that of the glass form is $4.0 billion. Waste loading and waste form density are the driving factors in that the low-waste loading (25%) and relatively low density (3.1 g/cm/sup 3/) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm/sup 3/) characteristic of the glass form requires several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm/sup 3/. The minimum-cost ceramic waste form has a 60 wt. % waste loading of commercial high-level waste and requires 25 years storage before emplacement in basalt with delayed backfill. Because of the process flexibility allowed by the availability of the high-waste loading of the ceramic form, the intermediate-level liquid waste stream can be mixed with the high-level liquid waste stream and economically processed and emplaced. The cost is greater by $0.3 billion than that of the best high-level liquid waste handling process sequence ($2.3 billion vs $2.0 billion), but this difference is less than the cost of the separate disposal of the intermediate-level liquid waste.

  18. Interaction of low pH cementitious concretes with groundwaters

    International Nuclear Information System (INIS)

    Some engineering construction concepts for high level radioactive waste underground repositories consider the use of a bentonite barrier in contact with cementitious materials with a pore fluid pH value inferior or equal to 11 (based on low-pH cements) to maintain the bentonite stability. The research on low-pH cementitious materials is mainly addressed from two different approaches, one with Calcium Silicate Cements (OPC, Ordinary Portland Cement based), the other with Calcium Aluminates Cements (CAC based). The use of these both types of cements (OPC based or CAC based) implies the use of high mineral additions contents in the binder that should significantly modify most of the concrete 'standard' properties. Taking into account the long life expected in this type of repositories, parameters related to the durability of the low-pH concretes must be analyzed. This work shows some recent studies that deal with the evaluation of the resistance of low-pH concretes to long term groundwater aggression. After a presentation of the accelerated leaching test (based on a percolation method), results are given for the characterization of the leaching solution evolution and the evaluation of the modifications generated in the solid phases. Results show that the low-pH concretes evaluated have good resistance against groundwater interaction, although an altered front can be observed from the surface in all the tested samples

  19. OPTION WEALTH AND BEQUEST VALUES: THE VALUE OF PROTECTING FUTURE GENERATIONS FROM THE HEALTH RISKS OF NUCLEAR WASTE STORAGE

    OpenAIRE

    Riddel, Mary C.; Shaw, W. Douglass

    2002-01-01

    We devise a simple model of intergenerational altruism under uncertainty. We present an estimable form of the model that relies on a few, plausible, assumptions. We apply the model to data collected in a survey of Southern Nevadans concerning the proposed Yucca Mountain Nuclear Waste Repository in Nye County, NV. We find strong evidence of a bequest motive. Approximately one third of the option wealth lost by households near the repository can be attributed to costs to future generations.

  20. Clearance, Reuse, Recycle, disposal as VLLW. A role for all of these options in the optimisation of rad waste management in decommissioning - more work needed on optimisation

    International Nuclear Information System (INIS)

    Claudio Pescatore of the OECD/NEA looked at the options available for treatment and disposal of waste from a decommissioning operation and the national variations with which these options are applied. By comparing three national strategies (France, Sweden, Germany), several conclusions were reached. The key message from the presentation was that a choice of treatment and disposal options is vital to optimising a national waste management strategy, including clearance and VLLW disposal which can also offer cost benefits. Claudio finished with a review of some of the work already completed by the NEA and their future programme of work looking at optimisation of waste management approaches

  1. A decision methodology for the evaluation of mixed low-level radioactive waste management options for DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, J. [Dept. of Energy, Washington, DC (United States); Abashian, M.S.; Chakraborti, S.; Devarakonda, M.; Djordjevic, S.M. [IT Corp., Albuquerque, NM (United States)

    1993-03-01

    Currently, many DOE sites are developing site-specific solutions to manage their mixed low-level wastes. These site-specific MLLW programs often result in duplication of efforts between the different sites, and consequently, inefficient use of DOE system resources. A nationally integrated program for MLLW eliminates unnecessary duplication of effort, but requires a comprehensive analysis of waste management options to ensure that all site issues are addressed. A methodology for comprehensive analysis of the complete DOE MLLW system is being developed by DOE-HQ to establish an integrated and standardized solution for managing MLLW. To be effective, the comprehensive systems analysis must consider all aspects of MLLW management from cradle-to-grave (i.e. from MLLW generation to disposal). The results of the analysis will include recommendations for alternative management options for the complete DOE MLLW system based on various components such as effectiveness, cost, health and safety risks, and the probability of regulatory acceptance for an option. Because of the diverse nature of these various components and the associated difficulties in comparing between them, a decision methodology is being developed that will integrate the above components into a single evaluation scheme for performing relative comparisons between different MLLW management options. The remainder of this paper provides an overview of the roles and responsibilities of the various participants of the DOE MLLW Program, and discusses in detail the components involved in the development of the decision methodology for a comprehensive systems analysis.

  2. VARIABILITY OF KD VALUES IN CEMENTITIOUS MATERIALS AND SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P.; Kaplan, D.; Shine, E.

    2012-02-02

    Measured distribution coefficients (K{sub d} values) for environmental contaminants provide input data for performance assessments (PA) that evaluate physical and chemical phenomena for release of radionuclides from wasteforms, degradation of engineered components and subsequent transport of radionuclides through environmental media. Research efforts at SRNL to study the effects of formulation and curing variability on the physiochemical properties of the saltstone wasteform produced at the Saltstone Disposal Facility (SDF) are ongoing and provide information for the PA and Saltstone Operations. Furthermore, the range and distribution of plutonium K{sub d} values in soils is not known. Knowledge of these parameters is needed to provide guidance for stochastic modeling in the PA. Under the current SRS liquid waste processing system, supernate from F & H Tank Farm tanks is processed to remove actinides and fission products, resulting in a low-curie Decontaminated Salt Solution (DSS). At the Saltstone Production Facility (SPF), DSS is mixed with premix, comprised of blast furnace slag (BFS), Class F fly ash (FA), and portland cement (OPC) to form a grout mixture. The fresh grout is subsequently placed in SDF vaults where it cures through hydration reactions to produce saltstone, a hardened monolithic waste form. Variation in saltstone composition and cure conditions of grout can affect the saltstone's physiochemical properties. Variations in properties may originate from variables in DSS, premix, and water to premix ratio, grout mixing, placing, and curing conditions including time and temperature (Harbour et al. 2007; Harbour et al. 2009). There are no previous studies reported in the literature regarding the range and distribution of K{sub d} values in cementitious materials. Presently, the Savannah River Site (SRS) estimate ranges and distributions of K{sub d} values based on measurements of K{sub d} values made in sandy SRS sediments (Kaplan 2010). The actual

  3. Variability Of KD Values In Cementitious Materials And Sediments

    International Nuclear Information System (INIS)

    Measured distribution coefficients (Kd values) for environmental contaminants provide input data for performance assessments (PA) that evaluate physical and chemical phenomena for release of radionuclides from wasteforms, degradation of engineered components and subsequent transport of radionuclides through environmental media. Research efforts at SRNL to study the effects of formulation and curing variability on the physiochemical properties of the saltstone wasteform produced at the Saltstone Disposal Facility (SDF) are ongoing and provide information for the PA and Saltstone Operations. Furthermore, the range and distribution of plutonium Kd values in soils is not known. Knowledge of these parameters is needed to provide guidance for stochastic modeling in the PA. Under the current SRS liquid waste processing system, supernate from F and H Tank Farm tanks is processed to remove actinides and fission products, resulting in a low-curie Decontaminated Salt Solution (DSS). At the Saltstone Production Facility (SPF), DSS is mixed with premix, comprised of blast furnace slag (BFS), Class F fly ash (FA), and portland cement (OPC) to form a grout mixture. The fresh grout is subsequently placed in SDF vaults where it cures through hydration reactions to produce saltstone, a hardened monolithic waste form. Variation in saltstone composition and cure conditions of grout can affect the saltstone's physiochemical properties. Variations in properties may originate from variables in DSS, premix, and water to premix ratio, grout mixing, placing, and curing conditions including time and temperature (Harbour et al. 2007; Harbour et al. 2009). There are no previous studies reported in the literature regarding the range and distribution of Kd values in cementitious materials. Presently, the Savannah River Site (SRS) estimate ranges and distributions of Kd values based on measurements of Kd values made in sandy SRS sediments (Kaplan 2010). The actual cementitious material Kd values

  4. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANGEMENT OPTIONS

    Science.gov (United States)

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. These management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. In choosing the best possible manageme...

  5. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.

    Science.gov (United States)

    Yap, H Y; Nixon, J D

    2015-12-01

    Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. PMID:26275797

  6. Development of evaluation methodology for effects of cementitious grouting materials on groundwater and rock in fractured media

    International Nuclear Information System (INIS)

    Leachates from cementitious grouting materials used for reducing water inflow are hyperalkaline and chemically reactive with the engineered barriers and host rock for geological disposal of high-level radioactive waste. Evaluation methods for long-term alteration of the fractured rock have been developed since the extent of chemical modification may influence the transport and retardation properties of radionuclides in the far field. The present study shows the current status of the development of the methodology (i.e., procedure, models, and simulation codes) for evaluating the effects of cementitious grouting materials on groundwater and rock. (author)

  7. Chloride diffusion in partially saturated cementitious material

    DEFF Research Database (Denmark)

    Nielsen, Erik Pram; Geiker, Mette Rica

    2003-01-01

    The paper proposes a combined application of composite theory and Powers' model for microstructural development for the estimation of the diffusion coefficient as a function of the moisture content of a defect-free cementitious material. Measurements of chloride diffusion in mortar samples (440 kg...

  8. Efficient Resource Recovery Options from Municipal Solid Waste: Case Study of Patna, India

    OpenAIRE

    Herambprasad Digambar Gandhe; Awkash Kumar

    2016-01-01

    Solid waste management is one of the biggest issues in India as well as in the world. The generation of solid waste should be estimated for proper management of municipal solid waste (MSW) of the cities.The segregation, collection, transportation and disposal of municipal solid waste (MSW) are currently done in very unscientific and causal way in India and in many other developing countries. This creates problem for environment in terms of water, air and odour pollution. In this study, munici...

  9. A Multi-Criteria Decision Analysis of Waste Treatment Options for Food and Biodegradable Waste Management in Japan

    OpenAIRE

    Babalola, Micky A.

    2015-01-01

    Dealing with large-scale Food and Biodegradable Waste (FBW) often results in many logistical problems and environmental impacts to be considered. These can become great hindrances when the integration of solid waste management is concerned. Extra care is needed to plan such waste disposal or treatment services and facilities, especially with respect to the ecological impact. Decision-making with regards to the sustainable use of these facilities also involves tradeoffs between a number of con...

  10. Proceedings of the Seminar on Management Options for Low and Intermediate Level Wastes in Latin America

    International Nuclear Information System (INIS)

    The solutions adopted for management problems on radioactive wastes of nuclear installations and contamined materials generated in hospitals, research centers, laboratories in the countries of Latin America are presented. The criteria of site selection for radioactive waste installation and the methods for treating and storage are evaluated. The results of inspections in installations which handle radioactive wastes are done. (M.C.K.)

  11. Waste management policy and strategies for all waste types and disposal options and international co-operation - Bangladesh perspective

    International Nuclear Information System (INIS)

    In Bangladesh, LILW radioactive wastes are generated from operation and maintenance of nuclear installations: Research Reactor, Radioisotope Production Laboratory, Neutron Generator, hot facilities, application/use of radiation sources (RS) in medicine, research, agriculture, industry. The radioactive wastes arising are described in this paper. The national policy concerning radioactive wastes and the activities being performed by the Health Physics and Radioactive Waste Management Unit of AERE, Savar, are outlined. BAEC has a perspective plan (2001-2010) to establish a pilot-scale near-surface waste repository for short-lived LILW. The factors being studied are presented, covering: general site description within the AERE campus; geology, hydrology and rivers; seismicity; surface drainage and ground water table; climate and meteorology; transportation and communication; demography and nearby facilities; vegetation; water and power supply; background radiation, nearest township; natural environment, land and water usage; dispersion of radioactive materials through groundwater; engineered feature. (author)

  12. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  13. Biodegradable waste to biogas: Renewable energy option for the Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Muhammad Sadiq Munfath Khan

    2013-09-01

    Full Text Available Energy recovery from waste is not a new field of study, but its implementation continues to be a challenge in some Arab countries. Although there is abundance of useful waste in the urban markets, practices aiming at waste to energy conversion are still negligible. In the kingdom of Saudi Arabia, so-called green markets are abundant with renewable energy potential, but the practical implementation of this potential is missing. Therefore the objective of this paper is the evaluation of waste generation in KSA for the energy recovery purpose, and to show that the conversion of green waste into biofuel is not only environmentally friendly but also financially rewarding. Since the result illustrate that the major portion of the waste generated is organic waste, anaerobic digestion is proposed waste to energy technology because of its feasibility for biodegradation of moist organic wastes into biogas. Diversion of waste into biogas and bio-fertilizer will ensure that it is treated in such a way that it becomes a useful product instead of harmful one. Furthermore as the policy makers and planners in renewable energy sector have intended for kingdom of Saudi Arabia to be andquot;kingdom of sustainable energyandquot; as well, hence they are needed to give special attention toward the largest Saudi Arabia's green market and should invest more to implement this plan.

  14. Radiological risk assessment for the remote-handled transuranic waste storage options at Argonne National Laboratory - East

    International Nuclear Information System (INIS)

    Interim storage of the remote-handled transuranic (RH/TRU) waste is needed at Argonne National Laboratory-East (ANL-E). Two on-site facilities, the northwest (NW) vaults in the 317 Area and the converted spent nuclear fuel pool in Building 331, were identified as potential storage locations through previous studies. To assist the decision making process of selecting a storage location, radiological risk assessments were conducted to analyze potential radiation exposures that would be associated with storage of the RH/TRU waste in these two facilities. Three drum storage scenarios (one for the 317 Area and two for Building 331) considering different drum handling procedures and stacking patterns were developed. Time-motion information on worker activities that would occur in the procedures was collected and recorded in spreadsheets. Using the time-motion information, potential external doses were estimated for the involved workers for each step in the procedures. The sum of the potential external doses over all the activity steps gave the total collective dose for each scenario. The results show that during the storage phase, storing waste drums in half-liners in Building 331 would result in the lowest collective radiation exposure; however, it would also require the most human resources. When retrieving waste drums for off-site shipment was considered, storing waste drums in the 317 Area would be the most favorable option because it would require the least amount of human resources and would also result in the lowest collective radiation exposure

  15. Performance assessment of deep geological repositories for isolation of transuranic radioactive waste the Pacoma project - crystalline rock option

    International Nuclear Information System (INIS)

    After the CEC PAGIS project (for vitrified waste), the PACOMA project has been launched at the end of 1987 for cemented waste. The CEA-IPSN is in charge of the granite option. A representative inventory of this type of waste has been built up and an adaptation of the near field module, CONDIMENT, of the safety evaluation code MELODIE, has been made in order to take into account the particularities of cemented waste with respect to the vitrified waste. The best-estimate calculations have been performed on one reference site (the French Auriat Site) which is an outcropping granite and two variants, one representing a coastal granite formation (Barfleur) and the other, a granite with a sedimentary cover (notional British site). Moreover, the sensitivity and uncertainty analysis have been performed in the PACOMA project with a 2D modelling of the geosphere instead of the 1D modelling (Stream tube) previously used in the PAGIS project. After a general presentation of these points, we intended to present the main results, namely the dose rates obtained through deterministic calculations, and the most important geosphere parameters. 5 refs., 1 fig., 1 tab

  16. Emission of toxic components as a factor of the best practice options for waste management: Application of LCA (Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Stevanović-Čarapina Hristina D.

    2011-01-01

    Full Text Available Health and safety have been the major concerns in waste management. Waste must be managed in a way that minimizes risk to human health. Environmental concerns over the management and disposal of waste can be divided into two major areas: conservation of resources and pollution of the environment. Integrated Waste Management (IWM systems combine waste streams, waste collection, treatment and disposal methods, with the objective of achieving environmental benefits, economic optimization and societal acceptability. Integrated waste management using Life Cycle Assessment (LCA attempts to offer the most benign options for waste management. LCA is a compilation and evaluation of the inputs, the outputs and the potential environmental impacts of a product system throughout its life cycle. It can be successfully applied to municipal solid waste management systems to identify the overall environmental burdens and to assess the potential environmental impacts. This paper deals with the LCA of the two waste management options for final disposal of municipal waste, landfilling (landfill without landfill gas collection or leachate collection and sanitary landfilling (landfill with landfill gas collection and recovery and leachate collection and treatments analyzed for town Sombor, Serbia. The research is conducted with the use of the Software Package IWM-2. The indicators which are used in the assessment are air and water emissions of toxic compounds. The results indicated that waste disposal practice has a significant effect on the emission of the toxic components and environmental burdens. Sanitary landfilling of municipal solid waste significantly reduces toxic emission and negative influence on the environment.

  17. Waste management options for discarded newspaper in the Helsinki metropolitan area life cycle assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbo, H.; Laukka, J.; Myllymaa, T.; Koskela, S.; Tenhunen, J.; Seppaelae, J.; Jouttijaervi, T.; Melanen, M.

    2005-07-01

    Consumption and the amount of wastes are constantly increasing and therefore the waste management solutions have an increasing impact on the ecology and costs of the life cycle of a product. In an optimal situation the environmental impacts of a waste management solution are as few as possible and this is achieved with as low costs as possible. Searching and comparing the most appropriate waste management solutions demands systematic and case- specific studies. The Finnish Environment Institute (SYKE) and the University of Helsinki carried out in 2002 - 2004 a joint project called 'Life cycle approach to sustainability of waste management - a case study on newspaper (LCA-WASTE)', financed by the National Technology Agency of Finland (Tekes). In the project, the ecology and costs of different waste management alternatives for newspaper were studied. This report describes the process and results of the life cycle assessment performed in the study. Five waste management alternatives for discarded newspaper in the Helsinki Metropolitan Area (HMA) were formulated and assessed. The whole life cycle of newspaper, comprising forestry, manufacturing of newsprint, printing, waste recovery and treatment, transportations and by-products (in this study energy from waste), was included in the product system. Process-specific data from the facilities in operation, data from pilot studies and also databases were used in the life cycle inventory (LCI) phase. In order to assess the potential environmental impacts of the waste management alternatives, the inventory data were interpreted with three LCIA models, namely DAIA, Eco-indicator 99 and EPS 2000, in the life cycle impact assessment (LCIA) phase. The results of the economic assessment are not reported here. The combined assessment of the ecology and costs is reported in the publication: Myllymaa et al. 2005. A method for implementing life cycle surveys of waste management alternatives' environmental and cost

  18. Deep geological disposal, a long-term option for long-lived waste?

    International Nuclear Information System (INIS)

    Certain types of long-lived waste are radioactive for more than 100,000 years. Finding sustainable solutions for the long-term management of them is thus an immense challenge. Since the first nuclear power plant started in Belgium, SCK-CEN has invested in research into the management of long-lived waste. This research, together with ONDRAF/NIRAS, is focused on deep geological disposal in clay as a possible long-term solution. It is the essential scientific foundation of the Waste Plan, with which ONDRAF/NIRAS will publish its strategy for the management of long-lived waste in 2010.

  19. Greenhouse gas emissions of waste management processes and options: A case study.

    Science.gov (United States)

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles. PMID:27236164

  20. LCA of Recycling Options for Gypsum from Construction and Demolition Waste

    DEFF Research Database (Denmark)

    Butera, Stefania; Møller, Jacob; Christensen, Thomas Højlund

    2011-01-01

    Large amounts of gypsum waste are annually produced from the construction and demolition sector. Its landfilling is becoming more and more expensive due to stricter EU regulations, while its recycling together with the rest of construction and demolition waste might be hampered due to technical r...

  1. An option for the disposal system of low and intermediate radioactive waste in Cuba

    International Nuclear Information System (INIS)

    The search and selection of an area for the disposal of low-and intermediate-level radioactive wastes in Cuba is presented. The preliminary evaluation shows that there are favourable technical conditions for the safe disposal of this type of wastes. 13 refs., 3 figs

  2. Method for characterization of the redox condition of cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  3. Microfibres and hydrogels to promote autogenous healing in cementitious materials

    OpenAIRE

    Snoeck, Didier; Dubruel, Peter; De Belie, Nele

    2013-01-01

    Cementitious materials are sensitive to crack formation and it would be beneficial if the material could stop the crack propagation, repair the damage and reach again the original liquid-tightness and/or strength. Therefore, a cementitious material with synthetic microfibres and superabsorbent polymers (SAPs) is proposed. Upon crack formation, the microfibres will become active and due to the bridging action, they will stop the opening of a crack, forcing the cementitious material to crack so...

  4. Flexible process options for the immobilisation of residues and wastes containing plutonium

    International Nuclear Information System (INIS)

    Residues and waste streams containing plutonium present unique technical, safety, regulatory, security, and socio-political challenges. In the UK these streams range from lightly plutonium contaminated materials (PCM) through to residue s resulting directly from Pu processing operations. In addition there are potentially stocks of Pu oxide powders whose future designation may be either a waste or an asset, due to their levels of contamination making their reuse uneconomic, or to changes in nuclear policy. While waste management routes exist for PCM, an immobilisation process is required for streams containing higher levels of Pu. Such a process is being developed by Nexia Solutions and ANSTO to treat and immobilise Pu waste and residues currently stored on the Sellafield site. The characteristics of these Pu waste streams are highly variable. The physical form of the Pu waste ranges from liquids, sludges, powders/granules, to solid components (e.g., test fuels), with the Pu present as an ion in solution, as a salt, metal, oxide or other compound. The chemistry of the Pu waste streams also varies considerably with a variety of impurities present in many waste streams. Furthermore, with fissile isotopes present, criticality is an issue during operations and in the store or repository. Safeguards and security concerns must be assessed and controlled. The process under development, by using a combination of tailored waste form chemistry combined with flexible process technology aims to develop a process line to handle a broad range of Pu waste streams. It aims to be capable of dealing with not only current arisings but those anticipated to arise as a result of future operations or policy changes. (authors)

  5. Leaching experiment of alkali-activated cementitious materials solidified forms of radioactive incineration ash

    International Nuclear Information System (INIS)

    In order to solidify safely radioactive incineration ash, the alkali-activated cementitious materials were prepared with slag, fly ash, cement and zeolite, with water glass or sodium silicate (sulfate) as the activator. The recommended formulation of solidification matrix is 65% (mass fraction, the same below) slag, 10% fly ash, 20% zeolite, 2% cement, 3% Ca (OH)2. Adding quantity of water glass is 5%, when addition of 30% radioactive incineration ash, with 0.34-0.35 of the ratio of water and ash, the mechanical property of solidification forms performs well. The leaching rate of U for the cement wastes forms is 6.0 x 10-6 cm/d in 35 d, and the long time leaching rate is very low. The results of diffusion coefficient of U in the solidification forms indicate that retention capability about U of alkali-activated cementitious materials si good. The leaching mechanisms of solidification forms are discussed. (authors)

  6. Nanoscale characterization of engineered cementitious composites (ECC)

    International Nuclear Information System (INIS)

    Engineered cementitious composites (ECC) are ultra-ductile fiber-reinforced cementitious composites. The nanoscale chemical and mechanical properties of three ECC formulae (one standard formula, and two containing nanomaterial additives) were studied using nanoindentation, electron microscopy, and energy dispersive spectroscopy. Nanoindentation results highlight the difference in modulus between bulk matrix (∼ 30 GPa) and matrix/fiber interfacial transition zones as well as between matrix and unreacted fly ash (∼ 20 GPa). The addition of carbon black or carbon nanotubes produced little variation in moduli when compared to standard M45-ECC. The indents were observed by electron microscopy; no trace of the carbon black particles could be found, but nanotubes, including nanotubes bridging cracks, were easily located in ultrafine cracks near PVA fibers. Elemental analysis failed to show a correlation between modulus and chemical composition, implying that factors such as porosity have more of an effect on mechanical properties than elemental composition.

  7. Ocean disposal option for bulk wastes containing naturally occurring radionuclides: an assessment case history

    International Nuclear Information System (INIS)

    There are 180,000 m3 of slightly contaminated radioactive wastes (36 pCi/g radium-226) currently stored at the US Department of Energy's Niagara Falls Storage Site (NFSS), near Lewiston, New York. These wastes resulted from the cleanup of soils that were contaminated above the guidelines for unrestricted use of property. An alternative to long-term management of these wastes on land is dispersal in the ocean. A scenario for ocean disposal is presented for excavation, transport, and emplacement of these wastes in an ocean disposal site. The potential fate of the wastes and impacts on the ocean environment are analyzed, and uncertainties in the development of two worst-case scenarios for dispersion and pathway analyses are discussed. Based on analysis of a worst-case pathway back to man, the incremental dose from ingesting fish containing naturally occurring radionuclides from ocean disposal of the NFSS wastes is insignificant. Ocean disposal of this type of waste appears to be a technically promising alternative to the long-term maintenance costs and eventual loss of containment associated with management in a near-surface land burial facility

  8. Life cycle assessment of solid waste management options for Eskisehir, Turkey.

    Science.gov (United States)

    Banar, Mufide; Cokaygil, Zerrin; Ozkan, Aysun

    2009-01-01

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management. PMID:18280731

  9. Physical characterization methods for supplementary cementitious materials

    OpenAIRE

    Arvaniti, Eleni; Juenger, Maria; Bernal, Susan; Duchesne, Josée; Courard, Luc; Leroy, Sophie; Provis, John; Klemm, Agnieska; De Belie, Nele

    2015-01-01

    The main supplementary cementitious materials (SCMs) that are used today are industrial by-products. In most cases the quality of these materials cannot be controlled during their production, resulting in materials with varied characteristics. The adequate physical characterization of SCMs is important to better predict their performance and optimize their use in concretes production. There are standardized methods used to determine the particle characteristics for Portland cements that are u...

