WorldWideScience

Sample records for cementite

  1. Cementite Decomposition in Spherical Graphite Iron by Electropulsing

    Institute of Scientific and Technical Information of China (English)

    Oingchun Li; Guowei Chang; Oijie Zhai

    2009-01-01

    The influence of electropulsing on cementite decomposition in the spherical graphite iron has been studied.The results indicated that the cementite was decomposed in a short time by high current density electropulsing.With increasing electropulsing time, the in situ nucleation of graphite in cementite was accompanied with the quick decomposition of cementite. The dislocation accumulation adjacent to the cementite and the quick diffusion of carbon atom by electropulsing were main reasons for the quick decomposition of cementite. The in situ nucleation of graphite in the cementite resulted from the dislocation climbing crossing the cementite lamellae.

  2. Deformation of cementite in cold drawn pearlitic steel wire

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Feng, E-mail: fangfeng@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Zhao, Yufei; Liu, Peipei; Zhou, Lichu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Hu, Xian-jun [Jiangsu Sha-Steel Group, Zhangjiagang 215625 (China); Zhou, Xuefeng [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Xie, Zong-han [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia)

    2014-07-01

    Nanostructural evolution of cementite lamellae in pearlitic steel wires subjected to cold drawing remains elusive, making it difficult to understand the origin of remarkable ductility in cementite. Using high-resolution transmission electron microscopy (HRTEM), the mechanisms underlying the inelastic deformation of cementite in pearlitic steel wires were examined and elucidated. Deformation of cementite in drawing should be included in two mechanisms: (1) Dislocation mechanism: deformation in low strain pearlite should rely on the movement of dislocation. Flat-crystal cementite was broken up into several different orientation cementite particles. (2) Grain rotation mechanism: the deformation mechanism should be by the rotation of cementite particles. Cementite still keeps lamellar shape, but it was divided into a multilayer structure: central nano-crystal and outermost amorphous cementite.

  3. Simulation of various possible cementite structures

    Science.gov (United States)

    Titorov, D. B.

    2007-04-01

    The simulation of the cementite structure has been performed without resorting to any preliminary assumptions. The spheres simulating the Fe and C atoms are closely packed in accordance with the rules of pair interpenetration. The maximum depth of the interpenetration in the Fe-C pair was accepted to be intermediate between the maximum depths of the penetration in the Fe-Fe and C-C pairs in ferrite and diamond, respectively. Under such conditions, six iron atoms penetrate into a carbon atom. The carbon atom turns out to be located inside octahedra, which can be of various shapes, while the centers of iron atoms occupy the vertices of these octahedra. The translation of the octahedra leads to the formation of orthorhombic cementite structures with identical or close parameters, but with different relative positions of carbon and iron atoms.

  4. Non-stoichiometric cementite by rapid solidification of cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Battezzati, L. [Dipartimento di Chimica IFM, Centro di Eccellenza NIS, Universita di Torino, Via P. Giuria 9, Turin 10125 (Italy)]. E-mail: livio.battezzati@unito.it; Baricco, M. [Dipartimento di Chimica IFM, Centro di Eccellenza NIS, Universita di Torino, Via P. Giuria 9, Turin 10125 (Italy); Curiotto, S. [Dipartimento di Chimica IFM, Centro di Eccellenza NIS, Universita di Torino, Via P. Giuria 9, Turin 10125 (Italy)

    2005-04-15

    This paper deals with rapidly solidified binary Fe-C alloys containing 3.8 wt% and 4.3 wt% C. Their microstructure reveals that, as an effect of undercooling, the conventional eutectics have been suppressed and there is occurrence of the ferrite-cementite eutectic. Both phases are metastable: ferrite is supersaturated in C and cementite has a C deficiency. This is demonstrated by means of determination of phase fractions in metallographic sections and of lattice parameters via Rietveld refinement of X-ray diffraction patterns. A major consequence of non-stoichiometricity of cementite is the reduced value of the Curie temperature (up to 17 deg. C) with respect to that of the equilibrium compound. The maximum C deficiency in Fe{sub 3}C{sub 1-x} is estimated as x = 0.02. The free energy of defective cementite has been computed by means of the two sublattice model and compared with that of ferrite and austenite obtained from an assessed phase diagram. It is shown that the non-stoichiometric phase is close in energy to the equilibrium one for a composition range of several atomic per cent. It is suggested that this helps in explaining the mechanism of cementite dissolution by heavy deformation of ferrous alloys, and the ease of cementite nucleation in castings.

  5. Ferromagnetic properties of hybrid cementite and diamond nanocomposite

    Directory of Open Access Journals (Sweden)

    Shao-Hui Kang

    2013-12-01

    Full Text Available A nanocomposite of cementite (Fe3C nanoparticles and diamond obtained via powder mixed dielectric-electrical discharge machining (PMD-EDM is investigated. The processed surface morphology exhibits various structures, including a white layer (machined surface and a heat-affected zone (HAZ. The concentration of the Fe element in the white layer is higher than that in the HAZ. The value of magnetization is about 0.1~0.5 mA/m2. Increasing the frequency of the pulse affects the ferromagnetic behavior of magnets fabricated using the PMD-EDM process.

  6. Origin of Predominance of Cementite among Iron Carbides in Steel at Elevated Temperature

    NARCIS (Netherlands)

    Fang, C.M.; Sluiter, M.H.F.; Van Huis, M.A.; Ande, C.K.; Zandbergen, H.W.

    2010-01-01

    A long-standing challenge in physics is to understand why cementite is the predominant carbide in steel. Here we show that the prevalent formation of cementite can be explained only by considering its stability at elevated temperature. A systematic highly accurate quantum mechanical study was conduc

  7. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron...

  8. Effects of deformation parameters on formation of pro-eutectoid cementite in hypereutectoid steels

    Institute of Scientific and Technical Information of China (English)

    管仁国; 赵占勇; 钞润泽; 刘相华

    2014-01-01

    Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.

  9. Effect of Microstructure of Cementite on Interphase Stress State in Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    CHE Lei; GOTOH Masahide; HORIMOTO Yoshiaki; HIROSE Yukio

    2007-01-01

    The experiments related to stress states of ferrite and cementite in carbon steels were carried out including in situ four-point bending and tensile test by X-ray diffraction technique. Stresses in the cementite phase can be measured by conventional X-ray diffraction instrument after a specific treatment on the specimen surface. In order to estimate the stress states in two phases, the X-ray elastic constants of two phases in single-phase state (PXEC) are determined by the experimental X-ray elastic constants of them in composite state (CXEC). The effects of volume fraction and particle size of spheroidal cementite on the interphase stress state are estimated. The experimental results are in good agreement with the theoretical relationships reported in the previous studies.

  10. Simulations of cementite: An analytical potential for the Fe-C system

    Science.gov (United States)

    Henriksson, K. O. E.; Nordlund, K.

    2009-04-01

    An analytical bond-order interatomic potential has been developed for the iron-carbon system for use in molecular-dynamics and Monte Carlo simulations. The potential has been successfully fitted to cementite and Hägg carbide, which are most important crystalline polytypes among the many known metastable iron carbide phases. Predicted properties of other carbides and the simplest point defects are in good to reasonable agreement with available data from experiments and density-functional theory calculations. The potential correctly describes melting and recrystallization of cementite, making it useful for simulation of steels. We show that they correctly describe the metastability of cementite and can be used to model carbide growth and dissolution.

  11. Theory for reaustenitization from ferrite/cementite mixture in Fe-C-X steels

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C.; Akbay, T. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom); Reed, R.C. [Dept. of Materials Science and Metallurgy, Cambridge (United Kingdom)

    1995-05-01

    Phase transformation theory for the formation of austenite from substitutionally alloyed ferrite/cementite mixtures is discussed. The local equilibrium assumption is adopted. Diffusion of carbon in ferrite and cementite is ignored, together with the ternary diffusion interactions. The ferrite and cementite phases are assumed to be semi-infinite in extent, so that soft impingement effects are not accounted for. Subject to these assumptions, exact solutions are presented for one-dimensional (planar) growth. The solution method involves the determination of the appropriate tie-lines at the cementite/austenite and austenite/ferrite interfaces. Potential numerical difficulties which arise in determining the solution are discussed. It is found that for reasonable values of the diffusion coefficients involved, the governing equations can be simplified. The results are presented in the form of reverse time-temperature-transformation diagrams, and comparisons with recent results for reaustenitization from binary Fe-C steels are made. The effects of silicon and manganese as ternary alloying additions are quantified.

  12. Orientation Relationships between Ferrite and Cementite by Edge-to-edge Matching Principle

    Institute of Scientific and Technical Information of China (English)

    Ning Zhong; Xiaodong Wang; Zhenghong Guo; Yonghua Rong

    2011-01-01

    The crystallographic features of pearlite were investigated by experiments and edge-to-edge matching principle. Two new orientation relationships between ferrite and cementite were determinated by selected area electron diffraction and then explained by our modified edge-to-edge matching method. The consistence of the experimental results with theoretical prediction confirms the practicability of the modified edge-to-edge matching model.

  13. Calculation of the valence electron structures of alloying cementite and its biphase interface

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 刘伟东

    2001-01-01

    The valence electron structures of alloying cementite θ-(Fe, M)3C and ε-(Fe, M)3C andthose of the biphase interfaces between them and α-Fe are calculated with Yu's empirical electrontheory of solid and molecules. The calculation results accord with the actual behavior of alloys.

  14. Hypereutectoid cementite morphology and mechanical properties of Cr-Ni-Mo cast steel

    Directory of Open Access Journals (Sweden)

    E. Rożniata

    2006-04-01

    Full Text Available Purpose: The paper presents evaluation of the influence of grain normalization (refinement as a result of repeated austenitizing, cooling rate after repeated austenitizing on the morphology of hypereutectoid cementite and fracture toughness of G200CrMoNi4-6-3 cast steel. Moreover, the elimination of hypereutectoid cementite in structure of Widmannstätten type precipitates from the structure of investigated cast steel has been undertaken.Design/methodology/approach: Basic research of G200CrMoNi4-6-3 cast steel included metallographic analysis and fracture toughness research (impact strength, stress intensity factor KIc. The heat treatment has been planned on the basis of CCT diagram prepared for that cast steel.Findings: Heat treatment of investigated cast steel allows to refine the grain and eliminate from it’s structure the hypereutectoid cementite in structure of Widmannstätten type. At very low cooling rate the precipitates of hypereutectoid cementite become partially coagulated. The study of the influence of cooling rate on the mechanical properties of G200CrMoNi4-6-3 cast steel had proven that elimination of hypereutectoid cementite in structure of Widmannstätten type from the investigated cast steel structure to small degree increases it’s fracture toughness.Research limitations/implications: Research financed by the Ministry of Scientific Research and Information Technology, grant No. 3 T08B 057 29.Practical implications: G200CrMoNi4-6-3 cast steel of ledeburite class is used mainly for rolls production. Any data related to the structure and mechanical properties of that cast steel are precious for the manufacturers and users of the mill rolls.Originality/value: The new heat treatment of G200CrMoNi4-6-3 cast steel.

  15. Lattice strain measurements using synchrotron diffraction to calibrate a micromechanical modeling in a ferrite-cementite steel

    Energy Technology Data Exchange (ETDEWEB)

    Taupin, V.; Pesci, R. [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux, LEM3, CNRS, University of Lorraine/Arts et Metiers ParisTech, Metz Cedex 57045 (France); Berbenni, S., E-mail: stephane.berbenni@univ-lorraine.fr [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux, LEM3, CNRS, University of Lorraine/Arts et Metiers ParisTech, Metz Cedex 57045 (France); Berveiller, S.; Ouahab, R. [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux, LEM3, CNRS, University of Lorraine/Arts et Metiers ParisTech, Metz Cedex 57045 (France); Bouaziz, O. [Arcelor Research, Arcelor Mittal, Maizieres-les-Metz 57210 (France)

    2013-01-20

    In situ tensile tests were performed at room temperature on a ferrite-cementite steel specifically designed for this study. The evolution of the average stress in ferrite during loading was analyzed by X-ray diffraction. Lattice strain measurements were performed with synchrotron ring diffraction in both ferrite and cementite. These in situ tests were complemented by macroscopic tensile and reversible tensile-compression tests to study the Bauschinger effect. In order to reproduce stresses in ferrite and cementite particles, a recently developed micromechanical Internal Length Mean Field (ILMF) model based on a generalized self-consistent scheme is applied. In this designed ferrite-cementite steel, the third 'phase' of the model represents finite intermediate 'layers' in ferrite due to large geometrically necessary dislocation (GND) densities around cementite particles. The assumed constant thickness of the layers is calibrated thanks to the obtained experimental data. The ILMF model is validated by realistic estimates of the Bauschinger stress and the large difference between mean stresses in ferrite and in cementite phases. This difference cannot be reproduced by classic two-phase homogenization schemes without intermediate GND layers.

  16. Modeling Growth and Dissolution Kinetics of Grain-Boundary Cementite in Cyclic Carburizing

    Science.gov (United States)

    Ikehata, Hideaki; Tanaka, Kouji; Takamiya, Hiroyuki; Mizuno, Hiroyuki; Shimada, Takeyuki

    2013-08-01

    In vacuum carburizing of steels, short-time carburizing is usually followed by a diffusion period to eliminate the filmlike cementite ( θ GB ) grown on the austenite ( γ) grain boundary surface. In order to obtain the θ GB amount during the process, the conventional model estimates the amount of cementite ( θ) with the equilibrium fractions for local C contents within a framework of the finite difference method (FDM), which overestimates the amount of θ GB observed after several minutes of carburizing. In our newly developed model, a parabolic law is assumed for the growth of θ GB and the rate controlling process is considered to be Si diffusion rejected from θ under the isoactivity condition. In contrast, the rate constant for the dissolution of θ GB is considered to be controlled by Cr diffusion of θ. Both rate coefficients ( α) were validated using multicomponent diffusion simulation for the moving velocity of the γ/ θ interface. A one-dimensional (1-D) FDM program calculates an increment of θ GB for all grid points by the updated diffusivities and local equilibrium using coupled CALPHAD software. Predictions of the carbon (C) profile and volume fraction of cementite represent the experimental analysis much better than the existing models, especially for both short-time carburization and the cyclic procedure of carburization and diffusion processes.

  17. Controlled manufacturing of nanoparticles by the laser pyrolysis: Application to cementite iron carbide

    Science.gov (United States)

    Morjan, I.; Alexandrescu, R.; Scarisoreanu, M.; Fleaca, C.; Dumitrache, F.; Soare, I.; Popovici, E.; Gavrila, L.; Vasile, E.; Ciupina, V.; Popa, N. C.

    2009-09-01

    The laser pyrolysis is an attractive technique for the synthesis of different nanostructures from gas-phase precursors. The characteristics of this synthesized method are here exemplified by the production of almost pure cementite Fe 3C nanomaterials, obtained by the pyrolysis of methyl methacrylate and iron pentacarbonyl (vapors). Those nanopowders exhibited core (Fe 3C)-shell (MMA polymer-based) morphologies and mean particle diameters of about 8-9 nm. Preliminary magnetic measurements indicate rather high values for the saturation magnetization. By irradiating the same reactive mixture with a lower intensity radiation, the chemical content of nanopowders shifts towards mixtures of iron and maghemite/magnetite iron oxides.

  18. Quantitative analysis of carbon in cementite using pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, H.S., E-mail: hiroto.kitaguchi@twi.co.uk; Lozano-Perez, S.; Moody, M.P.

    2014-12-15

    Carbon quantification and the standardisation in a pure cementite were conducted using pulsed-laser atom probe tomography (APT). The results were analysed to investigate a dependence on three distinct experimental parameters; the laser pulse energy, the cryogenic specimen temperature and the laser pulse frequency. All the measurements returned an apparent carbon content of 25.0±1.0 at%. Carbon content measurements showed no clear dependence on the cryogenic temperature or the laser pulse frequency. However, the results did demonstrate a strong correlation with the laser pulse energy. For lower laser pulse energies, the analysis returned carbon contents higher than the stoichiometric ratio. It was suggested that this effect is due to pile up of {sup 56}Fe{sup ++} at the detector and as a consequence there is a systematic preferential loss of these ions throughout the course of the experiment. Conversely, in experiments utilising higher laser pulse energies, it was found that the carbon contents were smaller than the stoichiometric ratio. In these experiments an increasing fraction of the larger carbon molecular ions (e.g., C{sub 5} ions) were detected as part of a multiple detection events, which could affect the quantification measurements. - Highlights: • This paper describes carbon quantifications in cementite. • Laser pulsed atom probe tomography successfully quantified the carbon content. • A unique background subtraction method was applied. • Deviations from the stoichiometry were discussed.

  19. Controlled manufacturing of nanoparticles by the laser pyrolysis: Application to cementite iron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Morjan, I. [National Institute for Lasers, Plasma and Radiation Physics, POB MG-36, 077125 Bucharest (Romania); Alexandrescu, R., E-mail: ralexandrescu2001@yahoo.co.uk [National Institute for Lasers, Plasma and Radiation Physics, POB MG-36, 077125 Bucharest (Romania); Scarisoreanu, M.; Fleaca, C.; Dumitrache, F.; Soare, I.; Popovici, E.; Gavrila, L. [National Institute for Lasers, Plasma and Radiation Physics, POB MG-36, 077125 Bucharest (Romania); Vasile, E. [METAV-CD, 31 Dr. C.A. Roseti, 020011 Bucharest (Romania); Ciupina, V. [' Ovidius' University of Constanta, Bd. Mamaia 124, Constanta (Romania); Popa, N.C. [Romanian Academy-Timisoara Branch, Magnetic Fluids Laboratory, Timisoara (Romania)

    2009-09-30

    The laser pyrolysis is an attractive technique for the synthesis of different nanostructures from gas-phase precursors. The characteristics of this synthesized method are here exemplified by the production of almost pure cementite Fe{sub 3}C nanomaterials, obtained by the pyrolysis of methyl methacrylate and iron pentacarbonyl (vapors). Those nanopowders exhibited core (Fe{sub 3}C)-shell (MMA polymer-based) morphologies and mean particle diameters of about 8-9 nm. Preliminary magnetic measurements indicate rather high values for the saturation magnetization. By irradiating the same reactive mixture with a lower intensity radiation, the chemical content of nanopowders shifts towards mixtures of iron and maghemite/magnetite iron oxides.

  20. Fracture and Tensile Properties of Polyvinyl Alcohol Fiber Reinforced Cementitous Composites

    Institute of Scientific and Technical Information of China (English)

    XU Shilang; GAO Shuling

    2008-01-01

    Experiments were carried out to design polyvinyl alcohol(PVA)fiber reinforced cementitous composites(PVA-FRCCs)holding high ductility and energy consumption ability.Besides,the properties of each ingredients in composites,mixing method and technology for fresh mixture were described in detail.Then,the pseudo-strain-hardening(PSH)behavior was investigated in uniaxial tension test.As a result,them maximum ultimate tensile strain can reach 0.7 percent.On the other hand,the single edge notch(SEN)thin sheet specimens were employed to gain the normal tensile load via crack mouth opening displacement(CMOD)curves,which can show obvious PSH behavior.In addition,the curves can be divided into four zones whose fracture toughness calculation methods were discussed.The wedge splitting(WS)test method can be applied to discuss the fracture toughness.Moreover,fracture energy of SEN and WS specimens were both approximately evaluated.

  1. Comparative study and quantification of cementite decomposition in heavily drawn pearlitic steel wires

    Energy Technology Data Exchange (ETDEWEB)

    Lamontagne, A. [University of Lyon, INSA Lyon, MATEIS–UMR CNRS 5510, Bât. St Exupéry, 3ème étage, 25 Avenue Jean Capelle, Villeurbanne Cedex 69621 (France); Massardier, V., E-mail: veronique.massardier@insa-lyon.fr [University of Lyon, INSA Lyon, MATEIS–UMR CNRS 5510, Bât. St Exupéry, 3ème étage, 25 Avenue Jean Capelle, Villeurbanne Cedex 69621 (France); Kléber, X. [University of Lyon, INSA Lyon, MATEIS–UMR CNRS 5510, Bât. St Exupéry, 3ème étage, 25 Avenue Jean Capelle, Villeurbanne Cedex 69621 (France); Sauvage, X. [University of Rouen, GPM, UMR CNRS 6634, BP 12, Avenue de l’Université, 76801 Saint-Etienne du Rouvray (France); Mari, D. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne, Station 3, Lausanne CH-1015 (Switzerland)

    2015-09-17

    Heavily cold-drawing was performed on a pearlitic steel wire and on an ultra-low carbon (ULC) steel wire in order to highlight and quantify the microstructural changes caused by this type of deformation. Both global techniques (thermoelectric power, electrical resistivity, internal fiction background) and local techniques (Atom Probe Tomography) were combined for this study. It was shown that two distinct stages have to be taken into account during the cold-drawing of pearlitic steels. The first stage (below a true strain of 1.5) was attributed mainly to the lamellar alignment, while the second stage (above a true strain of 1.5) was unambiguously interpreted as being due to a gradual enrichment of the carbon content of ferrite arising from the strain induced cementite decomposition. The carbon content in solid solution in ferrite was assessed as a function of the true strain. All the techniques showed that this carbon content exceeds the solubility limit of carbon in the ferrite above a true strain of 2.2. A correlation between the increase in the carbon content of ferrite and the increase in yield strength was also highlighted. Moreover, a scenario was proposed to explain the microstructural changes caused by drawing.

  2. Analysis of the variation in nanohardness of pearlitic steel: Influence of the interplay between ferrite crystal orientation and cementite morphology

    Energy Technology Data Exchange (ETDEWEB)

    Debehets, Jolien, E-mail: jolien.debehets@mtm.kuleuven.be [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium); Tacq, Jeroen [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium); Favache, Audrey; Jacques, Pascal [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain-la-Neuve (Belgium); Seo, Jin Won; Verlinden, Bert; Seefeldt, Marc [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium)

    2014-10-20

    The influence of the relative orientation of the ferrite crystallite lattice and the cementite lamellae on the hardness of pearlitic steel has been investigated by a combination of nanoindentation and electron microscopy (electron back scatter diffraction (EBSD) and scanning electron microscopy (SEM)). Three pearlitic samples, each with a different interlamellar spacing, and one ferritic sample were nanoindented. Although the hardness of the ferritic sample is very similar at different spots on the sample, a large variation in hardness is obtained on each of the pearlitic samples. It has been found that this variation cannot be accounted for solely by the variation in interlamellar spacing and is related to differences in ferrite crystal orientation. As to explain the observed large variation in hardness, the ferrite crystal orientation was considered relative to the cementite lamellae orientation by calculation of the distance dislocations can glide between adjacent lamellae in the slip direction. However, no clear correlation was found for a scaling of this orientation factor with the hardness. Possible interpretations of this discrepancy are suggested.

  3. In-line x-ray phase-contrast tomography and diffraction-contrast tomography study of the ferrite-cementite microstructure in steel

    NARCIS (Netherlands)

    Kostenko, A.; Sharma, H.; Gözde Dere, E.; King, A.; Ludwig, W.; Van Oel, W.; Offerman, S.E.; Stallinga, S.; Van Vliet, L.J.

    2011-01-01

    This work presents the development of a non-destructive imaging technique for the investigation of the microstructure of cementite grains embedded in a ferrite matrix of medium-carbon steel. The measurements were carried out at the material science beamline of the European Synchrotron Radiation Faci

  4. ECAP温变形制备亚微晶钢中渗碳体变形特征%Characteristics of cementite deformation in submicrometer grained steel by equal channel angular pressing

    Institute of Scientific and Technical Information of China (English)

    冯广海; 黄俊霞; 杜忠泽; 王经涛; 赵西成

    2011-01-01

    采用透射和扫描电子显微镜研究了ECAP变形中渗碳体的变形特征.结果表明:片状渗碳体相主要以弯曲变形、剪切变形、拉伸变形、扭折变形和剪断变形5种方式协调ECAP剧烈塑性变形,这表明在本实验ECAP纯剪切变形条件下钢中硬而脆的渗碳体相具有良好的塑性变形能力.渗碳体片层的变形方式主要是取决于渗碳体所处的应力状态,而渗碳体所处的应力状态是与渗碳体的片层取向和片层厚度密切相关,其中渗碳体的片层厚度起决定性作用.%Characteristics of cementite deformation in a submicrometer grained steel by warm ECAP was investigated by means of scanning electron microscopy( SEM ) and transmission electron microscopy (TEM) technique. The results show that the deformation modes of cementite lamellae in steel include bending deformation, shearing deformation, tension deformation, kinking deformation and shearing fracture without cracking in order to coordinate the severe shear deformation in ECAP. It indicates that the hard and brittle cementite lamellae in steel have a considerable ability of plastic deformation under the present shear deformation conditions. The deformation coordination mode of cementite lamellae in steel is very closely related to the stress state of cementite lamellae which significantly depends on cementite lamellae thickness and orientation relationship between the cementite lamellae and shear stress direction, especially on cementite lamellae thickness.

  5. A first-principles study of cementite (Fe3C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Science.gov (United States)

    Ghosh, G.

    2015-08-01

    A comprehensive computational study of elastic properties of cementite (Fe3C) and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C) having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, Cij, of above M3Cs; (ii) anisotropies of bulk, Young's and shear moduli, and Poisson's ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young's moduli and Poisson's ratio) of M3Cs by homogenization of calculated Cijs; and (iv) acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  6. A first-principles study of cementite (Fe3C and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Directory of Open Access Journals (Sweden)

    G. Ghosh

    2015-08-01

    Full Text Available A comprehensive computational study of elastic properties of cementite (Fe3C and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT, all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA. Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i single-crystal elastic constants, Cij, of above M3Cs; (ii anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii isotropic (polycrystalline elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio of M3Cs by homogenization of calculated Cijs; and (iv acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  7. A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction.

    Science.gov (United States)

    Wu, Tianxing; Zhang, Haimin; Zhang, Xian; Zhang, Yunxia; Zhao, Huijun; Wang, Guozhong

    2015-11-01

    In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high temperature pyrolysis of CWMs adsorbed with ferric acetylacetonate (Fe(acac)3) at 900 °C. It was found that a suitable growth atmosphere generated inside CWMs during high temperature pyrolysis is critically important to form Fe3C nanocrystal cores, concurrently accompanying a structural transformation from chitosan whiskers to mesoporous graphitic carbon shells with natural nitrogen (N) doping properties, resulting in the formation of a core-shell structure Fe3C@NGC nanocomposite. The resulting samples were evaluated as electrocatalysts for oxygen reduction reaction (ORR). In comparison with sole N-doped graphitic carbon without Fe3C nanocrystals obtained by direct pyrolysis of chitosan whisker microspheres at 900 °C (CWMs-900), Fe3C@NGC showed significantly improved ORR catalytic activity. The tolerance to fuel cell molecules (e.g., methanol) and the durability of Fe3C@NGC are obviously superior to commercial Pt/C catalysts in alkaline media. The high ORR performance of Fe3C@NGC could be due to its large surface area (313.7 m(2) g(-1)), a synergistic role of Fe3C nanocrystals, N doping in graphitic carbon creating more catalytic active sites, and a porous structure of the nanocomposite facilitating mass transfer to efficiently improve the utilization of these catalytic active sites.

  8. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, G., E-mail: g-ghosh@northwestern.edu [Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  9. Microstructural evolution of lamellar cementite in eutectoid steels by cold rolling%共析钢中片层状渗碳体冷轧后的形态变化

    Institute of Scientific and Technical Information of China (English)

    王莉; 郝士明

    2005-01-01

    The pearlitic transformation and the deformation behavior of lamellar cementite after cold rolling in eutectoid steels Fe-0.76%C-0. 137%Mn (mass fraction) were studied by means of Formastor-F (Full Automatic Transformation Testing Instrument) and field emission scanning electronic microscopy (FESEM) observation. Fine and coarse pearlite were obtained in the eutectoid steels austenitized at 900 ℃ for 15min, then hold at 620 ℃ for 90 s and 690 ℃ for 7 h, respectively. Thedeformation behavior of cold rolled lamellar cementite could be classified as: cleavage fracture, inhomogeneous slip, fragmentation, thinning or necking, and homogeneous bending. The cementite lamellae with the thickness of more than 100 nm could be deformed plastically.

  10. Cascades in model steels: The effect of cementite (Fe3C) and Cr23C6 particles on short-term crystal damage

    Science.gov (United States)

    Henriksson, K. O. E.

    2015-06-01

    Ferritic stainless steel can be modeled as an iron matrix containing precipitates of cementite (Fe3C) and Cr23C6. When used in nuclear power production the steels in the vicinity of the core start to accumulate damage due to neutrons. The role of the afore-mentioned carbides in this process is not well understood. In order to clarify the situation bulk cascades created by primary recoils in model steels have been carried out in the present work. Investigated configurations consisted of bulk ferrite containing spherical particles (diameter of 4 nm) of either (1) Fe3C or (2) Cr23C6. Primary recoils were initiated at different distances from the inclusions, with recoil energies varying between 100 eV and 1 keV. Results for the number of point defects such as vacancies and antisites are presented. These findings indicate that defects are also remaining when cascades are started outside the carbide inclusions. The work uses a recently developed Abell-Brenner-Tersoff potential for the Fe-Cr-C system.

  11. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING%超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算

    Institute of Scientific and Technical Information of China (English)

    王斌; 刘振宇; 周晓光; 王国栋

    2013-01-01

    根据KRC和LFG模型提出的Fe-C合金的奥氏体相变机制,系统地计算了过冷奥氏体的相变驱动力,从热力学的角度分析了过冷奥氏体分解生成纳米级渗碳体颗粒的可能性,并且在热轧后超快速冷却的条件下,发现热轧亚共析钢的组织中存在大量纳米级渗碳体弥散分布的区域,渗碳体的尺寸在十到几十纳米,实现了在无微合金元素添加的条件下渗碳体的纳米级析出.此外,在过冷奥氏体组织中先共析铁素体附近存在大量的富C区,根据平衡浓度计算,局部C的摩尔分数可达到0.04-0.08,这部分高浓度的奥氏体分解析出纳米级渗碳体的倾向性更大.%In order to meet both the development requirements for reduction in cost and strengthening, recently, the research of precipitation of cementites, as the most economical and common precipitates in steels, has drawn wide attention in the field of precipitation strengthening again, because if cementites could be effectively refined to the scale of a few nanometers, it could also generate very strong precipitation strengthening effects to replace the strengthening role of the precipitates of micro-alloying elements. However, the cementites in hypoeutectoid steels usually form lamellar pearlite structure in near-equilibrium conditions, unable to form the precipitation of nanoscale particles, and they tend to be coarsened significantly at high temperatures after hot rolling. Therefore, the non-equilibrium precipitation of cementites only could be realized by increasing cooling rate after hot rolling, and the thermodynamic feasibility for the formation of nanoscale cementite precipitates during cooling has to be determined. In this work, according to the austenitic transformation mechanism of KRC and LFG models in Fe-C alloys, the transformation driving force of undercooled austen-ite was calculated systematically in a thermodynamic view, and the effect of ultra fast cooling (UFC) after hot

  12. Cascades in model steels: The effect of cementite (Fe{sub 3}C) and Cr{sub 23}C{sub 6} particles on short-term crystal damage

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, K.O.E.

    2015-06-01

    Ferritic stainless steel can be modeled as an iron matrix containing precipitates of cementite (Fe{sub 3}C) and Cr{sub 23}C{sub 6}. When used in nuclear power production the steels in the vicinity of the core start to accumulate damage due to neutrons. The role of the afore-mentioned carbides in this process is not well understood. In order to clarify the situation bulk cascades created by primary recoils in model steels have been carried out in the present work. Investigated configurations consisted of bulk ferrite containing spherical particles (diameter of 4 nm) of either (1) Fe{sub 3}C or (2) Cr{sub 23}C{sub 6}. Primary recoils were initiated at different distances from the inclusions, with recoil energies varying between 100 eV and 1 keV. Results for the number of point defects such as vacancies and antisites are presented. These findings indicate that defects are also remaining when cascades are started outside the carbide inclusions. The work uses a recently developed Abell–Brenner–Tersoff potential for the Fe–Cr–C system.

  13. REFERENCE CASES FOR USE IN THE CEMENTITOUS PARTNERSHIP PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Kosson, D.; Garrabrants, A.

    2010-08-31

    The Cementitious Barriers Partnership Project (CBP) is a multi-disciplinary, multi-institution cross cutting collaborative effort supported by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (i) a common set of system configurations to illustrate the methods and tools developed by the CBP, (ii) a common basis for evaluating methodology for uncertainty characterization, (iii) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, (iv) a basis for experiments and model validation, and (v) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (i) a cementitious low activity waste form in a reinforced concrete disposal vault, (ii) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (iii) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations.

  14. Reinforced cementitous composite with in situ shrinking microfibers

    Science.gov (United States)

    Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh

    2017-03-01

    This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.

  15. DETERMINATION OF FERRITE-CEMENTITE INTERLAMELLAR SPACINGS IN STEELS, USING COMPUTER TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    D. A. Novick

    2012-01-01

    Full Text Available The algorithm of determination of an average inter-plate distance according to the computer image of the microstructure, enabling to improve degree of work automation of metallurgist is offered.

  16. A bioactive dental luting cement--its retentive properties and 3-year clinical findings.

    Science.gov (United States)

    Jefferies, Steven R; Pameijer, Cornelis H; Appleby, David C; Boston, Daniel; Lööf, Jesper

    2013-02-01

    A clinical validation study was conducted to determine the performance of a new bioactive dental cement (Ceramir C&B, Doxa Dental AB) for permanent cementation. The cement is a new formulation class, which is a hybrid material comprised of calcium aluminate and glass-ionomer components. A total of 38 crowns and bridges were cemented in 17 patients; 31 of the abutment teeth were vital and seven were non-vital. Six restorations were bridges with a total of 14 abutment teeth (12 vital/ two non-vital). One fixed splint comprising two abutment teeth was also included. Preparation parameters were recorded, as well as cement characteristics such as working time, setting time, seating characteristics, and ease of cement removal. Baseline data were recorded for the handling of the cement, gingival inflammation, and pre-cementation sensitivity. Post-cementation parameters included post-cementation sensitivity, gingival tissue reaction, marginal integrity, and discoloration. All patients were seen for recall examinations at 30 days and 6 months. Fifteen of 17 subjects and 13 of 17 patients were also available for subsequent comprehensive 1- and 2-year recall examination, and 13 patients were available for a 3-year recall examination. Restorations available for the 3-year recall examination included 14 single-unit full-coverage crown restorations, four three-unit bridges comprising eight abutments, and one two-unit splint. Three-year recall data yielded no loss of retention, no secondary caries, no marginal discolorations, and no subjective sensitivity. All restorations rated excellent for marginal integrity. Average visual analogue scale (VAS) score for tooth sensitivity decreased from 7.63 mm at baseline to 0.44 mm at 6-month recall, 0.20 mm at 1-year recall, and 0.00 mm at 2- and 3-year recall. Average gingival index (GI) score for gingival inflammation decreased from 0.56 at baseline to 0.11 at 6-month recall, 0.16 at 1-year recall, 0.21 at 2-year recall, and 0.07 at 3-year recall. After periodic recalls up to 3 years, Ceramir C&B thus far has performed quite favorably as a luting agent for permanent cementation of permanent restorations. In-vitro crown-coping retention studies were also conducted using this cement and various control cementation materials. Mean laboratory retentive forces measured for Ceramir C&B were comparable to other currently available luting agents for both metal and all-ceramic indirect restorative materials.

  17. THE EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF UNCOATED CEMENTIT CARBIDE INSERT AND CUTTING PARAMETERS ON SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Hasan GÖKKAYA

    2006-01-01

    Full Text Available In this work, AISI 1030 steel has been machined on a CNC lathe without cutting fluid, at various cutting speed and feed rate values with a constant depth of cut. Effect of cutting speed and feed rate on surface rougness were investigated by machining AISI 1030 steel by a carbide insert without coating. In the experiments five different feed rate values between 0.25 and 0.45 mm/dev and three different cutting speed settings 100, 200 and 300 m/dak were used. It is found that at lower feed rates, lower surface roughness is and at higher cutting speeds, higher surface roughness values are obtained. The lessening of cutting speed about 80 % improves the surface roughness 215 %, by increasing the cut-off rate about 200 % obtained an improvement of 13% respectively.

  18. A density-functional study of the phase diagram of cementite-type (Fe,Mn)3C at absolute zero temperature.

    Science.gov (United States)

    Von Appen, Jörg; Eck, Bernhard; Dronskowski, Richard

    2010-11-15

    The phase diagram of (Fe(1-x) Mn(x))(3)C has been investigated by means of density-functional theory (DFT) calculations at absolute zero temperature. The atomic distributions of the metal atoms are not random-like as previously proposed but we find three different, ordered regions within the phase range. The key role is played by the 8d metal site which forms, as a function of the composition, differing magnetic layers, and these dominate the physical properties. We calculated the magnetic moments, the volumes, the enthalpies of mixing and formation of 13 different compositions and explain the changes of the macroscopic properties with changes in the electronic and magnetic structures by means of bonding analyses using the Crystal Orbital Hamilton Population (COHP) technique.

  19. Morphology of the cementite in archaeological steels that have suffered fire; Morfologia de la cementita en aceros arqueologicos que han sufrido incendio

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Martin, A. J.; Garcia, L.; Carton, M.; Criado-Portal, A. J.; Dietz, C.; Martinez, J. A.

    2013-07-01

    We present a metallographic study of archaeological artefacts of steel, had been found in different archaeological sites, which characteristic microstructures reveal that have been affected by levels of fire. Study was performed using FEG (Field Emission Gun). In the laboratory, they are reproduced structures of steels archaeological. (Author)

  20. 用于直接拉拔的低渗碳体含量的珠光体盘条%Pearlitic Steel Wire Rods with Low Cementite Volume Fraction for Direct Drawing

    Institute of Scientific and Technical Information of China (English)

    Chul Min Bae; Young Jun Song; Seong Wook Yim; 窦光聚

    2004-01-01

    具有几乎全珠光体的中碳钢线材可以不经过铅浴淬火直接拉拔到Ф1.0mm钢丝,通过控制奥氏体晶粒尺寸和转变温度可得到这种组织,但在斯太尔摩(Stelmor)生产线上控制这种组织有些困难,因此,添加合金元素是用于斯太尔摩生产线上增加线材的珠光体体积分数的有效方法。Cr和Mn是减少

  1. Determination of the easy axes of small ferromagnetic precipitates in a bulk material by combined magnetic force microscopy and electron backscatter diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Batista, L., E-mail: leonardo.batista@izfp.fraunhofer.de [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Rabe, U. [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); University of the Saarland, LZPQ, 66123 Saarbrücken (Germany); Hirsekorn, S. [Fraunhofer Institute for Non-destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany)

    2014-11-15

    A method to determine the magnetic easy axes of micro- and nanoscopic ferromagnetic precipitates embedded in a bulk material is proposed and applied to globular cementite (Fe{sub 3}C) embedded in a ferrite matrix. The method combines magnetic force microscopy (MFM) with electron backscattered diffraction (EBSD) measurements. Magnetic domain structures in globular and in lamellar cementite precipitates in unalloyed pearlitic steels were imaged using MFM. The domain structure of the precipitates was analyzed in dependency of their size, shape and crystallographic orientation. It was found that the magnetic moments of the cementite precipitates are highly geared to their crystalline axes. The combined MFM and EBSD studies allow the conclusion that the cementite easy direction of magnetization is the long [010] axis. For fine lamellae cementite the determination of their crystallographic orientations using electron diffraction techniques is very difficult. With the previous knowledge of the behavior of the domain structure in globular cementite, the crystalline orientations of the fine lamellae cementite can be estimated by simply observing the magnetic microstructures and the topographic profiles. - Highlights: • We develop a method to determine the easy axes of nanoscopic ferromagnetic precipitates in a matrix. • We combine the magnetic force microscopy and the electron backscatter diffraction techniques. • Globular and lamellar cementite (Fe{sub 3}C) precipitates are taken as examples. • MFM images revealed different orientations of the magnetic moments in cementite. • The cementite easy direction of magnetization is the long [010] axis.

  2. Characteristic Features of Nanoscale Сarbide Inclusions Nucleation and Growth When Carburizing Steels

    Directory of Open Access Journals (Sweden)

    L.I. Roslyakova

    1990-01-01

    Full Text Available Thermodynamic calculations of the free energy of the formation of cementite type nanoscale carbides in supersaturated austenite alloyed with chromium and manganese are presented. It is shown that when carburizing steel, chromium stabilizing cementite facilitates its separation, in the form of dispersed inclusions. Manganese stabilizes cementite much weaker than chromium, though facilitates the growth of carbide inclusions due to the formation of the intermediate ε-phase at a reduced carbon content.

  3. Microstructure of Hot Rolled 1.0C-1.5Cr Bearing Steel and Subsequent Spheroidization Annealing

    Science.gov (United States)

    Li, Zhen-Xing; Li, Chang-Sheng; Zhang, Jian; Li, Bin-Zhou; Pang, Xue-Dong

    2016-07-01

    The effect of final rolling temperature and cooling process on the microstructure of 1.0C-1.5Cr bearing steel was studied, and the relationship between the microstructure parameters and subsequent spheroidization annealing was analyzed. The results indicate that the increase of water-cooling rate after hot rolling and the decrease of final cooling temperature are beneficial to reducing both the pearlite interlamellar spacing and pearlite colony size. Prior austenite grain size can be reduced by decreasing the final rolling temperature and increasing the water-cooling rate. When the final rolling temperature was controlled around 1103 K (830 °C), the subsequent cooling rate was set to 10 K/s and final cooling temperature was 953 K (680 °C), the precipitation of grain boundary cementite was suppressed effectively and lots of rod-like cementite particles were observed in the microstructure. Interrupted quenching was employed to study the dissolution behavior of cementite during the austenitizing at 1073 K (800 °C). The decrease of both pearlite interlamellar spacing and pearlite colony size could facilitate the initial dissolution and fragmentation of cementite lamellae, which could shorten the spheroidization time. The fragmentation of grain boundary cementite tends to form large-size undissolved cementite particles. With the increase of austenitizing time from 20 to 300 minutes, mean diameter of undissolved cementite particles increases, indicating the cementite particle coarsening and cementite dissolution occuring simultaneously. Mean diameter of cementite particles in the final spheroidized microstructure is proportional to the mean diameter of undissolved cementite particles formed during partial austenitizing.

  4. Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.

    Science.gov (United States)

    Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu

    2013-01-11

    Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process.

  5. Characterization of the magnetic micro- and nanostructure in unalloyed steels by magnetic force microscopy

    Science.gov (United States)

    Batista, L.; Rabe, U.; Hirsekorn, S.

    2013-01-01

    The formation of a cementite phase influences significantly the macroscopic mechanical and magnetic properties of steels. Based on a correlation between mechanical and magnetic properties, mechanical properties as well as the morphology and content of the cementite phase can be inspected by electromagnetic non-destructive testing methods. The influence of the carbon content on bulk magnetic properties of unalloyed steels is studied on a macroscopic scale by hysteresis loop and Barkhausen noise measurements. The micro- and nanostructure is investigated by atomic force microscopy and magnetic force microscopy. Surface topography images and magnetic images of globular cementite precipitates embedded in a ferrite matrix are presented. The size, shape, and orientation of the precipitates influence the domain configuration. Applied external magnetic fields cause magnetization processes mainly in the ferrite matrix: Bloch walls move and are pinned by the cementite precipitates. The correlation between the microscopic observations and macroscopic magnetic properties of the material is discussed.

  6. Microstructure formation and properties of abrasion resistant cast steel

    OpenAIRE

    S. Parzych; Krawczyk, J.

    2010-01-01

    The so-called adamitic cast steels are characterised by a high abrasion resistance. These cast steels are of a pearlitic matrix with uniformly distributed hypereutectoid cementite precipitates. Apart from hypereutectoid cementite very often transformed ledeburite also occurs in the microstructure of these cast steels. Such cast steels contain chromium (app. 1 %) and nickel (app. 0.5 %) as alloy additions and sometimes their silicon content is increased. The presence of molybdenum is also perm...

  7. Characterization of Nanocrystallizatin Surface Layer of 0.4C-1Cr Low Alloy Steel Prepared by Ultrasonic Particulate Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-bao; LIU Yu-liang; ZHAO Xin-qi; WU Jie; SONG Hong-wei; XIONG Tian-ying

    2004-01-01

    A nanostructured surface layer was fabricated in a quenched and tempered 0.4C-1Cr low alloy steel by ultrasonic particulate peening technique. The microstructure of the nanocrystalline surface layer was characterized by means of TEM and Mossbauer spectroscopy. Experimental results reveal that both cementite and ferrite nanocrystals with an average size of 5 nm were formed in the surface layer of the steel, phase transformation of austenite and dissolution of cementite maybe occur in the process of ultrasonic particulate peening.

  8. Characterization of Nanocrystallizatin Surface Layer of 0.4C-1Cr Low Alloy Steel Prepared by Ultrasonic Particulate Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANGJun-bao; LIUYu-liang; ZHAOXin-qi; WUJie; SONGHong-wei; XIONGTian-ying

    2004-01-01

    A nanostructured surface layer was fabricated in a quenched and tempered 0.4C-ICr low alloy steel by ultrasonic particulate peening technique. The microstructure of the nanocrystalline surface layer was characterized by means of TEM and Moessbauer spectroscopy. Experimental results reveal that both cementite and ferrite nanocrystals with an average size of 5 nm were formed in the surface layer of the steel, phase transformation of austenite and dissolution of cementite maybe occur in the process of ultrasonic particulate peening.

  9. Effect of Hot Forging on Microstructural Evolution and Impact Toughness in Ultra-high Carbon Low Alloy Steel

    Science.gov (United States)

    Kim, J. B.; Kim, J. H.; Kang, C. Y.

    2016-12-01

    The effect of a hot forging ratio on the microstructural variation and tensile properties of ultra-high carbon low alloy steel was investigated. Scanning electron microscopic analyses depict that with an increase in the hot forging ratio, the thickness of the network and acicular proeutectoid cementite decreased. Moreover, the lamella spacing and thickness of the eutectoid cementite decreased and broke up into particle shapes, which then became spheroidized as the hot forging ratio increased. Furthermore, when the forging ratio exceeded 65%, the network and acicular shape of the as-cast state disappeared. By increasing the hot forging ratio, the tensile strength and elongation remained below 50%, but they increased rapidly with an increase in the forging ratio. Strength and elongation were not affected by the thickness of the proeutectoid and eutectoid cementites, but were greatly affected by the shape of the proeutectoid cementite. Due to the decrease in the austenite grain size, as well as the spheroidization of the cementite, the tensile strength and elongation sharply increased.

  10. Influence of Electropulsing Pretreatment on Solid-State Graphitization of Spherical Graphite Iron

    Institute of Scientific and Technical Information of China (English)

    LI Qing-chun; LI Ren-xing; LIN Da-shuai; CHANG Guo-wei; ZHAI Qi-jie

    2012-01-01

    The solid-state graphitization process of spherical graphite iron after electropulsing pretreatment was ob- served in-situ by using a high-temperature confocal scanning laser microscope (HTCSLM). The influence of electro- pulsing pretreatment on the decomposition of cementite and the formation of graphite during the solid-state graphiti- zation was studied. The result indicates that the electropulsing pretreatment can accelerate the decomposition of ce mentite, and make more neonatal graphite in small size be formed near the cementite. The neonatal graphite nucle ates and grows chiefly at the temperature range of 800 to 850 ℃, and the average growth rate of neonatal graphite is 0. 034 μm2/s during the heating process. For the spherical graphite iron after normal and electropulsing pretreat- ment, the decomposition rate of cementite during the heating process is 0.16 and 0.24 μm2/s, respectively. Analy- sis shows that the electropulsing pretreatment promotes the dislocation accumulation near the cementite, conse- quently, the decomposition of cementite and the formation of neonatal graphite is accelerated during the solid-state graphitization.

  11. Microstructure effect on nanohardness distribution for medium-carbon martensitic steel

    Institute of Scientific and Technical Information of China (English)

    LI; Jinxu; OHMURA; Takahito; TSUZAKI; Kaneaki

    2006-01-01

    Nanoindentation measurement was performed to evaluate the local hardness distribution for quenched and tempered martensitic steel with ferrite-cementite constituent. The ratio of standard deviation to the average nanohardness was 15.4% when nanoindentation tests were carried out at the peak load of 1000 μN, while that of the Vickers hardness was only 1.5% at 9.8 N. Electron backscatter diffraction analysis and SEM observation all showed that the large scattering of nanohardness did not depend on the crystallographic orientation of each grain but from the inhomogeneous microstructure in the sub-micron scale such as cementite distribution. Compared with the results on tungsten single crystals with different surface orientations as well as another martensite processed by modified-ausforming with the same chemical composition but more homogeneous cementite distribution, the nanohardness showed smaller scattering, supporting the conclusion.

  12. Effects of laser pulse energy on surface microstructure and mechanical properties of high carbon steel

    Institute of Scientific and Technical Information of China (English)

    熊毅; 贺甜甜; 李鹏燕; 陈路飞; 任凤章; Alex A. Volinsky

    2015-01-01

    Surface microstructure and mechanical properties of pearlitic Fe–0.8%C (mass fraction) steel after laser shock processing (LSP) with different laser pulse energies were investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and microhardness measurements. After LSP, the cementite lamellae were bent, kinked and broken into particles. Fragmentation and dissolution of the cementite lamellae were enhanced by increasing the laser pulse energy. Due to the dissolution of carbon atoms in the ferritic matrix, the lattice parameter ofα-Fe increased. The grain size of the surface ferrite was refined, and the microstructure changed from lamellae to ultrafine micro-duplex structure (ferrite (α)+cementite (θ)) with higher laser pulse energy, accompanied by the residual stress and microhardness increase.

  13. A multiscale approach for the deformation mechanism in pearlite microstructure: Experimental measurements of strain distribution using a novel technique of precision markers

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaki, E-mail: masaki@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Yoshimi, Yusuke; Higashida, Kenji [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Shimokawa, Tomotsugu [School of Mechanical Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Ohashi, Tetsuya [Kitami Institute of Technology, 165 Koencho, Kitami 090-8507 (Japan)

    2014-01-10

    Plastic deformation of fully pearlitic steels was investigated using a multiscale approach: experimentally, the finite element method and molecular dynamics. This paper is the first in a series of three papers demonstrating the strain distribution in uniaxial tensile deformation with high-precision markers drawn by electron beam lithography. Strain was measured at loads of 1.98 kN, 2.21 kN and 2.28 kN in tensile deformation. Scanning electron microscopy (SEM) images and strain maps show the plastic deformation of cementite lamellae and homogenous plastic deformation under uniaxial tensile deformation in the area where the cementite lamellae are aligned in the tensile direction. The areas where strain was enhanced were both block/colony boundaries and the areas where the cementite lamellae are inclined approximately 45° to the tensile direction.

  14. Mechanism of Austenite Evolution During Deformation of Ultra-High Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-lan; SUN Xin-jun; DONG Han

    2008-01-01

    The mechanism of transformation of austenite to cementite and pearlite during the deformation of ultra-high carbon steel was discussed. The results indicate that the pearlite and cementite can be induced by deformation be-tween Acm to Arcm. The transformation during deformation is still considered as a diffusion-controlled process. With the increase of time and reduction, the pearlite fraction increased. At the beginning of the transformation, the pearli- te was lamelliform. When the rate of reduction was increased to 70%, some of the induced lamellar pearlite was bro-ken up under deformation.

  15. Chemical transformations in the zone of spall damageability

    Science.gov (United States)

    Buravova, S. N.; Petrov, E. V.; Alymov, M. I.

    2016-07-01

    The results of experiments on studying the perlite-ferrite structure in steels under short-term negative pressures are described. It is shown that in the localized deformation bands formed in the zone of interference of unloading waves, where the tension stress is lower than the dynamic strength of the material, the cementite bands in perlite are crushed, their fragments are in part dissolved and enriched with carbon, and the cementite can pass into a steady spherical form on the boundary with ferrite. At relatively high shock-wave amplitudes, the perlite in its entirety acquires a spheroidal shape.

  16. Valence electron theory of graphite spheroidizing in primary crystallization

    Institute of Scientific and Technical Information of China (English)

    刘志林; 孙振国; 李志林

    1995-01-01

    Bond-length-difference (BLD) analysis results show that austenrte and cementite containing Mg, Zr. S have very different valence electron structures from Fe -C austenite and cementite. We find that this difference is the tie of absorption hypothesis, surface tension hypothesis, undercooling hypothesis in graphite spheroidizing theory. By using "the model of valence electron theory of drag-like effect" in our previous paper in crystallization theory, the spheroidizing effect of Mg and Zr and the anti-spheroidizing effect of S can be explained with the valence electron structure data of phases. Therefore, electron theory of graphite spheroidizing can be advanced.

  17. Numerical modeling and experimental validation of microstructure in gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser

    2012-01-01

    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling...... rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed...

  18. Magnetic-field-induced microstructural features in a high carbon steel during diffusional phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxue, E-mail: zhangxiaoxue1213@gmail.com [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), CNRS UMR 7239, Universite de Lorraine UL 57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Universite de Lorraine (France); Zhang, Yudong, E-mail: yudong.zhang@univ-metz.fr [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), CNRS UMR 7239, Universite de Lorraine UL 57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Universite de Lorraine (France); Gong, Minglong, E-mail: gml@mail.neuq.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Esling, Claude, E-mail: claude.esling@univ-metz.fr [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), CNRS UMR 7239, Universite de Lorraine UL 57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Universite de Lorraine (France); Zhao, Xiang, E-mail: zhaox@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Zuo, Liang, E-mail: lzuo@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China)

    2012-12-15

    In this work, a high purity, high carbon steel was heat treated without and with a 12-T magnetic field. The microstructural features induced by magnetic field during its diffusion-controlled austenite decomposition were investigated by means of optical microscopy and SEM/EBSD. It is found that the magnetic field increases the amount of the abnormal structure, which is composed of proeutectoid cementite along the prior austenite boundaries and ferrite around it, because magnetic field increases the austenite grain size and promotes the transformation of carbon-depleted austenite to ferrite. No specific orientation relationship between abnormal ferrite and cementite has been found in the non-field- or the field-treated specimens. Magnetic field evidently promotes the spheroidization of pearlite, due to its effect of enhancing carbon diffusion through raising the transformation temperature and its effect of increasing the relative ferrite/cementite interface energy. As magnetic field favors the nucleation of the high magnetization phase-pearlitic ferrite, the occurrence of the P-P2 OR that corresponds to the situation that ferrite nucleates prior to cementite during pearlitic transformation is enhanced by the magnetic field. - Highlights: Black-Right-Pointing-Pointer The field-induced microstructural features in a high carbon steel during diffusional phase transformation has been investigated. Black-Right-Pointing-Pointer Magnetic field increases the amount of the abnormal structure and promotes the spheroidization of pearlite. Black-Right-Pointing-Pointer Magnetic field enhances the occurrence of the P-P2 OR.

  19. On the use of temperature dependences of the coercive force for an analysis of structural and phase changes that occur upon tempering of alloy carbon steels

    Science.gov (United States)

    Ul'yanov, A. I.; Baranova, I. A.; Chulkina, A. A.; Zagainov, A. V.; Volkov, V. A.

    2014-05-01

    The effect of alloying elements Mn, Cr, and Si on the magnetic hysteresis properties of cementite and model steels with a carbon concentration of 0.6 wt % has been studied. It has been shown that alloying with carbide-forming elements (Mn, Cr) reduces the coercive force and the Curie temperature of cementite. Measurements of the temperature dependences of the coercive force of the model steels with carbon content of 0.6 wt % alloyed with manganese, chromium, or silicon have been performed in the temperature range of -196 to +300°C. It has been established that the local maximum of the coercive force of these steels in this temperature range coincides with the Curie point of the precipitates of the carbide phases. Based on an analysis of the temperature dependences of the coercive force, the content of the alloying element in the precipitates of cementite of steels tempered at different temperatures has been estimated. It has been shown that the character of the dependence of the coercive force of alloy steels on the temperature of tempering in the temperature range of 250-700°C is mainly determined by the coercivity and by the kinetics of the formation of cementite precipitates.

  20. Microstructure formation and properties of abrasion resistant cast steel

    Directory of Open Access Journals (Sweden)

    S. Parzych

    2010-01-01

    Full Text Available The so-called adamitic cast steels are characterised by a high abrasion resistance. These cast steels are of a pearlitic matrix with uniformly distributed hypereutectoid cementite precipitates. Apart from hypereutectoid cementite very often transformed ledeburite also occurs in the microstructure of these cast steels. Such cast steels contain chromium (app. 1 % and nickel (app. 0.5 % as alloy additions and sometimes their silicon content is increased. The presence of molybdenum is also permissible (app. 0.4 %. The basic problem in application of these steels for structural elements constitutes their insufficient crack resistance. An improvement of mechanical properties by changes of morphology of hypereutectoid cementite and transformed ledeburite precipitates by means of the heat treatment application was the aim of this study. G200CrNiMo4-3-3 cast steel was the investigated material. Changes in the morphology of hypereutectoid cementite and transformed ledeburite obtained due to the heat treatment are described in detail in the present paper. An influence of the microstructure changes on impact toughness of the investigated cast steel is presented. Investigations performed within this study will serve for the microstructure optimisation on account of functional qualities of this cast steel.

  1. Numerical modeling of coupled heat transfer and phase transformation for solidification of the gray cast iron

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hosseinzadeh, Azin

    2013-01-01

    In the present study the numerical model in 2D is used to study the solidification bahavior of the gray cast iron. The conventional heat transfer is coupled with the proposed micro-model to predict the amount of different phases, i.e. total austenite (c) phase, graphite (G) and cementite (C...

  2. Thermal Stability of Nanocrystalline Structure In X37CrMoV5-l Steel

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of the study was to investigate the thermal stability of the nanostructure produced in X37CrMoV5-1 tool steel by austempering heat treatment consisted of austenitization and isothermal quenching at the range of the bainitic transformation. The nanostructure was composed of bainitic ferrite plates of nanometric thickness separated by thin layers of retained austenite. It was revealed, that the annealing at the temperature higher than temperature of austempering led to formation of cementite precipitations. At the initial stage of annealing cementite precipitations occurred in the interfaces between ferritic bainite and austenite. With increasing temperature of annealing, the volume fraction and size of cementite precipitations also increased. Simultaneously fine spherical Fe7C3 carbides appeared. At the highest annealing temperature the large, spherical Fe7C3 carbides as well as cementite precipitates inside the ferrite grains were observed. Moreover the volume fraction of bainitic ferrite and of freshly formed martensite increased in steel as a result of retained austenite transformation during cooling down to room temperature.

  3. High-Resolution Autoradiography

    Science.gov (United States)

    1955-01-01

    measurements see appendix ehrbide containced 6.68 percent carbon while the alpha iron 13). Theii Oak Ridge National Laboratory analysis gave (,t(e matrix...the cementite phase leaving only a (5) The sample was fixed for a minute, washed in water for very small amount of activity in the alpha iron phase. a

  4. A multiscale approach for the deformation mechanism in pearlite microstructure: Atomistic study of the role of the heterointerface on ductility

    Energy Technology Data Exchange (ETDEWEB)

    Shimokawa, Tomotsugu, E-mail: simokawa@se.kanazawa-u.ac.jp [School of Mechanical Engineering, Kanazawa University, Ishikawa 920-1192 (Japan); Oguro, Takuma [Division of Mechanical Science and Engineering, Kanazawa University, Ishikawa 920-1192 (Japan); Tanaka, Masaki; Higashida, Kenji [Department of Materials Science and Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Ohashi, Tetsuya [Department of Mechanical Engineering, Kitami Institute of Technology, Hokkaido 090-8507 Japan (Japan)

    2014-03-01

    The role of the ferrite/cementite heterointerface on the mechanical properties of heavily-drawn-pearlitic steel is investigated via tensile deformation tests of multilayered composite models with brittle and ductile virtual materials in a two-dimensional triangle-lattice system by using molecular dynamics simulations. The interface strength is controlled by introducing a heterointerface potential. The dominant role of heterointerface on the mechanical properties of multilayered composite models is influenced by the interface strength. In case of weak interface strength, the heterointerface acts as a strong barrier to dislocation motion in the ductile phase; hence, the multilayered composite model shows high strength but extremely low ductility. This tendency corresponds well to that of as-drawn pearlitic steel with cementite decomposition. In case of strong interface strength, the heterointerface acts as a dislocation source of the brittle phase by dislocation transmission through the heterointerface from the ductile to brittle phase; hence, the multilayered composite model shows good ductility with a small decrease in strength. This tendency corresponds well to annealed pearlitic steel recovered from cementite decomposition. These results suggest that cementite decomposition decreases the plastic deformation potential of the heterointerface. The conditions necessary for the heterointerface to simultaneously exhibit high strength and ductility are discussed on the basis of the results of atomic simulations.

  5. Multigrain indexing of unknown multiphase materials

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Poulsen, Henning Friis

    2016-01-01

    for diffraction. Initially, candidate grains are found by searching for crystallographic planes, using a Dirac comb convoluted with a box function as a filter. Next, candidate grains are validated and the unit cell is optimized. The algorithm is validated by simulations. Simulations of 500 cementite grains...

  6. Study on deformation and microstructure characterizations of mild steel joints by continuous drive friction welding

    Institute of Scientific and Technical Information of China (English)

    Li Wenya; Yu Min; Li Jinglong; Gao Dalu

    2009-01-01

    Macro-deformation characteristics of continuous drive friction welded mild steel joints were examined by using one deformable workpiece (objective) and the other undeformable one (rigid). The microstructure evolution and hardness change across the joint were studied. The results show that the axial shortening and radial increment of joints increase with increasing the friction time at 1 200rpm. The cementite particles of pearlites in the weld center are uniformly distributed on the ferrite matrix, while the cementites of the pearlite in the thermal-mechanically affected zone are broken and discontinuously dispersed in the pearlite. The hardness decreases rapidly from the weld center to the parent metal under the coupled effects of heat and deformation during the rapid heating and cooling processes.

  7. The microstructural evolution, crystallography, and thermal processing of ultrahigh carbon Fe-1.85 pct C melt-spun ribbon

    Science.gov (United States)

    Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.

    1993-01-01

    A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.

  8. In Situ Observation for Abnormal Grain Coarsening in Vacuum-Carburizing Process

    Science.gov (United States)

    Yogo, Yasuhiro; Tanaka, Kouji

    2014-06-01

    An in situ observation method was developed to investigate abnormal grain coarsening which occurs around the surface of steel during the vacuum-carburizing process. In this method, diffusion of carbon atoms in the vacuum carburizing was simulated by a cementite and steel diffusion couple. Abnormal grain coarsening, which appeared around the cementite and steel interface, was observed by a confocal scanning laser microscope. With this method, it was observed that when holding time was 60 seconds, the temperature at which the abnormal grain coarsening appeared in a specimen was higher when carburized than the temperature when not carburized. On the contrary, when holding time was 120 seconds, the temperature at which the abnormal grain coarsening appeared in a specimen was 10 K to 20 K lower than that in a non-carburized specimen. The validity of the observed results was confirmed by the calculated NbC fraction using Nb solubility and measured carbon content.