  10. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  11. Treatment options and flow sheets for ORNL low-level liquid waste supernate

    International Nuclear Information System (INIS)

    Low-level liquid waste (LLLW) is currently contained in ten 50,000-gal storage and process tanks at Oak Ridge National Laboratory (ORNL) and as residual heels in an number of older tanks that are no longer in active use. Plans are being formulated to treat these wastes, along with similar LLLW that will be generated in the future, to yield decontaminated effluents that can be disposed of and stable solid waste forms that can be permanently stored. The primary purpose of this report is to summarize the performance of the most promising separations processes that are appropriate for treatment of the LLLW supernate solution to remove the two dominant radionuclides, 137Cs and 90Sr; to indicate how they can be integrated into an effective flowsheet; and to estimate the expected performance of such flowsheets in comparison to waste treatment requirements

  12. Options open to a small country, like Slovenia, in relation to radioactive waste disposal

    International Nuclear Information System (INIS)

    When a society of two million people, who live on scarcely 20500 km2, needs to plan, and afterwards to implement, a strategy for radioactive waste management, the first step in the process is to look round and ask its bigger, stronger and more experienced neighbours (neighbouring countries), how they performed that task. Unfortunately, it is usually found that only few of the numerous answers to these questions and sub-questions are suitable for questioner. So what is to be done when the society is a Mediterranean, Central European, relatively highly populated country, where the Gross Domestic Product (GDP) per capita in 1994 exceeded 7000 US dollars, where the territory is mainly intended for residence, tourism and agricultural purposes, and where there is only one nuclear power plant (NPP) and one uranium mill which are responsible for the greatest part of the highly undesired radioactive waste ? The producers of radioactive wastes, and the economy of the country as a whole, cannot afford the costs of seeking a unique way of disposing of those wastes, but nevertheless, answers to the two primary questions concerning radioactive waste management should be given in any case. First: What should be done with the radioactive wastes produced in one NPP (PWR, 632 MWe) during 35 years of operation (up to 8000 m3 of low - and intermediate - level waste, about 600 tons of spent fuel), and a uranium mill closed after only six years of ore-processing operation (670000 tons of ore-processing wastes)? Second: Where should it be done? Both questions pose the problem of siting, environmental assessment and the appropriateness of (all kinds of) criteria. In this paper the situation in Slovenia is presented with emphasis on the possibility and feasibility of radioactive waste disposal. Methodology and criteria for site evaluation and site selection for low- and intermediate- level radioactive waste (LILW) disposal is described. Fifty-five criteria are included in a decision tree

  13. Thermal control of high energy nuclear waste, space option. [mathematical models

    Science.gov (United States)

    Peoples, J. A.

    1979-01-01

    Problems related to the temperature and packaging of nuclear waste material for disposal in space are explored. An approach is suggested for solving both problems with emphasis on high energy density waste material. A passive cooling concept is presented which utilized conduction rods that penetrate the inner core. Data are presented to illustrate the effectiveness of the rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

  14. Current options for the valorization of food manufacturing waste: A review

    OpenAIRE

    N. Mirabella; Castellani, V.; Sala, S

    2014-01-01

    The production of food waste covers all the food life cycle: from agriculture, up to industrial manufacturing and processing, retail and household consumption. In developed countries, 42% of food waste is produced by households, while 39% losses occur in the food manufacturing industry, 14% in food service sector and remaining 5% in retail and distribution. Increasingly, industrial ecology concepts such as cradle to cradle and circular economy are considered leading principle for eco-innovati...

  15. Policy options to reduce consumer waste to zero: comparing product stewardship and extended producer responsibility for refrigerator waste.

    Science.gov (United States)

    Nicol, Scott; Thompson, Shirley

    2007-06-01

    Today, over-consumption, pollution and resource depletion threaten sustainability. Waste management policies frequently fail to reduce consumption, prevent pollution, conserve resources and foster sustainable products. However, waste policies are changing to focus on lifecycle impacts of products from the cradle to the grave by extending the responsibilities of stakeholders to post-consumer management. Product stewardship and extended producer responsibility are two policies in use, with radically different results when compared for one consumer product, refrigerators. North America has enacted product stewardship policies that fail to require producers to take physical or financial responsibility for recycling or for environmentally sound disposal, so that releases of ozone depleting substances routinely occur, which contribute to the expanding the ozone hole. Conversely, Europe's Waste Electrical and Electronic Equipment (WEEE) Directive requires extended producer responsibility, whereby producers collect and manage their own post-consumer waste products. WEEE has resulted in high recycling rates of greater than 85%, reduced emissions of ozone-depleting substances and other toxins, greener production methods, such as replacing greenhouse gas refrigerants with environmentally friendly hydrocarbons and more reuse of refrigerators in the EU in comparison with North America. PMID:17612322

  16. Efficient Resource Recovery Options from Municipal Solid Waste: Case Study of Patna, India

    Directory of Open Access Journals (Sweden)

    Herambprasad Digambar Gandhe

    2016-04-01

    Full Text Available Solid waste management is one of the biggest issues in India as well as in the world. The generation of solid waste should be estimated for proper management of municipal solid waste (MSW of the cities.The segregation, collection, transportation and disposal of municipal solid waste (MSW are currently done in very unscientific and causal way in India and in many other developing countries. This creates problem for environment in terms of water, air and odour pollution. In this study, municipal solid waste has been estimated for Patna city and management has been carried out from the point of view of the recovery resources. The components of MSW have been estimated and based on that, moisture, density and energy content have been quantified. Afterwards, chemical compositions have been calculated and chemical formula has been made for MSW. This composition can help to estimate requirement of oxygen to degrade MSW and recovery of methane and carbon dioxide from MSW. Generally, landfill for solid waste management is planned for fifteen years or more than that. It is carried out in several parts or layers which take many years. In this paper, the calculation of energy content, requirement of oxygen to degrade MSW and recovery of methane, carbon dioxide from MSW have been carried out for a year which can be done for whole landfill period.

  17. Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.

    Science.gov (United States)

    Khoo, Hsien H; Lim, Teik Z; Tan, Reginald B H

    2010-02-15

    Proper management and recycling of huge volumes of food waste is one of the challenges faced by Singapore. Semakau island - the only offshore landfill of the nation - only accepts inert, inorganic solid waste and therefore a large bulk of food waste is directed to incinerators. A remaining small percent is sent for recycling via anaerobic digestion (AD), followed by composting of the digestate material. This article investigates the environmental performance of four food waste conversion scenarios - based on a life cycle assessment perspective - taking into account air emissions, useful energy from the incinerators and AD process, as well as carbon dioxide mitigation from the compost products derived from the digestate material and a proposed aerobic composting system. The life cycle impact results were generated for global warming, acidification, eutrophication, photochemical oxidation and energy use. The total normalized results showed that a small-scale proposed aerobic composting system is more environmentally favorable than incinerators, but less ideal compared to the AD process. By making full use of the AD's Recycling Phase II process alone, the Singapore Green Plan's 2012 aim to increase the recycling of food waste to 30% can easily be achieved, along with reduced global warming impacts. PMID:19926117

  18. Physical modeling of contaminant diffusion from a cementious waste form

    International Nuclear Information System (INIS)

    Cementitious materials can be used to immobilize waste materials for disposal. The Westinghouse Hanford Company is pursuing approval of disposal technologies by which hazardous and radioactive wastes are blended or packaged with cementitious materials for disposal. Of significant concern is the mobility of the waste contaminants both from the waste form and in the arid soils of the Hanford Site. A physical model has been developed to study the diffusion of waste contaminants from simulated cementitious waste forms in unsaturated Hanford Site soils. The model can be used to predict cementitious waste form performance in a representative environment, support design of waste management facilities and technologies, and provide data for environmental permitting of proposed treatment and disposal facilities

  19. Cementitious stabilization of chromium, arsenic, and selenium in a cooling tower sludge

    International Nuclear Information System (INIS)

    The Federal Facility Compliance Agreement (FFCA) establishes an aggressive schedule for conducting studies and treatment method development under the treatability exclusion of RCRA for those mixed wastes for which treatment methods and capabilities have yet to be defined. One of these wastes is a radioactive cooling tower sludge. This paper presents some results of a treatability study of the stabilization of this cooling tower sludge in cementitious waste forms. The sample of the cooling tower sludge obtained for this study was found to be not characteristically hazardous in regard to arsenic, barium, chromium, lead, and selenium, despite the waste codes associated with this waste. However, the scope of this study included spiking three RCRA metals to two orders of magnitude above the initial concentration to test the limits of cementitious stabilization. Chromium and arsenic were spiked at concentrations of 200, 2,000, and 20,000 mg/kg, and selenium was spiked at 100, 1,000, and 10,000 mg/kg (concentrations based on the metal in the sludge solids). Portland cement, Class F fly ash, and slag were selected as stabilizing agents in the present study. Perlite, a fine, porous volcanic rock commonly used as a filter aid, was used as a water-sorptive agent in this study in order to control bleed water for high water contents. The highly porous perlite dust absorbs large amounts of water by capillary action and does not present the handling and processing problems exhibited by clays used for bleed water control

  20. Co-operation in radioactive waste management: a winning option for sustainable development

    International Nuclear Information System (INIS)

    The Principles of sustainable development proclaimed in the Rio Declaration on Environment and Development enshrine statements about co-operation. The present paper illustrates how the International Atomic Energy Agency has been framing, in the light of the co-operation needs expressed in these principles, its efforts in the area of radioactive waste management. With co-operation in mind the main lines of its efforts are: 1/ promoting the use of sustainable technologies through different mechanisms such as information exchange, consensus building, capacity building, training courses, demonstrations, centers of excellence, networking, and training; 2/ promoting international standards for the safe management of radioactive waste and provide for their application (e.g. through international conventions) and, 3/ encouraging involvement of international stake holders. The paper presents salient and recent activities of the International Atomic Energy Agency in the area of radioactive waste management that strongly rely on and simultaneously promote international co-operation. (Author)

  1. Cementitious Barriers Partnership (CBP): Training and Release of CBP Toolbox Software, Version 1.0 - 13480

    International Nuclear Information System (INIS)

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the Office of Tank Waste Management within the Office of Environmental Management of U.S. Department of Energy (US DOE). The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that improve understanding and predictions of the long-term hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program are intended to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1,000 years for waste management purposes. CBP software tools were made available to selected DOE Office of Environmental Management and field site users for training and evaluation based on a set of important degradation scenarios, including sulfate ingress/attack and carbonation of cementitious materials. The tools were presented at two-day training workshops held at U.S. National Institute of Standards and Technology (NIST), Savannah River, and Hanford included LeachXSTM/ORCHESTRA, STADIUMR, and a CBP-developed GoldSim Dashboard interface. Collectively, these components form the CBP Software Toolbox. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF) were also presented. The CBP Dashboard uses a custom Dynamic-link library developed by CBP to couple to the LeachXSTM/ORCHESTRA and STADIUMR codes to simulate reactive transport and degradation in cementitious materials for selected performance assessment scenarios. The first day of the workshop introduced participants to the software components via presentation materials, and the second day included hands-on tutorial exercises followed by discussions of

  2. Cementitious Barriers Partnership (CBP): Training and Release of CBP Toolbox Software, Version 1.0 - 13480

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Kosson, D.S.; Garrabrants, A.C.; Sarkar, S. [Vanderbilt University, School of Engineering, CRESP, Nashville, TN 37235 (United States); Flach, G.; Langton, C.; Smith, F.G. III; Burns, H. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Van der Sloot, H. [Hans Van der Sloot Consultancy, Dorpsstraat 216, 1721BV Langedijk (Netherlands); Meeussen, J.C.L. [Nuclear Research and Consultancy Group, Westerduinweg 3, Petten (Netherlands); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Mallick, P.; Suttora, L. [U.S. Department of Energy, Washington, DC (United States); Esh, D.; Fuhrmann, M.; Philip, J. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2013-07-01

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the Office of Tank Waste Management within the Office of Environmental Management of U.S. Department of Energy (US DOE). The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that improve understanding and predictions of the long-term hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program are intended to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1,000 years for waste management purposes. CBP software tools were made available to selected DOE Office of Environmental Management and field site users for training and evaluation based on a set of important degradation scenarios, including sulfate ingress/attack and carbonation of cementitious materials. The tools were presented at two-day training workshops held at U.S. National Institute of Standards and Technology (NIST), Savannah River, and Hanford included LeachXS{sup TM}/ORCHESTRA, STADIUM{sup R}, and a CBP-developed GoldSim Dashboard interface. Collectively, these components form the CBP Software Toolbox. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF) were also presented. The CBP Dashboard uses a custom Dynamic-link library developed by CBP to couple to the LeachXS{sup TM}/ORCHESTRA and STADIUM{sup R} codes to simulate reactive transport and degradation in cementitious materials for selected performance assessment scenarios. The first day of the workshop introduced participants to the software components via presentation materials, and the second day included hands-on tutorial exercises followed

  3. Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Storch, S.N. [Oak Ridge National Lab., TN (United States); Lewis, L.C. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1998-07-07

    The US investigated the use of {sup 233}U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use {sup 233}U on a large scale. Most of the {sup 233}U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storage of some {sup 233}U-containing materials. Because of these changes, significant activities associated with {sup 233}U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when {sup 233}U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns.

  4. Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control

    International Nuclear Information System (INIS)

    The US investigated the use of 233U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use 233U on a large scale. Most of the 233U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storage of some 233U-containing materials. Because of these changes, significant activities associated with 233U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when 233U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns

  5. Geological Disposal Options for the Radioactive Wastes from a Recycling Process of Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Choi, H. J.; Lee, M. S.; Jeong, J. T.; Choi, J. W.; Kim, S. K.; Cho, D. K.; Kuk, D. H.; Cha, J. H

    2008-10-15

    The electricity from the nuclear power plants is around 40 % of total required electricity in Korea and according to the energy development plan, the proportion will be raised about 60 % in near future. To implement this plan, the most important factor is the back-end fuel cycle, namely the safe management of the spent fuel or high level radioactive wastes from the nuclear power plants. Various researches are being carried out to manage the spent fuel effectively in the world. In our country, as one of the management alternatives which is more effective and non-proliferation, pyro-processing method is being developed actively to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a Nuclear power plant. This is a new dry recycling process. In this report, the amount of various wastes and their characteristics are estimated in a Pyro-process. Based on these information, the geological disposal alternatives are developed. According to the amount and the characteristics of each waste, the concepts of waste packages and the disposal container are developed. And also from the characteristics of the radioactivity and the heat generation, multi-layer of the depth is considered to dispose these wastes. The proposed various alternatives in this report can be used as input data for design of the deep geological disposal system. And they will be improved through the application of the real site data and safety assessment in the future. After then, the final disposal concept will be selected with various assessment and the optimization will be carried out.

  6. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    Energy Technology Data Exchange (ETDEWEB)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  7. The effect of nitrates on the alteration of the cementitious material

    International Nuclear Information System (INIS)

    TRU waste includes various chemical compounds such as nitrates. The influence of the chemical compounds on the performance of the barrier system should be estimated. Since the temperature of the deep-underground is higher than that of the near surface and a part of the TRU waste generates the heat accompanied with the decay of the radioactive nuclides, the influences of the heat to the barrier material also should be taken into account. In this study, we estimated the influence of sodium nitrate and also that of the leachate from the ROBE-waste (borate-solidified body of concentrated low-level waste) to the degradation of the cementitious material. We also obtained the mineralogical data of cementitious mineral after alteration in elevated temperature conditions. Results in this year are described below. 1) Alteration of characteristics of cementitious material in nitrate solution were evaluated by the water permeation test using sodium nitrate solution. The enhancement of the alteration of cementitious material due to sodium nitrate was observed. The dissolution quantity of the calcium of sodium nitrate solution permeated sample was larger than that of deionized water permeated sample (denoted as 'blank' in following). Hydraulic conductivity of sodium nitrate solution permeated sample was lower than blank, but after changing permeation liquid from sodium nitrate solution to deionized water, hydraulic conductivity rose quickly. The increase of porosity and the decrease of compressive strength were observed in the case of sodium nitrate solution compared with blank. In the nitrate solution, sulfate type and carbonate type of AFm changed into the nitrate type AFm. The nitrate type AFm altered to the carbonate type AFm when the nitrate concentration was lowered. 2) The influence of the leachate from the two types of ROBE-waste on the dissolution of the cementitious material was evaluated by the leaching experiments. Dissolution of the calcium from the cementitious

  8. Life cycle assessment of different municipal solid waste management options: a case study of Asturias (Spain)

    OpenAIRE

    Fernández Nava, Yolanda; Río, J. del; Rodríguez Iglesias, Jesús Avelino; Castrillón Peláez, Leonor; Marañón Maison, María Elena

    2014-01-01

    This paper analyses six strategies for managing the MSW generated in Asturias (Spain) in terms of their environmental impacts applying the Life Cycle Analysis methodology. To this end, the effect of these strategies on Human Health, Ecosystem Quality, Global Warming and Resource Depletion is studied. The analysed management options include direct landfill with recovery of biogas (S-0), direct incineration with energy recovery (S-1), biomethanization of the source-separated organic fraction wi...

  9. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A MANUFACTURER OF FINISHED LEATHER.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...

  10. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K.; Scott, J.; Larson, S. [Princeton Plasma Physics Lab., NJ (United States)] [and others

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  11. Health care waste management (HCWM) in Pakistan: current situation and training options

    International Nuclear Information System (INIS)

    Hospitals in Pakistan produce about 250,000 tons of waste per year. Hospital waste has been reported to be poorly handled and managed by the hospital staff and administration respectively. This leads to environmental and health consequences within hospitals as well as to outside population. Our study aimed to describe the qualitative results of observations of ten large private and public hospitals in the cities of Rawalpindi and Islamabad Pakistan. Methods: The qualitative data was obtained through direct and indirect observations on hospital staff including doctors, nurses, sweepers and persons in administration and the way they handled the waste. Also direct observations of the hospitals premises inside and outside were made and noted. We also describe the process of involving the hospital staff for training. Results: Our results showed that almost all of the hospitals did not have practice of HCWM on their priority. Segregation, handling, storage, transportation and disposal of waste were below WHO and Pakistan bio-safety rules 2005 standards. The ten hospitals did not have HCWM rules and regulations in place hence the staff do not follow the best practices in this regard which causes numerous health and environmental consequences not only within the catchment area but also to patients and staff. Conclusions: Our study highlights the lack of HCWM practices within the ten public and private hospitals in two major cities in Pakistan. There is need of training of hospital staff in Pakistan. We also found that such training s are highly feasible if accompanied with incentives to participants. (author)

  12. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A LAMINATOR OF PAPER AND CARDBOARD PACKAGES.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...

  13. Variations in nuclear waste management performance of various fuel-cycle options

    International Nuclear Information System (INIS)

    The variations in the nuclear waste management performance have been assessed for 40 fuel-cycle examples with the calculation of the mass, activity, toxicity and decay heat of spent nuclear fuel and high-level waste at 10, 100 and 100,000 years after reactor discharge. The variation in the 10 years activity is primarily due to the variation in the specific activity of the fission products, which is higher for thorium fuel cycles, and is reduced when the fuel residence time is long. The variation in the 100,000 years activity is primarily explained by the quantity of U-233 and Pu-239 sent to nuclear waste, which is linked to the type of fuel and of reprocessing scheme employed. The difference between the inhalation toxicity and the activity is explained by the variations in the effective dose coefficients since heavy actinides such as Pu, Am and Cm have a predominant effect on the inhalation toxicity. Materials for disposal such as fission products and transuranics are responsible for most of the mass, and radiotoxicity of high-level waste, but the reprocessing/separation losses also have a potentially significant impact on the results. (author)

  14. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A NUCLEAR POWERED ELECTRICAL GENERATING STATION.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...

  15. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A MANUFACTURER OF COMMERCIAL REFRIGERATION UNITS.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of the...

  16. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A REMANUFACTURER OF AUTOMOBILE RADIATORS.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...

  17. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-01

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities. PMID:26691955

  18. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Todd Travis; Taylor, Dean Dalton; Lauerhass, Lance; Barnes, Charles Marshall

    2001-02-01

    The purpose of this document is to provide the technical information to Savannah River Site (SRS) personnel that is required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and nvironmental Laboratory (INEEL). INEEL considers simulation to have an important role in the integration/optimization of treatment process trains for the High Level Waste (HLW) Program. This project involves a joint Technical Task Plan (TTP ID77WT31, Subtask C) between SRS and INEEL. The work scope of simulation is different at the two sites. This document addresses only the treatment of SBW at INEEL. The simulation model(s) is to be built by SRS for INEEL in FY-2001.

  19. Radioactive waste management - turning options into solutions. 3rd scientific forum

    International Nuclear Information System (INIS)

    The objective of the Scientific Forum was to bring to the attention of senior governmental representatives present at the IAEA General Conference some of the important scientific and technical issues in the field of radioactive waste management and to promote awareness of the international dimension of current developments. The Forum was intended, in part, to disseminate and build upon the observations, conclusions and recommendations of the International Conference on the Safety of Radioactive Waste Management organised by the IAEA, in co-operation with the European Commission, the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development and the World Health Organisation, and hosted in Cordoba by the Government of Spain. This report presents an overview of the issues raised in the discussions

  20. Self-degradable Cementitious Sealing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Butcher, T., Lance Brothers, Bour, D.

    2010-10-01

    A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicate activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min final

  1. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... composition of the exposure liquid is investigated with atomic absorption spectroscopy. The paper provides the reader with knowledge about the absorption capacity of SAP in a cementitious environment, and how the absorption process may influence the cement pore fluid....

  2. Technology transfer on long-term radioactive waste management - a feasible option for small nuclear programmes?

    International Nuclear Information System (INIS)

    The EU project CATT - Co-operation and technology transfer on long-term radioactive waste management for Member States with small nuclear programmes investigated the feasibility of countries with small nuclear programmes implementing long-term radioactive waste management solutions within their national borders, through collaboration on technology transfer with those countries with advanced disposal concepts. The main project objective was to analyse the existing capabilities of technology owning Member States and the corresponding requirements of potential technology acquiring Member States and, based on the findings, to develop a number of possible collaboration models and scenarios that could be used in a technology transfer scheme. The project CATT was performed as a specific support action under the EU sixth framework programme and it brought together waste management organisations from six EU Member States: UK, Bulgaria, Germany, Lithuania, Slovenia and Sweden. In addition, the EC Joint Research Centre from the Netherlands also participated as a full partner. The paper summarises the analyses performed and the results obtained within the project. (author)

  3. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    Science.gov (United States)

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues. PMID:19443201

  4. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    International Nuclear Information System (INIS)

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly (∼2500 g CO2 eqvt./kg DS SRF in co-fired cement kilns and ∼1500 g CO2 eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  5. Mechanisms of Nd(III) and Eu(III) uptake by cementitious materials

    International Nuclear Information System (INIS)

    Cement is an important component of the multi-barrier system in repositories for low-level and intermediate level radioactive waste. The waste loading potential of cementitious materials is well established but their long-term ability to delay the release of radionuclides from waste repositories and the chemical mechanisms governing radionuclide immobilization are poorly understood at the molecular level. This knowledge, however, is essential for detailed long-term predictions of the environmental impact of cement-stabilized waste forms. The present doctoral study aims at developing mechanistic models of the retention mechanism of lanthanides, in particular Nd(III) and Eu(III), in cementitious materials, using synchrotron- and laser-light-based spectroscopic and laboratory-based X-ray diffraction techniques in combination with wet chemistry experiments. Macro- and micro-scale investigations on Nd(III) and Eu(III) doped crystalline and amorphous calcium silicate hydrates (C-S-H) provide fundamental information on uptake mechanisms at the atomic/molecular level. This information was used for the development of the retention model. Spectroscopic studies on Nd(III) doped cementitious matrices were performed to discern the coordination environment of these elements in cement matrices. In the first phase of the doctoral study a mechanistic model was developed for two Nd(III) doped crystalline C-S-H phases, 11 Å tobermorite (Ca5Si6O16(OH)2∙7H2O) and xonotlite (Ca6Si6O17(OH)2). In the second phase the model was tested on Nd(III) doped amorphous C-S-H phases with calcium-to-silica molar ratios varying between 0.56 and 1.54 and in complex cement systems. In the last phase, studies on Eu(III) doped crystalline C-S-H phases were carried out to test whether or not the model developed for Nd(III) can be used to interpret the Eu(III) retention by cementitious materials at very low metal loadings. Trivalent lanthanides e.g., Nd(III) and Eu(III), were regarded as suitable

  6. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Directory of Open Access Journals (Sweden)

    Xiaobo Xue

    2016-04-01

    Full Text Available Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energy- and carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability and sensitivity were evaluated, the carbon intensity of the local electricity grid and the efficiency of electricity production by the co-digestion with the energy recovery process were the most important for determining the relative global warming potential results.

  7. Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment

  8. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery

    International Nuclear Information System (INIS)

    This study evaluated feed manufacturing including dry feeding and wet feeding, composting, and landfilling for food waste disposal options from the perspective of global warming and resource recovery. The method of the expanded system boundaries was employed in order to compare different by-products. The whole stages of disposal involved in the systems such as separate discharge, collection, transportation, treatment, and final disposal, were included in the system boundary and evaluated. The Global Warming Potential generated from 1 tonne of food wastes for each disposal system was analyzed by the life cycle assessment method. The results showed that 200 kg of CO2-eq could be produced from dry feeding process, 61 kg of CO2-eq from wet feeding process, 123 kg of CO2-eq from composting process, and 1010 kg of CO2-eq from landfilling. Feed manufacturing and composting, the common treatment methods currently employed, have been known to be environment friendlier than other methods. However, this study shows that they can negatively affect the environment if their by-products are not appropriately utilized as intended.

  9. The Expanded Capabilities Of The Cementitious Barriers Partnership Software Toolbox Version 2.0 - 14331

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Kosson, David; Samson, Eric; Mallick, Pramod

    2014-01-10

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The CBP Software Toolbox – “Version 1.0” was released early in FY2013 and was used to support DOE-EM performance assessments in evaluating various degradation mechanisms that included sulfate attack, carbonation and constituent leaching. The sulfate attack analysis predicted the extent and damage that sulfate ingress will have on concrete vaults over extended time (i.e., > 1000 years) and the carbonation analysis provided concrete degradation predictions from rebar corrosion. The new release “Version 2.0” includes upgraded carbonation software and a new software module to evaluate degradation due to chloride attack. Also included in the newer version are a dual regime module allowing evaluation of contaminant release in two regimes – both fractured and un-fractured. The integrated software package has also been upgraded with new plotting capabilities and many other features that increase the “user-friendliness” of the package. Experimental work has been generated to provide data to calibrate the models to improve the credibility of the analysis and reduce the uncertainty. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox is and will continue to produce tangible benefits to the working DOE

  10. Analysis of Graphite-Reinforced Cementitious Composites

    Science.gov (United States)

    Vaughan, R. E.

    2002-01-01

    Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.

  11. Disposal of radioactive waste into clay layers the most natural option

    International Nuclear Information System (INIS)

    Among the geological formations suitable for the disposal of radioactive waste, the clay formations provide outstanding opportunities : impermeable for water, self-healing, strongly absorbing for ions, widespread in nature. The self-healing properties of large clay deposits have been demonstrated by their auto-sealing and plastic response to tectonic stress and magmatic intrusion. The discovery of fossil trees preserved after geologic periods of burial in clay is one of the most dramatic illustrations of their entombment ability. The physicochemical and hydrologic characteristics of the Boom clay are very favorable for the confinement of migrating radionuclides within the layer. Except for the extremely long half-lives (237Np, 129I,...) no radionuclide can escape from the clay body. The effects of heat, metal corrosion, material interaction and biochemical degradation on the natural properties of the clay layer are discussed in some detail and related to the natural properties of the clay formation which have to stay unaltered for geologic periods. The first Safety Assessment Report, established by NIRAS-ONDRAF in close collaboration with SCK-CEN, has been submitted to a multi-disciplinary task force which is to advise the Belgian Government on the suitability of the Boom clay layer below the Nuclear Research site of Mol as a potential host formation for nuclear waste coming from the electronuclear program. 13 refs., 2 figs., 1 tab

  12. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high

  13. Radiation and environmental safety of spent nuclear fuel management options based on direct disposal or reprocessing and disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    The report considers the various stages of two nuclear fuel cycle options: direct disposal and reprocessing followed by disposal of vitrified high-level waste. The comparative review is based on the results of previous international studies and concentrates on the radiation and environmental safety aspects of technical solutions based on today's technology. (23 refs., 7 figs., 4 tabs.)

  14. Options for improving hazardous waste cleanups using risk-based criteria

    International Nuclear Information System (INIS)

    This paper explores how risk- and technology-based criteria are currently used in the RCRA and CERCLA cleanup programs. It identifies ways in which risk could be further incorporated into RCRA and CERCLA cleanup requirements and the implications of risk-based approaches. The more universal use of risk assessment as embodied in the risk communication and risk improvement bills before Congress is not addressed. Incorporating risk into the laws and regulations governing hazardous waste cleanup, will allow the use of the best scientific information available to further the goal of environmental protection in the United States while containing costs. and may help set an example for other countries that may be developing cleanup programs, thereby contributing to enhanced global environmental management

  15. Comparison of different options for minor actinide transmutation in the frame of the French law for waste management

    International Nuclear Information System (INIS)

    In the frame of the French Act for waste management which has been passed by French Parliament on June 28th, 2006, it is requested to obtain in 2012 an assessment of industrial perspectives of partitioning and transmutation of long-lived elements. These studies must be carried out in tight connection with GENIV systems development. The expected results must include the evaluation of technical and economic scenarios taking into account the optimization options between the minor actinide transmutation processes, their interim storage and geological disposal, including an analysis of several criteria. In this perspective, the CEA has established a working group named 'GT TES' (Working Group on Technical and Economic Scenarios) involving EDF and AREVA to define scenarios, the various criteria to evaluate them, to conduct these evaluations and then to highlight the key results. The group also relied on ANDRA for the geological storage studies. The scenarios evaluations take place in the French context. The nuclear energy production is supposed to remain constant during the scenarios and equal to 430 TWhe/year in accordance with the current French nuclear power installed capacity of 60 GW(e). The deployment of the first Sodium-cooled Fast Reactor (SFR) starts in 2040, considering that at this date the SFR technology should be mature. Several management schemes of minor actinides have been studied: Plutonium recycling in SFR (minor actinides are sent to the waste). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in homogeneous mode ('Hom.'). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in heterogeneous mode ('Het.'). Plutonium recycling in SFR and minor actinide transmutation in Accelerator-Driven-System (ADS). The criteria used to analyze these different scenarios, should take into account the viewpoint of scientists, industrials, administrations, and the general public. They are listed below: Inventories and

  16. Example of establishing the recycling of scrap metal as a waste management option within German regulations

    International Nuclear Information System (INIS)

    The German Atomic Energy Act (Atomgesetz, AtG) specifies the German nuclear licensing and supervising regulations. On that basis the German federal states are responsible for licensing and supervising of nuclear power plants (NPPs) located in that state. The Ministry of Energy, Agriculture, the Environment and Rural Areas (MELUR) is the authority responsible for the state Schleswig-Holstein, in which the NPPs Brokdorf, Brunsbuettel, Kruemmel and the research reactor HZG are located. In the licensing and supervisory procedures the authority may consult authorized experts. In addition to the AtG, the German Radiation Protection Ordinance (Strahlenschutzverordnung, StrlSchV) specifies regulations for clearance according to the 10 μSv-concept. The clearance of metal by recycling / melting is one option within the regulations of the StrlSchV. For a clearance an additional license given by the MELUR is necessary. In that license and the application documents as well as in the supervisory procedures very specific regulations are implemented. This includes regulations for clearance at third parties in foreign countries. In this talk a short introduction to the German regulations focussed on clearance according to the 10 μSv-concept will be given. The specific regulations in the license of clearance will be presented and also the application documents for NPPs in Schleswig-Holstein will be discussed. Furthermore it will be illustrated on what terms the MELUR decided to agree upon the recycling of scrap metal with the aim of clearance according to Radiation Protection 89 in foreign countries along with the German regulatory framework. (authors)

  17. P and T: An option for spent fuel and waste management using a double strata fuel cycle with a dedicated waste burner reactor

    International Nuclear Information System (INIS)

    The present commercial reactors (LWR, CANDU, etc.) operate in a Once Through Fuel Cycle OTC, and based in a feed of uranium. From around 400 operating reactors a large stock pile of radioactive waste are being produced, mainly long lived TRU- Plutonium, MA( Am, Np, Cm), and Long Lived Fission Products, LLFP, such as I-129, Tc- 99, Cs-135 etc. It is estimated around 300,000 t of the spent fuel be produced in this decade, with 1% of Pu (3,000 tons), 0.1% MA, 300 t, and 400 tons of LLFP. The build up of radioactive stock piles, besides the concern of waste disposal, also brings the issue of proliferation. To overcome these issues, the next generations of nuclear reactors are considering concepts that coupled with a closed fuel cycles in many new initiatives, such as GIF and INPRO. This is the main point to note, that is P and T is sustainable option for spent fuel and HLW management, considering the renascence of Nuclear Energy for the next decades. Some issues such as safety, economics had already been almost solved. The contribution of nuclear energy to avoid the threat of global warming due to CO2 emissions in short term is also a positive point. So the only point which still remains as a controversy issue for a complete acceptance of Nuclear Energy, is what is going to be done with the HLW (long term hazard). There is a need to give answers acceptable for the public, and as established in the Joint Convention for Safety Spent Fuel Management and Radioactive Waste Management to protect the people, the society, and the environment presently and in the future in such way that the needs from present generation be satisfied without compromising the future needs of the future generations. The scheme shown in this presentation, summarizes almost all possibilities of waste and spent fuel management. At present OTC cycle, only uranium is being used as fuel. The first point is that the utilization of thorium fuel cycle is an option to reduce long lived radio toxicity and

  18. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, T.T.; Taylor, D.D.; Lauerhass, L.; Barnes, C.M.

    2002-02-21

    The technical information required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) is presented. The objective of the modeling effort is to provide the predictive capability required to optimize an entire treatment train and assess system-wide impacts of local changes at individual unit operations, with the aim of reducing the schedule and cost of future process/facility design efforts. All the information required a priori for engineers to construct and link unit operation modules in a commercial software simulator to represent the alternative treatment trains is presented. The information is of a mid- to high-level nature and consists of the following: (1) a description of twenty-four specific unit operations--their operating conditions and constraints, primary species and key outputs, and the initial modeling approaches that will be used in the first year of the simulation's development; (2) three potential configurations of the unit operations (trains) and their interdependencies via stream connections; and (3) representative stream compositional makeups.

  19. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    International Nuclear Information System (INIS)

    The technical information required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) is presented. The objective of the modeling effort is to provide the predictive capability required to optimize an entire treatment train and assess system-wide impacts of local changes at individual unit operations, with the aim of reducing the schedule and cost of future process/facility design efforts. All the information required a priori for engineers to construct and link unit operation modules in a commercial software simulator to represent the alternative treatment trains is presented. The information is of a mid- to high-level nature and consists of the following: (1) a description of twenty-four specific unit operations--their operating conditions and constraints, primary species and key outputs, and the initial modeling approaches that will be used in the first year of the simulation's development; (2) three potential configurations of the unit operations (trains) and their interdependencies via stream connections; and (3) representative stream compositional makeups

  20. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    International Nuclear Information System (INIS)

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  1. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.; Latkowski, J.F.; Meier, W.R. [Lawrence Livermore National Lab., CA (United States); Reyes, S. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad Nacional de Educacion a Distancia and Instituto de Fusion Nuclear, Dept. Ingenieria Energetica, Bilbao (Spain)

    2000-07-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  2. Activation characteristics and waste management options for some candidate tritium breeders

    International Nuclear Information System (INIS)

    Activation and transmutation characteristics are calculated for the candidate breeder compositions Li2O, LiAlO2, Li2SiO3, Li2ZrO3, LiVO3 and 17Li-83Pb. Irradiation conditions comprise a 2.5 y continuous exposure to the neutron flux appropriate to the outboard blanket zone of the EEF reference reactor with an assumed first wall neutron loading of 5 MW m-2. Results are presented for specific activity, surface γ-dose rate, ingestion and inhalation doses and compositional changes. Neglecting any retained tritium, activity is least for Li2 and LiVO3 and greatest for Li2ZrO3 and 17Li-83Pb. The silicate and aluminate are intermediate in level. Following reactor service, all the materials should be suitable, after appropriate conditioning, for geological disposal as Intermediate Level Waste. Alternatively, they could be considered for recycling to reclaim the unused lithium. In all cases, recycling is probably feasible within 10 y of removal from service and should be easier for the oxide silicate and vanadate. (orig.)

  3. Indications for Self-Sealing of a Cementitious L and ILW Repository

    International Nuclear Information System (INIS)

    Repositories for low and intermediate level nuclear waste contain large amounts of cementitious material. As a consequence of the interaction with formation waters, the cement will be degraded forming secondary minerals. The amount of precipitating secondary minerals depends on the chemical composition of the formation water. Furthermore, in the vicinity of the repository the hydraulic conditions and the parameters describing mass (radionuclide) transport will change with time during the cement degradation phase. As a result, porosity changes due to mineral and cement reactions will influence permeability and diffusivity: formation water rich in CO2 will lead to calcite precipitation in the water conducting zones surrounding the cementitious waste repository and, therefore, will have an impact on the radionuclide release from the cementitious repository into the host rock environment. Laboratory column experiments showed concurrent porosity and permeability changes during degradation of porous cement discs. However, very different quantitative results have been observed when CO2-rich or pure water were used. The sequentially coupled flow, transport and chemical reaction code, MCOTAC, is used to include such observations in the modelling. A porosity-permeability and a porosity-diffusivity relation are used for describing cement degradation and related secondary mineral precipitation. For these complex coupled processes one-dimensional modelling has reached its limits of applicability. Therefore, two-dimensional model calculations are used to predict the temporal evolution of transport parameters for radionuclides within a 'small scale' near-field of a cementitious waste repository. Mineral reactions influence hydraulic and transport parameters within such a near-field, causing reduced solute transport in the vicinity of the repository due to porosity and permeability changes at the rock-repository-interface. Also, the transport of radionuclides from the repository

  4. Shrinkage Reducing Measures for Engineering Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    YANG Yingzi; YAO Yan; GAO Xiaojian; DENG Hongwei; YU Pengzhan

    2008-01-01

    Inhibition measurement of shrinkage of engineering cementitious composites(ECC) was investigated due to typical ECC with higher free drying shrinkage.The effects of expanded admixture (EA),shrinkage reducing admixture (SRA),coarse sand+stone powder (CS+SP)and superabsorbent polymer (SAP) on drying shrinkage and mechanical properties were studied.The experimental results show that ECC incorporating EA,SRA and coarse sand can retain around 60% of the typical ECC's free drying shrinkage.Superabsorbent polymerl(SAP) can delay the development of free drying shrinkage of ECC at different ages,and the effect of SAP is not distinct like the actions of EA,superabsorbent polymer(SRA) and coarse sand.Significantly,SAP may act as artificial flaw to form a more homogeneous defect system that increases the potential of saturated multiple cracking,hence the ductility of ECC will be improved greatly.

  5. Architecture for gas transport through cementitious materials

    Science.gov (United States)

    Vu, Thai Hoa; Frizon, Fabien; Lorente, Sylvie

    2009-05-01

    This paper documents the transport of gaseous species through porous media, with application to cementitious materials. An artificial pore network was created based on mercury intrusion porometry results obtained with samples of cement paste. The flow architecture model consists of parallel channels made of assemblies of truncated cones. Gas diffusion is described as a function of the saturation degree of the material. The model accounts for the effects of the liquid curtains, and the impact of tortuosity on gas diffusion. The results show that constructing an artificial architecture based on Hg porometry allows us to describe with a good accuracy the material porous network. The liquid curtains operate as an obstacle to H2 diffusion. They are determined as a function of the water saturation level and the pore channels geometry. Furthermore, the role of tortuosity as an indicator of gas diffusion accessibility is captured. The sudden drop in the effective diffusion coefficient around a saturation degree of 70% is predicted accurately.

  6. The synthesis of cementitious compounds in molten salts

    OpenAIRE

    Sheikh, R. A.

    2016-01-01

    This thesis describes an investigation into the synthesis of cementitious compounds in molten salts. These compounds are produced in energy-intensive industries (EIIs), such as the cement process, and are responsible for emitting significant quantities of carbon dioxide (CO2) emissions. Molten salt synthesis (MSS) involves dissolving compounds in a molten salt and reacting in solution. If the MSS of cementitious compounds can occur at lower temperatures than EIIs, this could lead to fewer qua...

  7. Results of the IAEA CRP on studies of advanced reactor technology options for effective incineration of radioactive waste

    International Nuclear Information System (INIS)

    The IAEA has initiated a Coordinated Research Project (CRP) on 'Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste'. The overall objective of the CRP, performed within the framework of IAEA's Nuclear Power Technology Development Section's Technical Working Group on Fast Reactors (TWG-FR), is to increase the capability of Member States in developing and applying advanced technologies in the area of long-lived radioactive waste utilization and transmutation. More specifically, the final goal of the CRP is to deepen the understanding of the dynamics of transmutation systems, especially systems with high minor actinide content. Currently, 20 institutions from 15 member states and one international organization are participating in this CRP. The current author list comprises the participants of the last CRP Vienna meeting. The CRP concentrates on the assessment of the transient behaviour of various transmutation systems. For a sound assessment of the transient and accident behaviour, neutron kinetics and dynamics methods and codes have to be qualified, especially as the margins for the safety relevant neutronics parameters are generally becoming small in a transmutation system. Hence, the availability of adequate and qualified methods for the analysis of the various systems is an important point of the exercise. A benchmarking effort between the codes and nuclear data used for the analyses has been performed, which will help specifying the range of validity of methods, and also formulate requirements for future theoretical and experimental research. Should transient experiments become available during the course of the CRP, experimental benchmarking work will also be pursued

  8. Technological Options to Ameliorate Waste Treatment of Intensive Pig Production in China:An Analysis Based on Bio-Economic Model

    Institute of Scientific and Technical Information of China (English)

    LU Wen-cong; MA Yong-xi; Holger Bergmann

    2014-01-01

    Ameliorating waste treatment by technological improvements affects the economic and the ecological-environment beneifts of intensive pig production. The objective of the research was to develop and test a method to determine the technical optimization to ameliorate waste treatment methods and gain insight into the relationship between technological options and the economic and ecological effects. We developed an integrated bio-economic model which incorporates the farming production and waste disposal systems to simulate the impact of technological improvements in pig manure treatment on economic and environmental benefits for the case of a pilot farm in Beijing, China. Based on different waste treatment technology options, three scenarios are applied for the simulation analysis of the model. The simulation results reveal that the economic-environmental beneifts of the livestock farm could be improved by reducing the cropland manure application and increasing the composting production with the current technologies. Nevertheless, the technical efifciency, the waste treatment capacity and the economic beneifts could be further improved by the introduction of new technologies. It implies that technological and economic support policies should be implemented comprehensively on waste disposal and resource utilization to promote sustainable development in intensive livestock production in China.

  9. Challenges and Benefits of Utilizing Carbon Nanofilaments in Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Ardavan Yazdanbakhsh

    2012-01-01

    Full Text Available Carbon nanofibers/tubes (CNF/Ts are very strong and stiff and as a result, are expected to be capable of enhancing the mechanical properties of cementitious materials significantly. Yet there are practical issues concerning the utilization of CNF/Ts in cementitious materials. This study summarizes some of the past efforts made by different investigators for utilizing carbon nanofilaments in cementitious materials and also reports recent experimental research performed by the authors on the mechanical properties of CNF-reinforced hardened cement paste. The major difficulties concerning the utilization of CNF/Ts in cementitious materials are introduced and discussed. Most of these difficulties are related to the poor dispersibility of CNF/Ts. However, the findings from the research presented in this work indicate that, despite these difficulties, carbon nanofilaments can significantly improve the mechanical properties of cementitious materials. The results show that CNFs, even when poorly dispersed within the cementitious matrix, can remarkably increase the flexural strength and cracking resistance of concrete subjected to drying conditions.

  10. TANK SPACE OPTIONS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  11. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  12. Analysis of technological options for electric energy generation from urban solid wastes; Analise de opcoes tecnologicas para geracao de energia eletrica a partir de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, J.G. de M.; Serra, E.T. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], Emails: furtado@cepel.br, etserra@cepel.br

    2010-07-01

    This paper evaluates technologically of the options existents for generation of electric power from the urban solid wastes (USW), based on application of factoring method for estimation of investments based on basic description of the plant, it main equipment and technological complexity, viewing to contribute for determination of better technical and economical form, and the energy using. The results of the effectuated analyses indicates that the most technological complexity of the gasification and thermal plasma, and be encountered on non commercial in great scale as well, make the the option present the greatest index of investment and relative cost, determining the greatest costs of electric power generated through this process.

  13. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; Langton, C.A.

    1989-03-01

    The durability of ancient cementitious materials has been investigated to provide data applicable to determining the resistance to weathering of concrete materials for sealing a repository for storage of high-level radioactive waste. Because tuff and volcanic ash are used in the concretes in the vicinity of Rome, the results are especially applicable to a waste repository in tuff. Ancient mortars, plasters, and concretes collected from Rome, Ostia, and Cosa dating to the third century BC show remarkable durability. The aggregates used in the mortars, plasters, and concretes included basic volcanic and pyroclastic rocks (including tuff), terra-cotta, carbonates, sands, and volcanic ash. The matrices of ancient cementitious materials have been characterized and classified into four categories: (1) hydraulic hydrated lime and hydrated lime cements, (2) hydraulic aluminous and ferruginous hydrated lime cements ({plus_minus} siliceous components), (3) pozzolana/hydrated lime cements, and (4) gypsum cements. Most of the materials investigated are in category (3). The materials were characterized to elucidate aspects of the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical, mineralogical, and microstructural factors. Their durability was found to be affected by the matrix mineralogy, particle size, and porosity; aggregate type, grading and proportioning; and the methodology of placement. 30 refs.

  14. Temporary Cementitious Sealers in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

    2011-12-31

    Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper

  15. Effects of cementitious leachates on the EBS

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, K.

    2014-01-15

    This report describes the method using which the effects of cement based materials on the engineering barrier system in the repository for spent nuclear fuel planned to Olkiluoto has been assessed. The phenomena considered are degradation of cement based materials due to interaction with groundwater, release of degradation products to groundwater, migration of degradation products in fracture network, interaction of degradation products with rock, and interaction of degradation products with buffer and backfill. Assessment of degradation of cement based materials is based on theories presented in the literature, measurements, and on numerical simulations. Migration of degradation products from the porewater for cementitious materials to the groundwater passing by gives rise to formation of a plume downstream of the material. This plume is comprised of degradation products. The ability of the plume to transport degradation products is assessed using the concept of concentration boundary layers. In the assessment of plume migration in hydraulically active fracture network it has been assumed that the plume does not get mixed with the surrounding groundwater such that the concentrations of the degradation products in the plume remain unaltered. In addition to this, only the transmissivities of various parts of the fracture network limit the migration of the plume. The migration of the plumes is assessed by using the values of known transmissivities in the potential flowpaths. The reactions of the plume with fracture minerals has been assessed, but due to the uncertainties in the parameters used in these assessments the mechanisms potentially decreasing the amounts of degradation products and their concentrations in the plume are not accounted for. Interactions with engineering barrier system are limited to the interactions of the plume with buffers and deposition tunnel backfills. These reactions are not considered in details due to insufficient understanding, but on

  16. Wet-Treated MSWI Fly Ash Used as Supplementary Cementitious Material

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2015-01-01

    Full Text Available Municipal solid waste incineration (MSWI is a common technique in treatment of domestic waste. This technique annually produces approximately 25 Mt solid residues (i.e., bottom and fly ash worldwide which is also a major issue in current research. In this research we are concerned with reusing the fly ash (FA as supplementary cementitious material (SCM in concrete. Such application solves the problem with heavy metal immobilization as well. To remove the high content of undesired soluble salts, number of washing treatments has been applied. Chemical composition of FA has been examined before and after treatments. The impact of cement substitution by FA in concrete was evaluated by measurement of its compressive strength and durability.

  17. Mechanisms of cementitious material deterioration in biogas digester.

    Science.gov (United States)

    Voegel, C; Bertron, A; Erable, B

    2016-11-15

    Digesters produce biogas from organic wastes through anaerobic digestion processes. These digesters, often made of concrete, suffer severe premature deterioration caused mainly by the presence of fermentative microorganisms producing metabolites that are aggressive towards cementitious materials. To clarify the degradation mechanisms in an anaerobic digestion medium, ordinary Portland cement paste specimens were immersed in the liquid fraction of a running, lab-scale digester for 4weeks. The anaerobic digestion medium was a mixture of a biowaste substrate and sludge from municipal wastewater treatment plant used as a source of anaerobic bacteria. The chemical characteristics of the anaerobic digestion liquid phase were monitored over time using a pH metre, high performance liquid chromatography (HPLC) and ion chromatography (HPIC). An initial critical period of low pH in the bioreactors was observed before the pH stabilized around 8. Acetic, propionic and butyric acids were produced during the digestion with a maximum total organic acid concentration of 50mmolL(-1). The maximum ammonium content of the liquid phase was 40mmolL(-1), which was about seven times the upper limit of the highly aggressive chemical environment class (XA3) as defined by the European standard for the specification of concrete design in chemically aggressive environments (EN 206). The changes in the mineralogical, microstructural and chemical characteristics of the cement pastes exposed to the solid and liquid phase of the digesters were analysed at the end of the immersion period by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDS) and electron-probe micro-analysis (EPMA). A 700-μm thick altered layer was identified in the cement paste specimens. The main biodeterioration patterns in the bioreactors' solid/liquid phase were calcium leaching and carbonation of the cement matrix. PMID:27432729

  18. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  19. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  20. Cementitious Barriers Partnership (CBP): Using the CBP Software Toolbox to Simulate Sulfate Attack and Carbonation of Concrete Structures - 13481

    International Nuclear Information System (INIS)

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy Office of Tank Waste Management. The CBP project has developed a set of integrated modeling tools and leaching test methods to help improve understanding and prediction of the long-term hydraulic and chemical performance of cementitious materials used in nuclear applications. State-of-the-art modeling tools, including LeachXSTM/ORCHESTRA and STADIUMR, were selected for their demonstrated abilities to simulate reactive transport and degradation in cementitious materials. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF), now adopted as part of the SW-846 RCRA methods, have been used to help make the link between modeling and experiment. Although each of the CBP tools has demonstrated utility as a standalone product, coupling the models over relevant spatial and temporal solution domains can provide more accurate predictions of cementitious materials behavior over relevant periods of performance. The LeachXSTM/ORCHESTRA and STADIUMR models were first linked to the GoldSim Monte Carlo simulator to better and more easily characterize model uncertainties and as a means to coupling the models allowing linking to broader performance assessment evaluations that use CBP results for a source term. Two important degradation scenarios were selected for initial demonstration: sulfate ingress / attack and carbonation of cementitious materials. When sufficient sulfate is present in the pore solution external to a concrete barrier, sulfate can diffuse into the concrete, react with the concrete solid phases, and cause cracking that significantly changes the transport and structural properties of the concrete. The penetration of gaseous carbon dioxide within partially saturated concrete usually initiates a series of carbonation reactions with both

  1. Cementitious Barriers Partnership (CBP): Using the CBP Software Toolbox to Simulate Sulfate Attack and Carbonation of Concrete Structures - 13481

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Kosson, D.S.; Garrabrants, A.C.; Sarkar, S. [Vanderbilt University, School of Engineering, CRESP, Nashville, TN 37235 (United States); Flach, G.; Langton, C.; Smith, F.G.III; Burns, H. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Van der Sloot, H. [Hans Van der Sloot Consultancy, Dorpsstraat 216, 1721BV Langedijk (Netherlands); Meeussen, J.C.L. [Nuclear Research and Consultancy Group, Westerduinweg 3, Petten (Netherlands); Seignette, P.F.A.B. [Energy Research Center of The Netherlands, Petten (Netherlands); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Mallick, P.; Suttora, L. [U.S. Department of Energy, Washington, DC (United States); Esh, D.; Fuhrmann, M.; Philip, J. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2013-07-01

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy Office of Tank Waste Management. The CBP project has developed a set of integrated modeling tools and leaching test methods to help improve understanding and prediction of the long-term hydraulic and chemical performance of cementitious materials used in nuclear applications. State-of-the-art modeling tools, including LeachXS{sup TM}/ORCHESTRA and STADIUM{sup R}, were selected for their demonstrated abilities to simulate reactive transport and degradation in cementitious materials. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF), now adopted as part of the SW-846 RCRA methods, have been used to help make the link between modeling and experiment. Although each of the CBP tools has demonstrated utility as a standalone product, coupling the models over relevant spatial and temporal solution domains can provide more accurate predictions of cementitious materials behavior over relevant periods of performance. The LeachXS{sup TM}/ORCHESTRA and STADIUM{sup R} models were first linked to the GoldSim Monte Carlo simulator to better and more easily characterize model uncertainties and as a means to coupling the models allowing linking to broader performance assessment evaluations that use CBP results for a source term. Two important degradation scenarios were selected for initial demonstration: sulfate ingress / attack and carbonation of cementitious materials. When sufficient sulfate is present in the pore solution external to a concrete barrier, sulfate can diffuse into the concrete, react with the concrete solid phases, and cause cracking that significantly changes the transport and structural properties of the concrete. The penetration of gaseous carbon dioxide within partially saturated concrete usually initiates a series of carbonation

  2. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.