  9. Atomistic modelling of the Fe-Cr-C system

    Science.gov (United States)

    Wallenius, Janne; Sandberg, Nils; Henriksson, Krister

    2011-08-01

    For the purpose of modelling the impact of carbon on radiation damage phenomena in steels, we have performed an extensive set of first principle calculations on the Fe-Cr-C system. The calculated solution and diffusion enthalpies of carbon in iron and in chromium agree well with experimental data, as do the relative formation energies of mono-carbides, cementite, Hägg and M 23C 6 carbides. Our data further indicate that interstitial carbon is attracted to a solute iron atom in bcc chromium, while the reaction between carbon and a solute chromium atom in bcc iron is repulsive. An empirical potential fitted to data for iron carbides is capable of reproducing melting behaviour of cementite, while the predicted interaction with point defects agrees less well with DFT data than a potential recently published by Hepburn and Ackland.

  10. Effect of annealing cooling rate on microstructure and mechanical property of 100Cr6 steel ring manufactured by cold ring rolling process

    Institute of Scientific and Technical Information of China (English)

    魏文婷; 吴敏

    2014-01-01

    Pre-heat treatment is a vital step before cold ring rolling and it has significant effect on the microstructure and mechanical properties of rolled rings. The 100Cr6 steel rings were subjected to pre-heat treatment and subsequent cold rolling process. Scanning electron microscopy and tensile tests were applied to investigate microstructure characteristic and mechanical property variations of 100Cr6 steel rings undergoing different pre-heat treatings. The results indicate that the average diameter of carbide particles, the tensile strength and hardness increase, while the elongation decreases with the decrease of cooling rate. The cooling rate has minor effect on the yield strength of sample. After cold ring rolling, the ferrite matrix shows a clear direction along the rolling direction. The distribution of cementite is more homogeneous and the cementite particles are finer. Meanwhile, the hardness of the rolled ring is higher than that before rolling.

  11. Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core.

    Science.gov (United States)

    Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C; Silva, S Ravi P; Rümmeli, Mark H; Pichler, Thomas

    2013-01-01

    Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries.

  12. Autocatalytic Mechanism of Pearlite Transformation in Steel

    Science.gov (United States)

    Razumov, I. K.; Gornostyrev, Yu. N.; Katsnelson, M. I.

    2017-01-01

    A model of pearlite colony formation in carbon steels is developed, with a parametrization based on ab initio calculations. The model describes the processes of decomposition of austenite and formation of cementite through a metastable intermediate structure, with a crucial role of ferromagnetic order arising under the cooling. The autocatalytic mechanism of pearlite colony formation is analyzed and conditions for its implementation are established. We demonstrate that pearlite with lamellar structure is formed by the autocatalytic mechanism when thermodynamic equilibrium between the initial phase (austenite) and the products of its decomposition (cementite and ferrite) cannot be reached. The transformation diagram is suggested, and various scenarios of decomposition kinetics are investigated by phase-field simulations. By using a model expression for the free energy with first-principles parametrization, we find conditions of the formation of both lamellar and globular structures, in good agreement with experimental data.

  13. The multi-scale FEM simulation of the drawing processes of high carbon steel

    Directory of Open Access Journals (Sweden)

    A. Milenin

    2007-08-01

    Full Text Available Purpose: The influence of cementite lamellas orientation on mechanical and technological properties of wire experimentally show up during investigation of drawing processes with change the direction of drawing between passes. The purpose of this paper is to develop a mathematical model of cementite and ferrite deformation during drawing processes and receive an information about transformation of a pearlitic structure of wire during drawing.Design/methodology/approach: The wire drawing processes was investigated in two levels - using the 2-dimensional rigid-plastic finite element method (macro-level and modelling of a microstructure change (micro-level. In micro-level the process of deformation of representative volume element (RVE is considered. The pearlitic colony deformation and stress-strain state in RVE is modelled with help of the FEM.Research limitations/implications: The influence of initial cementite lamellas orientation on triaxity factor and localization of deformation in micro-level is investigated. The numerical simulation is shown a maximal non-uniform deformation of pearlite phases for the canting positions of the cementite lamellas relative the drawing direction.Practical implications: The results of article will be helpful for a fundamental understanding of pearlitic deformation during development of high strength steel wires for tire cord applications.Originality/value: A new model of two-phase grain deformation for wire drawing is proposed. The new conception of simulation of the boundary conditions for the RVE is based on the penalty method and uses a solution of the problem on macro-level.

  14. Effect of the concentrated heat flow treatment on the structure and the antiwear properties of cast iron

    Directory of Open Access Journals (Sweden)

    W. Orlowicz

    2009-04-01

    Full Text Available The influence of modes of surface fusion by electric arc plasma (GTAW method on the hardness and wear-resistance of plain cast ironwas studied. A possible mechanism of structural rearrangement in the processed material during the friction was analyzed. This mechanismis determined by specific behaviour of hardened martensitic structure under dynamic load. This martensitic structure forms a metalbasis of cementite eutectic under conditions of fast crystallisation.

  15. Surface nanostructure formation mechanism of 45 steel induced by supersonic fine particles pombarding

    Institute of Scientific and Technical Information of China (English)

    Dema Ba; Shining Ma; Changqing Li; Fanjun Meng

    2008-01-01

    By means of supersonic fine particles bombarding (SFPB), a nanostruetured surface layer up to 15 μm was fabricated on a 45 steel plate with ferrite and pearlite phases. To reveal the grain refinement mechanism of SFPB-treated 45 steel, microstructure features of various sections in the treated surface were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Grain size increases with an increase of depth from the treated surface. Plastic deformation and grain refinement processes are accompanied by an increase in strain. Plastic deformation in the proeuteetoid ferrite phases has precedence over the pearlite phases. Grain refinement in the ferrite phases involves: the onset of dis-location lines (Dls), dislocation tangles (DTs) and dense dislocation walls (DDWs) in the original grains; the formation of fine la-mellar and roughly equiaxed cells separated by DDWs; by dislocation annihilation and rearrangement, the transformation of DDWS into subboundaries and boundaries and the formation of submicron grains or subgrains; the successive subdivision of grains to finer and finer scale, resulting in the formation of highly misoriented nano-grains. By contrast, eutectoid cementite phase accommodated swain in a sequence as follows: onset of elongated, bended and shear deformation under deformation stress of ferrites, short and thin cementites with a width of about 20-50 nm and discontinuous length were formed. Shorter and thinner cementites were developed into ultra-fine pieces under the action of high density dislocation and strains. At the top surface, some cementites were decomposed under severe plastic deformation. Experimental evidences and analysis indicate that surface nanocrystallization of 45 steel results from dislocation activities, high swains and high strain rate are necessary for the formation of nanocrystallites.

  16. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change......, and high-angle boundaries form in the A_BC structure parallel to the cementite lamellae. The structural and crystallographic analyses suggest that boundary strengthening and dislocation strengthening are important mechanisms in the cold-drawn wire. However, differences in structural parameters between...

  17. On-line spheroidization process of medium-carbon low-alloyed cold heading steel

    Institute of Scientific and Technical Information of China (English)

    Yu Fu; Hao Yu; Pan Tao

    2014-01-01

    Conventionally manufactured 35CrMo cold heading steel must undergo spheroidization annealing before the cold heading process. In this paper, different types of deformation processes with various controlled cooling periods were operated to achieve on-line spheroidal cementite using the Gleeble-3500 simulation technique. According to the measured dynamic ferrite transformation temperature (Ad3), the deformation could be divided into two types:low temperature deformation at 810 and 780°C;“deformation-induced ferrite transformation”(DIFT) deformation at 750 and 720°C. Compared with the low temperature deformation, the DIFT deformation followed by accelerated cooling to 680°C is beneficial for the formation of spheroidal cementite. Samples subjected to both the low-temperature deformation and DIFT deformation can obtain granular bainite by accelerated cooling to 640°C;the latter may contribute to the formation of a fine dispersion of secondary constituents. Granular bainite can transform into globular pearlite rapidly during subcritical annealing, and the more the dis-perse phase, the more homogeneously distributed globular cementite can be obtained.

  18. Second Stage of Upper Bainite in a 0.3 Mass Pct C Steel

    Science.gov (United States)

    Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika

    2017-03-01

    Upper bainite forms in at least two stages, the formation of parallel plates of ferrite and the transformation of the interspaces to a mixture of cementite and ferrite. The first stage was examined in a preceding metallographic study of the formation of ferrite in hypoeutectoid steels and the second stage, which is initiated by the occurrence of cementite in the interspaces, is the subject of the present study. The alloy from the preceding study will also be used here. The band of austenite in the interspaces between parallel plates is generally transformed by a degenerate eutectoid transformation when this band is thin. When it is thicker, it will transform by a more cooperative growth mechanism and result in a eutectoid colony, often with cementite platelets. A series of sketches are presented which illustrate in detail how the second stage of upper bainite progresses according to the present observations. The cooperative manner did not increase as the temperature was lowered because the tendency to form plates of ferrite was still increasing at lower temperatures, making the interspaces too narrow for the cooperative reaction to dominate over the formation of fine plates of ferrite.

  19. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  20. Effect of the microstructure on tribological phenomena occurring on the surface of a mill roll made of SA5T cast iron (GJSL-HV600 - GJSL-330NiMoCr12-8-3

    Directory of Open Access Journals (Sweden)

    J. Krawczyk

    2008-07-01

    Full Text Available This paper deals with the role of the microstructure in the tribological wear processes occurring in a cast iron mill roll. For this purpose, a piece of a broken roll, made in Italy, was collected. Its microstructure consisted of modular graphite, transformed ledeburite and a matrix composed of bainite and martensite. Metallographic investigations were performed on the roll working surface in conjunction with metallographic tests effected within its surface layer. There was established the relation between the microstructure of the roll and the process of its tribological wear. The following was ascertained: micro-shrinkages or graphite precipitations nearby the working area cause cracks between those places and the working area; in the surface layer, cracks occur usually in the zone of ledeburitic cementite. At places of considerable precipitations of ledeburitic cementite, the tribological wear intensity of the roll is lower. A banded layout of precipitations of ledeburitic cementite facilitates a selective spalling of some parts of the roll material. The results of this study allow broadening the data base related to the effect of the microstructure on tribological wear of mill rolls, which in future will permit one to design their proper microstructure of cast iron mill rolls.

  1. Microstructural evolution of GCr15 steel during austenitizing and quenching considering C and Cr content

    Institute of Scientific and Technical Information of China (English)

    刘青龙; 钱东升; 魏文婷

    2016-01-01

    Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature. The coordination numberx in FexCr3-xC and the volume fraction of undissolved cementite were computed according to element conservation and equilibrium phase diagram. TheMS (martensite transformation temperature) was calculated by using empirical formula. The retained austenite content was calculated with further consideration of quenching temperature. The results showed that the coordination number and the undissolved cementite content were promoted by the austenitizing temperature and carbon content of the steel. Increasing Cr element reduced the coordination number.GCr15 steels with different components had nearly the sameMS when austenitization at 830 °C to 860 °C. The interaction of C and Cr complicated the evolution ofMS and retained austenite content. The results were in good agreement with the literature, which could guide to obtain specified retained austenite and/or carbides.

  2. cs of abrasive-reactive nanocomposite powder synthesis in the SiO2 − C/S system

    Directory of Open Access Journals (Sweden)

    Faryt Urakaev

    2015-03-01

    Full Text Available In this study, the syntheses of cementite (Fe3C and pyrite (FeS2 have been performed by mechanical activation of a mixture of graphite or sulfur with amorphous or crystalline silica in a planetary ball mill AGO-2 with steel fittings. XRD analysis was used to record products and changes of systems components after mechanical activation of the studied systems. The formation of nanocomposites based on cementite (or pyrite has been recorded and the quantitative characteristics of abrasive-reactive wear of steel milling tools have been evaluated. It has been demonstrated the possibility of steel material reaction of milling tools for direct mechanochemical preparation of composite based on cementite using abrasive properties of silica modifications. It has obtained nanocomposites based on pyrite and glass matrix during mechanical activation of quartz glass and sulfur in a time of 1-2 orders of magnitude lower than traditional mechanical alloying powders of iron and sulfur. It can be noted that any scrap metal and ceramic products can be used as milling tools. This significantly enhances the ability of the proposed method of abrasive-reactive nanowear of milling tools materials of mechanochemical reactors and processed materials.

  3. Induction Tempering vs Conventional Tempering of a Heat-Treatable Steel

    Science.gov (United States)

    Sackl, Stephanie; Zuber, Michael; Clemens, Helmut; Primig, Sophie

    2016-07-01

    An induction heat treatment is favorable compared to a conventional one mainly due to significant time and cost savings. Therefore, in this study, the microstructure property relationships during induction and conventional heat treatment of a heat treatable steel 42CrMo4 is investigated. The yield strength and hardness is slightly higher for the conventionally heat-treated steel, whereas the induction heat-treated condition exhibits a roughly 30 J/cm2 higher impact energy. In a previous investigation of the authors, it has been proved that the difference in yield strength originates from the smaller block size of the conventionally heat-treated steel, which was already present after hardening. In the present work, it can be shown that during tempering the martensitic blocks become equi-axed ferrite grains due to recrystallization as revealed by electron back scatter diffraction. Nevertheless, a larger grain size usually is less favorable for the impact toughness of steels. Therefore, another mechanism is responsible for the higher impact energy of the induction hardened and tempered steel. With the aid of transmission electron microscopy a finer distribution of cementite was observed in the induction heat-treated samples. The delay of recovery is the reason for the presence of finer cementite in case of the induction heat-treated steel. Here, the higher heating rates and shorter process times reduce the annihilation of dislocation and as a consequence provide more nucleation sites for precipitation of cementite during tempering. From the obtained experimental results, it is believed that the finer distribution of carbides causes the observed higher impact toughness.

  4. Effects of niobium additions on the structure, depth, and austenite grain size of the case of carburized 0.07% C steels

    Science.gov (United States)

    Islam, M. A.; Bepari, M. M. A.

    1996-10-01

    Carbon (0.07%) steel samples containing about 0.04% Nb singly and in combination with nitrogen were carburized in a natural Titas gas atmosphere at a temperature of 1223 K (950 °C) and a pressure of about 0.10 MPa for 1/2 to 4 h, followed by slow cooling in the furnace. Their microstructures were studied by optical microscopy. The austenite grain size of the case and the case depths were determined on baseline samples of low-carbon steels and also on niobium and (Nb + N) microalloyed steel samples. It was found that, when compared to the baseline steel, niobium alone or in combination with nitrogen decreased the thickness of cementite network near the surface of the carburized case of the steels. However, niobium in combination with nitrogen was more effective than niobium in reducing the thickness of cementite network. Niobium with or without nitrogen inhibited the formation of Widmanstätten cementite plates at grain boundaries and within the grains near the surface in the hypereutectoid zone of the case. It was also revealed that, when compared to the baseline steel, niobium decreased the case depth of the carburized steels, but that niobium with nitrogen is more effective than niobium alone in reducing the case depth. Niobium as niobium carbide (NbC) and niobium in the presence of nitrogen as niobium carbonitride, [Nb(C,N)] particles refined the austenite grain size of the carburized case, but Nb(C,N) was more effective than NbC in inhibiting austenite grain growth.

  5. Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing

    Science.gov (United States)

    Singh, Raj Bahadur; Mukhopadhyay, N. K.; Sastry, G. V. S.; Manna, R.

    2017-01-01

    The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of 12 using route B c, which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS) is enhanced from 208 (as-received) to 872 MPa and the tensile strength is increased from 362 to 996 MPa, but the material loses total elongation (TE) from 36.2 to 2.9 pct. Cold rolling of equal-channel angular pressed steel produces the refined structure of grain size 0.11 μm. The YS increases further to 924 MPa with a marginal gain in ductility due to the reappearance of the γ fiber component. Flash annealing the samples, which were equal-channel angular pressed followed by cold rolling, at 873 K (600 °C) results in 27 pct of micron-sized (9 µm) ferrite grains in submicron-sized (<1 µm) matrix with a reduced defect density and small amount of precipitation of cementite. TE increases from 2.9 to 23.3 pct. The material retains a YS of 484 MPa and tensile strength of 517 MPa, which are higher than those of the as-received material. The UFG grains are failed by cleavage, but the micron-sized grains display ductile fracture. The ductility of the flash-annealed material is recovered significantly due to bimodal grain size distribution in ferrite and the development of a good amount of γ fiber texture components. The major contribution toward recovery of ductility comes from the bimodal grain size distribution in ferrite rather the precipitation of cementite.

  6. The effects of vanadium on the microstructure and wear resistance of centrifugally cast Ni-hard rolls

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minwoo, E-mail: aonia@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Yongchan, E-mail: ycsuh@hyundai-steel.com [Roll Development Team, HYUNDAI STEEL, 444 Songnae-dong, Nam-gu, Pohang, Gyeongbuk 790-785 (Korea, Republic of); Oh, Yong-Jun, E-mail: yjoh@hanbat.ac.kr [Department of Advanced Materials Science and Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Lee, Young-Kook, E-mail: yklee@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-10-01

    Highlights: • V addition changed the pro-eutectic phase from austenite to vermicular (V,Nb)C. • Pro-eutectic (V,Nb)C particles were segregated to the inner part of the roll. • Wear loss was inversely proportional to MC fraction under the same graphite fraction. • Cementite particles acted as the initiation site and propagation path of cracks. • High-temperature wear sequence of centrifugally cast Ni-hard rolls was suggested. - Abstract: The effects of V on the microstructure and wear resistance of centrifugally cast Ni-hard rolls are investigated under a constant fraction of graphite using electron microscopes and a revolving disk-type high-temperature wear tester. The volume fraction of (V,Nb)C particles was increased at the expense of the volume fraction of cementite with an increase in the V concentration. However, the volume fraction of graphite was held nearly constant by controlling the concentration ratio of Si and Cr. As the V concentration was higher than 3 wt.%, the pro-eutectic phase was changed from austenite to (V,Nb)C carbide. The pro-eutectic vermicular (V,Nb)C particles were segregated to the inner part of the roll during centrifugal casting. The wear resistance was improved with an addition of V due to the high volume fractions of the coarse eutectic and pro-eutectic (V,Nb)C particles and the precipitation hardening of fine (V,Nb)C particles in the martensitic matrix. The worn surface showed that cementite particles acted as the initiation site and propagation route of cracks.

  7. CO{sub 2} corrosion resistance of carbon steel in relation with microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Nathalie, E-mail: nochoa@usb.ve [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Vega, Carlos [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Pébère, Nadine; Lacaze, Jacques [Université de Toulouse, CIRIMAT, UPS/INPT/CNRS, ENSIACET, 4 Allée Emile Monso, CS 44362, 31030 Toulouse Cedex 4 (France); Brito, Joaquín L. [Laboratorio de Físico-química de Superficies, Centro de Química, Instituto Venezolano de Investigaciones Cientificas (IVIC), Carretera Panamericana, Km 11, Altos de Pipe, Estado Miranda (Venezuela, Bolivarian Republic of)

    2015-04-15

    The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO{sub 2} was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to characterize the formation of the corrosion product layers. Electrochemical results revealed that corrosion resistance increased in the following order: B < N < Q&T < A. From the polarization curves it was shown that specifically, cathodic current densities were affected by microstructural changes. SEM images indicated that ferrite dissolved earlier than cementite and a thin layer of corrosion products was deposited on the steel surface. XPS analyses revealed that this layer was composed of a mixture of iron carbonate and non-dissolved cementite. It was also found that the quantity of FeCO{sub 3} content on the steel surface was greater for Q&T and A microstructures. These results, in agreement with the electrochemical data, indicate that the deposition mechanism of iron carbonate is closely related to the morphology of the non-dissolved cementite, determining the protective properties of the corrosion product layers. - Highlights: • The effect of change in microstructure on CO{sub 2} corrosion resistance was evaluated. • An API 5LX 42 carbon steel was immersed in a 0.5 M NaCl solution saturated with CO{sub 2}. • Banded, normalized, quenched-tempered and annealed microstructures were considered. • Electrochemical measurements were coupled with surface analysis. • Morphology and distribution of undissolved Fe{sub 3}C control corrosion kinetics.

  8. Mathematical Model of the Processoof Pearlite Austenitization

    Directory of Open Access Journals (Sweden)

    Olejarczyk-Wożeńska I.

    2014-10-01

    Full Text Available The paper presents a mathematical model of the pearlite - austenite transformation. The description of this process uses the diffusion mechanism which takes place between the plates of ferrite and cementite (pearlite as well as austenite. The process of austenite growth was described by means of a system of differential equations solved with the use of the finite difference method. The developed model was implemented in the environment of Delphi 4. The proprietary program allows for the calculation of the rate and time of the transformation at an assumed temperature as well as to determine the TTT diagram for the assigned temperature range.

  9. Control of heat-resistant steel carburized layer structure. Part I

    Science.gov (United States)

    Semenov, M. Yu.

    2013-09-01

    A physical model of carbide formation with vacuum carburizing is developed with the aim of controlling complexly-alloyed steel diffusion layer structure, taking account of excess phase formation of both the cementite type, and special carbides. A mathematical model is developed on the basis of the physical model adopted, adequate for experimental results. Analysis of calculated results is used as a basis for demonstrating the effect on carbide formation of alloying with chromium and strong carbide-forming elements, and also production factors.

  10. Study on Carburizing Kinetics of Low-carbon Steel at High-temperature and Short-term

    Institute of Scientific and Technical Information of China (English)

    Lu Sheng; Xiao Nianxin; Zhang Hailong

    2007-01-01

    In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carburized layer was also analyzed. The results show that the carburizing rate of low-carbon steel at high-temperature and short-term is so fast, and the microstructure of carburized layer possess higher carbon content, and cementite, pearlite and ferrite exist in carburized layer structure simultaneously. Besides, the kinetic equations of permeating layer forming have been presented, and the carburizing mechanism was preliminary discussed also.

  11. Hybrid Friction Stir Welding of High-carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Don-Hyun Choi; Seung-Boo Jung; Chang-Yong Lee; Byung-Wook Ahn; Jung-Hyun Choi; Yun-Mo Yeon; Keun Song; Seung-Gab Hong; Won-Bae Lee; Ki-Bong Kang

    2011-01-01

    A high-carbon steel joint, SK5 (0.84 wt% C), was successfully welded by friction stir welding (FSW), both without and with a gas torch, in order to control the cooling rate during welding. After welding, the weld zone comprised gray and black regions, corresponding to microstructural variation: a martensite structure and a duplex structure of ferrite and cementite, respectively. The volume fraction of the martensite structure and the Vickers hardness in the welds were decreased with the using of the gas torch, which was related with the lower cooling rate.

  12. Plasma Nitriding of Low Alloy Sintered Steels

    Institute of Scientific and Technical Information of China (English)

    Shiva Mansoorzadeh; Fakhreddin Ashrafizadeh; Xiao-Ying Li; Tom Bell

    2004-01-01

    Fe-3Cr-0.5Mo-0.3C and Fe-3Cr-1.4Mn-0.5Mo-0.367C sintered alloys were plasma nitrided at different temperatures. Characterization was performed by microhardness measurement, optical microscopy, SEM and XRD. Both materials had similar nitriding case properties. 1.4% manganese did not change the as-sintered microstructure considerably.It was observed that monophase compound layer, γ, formed with increasing temperature. Compound layer thickness increased with increasing temperature while nitriding depth increased up to a level and then decreased. Core softening was more pronounced at higher temperature owing to cementite coarsening.

  13. Structural Parameters and Strengthening Mechanisms in Cold-Drawn Pearlitic Steel Wires

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andy; Huang, Xiaoxu

    2012-01-01

    Pearlitic steel wires have a nanoscale structure and a strength which can reach 5 GPa. In order to investigate strengthening mechanisms, structural parameters including interlamellar spacing, dislocation density and cementite decomposition, have been analyzed by transmission electron microscopy...... and high resolution electron microscopy in wires cold drawn up to a strain of 3.7. Three strengthening mechanisms, namely boundary strengthening, dislocation strengthening and solid solution hardening have been analyzed and good agreement has been found between the measured flow stress and the value...

  14. Valence electron structure of cast iron and graphltization behaviour criterion of elements

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 孙振国; 杨晓平; 陈敏

    1995-01-01

    The valence electron structure of common alloy elements in phases of cast iron is calculated- The relationship between the electron structure of alloy elements and equilibrium, non-equilibrium solidification and graphitization is revealed by defining the bond energy of the strongest bond in a phase as structure formation factor S. A criterion of graphitization behaviour of elements is advanced with the critical value of the structure formation factor of graphite and the n of the strongest covalent bond in cementite. It is found that this theory conforms to practice very well when the criterion is applied to the common alloy elements.

  15. Experimental study of the thermal stability of austempered ductile irons

    Science.gov (United States)

    Pérez, M. J.; Cisneros, M. M.; Valdés, E.; Mancha, H.; Calderón, H. A.; Campos, R. E.

    2002-10-01

    A nonisothermal annealing was applied to austempered Ni-Cu-Mo alloyed and unalloyed ductile irons to determine the thermal stability of the ausferritic structure. Differential thermal analysis (DTA) results were used to build the corresponding stability diagrams. The transformation starting temperature of the high carbon austenite was found to be strongly dependent on the austempering temperature, the heating rate, and the chemical composition of the iron. The Ni-Cu-Mo alloying elements and high austempering temperature increased the stability. The transformation of the austenite to ferrite and cementite is achieved via the precipitation of transition carbides identified as silico-carbides of triclinic structure.

  16. 回火

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The influence of nitrogen on the structure and properties of Fe-10Cr-N and Fe-10Cr-IMo-N steels after tempering in the temperature range of 650-750℃.In-situ heat treatment system using YAG laser sourcetempering process after quenching.Modelling and characterization of Mo{sub}2C precipitation and cementite dissolution during tempering of Fe-C-Mo martensitic steel.Inductive heating for hardening and tempering of steel rails.Rapid tempering and stress relief via high-speed convection heating.

  17. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Orientation Relationships between Precipitates and Their Parent Phases in Steels at Low Transformation Temperatures

    Science.gov (United States)

    Lee, Dong Nyung; Han, Heung Nam

    The directed growth of precipitates proceeds in their parent phases at low transformation temperatures. The growth needs the activation energy. The activation energy is usually supplied in the form of thermal energy. However, at low transformation temperatures, the thermal energy is not enough to surmount the activation barrier, and so the strain energy developed in the parent phase assists surmounting the barrier, resulting in the directed growth of precipitates. The strain energy can result from a difference in density between the nucleus and matrix and a lattice mismatch along the nucleus:matrix interface. The fundamental concept of the model is that the maximum growth rate of precipitate is along the direction that generates the maximum strain energy and minimizes the interface energy. In this paper, orientation relationships between ferrite precipitate and parent austenite, between orthorhombic cementite precipitate and parent austenite, between cementite precipitate and parent ferrite, and between hexagonal Mo2C precipitate and parent ferrite have been discussed based on the directed growth model.

  19. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  20. Effect of Si on the Aging Behavior of Cold-Drawn Pearlitic Steel Wires

    Science.gov (United States)

    Tu, Yiyou; Wang, Xiaohui; Huang, Huiling; Zhou, Xuefeng; Jiang, Jianqing

    2017-02-01

    The effects of Si on the aging behavior in severe cold-drawn pearlitic steel were investigated. Under the same conditions, partitioning ratio, κ Mn, increased from 1.14 to 1.92 in 0.22 pct-Si steel as pearlitic transformation temperature rose from 793 K to 873 K (520 °C to 600 °C); however, κ Mn of 0.95 pct-Si steel only increased from 1.87 to 1.94. Cementite lamellae spheroidization in high Si content steel wire was remarkably delayed during aging at 698 K (425 °C) by the combined effect of diffusion retardation of Si and C atom and cementite phase stabilization by Mn alloying. In addition, age-hardening duration is prolonged, thereby extending age-hardening duration of the as-drawn 0.95 pct-Si-873 K (600 °C) steel wire by approximately 10 times that of 0.22 pct-Si-793 K (520 °C) steel wire.

  1. Analysis on microstructure of carburized layer in cast-iron molten bath carburized 20 steel%20钢铸铁浴渗碳渗层组织的分析

    Institute of Scientific and Technical Information of China (English)

    刘建华; 湛岩; 张瑞军; 于升学; 杨雪梅

    2001-01-01

    The microstructure of carburized layer in 20 steel cast-iron molten bath carburized at different temperature and time was studied in the paper.The research results show that the microstructure of carburized layer which is at 130~150μm from the surface is cementite+pearlite+ferrite,when specimen immevsed for 30s in 1270℃;the micvostruchre of carburized layer which is at 0~120μm from the surface is cementite+pearlite,and bar carbides is obtained in the base.%本文探讨了20钢在铸铁浴中经不同温度及时间渗碳的渗层组织。结果表明,试样在1270℃的铸铁浴中保留30秒,距表面130~150μm处,其渗层组织为渗碳体+珠光体+铁素体;试样在1300℃的铸铁浴中保留30秒,距表面0~120μm处,其渗层组织为渗碳体+珠光体,且在基体上形成棒条状的碳化物。

  2. Structural causes of defects in a cast iron mill roll

    Directory of Open Access Journals (Sweden)

    J. Krawczyk

    2008-07-01

    Full Text Available This paper describes an analysis of a defective microstructure of a mill roll. For this purpose, a piece of a broken roll was collected. That roll was made of mottled cast iron. Its microstructure consisted of modular graphite, transformed ledeburite and a matrix composed of bainite and martensite. Metallographic investigations were performed nearby the fracture in the roll. Observations were conducted on polished sections, first not etched, and then etched, which allowed us to trace carefully the propagation of the fracture. There was found a strict correlation between the microstructure of the roll and the progress occurring in the crack. It was ascertained that the basic reason for the damage to the roll was banded precipitations of ledeburitic cementite. In addition, cementite formed a continuous network. Another microstructure defects of that roll are also precipitations of secondary carbides on the boundaries of former grain of austenite as well as the occurrence of upper bainite in its matrix. The results obtained hereunder allow broadening the data base relative to the genesis of damages to mill rolls, which in future will permit one to design a proper microstructure of cast iron mill rolls. Proper microstructure of cast iron mill roll should be shaped at the stage of designing the chemical composition, conditions of crystallization or heat treatment if any.

  3. Effect of Heat Treatment on Microstructures and Mechanical Properties of Severe Plastically Deformed Hypo- and Hyper-Eutectoid Steels by Caliber Rolling Process.

    Science.gov (United States)

    Yun, Shin-Cheon; Kim, Hyun-Jin; Bae, Chul-Min; Lee, Kee-Ahn

    2016-02-01

    This study investigated the effect of post-heat treatment on the microstructures and mechanical properties of severe plastically deformed hypo- and hyper-eutectoid steels that underwent a caliber rolling process. First, 28 passes of caliber rolling were performed on both the hypo-eutectoid steel with Fe-0.47% C (wt%) composition and the hyper-eutectoid steel with Fe-1.02%C (wt%) composition. Then, the caliber rolled materials underwent heat treatment at 500 degrees C for 1, 3, 5, 10, 30 and 60 minutes. The caliber rolled steel possessed a 300-400 nm-sized oval cementite structure created through elongating and segmentation regardless of the C composition. The observation of heat-treated microstructures showed that cementite structure became globular and ferrite size increased as heat treatment temperature increased. In the hardness measurement, the initial caliber rolled samples showed 372.8 Hv (hypoeutectoid) and 480.1 Hv (hyper-eutectoid). However, hardness dramatically decreased up to 10 min. heat treatments, and then showed a constant or small reduction with time. The yield strengths (compression) of caliber rolled hypo- and hypereutectoid steels obtained were 1097 MPa and 1426 MPa, respectively, and the yield strengths of the same steels after heat treatment (500 degrees C, 60 min.) were identified to be 868 MPa and 1316 MPa, respectively.

  4. Neutron strain scanning in straightened eutectoid steel rods

    Science.gov (United States)

    Martínez, M. L.; Borlado, C. R.; Mompeán, F. J.; Peng, R. L.; Daymond, M. R.; Ruiz, J.; García-Hernández, M.

    Neutron strain scanning has been performed on a neutectoid steel rod at a reactor-based source (REST diffractometer, at NFL) and at a pulsed source (ENGIN diffractometer, at ISIS). The rod is primarily obtained from a drawing process and has been subject to bending and straightening procedures, which induce residual stress. The material exhibits a pearlitic microstructure, with alternating ferrite (90 vol%) and cementite (10 vol%) layers. Strain profiles for the ferritic phase were measured on REST. Both phases were measured on ENGIN and analysed by single-peak (ferrite) and Rietveld refinement (ferrite and cementite) methods. The agreement between REST and ENGIN data is excellent for the three measured directions in the ferritic phase. Total stress profiles have been evaluated by combining phase stresses using the rule of mixtures. The experimental results compare well with analytical models for a two-phase material subject to bending and straightening operations under pure bending and unbending moments with perfect elastic behaviour up to the yield point and plastic Voce behaviour above.

  5. 82B盘条钢的组织性能及缺陷分析%Analysis on Microstructure and Properties and Defects of 82B Steel Wire Rod

    Institute of Scientific and Technical Information of China (English)

    孙莹; 于庆波

    2011-01-01

    通过对82B盘条钢的显微组织观察,研究了索氏体含量对82B盘条拉拔性能的影响,并对生产中常见的组织缺陷进行了分析.结果表明:生产中化学成分及工艺的不稳定是组织缺陷产生的主要原因;提高冷却速度可以增加索氏体含量、降低网状渗碳体含量;采用恒拉速可以减少块状渗碳体的形成.%By observing the microstructure of 82B steel wire rod, the effects of sorbite content on the drawing performance of 82B wire rod were investigated. The common defects in production were analyzed. The results indicate that the instability of chemical composition and technological process results in the defects. Increasing the cooling rate can increase the content of sorbite and decrease the content of network cementite; constant pulling speed can be used to decrease the formation of massive cementite.

  6. Application of headed studs in steel fiber reinforced cementitious composite slab of steel beam-column connection

    Science.gov (United States)

    Yao, Cui; Nakashima, Masayoshi

    2012-03-01

    Steel fiber reinforced cementitous composites (SFRCC) is a promising material with high strength in both compression and tension compared with normal concrete. The ductility is also greatly improved because of 6% volume portion of straight steel fibers. A steel beam-column connection with Steel fiber reinforced cementitous composites (SFRCC) slab diaphragms is proposed to overcome the damage caused by the weld. The push-out test results suggested that the application of SFRCC promises larger shear forces transferred through headed studs allocated in a small area in the slab. Finite element models were developed to simulate the behavior of headed studs. The failure mechanism of the grouped arrangement is further discussed based on a series of parametric analysis. In the proposed connection, the SFRCC slab is designed as an exterior diaphragm to transfer the beam flange load to the column face. The headed studs are densely arranged on the beam flange to connect the SFRCC slab diaphragms and steel beams. The seismic performance and failure mechanism of the SFRCC slab diaphragm beam-column connection were investigated based on the cyclic loading test. Beam hinge mechanism was achieved at the end of the SFRCC slab diaphragm by using sufficient studs and appropriate rebars in the SFRCC slab.

  7. Microstructure and properties of cast iron by semi-solid die casting process; Hangyoko diecast shita chutetsu no soshiki to seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, C.; Kitamura, K.; Ando, Y.; Hironaka, K.

    1996-02-25

    In the semi-solid die casting process, products are made by processing metals in the liquid and solid coexistence region. Die casting experiments were conducted using flaky graphite cast iron by means of the rheocasting method in which semi-solid slurry is directly die cast and the thixocasting method in which raw material billet is heated up to the semi-solid temperature and then die cast. In both the methods, flat plates were produced. In the rheocasting with the solid ratio of 0.2, flat plates of 6 mm thick were obtained. The surface temperature of die was lower than that in the case of melt die casting, which reduced the heat load of die. The macro segregation was also reduced. In the thixocasting, flat plates of 3 mm thick were obtained. Using general flaky graphite cast iron, the microstructure was observed where solid phase austenite is uniformly dispersed in the solid-liquid coexistence region. Austenite and austenite/cementite eutectic was observed in the specimens without treatment after casting. Cementite easily changed into fine graphite spheres through the heat treatment, which has excellent tensile strength of 400 MPa and elongation of 3%. 7 refs., 12 figs., 5 tabs.

  8. The Effect of Thermo-Mechanical Treatment on Structure of Ultrahigh Carbon PM Steel

    Science.gov (United States)

    Nikiel, Piotr; Szczepanik, Stefan; Skrzypek, Stanisław Jan; Rogal, Łukasz

    2017-03-01

    The effects of thermo-mechanical treatment on selected properties related to the structure of Fe-0.85Mo-0.65i-1.4C powder metallurgy (PM) steel are reported. Three kinds of initial microstructure of specimens, i.e., pearlite + ferrite + cementite, martensite + retained austenite and α + spheroidized cementite were examined. Processing was carried out on a plastometer-dilatometer Bähr machine by compression cylindrical specimens at 775 °C at a strain rate of 0.001 s-1. X-ray diffraction was carried out with symmetrical Bragg-Brentano and grazing incident angle methods on a D8-Advance diffractometer with filtered radiation of cobalt CoK α . The following features were determined: texture, density of dislocations, density of vacancies, lattice parameter of Fe α and mean size of crystallites. Significant differences in structure were observed, especially in quenched specimen, as a result of the thermo-mechanical treatment. Regardless of initial state of the specimens, the determined properties were on a similar level. Crystallite size was in the range 97-106 nm, crystallite texture (I{200}/I{110}) × 10 = 1.15-1.62 and density of vacancies I{110}/I{220} = 7.06-7.52.

  9. Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Futao, E-mail: dongft@sina.com [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Du, Linxiu; Liu, Xianghua [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Xue, Fei [College of Electrical Engineering, Hebei United University, Tangshan 063000 (China)

    2013-10-15

    The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boron combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.

  10. Transient liquid phase bonding of carbon steel tubes using a Cu interlayer: Characterization and comparison with amorphous Fe–B–Si interlayer bonds

    Energy Technology Data Exchange (ETDEWEB)

    Di Luozzo, Nicolas, E-mail: nicolasdiluozzo@gmail.com [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Boudard, Michel; Doisneau, Béatrice [Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Fontana, Marcelo; Arcondo, Bibiana [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2014-12-05

    Highlights: • Cu and Fe–B–Si foils were used as interlayers to bond steel tubes by TLPB process. • The microstructure and mechanical properties were characterized. • In Cu bonded samples, the solidification process was not systematically completed. • When using Cu foils, evidences of epitaxial solidification were observed. • Tensile tests show that Cu and Fe–B–Si bonded samples failed away from the joint. - Abstract: In the present work the transient liquid phase bonding process was performed to join seamless carbon steel tubes using commercially pure Cu interlayers. The structural and mechanical characteristics of the resulting bonds are compared with those achieved using amorphous Fe–B–Si interlayers, under the same process parameters: a holding temperature of 1300 °C, a holding time of 7 min and an applied pressure of 5 MPa. The joined tubes microstructures were characterized by direct observations – scanning electron microscopy – and diffraction techniques – electron backscatter diffraction. Chemical analysis was performed using electron probe microanalysis. Whereas the amorphous Fe-B-Si interlayer leads to a completion of the bonding process over the whole bonding area, the bond performed using a Cu interlayer achieved the completion of the bonding process only partially. As the Cu is a cementite promoter, the amount of cementite coexisting with ferrite grains is higher in the joint region (JR) – corresponding to the higher concentration of Cu – as compared with the heat affected zone (HAZ) and the base metal (BM). An opposite effect is observed when using Fe-B-Si interlayers due to the fact that the cementite is unable to form in Si enriched zones – the microstructure at the JR presents only ferrite grains. Tensile tests show that the joined tubes using Cu or Fe–B–Si interlayers failed away from the bond, at the HAZ, attaining almost the same ultimate tensile strength of the BM, in the as-received condition. Hardness

  11. Structure-phase states evolution in rails during a long operation

    Energy Technology Data Exchange (ETDEWEB)

    Peregudov, Oleg, E-mail: gromov@physics.sibsiu.ru; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Morozov, Konstantin, E-mail: gromov@physics.sibsiu.ru; Alsaraeva, Krestina, E-mail: gromov@physics.sibsiu.ru; Semina, Olga, E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation); Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    By methods of scanning and transmission electron microscopy the transformation regularities of structure-phase states, defect substructure, fracture surface of rail surface layer up to 10 mm deep in process of long-term operation (passed tonnage of gross weight 1000 mln tons) were revealed. It has been shown that the surface layer ∼20 μm in thickness has a multiphase, submicro- and nanocrystalline structure and it contains micropores and microcracks. The increased density of bend extinction contours at 2 mm depth from the tread contact surface was noted. The analysis of structure morphological constituents and internal stress fields, created by intra- and interphase boundaries after long operation was carried out. It was shown that the maximum amplitude of stress fields was formed on the interphase boundary the globular cementite particle–matrix. The evaluation of stress fields was done.

  12. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2013-07-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  13. Effect of Nitrogen and Hydrogen Gases on the Synthesis of Carbon Nanomaterials from Coal Waste Fly Ash as a Catalyst.

    Science.gov (United States)

    Hintsho, Nomso; Shaikjee, Ahmed; Triphati, Pranav K; Masenda, Hilary; Naidoo, Deena; Franklyn, Paul; Durbach, Shane

    2016-05-01

    Various reducing and inert gases have been used in the catalytic chemical vapour deposition (CCVD) synthesis of carbon nanomaterials (CNMs). In this paper we report on the effects that hydrogen and nitrogen gases have on the production of CNMs from acetylene on fly ash catalysts. Parameters such as temperature and gas environments were investigated. Transmission electron microscopy (TEM) revealed that CNMs of various morphologies such as carbon nanofibers (CNFs) and carbon nanospheres (CNSs) were formed. When hydrogen was used the carbonaceous products were formed in higher yields as compared to when nitrogen was used. This could be due to the multifunctional roles that hydrogen plays as compared to nitrogen. Laser Raman and Mössbauer spectroscopy measurements revealed that three types of products were formed, namely: amorphous carbon, graphitic carbon and iron carbide. Significantly cementite (Fe3C) was identified as the main intermediate carbide species in the catalytic growth of well-ordered CNMs.

  14. Quench and partitioning steel: a new AHSS concept for automotive anti-intrusion applications

    Energy Technology Data Exchange (ETDEWEB)

    De Cooman, B.C. [Graduate Inst. for Ferrous Technology, Pohang Univ. of Science and Technology, Pohang (Korea); Speer, J.G. [Advanced Steel Processing and Products Research Centre, Colorado School of Mines, Golden, CO (United States)

    2006-09-15

    A new type of high strength, high toughness, martensitic steel, based on a newly proposed quench and partitioning (Q and P) process, is presented. This high strength martensitic grade is produced by the controlled low temperature partitioning of carbon from as-quenched martensite laths to retained inter-lath austenite under conditions where both low temperature transition carbide formation and cementite precipitation are suppressed. The contribution focuses on both the current understanding of the fundamental processes involved and includes a discussion of the technical feasibility of large-scale industrial production of these steels as sheet products. The Q and P process, which is carried out on steels with a lean composition, should be implemented easily on some current industrial continuous annealing and galvanizing lines. In addition, martensitic Q and P sheet steel is characterized by very favourable combinations of strength, ductility and toughness, which are particularly relevant for high strength anti-intrusion automotive parts. (orig.)

  15. The Investigation of Surface Roughness on AISI 1040 Steel with Dry Turning

    Directory of Open Access Journals (Sweden)

    Nergizhan Kavak

    2012-12-01

    Full Text Available In this study, the effect of cutting speed and feed rate on the surface roughness was investigated experimentaly in the machining of AISI 1040 steel being mostly used in industry. Experiments was done by dry turning with uncoated cementite carbite cutting tools at different speeds (46. 91 ve 128 m/dk and feed rates (0.16, 0.22 ve 0.28 mm/dev while cutting depth stays stable at 2 mm. It was observed that workpiece surface quality get worse with the increase of feed rate or decrease of cutting speed. As a result of this work, it was seen that 128 m/min cutting speed and 0.16 mm/rev feed rate for the 2 mm cutting depth are the optimum cutting conditions from the point of surface quality.

  16. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew;

    2016-01-01

    The tensile properties and the deformation microstructure of pearlitic steel (0.8 wt % C) have been quantified in wires drawn to strains in the range from 3.7 to 5.4, having a flow stress in the range from 3.5 to 4.5 GPa. With increasing strain the interlamellar spacing (ILS) decreases from about...... 20 to 10 nm and the thickness of the cementite lamellae decreases from about 2 nm to about 0.7 nm, representing a structure, which breaks up at large strains, decomposes and releases carbon to the ferrite lamellae. The dislocation density increases continuously with strain and reaches about 5 1016 m2...... the calculated and the measured flow stress is observed over the strain range 0e5.4. However at large strains beyond 3.7 deviations are observed which are discussed in terms of the applied strength-structure relationships....

  17. Control of Heat-Resistant Steel Carburized Layer Structure. Part II

    Science.gov (United States)

    Semenov, M. Yu.

    2013-09-01

    In the first part of the article, published in the previous issue of this journal, on the basis of studying features of the process a physical and mathematical model is presented of carbide formation during heat-resistant steel vacuum carburizing based on the example of VKS-5. In the second part of this article on the basis of analyzing the calculation model physical features are presented for formation of cementite type carbide phase taking account of steel VKS-5 alloying with chromium and nickel, and also temperature. Simultaneously, features of special molybdenum, tungsten, vanadium and niobium carbide formation are considered. The expediency of increasing chromium content in a new generation of heat-resistant steels alloyed with nickel is substantiated.

  18. Carbonization of α-Fe upon mechanical alloying

    Science.gov (United States)

    Barinov, V. A.; Tsurin, V. A.; Kazantsev, V. A.; Surikov, V. T.

    2014-01-01

    Methods of thermomagnetic analysis (TMA) and Mössbauer spectrometry (57Fe) have been used to study the processes of the carburizing of α-Fe under the conditions of mechanical milling in a medium of liquid hydrocarbons. It has been established that, under the chosen conditions of the mechanical synthesis of carbides, the process of carbonization at T c C(ɛ) > c C(ɛ'). The boundary of the temperature stability of cementite has been established. The effect of the decomposition of the θ phase (Fe3C) upon thermal cycling θ ⇔ γ in the temperature range of 300 < T < 1075 K has been revealed. Based on the results obtained, a scheme of the sequence of phase transformations that occur in the Fe-C system under the conditions of low-temperature mechanosynthesis has been derived.

  19. Measurement and modelling of residual stresses in straightened commercial eutectoid steel rods

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Perez, M.L. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Borlado, C.R. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Open University, Faculty of Technology, Milton Keynes, MK7 6AL (United Kingdom); Mompean, F.J. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Garcia-Hernandez, M. [ICMM, CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Gil-Sevillano, J. [CEIT, Paseo de Manuel Lardizabal 15, E-20018 San Sebastian (Spain); Ruiz-Hervias, J. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain); Atienza, J.M. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain)]. E-mail: jmatienza@mater.upm.es; Elices, M. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, c/ Profesor Aranguren s/n, E-28040 Madrid (Spain); Peng, Ru Lin [NFL Studsvik, Uppsala University, S-61182 Nykoeping (Sweden); Daymond, M.R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, K7L 3N6 (Canada)

    2005-09-15

    Neutron strain scanning measurements on a eutectoid steel rod that has been subjected to standard industrial coiling and straightening operations are presented. Strains were determined non-destructively using two different diffractometers, one at a steady-state neutron source and the other at a pulsed spallation neutron source, with measurements made in both the ferrite and cementite components of the pearlitic microstructure. The residual stress state is explained in terms of a simplified analytical model for a two-phase material, which takes into account the successive loading operations contributing to residual stress. The results show that residual stresses generated by bending-straightening operations are significant and are likely to play an important role in the mechanical properties of the final wires.

  20. Anti-seismic behavior of HRB400 reinforced steel bars

    Institute of Scientific and Technical Information of China (English)

    QIN Bin; SHENG Guang-min; GONG Shi-hong

    2005-01-01

    The properties of anti-seismic HRB400 steel bars with 25 mm diameter were systematically investigated. The results showed that the properties of the HRB400 reinforced steel bars had been greatly enhanced comparing with HRB335 steel bars, i.e. coordination of strength and ductility, strain-aging sensibility, low temperature impact toughness, weld ability and high strain low cycle fatigue. The ductile-brittle transit temperatures of hot-rolled and strain-aged steel bars were evaluated as -17℃ and-8℃ respectively, and the low temperature impact toughness of HRB400 steel bars remains to be improved. Transmission electron microscopy (TEM) and electron diffraction showed little vanadium existed in ferrite as VN, most of which existed in pearlite as alloy cementite which resulted in the declination of impact toughness. Methods were suggested to improve the anti-seismic properties of steel bars.

  1. SWRH82B热轧盘条拉拔笔尖状断口分析%Analysis on Penpoint Fracture During Drawing of SWRH82B Wire Rod

    Institute of Scientific and Technical Information of China (English)

    李玉岗; 袁子成; 温国栋

    2011-01-01

    The penpoint fracture wire sample of SWRH82B steel was analyzed by SEM and microscope.The result showed that the main reason of wire broken in direct drawing was high network cementite in hot rolled rod.Furthermore,suggestions were put forward to improve%针对φ12.5 mm SWRH82B热轧盘条拉拔笔尖状断口缺陷,采用扫描电子显微镜和金相显微镜进行了专题研究。结果显示:盘条心部存在网状渗碳体是导致笔尖状断口的主要原因,并提出消除该缺陷的措施与办法。

  2. Tailoring the gradient ultrafine-grained structure in low-carbon steel during drawing with shear

    Directory of Open Access Journals (Sweden)

    G. I. Raab

    2016-04-01

    Full Text Available Conventional drawing and drawing with shear were conducted on the rods of low-carbon steel. Deformation by simple drawing forms basically a homogenous structure and leads to a uniform change in microhardness along the billet volume. A comparative analysis of the models of these processes showed that shear drawing of steel at room temperature reduces energy characteristics in half, normal forces on the die – by 1,8, and enhances the strain intensity from 0,5 to 1,6. During drawing with shear, strain-induced cementite dissolution occurs and a gradient structure is formed, which increases the microhardness of the surface layer up to values close to 7 000 MPa.

  3. Sulfate and acid resistant concrete and mortar

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  4. Investigation of Transformation for Ultrahigh Strength Steel Aermet 100

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The heat-stagnation curves of two quenched and cryogenically treated ultrahigh strength AF1410and Aermet 100 steels during heating and cooling in furnace have been measured. The results showed that the curve displayed an abnormal terrace in the course of heating, and within the temperature range corresponding to the terrace, the formation and growth of both cementite Fe3C and secondary hardening phase M2C in the steel make the carbon content in matrix obviously vary. It is in the region of terrace that the optimum combination of tensile strength and fracture toughness is obtained because of secondary hardening. Based on the measured heat-stagnation curve, several transformation points have been determined and the correctness was also verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, the influence of heating rate and tempering temperature on the crystal structure and stability of austenite has been studied.

  5. Degradation of the pipe-steel structure upon long-term operation in contact with a hydrogen sulfide-containing medium

    Science.gov (United States)

    Schastlivtsev, V. M.; Tabatchnikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.

    2011-03-01

    The phase composition and structure of defect portions of pipelines after long-term service in contact with a hydrogen sulfide-containing medium have been investigated. From structural changes, the process of the initiation of cracks and fracture of a low-carbon ferritic-pearlitic steel containing slag-induced laminations and precipitates of sulfides of the (Fe,Mn)S type has been reconstructed. The conditions under which a block cementite substructure is formed in the course of service and a transformation of the plate-type shape of the carbide phase occurs have been analyzed. It has been established that the dispersed carbides precipitating in this case limit the mobility of dislocations and thereby favor degradation of service properties of the pipe steel.

  6. Secondary Hardening, Austenite Grain Coarsening and Surface Decarburization Phenomenon in Nb-Bearing Spring Steel

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The secondary hardening, the austenite grain coarsening and the surface decarburization phenomenon of Nb-bearing spring steel were investigated, and the effects of niobium on tempered microstructure was studied using scanning electron microscope. The results show that the micro-addition of niobium increases the tempering resistance and produces secondary hardening. The effect of niobium on the size and distribution of cementite particles is one of the primary reasons to increase the hardness after tempering. The grain-coarsening temperature of the spring steel is raised 150 ~C due to Nb-addition. Furthermore, both the secondary hardening and the austenite grain coarsening phenomenon congruously demonstrate niobium begins observably dissolving above 1 100 ℃ in the spring steel. Be- sides, niobium microalloying is an effective and economy means to decrease the decarburization sensitivity of the spring steels.

  7. Influence of the Initial Microstructure on the Reverse Transformation Kinetics and Microstructural Evolution in Transformation-Induced Plasticity-Assisted Steel

    Science.gov (United States)

    Kim, Jeong In; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Kyooyoung; Heo, Yoon-Uk; Suh, Dong-Woo

    2016-11-01

    The reverse transformation behavior upon heating to intercritical temperature was studied in Fe-0.21C-2.2Mn-1.5Si (wt pct) alloy with three initial microstructures. One is the cold-rolled (CR) structure and two others are martensite having different fractions of retained austenite. The CR structure exhibits slower reverse transformation kinetics than martensite due to the lesser population of potent nucleation sites and coarse cementite particles. The film type of retained austenite at the martensite lath boundary contributes to the earlier start of the reverse transformation, because it can proceed as the growth of pre-existing retained austenite, which makes the nucleation process less critical. Besides, the growth of interlath austenite plays an essential role in the evolution of fine lath-type reverse-transformed microstructure, which was difficult to obtain from similar initial microstructures of martensite having negligible fraction of interlath austenite.

  8. EFFECT OF COPPER ON PASSIVITY AND CORROSION BEHAVIOR OF FE-XC-5CU ALLOY

    Directory of Open Access Journals (Sweden)

    M. Ferhat

    2014-06-01

    Full Text Available The correlation between corrosion behavior rate of annealed Fe-xC-5Cu alloys and their microstructure and phase composition is presented. The metallurgical analyses, including, X-Ray diffraction (XRD, the scanning electron microscopy (SEM with energy dispersive analysis (EDX, and induction hardening characterization are conducted to study the Fe-C-Cu alloys. Corrosion parameters in H2SO4 1N solution have been established by carrying out electrochemical studies such as potentiodynamic (Tafel polarization and linear polarization, LP and electrochemical impedance spectroscopy (EIS. The coupled effect copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process.

  9. EFFECT OF COPPER ON PASSIVITY AND CORROSION BEHAVIOR OF FE-XC-5CU ALLOY

    Directory of Open Access Journals (Sweden)

    M. Ferhat

    2015-07-01

    Full Text Available The correlation between corrosion behavior rate of annealed Fe-xC-5Cu alloys and their microstructure and phase composition is presented. The metallurgical analyses, including, X-Ray diffraction (XRD, the scanning electron microscopy (SEM with energy dispersive analysis (EDX, and induction hardening characterization are conducted to study the Fe-C-Cu alloys. Corrosion parameters in H2SO4 1N solution have been established by carrying out electrochemical studies such as potentiodynamic (Tafel polarization and linear polarization, LP and electrochemical impedance spectroscopy (EIS. The coupled effect copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process.

  10. Fading of inoculation effects in ductile iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-03-01

    Full Text Available In work i t has bccn shown rcsults or invcsligations of influcncc of rime Iapsed form inoculation proccss on graphitc nucleation potentialrcprcscntcd by: numbcr of graphitc nodulcs N and N,, maximum undercooling AT,, during solidification of gmphile eutcct ic. abmlutcchilling tcndcncy CT and critical casting diametct dh. undcr which cementite euteclic occur (so-callcd chills. Morcovcr it has hccncstima~cd raic of changc of N and N, AT,,,. CT and dk,. Also, it has bccn provcd that altcr onc minutc sincc rhc momcnt of inocuIationproccss nhout 35% of prnphttc nucIeation potenrial is tost. by 40% chitking tendency, by 70% incrcascs maximum undcrcmling forgraphitc ci~tccrica nd by nearly 40% caging diameter has to bc incrcascd in ordcr to avoid chills.

  11. Direct Observations of the (Alpha to Gamma) Transformation at Different Input Powers in the Heat Affected Zone of 1045 C-Mn Steel Arc Welds Observed by Spatially Resolved X-Ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T A; Elmer, J W

    2005-03-16

    Spatially Resolved X-Ray Diffraction (SRXRD) experiments have been performed during Gas Tungsten Arc (GTA) welding of AISI 1045 C-Mn steel at input powers ranging from 1000 W to 3750 W. In situ diffraction patterns taken at discreet locations across the width of the heat affected zone (HAZ) near the peak of the heating cycle in each weld show regions containing austenite ({gamma}), ferrite and austenite ({alpha}+{gamma}), and ferrite ({alpha}). Changes in input power have a demonstrated effect on the resulting sizes of these regions. The largest effect is on the {gamma} phase region, which nearly triples in width with increasing input power, while the width of the surrounding two phase {alpha}+{gamma} region remains relatively constant. An analysis of the diffraction patterns obtained across this range of locations allows the formation of austenite from the base metal microstructure to be monitored. After the completion of the {alpha} {yields} {gamma} transformation, a splitting of the austenite peaks is observed at temperatures between approximately 860 C and 1290 C. This splitting in the austenite peaks results from the dissolution of cementite laths originally present in the base metal pearlite, which remain after the completion of the {alpha} {yields} {gamma} transformation, and represents the formation of a second more highly alloyed austenite constituent. With increasing temperatures, carbon, originally present in the cementite laths, diffuses from the second newly formed austenite constituent to the original austenite constituent. Eventually, a homogeneous austenitic microstructure is produced at temperatures of approximately 1300 C and above, depending on the weld input power.

  12. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    By Zhou Jiyang; Professor

    2011-01-01

    5.5 Eutectic crystallisation of white iron When undercooled below the eutectic line ECF in the Fe-C phase diagram,liquid iron will start eutectic transformation (crystallization):eutectic liquid → cementite + austenite.Eutectic crystallisation is an important stage during the crystallization of white iron.At this stage,the nucleation and growth of eutectic cells (consisting of carbide or cementite + austenite) occur.The carbide in eutectic cells (or eutectic carbide) is the main hard and brittle phase structure which has an important effect on the properties of white iron.If there is no primary carbide in the structure,the effect of eutectic carbide is more prominent.5.5.1 Thermodynamics and kinetics of eutectic crystallisationWhether a eutectic melt follows the meta-stable system to crystallise as carbide + austenite,or follows the stable system to crystallise as graphite + austenite eutectic,is dependent on the nucleation and growth of the two high carbon phases (carbide and graphite),namely,on thermodynamic and kinetic conditions.Figure 5-23 shows the comparison of thermodynamic driving forces of the two eutectics.The two lines in the lower section of the figure represent the free energy of the two eutectics respectively and GL is the free energy of the undercooled iron melt.It is easy to see that the iron melt has the highest free energy and the graphiteaustenite has the lowest free energy;so,following a stable system,the thermodynamic condition favours the crystallisation of graphite-austenite eutectic from the iron melt.

  13. Microstructural and mechanical characterizations of steel tubes joined by transient liquid phase bonding using an amorphous Fe–B–Si interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Di Luozzo, Nicolas, E-mail: nicolasdiluozzo@gmail.com [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Doisneau, Béatrice; Boudard, Michel [Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Fontana, Marcelo; Arcondo, Bibiana [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2014-12-05

    Highlights: • We joined steel tubes by means of TLPB process using a Fe–B–Si foil as interlayer. • We characterized both microstructure and mechanical properties of the joint. • The microstructure at the joint consists only of ferrite grains. • Evidences of non-epitaxial solidification were found. • Both tensile and hardness tests show the soundness of the joint. - Abstract: In this work the transient liquid phase bonding process was successfully used to join seamless carbon steel tubes using an amorphous Fe–B–Si foil as interlayer. The tubes were aligned with their butted surfaces in contact with the interlayer and the entire assembly was heated by means of an induction furnace under a reducing atmosphere. The temperature was raised to the process temperature (≈1300 °C) and then held for 7 min. The joining process was performed under a pressure of 5 MPa. The joined tubes microstructures were characterized by direct observations – scanning electron microscopy – and diffraction techniques – electron backscatter diffraction. Chemical analysis was performed by electron probe microanalysis. The joint region (JR) presents only ferrite grains - in contrast with the heat affected zone (HAZ) and the base metal (BM), whose microstructures consist of ferrite and cementite. Si content at the JR was precisely determined by chemical profiling, showing higher concentrations of Si compared with the HAZ and BM. These results are in accordance with the fact that the cementite is unable to form in Si enriched zones. Also, ferrite grains at the JR present high-angle grain boundaries with respect to the grains of the HAZ. Tensile tests show that the joined tubes failed away from the bond, at the HAZ, and reached 96% of the ultimate tensile strength of the BM, in the as-bonded condition. Microindentation hardness profiles across the bonding zone are in agreement with the observed microstructures at the different zones of the bond region.

  14. Reason Analysis on Fracture of Prestressed Steel Wires%预应力钢丝断裂原因分析

    Institute of Scientific and Technical Information of China (English)

    邹力扬

    2012-01-01

    通过化学成分分析、金相检验、低倍检验以及力学性能测试等方法,对82B盘条在拉拔成预应力钢丝过程中发生断裂的原因进行了分析。结果表明:造成82B盘条拉拔时发生脆断的主要原因是由于原料中存在严重的碳偏析,轧制时在富碳区出现过热,析出网状和块状渗碳体以及渗碳体魏氏组织;因而在相同的拉拔力作用下,盘条整个横截面上的塑性变形程度不同,容易产生微裂纹,在拉拔过程中发生断裂。%By means of chemical compositions analysis, metallographic examination, macroscopic examination and mechanical properties lest, the fracture reasons of prestressed steel wires during drawing from 82B steel wire rod were analyzed. The results show that the key reason of the brittle fracture was that the raw materials had defects of serious carbon segregation which resulted in overheating at the carbon-rich area and precipitation of mesh and massive cementite and cementite Widmanstatten structure when rolling. So in the same drawing force, the plastic deformation degree of the whole cross section of the wire rod was different, cracks produced and fracture happened during drawing.