    Science.gov (United States)

    Haight, M

    2005-01-01

    Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid. PMID:16180477

  3. Proceedings of the Seminar on Management Options for Low and Intermediate-Level Wastes in Latin America - Abstracts

    International Nuclear Information System (INIS)

    The solutions adapted for management problems on radioactive wastes of nuclear installations and contamined materials generated in hospitals, research centers, laboratories in the countries of Latin America are presented. The criteria of site selection for radioactive waste installation and the methods for treating and storage are evaluated. The results of inspections in installations which handle radioactive wastes are done.(M.C.K.)

  4. Desorption isotherms of cementitious materials: study of an accelerated protocol and estimation of RVE

    International Nuclear Information System (INIS)

    In the framework of French radioactive waste management and storage, the durability evaluation and prediction of concrete structures requires the knowledge of desorption isotherm of concrete. The aim of the present study is to develop an accelerated experimental method to obtain desorption isotherm of cementitious materials more quickly and to estimate the Representative Volume Element (RVE) size related to the desorption isotherm of concrete. In order to ensure that experimental results can be statistically considered representative, a great amount of sliced samples of cementitious materials with three different thicknesses (1 mm, 2 mm and 3 mm) have been de-saturated. The effect of slice thickness and the saturation condition on the mass variation kinetics and the desorption isotherms is analyzed. The influence of the aggregate distribution on the water content and the water saturation degree is also analyzed. A method based on statistical analysis of water content and water saturation degree is proposed to estimate the RVE for water desorption experiment of concrete. The evolution of shrinkage with relative humidity is also followed for each material during the water desorption experiment. A protocol of cycle of rapid desaturation-re-saturation is applied and shows the existence of hysteresis between desorption and adsorption. (author)

  5. COMBS: open source python library for RVE generation - Application to microscale diffusion simulations in cementitious materials

    International Nuclear Information System (INIS)

    In the context of radioactive waste storage and disposal, the knowledge of the concrete diffusivity is primordial in the numerical simulations of the long term behavior of these materials. COMBS is an open source python library, it is used to define the shapes of the inclusions, to insert them in the box featuring the representative volume element (RVE) of the cementitious medium, and to assess their diffusive properties. The algorithms developed in COMBS target a fast placement of the inclusions and a fast generation of the RVE shape and mesh. Two application cases are considered: the unaltered material diffusivity and the degraded material diffusivity. The first case of application focuses on the description of the capillary porosity. The second application case focuses on the description of the degradation of cementitious material (mineral and porosity) and the diffusive properties associated. The reliability of the analytical effective medium approximations (MT and SC) is confirmed from 3D finite elements (FE) calculations performed on a matrix-inclusions microstructure obtained by RVE generation with Combs. The results also show the need to take into account the percolation behavior

  6. Long-Term Technetium Interactions With Reducing Cementitious Materials

    International Nuclear Information System (INIS)

    Technetium is among the key risk drivers at the Saltstone Facility. The way that it is immobilized in this cementitious waste form is by converting its highly mobile Tc(VII) form to a much less mobile Tc(IV) form through reduction by the cement's blast furnace slag. This report includes a review of published data and experimental results dealing with Tc leaching from Portland cement waste forms. The objectives for the literature study were to document previous reports of Tc interactions with slag-containing cementitious materials. The objectives for the laboratory study were to measure Tc-saltstone Kd values under reducing conditions. From the literature it was concluded: (1) Spectroscopic evidence showed that when Tc(IV) in a slag-cement was exposed to an oxidizing environment, it will convert to the more mobile Tc(VII) species within a short time frame, 2.5 years. (2) SRS saltstone will reduce Tc(VII) in the absence of NaS or sodium dithionite in a reducing atmosphere. (3) Only trace concentrations of atmospheric oxygen (30 to 60 ppm O2; Eh 120 mV) at the high pH levels of cementitious systems is required to maintain Tc as Tc(VII). (4) Experimental conditions must be responsible for wide variability of measured Kd values, such that they are either very low, ∼1 mL/g, or they are very high ∼1000 mL/g, suggesting that Tc(VII) or Tc(IV) dominate the systems. Much of this variability appears to be the result of experimental conditions, especially direct controls of oxygen contact with the sample. (5) A field study conducted at SRS in the 1980s indicated that a slag-saltstone immobilized Tc for 2.5 years. Below background concentrations of Tc leached out of the slag-containing saltstone, whereas Tc leached out of the slag-free saltstone at the rate of nitrate loss. One possible explanation for the immobilization of Tc in this study was that the slag-saltstone maintained reducing conditions within the core of the 55-gallon sample, whereas in the small-scale lab

  7. Thermal conductivity and other properties of cementitious grouts

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.

    1998-08-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  8. THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.

    1998-05-01

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  9. The immobilisation of clinoptilolite within cementitious systems

    International Nuclear Information System (INIS)

    The zeolitic ion exchanger clinoptilolite was encapsulated within various cementitious systems in order to assess their suitability for the retention of the radioelements, Cs and Sr. The pozzolanic reaction of clinoptilolite is reduced in composites containing BFS and PFA and appears not to continue after 7 days of hydration. Ca(OH)2 persists up to 360 days of hydration in a 9:1BFS:OPC system with 10% clinoptilolite added, despite the presence of unreacted pozzolana. This may be due to low pH of the pore solution, if Na and K act as counter cations in the aluminous C-S-H, a product of pozzolanic hydration or are exchanged onto the clinoptilolite. Saturation of the pore solution with Ca may prevent further dissolution of Ca(OH)2. Cs leaching occurs in all samples during accelerated tests due to breakdown of the clinoptilolite structure. The alternative cement system calcium sulfo-aluminate cement (CSA) has a different hydration chemistry and properties to OPC and OPC composites with a lower pore solution pH. Clinoptilolite appears to react in a hydrating CSA system with significant reaction continuing between 28 and 90 days of hydration. Leaching of Cs from CSA is higher than from an OPC system, in which almost all of the clinoptilolite crystallinity is lost. The major product of CSA hydration is ettringite. Cs may be adsorbed within cation sites of the C-S-H in an OPC system but not by ettringite which does not retain Cs so Cs has high mobility and leachability through the CSA matrix. (authors)

  10. Immobilisation of Higher Activity Wastes from Nuclear Reactor Production of 99Mo

    Directory of Open Access Journals (Sweden)

    Martin W. A. Stewart

    2013-01-01

    Full Text Available A variety of intermediate- and low-level liquid and solid wastes are produced from reactor production of 99Mo using UAl alloy or UO2 targets and in principle can be collectively or individually converted into waste forms. At ANSTO, we have legacy acidic uranyl-nitrate-rich intermediate level waste (ILW from the latter, and an alkaline liquid ILW, a U-rich filter cake, plus a shorter lived liquid stream that rapidly decays to low-level waste (LLW standards, from the former. The options considered consist of cementitious products, glasses, glass-ceramics, or ceramics produced by vitrification or hot isostatic pressing for intermediate-level wastes. This paper discusses the progress in waste form development and processing to treat ANSTO’s ILW streams arising from 99Mo. The various waste forms and the reason for the process option chosen will be reviewed. We also address the concerns over adapting our chosen process for use in a hot-cell environment.

  11. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  12. Development of Process for Disposal of Plastic Waste Using Plasma Pyrolysis Technology and Option for Energy Recovery

    OpenAIRE

    Punčochář, Miroslav

    2012-01-01

    Plasma pyrolysis is an innovative technology for transforming high calorific plastic waste into a valuable synthesis gas (syngas) by means of thermal plasma. The process developed is a drastic non-incineration thermal process, which uses extremely high temperature in an oxygen-starved environment to completely decompose input plastic waste into syngas, composed of very simple molecules viz : CO, H2 and hydrocarbons. A 20 kg/hr capacity plasma arc pyrolyser for treatment of plastic waste as ...

  13. Cementitious materials for the immobilisation of radioactive wastes

    International Nuclear Information System (INIS)

    The mechanical and physical properties of cements are influenced by the microstructure which changes significantly going from the plastic state of freshly mixed cement, to the hardened state. The microstructure is highly complex containing many phases and many differing morphological features. Before setting, the rheology of cement is, technologically, of prime importance. The porosity of a set cement varies widely depending on many factors and produces pore size distributions in a range extending from a few tens of angstroms to a few millimetres. An understanding of techniques to investigate porosity is vital before the effects of microstructure on the mechanical or physical properties of cement can be appreciated. Although the strength of a cement monolith is not necessarily of prime concern in the radwaste context, a low value is often indicative of other poor physical, chemical and mechanical properties. Standard techniques for the measurement of strength are discussed and, as cements act as brittle materials, the strength is considered using Griffith's criterion. Alterations in the microstructure (and hence porosity) in cements leads to highly complex changes in both permeability and leach rate. Some recent work highlighting the effects of water/cement ratio and curing regimes is outlined in an effort to indicate this complexity. (author)

  14. Repository performance assessment and advanced fuel cycle models for input to decision making of options for nuclear waste and resource management

    International Nuclear Information System (INIS)

    A methodology and computer software is described which can be used to track the inventory of radionuclides as they are affected by various nuclear, physical and chemical processes during reactor, storage, effluent and disposal phases of the nuclear fuel cycle. Such a model is required to provide an assessment of economic, environmental and societal performance indicators which underpin decisions regarding options for the use and management and nuclear materials. An example generic deep repository model is described which can be used to provide an indicator of environmental performance of vitrified high level waste and UO2 and mixed oxide (MOX) spent fuels. The assessment models highlight the significance of the I-129 fission product which necessitates the use of appropriate dose assessment models to be considered for each process step of the nuclear fuel cycle in order that a complete environmental assessment of process options can be determined. (author)

  15. Assessment of waste management options in the oil and gas industry in Ghana using nuclear analytical techniques

    International Nuclear Information System (INIS)

    Ghana's oil find is growing steadily as more discoveries are being made. Oil and gas exploration and production coupled with their related activities produce wastes. These wastes could be put into three primary categories such as produced water, drilling cuttings and associated wastes (any other waste related with the exploration, development and production of crude oil or natural gas). These wastes may contain varying amount of contaminants such as heavy metals, suspended solid particles and radioactive materials such as Ra-226 or Rn-228, product of U-238 decay that occur in some geologic formations and sediments. The main objective of this study is to assess the waste management practices in the oil and gas industry in Ghana by qualification and quantification of waste generated during exploration and production, examining the system put in place by oil and gas companies to manage these wastes and also determine some basic contaminants in some of these wastes brought to shore for management. Waste samples were taken from Tema Oil Refinery (TOR) and Zeal Environmental Technology Limited at Takoradi. The samples were analyzed by Neutron Activation Analysis (NAA) and Flame Atomic Absorption Spectrometry (FAAS) analytical methods to determine heavy metals (Pb, Cd, Cr, Hg, As, Ag, Ba, Se) in the oily waste water, oil based mud, block and ash samples. The results showed that the levels of heavy metals were below the EPA permissible limit for discharge into the natural drainage except the level of Pb in the mud samples taken from Zeal before treatment. The levels ranged from 3.99mg/l to 7.44mgl. Even though these levels were above 0.1mg/l discharge standard limit, there was no cause for alarm because the levels dropped below the EPA limit after treatment. Furthermore, the quantity of general garbage deposited in the landfill at Takoradi be Zeal Environmental Technology Limited from 2011 to 2012 increased from 497m3 to 1,314.29m3 respectively. (author)

  16. Service life prediction and fibre reinforced cementitious composites

    DEFF Research Database (Denmark)

    Stoklund Larsen, E.

    , the factors affecting the pure cementitious composite are described. Different sizes and types of fibre reinforced crmentitious composites have been chosen to illustrate different ageing and deterioration mechanisms. Some ageing mechanisms can be accelerated and others cannot which is demonstrated in...

  17. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented in this...

  18. Thermodynamics of Autogenous Self-healing in Cementitious Materials

    NARCIS (Netherlands)

    Huang, H.

    2014-01-01

    Concrete is a brittle composite cementitious material that easily fractures under tensile loading. Microcracks can appear throughout the concrete prior to application of any load because of temperature-induced strain and autogenous and drying shrinkage. There is no doubt that these cracks provide pr

  19. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe; Kabele, Petr

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  20. Electro-decontamination of cementitious materials

    International Nuclear Information System (INIS)

    The end of operations in nuclear facilities is followed by various decontamination and decommissioning operations. Similar to other electrochemical techniques such as re-alkalinisation and chloride extraction, an electrokinetic remediation process is being developed as a specific method for deeply contaminated concrete structures. Two cements, an ordinary Portland and a 30% slag cement, have been chosen for the conducted work.Mortars and concretes are contaminated by adding non-radioactive cesium in the batch water, cesium being a representative specie of deep encountered contaminants. The conducted experimental and numerical work have focused on three main aspects: characterizing and understanding the cesium transport mechanisms, assessing the electro-remediation process at lab-scale and evaluating the real scale constraints. Using existing knowledge of chloride transport mechanisms, experiments have been conducted to characterize the cesium interactions with cementitious phase and ionic transport in saturated materials. A numerical model have then been developed to describe the cesium transport, taking into account the ionic activity coefficients and interactions with solid phases. Indeed, lab-scale experiments have demonstrated that electro-remediation reduced to 20-50% the initially contained cesium after a three weeks treatment. Treated samples analysis confirmed that deeply diffused cesium is migrating to the surface. Moreover, conducted experiments showed the consistency between the different materials properties, applied currents and decontamination efficiency. A comparative analysis of experiments carried on samples with different shapes, formulations and contamination modes helped assessing and optimizing the process efficiency for various continuous and variable applied currents. Finally, electro-remediation experiments have also been carried on 1m2 concrete slabs. Liquid catholyte and anolyte solutions are replaced by alumina gels and cellulose pastes

  1. CHROMATED COPPER ARSENATE (CCA TREATED WOOD: DESTINATION OPTIONS FOR WASTES GENERATED AND PERSPECTIVES IN THE DEVELOPMENT OF METHODOLOGIES FOR TOXIC ELEMENTS REMOVAL

    Directory of Open Access Journals (Sweden)

    PIRES, Marçal

    2015-01-01

    Full Text Available The wood has been used for various functions, one of them is the manufacture of poles for electrification and telephony. However, this material has a big propensity to deteriorate. To increase its durability, some alternatives are employed, one of them is the incorporation of toxic substances (preservatives to protect the wood from agents such as fungi, bacteria and xylophagous insects that cause its decay. Currently, the preservative chromated copper arsenate (CCA is the most widely used for this purpose. However, when the CCA treated wood poles reach the end of their useful life, they become hazardous waste due to the presence of chromium and arsenic. In this work are presented the main methodologies for treatment, destination options and adequate disposal of these wastes, as well as different methods for toxic elements removal from the CCA-treated wood

  2. Public debate on the general options relative to the management of high-medium activity and long-lived radioactive wastes

    International Nuclear Information System (INIS)

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. This document presents the organizational aspects of the debate: origin, organization committee (mission, members, commitments), framework (the December 31, 1991 law, technical enlargement, society aspects), topics (summary of the debate in ten questions), organization modalities (4 main steps, schedule, venues), objectives and perspectives (sharing information, decision making processes to be implemented by 2006). (J.S.)

  3. A technical-economic methodology applied to high-level and long-lived radioactive waste management options. Application to the case of France

    International Nuclear Information System (INIS)

    This article is about a methodology conceived and developed by the French Atomic Energy Commission (CEA) in the DERECO project, which stands for evaluating different high-level and long-lived radioactive waste management options from a technical-economic point of view. This project fits into the numerous other scientific and technical R and D activities led by CEA on nuclear fuel cycle, and particularly in the context of the 1991 Radioactive Waste Research French Act. The methodology, applied to the case of France, is based on a perspective scenario for the 2000-2080 time period, and on sensitive studies around this scenario. The article presents the main technical and economic assumptions for the prospective scenario studied in 2003. It also describes calculation tools used. The preliminary results are relative to material flows and stocks. They allow to identify some trends and illustrate for example when the capacity of current facilities is reached. (authors)

  4. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette

    2012-01-01

    Cementitious materials are the most widely used building materials all over the word. However, deterioration is inevitable even since the very beginning of the service life, then maintenance and repair work, which are often labor- and capital-intensive, would be followed. Thus, self-healing of th...

  5. Co-firing option of palm shell waste and Malaysian coal blends in a circulating fluidized bed

    International Nuclear Information System (INIS)

    Palm oil shell waste is one of the main agriculture wastes in Malaysia. In order to utilize these wastes efficiently, pyrolysis of oil-palm shell waste was first carried out using Thermogravimetric analysis (TGA). The effects of heating rate on the pyrolytic properties were investigated to evaluate its suitability for co-firing. The TGA analyses of oil palm shell waste and Malaysian coal blends suggests that there is an obvious lateral shift in the thermo grams for different heating rate. Kinetics calculations were also done using integral method. For palm shell waste powder it was found that the activation energies ranged from 112-119 kJ/mole and for the Mukah coal blends it ranged from 93.3 -100.8 kJ/mole. Combustion studies for palm shell wastes and coal blends were done in a hot circulating fluidized-bed (CFB) test rig. This is the first practical experience of using this type of rig in Malaysia. The temperature dependence on the combustion and emission behaviour were identified. The effects of variation of primary air and feed rate have also been analyzed and their influence on emissions has been established. The combustion studies of palm shell wastes were done and it was found that the emission of NOx ranged from 20-164 ppm while the CO emissions were high for some operating conditions. For the co-firing studies, the NOx and CO deceased with the percentage increase in the blending ratio of coal with palm shell waste.. The optimum blending ratio was found to be in a ratio of 40 percent coal and 60 percent Mukah coal. It was also found that Mukah coal show agglomeration behaviour with when it is blended in 80% ratio. (author)

  6. Behaviour of cementitious materials: sulfates and temperature actions

    International Nuclear Information System (INIS)

    The research work presented in this Ph.D. thesis is related to the nuclear waste underground repository concept. Concrete could be used in such a repository, and would be subjected to variations of temperature in presence of sulfate, a situation that could induce expansion of concrete. The research was lead in three parts: an experimental study of the possibility of an internal sulfate attack on mortars; an experimental study and modeling of the chemical equilibriums of the CaO-SiO2-Al2O3-SO3-H2O system; and a modeling of the mechanisms of internal and external sulfate attacks, and the effect of temperature. The results show that mortars can develop expansions after a steam-cure during hydration, but also when a long steam-cure is applied to one-year-old mortars, which is a new point. Ettringite precipitation can be considered as responsible for these expansions. The experimental study of the CaO-SiO2-Al2O3-SO3-H2O system clarified the role of Calcium Silicate Hydrates (C-S-H) on chemical equilibriums of cementitious materials. Sulfate sorption on C-S-H has been studied in detail. The quantity of sulfate bound to the C-S-H mainly depends on the sulfate concentration in solution, on the Ca/Si ratio of the C-S-H and is not significantly influenced by temperature. Aluminium inclusion in the C-S-H seems to be a significant phenomenon. Temperature increases the calcium sulfo-aluminate solubilities and thus increases sulfates concentration in solution. A modeling of the chemical system is proposed. Simulations of external sulfate attack (15 mmol/L of Na2SO4) predict ettringite precipitation at 20 and 85±C. Simulation of internal sulfate attack was performed at a local scale (a hydrated cement grain). An initial inhomogeneity can lead, after a thermal curing at 85±C, to ettringite precipitation in zones originally free from ettringite. This new-formed ettringite could be the origin of the expansions. (author)

  7. Options for disposal of radioactive wastes arising from steam generator dismantling. Assessment from the external exposure aspect

    International Nuclear Information System (INIS)

    The paper focuses on steam generator dismantling at the Jaslovske Bohunice V1 nuclear power plant with VVER-440/230 reactors. The VISIPLAN 3D ALARA computer code was used to calculate external exposure arising from radiation existing on the waste package surface. The dependence of the external exposure on the internal configuration of the waste was investigated. The effect of the waste storage time (before packaging and disposal) and on personnel exposure was also examined and the suitability of the various decontamination techniques was assessed. (orig.)

  8. Ozonation and advanced oxidation processes as an option in waste water treatment for the elimination of endocrine disrupters and pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Ried, A.; Mielcke, J.; Kampmann, M. [WEDECO Umwelttechnologie GmbH, Herford (Germany); Ternes, T.A.; Bonerz, M.; Herrmann, N.; Andersen, H. [ESWE-Inst. for Water Research and Water Technology, Wiesbaden, (Germany); Teiser, B. [Abwasserverband Braunschweig, Braunschweig (Germany)

    2003-07-01

    Treatment of waste water is limited due to the occurrence of persistent substances, germs, odors and/or colours, which were not totally degraded in municipal sewage treatment plants (STPs) using current waste water technology. Further trace pollutants with a relative high persistency in the waste water treatment are pharmaceuticals and personal care products (PPCPs). An appropriate waste water technology is needed to eliminate endocrine disrupters and PPCPs to avoid adverse effects in the receiving waters. Results of pilot trials are presented using the combined treatment technology ozone/UV. Additionally we will discuss the application and compare the cost of different advanced oxidation processes (AOP) for the treatment of an effluent of a municipal sewage treatment plant. (orig.)

  9. Report: treatment of commercial, construction and demolition waste in North Rhine-Westphalia: policy-making and operation options.

    Science.gov (United States)

    Karavezyris, Vassilios

    2007-04-01

    This paper summarizes a long-term-investigation of the mechanical treatment of commercial, construction and demolition waste materials in North Rhine-Westphalia in the light of applied operation standards and a disposal ban on untreated waste. It is shown how both the allocation of output materials from mechanical treatment plants and the subsequent treatment channels have changed since enforcement of the ban in 2005. Based on the findings of the investigation, two waste management scenarios offering alternative policies have been defined and are discussed. It is suggested that consistent enforcement of the ban affects both the diversion of waste to incineration and the recovery of materials on a regional scale. On the other hand, potential energy recovery may be fully exploited only insofar as operators of mechanical treatment plants concentrate their business on the production of refuse-derived fuel. PMID:17439054

  10. New Technological Options to Manage High Level Waste; Nuevas tecnologias para gestionar resiudos radiactivos de alta actividad

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Romero, E. M.

    2007-07-01

    Nuclear energy renaissance and its expansion in time and space has renewed the need for minimization technologies applicable to nuclear wastes. The minimization technologies include new power reactor concepts, Generation IV, and dedicated technologies like Partitioning and Transmutation of the actinides contained in the spent fuel. These technologies apply the principle of classification and recycling to the spent fuel to transform what at present is an environmental hazard into an energy source. the waste minimization technologies are also relevant for countries planning the reduction or phase-out of nuclear energy, as they will allow minimizing the size and number of the final waste repositories. Present estimations indicate that reductions as large as a factor 100 in the amount (radiotoxicity) of long lived nuclear waste are feasibly, with a modest increase on the final electricity cost. (Author)

  11. Development of Process for Disposal of Plastic Waste Using Plasma Pyrolysis Technology and Option for Energy Recovery

    OpenAIRE

    Punčochář, M.; Ruj, B.; Chatterj, P.K.

    2012-01-01

    Plasma pyrolysis is an innovative technology for transforming high calorific plastic waste into a valuable synthesis gas (syngas) by means of thermal plasma. The process developed is a drastic non-incineration thermal process, which uses extremely high temperature in an oxygen-starved environment to completely decompose input plastic waste into syngas, composed of very simple molecules: CO, H2 and small amount of higher hydrocarbons. A 20 kg/hr capacity plasma arc pyrolyser for treatment of p...