  15. Microstructural and compositional evolution of iron carbonitride compound layers during salt bath nitrocarburizing

    Energy Technology Data Exchange (ETDEWEB)

    Somers, M.A.J.; Colijn, P.F.; Sloof, W.G.; Mittemeijer, E.J. (Technische Hogeschool Delft (Netherlands). Lab. of Metallurgy)

    1990-01-01

    An analysis was made of iron carbonitride compound layer development during nitrocarburizing of pure iron and two iron-carbon specimens, containing 0.3 wt.-% C and 0.6 wt.-% C, respectively, in an aerated cyanate-based salt bath at 853 K. The microstructural evolution was followed by means of light- and scanning electron microscopy and X-ray diffraction analysis. Composition-depth profiles were determined as a function of nitrocarburizing time applying electron-probe microanalysis and X-ray diffraction analysis. Compound layer formation on pure iron starts with the nucleation of cementite at the surface, which is immediately followed by nucleation of {epsilon} carbonitride containing a relatively high carbon content and a relatively low nitrogen content. Thereafter, {gamma}' (carbo)nitride and finally {epsilon} nitride develop at the outer surface. In general, on continued nitrocarburizing the nitrogen content at the outer surface increases and the carbon content decreases. Accordingly, the constitution of the compound layer is determined to a large extent by the (difference between the) absorption kinetics of carbon and of nitrogen rather than by equilibrium thermodynamics. In the surface-adjacent region, the layers are highly porous, predominantly as a consequence of corrosive attack by agents of the salt bath. As compared with nitrocarburizing of pure iron, the major effect of carbon present as cementite in pearlite regions in the iron-carbon specimens appears to be promotion of the formation of {epsilon} carbonitride in the compound layer at the cost of {gamma}' (carbo)nitride. (orig.).

  16. Microtwinning as a common mechanism for the martensitic and pearlitic transformations

    Energy Technology Data Exchange (ETDEWEB)

    Kraposhin, V., E-mail: kraposhin@gmail.com [Bauman Moscow State Technical University, 5, 2nd Baumanskaya Street, 105005 Moscow (Russian Federation); Jakovleva, I.; Karkina, L. [Institute of Metal Physics of Russian Academy of Science, Ekaterinburg (Russian Federation); Nuzhny, G. [Bauman Moscow State Technical University, 5, 2nd Baumanskaya Street, 105005 Moscow (Russian Federation); Zubkova, T. [Institute of Metal Physics of Russian Academy of Science, Ekaterinburg (Russian Federation); Talis, A. [A.N. Nesmeyanov Institute of Organoelement Compounds, Moscow (Russian Federation)

    2013-11-15

    Highlights: ► Diagonal flipping in the coordination polyhedra was proposed as the main mechanism of polymorph transformation. ► Microtwinning of crystal lattice can be effected by diagonal flipping in polyhedra. ► Martensite and perlite transformation can be fulfilled by the similar microtwinning. ► Twinning of austenite during perlite transformation has been observed by electron microscopy, thus confirming the proposed model. ► Orientation relationships predicted by model are in accordance with the experiment. -- Abstract: Common model for austenite transformations to pearlite and martensite has been proposed. The model uses a topological operation which is a local flipping of interatomic bonds resulting in formation of the structural unit of the coherent twin boundary. Main structural unit of a coherent twin boundary along {1 1 3} in the FCC lattice is a trigonal prism which is also the main building unit for the cementite structure. The atomic structure of such multiple {1 1 3} twins coincides with the structure of multiple twins along {1 1 2} of the BCC lattice, so the FCC–BCC transformation route is the FCC twinning along {1 1 3} and detwinning of {1 1 2} BCC twins into BCC structure. Carbon atoms serve as stabilizers to the prismatic iron configurations thus forming the cementite structure during pearlite transformation. High density of microtwins in the rest austenite after pearlite transformation in 1.2C–4Mn steel and new orientation relationships between pearlite constituents and austenite have been observed by transmission electron microscopy in full consistency with the proposed model. The twinning–detwinning mechanism prescribes also parallelism between {1 1 3} FCC and {1 1 2} BCC for martensite transformation in full accordance with published data.

  17. Metal Dusting-Mechanisms and Preventions

    Institute of Scientific and Technical Information of China (English)

    J.Q.ZHANG; D.J.YOUNG

    2009-01-01

    Metal dusting attacks iron, low and high alloy steels and nickel-or cobalt-base alloys by disintegrating bulk metals and alloys into metal particles in a coke deposit. It occurs in strongly carburising gas atmospheres (carbon activity aC>1) at elevated temperatures (400℃~1000℃). This phenomenon has been studied for decades, but the detailed mechanism is still not well understood. Current methods of protection against metal dusting are either directed to the process conditions-temperature and gas composition-or to the development of a dense adherent oxide layer on the surface of the alloy by selective oxidation. However, metal dusting still occurs by carbon dissolving in the base metal via defects in the oxide scale. The research work at UNSW is aimed at determining the detailed mechanism of metal dusting of both ferritic and austenitic alloys, in particular the microprocesses of graphite deposition, nanoparticle formation and underlying metal destruction. This work was carried out using surface observation, cross-section analysis by focused ion beam and electron microscopic examination of coke deposits at different stages of the reaction. It was found that surface orientation affected carbon deposition and metal dusting at the initial stage of the reaction. Metal dusting occurred only when graphite grew into the metal interior where the volume expansion is responsible for metal disintegration and dusting. It was also found that the metal dusting process could be significantly changed by alterations in alloy chemistry. Germanium was found to affect the iron dusting process by destabilising FeC but increasing the rate of carbon deposition and dusting, which questions the role of cementite in ferritic alloy dusting. Whilst adding copper to iron did not change the carburisation kinetics, cementite formation and coke morphology, copper alloying reduced nickel and nickel-base alloy dusting rates significantly. Application of these fundamental results to the dusting

  18. Influence of activation modes on diametral tensile strength of dual-curing resin cements Influência dos métodos de ativação na resistência à tração diametral de cimentos resinosos duais

    Directory of Open Access Journals (Sweden)

    Renata Garcia Fonseca

    2005-12-01

    Full Text Available In metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. The effect of the lack of photoactivation on the strength of these cements has been rarely studied. This study evaluated the influence of activation modes on the diametral tensile strength (DTS of dual-curing resin cements. Base and catalyst pastes of Panavia F, Variolink II, Scotchbond Resin Cement, Rely X and Enforce were mixed and inserted into cylindrical metal moulds (4 x 2 mm. Cements were either: 1 not exposed to light (chemical activation = self-cured groups or 2 photoactivated through mylar strips (chemical and photo-activation = dual-cured groups (n = 10. After a 24 h storage in 37ºC distilled water, specimens were subjected to compressive load in a testing machine. A self-curing resin cement (Cement-It and a zinc phosphate cement served as controls. Comparative analyses were performed: 1 between the activation modes for each dual-curing resin cement, using Student’s t test; 2 among the self-cured groups of the dual-curing resin cements and the control groups, using one-way ANOVA and Tukey’s test (alpha = 0.05. The dual-cured groups of Scotchbond Resin Cement (53.3 MPa, Variolink II (48.4 MPa and Rely X (51.6 MPa showed higher DTS than that of self-cured groups (44.6, 40.4 and 44.5 MPa respectively (p 0.05. The self-cured groups of all the dual-curing resin cements presented statistically the same DTS as that of Cement-It (44.1 MPa (p > 0.05, and higher DTS than that of zinc phosphate (4.2 MPa. Scotchbond Resin Cement, Variolink II and Rely X depended on photoactivation to achieve maximum DTS. In the absence of light, all the dual-curing resin cements presented higher DTS than that of zinc phosphate and statistically the same as that of Cement-It (p > 0.05.Em restaurações metálicas, a polimerização dos cimentos resinosos duais depende exclusivamente da ativação química. Há poucas pesquisas sobre o efeito

  19. 形变-球化退火共析钢的组织和性能%Microstructure and properties of eutectoid steel processed by deformation and spheroidizing annealing

    Institute of Scientific and Technical Information of China (English)

    郑成思; 李龙飞

    2015-01-01

    Eutectoid steel with spheroidal pearlite was processed using subcritical annealing, and eutectoid steel with the microstructure consisting of fine-grained ferrite matrix (α) and cementite particles (θ) , i.e., fine (α+θ) structure, was formed by the warm deformation and divorced eutectoid transformation.The microstructure and the mechanical properties were analyzed by using scanning electron microscopy and room-temperature tensile test for eutectoid steel with spheroidal pearlite or fine (α+θ) structure.The results show that fine (α+θ) structure with high spheroidization rate can be obtained by the warm deformation and divorced eutectoid transformation in short time in comparison with subcritical annealing for eutectoid steel.Warm deformation of pearlite and proper temperature and time of austenitizing are critical to obtain a microstructure consisting of austenite and cementite particles suitable for divorced eutectoid transformation.The prolonged isothermal time in the temperature under the A1 causes the increase in the average size of ferrite grains and cementite particles but the decrease in the strength and the elongation for eutectoid steel with fine (α+θ) structure.%以共析钢为研究对象,通过亚温球化退火制备了一种球化珠光体,利用珠光体温变形和离异共析原理制备了3种高球化率的细晶铁素体(α)+渗碳体粒子(θ)复相组织,即细晶(α+θ)复相组织,并结合SEM和室温单轴拉伸试验等手段研究了其显微组织和力学性能。结果表明:与亚温球化退火相比,利用珠光体温变形和离异共析原理可以快速制备高球化率的细晶(α+θ)复相组织。珠光体温变形以及合适的奥氏体等温时间和温度是获取适于发生离异共析转变的粥状组织的关键。随着A1以下温度等温时间的延长,细晶(α+θ)复相组织中的铁素体晶粒和渗碳体粒子平均尺寸增大,强度和伸长率减小。

  20. A Conceptual Model for the Interaction between Carbon Content and Manganese Sulphide Inclusions in the Short-Term Seawater Corrosion of Low Carbon Steel

    Directory of Open Access Journals (Sweden)

    Robert E. Melchers

    2016-05-01

    Full Text Available The critical role of manganese sulphide (MnS inclusions for the initiation of the short-term growth of pitting or localized corrosion of low carbon steels has long been recognized. Classical results show that pitting probability and pitting severity increases with increased sulphide concentration for low carbon steels as a result of magnesium sulphides acting as local cathodes for initiating pitting corrosion. However, the iron carbides (cementite in steels can also act as local cathodes for initiation of pitting corrosion. Herein it is proposed that there is competition between pits for cathodic area and that this will determine the severity of pitting and general corrosion observed in extended exposures. Preliminary experimental data for immersion exposures of up to 56 days in natural seawater of three low carbon steels show, contrary to conventional wisdom, greater pit depths for the steels with lower S content. However, the pit depth results are consistent with lower C/S ratios. This is considered to support the concept of cathodic competition between C and S. It is proposed that this offers explanations for a number of other phenomena, including the thus far unexplained apparently higher reactivity of some MnS inclusions.

  1. Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    J. Ahmadi; M. Monirvaghefi; M. Salehi; B. Niroumand

    2004-01-01

    The aim of this investigation was the determination of the predominant wear mechanism on three-body abrasion of fully pearlitic low alloy steel. Furthermore, the effect of pearlite interlamellar spacing on wear behavior was investigated.For this purpose, the samples were subjected to the different heat treating to attaining different interlamellar spacing.Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated.Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus.Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy.The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear resistance, so it may be due to subsurface work hardening and interlamellar spacing and cementite in fine and/or coarse pearlite, that influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed from ploughing to cutting mode.

  2. Direct synthesis of carbon nanofibers from South African coal fly ash.

    Science.gov (United States)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-01-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  3. Effect of substrates on microstructure and mechanical properties of nano-eutectic 1080 steel produced by aluminothermic reaction

    Energy Technology Data Exchange (ETDEWEB)

    La, Peiqing, E-mail: pqla@lut.cn; Li, Zhengning; Li, Cuiling; Hu, Sulei; Lu, Xuefeng; Wei, Yupeng; Wei, Fuan

    2014-06-01

    Nano-eutectic bulk 1080 carbon steel was prepared on glass and copper substrates by an aluminothermic reaction casting. The microstructure of the steel was analyzed by an optical microscope, transmission electron microscopy, an electron probe micro-analyzer, a scanning electron microscope and X-ray diffraction. Results show that the microstructure of the steel consisted of a little cementite and lamellar eutectic pearlite. Average lamellar spacing of the pearlite prepared on copper and glass substrates was about 230 nm and 219 nm, respectively. Volume fraction of the pearlite of the two steels was about 95%. Hardness of the steel was about 229 and 270 HV. Tensile strength was about 610 and 641 MPa and tensile elongation was about 15% and 8%. Compressive strength was about 1043 and 1144 MPa. Compared with the steel prepared on copper substrate, the steel prepared on glass substrate had smaller lamellar spacing of the pearlite phase and higher strength, and low ductility due to the smaller spacing. - Highlights: • 1080-carbon steels were successfully prepared by an aluminothermic reaction casting. • Lamellar spacing of the nanoeutetic pearlite is less than 250 nm. • The compressive strength of the steel is about 1144 MPa. • The tensile ductility of the steel is about 15%.

  4. Segregation behavior of phosphorus in the heat-affected zone of an A533B/A182 dissimilar weld joint before and after simulated thermal aging

    Science.gov (United States)

    Zhai, Ziqing; Miyahara, Yuichi; Abe, Hiroshi; Watanabe, Yutaka

    2014-09-01

    The segregation behavior of phosphorus (P) in the heat-affected zone (HAZ) of an A533B/A182 dissimilar weld joint before and after step cooling was investigated with atom probe tomography. At grain/packet boundaries, the final P segregation level consisted of non-equilibrium segregation that occurred during cooling after welding and post-weld heat treatment (PWHT) and equilibrium segregation that occurred during step cooling. In both processes, higher P coverage was observed in the coarse-grained and intercritically reheated coarse-grained HAZ than in the fine-grained HAZ and base material. The cooling after welding and PWHT seemed to have a pronounced impact on P segregation in the subsequent aging process. In addition, P segregation also occurred at the precipitate/matrix interfaces of cementite, Mo2C and Al-Si rich precipitates. The evolution of P coverage at these two types of sites suggested increasing risks of embrittlement with an increase in aging time.

  5. Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel

    Science.gov (United States)

    Saha, Dulal Chandra; Nayak, Sashank S.; Biro, Elliot; Gerlich, Adrian P.; Zhou, Y.

    2014-12-01

    Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 °C), as confirmed by plotting the tempered hardness against the Holloman-Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.

  6. Influences of Short Discrete Fibers in High Strength Concrete with Very Coarse Sand

    Directory of Open Access Journals (Sweden)

    Mahyuddin Ramli

    2010-01-01

    Full Text Available Problem statement: High Strength Concrete (HSC normally content high cementitous amount and low water binder ratio. However, these would cause substantial volume changes to the concrete and therefore affected the strength development. In addition, the brittleness of HSC was increased when silica fume used as partial cement replacement to achieve high strength. Approach: This study discussed the effects of incorporated short discrete Coconut Fibers (CF, Barchip Fibers (BF and Glass Fibers (GF into HSC to enhance the performance of concrete while kept the binder content at moderate level. Additional specialty to this HSC was casted with very coarse sand with fineness modulus of 3.98. A total of thirteen mixes were casted and tested for slump, density, compressive strength, flexural strength and ultrasonic pulse velocity in accordance with British Standards. Results: The slump was slightly reduced by the short discrete fibers. All of the fibrous specimens had lower density than control. However, the compressive strength of the HSC had increased from 71.8-79.0 MPa using 1.8% of BF, while flexural strength had increased from 5.21-6.50 MPa. All specimens showed that ultrasonic velocity higher than 4.28 km sec-1. Conclusion/Recommendations: In short, combination of incorporated short discrete fibers and applied very coarse sand to produce HSC showed very satisfying results and improvements. Further assessment on durability and impact resistivity will be verified in the coming research.

  7. Integration of coal pyrolysis process with iron ore reduction:Reduction behaviors of iron ore with benzene-containing coal pyrolysis gas as a reducing agent☆

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Helong Hui; Songgeng Li; Lu He; Lijie Cui

    2016-01-01

    An integrated coal pyrolysis process with iron ore reduction is proposed in this article. As the first step, iron oxide reduction is studied in a fixed bed reactor using simulated coal pyrolysis gas with benzene as a model tar com-pound. Variables such as reduction temperature, reduction time and benzene concentration are studied. The car-bon deposition of benzene results in the retarded iron reduction at low temperatures. At high temperatures over 800 °C, the presence of benzene in the gas can promote iron reduction. The metallization can reach up to 99%in 20 min at 900 °C in the presence of benzene. Significant increases of hydrogen and CO/CO2 ratio are observed in the gas. It is indicated that iron reduction is accompanied by the reforming and decomposition of benzene. The degree of metal ization and reduction increases with the increasing benzene concentration. Iron oxide can nearly completely be converted into cementite with benzene present in the gas under the experimental conditions. No sintering is found in the reduced sample with benzene in the gas.

  8. Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing

    Science.gov (United States)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2017-03-01

    Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size produced through intercritical annealing at 1013 K (740 °C) has good combination of strength (1295 MPa) and ductility (uniform elongation, 13 pct). The nanoscale V- and Nb-based carbides/carbonitrides and spheroidized cementite particles have played a crucial role in achieving UFG DP microstructure and in improving the strength and work hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard-Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.

  9. Microstructure and Wear Behavior of TiC Coating Deposited on Spheroidized Graphite Cast Iron Using Laser Surfacing

    Directory of Open Access Journals (Sweden)

    E. R. I. Mahmoud

    2014-10-01

    Full Text Available Spheroidal graphite cast iron was laser cladded with TiC powder using a YAG fiber laser at powers of 700, 1000, 1500 and 2000 W. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. Sound cladding and fusion zones were observed at 700, 1000 and 1500 W powers. However, at 2000 W, cracking was observed in the fusion zone. At 700 W, a build-up zone consisted of fine TiC dendrites inside a matrix composed of martensite, cementite (Fe3C, and some blocks of retained austenite was observed. In this zone, all graphite nodules were totally melted. In the fusion zone, some undissolved and partially dissolved graphite nodules appeared in a matrix containing bainite, ferrite, martensite and retained austenite. At 1500 W, the fusion zone had more iron carbides and ferrite, and the HAZ consisted of martensitic structure. At 2000 W, the build-up zone was consisted of TiC particles precipitated in a matrix of eutectic carbides, martensite plus an inter-lamellar retained austenite. The hardness of the cladded area was remarkably improved (1330 HV in case of 700 W: 5.5 times of the hardness of substrate

  10. Modeling of reaustenitization from the pearlite structure in steel

    Energy Technology Data Exchange (ETDEWEB)

    Jacot, A.; Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Metallurgie Physique; Reed, R.C. [Univ. of Cambridge (United Kingdom). Dept. of Materials Science and Metallurgy

    1998-07-01

    A two-dimensional model has been developed for the description of the formation of austenite from lamellar pearlite in steel. The diffusion equation is solved in a small domain representative of a regular structure of lamellar pearlite. The solution is obtained using a finite element method with a deforming mesh and a remeshing procedure. The main assumption of the model is the condition of local equilibrium at the interfaces, including the curvature contribution and mechanical equilibrium of surface tensions at the triple junction where the ferrite, austenite and cementite phases meet. The velocity of the interface is deduced from a solute balance which involves the concentration given by the phase diagram modified by the Gibbs-Thomson effect. The model is used to predict the dissolution rate, the shape of the interface as well as the concentration field in austenite as a function of temperature. Both the transient and steady-state regimes are described. The model is first applied to a model alloy whose physical properties allow the problem to be solved for a wide range of lamellae spacings and temperature. Subsequently, the Fe-C system is examined and the numerical results are compared with experimental data from the literature. Finally, it is shown that the steady-state growth breaks down and the transformation occurs with a different regime at high superheating.

  11. Design of TRIP Steel With High Welding and Galvanizing Performance in Light of Thermodynamics and Kinetics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new type of transformation induced plasticity (TRIP) steel with not only high strength and high ductility but also superior welding and galvanizing properties was designed and developed recently. Low carbon and low silicon content were preliminarily selected with the aim of meeting the requirements of superior quality in both welding and galvanizing. Phosphorus was chosen as one of the alloying elements, because it could reduce carbon acttvity in cementite and increase the stability of austenite. In addition, the possibility of phosphorus segregating at grain boundary was also discussed by thermodynamics as well as kinetics. Phase diagram was estimated at high temperature and the composition of the steel was then selected in the hyperperitectic range to avoid problems, whichmight occur in sheet steel continuous casting. Phase diagram in the inter-critical temperature was estimated for the steel to obtain the starting temperature of fast cooling. For understanding the minimum rate of fast cooling, pearlite growth kinetics was calculated with self-developed diffusion coefficients of elements in grain boundary. Overaging temperature was determined through the calculation of T0 temperature by both equilibrium and para-equilibrium assumptions,which was different from the current determination, which is only based on an equilibrium estimation.

  12. Influence of macrostructure on tensile properties of multipass SAW C-Mn steel deposits

    Science.gov (United States)

    Yongyuth, P.; Ghosh, P. K.; Gupta, P. C.; Patwardhan, A. K.; Prakash, Satya

    1993-06-01

    Blocks of 'all weld' metal were prepared by a multipass submerged arc process, using a C-Mn filler wire, at different welding currents and speeds by keeping the arc voltage constant. The variation in welding parameters was found to alter the macrostructure primarily by influencing its co-axial dendrite content. The chemical composition and hardness of the dendritic and the heat affected regions were affected little by the welding parameters. A dendrite content up to 37%, had no significant effect on the tensile properties. However an increase in it beyond 37% was found to enhance the UTS and YS and reduce percent elongation. The tensile strength was found to be a maximum in the L orientation and a minimum in the S direction. The use of post-weld heat treatment (PWHT) at 873 K caused spheroidization of cementite there by somewhat reducing the hardness and strength. The treatment while not affecting the basic dendritic morphology reduced the observed difference in tensile properties along the L, T and S directions. Implications of the data vis-a-vis industrial applications have been discussed.

  13. Parameters Optimization of Low Carbon Low Alloy Steel Annealing Process

    Institute of Scientific and Technical Information of China (English)

    Maoyu ZHAO; Qianwang CHEN

    2013-01-01

    A suitable match of annealing process parameters is critical for obtaining the fine microstructure of material.Low carbon low alloy steel (20CrMnTi) was heated for various durations near Ac temperature to obtain fine pearlite and ferrite grains.Annealing temperature and time were used as independent variables,and material property data were acquired by orthogonal experiment design under intercritical process followed by subcritical annealing process (IPSAP).The weights of plasticity (hardness,yield strength,section shrinkage and elongation) of annealed material were calculated by analytic hierarchy process,and then the process parameters were optimized by the grey theory system.The results observed by SEM images show that microstructure of optimization annealing material are consisted of smaller lamellar pearlites (ferrite-cementite)and refining ferrites which distribute uniformly.Morphologies on tension fracture surface of optimized annealing material indicate that the numbers of dimple fracture show more finer toughness obviously comparing with other annealing materials.Moreover,the yield strength value of optimization annealing material decreases apparently by tensile test.Thus,the new optimized strategy is accurate and feasible.

  14. Effects of alloying elements on fracture toughness in the transition temperature region of base metals and simulated heat-affected zones of Mn-Mo-Ni low-alloy steels

    Science.gov (United States)

    Kim, Sangho; Im, Young-Roc; Lee, Sunghak; Lee, Hu-Chul; Kim, Sung-Joon; Hong, Jun Hwa

    2004-07-01

    This study is concerned with the effects of alloying elements on fracture toughness in the transition temperature region of base metals and heat-affected zones (HAZs) of Mn-Mo-Ni low-alloy steels. Three kinds of steels whose compositions were varied from the composition specification of SA 508 steel (grade 3) were fabricated by vacuum-induction melting and heat treatment, and their fracture toughness was examined using an ASTM E1921 standard test method. In the steels that have decreased C and increased Mo and Ni content, the number of fine M2C carbides was greatly increased and the number of coarse M3C carbides was decreased, thereby leading to the simultaneous improvement of tensile properties and fracture toughness. Brittle martensite-austenite (M-A) constituents were also formed in these steels during cooling, but did not deteriorate fracture toughness because they were decomposed to ferrite and fine carbides after tempering. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment. These findings indicated that the reduction in C content to inhibit the formation of coarse cementite and to improve toughness and the increase in Mo and Ni to prevent the reduction in hardenability and to precipitate fine M2C carbides were useful ways to improve simultaneously the tensile and fracture properties of the HAZs as well as the base metals.

  15. Pearlite transformation in high carbon steels deformed in metastable austenite region; Jun`antei austenite iki de kakoshita kotansoko no pearlite hentai

    Energy Technology Data Exchange (ETDEWEB)

    Daito, Y.; Aihara, K.; Nishizawa, T. [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1997-09-01

    Pearlite structure was discussed noticing particularly on the state of nucleus composition, for the case when high carbon steels mainly structured by pearlite was processed in metastable austenite region below the point A1 which is thought a non-recrystallized region. When the processing amount is increased in the metastable austenite region, the size of pearlite colonies decreased. This is because of increase in nucleus producing site as a result of the processing. Even with a steel of eutectoid carbon concentration of an equilibrium diagram, proeuctoid ferrite is produced if the processing is given in the metastable austenite region. Furthermore, the production amount of the proeuctoid ferrite increased with increasing processing amount. If the processing is given in the metastable austenite region, the region that becomes a single pearlite structure shifted to hypereuctoid carbon concentration side as the transformation temperature has fallen. The result of an experiment performed in carbon concentration at which the single pearlite structure is obtained agreed well with drive force equilibrium line of ferrite and cementite as calculated based on the Gibbs energy. 18 refs., 11 figs., 1 tab.

  16. The Determining Role of Finish Cooling Temperature on the Microstructural Evolution and Precipitation Behavior in an Nb-V-Ti Microalloyed Steel in the Context of Newly Developed Ultrafast Cooling

    Science.gov (United States)

    Li, Xiaolin; Wang, Zhaodong; Deng, Xiangtao; Wang, Guodong; Misra, R. D. K.

    2016-05-01

    We have studied here the impact of finish cooling temperature on the microstructural evolution and precipitation behavior in Nb-V-Ti microalloyed steel through thermo-mechanical simulation in the context of newly developed ultrafast cooling system. The microstructural evolution was studied in terms of morphology and crystallography of precipitates using high-resolution transmission electron microscopy. At finish cooling temperature of 933 K and 893 K (660 °C and 620 °C), the microstructure primarily consisted of polygonal ferrite, together with a small amount of wedge-shaped acicular ferrite and lamellar pearlite, while, at 853 K and 813 K (580 °C and 540 °C), the microstructure consisted of lath bainite with fine interlath cementite and granular bainite with martensite/austenite (M/A) constituent. In all the finish cooling temperatures studied, the near-spherical precipitates of size range ~2 to 15 nm were randomly dispersed in ferrite and bainite matrix. The carbide precipitates were identified as (Nb,V)C with NaCl-type crystal structure. With a decrease in the finish cooling temperature, the size of the precipitates was decreased, while the number density first increased with a peak at 893 K (620 °C) and then decreased. Using Ashby-Orowan model, the contribution of the precipitation strengthening to yield strength was ~149 MPa at the finish cooling temperature of 893 K (620 °C).

  17. Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation

    Science.gov (United States)

    Singh, A. K.; Suryawanshi, Sachin R.; More, M. A.; Basu, S.; Sinha, Sucharita

    2017-02-01

    This paper reports our results on femtosecond (fs) pulsed laser induced surface micro/nano structuring of stainless steel 304 (SS 304) samples and their characterization in terms of surface morphology, formed material phases on laser irradiation and field emission studies. Our investigations reveal that nearly uniform and dense array of hierarchical micro-protrusions (density: ∼5.6 × 105 protrusions/cm2) is formed upon laser treatment. Typical tip diameters of the generated protrusions are in the range of 2-5 μm and these protrusions are covered with submicron sized features. Grazing incidence X-ray diffraction (GIXRD) analysis of the laser irradiated sample surface has shown formation mainly of iron oxides and cementite (Fe3C) phases in the treated region. These laser micro-structured samples have shown good field emission properties such as low turn on field (∼4.1 V/μm), high macroscopic field enhancement factor (1830) and stable field emission current under ultra high vacuum conditions.

  18. Extending the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation

    Science.gov (United States)

    Deng, Xiangtao; Fu, Tianliang; Wang, Zhaodong; Liu, Guohuai; Wang, Guodong; Misra, R. D. K.

    2017-01-01

    We underscore here a novel approach to extend the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation. The proposed approach yields a refined microstructure and high density nano-sized precipitates, with consequent increase in strength. Steels subjected to ultra-fast cooling during austenite-to-ferrite transformation led to 145 MPa increase in yield strength, while the small deformation after ultra-fast cooling process led to increase in strength of 275 MPa. The ultra-fast cooling refined the ferrite and pearlite constituents and enabled uniform dispersion, while the deformation after ultra-fast cooling promoted precipitation and broke the lamellar pearlite to spherical cementite and long thin strips of FexC. The contribution of nano-sized precipitates to yield strength was estimated to be 247.9 MPa and 358.3 MPa for ultrafast cooling and deformation plus ultrafast cooling processes. The nano precipitates carbides were identified to be (Ti, Nb)C and had a NaCl-type crystal structure, and obeyed the Baker-Nutting orientation relationship with the ferrite matrix.

  19. Kinetics and mechanical study of plasma electrolytic carburizing for pure iron

    Science.gov (United States)

    Çavuşlu, F.; Usta, M.

    2011-02-01

    In this work, plasma electrolytic surface carburizing of pure iron in aqueous solution consisting of water, glycerin and NH4Cl was investigated. Surface carburizing was carried out in 20% glycerin solution treated at 750 °C, 800 °C, 900 °C and 950 °C temperatures for 5, 10 and 30 min. The formation of hard carbon-rich layer on the surface of pure iron was confirmed by XRD analysis. Metallographic and SEM studies revealed a rough and dense carburized layer on the surface of the pure iron. Experimental results showed that the thickness of the carburized layers changes with the time and temperature. The average thickness of the carburized layer ranged from 20 to 160 μm. The hardness of the carburized samples decreased with the distance from the surface to the interior of the test material. The average hardness values of the carburized layers on the substrate ranged 550-850 HV, while the hardness of the substrate ranged from 110 HV to 170 HV. The dominant phases formed on the pure iron were found to be a mixture of cementite (Fe3C), martensite (Fe + C) and austenite (FCC iron) confirmed by XRD. Wear resistance in all plasma electrolytic carburized samples is considerably improved in relation to the untreated specimen. After carburizing, surface roughness of the samples was increased. Friction coefficients were also increased because of high surface roughness.

  20. 磷高强石膏-粉煤灰-石灰的耐水性研究%Study on Water Resistance of Phosphogypsum Based on High Strength Gypsum-Fly Ash-Lime Materials

    Institute of Scientific and Technical Information of China (English)

    茹晓红; 汤琦; 马保国; 邹开波

    2015-01-01

    将粉煤灰及其激发剂石灰加入到磷石膏制备的高强石膏中制备出水硬性的磷石膏粉煤灰石灰( PGFL)复合胶凝材料。通过对比试验研究了石灰、粉煤灰、磷高强石膏(PGHH)掺量对产品软化系数、抗压强度性能的影响,结果表明:加入适量的粉煤灰、石灰可以显著提高PGFL的后期绝干抗压强度和软化系数,提高材料的耐水性,掺量过多则会带来不利影响。%Phosphogypsum-fly ash-lime cementitous materials ( PGFL) was prepared by phosphogypsum based high strength hemihydrate gypsum ( PGHH) mixed with fly ash and lime. Effects of lime, fly ash and PGHH additions to PGFL properties of compressive strength and softening coefficient were investigated through comparison testing. The results showed that water resistance of PGFL material was improved by long-term dry compressive strength and softening coefficient increased significantly with proper fly ash and lime contents. However, adverse impacts may caused by too much fly ash and lime additions.

  1. Road Performance of Fly Ash Slag Cement with Low Activity%水泥低活性粉煤灰钢渣路用性能试验研究

    Institute of Scientific and Technical Information of China (English)

    王志刚

    2011-01-01

    In order to study the road performance of fly ash slag cement with low activity,unconfined compressive strength,dry shrinkage property,flushing performance,anti-fatigue property are tested.The experimental data show that road performance of fly ash slag cement with activity is superior to steel slag and fly ash cement.It is suggested that fly ash slag cement with low activity should be adopted in road base construction in conditioned regions.%为研究水泥低活性粉煤灰钢渣路用性能,对其抗压强度、干缩性能、冲刷性能、抗疲劳性能进行了室内试验研究,数据分析表明水泥低活性粉煤灰钢渣路用性能优越于水泥钢渣和粉煤灰,因此,建议有条件的地区,道路基层施工可采用水泥低活性粉煤灰钢渣。

  2. CRYSTALLOGRAPHIC RELATIONS OF CEMENTITE–AUSTENITE–FERRITE IN THE DIFFUSIVE DECOMPOSITION OF AUSTENITE

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Summary. It was made a search for new and more accurate orientation relations between the crystal lattice in the pearlite and bainite austenite decomposition products. Methods. It were used the methods: transmission electron microscopy, the micro-, mathematical matrix and stereographic analysis. The purpose of the research is with theoretical, numerical and experimental methods to set up to a 0.2 degree angular orientation relations between the lattices of ferrite and cementite in the austenite decomposition products in the temperature range 400 ... 700С. Results. It was established a new, refined value for grids in the diffusion decay of γ → α + (α + θ. Practical significance. It was proposed a new oriented dependence and the corresponding double gnomonic projection with poles to planes α and θ phases, which can be used in patterns of crystallographic lattices relations studies at phase transitions, as well as the subsequent modeling of complex physical processes of structure formation in metals and binary systems.

  3. Substitution- and strain-induced magnetic phase transition in iron carbide

    Science.gov (United States)

    Odkhuu, Dorj; Tsogbadrakh, N.; Dulmaa, A.; Otgonzul, N.; Naranchimeg, D.

    2016-10-01

    Cementite-type carbides are of interest for magnetocaloric applications owing to their temperature- or pressure-induced magnetic phase transition. Here, using first-principles calculations, we investigate the magnetism and the magnetic phase transition in iron carbide (Fe3C) with the substitution of Cr atoms at Fe sites with the strain effect. The presence of Cr atoms is found to give rise to a second-order magnetic phase transition from a ferromagnetic phase for Fe3C to a nonmagnetic phase in chromium carbide (Cr3C).While the ternary Fe2CrC and Cr2FeC compounds prefer the ferrimagnetic ground state, the magnitudes of both the Fe and Cr spin moments, which are antiparallel in orientation, decrease as x increases in Fe3-xCrxC ( x = 0, 1, 2, and 3). Furthermore, the fixed spin-moment calculations indicate that the magnetization of Fe3-xCrxC compounds can be delicately altered via the strain effect and that the magnetic-nonmagnetic phase transition occurs at an early stage of Cr substitution, x = 2.

  4. Micro-structural strengthening mechanism of multiple laser shock processing impacts on AISI 8620 steel

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J.Z. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Zhong, J.W., E-mail: zjw1033@126.com [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Luo, K.Y.; Zhang, L.; Dai, F.Z. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Chen, K.M. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Q.W.; Zhong, J.S.; Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China)

    2011-07-25

    Highlights: {yields} LSP can clearly refine coarse grains in the shocked region by dislocation movement. {yields} Micro-structural evolution of AISI 8620 steel after LSP impacts is revealed. {yields} LSP on AISI 8620 steel have grain refinement and dispersion strengthening of carbon. {yields} The results can provide some insights on surface modification of low carbon steel. - Abstract: Micro-structural evolution in the near-surface region of AISI 8620 steel subjected to multiple laser shock processing (LSP) impacts were investigated by means of cross-sectional optical microscopy (OM) and transmission electron microscopy (TEM) observations. Micro-structural evolution process subjected to multiple LSP impacts can be described as follows: (i) the parallel lamellar pearlites are broken into bitty pearlites, and dislocation activities simultaneously led to the formation of dislocation lines (DLs) and dislocation pile-ups in original grains; (ii) bitty pearlites were all broken into Fe{sub 3}C granules, and dislocation movement made Fe{sub 3}C granules disperse near subgrain boundaries and led to subgrain boundaries separating individual cells, and (iii) subgrain boundaries were refined to grain boundaries. Multiple LSP impacts on AISI 8620 steel had dual-function: the refinement of coarse grains in the near-surface region by dislocation movement and dispersion strengthening of C atoms which cut cementite and diffused into the ferrite by moving dislocations.

  5. Effects of sphere size on the microstructure and mechanical properties of ductile iron-steel hollow sphere syntactic foams

    Institute of Scientific and Technical Information of China (English)

    Hamid Sazegaran; Ali-Reza Kiani-Rashid; Jalil Vahdati Khaki

    2016-01-01

    The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere (DI–SHS) syntactic foamswere investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and en-ergy-dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compres-sion behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that mi-crocracks start and grow from the interface region.

  6. Microstructural and Phase Evolution of Compound Layers Growing on α-Iron During Gaseous Nitrocarburizing

    Science.gov (United States)

    Woehrle, T.; Leineweber, A.; Mittemeijer, E. J.

    2012-07-01

    The microstructural evolution of compound layers grown on 1-mm thick α-iron substrates after nitrocarburizing at 853 K (580 °C) in NH3/H2/N2/CO gas mixtures was investigated by light optical microscopy and X-ray diffraction. The evolution of the microstructure can be divided into several stages. Starting with the formation of the carbon-rich phase cementite, which practically does not contain nitrogen, the phase constitution of the compound layer develops through successive stages of microstructural change into the direction of the nitrogen-richer and carbon-poorer phases ɛ and γ'. These results are the consequences of (1) the kinetics of nitrogen and carbon uptake at the gas-solid interface and the considerably different solubilities of nitrogen and carbon in the α-iron substrate and (2) the occurrence of local equilibrium conditions prevailing at the solid-solid interphase boundaries in the compound layer. The change of the microstructure as a function of depth in the compound layer is shown to be compatible with so-called "diffusion paths" in the ternary Fe-N-C phase diagram.

  7. A micro-mechanical analysis and an experimental characterisation of the behavior and the damaging processes of a 16MND5 pressure vessel steel at low temperature; Etude micromecanique et caracterisation experimentale du comportement et de l'endommagement de l'acier de cuve 16MND5 a basses temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pesci, R

    2004-06-15

    As part of an important experimental and numerical research program launched by Electricite De France on the 16MND5 pressure vessel steel, sequenced and in-situ tensile tests are realized at low temperatures [-196 C;-60 C]. They enable to associate the observation of specimens, the complete cartography of which has been made with a scanning electron microscope (damaging processes, initiation and propagation of microcracks), with the stress states determined by X-ray diffraction, in order to establish relevant criteria. All these measurements enable to supply a two-scale polycrystalline modeling of behavior and damage (Mori-Tanaka/self-consistent) which is developed concurrently with the experimental characterization. This model proves to be a very efficient one, since it correctly reproduces the influence of temperature experimentally defined: the stress state in ferrite remains less important than in bainite (the difference never exceeds 150 MPa), whereas it is much higher in cementite. The heterogeneity of strains and stresses for each crystallographic orientation is well rendered; so is cleavage fracture normal to the {l_brace}100{r_brace} planes in ferrite (planes identified by electron back scattered diffraction during an in-situ tensile test at -150 C), which occurs sooner when temperature decreases, for a constant stress of about 700 MPa in this phase. (author)

  8. Retained austenite thermal stability in a nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Avishan, Behzad, E-mail: b_avishan@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain); Yazdani, Sasan, E-mail: yazdani@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Caballero, Francisca G., E-mail: fgc@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain)

    2013-07-15

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T{sub 0} criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization.

  9. The structure, properties and a resistance to abrasive wear of railway sections of steel with a different pearlite morphology

    Energy Technology Data Exchange (ETDEWEB)

    Aniolek, K [Institute of Materials Science, University of Silesia, Bankowa 12, 40-007 Katowice (Poland); Herian, J, E-mail: jerzy.herian@polsl.pl [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The article presents the characteristics of pearlite rail steels used in the construction of railways. The article discusses the influence of isothermal annealing process parameters on the pearlite morphology and properties of the R260 steel. The pearlite structure with a diverse pearlite morphology was obtained in the physical modeling of the isothermal annealing on the 3800 Gleeble Simulator. After the heat treatment, the existence of the pearlite microstructure with pearlite colonies was identified. They were smaller in relation to colonies after the hot rolling process. It was shown that the reduction of isothermal holding temperature influences the decrease of the interlamellar distance in the pearlite steel. On the basis of the received results, the dependences between the resistance to the abrasive wear and the pearlite morphology for operational conditions occurring in the switches were estimated. The resistance to the abrasive wear tests were conducted for steel with a different morphology of pearlite on the Amsler stand in conditions of rolling- sliding frictions. The resistance to the abrasive wear of R260 steel with a different pearlite morphology increases, when the interlamellar distance in cementite decreases and decreases as the load and slip increase.

  10. Structure of ductile iron in thin walled castings

    Directory of Open Access Journals (Sweden)

    M. Górny

    2007-12-01

    Full Text Available It this work it has been shown that it is possible to produce thin wall ductile iron (TWDI castings with considerably length using Archimedes spiral with wall thickness of 1, 2 and 3 mm. Inmould technique was used to produce TWDI. It has been estimated castability and metallographic investigations were made using different moulding materials. From castability measurements result that it is possible to obtain thin wall ductile iron castings with wall thickness down to 1 mm with castability of 200 mm. Using mould with small ability to absorb heat castability increases twice. At wall thickness equal 3 mm castability reaches 1000 mm and using LDASC sand its value increases to over 1500 mm. Structure parameters for different wall thickness and moulding materials (graphite nodule count, ferrite and cementite fraction are plotted versus distance from the beginning of spiral. It is shown strong influence of LDASC sand (material with small ability to absorb heat on structure parameters (NF, Vf i VC revealing gradient character of TWDI.

  11. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  12. Influence of processing parameters on lattice parameters in laser deposited tool alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.F., E-mail: gfsun82@gmail.com [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Bhattacharya, S. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); Dinda, G.P.; Dasgupta, A. [Center for Advanced Technologies, Focus: Hope, Detroit, MI, 48238 (United States); Mazumder, J. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-06-15

    Highlights: {yields} Orientation relationships among phases in the DMD are given. {yields} Martensite lattice parameters increased with laser specific energy. {yields} Austenite lattice parameters decreased with laser specific energy. - Abstract: Laser aided direct metal deposition (DMD) has been used to form AISI 4340 steel coating on the AISI 4140 steel substrate. The microstructural property of the DMD coating was analyzed by means of scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Microhardness of the DMD was measured with a Vickers microhardness tester. Results indicate that DMD can be used to form dense AISI 4340 steel coatings on AISI 4140 steel substrate. The DMD coating is mainly composed of martensite and retained austenite. Consecutive thermal cycles have a remarkable effect on the microstructure of the plan view of the DMD coating and on the corresponding microhardness distribution. Orientation relationships among austenite, martensite and cementite in the DMD coating followed the ones in conventional heat treated steels. As the laser specific energy decreased, cooling rate increased, and martensite peaks broadened and shifted to a lower Bragg's angle. Also martensite lattice parameters increased and austenite lattice parameters decreased due to the above parameter change.

  13. Analysis of Carbon Diffusion during Bainite Transformation in ADI

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The paper presents an investigation of the time required for the diffusion of carbon out of supersaturated sub-units of ferrite into the retained austenite. The analytical model estimates the decarburisation time of the sub-units of supersaturated bainitic ferrite. The purpose of the present paper is to demonstrate how a thermodynamic method can be used for solving a problem of the decarburisation of bainite subunits and carbon diffusion distances in the matrix of ADI. This should in principle enable to examine the partitioning of carbon from supersaturated ferrite plates into adjacent austenite and the carbon content in retained austenite using analytical method. The diffusion coefficient of carbon in austenite is very sensitive to the carbon concentration and this has to be taken into account in treating the large concentration gradients that develop in the austenite. The results are discussed in the context of displacive mechanism of bainite transformation. Experimental measurements of volume fraction of bainitic ferrite and volume of the untransformed austenite indicate that there is a necessity of carbides precipitation from austenite. The necessary carbon diffusion distance in austenite also illustrates that the estimated time is not capable of decarburising the ferrite subunits during the period of austempering. A consequence of the precipitation of cementite from austenite during austempering is that the growth of bainitic ferrite can continue to larger extent and that the resulting microstructure is not an ausferrite but is a mixture of bainitic ferrite, retained austenite and carbides.

  14. Effects of austempering heat treatment conditions on fracture toughness of austempered ductile cast iron; Kyujo kokuen chutetsu no hakai jinsei ni oyobosu austemper shori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Y.; Arai, M. [Musashi Institute of Technology, Tokyo (Japan)

    1996-03-25

    Discussions were given in various manners to learn effects of treatment conditions with respect to fracture toughness of austempered ductile cast iron. Austenitizing temperature and isothermal transforming conditions that result in comprehensively most excellent fracture toughness including tensile strength were 1173 K and 648 K - 3.6 ks, respectively. The austenitizing temperature as low as 1123 K reduces quantity of residual austenite, resulting in residual inclusion of free ferrite in the structure. If as high as 1223 K, reduction in the fracture toughness is caused under any condition as a result of increase in unstable austenite and growth of austenite into coarse particles. With respect to the isothermal transforming conditions, high fracture toughness may be achieved at a relatively high temperature. However, a structure that has been transformed from austenite to bainite causes a secondary reaction in a short time, and deposits particulates of cementite and graphite, leading to a prediction of decrease in the fracture toughness. Therefore, it is preferable that the treatment time is decreased in order to suppress the secondary reaction. 9 refs., 10 figs., 7 tabs.

  15. Production of austempered ductile iron gears for transmission cases

    Energy Technology Data Exchange (ETDEWEB)

    Sagin, A. [Metallurgy Engineering Dept., Technical Univ. of Yildiz, Istanbul (Turkey); Topuz, A. [Chemical and Metallurgical Faculty, Technical Univ. of Yildiz, Istanbul (Turkey)

    2005-07-01

    The investigations presented in this contribution were targeted to replace a gear group made up of SAE 8620 steel in army jeeps with microstructural controlled austempered ductile iron, in order to reduce the manufacturing steps. Furthermore, the vibrations were also expected to decrease, due to the application of austempered ductile iron. The fatigue resistance of unalloyed and Ni alloyed austempered ductile iron have been investigated to see if some improvement as compared to steels with cementite could be achieved. The effect of the austenization heat treatment on the fatigue resistance was studied in metallographic investigations and it turned out that the alloying elements Cu, Ni and Mo have a beneficial effect. For economical reasons, the gears were fabricated of nodular iron containing 3.98% C, 1.89% Si, 0.269% Mn and 0.028% P. Considering the fatigue resistance, a Ni alloyed material with 3.66% C, about 1.81% Si, 0.134% Mn, 0.031% P and 1.51% Ni was chosen. The roundness of the graphites was about 93-100% and 80-85%. The gears were at first produced by austenization at 900 C for 3 hours and then by austempering at 235 C for 2.5 hours. The fatigue tests were performed at the maximum stresses to be expected. (orig.)

  16. Thermo-Mechanical Processing and Properties of a Ductile Iron

    Energy Technology Data Exchange (ETDEWEB)

    Syn, C.K.; Lesuer, R.R.; Sherby, O.D.

    1997-07-14

    Thermo-mechanical processing of ductile irons is a potential method for enhancing their mechanical properties. A ductile cast iron containing 3.6% C, 2.6% Si and 0.045% Mg was continuously hot-and-warm rolled or one-step press-forged from a temperature in the austenite range (900{degrees}C-1100{degrees}C) to a temperature below the A, temperature. Various amounts of reduction were used (from 60% to more than 90%) followed by a short heat ent at 600`C. The heat ent lead to a structure of fine graphite in a matrix of ferrite and carbides. The hot-and- warm worked materials developed a pearlitic microstructure while the press-forged material developed a spheroidite-like carbide microstructure in the matrix. Cementite-denuded ferrite zones were developed around graphite stringers in the hot-and-warm worked materials, but such zones were absent in the press-forged material. Tensile properties including tensile strength and total elongation were measured along the direction parallel and transverse to the rolling direction and along the direction transverse to the press-forging direction. The tensile ductility and strength both increased with a decrease in the amount of hot-and-warm working. The press- forged materials showed higher strength (645 MPa) than the hot-and-warrn worked materials (575 MPa) when compared at the same ductility level (22% elongation).

  17. Multigrain indexing of unknown multiphase materials

    Science.gov (United States)

    Wejdemann, Christian; Poulsen, Henning Friis

    2016-01-01

    A multigrain indexing algorithm for use with samples comprising an arbitrary number of known or unknown phases is presented. No a priori crystallographic knowledge is required. The algorithm applies to data acquired with a monochromatic beam and a conventional two-dimensional detector for diffraction. Initially, candidate grains are found by searching for crystallographic planes, using a Dirac comb convoluted with a box function as a filter. Next, candidate grains are validated and the unit cell is optimized. The algorithm is validated by simulations. Simulations of 500 cementite grains and ∼100 reflections per grain resulted in 99.2% of all grains being indexed correctly and 99.5% of the reflections becoming associated with the right grain. Simulations with 200 grains associated with four mineral phases and 50–700 reflections per grain resulted in 99.9% of all grains being indexed correctly and 99.9% of the reflections becoming associated with the right grain. The main limitation is in terms of overlap of diffraction spots and computing time. Potential areas of use include three-dimensional grain mapping, structural solution and refinement studies of complex samples, and studies of dilute phases. PMID:27047308

  18. Common Quality Defects Analysis of SWRH82B Wire Rod%SWRH82B盘条常见质量缺陷分析

    Institute of Scientific and Technical Information of China (English)

    李文亚; 刘莉; 李智丽; 杨维宇

    2012-01-01

    The common surface defects of SWRH82B wire rod were summarized,including overlap,scab,microcrack,scratch and metallurgical defect.The causes were analyzed and prevention measures were proposed.The morphology of the inner defects including central netting cementite,central martensite,and central pipe was analyzed by SEM and OM,as well as the causes and harms;and corresponding solving programs and measures were put forward based on the actual production requirements.%综述了SWRH82B盘条常见的折叠、结疤、微裂纹、划痕等表面缺陷和冶金缺陷,分析了产生的原因并提出预防措施;采用SEM、OM分析了中心网状渗碳体、中心区域马氏体、中心缩孔等内部缺陷的组织形貌,分析产生的原因和危害,并根据生产实际要求提出相应的解决方案和措施。

  19. Microstructures and Toughness of Weld Metal of Ultrafine Grained Ferritic Steel by Laser Welding

    Institute of Scientific and Technical Information of China (English)

    Xudong ZHANG; Wuzhu CHEN; Cheng WANG; Lin ZHAO; Yun PENG; Zhiling TIAN

    2004-01-01

    3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120~480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists inheat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.

  20. Microstructural Modeling of Pitting Corrosion in Steels Using an Arbitrary Lagrangian-Eulerian Method

    Science.gov (United States)

    Yu, Qifeng; Pan, Tongyan

    2017-03-01

    Abstracts Two microscale numerical models are developed in this work using a moving-mesh approach to investigate the growth process of pitting in different iron phases and the corrosion prevention capability of polyaniline (PANi) on steels. The distributions of corrosion potential and current in the electrolyte-coating-steel system are computed to evaluate the anti-corrosion ability of PANi. The arbitrary Lagrangian-Eulerian approach was used to accomplish the continuous remesh process as was needed to simulate the dynamic growing forefront of the modeled pitting domain. Experimental validation of the numerical models was conducted using the technique of scanning kelvin probe force microscopy (SKPFM). The SKPFM-scanned surface topography and Volta potential difference exhibit comparable results to and thereby prove the numerical results. The potential distribution in the electrolyte phase of the validated models shows that the corrosion pit grows faster in the epoxy-only-coated steel than that in the PANi-primer-coated steel over the simulation time; also, the corrosion pit grows faster in the ferrite phase than in the cementite phase. The simulation results indicate that the epoxy-only coating lost its anti-corrosion capability as the coating was penetrated by electrolyte, while the PANi-based coating can still protect the steel from corrosion after the electrolyte penetration. The models developed in this work can be used to study the mechanisms of pitting corrosion as well as develop more effective corrosion prevention strategies for general metallic materials.

  1. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel

    Institute of Scientific and Technical Information of China (English)

    Lin-qing Xu; Dan-tian Zhang; Yong-chang Liu; Bao-qun Ning; Zhi-xia Qiao; Ze-sheng Yan; Hui-jun Li

    2014-01-01

    Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili-tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi-croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for-mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener’s equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.

  2. Characterizations of Dynamic Strain-induced Transformation in Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Luhan Hao; Mingyue Sun; Namin Xiao; Dianzhong Li

    2012-01-01

    Dynamic strain-induced transformation of the low carbon steel Q(235) at 770℃ and 850℃ leads to fine ferrite grains. The microstructure characterization and mechanism of the fine ferrite grain were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) technique. The results show that strain-induced microstructure is the mixed microstructure of ferrite and pearlite, with cementite randomly distributed on ferrite grain boundaries and the grains interiors. EBSD images of grain boundaries demonstrate that high angle grain boundaries (HAGBs) are dominant in both of the deformation induced microstructures occurring below and above A(e3) , with only a few low angle grain boundaries (LAGBs) existing in the grain interiors. It implies that the dynamic strain-induced transformation (DSIT) happens above and below A(e3) temperature and has the same phase transition mechanisms. The refinement of ferrite is the cooperative effect of DSIT and continuous dynamic recrystallization (CDRX) of ferrite. Besides, DSIT is deemed as an incomplete carbon diffusion phase transition through the analysis of microstructure and the previous simulated results. The strengths of the Q(235) steel with refined ferrite and pearlite structure get doubled than the initial state without treated by DSIT and the residual stress in the refined structure is partly responsible for the ductility loss.

  3. Effect of continuous annealing parameters on the mechanical properties and microstructures of a cold rolled dual phase steel

    Institute of Scientific and Technical Information of China (English)

    Shuang Kuang; Yong-lin Kang; Hao Yu; Ren-dong Liu

    2009-01-01

    A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Glee-ble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820 ℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300°C are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield slrength will increase. But if the volume frac-tion of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elonga-tion will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will be unsatisfied.

  4. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe

    Science.gov (United States)

    Granberg, F.; Terentyev, D.; Nordlund, K.

    2015-06-01

    Different types of carbides are present in many steels used as structural materials. To safely use steel in demanding environments, like nuclear power plants, it is important to know how defects will affect the mechanical properties of the material. In this study, the effect of carbide precipitates on the edge dislocation movement is investigated. Three different types of carbides were investigated by means of molecular dynamics, with a Tersoff-like bond order interatomic potential by Henriksson et al. The obstacles were 4 nm in diameter and were of Fe3C- (cementite-), Fe23C6- and Cr23C6-type. The critical unpinning stress was calculated for each type at different temperatures, to get the temperature-dependent obstacle strength. The results showed a decreasing critical stress with increasing temperature, consistent with previous studies. The critical unpinning stress was seen to be dependent on the type of carbide, but the differences were small. A difference was also observed between the obstacles with the same structure, but with different composition. This study shows the relation between the existing Cr23C6 carbide and the experimentally non-existing Fe23C6 carbide, which needs to be used as a model system for investigations with interatomic potentials not able to describe the interaction of Cr in the Fe-C-system. We found the difference to be a between 7% and 10% higher critical unpinning stress for the chromium carbide, than for the iron carbide of the same type.

  5. Additional heat treatment of non-porous coatings obtained on medium carbon steel substrates by electron beam cladding of a Ti-Mo-C powder composition

    Science.gov (United States)

    Mul, D. O.; Drobyaz, E. A.; Zimoglyadova, T. A.; Bataev, V. A.; Lazurenko, D. V.; Shevtsova, L. I.

    2016-04-01

    The structure and microhardness of surface layers, obtained by non-vacuum electron beam cladding of Ti-Mo-C powder mixture on a steel substrate after different types of heat treatment, were investigated. After cladding samples were heat treated in a furnace at 200...500 °C, as well as quenched at 860 ° C and then underwent high-temperature tempering. Heat treatment of cladded coatings induced tempering of martensite and precipitation of cementite particles (Fe3C). Transmission electron microscopy of the samples after heating and holding at 300 ° C revealed precipitation of nanosized cubical TiC particles. The formation of hard nanosized particles led to the surface layer microhardness growth. The highest level of microhardness (which was 1.2...1.5-fold higher in comparison with coating microhardness after heat treatment) was achieved after heating of the claded material at 300 °C and 400 °C Additional quenching of samples at 860 °C did not increase the microhardness level.

  6. Effects of Nitrogen Content and Austenitization Temperature on Precipitation in Niobium Micro-alloyed Steels

    Institute of Scientific and Technical Information of China (English)

    Lei CAO; Zhong-min YANG; Ying CHEN; Hui-min WANG; Xiao-li ZHAO

    2015-01-01

    The influences of nitrogen content and austenitization temperature on Nb(C,N)precipitation in niobium micro-alloyed steels were studied by different methods:optical microscopy,tensile tests,scanning electron mi-croscopy,transmission electron microscopy,physicochemical phase analysis,and small-angle X-ray scattering. The results show that the strength of the steel with high nitrogen content is slightly higher than that of the steel with low nitrogen content.The increase in the nitrogen content does not result in the increase in the amount of Nb(C,N) precipitates,which mainly depends on the niobium content in the steel.The mass fraction of small-sized Nb(C,N) precipitates (1-10 nm)in the steel with high nitrogen content is less than that in the steel with low nitrogen con-tent.After austenitized at 1 150 ℃,a number of large cuboidal and needle-shaped particles are detected in the steel with high nitrogen content,whereas they dissolve after austenitized at 1 200 ℃ and the Nb(C,N)precipitates become finer in both steels.Furthermore,the results also show that part of the nitrogen in steel involves the formation of al-loyed cementite.

  7. Structural and phase transformations in 0.3C-1Cr-1Mn-1Si-Fe steel after electrolytic plasma treatment

    Science.gov (United States)

    Kozlov, Eduard; Popova, Natalya; Zhurerova, Lyaila; Nikonenko, Elena; Kalashnikov, Mark; Skakov, Mazhin

    2016-11-01

    The paper presents the transmission electron microscopy (TEM) investigations on thin foils concerning phase transitions occurred in the type 0.3C-1Cr-1Mn-1Si-Fe alloyed steel after the electrolyte plasma treatment, i.e. carbonitriding at 850°C during 5 min. TEM investigations involve two points, namely: on the specimen surface and at 50 µm distance from the surface, i.e. in transition layer. It is shown that carbonitriding results in the formation of structures the properties of which are changed at a distance from it's the specimen surface. Thus, the modified morphology of the steel matrix is represented mostly by high-temperature lamellar martensite on α-phase surface, while the intermediate layer is represented by massive martensite. After carbonitriding, the particles of the alloyed cementite and M2C0.61N0.39, M4(C,N), M7(C,N)3, M23(C,N)6 carbonitrides are observed in all layers inside α-phase crystals and at their boundaries. The concentration of carbon and nitrogen on the surface is considerably higher. The modification of quantity is observed in the distribution and the volume fraction of carbide phases with the distance from the specimen surface, while the amount of carbonitride phases significantly reduces. Also, it is shown that carbonitriding leads to a complete relaxation of the internal local stresses on the specimen surface, while in the intermediate layer plastic stresses are observed.

  8. Co-Ni超高强度钢的疲劳裂纹扩展行为与组织的关系%Relationship Between Fatigue Crack Growth Behaviour and Microstructures in Co-Ni Ultra-high Strength Steel

    Institute of Scientific and Technical Information of China (English)

    钟平; 凌斌; 王俊丽

    2001-01-01

    The relationship between fatigue crack growth behaviour and microstructures of 23NiCo steel was studied at the stress ratio R=0.1. 23NiCo steel showed slower fatigue crack growth rate than other steels with the same strength level,it is related to the characteristic of microstructures of 23NiCo steel.The absence of cementite and formation of reverted austenite at the plate boundaries tempered at 482℃ are the main factors.%研究了23NiCo钢应力比R=0.1的疲劳裂纹扩展行为与组织的关系。23NiCo钢比同一强度级钢具有较低的裂纹扩展速率的原因主要与钢的微观组织特征有关。23NiCo钢在482℃回火组织中板条边界形成薄膜状的逆转奥氏体和不存在渗碳体是主要的组织因素。

  9. Etudes structurales de composés de type cémentite: Effet de l'hydroge`ne sur Fe 3C suivi par diffraction neutronique. Spectrométrie Mössbauer sur FeCo 2B et Co 3B dopés au 57Fe

    Science.gov (United States)

    Fruchart, D.; Chaudouet, P.; Fruchart, R.; Rouault, A.; Senateur, J. P.

    1984-02-01

    Accurate neutron diffractograms obtained using Fe 3C powdered samples have been recorded using position sensitive detectors. The structure parameters have been determined in the 20-650°C range both in vacuo and in hydrogen atmosphere. No significant location of hydrogen atoms in the cell could be detected before the complete decomposition of Fe 3C, which is considerably enhanced by H 2 gas and is accompanied by an initial loss of carbon (<5%). The magnetic diffraction peaks correspond to ferromagnetic moments directed along the yaxis: M(4 c) ⋍ M(8f) = 1.8 ± 0.1 μ B(extrapolated). Such a value agrees reasonably well with those obtained from Mössbauer data. Comparison with the isomorphous borides or Fe-substitutedCo 3X compounds indicates that a rigid band model is inadequate to describe the electronic scheme of Fe in cementite and related compounds. Analysis of the stability of M3Xcementite-type structured materials reveals the major role of M(d)-X(p) hybridization.

  10. Effects of sphere size on the microstructure and mechanical properties of ductile iron-steel hollow sphere syntactic foams

    Science.gov (United States)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-06-01

    The effects of sphere size on the microstructural and mechanical properties of ductile iron-steel hollow sphere (DI-SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder-binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI-SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and energy- dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI-SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.

  11. Direct synthesis of carbon nanofibers from South African coal fly ash

    Science.gov (United States)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  12. Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties.

    Science.gov (United States)

    Morjan, I; Alexandrescu, R; Dumitrache, F; Birjega, R; Fleaca, C; Soare, I; Luculescu, C R; Filoti, G; Kuncer, V; Vekas, L; Popa, N C; Prodan, G; Ciupina, V

    2010-02-01

    Nano-sized iron oxide-based particles have been directly synthesized by the laser induced pyrolysis of a mixture containing iron pentacarbonyl/air (as oxidizer)/ethylene (as sensitizer). In this paper we further demonstrate the possibility to vary the chemical composition and the nanoparticle dimensions of the iron oxide-based materials by handling the oxidation procedure in the frame of the laser pyrolysis process. Thus, nanoparticles with major maghemite/magnetite content may change composition into mixtures with variable amounts of three components: major gamma-Fe2O3/Fe3O4 iron oxide, metallic Fe and cementite Fe3C. By X-ray diffraction (XRD) it is found that the relative proportion of these phases differs in function of the reaction temperature (laser power). As revealed by transmission electron microscopy (TEM), mean particle sizes between about 4 nm and 6 nm and between about 9 and 11 nm may be prepared by varying the oxidation procedure and the laser power, respectively. By the controlled heating of samples (maximum temperature 185 degrees C), increased crystallinity for the gamma-Fe2O3/Fe3O4 oxide phase was found as well as an increase of the mean particle diameters. The examination of the magnetization curves for samples obtained for different laser powers indicates notable differences in the magnetic behavior and parameters. The temperature dependent Mossbauer measurements confirm the formation of larger particles at higher laser power densities as well as the presence of inter-particle magnetic interactions. On this basis, the estimation of phase composition for the different representative samples is given.