  12. State of knowledge on nuclear waste in 2013 Repository application under examination: complementary requirements and future options

    International Nuclear Information System (INIS)

    In this year's Knowledge Progress Report, Nuclear Waste Council focuses in the following areas that is based on Council activities for the past year. 1. Consideration of SKB's application - need for additions. The first part of the report provides an overview of the following areas: A) The chapter 'Nuclear Waste Council's views on the need for supplements. SKB's application' gives a description of the issues Council has paid particular attention to in their views on need for additions, submitted to the Land and Environment Court at Nacka District Court. B) The chapter 'Summary of respondents views on the need for additions to SKB's application' summarizes other respondents opinions to the SSM and the land and environment court. 2. Importance of technology for the nuclear waste issue: The second part of the report illustrates the technological advances relevant to nuclear waste issue. The chapter 'To recycle or not recycle - it is question' discuss views on the spent nuclear fuel as either waste or an resource, based on SKB's application, the Nuclear Waste Council previous positions and the conclusions of the Council seminar in November 2012

  13. PARTNERSHIP FOR THE DEVELOPMENT OF NEXT GENERATION SIMULATION TOOLS TO EVALUATE CEMENTITIOUS BARRIERS AND MATERIALS USED IN NUCLEAR APPLICATION - 8388

    International Nuclear Information System (INIS)

    The US DOE has initiated a multidisciplinary cross cutting project to develop a reasonable and credible set of tools to predict the structural, hydraulic and chemical performance of cement barriers used in nuclear applications over extended time frames (e.g., > 100 years for operating facilities and > 1000 years for waste management). A partnership that combines DOE, NRC, academia, private sector, and international expertise has been formed to accomplish the project objectives by integrating existing information and realizing advancements where necessary. The set of simulation tools and data developed under this project will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems, e.g., waste forms, containment structures, entombments and environmental remediation, including decontamination and decommissioning (D and D) activities. The simulation tools will also support analysis of structural concrete components of nuclear facilities (spent fuel pools, dry spent fuel storage units, and recycling facilities, e.g., fuel fabrication, separations processes). Simulation parameters will be obtained from prior literature and will be experimentally measured under this project, as necessary, to demonstrate application of the simulation tools for three prototype applications (waste form in concrete vault, high level waste tank grouting, and spent fuel pool). Test methods and data needs to support use of the simulation tools for future applications will be defined. This is a national issue that affects all waste disposal sites that use cementitious waste forms and structures, decontamination and decommissioning activities, service life determination of existing structures, and design of future public and private nuclear facilities. The problem is difficult because it requires projecting conditions and responses over extremely long times. Current performance assessment analyses show that engineered barriers

  14. Capturing the Invisible Resource. Analysis of Waste Heat Potential in Chinese Industry and Policy Options for Waste Heat to Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-01

    This study analyzed the theoretical maximum potential and practical potential of waste heat in the cement, iron, and steel, and glass sectors in China, based on thermal energy modeling, expert interviews, and literature reviews.

  15. Pulse Velocity Measurements in Fly Ash Blended Cementitious Systems Containing 43 Grade Cement

    OpenAIRE

    V.M. Sounthararajan; Mr. A. Sivakumar

    2013-01-01

    Investigations on the different supplementary cementitious materials based on the hardening properties and the optimized dosage in cementitious systems find the right choice of pozzolanic material. It is essential to combine various additive/admixtures in concrete in proper proportions to maximize the benefits resulting in cost savings in construction. In the recent years, production technology and composition of hydraulic cements affect the setting and early age behavior of cementitious mate...

  16. Influence of Cementitious Materials and Aggregates Content on Compressive Strength of Palm Kernel Shell Concrete

    OpenAIRE

    U.J. Alengaram; Jumaat, M. Z.; H. Mahmud

    2008-01-01

    This study reports the effect of cementitious materials, fine and coarse aggregates content on workability and compressive strength of palm kernel shell concrete. Palm kernel shells a by product of the production of palm oil, were used as lightweight aggregates. The following cementitious materials were added: 10% silica fume as additional cementitious material and 5% fly ash as cement replacement on weight of cement. The influence of varying fine aggregate and palm kernel shell content...

  17. CANDLE reactor: an option for simple, safe, high nuclear proliferation resistant , small waste and efficient fuel use reactor

    International Nuclear Information System (INIS)

    The innovative nuclear energy systems have been investigated intensively for long period in COE-INES program and CRINES activities in Tokyo Institute of Technology. Five requirements; sustainability, safety, waste, nuclear-proliferation, and economy; are considered as inevitable requirements for nuclear energy. Characteristics of small LBE cooled CANDLE fast reactor developed in this Institute are discussed for these requirements. It satisfies clearly four requirements; safety, nonproliferation and safeguard, less wastes and sustainability. For the remaining requirement, economy, a high potential to satisfy this requirement is also shown

  18. Talc as raw material for cementitious products formulation

    Directory of Open Access Journals (Sweden)

    C.J. Ngally Sabouang

    2014-09-01

    Full Text Available This study reports the characterization of a talc from Cameroon as a possible source material for cement formulation. To that end, the talc sample was characterized and mixed with a solution of sodium polyphosphate to formulate the cementitious products. Addition of magnesia (MgO was done to analyze the effect of available MgO on the products. Fourier transform infrared, X-rays diffraction, linear shrinkage, compressive strength and scanning electron microscopy were used to analyze the products. The compressive strength increased with addition of MgO and the linear shrinkage decreased. All the analyses indicate that talc is a raw material of interest in cementitious products formulation; however, the inclusion of the MgO is a key factor for a better performance of the products.

  19. Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Qinghua Li

    2015-01-01

    Full Text Available As one-dimensional (1D nanofiber, carbon nanotubes (CNTs have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.

  20. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro- to...... the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different...... fiber reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the...

  1. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different......The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro- to...... fiber reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the...

  2. Energy options

    International Nuclear Information System (INIS)

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  3. Energy options

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, Michael [HDS Shipping (United States)

    1999-07-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper.

  4. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTI- VITIES AND OPTIONS FOR A MANUFACTURER OF GENERAL PURPOSE PAINTS AND PAINTING SUPPLIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...

  5. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A LOCAL BOARD OF EDUCATION IN NEW JERSEY.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at 30 small- to medium-sized businesses in the state of New Jersey. One of the si...

  6. A program to establish in situ immobilization as a remedial action option for wastes containing volatile organic compounds (VOC)

    International Nuclear Information System (INIS)

    Sludges and soils containing volatile organic compounds (VOC), base-neutralized acids (BNA), and heavy metals are a generic problem on many military bases due to petroleum fuel-handling activities, metal stripping, fire training, and/or other processing activities. One of the currently acceptable treatment methods for both BNA and heavy metals is immobilization in cement-based grouts, while the only current acceptable treatment method for VOCs is exhumation with incineration. Incineration is an expensive process ($300-600/ton). Therefore, development of a cement-based waste form and an in situ emplacement procedure for the VOC-contaminated sludges and soils is expected to significantly lower the cost ($75-150/ton). This paper describes the program that was developed for the US Air Force (USAF) to establish the technical feasibility and implementation requirements for the in situ immobilization of VOCs in cement-based grouts. Included in this program are: (1) development of procedures and equipment for measuring VOCs; (2) vendor interaction to test current products; (3) preparation of waste forms using vendor formulas on actual site wastes and soils; and (3) performance testing of waste form samples. This paper will also provide the rationale for testing protocols, as well as test results

  7. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A MANUFACTURER OF PLASTIC CONTAINERS BY INJECTION MOLDING.

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...

  8. Performance assessment of confinements for medium-level and α-contaminated waste Pacoma project Rock salt option

    International Nuclear Information System (INIS)

    In the framework of the European R and D programme on Management and storage of radioactive waste, Task 5 the project Performance assessment of confinement of medium-level and α-contaminated waste (Pacoma) was carried out. The overall objective of this project is the assessment of the consequences associated with deep disposal of radioactive waste in three types of geological formation. The objective of the present contribution to the Pacoma project is to develop and demonstrate procedures for radiological safety of repositories in salt domes. An analogue study has been performed by the Dutch energy research foundation ECN, where alternative disposal concepts in different salt formations were investigated. In the present report, how far appropriate choice of the repository design parameters can improve the whole system is discussed. The research covers deterministic calculations for three scenarios: the normal evolution scenario with subrosion of the salt dome, the combined brine intrusion scenario with brine intrusion from brine pockets and via an anhydrite vein, and the human intrusion scenario of solution mining of a storage cavern. For the combined brine intrusion scenario alternative waste inventories, different disposal concepts, variants of the layout of dams and sealings are investigated, and results obtained from variations of parameter values are discussed. Additionally, for this scenario comprehensive probabilistic calculations have been carried out with the help of a Monte Carlo simulation. Results are discussed in the form of an uncertainty analysis of the maximum dose and global sensitivity studies of system parameters

  9. Cementitious artificial aggregate particles for high-skid resistance pavements

    OpenAIRE

    De Larrard, François; MARTINEZ CASTILLO, Rafael; Sedran, Thierry; HAUZA, Philippe; Poirier, Jean Eric

    2012-01-01

    For some critical road sections, a high skid resistance of wearing course is required to minimise the risk of traffic accidents. Nowadays this skid resistance is mainly brought by the use of special aggregates as calcined bauxite, a scarce and expensive material. The paper presents a patented technology, where a special high-performance mortar is produced and crushed at early age. These cementitious artificial aggregates (CAA) can display aggregate properties close to those of calcined bauxit...

  10. Effect of Limestone Powder on Microstructure of Ternary Cementitious System

    OpenAIRE

    Zhang, Y.; Ye, G.

    2012-01-01

    The pressure to reach sustainability favours the development of ternary composite cement. The synergistic effect on mechanical behaviour at 28 days between limestone powder (LP) and pozzolanic additives, i.e. fly ash (FA) and blast furnace slag (BFS), has been documented. In order to better understand the synergistic effect, this article investigated the effect of LP on the microstructure of PC-FA and PC-BFS cementitious system. The mineralogy and pore structure were determined after 28 days ...

  11. Atmospheric carbonation of low portlandite content cementitious materials

    OpenAIRE

    Morandeau, Antoine

    2013-01-01

    Reaction of gaseous atmospheric CO2 with calcium-bearing phases in concrete infrastructure components is known to cause a lowering of alkalinity, leading to depassivation and corrosion of rebars. Carbonation mechanism is quite well understood from a physico-chemical point of view, especially in the case of materials made of OPC. Nonetheless the impact of supplementary cementitious materials (SCM), such as fly-ash, on carbonation is still an active research field. The pozzolanic reaction betwe...

  12. Meso-mechanical analysis of steel fiber reinforced cementitious composites

    OpenAIRE

    Caggiano, Antonio

    2013-01-01

    2010 - 2011 The mechanical behavior of cement-based materials is greatly affected by crack propagation under general stress states. The presence of one or more dominant cracks in structural members modifies its response, possibly leading to brittle failure modes. The random dispersion of short steel fibers in cement materials is a new methodology used for enhancing the response in the post-cracking regime. The behavior of Fiber-Reinforced Cementitious Composite (FRCC), compared...

  13. Thermodynamics of Autogenous Self-healing in Cementitious Materials

    OpenAIRE

    Huang, H

    2014-01-01

    Concrete is a brittle composite cementitious material that easily fractures under tensile loading. Microcracks can appear throughout the concrete prior to application of any load because of temperature-induced strain and autogenous and drying shrinkage. There is no doubt that these cracks provide preferential access for aggressive agents to penetrate into the concrete, probably causing corrosion of reinforcement steel and degradation of concrete. As a result, the service life of reinforced co...

  14. Mechanical properties of structures 3D printed with cementitious powders

    OpenAIRE

    Feng, Peng; Meng, Xinmiao; Chen, Jian Fei; Ye, Lieping

    2015-01-01

    The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical proper...

  15. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe;

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...... information about crack opening and spacing, which makes it possible to assess the condition of a structure in the serviceability state. A simulation of a four point bending beam is performed to demonstrate the capability of the model....

  16. Shape optimization of small span textile reinforced cementitious composite shells

    OpenAIRE

    TYSMANS, Tine; ADRIAENSSENS, Sigrid; Wastiels, Jan

    2009-01-01

    p. 1755-1766 The property of concrete to be poured into any shape and harden at ambient temperatures makes it the most widely-used material for shells. Using this traditionally brittle material in shells restricts their forms to mostly compression shapes. Often steel reinforcement is still necessary to carry tensile forces occurring under different load combinations and to limit crack formation. A new composite material, textile reinforced cementitious composite (TRC), eliminates this rest...

  17. Rheology and Reactivity of Cementitious Binders with Plasticizers

    OpenAIRE

    Vikan, Hedda Vestøl

    2005-01-01

    The rheological behaviour of cementitious pastes has been studied by various means. Six different cements have been studied in main parts of the work and all of them have been characterized according to the Rietveld method in order to determine the exact content of minerals. Easily soluble alkalis were measured by plasma-emission- spectroscopy of the fluid filtered from paste. Three types of plasticizers namely naphthalene sulfonate formaldehyde condensate (SNF), lignosulphonate and polyacryl...

  18. Methods to assess radioisotope migration in cementitious media using radial diffusion and advection

    International Nuclear Information System (INIS)

    One of the primary aims of this project is to understand how a range of isotopes associated with radioactive wastes, move through the cementitious media potentially present in a geological disposal facility (GDF). This paper describes the development of experimental methods that use radial flow from intact cylinders of cementitious material to evaluate the potential for diffusion and advection of relevant isotopes through Nirex reference vault backfill (NRVB). The small scale and cost effectiveness of the approach means that multiple experiments can be undertaken encompassing the full range of physical (and chemical) variations. The radial flow experimental method uses small pre-cast cylinders of the matrix under investigation. For diffusion an appropriate concentration of the isotope of interest (90Sr in the present experiments) is introduced into a cavity in the centre of the cylinder, which is then sealed, and placed in a solution previously equilibrated with the matrix. The increase in concentration of the isotope in the external solution is then determined at defined time intervals. For advection 90Sr is similarly introduced into the central core of the cylinder and then equilibrated water is forced under nitrogen pressure, from the central core to the outside of the cylinder where it is collected in a tray prior to analysis. Both experimental set ups and results have been modelled using conventional numerical solutions and the simulation package GoldSim. Concerning diffusion experiments the modelled data reproduces the observed data effectively with a right diffusivity value of 9*10-11 m2/s. Concerning advection results are more mitigated and need further investigation

  19. Mechanical properties of gangue-containing aluminosilicate based cementitious materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials.The gangue was calcined at 500℃.The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent.The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM.The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt.For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt%gangue can still be up to 52.3 MPa.The larger K+ favors the formation of large silicate oligomers with which Al(OH)4- prefers to bind.Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator.The reasons for this were found through IR and NMR analysis.Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths.

  20. Experimental study on long-term stability of bentonite. Influence of hyperalkaline pore water generated by the chemical reaction of cementitious material and saline groundwater

    International Nuclear Information System (INIS)

    The engineered barrier system (EBS) in the geological disposal of TRU waste is composed of bentonite and cementitious materials. The montmorillonite component of bentonite is, however, not chemically compatible with the high pH leachates derived from cementitious materials and may alter to a more stable secondary mineral assemblage. Previous research for TRU waste disposal has focused on the alteration behavior of bentonite in leachates from cementitious materials exposed to fresh groundwater. If the EBS is located in the coastal region, then the leachates will instead be derived from the interaction of cementitious materials and saline groundwater. This has important implications for the alteration of bentonite because the likely difference in the chemical composition of the leachate will influence the dissolution rate of montmorillonite and the composition of the secondary mineral assemblage. At present, these processes are not well understood. The focus of the present study was to examine the alteration of bentonite in high pH saline groundwaters. Two solutions were used in batch immersion experiments of bentonite. The first solution was prepared using a mixture of NaOH and NaCl (NN), and the second solution was prepared using synthetic Region 1 water (high K and Na content) and synthetic seawater (SR). Analysis showed that bentonite altered to analcime in the NN solution and to analcime and phillipsite-K in the SR solution. Moreover, the generation of calcium silicate hydrate and calcium aluminosilicate hydrate were extrapolated in the SR solution based on the concentrations of dissolved species. These alteration products were in accord with Oda et al.(2005), who summarized the possible relationships between the secondary mineral assemblage of bentonite under high pH conditions and the influence of solution composition. (author)

  1. Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M. C.; Garcia Calvo, J. L. [The Spanish National Research Council (CSIC), Madrid (Spain); Walker, C. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan)] [and others

    2012-08-15

    The main objective of this project has been the development of an agreed set of protocols for the pH measurement of the pore fluid of a low pH cementitious material. Three protocols have been developed (Chapter 2), a reference method, based on pore fluid expression (PFE), and two routine methods with and without filtering, based on Ex Situ Leaching (ESL) procedures. Templates have been designed on which to record details of the pH measurement for the reference (PFE) method (Appendix C) and the routine (ESL) methods without and with filtering (Appendix D). Preliminary protocols were based on a broad review of the literature (Appendix A) and refined through a series of test experiments of the more critical parameters (Appendix B). After definition of the preliminary protocols, two phases of interlaboratory tests were performed. The first phase (Chapter 3) used the same low pH cement paste and enabled the nine participating laboratories to use, become familiar with and to identify any problems/uncertainties in the preliminary protocols. The reported pH values were subjected to a statistical analysis of the (within laboratory) repeatability and (between-laboratory) reproducibility and so provided a reliability test of the preliminary protocols. The second phase (Chapter 4) of interlaboratory tests used four different candidate low pH cementitious materials in the same nine laboratories, which allowed testing, validation and comparison of the reported pH values, which were obtained using the final protocols for the reference (PFE) and routine (ESL) methods by statistical analysis. The proposed final protocols (Chapter 2) have resulted in the reported pH values having low deviation and high reproducibility and repeatability. This will allow confidence in the pH value when selecting a candidate low pH cementitious material to be used in the engineered component of a high-level nuclear waste repository.

  2. Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials

    International Nuclear Information System (INIS)

    The main objective of this project has been the development of an agreed set of protocols for the pH measurement of the pore fluid of a low pH cementitious material. Three protocols have been developed (Chapter 2), a reference method, based on pore fluid expression (PFE), and two routine methods with and without filtering, based on Ex Situ Leaching (ESL) procedures. Templates have been designed on which to record details of the pH measurement for the reference (PFE) method (Appendix C) and the routine (ESL) methods without and with filtering (Appendix D). Preliminary protocols were based on a broad review of the literature (Appendix A) and refined through a series of test experiments of the more critical parameters (Appendix B). After definition of the preliminary protocols, two phases of interlaboratory tests were performed. The first phase (Chapter 3) used the same low pH cement paste and enabled the nine participating laboratories to use, become familiar with and to identify any problems/uncertainties in the preliminary protocols. The reported pH values were subjected to a statistical analysis of the (within laboratory) repeatability and (between-laboratory) reproducibility and so provided a reliability test of the preliminary protocols. The second phase (Chapter 4) of interlaboratory tests used four different candidate low pH cementitious materials in the same nine laboratories, which allowed testing, validation and comparison of the reported pH values, which were obtained using the final protocols for the reference (PFE) and routine (ESL) methods by statistical analysis. The proposed final protocols (Chapter 2) have resulted in the reported pH values having low deviation and high reproducibility and repeatability. This will allow confidence in the pH value when selecting a candidate low pH cementitious material to be used in the engineered component of a high-level nuclear waste repository

  3. 3. Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on 'Studies of advanced reactor technology options for effective incineration of radioactive waste'. Working material

    International Nuclear Information System (INIS)

    To meet expressed Member States' needs, the IAEA has initiated a Coordinated Research Project (CRP) on 'Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste'. The final goal of the CRP is to deepen the understanding of the dynamics of transmutation systems, e.g. the accelerator driven system, especially systems with deteriorated safety parameters, qualify the available methods, specify the range of validity of methods, and formulate requirements for future theoretical developments. Should transient experiments be available, the CRP will pursue experimental benchmarking work. In any case, based on the results, the CRP will conclude on the potential need of transient experiments and make appropriate proposals for experimental programs. The Technical Meeting in Chennai was the 3rd Research Coordination Meeting (RCM) of the CRP The man objectives of the RCM were to: - Discuss and perform inter-comparisons of the various benchmark results; - Prepare the first draft of the final CRP Report Status of the analyses and inter-comparisons of the results. The main objective of the CRP was to study innovative technology options for incinerating/utilizing radioactive wastes. The CRP's benchmarking exercises focused on eight innovative transmutation 'Domains', which correspond to different critical and sub-critical concepts or groups of concepts: I. Critical fast reactor, solid fuel, with fertile; II. Critical fast reactor, solid fuel, fertile-free; III. ADS, solid fuel, with fertile; IV. ADS, solid fuel, fertile-free; V. Critical reactor and ADS, molten salt fuel, with fertile; VI. Critical reactor and ADS, molten salt fuel, fertile-free; VII. Critical fast reactor and ADS, gas cooled; VIII. Fusion/fission hybrid system. For each of these Domains, the discussions and inter-comparisons considered the following issues: - Reactor-models; - Scenarios/phenomena; - Static analyses; - Dynamic analyses; - Methods; - Codes; - Neutronic data base

  4. Nirex Safety Assessment Research Programme. Examination of possible management options for the disposal of iodine-129 wastes in a L/ILW repository

    International Nuclear Information System (INIS)

    Owing to its radiotoxicity, relative abundance as a fission product and long half-life of 1.6 x 107 years, iodine-129 is a key (safety-relevant) radionuclide in post-closure performance assessment calculations. Given the expected lack of significant retardation of iodine in the far field, methods of reducing its future impact on the biosphere are limited to dilution in the far field or increasing its retention in the near field. This report examines possible ways in which iodine-129 retention in the near field might be enhanced. The results of this work could be of particular significance if, at some time in the future, the amount of iodine-129 to be disposed of were to increase significantly. Various management options for increasing iodine retention in the near field are considered in this report, viz. 1. modification of waste forms and/or waste packages; 2. localised placement of packages within a repository; 3. location at a site within the repository host rock which minimises iodine release

  5. Shaft sealing concepts for high-level radioactive waste repositories based on the host-rock options rock salt and clay stone

    International Nuclear Information System (INIS)

    Unlike the shaft barriers used for the dry preservation of former mine workings and underground storage sites, shaft seals designed for radioactive-waste repositories must also fulfil additional requirements associated with the design diversity of the sealing system. This diversity makes use of the simple redundancy principle in order to prevent the proliferation of defects. In practice this means combining several sealing elements made from different materials or from materials with different properties. The R and D project, Shaft sealing systems for final repositories for high-level radioactive waste (ELSA) - phase 2: concept design for shaft seals and testing of the functional elements of shaft seals', which was funded by the Federal Ministry for Economic Affairs and Energy (BMWi), set out to investigate potential sealing elements for the two host-rock options rock salt and mudstone. This paper combines the text that the authors presented at the First International Freiberg Shaft Colloquium held at the Freiberg University of Mining and Technology on 01.10.2014 with a presentation on the sealing elements that were investigated as part of the R and D project.

  6. Nevada Transportation Options Study

    International Nuclear Information System (INIS)

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  7. Nevada Transportatoion Options Study

    Energy Technology Data Exchange (ETDEWEB)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-05-25

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  8. Some observations on the concept of best practicable environmental option (BPEO) in the context of radioactive waste management

    International Nuclear Information System (INIS)

    The term BPEO, introduced in 1976 by the Royal Commission on Environmental Pollution (RCEP), is largely limited to use within the UK. The concept is easy to grasp (and assent to) as a general principle, but more difficult to pin down in practice and detail. The elasticity of the BPEO concept has led to its being invoked in a variety of contexts and interpreted in various ways, with a recent tendency towards more elaborate interpretations. In any practical BPEO assessment, it is necessary to set the scope and boundaries in a clear and well-considered manner. The boundaries are important limitations of the assessment and any conclusions it may reach. Decision-making in radioactive waste management involves an exercise of judgement. Although a practical BPEO assessment will include many judgements, the most important ones need to be explicit in the decision-making process itself. BPEO assessments thus need to be regarded as aids to decision-making rather than exercises that will themselves directly lead to decisions. It is useful to learn lessons from the development and application of the BPEO concept to date. The Environment Agency and the Scottish Environmental Protection Agency (SEPA) have in progress a project to review current BPEO assessment methods for the management and disposal of radioactive waste, and to develop a preferred methodology suitable for use by regulators, site operators and consultants. (author)

  9. Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process

    International Nuclear Information System (INIS)

    In this paper a Hierarchical Analytical Network Process (HANP) model is demonstrated for evaluating alternative technologies for generating electricity from MSW in India. The technological alternatives and evaluation criteria for the HANP study are characterised by reviewing the literature and consulting experts in the field of waste management. Technologies reviewed in the context of India include landfill, anaerobic digestion, incineration, pelletisation and gasification. To investigate the sensitivity of the result, we examine variations in expert opinions and carry out an Analytical Hierarchy Process (AHP) analysis for comparison. We find that anaerobic digestion is the preferred technology for generating electricity from MSW in India. Gasification is indicated as the preferred technology in an AHP model due to the exclusion of criteria dependencies and in an HANP analysis when placing a high priority on net output and retention time. We conclude that HANP successfully provides a structured framework for recommending which technologies to pursue in India, and the adoption of such tools is critical at a time when key investments in infrastructure are being made. Therefore the presented methodology is thought to have a wider potential for investors, policy makers, researchers and plant developers in India and elsewhere. - Highlights: • We evaluate alternative technologies for generating electricity from waste. • The methodology we develop is based on the analytical network process. • Assessment is made against technical, financial, environmental and risk criteria. • Anaerobic digestion and gasification are the preferred technologies for India. • The method reduces risk and ensures sustainability in energy project planning

  10. Dynamics of harnessing national standards in India for safer and more effective disposal of hazardous waste - options and achievements

    International Nuclear Information System (INIS)

    Points to the concern which is mounting for safer disposal of hazardous wastes and the changes it is bringing about in the prevailing social values and perceptions. Reviews the dynamics of various policy initiatives and legislative measures in India for forcing the pace of standardization for maintaining the purity and safety of the environments and on-site adoption of standards. Refers to the foresight of the Bureau of Indian Standards, India's National Standardization Body, to step in this field in the early sixties and make available over 250 standards which provide guidance for regulating the eco-system through interaction of various physical, chemical and biological processes. Highlights the legislative measures enacted by the Government of India culminating in the promulgation of the Environmental Protection Act, 1986 and the various nation-wide programmes launched under it for control of water and air pollution. Underlines the importance of constituting national and zonal task forces to ensure that the various industrial establishments do install the needed control devices for effluent treatment. Concludes with a focus on the concern which is mounting regarding efficient disposal of radioactive waste and the steps taken recently for speedier development and implementation of the requisite norms and specifications. (au)

  11. Data on plutonium sorption onto cementitious materials under conditions of reducing and of presence of nitrate

    International Nuclear Information System (INIS)

    In terms of safety assessment of TRU waste disposal, data on plutonium sorption of cementitious materials have been obtained by means of a static batch-type experiment. Because the repository condition will be reducing and be affected by considerable amount of nitrate, the authors carried out the experiments using ordinary portland cement (OPC) under the reducing (Na2S2O4 as added as reductant) and anoxic condition (O2 ≤ 1 ppm) and solution of 0 to 0.5 M NaNo3. Other experimental conditions are: liquid/solid (L/S) ratios; 100 and 1000 mLg-1, Initially added plutonium; 2.84x10-10 M, Temperature; 25±5degC and Reaction times; 7, 14 and 28 days. the experimental results suggest that distribution coefficient (Kd) ranges 50 to 1000 mLg-1 in case of L/S = 100 mL g-1. Similarly the Kd ranges, 100 to 10000 mLg-1 at L/S = 1000 mLg-1. These Kd values tend to increase with lapsing reaction time. On the basis of these results, we recommend 50 mLg-1 as a conservative Kd value of plutonium on OPC in a TRU waste repository condition. (author)

  12. Round robin test for define an accurate protocol to measure the pore fluid pH of low-pH cementitious materials

    International Nuclear Information System (INIS)

    The present research belongs to an international project where several of the main nuclear waste management agencies have been involved. The main objective is the development of agreed procedures or protocols for measuring the pH value using low-pH cementitious products (LopHC). The Pore Fluid Expression (PFE) has been identified as reference method and Ex-situ Leaching methods (ELS) with two variants (filtering and without filtering the obtained suspension) have been identified as routine methods. Both methodologies are based on the extraction of the pore solution of the concrete before pH determination. The protocols employed were based on a broad literature review and in fitting the more critical parameters, such as the sample size, the carbonation affection, the leaching of cement hydrates during the measurement, etc. Moreover, the routine methods were validated with respect to the pore fluid expression results. It appears that the repeatability of the 3 pH measurement protocols is very good and that the results obtained with both ESL procedures agree well with the results given by the PFE technique in the case of low-pH cementitious materials and are acceptable in the case of cementitious materials with high pore fluid pH values, in that case some corrections considering the Ca content of the solution may be needed

  13. A study on long term stability of bentonite. The preliminary study on the bentonite stability in the groundwater influenced by cementitious material

    International Nuclear Information System (INIS)

    In the geological disposal concept of radioactive wastes, a kind of clay with sorption ability and low permeability, called bentonite, is envisaged as an engineered barrier system in the geological repository. Also, the cementitious material is envisaged as the backfill material in the vaults and the structure material of the vaults. The groundwater in contact with the cementitious material will promote hyperalkaline conditions in the repository environment and these conditions will affect the performance of the bentonite. Therefore, it is necessary to investigate the interaction between the cementitious material and the bentonite for the evaluation of long term stability of the disposal system. In this study, for the identification and the investigation of the secondary minerals, the batch immersion experiments of the powder bentonite were carried out using synthetic cement leachates (pH=7, 12.5, 14) at 200degC. As the results, it was confirmed that Na as exchangeable cations in the bentonite can exchange relatively easily with Ca in the solution from the experiment results. And the ratio of cation exchange was estimated to be about 25% based on the amount of exchangeable cations Ca2+ between layers. Furthermore, it was concretely shown that the generation of analcime might be affected by the Na concentration from results of the solution analyses and a stability analysis of analcime using the chemical equilibrium model, in addition to the pH in the solution. (author)

  14. Application of DOE prescribed guides to the evaluation of Hanford's Mixed Low Level Solid Waste Treatment Options

    International Nuclear Information System (INIS)

    A recent Westinghouse Hanford Company report (WHC-SD-W100-ES-008, February, 1994), compared a Vitrification process to the WRAP-2A Grout/PE process for the treatment of Mixed Low Level Waste (MLLW). This comparison applied a limited scope numerical evaluation to compare technology complexity of the two processes, but focused primarily on capital and operating costs. The work reported here is supplementary to WHC-SD-Wl00-ES-008. It provides a record of the application of the more formal DOE-prescribed criteria (Treatment Selection Guides for Federal Facility Compliance Act Draft Site Treatment Plans) to the Vitrification and Grout/PE processes previously evaluated. Results of the evaluation favored the Grout/PE process by a weighted score of 83 to 78 over the Plasma arc vitrification process

  15. CEMENTITIOUS BARRIERS PARTNERSHIP FY13 MID-YEAR REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Burns, H.; Flach, G.; Langton, C.; KOSSON, D.; BROWN, K.; SAMSON, E.; MEEUSSEN, J.; SLOOT, H.; GARBOCZI, E.

    2013-05-01

    In FY2013, the Cementitious Barriers Partnership (CBP) is continuing in its effort to develop and enhance software tools demonstrating tangible progress toward fulfilling the objective of developing a set of tools to improve understanding and prediction of the long‐term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In FY2012, the CBP released the initial inhouse “Beta‐version” of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. The current primary software components are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. THAMES is a planned future CBP Toolbox component (FY13/14) focused on simulation of the microstructure of cementitious materials and calculation of resultant hydraulic and constituent mass transfer parameters needed in modeling. This past November, the CBP Software Toolbox Version 1.0 was released that supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). The CBP issued numerous reports and other documentation that accompanied the “Version 1.0” release including a CBP Software Toolbox User Guide and Installation Guide. These documents, as well as, the

  16. Strengthening masonry infill panels using engineered cementitious composites

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Fischer, Gregor; Nateghi Alahi, Fariborz

    2015-01-01

    ECC in order to assess its distinctive mechanical properties such as tensile stress–strain behavior and multiple cracking. To investigate the influence of a thin layer of ECC on plain masonry in terms of changes in stiffness, strength, and deformability, small scale tests have been conducted on......This comprehensive experimental study aims at investigating the behavior of masonry infill panels strengthened by fiber reinforced engineered cementitious composites (ECC). The experimental program included testing of materials, masonry elements and panels. Material tests were carried out first for...

  17. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    OpenAIRE

    Wei-Ting Lin; Yuan-Chieh Wu; An Cheng; Sao-Jeng Chao; Hui-Mi Hsu

    2014-01-01

    This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysi...

  18. Modelling for the mechanical behavior of cementitious granular materials

    Science.gov (United States)

    Zhong, Xiaoxiong

    Crack damages due to load application are commonly observed in cementitious granular materials such as concrete, cemented sand, and ceramic materials. Previous analytical models for these types of materials have been developed based on continuum mechanics using a phenomenological approach. However, the theories of continuum mechanics have limitations when used for analyzing fracture mechanism and localized damages at a micro-scale level. Therefore, a microstructural approach is desirable for the analysis of these types of materials. In this dissertation, a contact law was derived for the inter-particle behavior of two particles connected by a cement binder. Microcracking process within binder was fully taken into account by regarding crack length as a basic damage factor. The binder initially contains small-size cracks which propagate and grow under external loading. As a result the binder is weakened with lower strength in shear and tension. Theory of fracture mechanics was employed to model the propagation and growth of these microcracks for both the shear fracture mode and normal fracture mode. The contact law was then incorporated in the analysis for the overall damage behaviors of cementitious granular material using the statistical micromechanics approach and the distinct element method. These overall damage behaviors include the stress-strain relationship, fracture strength, development of damage zone, and fatigue deformation. The micro-parameters affecting these behaviors are mainly the microcrack length and density, binder toughness, and binder elastic constants. In the numerical simulations, the cementitious granular materials were represented by 2-D random assemblies of rods bonded by cement binders with preexisting microcracks. Stress-strain relationships were modeled and validated for the uniaxial tension and compression tests, biaxial tension and compression tests, and double cantilever beam test. Force-deflection relationship and fatigue deformation

  19. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U

    2003-05-01

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In

  20. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    International Nuclear Information System (INIS)

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In this case, significant

  1. Designing added functions in engineered cementitious composites

    Science.gov (United States)

    Yang, En-Hua

    In this dissertation, a new and systematic material design approach is developed for ECC with added functions through material microstructures linkage to composite macroscopic behavior. The thesis research embodies theoretical development by building on previous ECC micromechanical models, and experimental investigations into three specific new versions of ECC with added functions aimed at addressing societal demands of our built infrastructure. Specifically, the theoretical study includes three important ECC modeling elements: Steady-state crack propagation analyses and simulation, predictive accuracy of the fiber bridging constitutive model, and development of the rate-dependent strain-hardening criteria. The first element establishes the steady-state cracking criterion as a fundamental requirement for multiple cracking behavior in brittle matrix composites. The second element improves the accuracy of crack-width prediction in ECC. The third element establishes the micromechanics basis for impact-resistant ECC design. Three new ECCs with added functions were developed and experimentally verified in this thesis research through the enhanced theoretical framework. A green ECC incorporating a large volume of industrial waste was demonstrated to possess reduced crack width and drying shrinkage. The self-healing ECC designed with tight crack width was demonstrated to recover transport and mechanical properties after microcrack damage when exposed to wet and dry cycles. The impact-resistant ECC was demonstrated to retain tensile ductility with increased strength under moderately high strain-rate loading. These new versions of ECC with added functions are expected to contribute greatly to enhancing the sustainability, durability, and safety of civil infrastructure built with ECC. This research establishes the effectiveness of micromechanics-based design and material ingredient tailoring for ECC with added new attributes but without losing its basic tensile ductile

  2. Performance assessment of confinements for medium-level and α-contaminated waste. PACOMA project. Rock salt option

    International Nuclear Information System (INIS)

    The objective of the contribution to the PACOMA project is to develop and demonstrate procedures for radiological safety of repositories in salt domes. An analogue study is performed by the Netherlands Energy Research Foundation ECN, where alternative disposal concepts in different salt formations were investigated. It is discussed, how far appropriate choice of the repository design parameters can improve the whole systems. The research covers deterministic calculations for three scenarios, the normal evolution scenario with subrosion of the salt dome, the combined brine intrusion scenario with brine intrusion from brine pockets and via an anhydrite vein, and the human intrusion scenario of solution mining of a storage cavern. For the combined brine intrusion scenario alternative waste inventories, different disposal concepts, variants of the layout of dams and sealings are investigated, and results obtained from variations of parameter values are discussed. Additionally, comprehensive probabilistic calculations have been carried out with the help of a Monte-Carlo simulation. Results are discussed in form of an uncertainty analysis of the maximum dose and global sensitivity studies of system parameters. The assessments main result is, that the reference case, where the reference repository design and the reference disposal concept are applied, deterministic calculations with best estimate values as well as probabilistic calculations do not manifest unacceptable risk. Investigation of alternative concepts and design variants indicate a high potential for system optimization. (orig./HP)

  3. Pricing Options.

    Science.gov (United States)

    Tenopir, Carol

    1998-01-01

    Presents results of a recent survey of over 100 public and academic libraries about pricing options from online companies. Most options fall into three categories: pay-as-you-go, fixed-rate, and user-based. Results are discussed separately for public and academic libraries and for consortial discounts. Trends in pricing options preferred by…

  4. Experimental Study on Cementitious Composites Embedded with Organic Microcapsules

    Directory of Open Access Journals (Sweden)

    Zhiwei Qian

    2013-09-01

    Full Text Available The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed that strength could increase by up to nine percent with the addition of a small amount of microcapsules and then decrease with an increasing amount of microcapsules. An orthogonal test for investigating the strength recovery rate was designed and implemented for bending and compression using the factors of water/cement ratio, amount of microcapsules, and preloading rate. It is shown that the amount of microcapsules plays a key role in the strength recovery rate. Chloride ion permeability tests were also carried out to investigate the recovery rate and healing effect. The initial damage was obtained by subjecting the specimens to compression. Both the recovery rate and the healing effect were nearly proportional to the amount of microcapsules. The obtained cementitious composites can be seen as self-healing owing to their recovery behavior for both strength and permeability.

  5. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lin

    2014-11-01

    Full Text Available This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%, water/cement ratio (0.35 and 0.55 and steel fiber dosage (0.5%, 1.0% and 2.0%. The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.

  6. Coordinated research project (CRP) on studies of advanced reactor technology options for effective incineration of radioactive waste - Scope and objectives

    International Nuclear Information System (INIS)

    The overall objective of the CRP is to perform R and D tasks contributing towards the proof of practicality for long-lived waste transmutation. For a sound assessment of the transient and accident behaviour, the neutron kinetics and dynamics have to be qualified, especially as the margins for the safety relevant neutronics parameters are becoming small in a 'dedicated' transmuter. The CRP will integrate benchmarking of transient/accident simulation codes focussing on the phenomena and effects relevant to various critical and sub-critical systems under severe neutron flux changes and rearrangements. The CRP will investigate future needs both for theoretical means (data, codes) and experimental information related to the various transmutation systems. The final goals of the CRP are to (a) deepen the understanding of the dynamics of transmutation systems, e.g., the accelerator driven system, especially systems with deteriorated safety parameters, (b) qualify the available methods and specify their range of validity, and (c) formulate requirements for future theoretical developments. Should transient experiments be available, the CRP might also pursue experimental benchmarking work. In any case, based on the results, the CRP will conclude on the potential need of transient experiments and make appropriate proposals for experimental programs. The CRP will consider various transmuter and actinides incinerator concepts, from traditional to very advanced, both critical and sub-critical. No optimization will be performed, experience and good engineering judgment is used to define the design parameters of the various concepts. The generic dynamic behavior of the different systems will be assessed and inter-comparisons will be performed. The concepts are derived from those proposed by the participants in this RCM. Later additions might be considered. The studies will include static, kinetics and dynamics calculations. Influence of burnup on transient behavior will be

  7. Technetium Sorption By Cementitious Materials Under Reducing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River National Lab., Aiken, SC (United States); Estes, Shanna L. [Clemson Univ., SC (United States). Environmental Engineering and Earth Sciences; Arai, Yuji [Clemson Univ., SC (United States). College of Agriculture, Forestry and Life Sciences; Powell, Brian A. [Clemson Univ., SC (United States). Environmental Engineering and Earth Sciences

    2013-07-18

    The objective of this study was to measure Tc sorption to cementitious materials under reducing conditions to simulate Saltstone Disposal Facility conditions. Earlier studies were conducted and the experimental conditions were found not to simulate those of the facility. Through a five month subcontract with Clemson University, sorption of {sup 99}Tc to four cementitious materials was examined within an anaerobic glovebag targeting a 0.1% H{sub 2}(g)/ 99.9% N{sub 2}(g) atmosphere. Early experiments based on Tc sorption and Eh indicated that 0.1% H{sub 2}(g) (a reductant) was necessary to preclude experimental impacts from O{sub 2}(g) diffusion into the glovebag. Preliminary data to date (up to 56 days) indicates that sorption of {sup 99}Tc to cementitious materials increased with increasing slag content for simulated saltstone samples. This is consistent with the conceptual model that redox active sulfide groups within the reducing slag facilitate reduction of Tc(VII) to Tc(IV). These experiments differ from previous experiments where a 2% H{sub 2}(g) atmosphere was maintained (Kaplan et al., 2011 (SRNL-STI-2010-00668)). The impact of the 2% H{sub 2}(g) reducing atmosphere on this data was examined and determined to cause the reduction of Tc in experimental samples without slag. In the present ongoing study, after 56 days, Tc sorption by the 50-year old cement samples (no slag) was undetectable, whereas Tc sorption in the cementitious materials containing slag continues to increase with contact time (measured after 1, 4, 8, 19 and 56 days). Sorption was not consistent with spike concentrations and steady state has not been demonstrated after 56 days. The average conditional K{sub d} value for the Vault 2 cementitious material was 873 mL/g (17% slag), for the TR547 Saltstone (45% slag) the conditional K{sub d} was 168 mL/g, and for TR545 (90% slag) the conditional K{sub d} was 1,619 mL/g. It is anticipated that additional samples will be collected until steady state

  8. Deep reversible storage. Safety options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    This large document aims at presenting safety options which have been adopted for the current design status (notably for the installation architecture), elements of description of envisaged technical solutions and exploitation principles which are required for the control of risks (either internal or external) and uncertainties on a long term which could lead to radiological consequences for the project of storage of nuclear wastes in a deep geological formation. After a presentation of the context and of input data, this report discusses the principle of a modular construction and then discusses the safety approach. One part deals with risk analysis for surface installations and aims at showing how internal risks (handling, fire) and external risks (earthquake, plane crash) are taken into account in terms of design choices, processes and control measures. Another part deals with risk analysis for underground installations during the reversible exploitation phase (the considered risks are about the same as in the previous part). The next part addresses risk analysis after closing, and tries to describe how the location, storage construction elements and its architecture ensure a passive safety. Uncertainty management is presented in relationship with envisaged technical solutions and scientific knowledge advances. Additional elements (detailed study, researches and experimentations) for the establishment of the future creation authorization request are identified all along the report

  9. Dynamic damage and stress-strain relations of ultra-high performance cementitious composites subjected to repeated impact

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ultra-high performance cementitious composites (UHPCC) were prepared by replacing 60% of cement with ultra-fine industrial waste powders.The dynamic damage and compressive stress-strain relations of UHPCC were studied using split Hopkinson pressure bar (SHPB).The damage of UHPCC subjected to repeated impact was measured by the ultrasonic pulse velocity method.Results show that the dynamic damage of UHPCC increases linearly with impact times and the abilities of repeated impact resistance of UHPCC are improved with increasing fiber volume fraction.The stress waves on impact were recorded and the average stress,strain and strain rate of UHPCC were calculated based on the wave propagation theory.The effects of strain rate,fibers volume fraction and impact times on the stress-strain relations of UHPCC were studied.Results show that the peak stress and elastic modulus decrease while the strain rate and peak strain increase gradually with increasing impact times.

  10. A multi-scale approach of mechanical and transport properties of cementitious materials under rises of temperature

    International Nuclear Information System (INIS)

    The modern industrial activities (storage of nuclear waste, geothermal wells, nuclear power plants,...) can submit cementitious materials to some extreme conditions, for example at temperatures above 200 C. This level of temperature will induce phenomena of dehydration in the cement paste, particularly impacting the CSH hydrates which led to the mechanical cohesion. The effects of these temperatures on the mechanical and transport properties have been the subject of this thesis.To understand these effects, we need to take into account the heterogeneous, porous, multi-scale aspects of these materials. To do this, micro-mechanics and homogenization tools based on the Eshelby problem's solution were used. Moreover, to support this multi-scale modeling, mechanical testing based on the theory of porous media were conducted. The measurements of modulus compressibility, permeability and porosity under confining pressure were used to investigate the mechanisms of degradation of these materials during thermal loads up to 400 C. (author)

  11. Emission of toxic components as a factor of the best practice options for waste management: Application of LCA (Life Cycle Assessment)

    OpenAIRE

    Stevanović-Čarapina Hristina D.; Stepanov Jasna M.; Savić Dunja C.; Mihajlov Anđelka N.

    2011-01-01

    Health and safety have been the major concerns in waste management. Waste must be managed in a way that minimizes risk to human health. Environmental concerns over the management and disposal of waste can be divided into two major areas: conservation of resources and pollution of the environment. Integrated Waste Management (IWM) systems combine waste streams, waste collection, treatment and disposal methods, with the objective of achieving environmental benefits, economic optimization ...

  12. Geochemical performance evaluation and characterization of a potential cementitious repository sealing material for application in the Topopah Spring tuff NNWSI investigations

    International Nuclear Information System (INIS)

    Preliminary geochemical evaluations of some portland cement based materials have been made in Nevada Nuclear Waste Storage Investigations (NNWSI), for possible nuclear waste repository sealing applications in welded tuff focused in the Yucca Mountain area. Portland cement based sealing materials have been evaluated in the NNWSI for possible sealing applications in a nuclear waste repository in the Topopah Spring tuff member. Cementitious sealing materials developed for long-term stability should be as nearly as possible in thermodynamic equilibrium with the host rock, or any disequilibrium should not have negative impact upon the integrity of the host rock. A primary step in achieving this equilibrium condition is to minimize the chemical potential between the sealant and the host rock. Two different approaches were evaluated to achieve this compatibility. The one approach utilized indigenous materials for the formulation of the concrete and the other utilized reactive admixtures to adjust the bulk chemical composition of the concrete formulation to approximate the local rock bulk chemistry. Testing of both formulations at conditions that represented the maximum credible temperature and pressure conditions of a repository were completed and show that the use of an indigenous tuff in the formulation without adjusting the matrix chemistry caused alterations which might compromise the performance of the concrete. In contrast, the chemically adjusted cementitious formulation exhibited minimal alteration in the J-13 groundwater of the designed test. 3 refs., 2 figs., 4 tabs

  13. Preparation of New Cementitious System using Fly Ash and Dehydrated Autoclaved Aerated Concrete

    Institute of Scientific and Technical Information of China (English)

    SHUI Zhonghe; LU Jianxin; TIAN Sufang; SHEN Peiliang; DING Sha

    2014-01-01

    We experimentally studied the interaction between pozzolanic material (fly ash) and dehydrated autoclaved aerated concrete (DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles finer than 75μm and was then heated to temperatures up to 900℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction (XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content (Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700℃and the dehydrated products are mainlyβ-C2S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fly ash, increasing the replacement level of fly ash lowered them in AF. The strength contribution rates on pozzolanic effect of fly ash in AF are always negative, showing a contrary tendency of that of cement-fly ash system.

  14. Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

    Science.gov (United States)

    Yao, Yuan

    Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental

  15. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  16. Talc-based cementitious products: Effect of talc calcination

    Directory of Open Access Journals (Sweden)

    C.J. Ngally Sabouang

    2015-09-01

    Full Text Available This study reports the use of calcined talc for cementitious products making. The calcination is used to enhance the availability of magnesium from talc to react with phosphate for cement phase formation. It is shown that previous calcination of talc leads to products having enhanced mechanical performance due to the formation of more cement phase than in products based on raw talc. Talc fired at 900 °C was found to be the one in which magnesium release was maximal. Firing at temperature higher than 900 °C leads to the stabilization of enstatite, which decreased the magnesium availability. The cement phase is struvite, which was better detected on the X-ray patterns of the products involving fired talc. All the products have very rapid setting time and low shrinkage.

  17. Dynamic fracture behaviour in fibre-reinforced cementitious composites

    Science.gov (United States)

    Yu, Rena C.; Cifuentes, Héctor; Rivero, Ignacio; Ruiz, Gonzalo; Zhang, Xiaoxin

    2016-08-01

    The object of this work is to simulate the dynamic fracture propagation in fibre-reinforced cementitious composites, in particular, in steel fibre reinforced concrete (SFRC). Beams loaded in a three-point bend configuration through a drop-weight impact device are considered. A single cohesive crack is assumed to propagate at the middle section; the opening of this crack is governed by a rate-dependent cohesive law; the fibres around the fracture plane are explicitly represented through truss elements. The fibre pull-out behaviour is depicted by an equivalent constitutive law, which is obtained from an analytical load-slip curve. The obtained load-displacement curves and crack propagation velocities are compared with their experimental counterparts. The good agreement with experimental data testifies to the feasibility of the proposed methodology and paves the way to its application in a multi-scale framework.

  18. Innovation in use and research on cementitious material

    International Nuclear Information System (INIS)

    In this paper we discuss innovations in concrete technology which are currently being applied in the field-namely high and ultra high performance (strength), and self consolidating concrete. We discuss the factors which have enabled these developments and ongoing needs in these areas. The importance of sustainability as the major driver for future innovations and prospects for development of new cementitious materials with lower environmental impact is briefly discussed. Finally the importance of innovation in research is examined. The dramatic development in experimental and computational techniques over recent years opens up wide-ranging possibilities for understanding the micro- and nano- scale chemical and physical processes which underlie performance at a macroscopic level. The example of computational approaches at the atomic and molecular scale is presented in detail. In order to exploit the opportunities presented by such new techniques, there needs to be greater efforts to structure interdisciplinary, multi-group research

  19. Towards a mechanistic understanding of actinide retention by cementitious materials

    International Nuclear Information System (INIS)

    Full text of publication follows. Calcium silicate hydrate (C-S-H) are considered to be the most important constituent of hardened cement paste (HCP) with respect to their abundance and the diversity of structural sites exposed for cation and anion binding. Furthermore, C-S-H phases may control the long term release of radionuclides due to their stability during the evolution of the cementitious near field. The retention of Nd (III) by crystalline C-S-H phases has been studied by combined use of wet chemical methods, synchrotron based spectroscopic, laboratory-based X-ray diffraction techniques and an appropriate theoretical approach. The investigations enable us to propose a mechanistic model for the immobilisation of trivalent lanthanides and actinides in crystalline C-S-H phases. (authors)

  20. Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2010-01-01

    This paper describes an experimental investigation of the shear behavior of beams consisting of steel reinforced Engineered Cementitious Composites (ECC). Based on the strain hardening and multiple cracking behavior of ECC, this study investigates the extent to which ECC can improve the shear...... capacity of beams loaded primarily in shear and if ECC can partially or fully replace the conventional transverse steel reinforcement in beams. However, there is a lack of understanding of how the fibers affect the shear carrying capacity and deformation behavior of structural members if used either in...... randomly distributed PVA (polyvinyl alcohol) fiber beams with different stirrup spacing and reinforced concrete (RC) beams for comparison. Displacement and strain measurements taken using the ARAMIS photogrammetric data acquisition system by means of processing at high frame rate captured images of applied...

  1. Evaluation of natural colonisation of cementitious materials: Effect of bioreceptivity and environmental conditions

    OpenAIRE

    Manso Blanco, Sandra; Calvo-Torrás, María Angeles; De Belie, Nele; Segura Pérez, Ignacio; Aguado de Cea, Antonio

    2015-01-01

    Incorporation of living organisms, such as photosynthetic organisms, on the structure envelope has become a priority in the area of architecture and construction due to aesthetical, economic and ecological advantages. Important research efforts are made to achieve further improvements, such as for the development of cementitious materials with an enhanced bioreceptivity to stimulate biological growth. Previously, the study of the bioreceptivity of cementitious materials has been carried out m...

  2. Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems

    OpenAIRE

    Alessandra Formia; Salvatore Terranova; Paola Antonaci; Nicola Maria Pugno; Jean Marc Tulliani

    2015-01-01

    The aim of this research is to produce self-healing cementitious composites based on the use of cylindrical capsules containing a repairing agent. Cementitious hollow tubes (CHT) having two different internal diameters (of 2 mm and 7.5 mm) were produced by extrusion and used as containers and releasing devices for cement paste/mortar healing agents. Based on the results of preliminary mechanical tests, sodium silicate was selected as the healing agent. The morphological features of several mi...