  13. Effect of hot-rolling parameters on microstructure and mechanical properties of 72LXA steel wire rod%热轧工艺参数对72LXA钢盘条组织与性能的影响

    Institute of Scientific and Technical Information of China (English)

    曾建华; 李义长; 周正

    2012-01-01

    研究了吐丝温度及控制冷却制度对72LXA盘条组织和性能的影响。结果表明,在相同的冷却制度下,提高吐丝温度,组织中索氏体化率增加和先析铁素体含量减少,材料强度提高,先析铁素体和索氏体化率是影响材料力学性能的重要因素;加大珠光体形成后的冷却能力,可以抑制片层渗碳体的溶解;通过辊道速度和冷却风量的适当配合,可以提高盘条的通条性能。获得了强度高于1050 MPa的盘条,表明确定的热轧工艺可以满足盘条的力学性能要求。%Effect of the laying head temperature and controlled cooling process on microstructure and mechanical properties of 72LXA wire rod were investigated.The results show that under the same cooling process,with the raising laying temperature and increasing sorbitizing rate and decreasing proeutectoid ferrite,the steel rod strength is improving,proeutectoid ferrite and sorbitizing rate are the critical impact factors on steel rod properties;indentifying cooling after perlite forming can restrain the dissolve of lamellar cementite;the mechanical properties of whole rod coil are improved by the proper rolling rate and air cooling.The high strength of 1050 MPa of steel rod was obtained,that shows the defined hot rolling process can conform to the steel rod properties requirement.

  14. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  15. Influence of a matrix on properties of mottled cast iron applied for mill rolls

    Directory of Open Access Journals (Sweden)

    J. Krawczyk

    2010-07-01

    Full Text Available Mill rolls are ones of the most expensive tools applied in plastic working processes and have to satisfy several criteria, which allow them to be used. Cast iron mill rolls, due to their fracture toughness and tribological properties, are the most often applied at hot-rolling in the last rolling stands. This results from the smallest dynamic loads of such rolling stands and the decisive influence of the surface quality of these tools on the surface quality of the rolled product. An improper microstructure of rolls can lead to their premature wearing, e.g. broken flanges, pivots twisting off etc. By means of the heat treatment the matrix microstructure and morphology of carbide precipitationscan be modified and this in-turn can influence cast iron properties.Determination of the influence of microstructure changes, caused by the heat treatment, on the properties of EN-GJN-HV300 low-alloycast iron, after its modification and spheroidization – is the aim of the present paper. Those changes are based on the formation pearlitic or bainitic matrices at the similar morphology of graphite and ledeburitic cementite precipitations. The performed investigations should enable designing the heat treatment of cast iron metallurgical rolls in such a way as to obtain the optimal microstructures for functional parameters of these type of tools. The influence of changing the pearlitic matrix into the bainitic one on such properties as: hardness, impact strength, tensile strength, creep limit, bending strength and a stress intensity factor KIc was investigated in this study. Samples for testing, the listed above mechanical properties, were taken from an industrial casting with care to have pieces of very similar crystallization conditions.

  16. Intergranular brittle fracture of a low alloy steel induced by grain boundary segregation of impurities: influence of the microstructure; Rupture intergranulaire fragile d'un acier faiblement allie induite par la segregation d'impuretes aux joints de grains: influence de la microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Raoul, St

    1999-07-01

    The study contributes to improve the comprehension of intergranular embrittlement induced by the phosphorus segregation along prior austenitic grain boundaries of low alloy steels used in pressurized power reactor vessel. A part of this study was performed using a A533 steel which contains chemical fluctuations (ghost lines) with two intensities. Axi-symmetrically notched specimens were tested and intergranular brittle de-cohesions were observed in the ghost lines. The fracture initiation sites observed on fracture surfaces were identified as MnS inclusions. A bimodal statistic obtained in a probabilistic model of the fracture is explained by the double population of ghost lines' intensities. A metallurgical study was performed on the same class of steel by studying the influence of the microstructure on the susceptibility to temper embrittlement. Brittle fracture properties of such microstructures obtained by dilatometric experiments were tested on sub-sized specimens to measure the V-notched fracture toughness. Fraction areas of brittle fracture modes were determined on surface fractures. A transition of the fracture mode with the microstructure is observed. It is shown that tempered microstructures of martensite and lower bainite are more susceptible to intergranular embrittlement than tempered upper bainitic microstructure. The intergranular fracture is the most brittle mode. The analysis of crystalline mis-orientations shows a grain boundary structure appreciably more coherent for tempered microstructures of martensite and lower bainite. The higher density of randomgrain boundaries is susceptible to drag the phosphorus in the upper bainitic matrix and to make the quantity of free phosphorus decreasing. Microstructure observations show a difference in the size and the spatial distribution of carbides, essentially cementite, between tempered martensite and upper bainite. It can explain the bigger susceptibility of this last microstructure to cleavage mode

  17. Study on Slag Powder in White Portland Cement%矿渣微粉在白色硅酸盐水泥中的应用研究

    Institute of Scientific and Technical Information of China (English)

    王念

    2014-01-01

    White Portland cement is widely used due to its inherent advantages of whiteness and strength.GGBS has a high whiteness and high late strength characteristics.It is a linkd of new green building materials with low-carbon en-vironmental protection,and has the effect of low-carbon emission reduction.GGBS is considered to replace part of the clinker used for preparation of white cement.It is studied that white Portland cement is prepared with GGBS in differ-ent proportions to replace the white cement clinker or flying powder.The results show it has a significant improvement on the two main indicators of the strength and whiteness.%白色硅酸盐水泥由于其本身具有白度和强度的优势而广泛应用;矿渣微粉是一种具有高白度以及后期高强度等特点的低碳环保新型绿色建材,因而我们考虑将矿粉取代部分熟料用来配制白水泥,达到低碳减排的效果。通过研究发现将矿粉以不同的比例取代熟料或双飞粉配制出的白水泥在强度和白度两大指标上都有显著改善。

  18. Electrochemical Investigation of the Corrosion of Different Microstructural Phases of X65 Pipeline Steel under Saturated Carbon Dioxide Conditions

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-05-01

    Full Text Available The aim of this research was to investigate the influence of metallurgy on the corrosion behaviour of separate weld zone (WZ and parent plate (PP regions of X65 pipeline steel in a solution of deionised water saturated with CO2, at two different temperatures (55 °C and 80 °C and at initial pH~4.0. In addition, a non-electrochemical immersion experiment was also performed at 80 °C in CO2, on a sample portion of X65 pipeline containing part of a weld section, together with adjacent heat affected zones (HAZ and parent material. Electrochemical impedance spectroscopy (EIS was used to evaluate the corrosion behaviour of the separate weld and parent plate samples. This study seeks to understand the significance of the different microstructures within the different zones of the welded X65 pipe in CO2 environments on corrosion performance; with particular attention given to the formation of surface scales; and their composition/significance. The results obtained from grazing incidence X-ray diffraction (GIXRD measurements suggest that, post immersion, the parent plate substrate is scale free, with only features arising from ferrite (α-Fe and cementite (Fe3C apparent. In contrast, at 80 °C, GIXRD from the weld zone substrate, and weld zone/heat affected zone of the non-electrochemical sample indicates the presence of siderite (FeCO3 and chukanovite (Fe2CO3(OH2 phases. Scanning Electron Microscopy (SEM on this surface confirmed the presence of characteristic discrete cube-shaped crystallites of siderite together with plate-like clusters of chukanovite.

  19. Influence of Cast Iron Structure on the Glassmold Equipment Operational Defects

    Directory of Open Access Journals (Sweden)

    I. O. Leushin

    2015-01-01

    Full Text Available The growing demand for glass packaging contributes to the increase in production capacity of glass-container plants. Their equipment (cast iron glass-forming sets operates in continuous mode under complex cyclic thermal loads, which lead to the formation of operational defects on the working surfaces of details: graphite falling, cracks, oxidation, etc. Particular influence on the formation of these defects renders the microstructure of the material at the time of installation of details on the line.The article identifies the causes for formation of operational defects, formulates the ways to remedy them and prevent their occurrence.The authors studied details made from grey cast iron with flake and spherical forms of graphite. It is found that in the process of exploitation of the material is greatly reducing its hardness, strength, resistance to oxidation through of graphitization processes, chemical interaction of glass and iron, shock loads working edges. It is proved that the choice of initial microstructure of cast iron (the metal base, the graphite form, the presence of structural-free cementite exercises a determining influence on the durability of the mold tooling. The article proposes differential (layered arrangement of the graphite phase of cast iron in the alloy matrix (ferrite. This arrangement of high-carbon phase can simultaneously increase the thermal and oxidation resistance of the material. The formation of a layered structure of iron is produced by the intensification of the processes of alloying, modifying and directional freezing the melt.These data can be used to select the material of details by manufacturers glass-molds tooling.

  20. H82B钢盘条冬季控冷工艺%Controlled cooling process of H82B steel wire rod in winter

    Institute of Scientific and Technical Information of China (English)

    王雷; 麻晗; 峰公雄

    2011-01-01

    冬季低温脆断是高碳钢盘条的普遍问题,对盘条及下游客户拉丝生产造成了严重影响。使用传统斯太尔摩控冷工艺生产的H82B钢盘条常常因心部马氏体、网状渗碳体超标及塑性不达标造成判次,这种现象在冬季尤为明显。通过改进斯太尔摩线控冷工艺等措施,明显改善了盘条的金相组织和力学性能,缩短了冬季自然时效时间,减少了冬季脆断现象。最后阐述了优化控冷工艺的原理。%Winter brittleness is a common problem for high carbon wire rods,which always leads to breakage during the cold drawing process.For H82B steel wire rod,the brittleness is even worse due to center martensite,cementite network and deficient plasticity caused by faster cooling in winter.By improving the Stelmor cooling condition,the microstructure and mechanical properties were improved,the winter natural aging time was shortened,and the winter brittleness was overcome.Process route to minimize the brittleness was designed with discussion on the mechanism involved.

  1. Coherent-Incoherent Transition of ɛ-Carbide in Steels Found with Mechanical Spectroscopy

    Science.gov (United States)

    Shimotomai, Michio

    2016-03-01

    Although a coherent-incoherent transition in the ɛ-carbide precipitated in steels is supposedly linked to hardening and microstructural changes, the existence of this transition has not yet been confirmed. In this paper, we investigate this subject using mechanical spectroscopy. By measuring mechanical loss spectra below room temperature of quench-aged Fe-C alloys, mild steel, and pearlitic steel, we reveal a new broad peak (NBP). This peak is related to thermal activation, and its line shape obeys the equation of the Debye peak with a distribution in relaxation time. The Arrhenius plot yielded a large activation energy and gigantic pre-exponential factor. Its intensity grew by aging at temperatures where precipitation of ɛ-carbide has been reported. However, it starts to decay at duration far too early for ɛ-carbide to transform to cementite. For isothermal aging at 393 K (120 °C), the intensity sharply decreased at durations over 3 hours. This decay was accompanied by appearance of another similar peak (NBP'), which had a peak frequency two orders higher than that of NBP. These peaks had comparable intensity. We attribute NBP and NBP' to coherent and incoherent ɛ-carbides, respectively. We produced a model that attributes the relaxation peaks to reorientations of extra carbon pairs in the ɛ-carbide. The extraordinary values of the Arrhenius parameters may be interpreted by using this model. Based on these results, we assert that mechanical spectroscopy can detect the coherent-incoherent transition in carbon steels. This method will be powerful in studying problems related to the coherency in carbon steels.

  2. Effects of microstructure and crystallography on crack path and intrinsic resistance to shear-mode fatigue crack growth

    Directory of Open Access Journals (Sweden)

    J. Pokluda

    2015-10-01

    Full Text Available The paper focuses on the effective resistance and the near-threshold growth mechanisms in the ferritic-pearlitic and the pure pearlitic steel. The influence of microstructure on the shear-mode fatigue crack growth is divided here into two factors: the crystal lattice type and the presence of different phases. Experiments were done on ferritic-pearlitic steel and pearlitic steel using three different specimens, for which the effective mode II and mode III threshold values were measured and fracture surfaces were reconstructed in three dimensions using stereophotogrammetry in scanning electron microscope. The ferritic-pearlitic and pearlitic steels showed a much different behaviour of modes II and III cracks than that of the ARMCO iron. Both the deflection angle and the mode II threshold were much higher and comparable to the austenitic steel. Mechanism of shear-mode crack behaviour in the ARMCO iron, titanium and nickel were described by the model of emission of dislocations from the crack tip under a dominant mode II loading. In other tested materials the cracks propagated under a dominance of the local mode I. In the ferritic-pearlitic and pearlitic steels, the reason for such behaviour was the presence of the secondary-phase particles (cementite lamellas, unlike in the previously austenitic steel, where the fcc structure and the low stacking fault energy were the main factors. A criterion for mode I deflection from the mode II crack-tip loading, which uses values of the effective mode I and mode II thresholds, was in agreement with fractographical observations.

  3. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Science.gov (United States)

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  4. Correlations between fracture toughness and microstructure in 4140 steel. MRL E-113

    Energy Technology Data Exchange (ETDEWEB)

    Odegaard, T K

    1979-06-01

    Correlations between the microstructure of an ultra-high strength steel and material resistance to fracture, as measured by blunt notch Charpy impact tests and sharp crack K/sub IC/ tests, were investigated for a standard 870/sup 0/C/oil and an experimental 1175/sup 0/C/oil austenitizing treatment. The increase in sharp crack toughness with higher temperature austenitizing treatments, for the as-quenched and 200/sup 0/C/oil temper conditions, was rationalized by a fracture criterion based on the notion that for fracture to occur, a critical strain, epsilon/sub f/, must be achieved over some critical distance, delta. The lath colonies were identified as the fracture controlling microstructural unit, and hence, their size was considered to be the critical distance, delta. Toughness in the 300/sup 0/C/l hour and 400/sup 0/C/l hour temper conditions, for which the mechanical data indicated an embrittlement, was clearly controlled by the cementite morphology in conjunction with the prior austenite grain size. Attempts to rationalize toughness in these temper conditions, using a stress-controlled fracture criterion, were unsuccessful and led to physically unreasonable results. In the 500/sup 0/C/l hour temper condition, stable crack growth and periodic ridge patterns were observed. Fracture toughness differences between the 870/sup 0/C and 1175/sup 0/C austenitizing treatments were qualitatively rationalized by the nature of the respective fracture morphologies. Good correspondence between J/sub IC/ and the so-called tearing modulus, T, as indicators of sharp crack fracture toughness, was observed.

  5. Contributions a la caracterisation et a l'amelioration de l'usinabilite de pieces d'acier elaborees par metallurgie des poudres

    Science.gov (United States)

    Boilard, Patrick

    that it is possible to reduce the amount of MoS2 in the blend so as to lower the dimensional change and the cost (blend Mo8A), while enhancing machinability and keeping hardness values within the same range (70 HRB). Second, adding enstatite (MgO·SiO2) permits the observation of the mechanisms occurring with the use of this additive. It is found that the stability of enstatite limits the diffusion of graphite during sintering, leading to the presence of free graphite in the pores, thus enhancing machinability. Furthermore, a lower amount of graphite in the matrix leads to a lower hardness, which is also beneficial to machinability. It is also found that the presence of copper enhances the diffusion of graphite, through the formation of a liquid phase during sintering. With the objective of improving machinability by reaching higher densities, blends were developed for densification through liquid phase sintering. High density samples are obtained (>7.5 g/cm3) for blends prepared with Fe-C-P constituents, namely with 0.5%P and 2.4%C. By systematically studying the effect of different parameters, the importance of the chemical composition (mainly the carbon content) and the importance of the sintering cycle (particularly the cooling rate) are demonstrated. Moreover, various heat treatments studied illustrate the different microstructures achievable for this system, showing various amounts of cementite, pearlite and free graphite. Although the machinability is limited for samples containing large amounts of cementite, it can be greatly improved with very slow cooling, leading to graphitization of the carbon in presence of phosphorus. Adequate control of the sintering cycle on samples made from FGS1625 powder leads to the obtention of high density (≥7.0 g/cm 3) microstructures containing various amounts of pearlite, ferrite and free graphite. Obtaining ferritic microstructures with free graphite designed for very high machinability (tool wear 1600 MPa) is therefore

  6. Influencia del revenido en la estructura y las propiedades de dureza, resistencia a la tracción y resiliencia del acero cubano al cromomanganeso- silicio-níquel. // Influence of tempering on structure and hardness, strength and resilience properties of ch

    Directory of Open Access Journals (Sweden)

    G. Tourón-Alonso

    2009-09-01

    Full Text Available La actual demanda de herramientas y accesorios para maquinarias agrícolas se presenta comofuente creciente de nuevas aplicaciones del acero al Cr-Mn-Si-Ni. Este criterio justifica la práctica detratamientos térmicos, para conseguir distintos valores de propiedades mecánicas, que orienten almaterial hacia las exigencias y circunstancias de aplicaciones concretas. El trabajo tiene comoobjetivo conocer la estructura del acero, heredadas de las transformaciones de fase en diferentesregímenes de tratamiento térmico de revenido, y la correlación entre dicha estructura y suspropiedades de dureza, resistencia a la tracción y resiliencia. Las observaciones al microscopioóptico de las muestras revenidas sugieren, en unos casos, una estructura compuesta por martensitarevenida, en otros, indican la presencia de partículas de ferrita y cementita. Los ensayos de dureza ytracción revelaron una disminución de la dureza y de la resistencia a la tracción con el aumento dela temperatura de revenido. El ensayo de impacto reveló un aumento de la resiliencia con elaumento de la temperatura de revenido, aunque aparecen dos intervalos de temperatura en que laresiliencia disminuye.Palabras claves: revenido, estructura, dureza, resistencia, resiliencia____________________________________________________________________________AbstractSpecimens were tempered after being hardened into oil. Tempered specimens for tension tests,were heated from 200 to 500ºC, in an interval of 100ºC; while, specimens for hardness andresilience tests, were heated from 200 to 550ºC, in an interval of 50ºC. Tempering time, for tensionand resilience tests, depends on specimens’ thickness, while, for hardness tests is 30, 60 and 90minutes. Tempered specimens microstructures at 200 and 300ºC indicate the presence of carbideparticles; it suggests a tempering martensite structure. Tempered specimens microstructures at500ºC indicate the presence of ferrite and cementite particles

  7. Phase relations in the Fe-Fe3C-Fe3N system at 7.8 GPa and 1350 °C: Implications for carbon and nitrogen hosts in Fe0-saturated upper mantle

    Science.gov (United States)

    Sokol, Alexander G.; Kruk, Alexey N.; Seryotkin, Yurii V.; Korablin, Alexander A.; Palyanov, Yury N.

    2017-04-01

    Phase relations in the Fe-Fe3C-Fe3N system are studied in high-pressure experiments at 7.8 GPa and 1350 °C using a split-sphere multi-anvil apparatus. The starting mixtures consisting of Fe, Fe3C and Fe3N are loaded into ceramic or graphite capsules. Contamination with trace amounts of oxygen leads to the appearance of wüstite in the system retaining oxygen fugacity (fO2) near the iron-wüstite (IW) buffer. The metal melt rich in carbon and nitrogen has a large stability field in the central part of the phase diagram, and this field at 1350 °C is tangent to the Fe-Fe3C side of the Fe-Fe3C-Fe3N triangle at the point of the Fe-Fe3C eutectics. Iron nitride ε-Fe3N (space group P6322 or P63/mmc) contains variable amounts of C and N: up to 2.0-2.5 wt% C and 6.0-7.3 wt% N in equilibrium with a C- and N-rich melt and as little as 1.0 wt% C and 3.2 wt% N in equilibrium with γ- Fe. The limit C and N contents in γ-Fe equilibrated with the C- and N-rich melt is about 1.0 wt%, while the N solubility in cementite (Fe3C) does not exceed 0.5 wt%. The obtained data make basis for the isothermal section of the Fe-Fe3C-Fe3N system. The metal melt phase is inferred to be the main host of carbon and nitrogen in the Fe0-saturated (0.1 wt%) mantle at a depth of ∼250 km. In particular, C- and N-bearing austenite (γ-Fe) and metal melts host carbon and nitrogen in the mantle depleted in volatiles (20 ppm C and 1 ppm N), whereas carbon and nitrogen in the mantle with high concentrations of volatiles (250 ppm C and 100 ppm N) reside in C- and N-rich melts with a minor amount of iron carbide (Fe3C). The presence of nickel and sulphur in metal are expected to inhibit the formation of iron carbide and increases the melt phase stability. Redox freezing of N-rich carbonate melts from subduction slabs in Fe0-saturated mantle may produce iron melts supersaturated with nitrogen and stable ε-Fe3N.

  8. Influencia del revenido en la estructura y las propiedades de dureza, resistencia a la tracción y resiliencia del acero cubano al cromo-manganeso-silicio-níquel.

    Directory of Open Access Journals (Sweden)

    G. Tourón Alonso

    2009-09-01

    Full Text Available La actual demanda de herramientas y accesorios para maquinarias agrícolas se presenta como fuente creciente de nuevas aplicaciones del acero al Cr-Mn-Si-Ni. Este criterio justifica la práctica de tratamientos térmicos, para conseguir distintos valores de propiedades mecánicas, que orienten al material hacia las exigencias y circunstancias de aplicaciones concretas. El trabajo tiene como objetivo conocer la estructura del acero, heredadas de las transformaciones de fase en diferentes regímenes de tratamiento térmico de revenido, y la correlación entre dicha estructura y sus propiedades de dureza, resistencia a la tracción y resiliencia. Las observaciones al microscopio óptico de las muestras revenidas sugieren, en unos casos, una estructura compuesta por martensita revenida, en otros, indican la presencia de partículas de ferrita y cementita. Los ensayos de dureza y tracción revelaron una disminución de la dureza y de la resistencia a la tracción con el aumento de la temperatura de revenido. El ensayo de impacto reveló un aumento de la resiliencia con el aumento de la temperatura de revenido, aunque aparecen dos intervalos de temperatura en que la resiliencia disminuye.Specimens were tempered after being hardened into oil. Tempered specimens for tension tests, were heated from 200 to 500ºC, in an interval of 100ºC; while, specimens for hardness and resilience tests, were heated from 200 to 550ºC, in an interval of 50ºC. Tempering time, for tension and resilience tests, depends on specimens’ thickness, while, for hardness tests is 30, 60 and 90 minutes. Tempered specimens microstructures at 200 and 300ºC indicate the presence of carbide particles; it suggests a tempering martensite structure. Tempered specimens microstructures at 500ºC indicate the presence of ferrite and cementite particles. Both, hardness and strength decrease when the tempering temperature increases. The resilience increase with tempering temperature, but

  9. THE PROCESS OF FORMATION OF RAILWAY WHEEL DAMAGES AND TIRES IN OPERATION

    Directory of Open Access Journals (Sweden)

    N. A. Grischenko

    2015-01-01

    Full Text Available Purpose. The dependence analysis of structural changes in the metal of railway wheels and tires from indicated influences in operation, for the further development of strategy of service reliability growth. Methodology. Test materials are the details selected from railway wheels which were taken out of operation beforehand because of various damages. Micro-structural researches were made with the use of light microscope Epiquant and electron microscope. The sizing of structural elements was done by using the methods of quantitative metallography. Findings. Over the past few decades the rapid development of industry was supported by the steady growth of intensity of using railway transport. In this case simultaneous increase of load at wheel set axle, with the increase of speed was accompanied by natural increase of the amount of cases of premature wheels and tires’ withdrawing out of operation. Railway wheel, except the formation of metal layer at rolling surface with the high defects concentration of crystal structure and first of all dislocations, falls under thermal influence from interaction with break blocks. The nature of joint influence (cold deformation and heating on the metal rim of a wheel is conditioned by the appearance of sufficiently high gradients of structural changes that can be considered as the influence on the level of internal residual stresses. In case of the rise of volume part of carbide phase at a constant ferrite grain size, it is achieved only by the increasing of dislocation nucleation sources without changing the number of annihilation positions. In this case the accumulation of dislocations at the initial stages of plastic deformation (in metal volume in front of delta arm crack will lead to the formation of cementite globes around certain interlocked dislocation density. In contrast the sharp increase of deformation hardening carbon steel parameters is observed. Originality. During the braking of locomotive the

  10. Carbon-content dependent effect of magnetic field on austenitic decomposition of steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoxue, E-mail: zhangxiaoxue1213@gmail.com [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), CNRS UMR 7239, University of Metz, 57045 Metz (France); Wang Shoujing, E-mail: wsj210725@yahoo.com.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Zhang Yudong, E-mail: yudong.zhang@univ-metz.fr [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), CNRS UMR 7239, University of Metz, 57045 Metz (France); Esling, Claude, E-mail: claude.esling@univ-metz.fr [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux (LEM3), CNRS UMR 7239, University of Metz, 57045 Metz (France); Zhao Xiang, E-mail: zhaox@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Zuo Liang, E-mail: lzuo@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China)

    2012-04-15

    The transformed microstructures of the high-purity Fe-0.12C alloy and Fe-0.36C alloy heat treated without and with a 12 T magnetic field have been investigated to explore the carbon-content dependent field effect on austenitic decomposition in steels. Results show that, the field-induced transformed morphology characteristics in different alloys differ from each other. In the Fe-0.12C alloy, the pearlite colonies are elongated along the field direction, and shaped by the chained and elongated proeutectoid ferrite grains in the field direction. However, in the Fe-0.36C alloy, the field mainly reduces the amount of Widmaenstatten ferrite and elongates the formed proeutectoid ferrite grains in the field direction. No clear field direction alignment is obtained. The magnetic field also demonstrates carbon-content dependent effect on the texture of the formed ferrite. It clearly enhances the Left-Pointing-Angle-Bracket 001 Right-Pointing-Angle-Bracket fiber of the ferrite in the transverse field direction in the Fe-0.36C alloy. This field effect is related to the crystal lattice distortion induced by carbon solution and this impact becomes stronger with the increase of the carbon content. For the Fe-0.12C alloy, this field effect is greatly reduced due to the reduced carbon oversaturation in ferrite and elevated formation temperature. The orientation relationships (ORs) between the pearlitic ferrite and the pearlitic cementite in both alloys are less affected by the magnetic field. No obvious changes in the either type of the appearing ORs and their number of occurrences are detected. - Highlights: Black-Right-Pointing-Pointer The carbon-content dependent field effect on austenitic decomposition is studied. Black-Right-Pointing-Pointer The field-induced morphology features vary with the carbon content. Black-Right-Pointing-Pointer The field effect on ferrite texture is more pronounced in high carbon content alloy. Black-Right-Pointing-Pointer Magnetic field hardly

  11. A Brief History of Metallography: Ⅰ . The Beginning%金相学史话(1):金相学的兴起

    Institute of Scientific and Technical Information of China (English)

    郭可信

    2000-01-01

    Widmanstatten在19世纪初用硝酸水溶液腐刻铁陨石切片,观察到片状Fe-Ni奥氏体的规则分布(魏氏组织),予告金相学即将诞生。Sorby在1863年用反射式显微镜观察抛光腐刻的钢铁试样,不但看到珠光体中的渗碳体和铁素体的片状组织,还对钢的淬火和回火作了初步探讨,金相学已基本形成。到19-20世纪之交,Martens(马氏)和Osmond对金相学的发展和金相检验在厂矿中的推广做了重要贡献,同时Roberts-Austen(奥氏)和Roogzeboom初步绘制出Fe-C平衡图,为金相学奠定了理论基础。到了二十世纪中叶,金相学已逐步发展成金属学、物理冶金和材料科学。%In the beginning of the 19th century Widmanstatten used diluted water solution of nitric acid to etch a slice of iron meteorite and observed an oriented pattern of Fe-Ni austenite, anticipating the birth of metallography. In 1863 Sorby examined iron and steel specimens prepared by grinding, polishing,and etching by means of a reflection microscope and observed pearlite composed of fine cementite and ferrite lamellae. he has also discussed the possible transformations occurred in quenching and annealing of steels.This announced the birth of metallography. During the shift of the 19th century, Martens and Osmond made important contribution to the development of metallography and its application in the metal industry.In the meantime, Roberts-Austen and Roozeboom constructed the preliminary Fe-C phase diagram, which laid the foundation of metallography. Coming to the fifties of the 20th century, metallography developed successively into physical metallurgy and materials science

  12. APPLICATION OF MODIFYING ALLOYING ALLOY CONTAINING NANOSIZED POWDERS OF ACTIVE ELEMENTS IN PRODUCTION OF HIGH-STRENGTH CAST IRON WITH GLOBULAR GRAPHITE

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2015-01-01

    Full Text Available Scientific and practical interest is the application of alloying alloy-modifiers for secondary treatment of high-strength cast iron to stabilize the process of spheroidization graphite and achieving higher physical-mechanical properties of castings. The peculiarity of the high-strength cast irons manufacturing technology is their tendency to supercooling during solidification in the mold. This leads to the formation of shrinkage defects and structurally free cementite, especially in thin-walled sections of the finished castings. To minimize these effects in foundry practice during production of ductile iron the secondary inoculation is widely used. In this regard, the question of the choice of the additives with effective impact not only on the graphitization process but also on the formation of the metallic base of ductile iron is relevant. The aim of the present work is to study the peculiarities of structure formation in cast iron with nodular graphite when alloying alloy-modifier based on tin with additions of nanoparticles of titanium carbide, yttrium oxide and graphite nano-pipes is used for secondary treatment. Melting of iron in laboratory conditions was performed in crucible induction furnace IST-006 with an acid lining held. Spheroidizing treatment of melt was realized with magnesium containing alloying alloy FeSiMg7 by means of ladle method. Secondary treatment of high strength cast iron was carried out by addition of alloying alloy-modifier in an amount of 0.1% to the bottom of the pouring ladle. Cast samples for chemical composition analysis, study of microstructure, technological and mechanical properties of the resultant alloy were made. Studies have shown that the secondary treatment of high strength cast iron with developed modifier-alloying alloy results in formation of the perlite metallic base due to the tin impact and nodular graphite with regular shape under the influence of titanium carbide, yttrium oxide and graphite nano

  13. Rupture mechanics of metallic alloys for hydrogen transport; Mecanique de la rupture des alliages metalliques pour le transport de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.; Briottet, L.; Lemoine, P. [CEA Grenoble (DRT/LITEN/DTH/LEV), 38 (France); Andrieu, E.; Blanc, C. [Centre Interuniversitaire de Recherche et d' Ingenierie des Materiaux (ENSIACET/CIRIMAT), 31 - Toulouse (France)

    2007-07-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  14. Contributions and mechanisms of action of graphite nanomaterials in ultra high performance concrete

    Science.gov (United States)