  3. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method

    OpenAIRE

    Alani, Amir M.; Asaad Faramarzi

    2015-01-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is prese...

  4. 3D morphological and micromechanical modeling of cementitious materials

    International Nuclear Information System (INIS)

    The goal of this thesis is to develop morphological models of cementitious materials and use these models to study their local and effective response. To this aim, 3D images of cementitious materials (mortar and concrete), obtained by micro-tomography, are studied. First, the mortar image is segmented in order to obtain an image of a real microstructure, to be used for linear elasticity computations. The image of concrete is used, after being processed, to determine various morphological characteristics of the material. A random model of concrete is then developed and validated by means of morphological data. This model is made up of three phases, corresponding to the matrix, aggregates and voids. The aggregates phase is modelled by implantation of Poisson polyhedra without overlap. For this purpose, an algorithm suited to the vector generation of Poisson polyhedra is introduced and validated with morphological measurements. Finally, the effective linear elastic properties of the mortar and other simulated microstructures are estimated with the FFT (Fast-Fourier Transform) method, for various contrasts between the aggregates and matrix' Young moduli. To complete this work, focused on effective properties, an analysis of the local elastic response in the matrix phase is undertaken, in order to determine the spatial arrangement between stress concentration zones in the matrix and the phases of the microstructure (aggregates and voids). Moreover, a statistical fields characterization, in the matrix, is achieved, including the determination of the Representative Volume Element (RVE) size. Furthermore, a comparison between effective and local elastic properties obtained from microstructures containing polyhedra and spheres is carried out. (author)

  5. Modelling study of the distribution of activation products in a cementitious repository

    International Nuclear Information System (INIS)

    Thermodynamic modelling has been used to study the behaviour of the activation products Ni-59, Nb-94 and Zr-93 in the cementitious/bentonite/crushed-rock near field of a radioactive waste repository. The work had two main aims: (a) to obtain estimates of the most realistic solubilities for the three radioelements present in decommissioning waste under the near-field conditions, (b) to calculate the rate of migration of the radionuclides through the near-field barriers. The calculated solubilities at pH 12.4 and 25 deg C are approximately 1*10-7 M, 4*10-9 M and 6*10-8 M for Ni, Zr and Nb respectively. These values correspond to solubilities measured for amorphous-type solids where very efficient solid-liquid separation is achieved. Uncertainties in the data values are discussed. Calculations to investigate the effect of a lower host-rock temperature on these solubilities suggest that the solubilities will rise to about 1*10-5 M, 8*10-9 M for Ni, Zr and Nb respectively, but there is less certainty in the input data. Modelling has been performed using the CHEQMATE computer code to calculate the rate of migration of the radioelements through the concrete and bentonite/crushed-rock barriers, assuming solubility control and control by corrosion of the source metals. The results demonstrated that the assumption of solubility control of corrosion control made little difference to the model, because in the corrosion control case the metals reached their solubility limits rapidly. The inclusion of groundwater flow increased the metal ion concentration by less than a factor of 2 in each case. The fluxes out of the TVO repository after a given time were predicted to be significantly less than those from the IVO repository due to the greater thickness of concrete in the TVO repository. (orig.). (16 refs., 9 figs., 23 tabs.)

  6. Retrieval options study

    International Nuclear Information System (INIS)

    This Retrieval Options Study is part of the systems analysis activities of the Office of Nuclear Waste Isolation to develop the scientific and technological bases for radioactive waste repositories in various geologic media. The study considers two waste forms, high level waste and spent fuel, and defines various classes of waste retrieval and recovery. A methodology and data base are developed which allow the relative evaluation of retrieval and recovery costs and the following technical criteria: safety; technical feasibility; ease of retrieval; probable intact retrieval time; safeguards; monitoring; criticality; and licensability. A total of 505 repository options are defined and the cost and technical criteria evaluated utilizing a combination of facts and engineering judgments. The repositories evaluated are selected combinations of the following parameters: Geologic Media (salt, granite, basalt, shale); Retrieval Time after Emplacement (5 and 25 years); Emplacement Design (nominal hole, large hole, carbon steel canister, corrosion resistant canister, backfill in hole, nominal sleeves, thick wall sleeves); Emplacement Configuration (single vertical, multiple vertical, single horizontal, multiple horizontal, vaults; Thermal Considerations; (normal design, reduced density, once-through ventilation, recirculated ventilation); Room Backfill; (none, run-of-mine, early, 5 year delay, 25 year delay, decommissioned); and Rate of Retrieval;

  7. Retrieval options study

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This Retrieval Options Study is part of the systems analysis activities of the Office of Nuclear Waste Isolation to develop the scientific and technological bases for radioactive waste repositories in various geologic media. The study considers two waste forms, high level waste and spent fuel, and defines various classes of waste retrieval and recovery. A methodology and data base are developed which allow the relative evaluation of retrieval and recovery costs and the following technical criteria: safety; technical feasibility; ease of retrieval; probable intact retrieval time; safeguards; monitoring; criticality; and licensability. A total of 505 repository options are defined and the cost and technical criteria evaluated utilizing a combination of facts and engineering judgments. The repositories evaluated are selected combinations of the following parameters: Geologic Media (salt, granite, basalt, shale); Retrieval Time after Emplacement (5 and 25 years); Emplacement Design (nominal hole, large hole, carbon steel canister, corrosion resistant canister, backfill in hole, nominal sleeves, thick wall sleeves); Emplacement Configuration (single vertical, multiple vertical, single horizontal, multiple horizontal, vaults; Thermal Considerations; (normal design, reduced density, once-through ventilation, recirculated ventilation); Room Backfill; (none, run-of-mine, early, 5 year delay, 25 year delay, decommissioned); and Rate of Retrieval; (same as emplacement, variably slower depending on repository/canister condition).

  8. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Vault design, run-on/run-off control design, and asphalt compatibility with 90-degree celsius double-shell slurry feed

  9. Development of methods for treatment and conditioning of biological radioactive waste in the Czech Republic

    International Nuclear Information System (INIS)

    Incineration of biological radioactive waste was performed in a facility manufactured in the Czech Republic for combustion of burnable, radioactive and non-radioactive residues. The equipment has shown an adequate capability for combustion of biological waste. Basic technical parameters of the incinerator SP-603 can guarantee combustion of majority of wastes from different radionuclide users in the country. To ensure proper further handling with the resulting ash, three conditioning options were studied, the bituminization process, incorporation into cement, and embedding of ash into a mixture of bituminous and cementitious materials. Mechanical properties of the conditioned ash were in good compliance with those published elsewhere. Bituminized ash exhibits lowest leachibility, followed by the ash conditioned by means of the mixed process. Potential abnormal operation conditions were evaluated and their consequences assessed. The evaluation encompassed sensitivity analysis of the consequences potentially affecting the operating staff, nearby population and the environment. Cost estimate was carried out using a national approach for the calculation. From the results it can be seen that there are no large differences between the conditioning and disposal of wastes resulting from different conditioning processes. (author). 16 refs, 4 figs, 15 tabs

  10. Contribution of IPEN-CNEN/SP to the Seminar on Management Options for Low and Intermediate Level Wastes in Latin America

    International Nuclear Information System (INIS)

    The solutions adopted for management problems and radioactive wastes of nuclear installations and contamined materials generated in hospitals, research centers, laboratories in the countries of Latin America are presented. The criteria of site selection for radioactive waste installation and the methods for treating and storage are evaluated the results of inspections in installations which handle radioactive wastes are done (M.C.K.)

  11. Submission of the national commission of the public debate on the options concerning the long life high and medium activity radioactive wastes management

    International Nuclear Information System (INIS)

    This document deals with the presentation of a public debate on the radioactive wastes management and the opportunities of its organization. It presents successively the long life high and medium activity radioactive wastes, the today radioactive wastes management policy and some questions and topics which could be discussed during the debate. (A.L.B.)

  12. Options Study - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  13. Design Evolution Study - Aging Options

    International Nuclear Information System (INIS)

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  14. Design Evolution Study - Aging Options

    Energy Technology Data Exchange (ETDEWEB)

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are

  15. Technical Meeting (Research Coordination Meeting) of the Coordinated Research Project (CRP) on 'Studies of advanced reactor technology options for effective incineration of radioactive waste'. Working material

    International Nuclear Information System (INIS)

    The Technical Meeting held at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in Hefei was the second Research Coordination Meeting (RCM) of the CRP on 'Studies of Innovative Reactor Technology Options for Effective Incineration of Radioactive Waste'. All but one Member States participating in the CRP were attending: in all, 26 participants from 13 Member States and three international organizations. The overall objective of the CRP is to increase the capability of Member States in developing and applying advanced nuclear technologies in the area of long-lived radioactive waste utilization and transmutation. The final goal of the CRP is to deepen the understanding of the dynamics of transmutation systems, e.g., the accelerator driven system, especially of systems with deteriorated safety parameters, to qualify the available methods, specify the range of validity of these methods, and formulate requirements for future theoretical developments. Should transient experiments be available, the CRP will pursue experimental benchmarking work. Based on the results, the CRP will conclude on the potential need of transient experiments and make appropriate proposals for experimental programs. The scope of the second RCM was to review the progress achieved with regard on the technical work of the CRP. In particular, the main objectives of the RCM were to (a) analyse and inter-compare the individual results; (b) identify of eventual changes/improvements to the tasks and/or work plans; (c) plan the next stage(s); and (d) start preparation of the final CRP report. The participants were given a brief overview of the Institute's mission and accomplishments. ASIPP (Academia Sinica, Institute of Plasma Physics) was founded in 1978 as the leading centre for high temperature plasma physics, magnetically confined fusion technology, as well as R and D in related technological areas. ASIPP employs nearly 500 staff, of which more than 70% are scientists or engineers

  16. The management of carbon-14 and iodine-129 wastes - a site specific survey of current and future arisings, possible management options and potential impact with respect to the United Kingdom

    International Nuclear Information System (INIS)

    Part 1 - A site-specific survey, by the Harwell Laboratory, of current and future gaseous, liquid and solid arisings of 14C and 129I at UK nuclear installations, is presented in the form of tables and maps. In the tables the arisings are characterised in terms of quantity, activity and accompanying radionuclides. Management options discussed are: dispersal in the environment; capture and retention of arisings from power stations, reprocessing plants, and industrial sites producing pharmaceuticals and research materials; direct disposal of unprocessed spent fuel elements in an underground repository. Comparative costings of the various options are given. Part 2 - The information in part 1 is used by the National Radiological Protection Board as the basis for an examination of the effects that various management options would have on the radiological impact of 14C and 129I on the public. Comparison is made between different types of discharge, and disposal as a solid waste to various kinds of repository, in terms of their health detriment costs. Emphasis is placed on illustrating the use of a decision analysis methodology for assessment of the different waste management strategies. (author)

  17. Multiple determinations of isotope diffusion in cementitious backfills and Ordinary Portland Cement (OPC) monoliths

    International Nuclear Information System (INIS)

    The full text of publication follows: The UK concept for geological disposal of intermediate level (ILW) and low level waste (LLW) includes backfill materials based on admixtures of Ordinary Portland Cement (OPC). It is expected that the evolution of these backfill materials will generate high pH conditions and the corrosion of the metal canisters used for disposal will promote a low Eh environment. This combination of conditions within the near field of the Geological Disposal Facility (GDF) will reduce the solubility of many radionuclides and retard migration. In addition, sorption to some of the cementitious phases may contribute significantly to the retardation of many radionuclides. It is clearly important to understand how diffusion of radionuclides contributes to the overall migration from the repository. However, it remains practically difficult to isolate the effect of diffusion from other processes such as sorption and advection which may also occur in the near field and far fields of the GDF. This presentation describes a series of experiments undertaken to evaluate the diffusion of a selection of relevant radionuclides in saturated backfills (including the NIREX reference vault backfill, NRVB) and OPC matrices. The experiments build upon a significant number of related sorption studies previously undertaken by the radiochemistry group at Loughborough University and complement a series of small scale advection experiments also being undertaken. The experimental technique uses small pre-cast blocks (monoliths) of the matrix under investigation. An appropriate concentration of the isotope of interest is introduced in a cavity in the centre of the block, which is then sealed, and finally, placed in a solution previously equilibrated with the matrix. The increase in concentration of the isotope in the external solution is then determined at defined time intervals. The interpretation of the results is undertaken with methods conventionally used for geological

  18. The geochemical evolution and radionuclide transport through cementitious barriers under high salinity conditions induced by reprocessing sludges

    International Nuclear Information System (INIS)

    The paper is focused on the study of the long-term (10,000 years) geochemical evolution of highly saline radioactive waste under repository conditions, and its interaction with the surrounding domains: concrete from canister, backfill, and vault walls, and the Callovo-Oxfordian (CallOx) clay as host-rock (CIGEO project). The methodology used in this study consists of: a) running simplified geochemical batch calculations to accurately define the chemistry of the different systems; b) developing 1D models to study the interaction between different domains and understand the main (geo-)chemical processes occurring; and c) using the outcomes of such simulation to perform a 2D calculation of the repository to define the radius of influence into the clay stone of the high ionic strength released from the waste. Special focus is on: 1) the evaluation of salinity conditions and their effects over solute transport, and 2) the evaluation of radionuclides mobility (uranium and caesium are presented) through the concrete package and backfill and the radius of influence of the plume released from the waste. The results presented in this work regarding the potential chemical evolution of the repository indicate 4 main things. First, the vault design under study seems to efficiently dilute the highly saline pore-water that could be generated in the event of container failure. Secondly, the cementitious materials considered in the model have a poor capacity to buffer the oxidative plume from the wastes, however, the presence of pyrite in the CallOx formation could buffer this oxidant intrusion into the formation. Thirdly, there is a relevant solubility control exerted by the different uranium solid phases included in the conceptual and numerical model. Fourthly, caesium is effectively retained within the CallOx formation even though other competitive cations in the high saline pore-water (Na-N-S rich pore-waters) released from the waste package are present

  19. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Science.gov (United States)

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls. PMID:24602907

  20. Nano-modification to improve the ductility of cementitious composites

    International Nuclear Information System (INIS)

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO3 was more effective compared to nano-silica. However, the crystal structure of CaCO3 played a very important role in the range of expected improvements

  1. Triboluminesence multifunctional cementitious composites with in situ damage sensing capability

    Science.gov (United States)

    Olawale, David O.; Dickens, Tarik; Uddin, Mohammed J.; Okoli, Okenwa O.

    2012-04-01

    Structural health monitoring of civil infrastructure systems like concrete bridges and dams has become critical because of the aging and overloading of these CIS. Most of the available SHM methods are not in-situ and can be very expensive. The triboluminescence multifunctional cementitious composites (TMCC) have in-built crack detection mechanism that can enable bridge engineers to monitor and detect abnormal crack formation in concrete structures so that timely corrective action can be taken to prevent costly or catastrophic failures. This article reports the fabrication process and test result of the flexural characterization of the TMCC. Accelerated durability test indicated that the 0.5 ZnS:Mn/Epoxy weight fraction ITOF sensor configuration to be more desirable in terms of durability. The alkaline environment at the highest temperature investigated (45 °C) resulted in significant reduction in the mean glass transition and storage moduli of the tested ITOF thin films. Further work is ongoing to correlate the TL response of the TMCC with damage, particularly crack opening.

  2. Uniaxial Compressive Properties of Ultra High Toughness Cementitious Composite

    Institute of Scientific and Technical Information of China (English)

    CAI Xiangrong; XU Shilang

    2011-01-01

    Uniaxial compression tests were conducted to characterize the main compressive performance of ultra high toughness cementitious composite(UHTCC)in terms of strength and toughness and to obtain its stress-strain relationships.The compressive strength investigated ranges from 30 MPa to 60 MPa.Complete stress-strain curves were directly obtained,and the strength indexes,including uniaxial compressive strength,compressive strain at peak stress,elastic modulus and Poisson's ratio,were calculated.The comparisons between UHTCC and matrix were also carried out to understand the fiber effect on the compressive strength indexes.Three dimensionless toughness indexes were calculated,which either represent its relative improvement in energy absorption capacity because of fiber addition or provide an indication of its behavior relative to a rigid-plastic material.Moreover,two new toughness indexes,which were named as post-crack deformation energy and equivalent compressive strength,were proposed and calculated with the aim at linking up the compressive toughness of UHTCC with the existing design concept of concrete.The failure mode was also given.The study production provides material characteristics for the practical engineering application of UHTCC.

  3. Nano-modification to improve the ductility of cementitious composites

    Energy Technology Data Exchange (ETDEWEB)

    Yeşilmen, Seda [Department of Civil Engineering, Çankaya University, Ankara (Turkey); Al-Najjar, Yazin [Department of Civil Engineering, Gaziantep University, Gaziantep (Turkey); Balav, Mohammad Hatam [Department of Civil Engineering, Gazi University, Ankara (Turkey); Şahmaran, Mustafa, E-mail: sahmaran@gazi.edu.tr [Department of Civil Engineering, Gazi University, Ankara (Turkey); Yıldırım, Gürkan [Department of Civil Engineering, Gazi University, Ankara (Turkey); Lachemi, Mohamed [Department of Civil Engineering, Ryerson University, Toronto, ON (Canada)

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.

  4. Chemical modeling of cementitious grout materials alteration in HLW repositories

    International Nuclear Information System (INIS)

    This paper reports on an investigation initiated into the nature of the chemical alteration of cementitious grout in HLW repository seals, and the implications for long-term seal performance. The equilibrium chemical reaction of two simplified portland cement-based grout models with natural Canadian Shield groundwater compositions was modeled with the computer codes PHREEQE and EQ3NR/EQ6. Increases in porosity and permeability of the grout resulting from dissolution of grout phases and precipitation of secondary phases were estimated. Two bounding hydrologic scenarios were evaluated, one approximating a high gradient, high flow regime, the other a low-gradient, sluggish flow regime. Seal longevity depends in part upon the amount of groundwater coming into intimate contact with, and dissolving, the grout per unit time. Results of the analyses indicate that, given the assumptions and simplifications inherent in the models, acceptable seal performance (i.e., acceptable increases in hydraulic conductivity of the seals) may be expected for at least thousands of years in the worst cases analyzed, and possibly much longer

  5. Reaction and Diffusion of Cementitious Water in Bentonite: Results of `Blind' Modelling

    Science.gov (United States)

    Watson, C.; Hane, K.; Savage, D.; Benbow, S.; Cuevas, J.; Fernandez, R.

    2009-04-01

    The potential deleterious geochemical interactions of clay with cement/concrete may provide a constraint on the use of the latter material in deep geological disposal facilities for radioactive wastes. Consequently, it is important to have a fundamental understanding of these interactions to be able to assess their likely impact over the long timescales appropriate to the isolation of radioactive wastes from the human environment. Here, a laboratory experiment investigating the effects of cementitious water diffusing through bentonite has been simulated using a coupled reactive-transport geochemical modelling code. The modelling study was carried out before the results of the experiments were available, as an exercise in ‘blind' modelling. A sensitivity study was carried out to investigate uncertainties associated with a number of input parameters, such as the precise nature of kinetic and ion-exchange reactions, diffusion coefficients, pore water composition, and montmorillonite dissolution models. The experiments used two types of fluid; one saturated with calcium hydroxide showed little mineralogical alteration, which was predicted by the computer simulations. A high pH K-Na-OH-based water however, caused alteration (pore blocking by hydrotalcite, gibbsite and brucite growth) to a depth of 2 mm in the bentonite after a period of 1 year. Experimental evidence showed that ion exchange of Mg-montmorillonite to K-montmorillonite was not confined to this thin region however, and was found to extend throughout the whole of the bentonite sample. The pore blocking by mineral precipitation and movement of ion exchange fronts through the bentonite were accurately simulated by the model. The choice of dissolution model for montmorillonite played an important role in the outcome of the simulations. Of the cases considered in the sensitivity study, that employing the so-called ‘Yamaguchi model' was clearly the best match, exhibiting all the main characteristics of the

  6. Proceedings of the public debate on the general options of management of high and intermediate activity and long-lived radioactive wastes; Compte-rendu du debat public sur les options generales en matiere de gestion des dechets radioactifs de haute activite et de moyenne activite a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprised 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is a summary of the main questions tackled during this debate from its preparation to its closing meeting and dealing with: the acceptation of the debate, the progress of the debate, the socio-technical problem of gathering the different points to be debated with respect to the different areas in concern, the general questions about the overall nuclear wastes and materials (radioactivity, health, radioprotection, management, reprocessing, control, actors organization, knowledge sharing, perenniality of the financing), the specific questions about long-lived wastes (inventory, separation-transmutation feasibility, nuclear energy and energy policy, management solutions, storage and geologic disposal feasibility, impact of debates on the 2006 law, long-lived waste territories), the conclusions for the 2006 law: mastering the overall nuclear wastes and materials and step-by-step building up of a solution for long-lived wastes (difficulties, lessons learnt from foreign experience, first draft of the 2006 law). Some opinions expressed by some participants about these proposals conclude

  7. Technetium removal: preliminary flowsheet options

    International Nuclear Information System (INIS)

    This document presents the results of a preliminary investigation into options for preliminary flowsheets for 99Tc removal from Hanford Site tank waste. A model is created to show the path of 99Tc through pretreatment to disposal. The Tank Waste Remediation (TWRS) flowsheet (Orme 1995) is used as a baseline. Ranges of important inputs to the model are developed, such as 99Tc inventory in the tanks and important splits through the TWRS flowsheet. Several technetium removal options are discussed along with sensitivities of the removal schemes to important model parameters

  8. Evaluation of Low Activity Waste Feed Supplemental Treatment Options by the C3T Mission Acceleration Initiative Team for DOE-ORP

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation of the Hanford Site tank farms, including the 53 million gallons of highly radioactive mixed waste contained in 149 single-shell tanks (SST) and 28 double-shell tanks (DST). ORP manages the River Protection Project (RPP). Under the RPP, wastes retrieved from the tanks will be partitioned to separate the highly radioactive constituents from the very large volumes of chemical wastes that exist in the tanks. The volume of waste is the result of chemicals used in various Hanford Site processes, chemicals that were added to the tanks to reduce tank corrosion, and chemicals used in reprocessing and extraction of cesium and strontium. The highly radioactive constituents are to be vitrified, stored onsite, and ultimately disposed of as high-level waste (HLW) in the offsite national repository. The less radioactive chemical waste, referred to as low-activity waste (LAW), also would be vitrified and then disposed of onsite in trenches that comply with the Resource Conservation Act of 1976 (RCRA) and in compliance with DOE O 435.1, Radioactive Waste Management

  9. Iron ore tailings used for the preparation of cementitious material by compound thermal activation

    Institute of Scientific and Technical Information of China (English)

    Zhong-lai Yi; Heng-hu Sun; Xiu-quan Wei; Chao Li

    2009-01-01

    In the background of little reuse and large stockpile for iron ore railings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore tailings activated by compound thermal ac-tivation were studied. Testing methods, such as XRD, TG-DTA, and IR were used for researching the phase and structure variety of the iron ore tailings in the process of compound thermal activation. The results reveal that a new cementitious material that contains 30wt% of the iron ore tailings can be obtained by compounded thermal activation, whose mortar strength can come up to the stan-dard of 42.5 cement of China.

  10. Cement and concrete options paper

    International Nuclear Information System (INIS)

    Greenhouse gas emissions associated with the production of concrete are projected to increase from 10.5 million tonnes in 1990 to almost 14 million tonnes in 2010. Over half of this amount will be non-energy related emissions of carbon dioxide resulting from the conversion of limestone to lime. According to this report by industry experts, the industry has an excellent record of improving energy efficiency and there are few easy gains remaining. Nevertheless, improvements in energy efficiency and fuel use, increased use of concrete where it can be shown to result in net reduction of GHG emissions, and partial replacement of cement by supplementary cementitious materials that involve no additional generation of GHGs, could yield an approximate reduction in carbon dioxide emissions of nearly seven million tons in 2010. The industry proposes three measures to realise these benefits: (1) encouraging replacement of fossil fuels by otherwise waste material, (2) encouraging increased use of concrete in constructing houses and roads, and (3) encouraging increased use of supplementary cementing materials. The industry is opposed to carbon or energy taxes that increase the cost of doing business, on the grounds that such taxes would adversely affect the industry's competitive position internationally. tabs

  11. Influence of electrified surface of cementitious materials on structure formation of hardened cement paste

    Science.gov (United States)

    Alekseev, A.; Gusakov, A.

    2015-01-01

    To provide high strength and durability of concrete it is necessary to study the influence of physical and chemical and mechanical principles of dispersed cementitious systems. The experimental bench was developed to study the influence of electrified surface of cementitious materials on structure formation of hardened cement paste. The test bench allows accelerating the processes of dissolution of cementing materials in water due to influence of electric discharge on their surface. Cement activation with high-voltage corona discharge when AC current is applied allows increasing the ultimate compressive strength of hardened cement paste by 46% at the age of one day and by 20% at the age of 28 days.

  12. Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2006-01-01

    This paper discusses the mechanism appearing during fiber debonding in fiber reinforced cementitious composite. The investigation is performed on the micro scale by use of a Finite Element Model. The model is 3 dimensional and the fictitious crack model and a mixed mode stress formulation are...... implemented. It is shown that the cohesive law for a unidirectional fiber reinforced cementitious composite can be found through superposition of the cohesive law for mortar and the fiber bridging curve. A comparison between the numerical and an analytical model for fiber pull-out is performed....

  13. Hydration reactions and ettringite formation in selected cementitious coal conversion by-products

    International Nuclear Information System (INIS)

    Cementitious reactions and ettringite formation, which occur when water is added to high-calcium fly ash, to many dry flue gas desulfurization solids, and to two of the residues from the emerging clean coal technologies, fluidized bed combustion and limestone injection multiphase burner, have been studied. The parameters varied included water to solid ratio and curing time. Crystalline reactants and products were monitored by X-ray powder diffraction. The amount of ettringite, the principal crystalline cementitious reaction product, was determined after three months of curing. In this paper results are discussed in terms of available Ca, Al and S in each by-product and w/s ratio

  14. Method for characterization of the rate of movement of an oxidation front in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2016-03-01

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize a redox active transition metal indicator that is present in the cementitious material and exhibits variable solubility depending upon the oxidation state of the indicator. When the leaching process is carried out under anaerobic conditions, the presence or absence of the indicator in the leachate can be utilized to determine the redox condition of and location of the oxidation front in the material that has been subjected to the leaching process.

  15. Quantifying moisture transport in cementitious materials using neutron radiography

    Science.gov (United States)

    Lucero, Catherine L.

    A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated

  16. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  17. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  18. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    Science.gov (United States)

    Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.

    2014-01-01

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  19. Characterizing saturated mass transport in fractured cementitious materials

    Science.gov (United States)

    Akhavan, Alireza

    Concrete, when designed and constructed properly, is a durable material. However in aggressive environments concrete is prone to gradual deterioration which is due to penetration of water and aggressive agents (e.g., chloride ions) into concrete. As such, the rate of mass transport is the primary factor, controlling the durability of cementitious materials. Some level of cracking is inevitable in concrete due to brittle nature of the material. While mass transport can occur through concrete’s porous matrix, cracks can significantly accelerate the rate of mass transport and effectively influence the service life of concrete structures. To allow concrete service life prediction models to correctly account for the effect of cracks on concrete durability, mass transport thru cracks must be characterized. In this study, transport properties of cracks are measured to quantify the saturated hydraulic permeability and diffusion coefficient of cracks as a function of crack geometry (i.e.; crack width, crack tortuosity and crack wall roughness). Saturated permeability and diffusion coefficient of cracks are measured by constant head permeability test, electrical migration test, and electrical impedance spectroscopy. Plain and fiber reinforced cement paste and mortar as well as simulated crack samples are tested. The results of permeability test showed that the permeability of a crack is a function of crack width squared and can be predicted using Louis formula when crack tortuosity and surface roughness of the crack walls are accounted for. The results of the migration and impedance tests showed that the diffusion coefficient of the crack is not dependent on the crack width, but is primarily a function of volume fraction of cracks. The only parameter that is changing with the crack width is the crack connectivity. Crack connectivity was found to be linearly dependent on crack width for small crack and constant for large cracks (i.e.; approximately larger than 80 µm). The

  20. Use of flexible engineered cementitious composite in buildings

    International Nuclear Information System (INIS)

    This article describes the applications and benefits of a recently developed smart building material namely Engineered cementitious composite (ECC), also known as flexible or bendable concrete. Conventional concretes have a strain capacity of only 0.1 percent and are highly brittle and rigid. This lack of bend ability is a major cause of failure under strain and has been a pushing factor in the development of an elegant material which is capable to exhibit an enhanced flexibility. An ECC has a strain capacity of more than 3 percent and thus acts more like a ductile metal rather than like a brittle glass. The aim of this paper is to highlight a probable success of ECC in terms of industrial and commercial use in Pakistan. With the introduction of flexible concrete in building technology, it is likely to have safer and more durable construction. The material is expected to display reduced detrimental impacts on the natural environment. A bendable concrete is composed of all the ingredients of a traditional concrete minus coarse aggregates or crushed stones and is reinforced with micro mechanically designed polymer fibers. The mechanism of action of the micro-polymeric fibers in concrete has also been emphasized. The principles of mix designs of the mortar incorporating fibers to make an ECC have also been explained. It has also been mentioned in detail as how this technology can be used to enhance the flexibility of some modern concrete types like flowing concrete, self-compacting concrete, and lightweight concrete. ECC is a green construction material. The possible benefits like environment friendliness, cost effectiveness, and durability have been also been elucidated in the paper. (author)

  1. Waste prevention action nets

    OpenAIRE

    Corvellec, Hervé; Czarniawska, Barbara

    2013-01-01

    Although waste prevention is considered the best possible waste management option in the European waste hierarchy model, it is unclear what constitutes waste prevention. To address this lack of clarity, this text presents an analysis of four Swedish case studies of waste prevention: a waste management company selling waste prevention services; the possibility offered to Swedish households to opt out of receiving unaddressed promotional material; a car-sharing program; and a re-...

  2. Exercising options

    Science.gov (United States)

    Carlowicz, Michael

    In a recent speech to graduates of the College of Computer, Mathematical, and Physical Sciences at the University of Maryland, Anne Petersen, deputy director of the National Science Foundation, encouraged a new generation of scientists to embrace opportunity and choice, and to use their scientific training as an employment credential, not a limit. In her May 23 commencement address, Petersen exhorted students to view their freshly minted diplomas as tickets to a broad and diverse job market, not just one-way trips to the laboratory.“Looking for the options and alternatives open to us—and creating options for ourselves where they are not apparent—can give us a sense of direction and volition that enriches our lives immensely…

  3. Energy exotic options

    International Nuclear Information System (INIS)

    This chapter with 88 references focuses on the use of exotic options to control exposure to energy prices. Exotic options are defined, and the conversion of a standard option into an exotic option and pricing models are examined. Pricing and hedging exotic options, path-dependent options, multi-commodity options, options on the minimum-or-maximum of two commodities, compound options, digital options, hybrid and complex structures, and natural gas daily options are described. Formulas for option pricing for vanilla, barrier, compound, options on minimum or maximum of two assets, and look back options are given in an appendix

  4. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    OpenAIRE

    ANDERSEN, J. K.; Boldrin, Alessio; Christensen, Thomas Højlund; Scheutz, Charlotte

    2012-01-01

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the envir...

  5. Threats to water resources from hexachlorobenzene waste at Kalush City (Ukraine)--a review of the risks and the remediation options.

    Science.gov (United States)

    Lysychenko, Georgii; Weber, Roland; Kovach, Valeria; Gertsiuk, Modest; Watson, Alan; Krasnova, Iryna

    2015-10-01

    The production of chlorinated solvents such as tetrachloroethylene and tetrachloromethane has resulted in large stockpiles of unintentionally produced persistent organic pollutants (POPs) including high content of hexachlorobenzene (HCB waste). HCB waste of 15,000 t arising from the production of chlorinated solvents at the Kalush factory in Ukraine was landfilled. In 2008, it was discovered that HCB and other pollutants were escaping from the landfill into local environment including the Sapogi-Limnytsia Rivers, tributaries of the Dniester River. This showed that the HCB waste was not appropriately contained and represented a threat to the Dniester River basin. A Presidential Decree of Ukraine was therefore issued requiring remediation of the site and excavation of the waste. Between 2010 and 2013, approximately 29,445 t of HCB waste and associated contaminated soil was excavated and exported to various EU countries for incineration. This excavation revealed that these wastes can corrode through their drums within a few decades with release of pollutants. Other sites at which chlorinated solvents were produced should therefore be assessed for possible similar pollution. Despite the remediation efforts and the excavation of the landfill, the Kalush area remains a POP-contaminated site requiring further assessment. A part of the waste was exported to Poland and is stored close to the Baltic Sea and is treated in an incinerator with small capacity over a time frame of years. This case and recent similar cases reveal that the control of POP waste for destruction even in EU countries needs to be improved. PMID:26286800

  6. THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.

  7. Design of microcapsule system used for self-healing cementitious material

    NARCIS (Netherlands)

    Zhang, M.; Han, N.; Xing, F.; Schlangen, H.E.J.G.

    2013-01-01

    For a microcapsule based self-healing system in the cementitious material, a fundamental issue is to find and facilitate a suitable microcapsule system, concerning either the material selection or design and manufacture process. In this study, urea formaldehyde resin is used for the shell of microca

  8. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Amir M. Alani

    2015-06-01

    Full Text Available In this paper, a stochastic finite element method (SFEM is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes.

  9. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method.

    Science.gov (United States)

    Alani, Amir M; Faramarzi, Asaad

    2015-06-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092

  10. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    Science.gov (United States)

    Loh, Kenneth J.; Gonzalez, Jesus

    2015-07-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens.

  11. Final disposal of radioactive waste

    OpenAIRE

    Freiesleben H.

    2013-01-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of c...

  12. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    DEFF Research Database (Denmark)

    Andersen, J.K.; Boldrin, Alessio; Christensen, Thomas Højlund;

    2012-01-01

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different....... The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of −2 to 16 milli person equivalents (mPE) Mg−1 wet waste (ww...... input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load...

  13. Options theory

    International Nuclear Information System (INIS)

    Techniques used in conventional project appraisal are mathematically very simple in comparison to those used in reservoir modelling, and in the geosciences. Clearly it would be possible to value assets in mathematically more sophisticated ways if it were meaningful and worthwhile so to do. The DCf approach in common use has recognized limitations; the inability to select a meaningful discount rate being particularly significant. Financial Theory has advanced enormously over the last few years, along with computational techniques, and methods are beginning to appear which may change the way we do project evaluations in practice. The starting point for all of this was a paper by Black and Scholes, which asserts that almost all corporate liabilities can be viewed as options of varying degrees of complexity. Although the financial presentation may be unfamiliar to engineers and geoscientists, some of the concepts used will not be. This paper outlines, in plain English, the basis of option pricing theory for assessing the market value of a project. it also attempts to assess the future role of this type of approach in practical Petroleum Exploration and Engineering economics. Reference is made to relevant published Natural Resource literature

  14. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  15. On the Application of Inertial Microfluidics for the Size-Based Separation of Polydisperse Cementitious Particulates

    Science.gov (United States)

    Kumar, Aditya; Lewis, Peter; Balonis, Magdalena; Di Carlo, Dino; Sant, Gaurav

    2015-06-01

    The early-age performance of concrete is determined by the properties of the cementitious binder and the evolution of its chemical reactions. The chemical reactivity, and to some extent, the composition of cementitious particles can depend on particle size. Therefore, it is valuable to physically separate cementing minerals into well-defined size classes so that the influences of both particle size and composition on reaction progress can be studied without the confounding effects of a broad particle size distribution. However, conventional particle separation methods (e.g., density fractionation, wet sieving, field-flow extraction, ultrasonification-sedimentation) are time-consuming and cumbersome and result in poor particle yields and size-selectivity, thus, making them unsuitable for processing larger volumes of cementitious powders (on the order of grams). This study applies a novel inertial microfluidics (IMF) based procedure to separate cementitious powders on the basis of their size. Special attention is paid to optimizing operating variables to ensure that particles in a fluid streamline achieve unique equilibrium positions within the device. From such positions, particles can be retrieved as per their size using symmetrical outlet configurations with tuned fluidic resistances. The approach is critically assessed in terms of: (1) its ability to separate cementitious powders into narrow size bins, and therefore its feasibility as a fractionation procedure, and (2) quantitatively relating the operating parameters to the particle yield and size selectivity. The study establishes metrics for assessing the ability of IMF methods to classify minerals and other polydisperse particles on the basis of their size.

  16. Study on the alteration of hydrogeological and mechanical properties of the cementitious Material. 3

    International Nuclear Information System (INIS)

    We experimentally investigated the influence of several phenomena at the disposal environment, to evaluate the long-term alteration of cementitious material. The results are shown below. 1. Hardened cement paste specimens were altered and characterized after artificial seawater permeation. The calcium dissolution was accelerated, and secondary minerals containing magnesium were deposited. The permeability became one to three orders of magnitude smaller than data from specimens altered by deionized water permeation. It was estimated that secondary mineral formations reduced the permeability. These results meant that seawater and pure water differ remarkably from each other in influence to alteration of cementitious material. 2. Two type mixture proportions concrete, two type mixture proportions mortar and a cement paste under same W/C ratio 55% were characterized, to apply the accumulated data of paste to concrete or mortar. Compressive strength of paste was lower than that of concrete and mortar. It was contrary to the previous report. The behavior of Young's modulus and Poisson's ratio could be explained well using amount of aggregate. The data of permeability meant that boundary between aggregate and cement paste didn't become path of water flow, and that aggregate disturbed permeation. 3. Self-sealing property of cracked specimen of cementitious material were investigated by the water permeation test using sodium bicarbonate solution. The permeability decreased in two orders of magnitude, and possibility of sealing was suggested. By the morphology, the deposits in the cracks might be portlandite and C-S-H, and be not calcium carbonate. 4. Alteration of characteristics of cementitious material in sodium-nitrate and ammonia solution was evaluated by the water permeation test. Alteration degree of the nitrate and ammonia solution case showed similar trend to that of the sodium nitrate solution case. This result meant that ammonia solution would not influence the

  17. Fleet servicing facilities for servicing, maintaining, and testing rail and truck radioactive waste transport systems: functional requirements, technical design concepts and options cost estimates and comparisons

    International Nuclear Information System (INIS)

    This is a resource document which examines feasibility design concepts and feasibility studies of a Fleet Servicing Facility (FSF). Such a facility is intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the United States' waste handling plants presently receiving radioactive wastes have an on-site FSF, nor is there an existing third party facility providing these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the system is placed into service. Thus, a need is indicated for FSF's, or their equivalent, at various radioactive materials receiving sites. In this report, three forms of FSF's solely for spent fuel transport systems were examined: independent, integrated, and colocated. The independent concept was already the subject of a detailed report and is extensively referenced in this document so that capital cost comparisons of the three concepts could be made. These facilities probably could service high-level, intermediate-level, low-level, or other waste transportation systems with minor modification, but this study did not include any system other than spent fuel. Both the Integrated and Colocated concepts were assumed to be associated with some radioactive materials handling facility such as an AFR repository

  18. Shrinkage behaviour and related corrosion performance of low-pH cementitious materials based on OPC or CAC

    Directory of Open Access Journals (Sweden)

    García-Calvo, J. L.

    2016-03-01

    Full Text Available Prior to using low-pH cementitious materials in underground repositories for high level waste, the characteristics determining their long-term durability must be analysed in depth. In this sense, different shrinkage tests have been made on mortar and concrete specimens using low-pH cement formulations based on ordinary portland cement (OPC or calcium aluminate cement (CAC, with high mineral admixtures contents. They showed similar autogenous shrinkage than samples without mineral admixtures but higher drying shrinkage when materials based on OPC with high silica fume contents were considered. Besides, as the use of reinforced concrete could be required in underground repositories, the susceptibility of reinforcement to corrosion when using low-pH cementitious materials based on OPC was analyzed, considering carbon steel and galvanized steel. In the formers corrosion was detected due to the low pore solution pH but any problem was detected when galvanized reinforcement were used.Previo al empleo de materiales con cementos de bajo pH en almacenamientos geológicos profundos (AGP de residuos radiactivos de alta actividad, características relacionadas con su durabilidad a largo plazo deben ser verificadas. Así, su estabilidad volumétrica se ha analizado en morteros y hormigones de bajo pH basados en OPC o CAC, con elevados contenidos de adiciones minerales. Estos presentaron retracciones autógenas similares a las medidas en materiales convencionales, pero retracciones por secado mayores en los basados en OPC y altos contenidos de humo de sílice. Dado que en zonas de los AGP podría emplearse hormigón armado, también se evaluó la susceptibilidad a la corrosión de aceros al carbono y aceros galvanizados en materiales de bajo pH basados en OPC. Se detectó un inicio temprano de corrosión en los primeros debido al bajo pH presente en el fluido de los poros de estos materiales, sin detectarse problemas al emplear aceros galvanizados.

  19. Study on bentonite-based buffer material of radioactive waste disposal facility. Influence of cement leachate on bentonite impermeability

    International Nuclear Information System (INIS)

    Cementitious materials and bentonite are planned for use as engineered barriers for the disposal of TRU waste from nuclear fuel reprocessing. When groundwater penetrates cementitious material, hyperalkaline water containing Ca ions may leach out and change bentonite physicochemically, resulting in degradation of its barrier performance. Furthermore, ion concentration of groundwater may increase due to dissolution of nitrate salt in some wastes. To investigate the hydraulic characteristics of bentonite under the disposal environment, hydraulic conductivity tests were performed using hyperalkaline solutions that imitate cement leachate and sodium nitrate solution. It was shown that ion concentration of permeant solution and exchangeable cation type of smectite had a large impact on bentonite impermeability. (author)

  20. Status of the public debate on the general options of management of high and intermediate activity and long-lived radioactive wastes; Bilan du debat public sur les options generales en matiere de gestion des dechets radioactifs de haute activite et de moyenne activite a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprised 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is a status of the general organisation and progress of the debate from its preparing to its end in mid-January 2006. It shows the challenges the CNDP had to take up to treat the scientifical and technical questions in an accessible way, allowing the participation and the hearing of the large public. A status is made of the deception and satisfaction of the public. A lack of confidence in public authorities and scientists has been expressed several times. No pro-nuclear/anti-nuclear shock has occurred and the debate has revealed a remarkable richness in its content. One contribution of the debate to the future project of law is its enlargement to the overall nuclear wastes and valorizable materials and not only to the high/intermediate-level and long-lived wastes. (J.S.)

  1. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie A. [Washington State Univ., Pullman, WA (United States); Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  2. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    International Nuclear Information System (INIS)

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion, the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially

  3. Implications of theories of asteroid and comet impact for policy options for management of spent nuclear fuel and high-level radioactive wastes

    Science.gov (United States)

    Trask, Newell J.

    1994-01-01

    Concern with the threat posed by terrestrial asteroid and comet impacts has heightened as the catastrophic consequences of such events have become better appreciated. Although the probabilities of such impacts are very small, a reasonable question for debate is whether such phenomena should be taken into account in deciding policy for the management of spent fuel and high-level radioactive waste. The rate at which asteroid or comet impacts would affect areas of surface storage of radioactive waste is about the same as the estimated rate at which volcanic activity would affect the Yucca Mountain area. The Underground Retrievable Storage (URS) concept could satisfactorily reduce the risk from cosmic impact with its associated uncertainties in addition to providing other benefits described by previous authors.

  4. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...... separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste....

  5. Preparation of Cementitious Material Using Smelting Slag and Tailings and the Solidification and Leaching of Pb2+

    OpenAIRE

    Dan Zhang; Shiliu Shi; Chengbiao Wang; Xiaocong Yang; Lijie Guo; Shanshan Xue

    2015-01-01

    The composite cementitious materials were prepared with lead-zinc tailings, lead-zinc smelting slag, and cement clinker. The effect of material ratio on the mechanical properties, the phase analysis, and microstructures were investigated. The effect of the pH and stripping time on the leaching amount of lead ion was discussed. The results show that the additive amount of the tailings should be minimized for the cementitious materials meeting the strength requirements, controlled within 10%. T...

  6. Radioactive Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096

  7. Radioactive Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100

  8. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    International Nuclear Information System (INIS)

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of −2 to 16 milli person equivalents (mPE) Mg−1 wet waste (ww) for the non-toxic categories and −0.9 to 28 mPE Mg−1 ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.

  9. Shaft sealing concepts for high-level radioactive waste repositories based on the host-rock options rock salt and clay stone; Schachtverschlusskonzepte fuer zukuenftige Endlager fuer hochradioaktive Abfaelle fuer die Wirtsgesteinsoptionen Steinsalz und Ton

    Energy Technology Data Exchange (ETDEWEB)

    Kudla, Wolfram; Gruner, Matthias [TU Bergakademie Freiberg (Germany). Inst. fuer Erdbau und Spezialtiefbau; Herold, Philipp; Jobmann, Michael [DBE Technology GmbH, Peine (Germany)

    2015-07-01

    Unlike the shaft barriers used for the dry preservation of former mine workings and underground storage sites, shaft seals designed for radioactive-waste repositories must also fulfil additional requirements associated with the design diversity of the sealing system. This diversity makes use of the simple redundancy principle in order to prevent the proliferation of defects. In practice this means combining several sealing elements made from different materials or from materials with different properties. The R and D project, Shaft sealing systems for final repositories for high-level radioactive waste (ELSA) - phase 2: concept design for shaft seals and testing of the functional elements of shaft seals', which was funded by the Federal Ministry for Economic Affairs and Energy (BMWi), set out to investigate potential sealing elements for the two host-rock options rock salt and mudstone. This paper combines the text that the authors presented at the First International Freiberg Shaft Colloquium held at the Freiberg University of Mining and Technology on 01.10.2014 with a presentation on the sealing elements that were investigated as part of the R and D project.

  10. Methyl methacrylate as a healing agent for self-healing cementitious materials

    International Nuclear Information System (INIS)

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice

  11. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela;

    2014-01-01

    -induced corrosion (10, 50, and 100 mu A/cm(2)). X-ray attenuation measurements and visual investigations provided both qualitative and quantitative information on the penetration of solid corrosion products into the surrounding cementitious matrix. X-ray attenuation measurements provided time- and location-dependent...... concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... corrosion products. The conceptual model was implemented into a FEM based cracking model and compared to experimental results provided in the literature and obtained from DIC measurements. (C) 2013 Elsevier Ltd. All rights reserved....

  12. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective......The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution of...

  13. About microcracking due to leaching in cementitious composites: X-ray microtomography description and numerical approach

    International Nuclear Information System (INIS)

    Chemical shock of cement based materials leads to significant degradation of their physical properties. A typical scenario is a calcium leaching due to water (water with very low pH compared with that of pore fluid). The main objective of this paper is to evaluate the evolution of microstructure induced by leaching of a cementitious composite using synchrotron X-ray micro tomography, mainly from an experimental point of view. In this particular case, it was possible to identify cracking induced by leaching. After a description of the degradation mechanism and the X-ray synchrotron microtomographic analysis, numerical simulations are performed in order to show that cracking is induced by an initial pre-stressing of the composite, coupled with decalcification shrinkage and dramatic decrease in tensile strength during leaching. X-ray microtomography analysis allowed to make evidence of an induced microcracking in cementitious material submitted to leaching.

  14. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD,DTA and SEM technologies in combination with mechanical property experiment,the structure characteristics of samples were determined and their effects on cementitious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases,which mainly contributes to its glass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover,the amorphous samples possess hydrability which is affected by their formation process,since phase separation extends the range of possible Ca-rich crystalline phases.

  15. Setting and Strength Characteristics of Alkali-activated Carbonatite Cementitious Materials with Ground Slag Replacement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of the ground granulated blast-furnace slag (GGBFS) addition, the modulus n (mole ratio of SiO2 to Na2 O ) and the concentration of sodium silicate solution on the compressive strength of the ma terial, i e alkali-activated carbonatite cementitious material (AACCMfor short ) was investigated.In addition, it is found that barium chloride has a satisfactory retarding effect on the setting of AACCM in which more than 20% ( by mass ) groud carbonatite was replaced by GGBFS.As a result, a cementitious material, inwhich ground carbona tite rock served as dominative starting material, with 3-day and 28-da y compressive strength greater than 30 MPa and 60 MPa and with continuous strength gain beyond 90 days was obtained.

  16. Ion Transport and Microstructure of Sandwich Cementitious Materials Exposed to Chloride Environment

    Institute of Scientific and Technical Information of China (English)

    WANG Xingang; WANG Kai; WANG Rui; XIE Tao; HUANG Jie

    2015-01-01

    Ion transport of sandwich cementitious materials (SCM) exposed to chloride environment was investigated by accelerated diffusion method and natural diffusion method. Pore structure and micromorphology of SCM were investigated by MIP and SEM-EDS. In comparison with the monolayer structural high performance concrete (HPC), conductive charge for 6 hours, chloride diffusion coefficient, and apparent chloride diffusion coefifcient of SCM were decreased by 30%-40%, two orders of magnitude and 40%-50%, respectively. Pore structure of ultra low ion permeability cementitious materials (ULIPCM) prepared for the facesheet is superior to that of HPC prepared for the core. As for porosity, the most probable pore radius, the content of pores with radius 50 nm and the surface area of pores, the order is ULIPCM

  17. Transition from Multiple Macro-Cracking to Multiple Micro-Cracking in Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; LENG Bing

    2008-01-01

    This paper presents an experimental study of the possibility of transition from multiple macro-cracking to multiple micro-cracking in cementitious composites.Conventional polyvinyl alcohol fiber reinforced cementitious composites normally exhibit macroscopic strain-hardening and multiple cracking after the first cracks appear.However,the individual crack width at the saturated stage is normally 60 to 80 μm.In the current study,the effect of fine aggregate size on the cracking performance,especially the individual crack width in the strain-hardening stage was studied by bending tests.The results show that the individual crack widths can be reduced from 60-80 μm to 10-30 μm by modifying the particle size of the fine aggregates used in the composites.

  18. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    LI Yu; SUN HengHu; LIU XiaoMing; CUI ZengDi

    2009-01-01

    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD, DTA and SEM technologies in combination with mechanical prop-erty experiment, the structure characteristics of samples were determined and their effects on cemen-titious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases, which mainly contributes to its grass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover, the amorphous samples possess hydrability which is affected by their formation process, since phase separation extends the range of possible Ca-rich crystalline phases.

  19. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions.

    Science.gov (United States)

    Manso, Sandra; Calvo-Torras, María Ángeles; De Belie, Nele; Segura, Ignacio; Aguado, Antonio

    2015-04-15

    Incorporation of living organisms, such as photosynthetic organisms, on the structure envelope has become a priority in the area of architecture and construction due to aesthetical, economic and ecological advantages. Important research efforts are made to achieve further improvements, such as for the development of cementitious materials with an enhanced bioreceptivity to stimulate biological growth. Previously, the study of the bioreceptivity of cementitious materials has been carried out mainly under laboratory conditions although field-scale experiments may present different results. This work aims at analysing the colonisation of cementitious materials with different levels of bioreceptivity by placing them in three different environmental conditions. Specimens did not present visual colonisation, which indicates that environmental conditions have a greater impact than intrinsic properties of the material at this stage. Therefore, it appears that in addition to an optimized bioreceptivity of the concrete (i.e., composition, porosity and roughness), extra measures are indispensable for a rapid development of biological growth on concrete surfaces. An analysis of the colonisation in terms of genus and quantity of the most representative microorganisms found on the specimens for each location was carried out and related to weather conditions, such as monthly average temperature and total precipitation, and air quality in terms of NOx, SO2, CO and O3. OPC-based specimens presented a higher colonisation regarding both biodiversity and quantity. However, results obtained in a previous experimental programme under laboratory conditions suggested a higher suitability of Magnesium Phosphate Cement-based (MPC-based) specimens for algal growth. Consequently, carefully considering the environment and the relationships between the different organisms present in an environment is vital for successfully using a cementitious material as a substrate for biological growth. PMID

  20. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.