    Sbia, Libya Ahmed

    Ultra-high performance concrete (UHPC) reaches high strength and impermeability levels by using a relatively large volume fraction of a dense binder with fine microstructure in combination with high-quality aggregates of relatively small particle size, and reinforcing fibers. The dense microstructure of the cementitions binder is achieved by raising the packing density of the particulate matter, which covers sizes ranging from few hundred nanometers to few millimeters. The fine microstructure of binder in UHPC is realized by effective use of pozzolans to largely eliminate the coarse crystalline particles which exist among cement hydrates. UHPC incorporates (steel) fibers to overcome the brittleness of its dense, finely structured cementitious binder. The main thrust of this research is to evaluate the benefits of nanmaterials in UHPC. The dense, finely structure cementitious binder as well as the large volume fraction of the binder in UHPC benefit the dispersion of nanomaterials, and their interfacial interactions. The relatively close spacing of nanomaterials within the cementitious binder of UHPC enables them to render local reinforcement effects in critically stressed regions such as those in the vicinity of steel reinforcement and prestressing strands as well as fibers. Nanomaterials can also raise the density of the binder in UHPC by extending the particle size distribution down to the few nanometers range. Comprehensive experimental studies supported by theoretical investigations were undertake in order to optimize the use of nanomaterials in UHPC, identity the UHPC (mechanical) properties which benefit from the introduction of nanomaterials, and define the mechanisms of action of nanomaterials in UHPC. Carbon nanofiber was the primary nanomaterial used in this investigation. Some work was also conducted with graphite nanoplates. The key hypotheses of the project were as follows: (i) nanomaterials can make important contributions to the packing density of the

  15. Effect of cooling rate and austenitizing temperature on the spheroidizing annealing of 40 Cr steel%冷却速率和奥氏体化温度对40 Cr钢球化退火的影响

    Institute of Scientific and Technical Information of China (English)

    邱木生; 祭程; 朱苗勇; 徐东

    2015-01-01

    To study the impact of austenitizing temperature and cooling rate on the spheroidizing annealing process of 40Cr steel, the spheroidizing annealing behavior and the mechanical properties of 40Cr steel were investigated by conventional intercritical annea-ling. It is found that with the austenitizing temperature between 760℃ and 800℃, the hardness varies as a “V” shape but the ce-mentite spheroidization rate changes as an inverted“V” shape with increasing cooling rate from 10℃·h-1 to 30℃·h-1 . Higher sphe-roidization level and finer carbides, which are obtained at an austenitizing temperature of 760℃ and a cooling rate of 20℃·h-1 , make the steel having a better cold formability. A divorced eutectoid transformation ( DET) reaction mechanism of the spheroidizing annea-ling process was proposed, and the occurrence of the divorced eutectoid transformation reaction depends strongly on austenitizing tem-perature, cooling rate and holding time.%为探究奥氏体化温度和冷却速率对40Cr钢球化过程的影响,采用双相区球化退火研究了热轧态40Cr钢的球化退火行为和力学性能。奥氏体化温度从760℃提高到800℃,冷却速率从10℃·h-1上升到30℃·h-1,组织硬度随冷却速度呈V形变化,碳化物球化率随冷却速度变化正好与前者相反。奥氏体化温度为760℃,冷却速率为20℃·h-1所得到的球化组织球化率高,且碳化物细小,具有良好的冷成形性能,可大幅度缩短球化退火时间,显著提高生产效率。提出了球化退火过程中离异共析转变机制,控制好球化过程中奥氏体化温度、冷却速率及保温时间有利于离异共析转变的发生。

  16. Effect of Coiling Temperature on Microstructure and Tensile Behavior of a Hot-Rolled Ferritic Lightweight Steel

    Science.gov (United States)

    Wang, Junfeng; Yang, Qi; Wang, Xiaodong; Wang, Li

    2016-12-01

    Effects of coiling temperature (CT) ranging from 673 K to 973 K (400 °C to 700 °C) on microstructure and tensile property of a hot-rolled ferritic lightweight steel containing 0.35 wt pct C and 4.1 wt pct Al are investigated in the present study. Basically, the microstructure of the hot-rolled steel is composed of δ-ferrite grain bands and secondary phase bands which are originated from the decomposition of antecedent austenite. The secondary phase band is a bainite band at coiling temperatures (CTs) lower than 723 K (450 °C). More specifically, the bainite band mainly consists of lower bainite together with blocky retained austenite at the CT of 673 K (400 °C), while it primarily contains carbide-free bainite being an aggregate of lath-shaped ferrite and austenite at the CT of 723 K (450 °C). The secondary phase band is a carbide band which mainly contains a pearlite structure at CTs higher than 773 K (500 °C). There are three types of carbides in the steel matrix: transitional ɛ-carbide present inside lower bainite, cementite present within carbide bands as well as at the boundaries between carbide bands and δ-ferrite bands, and κ-carbide present at δ-ferrite grain boundaries which is clearly seen at CTs higher than 773 K (500 °C). The volume fraction of retained austenite reaches the peak value of 9.6 pct at the CT of 723 K (450 °C), and abruptly drops to zero when the CTs are higher than 773 K (500 °C). Lath-shaped retained austenite with a higher volume fraction induces significant enhancement of elongation through the TRIP effect, leading to a uniform elongation of 25 pct and an elongation-to-failure of 32 pct at the CT of 723 K (450 °C). Crack initiation and propagation inside the tested specimens are tracked and fracture surface is observed to help understand the deformation and fracture behavior of the hot-rolled steel.

  17. Effect of cutting parameters on chip formation in orthogonal cutting

    Directory of Open Access Journals (Sweden)

    S. Ben Salem

    2012-01-01

    Full Text Available Purpose: of this paper is to study the chip formation to obtain the optimal cutting conditions and to observe the different chip formation mechanisms. Analysis of machining of a hardened alloy, X160CrMoV12-1 (cold work steel: AISI D2 with a ferritic and cementite matrix and coarse primary carbides, showed that there are relationships between the chip geometry, cutting conditions and the different micrographs under different metallurgical states.Design/methodology/approach: Machining of hardened alloys has some metallurgical and mechanical difficulties even if many successful processes have been increasingly developed. A lot of study has been carried out on this subject, however only with modest progress showing specific results concerning the real efficiency of chip formation. Hence, some crucial questions remain unanswered: the evolution of white layers produced during progressive tool flank wear in dry hard turning and to correlate this with the surface integrity of the machined surface. For the experimental study here, various cutting speeds and feed rates have been applied on the work material.Findings: The “saw-tooth type chips” geometry has been examined and a specific attention was given to the chip samples that were metallographically processed and observed under scanning electronic microscope (SEM to determine if white layers are present.Research limitations/implications: This research will be followed by a detail modelling and need more experimental results for a given a good prediction of the results occurred on the damage related to the microstructure by using the cutting parameters.Practical implications: A special detail was given to the mechanism of chip formation resulting from hard machining process and behaviour of steel at different metallurgical states on the material during the case of annealing and or the case of quench operations.Originality/value: For the sake of simplicity, ANOVA (Analysis of Variance was used to

  18. 利用APT对RPV模拟钢中富Cu原子团簇析出的研究%STUDY ON THE PRECIPITATION OF Cu-RICH CLUSTERS IN THE RPV MODEL STEEL BY APT

    Institute of Scientific and Technical Information of China (English)

    徐刚; 蔡琳玲; 冯柳; 周邦新; 刘文庆; 王均安

    2012-01-01

    from 1.5 nm to 2.4 nm, and the average Cu content in the Cu-rich clusters vary from 45% to 55 % (atomic fraction). The number density of the Cu-rich clusters in both types of the specimens is at the order of 1022 m-3. The Cu concentration in the ferritic matrix is (0.15±0.02)% for the specimen aged at 370℃ for 13200 h, which is still higher than the limitation of Cu solubility in the ferritic matrix at 370℃ . It means that the precipitation process of Cu-rich clusters does not reach the equilibrium state. The analysis results also show that Ni, Si, P atoms, but not Cu atoms, segregate near the interface between the cementite and the ferritic matrix, and Mn, Mo, S atoms are enriched in the cementite.%提高了Cu含量的核反应堆压力容器(RPV)模拟钢经过880℃水淬和660℃调质处理,在370℃时效不同时间后,利用原子探针层析技术(APT)进行分析.结果表明:样品经过1150 h时效后,富Cu团簇正处于析出过程的形核阶段;经过3000和13200 h时效后析出了富Cu团簇,团簇的平均等效直径分别为1.5和2.4 nm,团簇中Cu的平均浓度分别为45%和55%(原子分数),团簇的数量密度约为4.2×1022 m-3;样品经过13200 h时效后,α-Fe基体中的Cu含量为(0.15±0.02)%,仍然高于Cu在α-Fe中平衡固溶度的理论计算值,说明这时富Cu团簇的析出过程还没有达到平衡.对渗碳体的分析结果表明,Ni,Si和P偏聚在渗碳体和α-Fe基体的相界面附近,Mn,Mo和S富集在渗碳体中;并没有观察到Cu在相界面上偏聚的现象.

  19. A new methodology for predictive tool wear

    Science.gov (United States)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  20. Teknologi Pembuatan Material Shot Blast untuk Mendukung Industri Pengecoran Logam Nasional

    Directory of Open Access Journals (Sweden)

    Fajar Nurjaman

    2009-01-01

    Full Text Available Shot blast material is a supporting material in foundry which is used at surface finishing process of metal casting. Recently, there is no one of national industry that produce shot blast material, in consequence, the purpose of this research is to lessen the dependence of using shot blast material import by making a shot blast material which improve its hardness exceed the shot blast material import. This research use the raw material from scrap iron with the following composition: C (3.2%, Si (1.18%, Mn (6.1%, Cu (0.35%, Fe (88.7%. The scrap is melted in induction furnace untill melt (hot metal, then the hot metal (1200 oC is tilted into a runner which is connected with pan crucible, which is consisted of 107 holes with diameter of each holes is 10 mm. Hot metal that is leave from the holes, is injected by pressurized water 1.1 atm with the velocity 0.8 m/s, untill obtained grains of shot blast material, then these grains goes into the water tank which it has temperature 40oC. From thermodynamic study, to avoid the happening of the explosion that is arising out because the effect of high temperature difference at injection process beetween water and hot metal, hence the comparison value beetween the mass of water and hot metal equal to 1:4.6. From this research is obtained shot blast material Ø0.8-3.2 mm with the metallography structure with martensite domination and dispersion of cementite and a little austenit. The hardness value of this material is 54.8 HRC, where this value is larger than shot blast material import (45-50 HRC. Abstract in Bahasa Indonesia: Material shot blast merupakan material pendukung pengecoran logam yang digunakan pada proses surface finishing benda cor logam. Saat ini belum ada satupun industri nasional yang memproduksi material shot blast, karena itu tujuan penelitian ini untuk mengurangi ketergantungan penggunaan material shot blast impor dengan membuat material shot blast yang nilai kekerasannya melebihi material

  1. Influence of aluminum and phosphorus on solid transformation of TRIP steels%Al与P对TRIP钢固态相变的影响

    Institute of Scientific and Technical Information of China (English)

    赵爱民; 张宇光; 赵征志; 张明明; 唐荻; 李本海

    2011-01-01

    为了研究Al和P合金元素在TRIP钢固态相变过程中的作用,研究了4种不同合金成分C-Mn-Al-P TRIP钢的CCT图.结果表明,Al元素强烈的缩小奥氏体相区,提高A与M.Al元素促使CCT图左移和上移.P元素能够阻碍碳化物的生成,当钢中P含量达到0.14%,能显著的将CCT图中的珠光体区与贝氏体区右移.P元素对铁素体相变和马氏体相变没有显著影响.利用类平衡下切变长大模型估算了4种TRIP钢的B点(A6钢为567℃,P1钢为556℃,P2钢为514℃,P3钢为548 ℃),与实际测量值吻合较好.研究表明在相同条件下,Al元素降低△μ,即增加相变驱动力,同时还降低△G,即降低切变阻力,提高B.点.P元素增加△G,即增加切变阻力,降低B点.%In order to study the effect of alloy element (Al and P) on solid phase transformation of transformation-induced plasticity (TRIP) steels, Continuous cooling transformation (CCT) diagrams and properties of four kinds of C-Mn-Al -P TRIP steels with different aluminum and phosphorus contents were examined by dilatometric test and microstructure observation using optical microscopy. Al made the formation of ferrite and pearlite shift to the left side, and the formation of bainite and martensite to higher temperatures on the CCT diagram as Al narrows the austenite phase region strongly and increases the Ac3 point and Ms point. P reduces kinetics of the cementite precipitation, and when its content reaches 0. 14 wt%, it causes a shift of the forming temperature of pearlite and bainite to the right side on the CCT diagram significantly. No significant effect of P on ferrite and martensite transformation is observed. The Bs points of the investigated steels ( A6,567 ℃; P1,556 ℃ ; P2,514 ℃; P3,548 ℃ ) are estimated using para-equilibrium shear growth model, which is in agreement with the experimental values. The results also indicate that Al increases the Bs point as it both reduces Δμγ→αFe,ch ( increases the

  2. Effect of heat treatment on microstructure of high chrome steel by laser surface melting%热处理中高铬钢激光熔凝层的组织转变

    Institute of Scientific and Technical Information of China (English)

    李美艳; 王勇; 韩彬; 宋立新; 程义远

    2011-01-01

    Laser surface melting was carried on surface of high chrome steel, and then the samples were tempered in the range of 300-650 ℃. The effect of heat treatment on microstructure of the laser melted coating was investigated by means of SEM ,XRD and TEM.The results show that the austenite in the laser melted coating possesses a high tempering stability due to the increase of alloying elements in solid solution and refined grains. The hardness of the laser melted coating is elevated after tempering at 450 ℃ and reaches a peak of 672 HV0.2 at 560 ℃ and then decreases quickly at 650 ℃. After tempering at 450 ℃ the precipitation of fine M23C6 carbides and a small amount of martensite from the supersaturated austenite are contributed to the slight increase of hardness. At 560 ℃ the combined effect of the martensite phase transformation and the precipitation of carbides within the refined microstructure results in the maximum. At the same time,a small amount of M3C carbides precipitates from the martensite. Moreover, the decrease of hardness at 650 ℃ is caused by the formation of ferrite matrix and large quality of lamellar M3C cementite.%采用激光熔凝处理方法对高铬钢进行表面强化,然后在300~650℃区间回火处理,利用SEM、XRD和TEM等手段分析热处理对激光熔凝层组织的影响.结果表明,高铬钢激光熔凝处理后,得到的奥氏体组织中合金元素固溶度较高且晶粒细小,具有较高的回火稳定性.激光熔凝层450℃回火后硬度开始升高,560℃时达到最大值(672 HV0.2),回火温度高达650℃时硬度迅速降低.450℃回火后细小M23C6碳化物优先从过饱和奥氏体中析出,同时少量马氏体的生成使熔凝层硬度略有增加.560 ℃回火后由于M,C,和M23C6碳化物的析出、大量高硬度马氏体的生成以及位错强化的共同作用使硬度达到峰值,同时,马氏体组织中有少量的M,C渗碳体析出.650℃回火后基体完全转

  3. Effects and characterization of an environmentally-friendly, inexpensive composite Iron-Sodium catalyst on coal gasification

    Science.gov (United States)

    Monterroso, Rodolfo

    were studied through characterization tests. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Mossbauer spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC-MS) and nuclear magnetic resonance spectroscopy (NMR) were used to perform the analyses. The XRD results are consistent with interactive mechanisms or the formation of Na-Fe oxides as the catalytic pathway. Activity of the iron catalyst during late stages of the gasification process was confirmed through XPS. Mossbauer spectroscopy also indicated the presence of metallic iron and cementite in the char at different stages. The Fe catalysts were better at tar decomposition than the Na catalysts, as indicated by GC-MS analyses. NMR spectra confirmed that tar compositions vary with the catalytic mechanism. FTIR analysis confirmed the presence of high yields of aromatic components and long aliphatic chains in the tar. Composite Fe-Na catalysts provide a method to tailor the amounts and composition of product generated during gasification.

  4. Composite Coating Prepared by Plasma Alloying AlCoCrCuFex MnNiCx High-entropy Alloy on the Surface of HT250 Cast Iron%HT250铸铁表面等离子合金化AlCoCrCuFex MnNiCx高熵合金复合涂层

    Institute of Scientific and Technical Information of China (English)

    卢金斌; 彭竹琴; 马明星; 李俊魁; 齐振东; 贺亚勋

    2015-01-01

    Objective To improve the abrasion resistance of the surface on cast iron by plasma alloying high entropy alloy coat-ing process. Methods High entropy alloy coating was prepared on the surface of HT250 cast iron by plasma alloying Al, Co, Cr, Cu, Mn and Ni powders in equal molar ratio. The microstructure of the coating was studied by SEM, EDS, XRD, and its micro-hardness distribution was tested by the microhardness tester. Results Due to melting of a small amount of iron, the atoms such as Fe and C dissolved into the coating to get AlCoCrCuFexMnNiCx, the thickness of which was about 0. 2 mm. The mixing entropy of both the composition and the microstructure of the coating distributed in a high-medium-low gradient. The microstructure of the coating was mainly composed of high-entropy alloy dendrite and interdendrite cementite andσphase etc, and the coating contained mainly FCC, BCC, Fe3 C and σ phase. The microhardness of the coating was about 350 ~600HV0. 2, which was significantly higher than that of the matrix (200 ~230HV0. 2). Conclusion The composite coating including high entropy alloy and carbide could be formed on the surface of cast iron by plasma alloying, which improved the microhardness of the cast iron, and thus helped to improve the abrasion resistance of the surface on cast iron.%目的:通过等离子合金化高熵合金涂层,提高铸铁表面耐磨性。方法采用等离子合金化法,以等摩尔比的Al,Co,Cr,Cu,Mn,Ni单质金属粉在HT250铸铁表面制备高熵合金复合涂层。通过SEM, EDS,XRD等分析涂层的组织,测试涂层的显微硬度分布。结果由于铸铁基体少量熔化,基体中的Fe和C元素进入涂层,形成了厚度约为0.2 mm的AlCoCrCuFexMnNiCx 高熵合金涂层。从涂层表面到基材,体系的混合熵呈高熵-中熵-低熵的梯度变化。涂层主要由高熵合金的枝晶和枝晶间渗碳体、σ相等组织构成,主要有FCC,BCC,Fe3 C及σ相。涂层的显微硬度大约为350~600HV0.2,

  5. Obtención de materiales antifricción hierro-arrabio-latón utilizando residuos de virutas de arrabio

    Directory of Open Access Journals (Sweden)

    Nasamov, S. N.

    2003-06-01

    Full Text Available Parts based on iron and steel powders are widely used in the manufacture of automobile and domestic equipment. This work was done to study the anti-friction properties of iron-pig iron-brass compositions of materials which were obtained by pressing and sintering from a mix of iron powders and industrial by products of cast-iron turnings, brass, talc and technical sulphur. Experiments were performed using cold pressure technology in the flowing matrix of the powder composite without solid lubricants. The subsequent sintering was carried out at 1200 ºC under isothermal conditions in a nitrogen atmosphere in the sintering zone during 1 h. The physical-mechanical and anti-friction properties were almost doubled by the active drainage of the gases from the compression mould. The study of the microstructure of the sintered materials showed that free cementite existed between the particle limits and around the pores. Large agglomerations of dark inclusions could be observed, consisting of graphite, zinc and iron oxides, which were points of tension in the material that reduce its durability and, therefore, its wear resistance to dry friction.

    Las piezas base hierro y acero, obtenidas por pulvimetalurgia, tienen gran utilización en la industria del automóvil y de equipos domésticos. El presente trabajo está dedicado al estudio de las propiedades antifricción de materiales de composición hierro-arrabio-latón, aglomerados mediante prensado y sinterización, obtenidos con mezclas de polvos de hierro, residuos industriales de virutas de arrabio, latón, talco y azufre. Los experimentos fueron hechos utilizando la tecnología de prensado en frío, utilizando una matriz fluida, sin empleo de lubricante sólido. Posteriormente, se realizó una sinterización a temperatura de 1.200 °C en condiciones isotérmicas, en atmósfera de nitrógeno, en la zona de sinterización durante una hora. Las propiedades físico-mecánicas y antifricci

  6. Effect of Two Pig Irons on the Metallurgical Structure and Hardness of the Hardened Camshaft%两种生铁对可淬硬凸轮轴金相组织和硬度的影响

    Institute of Scientific and Technical Information of China (English)

    沈保罗; 李莉; 岳昌林; 白维均; 徐家富

    2011-01-01

    研究了四川钒钛生铁和河北球墨生铁对491Q可淬硬凸轮轴金相组织和硬度的影响.研究表明:四川钒钛生铁的金相组织由细小点状石墨+A型石墨+碳化物+珠光体组成;河北球墨生铁的金相组织由A型石墨+C型石墨+珠光体组成.由Ⅰ组配料(230kg四川钒钛生铁+100kg废钢+220kg回炉料+其它合金)铸造的凸轮轴的金相组织为4-6级A石墨+少量E型石墨+95%珠光体+5%渗碳体,基体硬度为252~255HB;由Ⅱ组配料(150kg河北球墨生铁+80kg四川钒钛生铁+100kg废钢+220kg回炉料+其它合金)铸造的凸轮轴的金相组织为4-6级A型+少量E型石墨+100%珠光体,基体硬度为210~229HB.作者初步分析了产生上述现象的原因.%Sichuan V-Ti pig iron and Hebei ductile iron have been used to manufacture 491Q type hardened camshaft and the effect of both iron on the microstructure and hardness of the camshaft been researched.Studies have shown that the microstructure of Sichuan vanadium-titanium pig iron consists of as tiny dot graphite+A type graphite+carbide+ pearlite while the microstructure of Hebei ductile iron consists of A-type graphite+C-type graphite+pearlite.The microstructure in the camshaft manufactured from the group- Ⅰ ingredient (230 kg Sichuan V-Ti pig iron + 100 kg scrap steel +220kg back charge+other alloys ) consists of the 4-6 grade A-type graphite +small amount E-type graphite +95% pearlite +about 5% cementite, and his matrix hardness is 252-255HB.The microstructure in the camshaft manufactured from the group- Ⅱ ingredient ( 150 kg Sichuan V-Ti pig iron+80 kg Hebei ductile iron+100 kg scrap steel+220 kg back charge+other alloys) consists of the 4-6 grade A-type graphite +small amount E-type graphite +100% pearlite,and its matrix hardness 210-229HB.The above-mentioned phenomenon has been given preliminary analysis.

  7. Where is mantle's carbon?

    Science.gov (United States)

    Oganov, A. R.; Ono, S.; Ma, Y.

    2008-12-01

    Due to the strongly reducing conditions (the presence of metallic iron was suggested both by experiments [1] and theory [2]), diamond was believed to be the main host of carbon through most of the lower mantle [3]. We showed [4] that cementite Fe3C is another good candidate to be the main host of "reduced" carbon in the mantle, reinforcing an earlier hypothesis [5]. The fate of "oxidised" carbon (in subducted slabs) is of particular importance - if carbonates decompose producing fluid CO2, this would have important implications for the chemistry and rheology of the mantle. Knowledge of crystal structures and phase diagrams of carbonates is crucial here. The high-pressure structures of CaCO3 were predicted [6] and subsequently verified by experiments. For MgCO3, Isshiki et al. [7] found a new phase above 110 GPa, and several attempts were made to solve it [8,9]. Here [4], using an evolutionary algorithm for crystal structure prediction [10], we show that there are two post-magnesite phases at mantle-relevant pressure range, one stable at 82-138 GPa, and the other from 138 GPa to ~160 GPa. Both are based on threefold rings of CO4-tetrahedra and are more favourable than all previously proposed structures. We show that through most of the P-T conditions of the mantle, MgCO3 is the major host of oxidized carbon in the Earth. We predict the possibility of CO2 release at the very bottom of the mantle (in SiO2-rich basaltic part of subducted slabs), which could enhance partial melting of rocks and be related to the geodynamical differences between the Earth and Venus. 1.Frost D.J., Liebske C., Langenhorst F., McCammon C.A., Tronnes R.G., Rubie D.C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409-412. 2.Zhang F., Oganov A.R. (2006). Valence and spin states of iron impurities in mantle-forming silicates. Earth Planet. Sci. Lett. 249, 436-443. 3.Luth R.W. (1999). Carbon and carbonates in the mantle. In: Mantle

  8. Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies

    Science.gov (United States)

    Kappes, Mariano Alberto

    This work evaluates the possibility of replacing hydrogen sulfide (H 2S) with thiosulfate anion (S2O32- ) in sour corrosion fatigue studies. H2S increases the corrosion fatigue crack growth rate (FCGR) and can be present in carbon steel risers and flowlines used in off-shore oil production. Corrosion tests with gaseous H2S require special facilities with safety features, because H2S is a toxic and flammable gas. The possibility of replacing H2S with S2O32-, a non-toxic anion, for studying stress corrosion cracking of stainless and carbon steels in H2S solutions was first proposed by Tsujikawa et al. ( Tsujikawa et al., Corrosion, 1993. 49(5): p. 409-419). In this dissertation, Tsujikawa work will be extended to sour corrosion fatigue of carbon steels. H2S testing is often conducted in deareated condition to avoid oxygen reaction with sulfide that yields sulfur and to mimic oil production conditions. Nitrogen deareation was also adopted in S2O3 2- testing, and gas exiting the cell was forced through a sodium hydroxide trap. Measurements of the sulfide content of this trap were used to estimate the partial pressure of H2S in nitrogen, and Henry's law was used to estimate the content of H2S in the solution in the cell. H2S was produced by a redox reaction of S2O 32-, which required electrons from carbon steel corrosion. This reaction is spontaneous at the open circuit potential of steel. Therefore, H2S concentration was expected to be maximum at the steel surface, and this concentration was estimated by a mass balance analysis. Carbon steel specimens exposed to S2O32- containing solutions developed a film on their surface, composed by iron sulfide and cementite. The film was not passivating and a good conductor of electrons. Hydrogen permeation experiments proved that this film controls the rate of hydrogen absorption of steels exposed to thiosulfate containing solutions. The absorption of hydrogen in S2O3 2- solutions was compared with the absorption of hydrogen in

  9. Direct growth of carbon nanotubes on metal surfaces without an external catalyst and nanocomposite production

    Science.gov (United States)

    Baddour, Carole Emilie

    ), Transmission Electron Microscopy (TEM) and sonication. CNT purity up to 84% is attained and the catalyst is determined to be the faced-centred cubic structure of Fe in the austenite form (? Fe). In the case of the FBCVD technique, there are at least 30 mg of CNTs produced per total gram of sample made of CNT-coated SS particles. In addition, the recovery and reuse of the SS particles is demonstrated for a second growth sequence in the FBCVD setup. Detailed characterizations of the SS surface includes X-Ray Photoelectron Spectroscopy (XPS), grain size analysis, Atomic Force Microscopy-Kelvin Probe (AFM/Kelvin) and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). In summary, XPS reveals that the etching process partially removes the Cr 2O3 passive oxide layer and results in the formation of Fe 2O3. Also, Fe3C is found on the surface beneath the CNTs. This iron carbide "cementite" phase is formed during the CNT growth process. Recrystallization occurs during the heat treatment step of the method and is followed by grain growth. The AFM study confirms that the etching process creates ripple-like features on the surface, which are 10-30 nm wide. In order to stabilize mechanically and structurally the CNT growth structure on the metallic support, the production of novel Diamond-like Carbon (DLC) / CNT and Titanium Nitride (TiN) / CNT nanocomposites having a porous three-dimensional architecture is also accomplished here. The "felt-like" CNTs produced in the first part of the thesis are "frozen" in DLC or TiN by Physical Vapour Deposition (PVD). The TiN/CNT nanocomposites are characterized by nanoindentation and contact angle measurements. An increase in contact stiffness values with TiN coating time is observed. The TiN coating on the non-wetting CNTs resulted in a wetting nanocomposite surface. The wetting property was found to be a function of the TiN coating thickness on the CNT structure.

  10. EFFECT OF MIGRATORY CORROSION INHIBITORS ON THE DURABILITY OF CHLORIDE-CONTAMINATED REREINFORCED CONCRETE——ELECTROCHEMICAL PERFORMANCE AND PENETRATION CONCENTRATION%迁移性阻锈剂对氯盐污染混凝土耐久性的影响——电化学性能与渗透浓度前锋线

    Institute of Scientific and Technical Information of China (English)

    刘志勇; 缪昌文; 孙伟

    2009-01-01

    Corrosion of the steel bars in concrete is the major cause of premature deterioration of reinforced concrete structures. To improve the durability and extend the service life of concrete structures under chloride condition, various methods (such as adding admixture, using high performance concrete and epoxy coated steel bar) have been used. In the existing techniques available, the mi-gration of corrosion inhihitors (MCIs) used as admixtures shows a versatility in the surface treatments and in rehabilitation. The in-hibiting effectiveness and the migratory performance of amino alcohol (AMA) and amine carboxylate for the MCIs in chloride con-taminated concrete were investigated. The harden reinforced concrete specimens(C30) contaminated with 0.5% NaCI by mass of the cementitions materials in the mixing process were experienced by a adequate curing and were subjected to two-month exposure tests after painting with 400 g/m2 of the MCIs. The corrosion behavior of the steel bat in specimens was monitored using electrochemical impedance spectroscopy (EIS), open circuit potential, linear polarization resistance (LPR) and corrosion currents. The results show that the steel bars in concrete samples after surface painting the MCIs for 60d give a lower corrosion current of 0.104 μA/cm2, com-pared to the untreated sample (3.77 μA/cm2). The minimum corrosion current of the sample coated with #6 inhibitor could be reduced to 1.1% of the untreated sample. The nitrogen concentration depth profiles for concrete samples treated with the MCIs were analyzed. The higher organic nitrogen content in the depth of 30-40 mm indicates that the inhibitors assuredly migrate through the concrete capillary and micro-crack to the steel bars in cover concrete. The results show that the MCIs are effective in the suppression of the corrosion development or the rehabilitation of the corrosive steel bar when they are applied on the surface of the hardened concrete even though the initiation of

  11. Research upon the quality assurance of the rolling-mill rolls and the variation boundaries of the chemical composition

    Directory of Open Access Journals (Sweden)

    Kiss, I.

    2008-08-01

    Full Text Available The cast-iron rolls must present higher hardness at the rolling surface and lower in the core and the necks, adequate with mechanical resistance and in the high work temperature. If in the zone of the rolling surface, the hardness is guarantied by the irons structure, through the cementite quantities, the core of rolls must contain graphite, to assure this property. Starting from the lamination equipments aspects, from the form of rolls, of the technological interest zones and the structure, which assures the exploitation property, it was establish, through modeling, to the mathematical description of a direct influences, and in final, through successive determinations, to an optimum. One of the parameters, which are determined the structure of the irons destined for rolls casting, is the chemical composition, which guaranties the exploitation properties of the each roll in the stand of rolling mill. The realization of optimum chemical compositions of the cast-iron can constitute a technical efficient way to assure the exploitation properties, the material from which the rolling mills rolls are manufactured having an important role in this sense. Although the manufacture of rolls is in continuously perfecting, the requirements for superior quality rolls are not yet completely satisfied, in many cases, the absence of quality rolls preventing the realization of quality laminates or the realization of productivities of which rolling mills are capable. This paper presents an analysis of the main alloying elements from chemical composition, the influences upon the mechanical properties of the cast-iron rolls, and presents also some graphical addenda. Using the Matlab calculation and graphical programs we determinate some correlations between the hardness (on the working surface and on necks and the chemical composition. Using the double and triple correlations is really helpful in the foundry practice, as it allows us to determine variation