WorldWideScience

Sample records for cemented paste backfill

  1. Use of cemented paste backfill in arsenic-rich tailings

    Science.gov (United States)

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2015-04-01

    Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an

  2. A numerical evaluation of continuous backfilling in cemented paste backfilled stope through an application of wick drains

    Institute of Scientific and Technical Information of China (English)

    Li Li; Yang Pengyu

    2015-01-01

    Cemented paste backfill (CPB) is gaining popularity in many underground mines worldwide. Sufficient water is added into CPB to make a flowable material for pipe transportation. Barricades are built near the drawpoints to prevent in-rush of the fill slurry. To avoid barricade failures resulting from excessive backfill pressures, backfilling is typically performed with a plug pour followed by a final pour. The inter-val between the two pours should be shortened or removed to increase mining productivity and avoid pipe clogging. Recently, Li proposed to apply wick drains in backfilled stopes to promote drainage and consolidation. The preliminary simulations by considering an instantaneous filling indicated that the drainage of CPB can be significantly accelerated by using wick drains. Barricade was not considered. Here, some new numerical modellings are presented with more representative filling sequences, stope geometry, and different draining configurations. The results illustrate that the stope can be backfilled continuously by using wick drains.

  3. Effect of Initial Backfill Temperature on the Deformation Behavior of Early Age Cemented Paste Backfill That Contains Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Aixiang Wu

    2016-01-01

    Full Text Available Enhancing the knowledge on the deformation behavior of cemented paste backfill (CPB in terms of stress-strain relations and modulus of elasticity is significant for economic and safety reasons. In this paper, the effect of the initial backfill temperature on the CPB’s stress-strain behavior and modulus of elasticity is investigated. Results show that the stress-strain relationship and the modulus of elasticity behavior of CPB are significantly affected by the curing time and initial temperature of CPB. Additionally, the relationship between the modulus of elasticity and unconfined compressive strength (UCS and the degree of hydration was evaluated and discussed. The increase of UCS and hydration degree leads to an increase in the modulus of elasticity, which is not significantly affected by the initial temperature.

  4. Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens.

    Science.gov (United States)

    Coussy, Samuel; Benzaazoua, Mostafa; Blanc, Denise; Moszkowicz, Pierre; Bussière, Bruno

    2012-01-01

    Mine tailings coming from the exploitation of sulphide and/or gold deposits can contain significant amounts of arsenic (As), highly soluble in conditions of weathering. Open mine voids backfilling techniques are now widely practiced by modern mining companies to manage the tailings. The most common one is called cemented paste backfill (CPB), and consists of tailings mixed with low amounts of hydraulic binders (3-5%) and a high proportion of water (typically 25%). The CPB is transported through a pipe network, to be placed in the mine openings. CPB provides storage benefits and underground support during mining operations. Moreover, this technique could also enhance contaminant stabilization, by fixing the contaminants in the binder matrix. CPB composites artificially spiked with As were synthesized in laboratory, using two types of hydraulic binders: a Portland cement, and a mix of fly ash and Portland cement. After curing duration of 66 days, the CPB samples were subjected to several leaching tests in various experimental conditions in order to better understand and then predict the As geochemical behaviour within CPBs. The assessment of the As release indicates that this element is better stabilized in Portland cement-based matrices rather than fly ash-based matrices. The As mobility differs in these two matrices, mainly because of the different As-bearing minerals formed during hydration processes. However, the total As depletion does not exceed 5% at the end of the most aggressive leaching test, indicating that As is well immobilized in the two types of CPB. PMID:22054566

  5. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test.

    Science.gov (United States)

    Yılmaz, Tekin; Ercikdi, Bayram; Karaman, Kadir; Külekçi, Gökhan

    2014-07-01

    Ultrasonic pulse velocity (UPV) test is one of the most popular non-destructive techniques used in the assessment of the mechanical properties of concrete or rock materials. In this study, the effects of binder type/dosage, water to cement ratio (w/c) and fines content (ultrasonic pulse velocity (UPV) of cemented paste backfill (CPB) samples were investigated and correlated with the corresponding unconfined compressive strength (UCS) data. A total of 96 CPB samples prepared at different mixture properties were subjected to the UPV and UCS tests at 7, 14, 28 and 56-days of curing periods. UPV and UCS of CPB samples of ordinary Portland cement (CEM I 42.5 R) and sulphate resistant cement (SRC 32.5) initially increased rapidly, but, slowed down after 14 days. However, UPV and UCS of CPB samples of the blast furnace slag cement (CEM III/A 42.5 N) steadily increased between 7 and 56 days. Increasing binder dosage or reducing w/c ratio and fines content (<20 μm) increased the UCS and UPV of CPB samples. UPV was found to be particularly sensitive to fines content. UCS data were correlated with the corresponding UPV data. A linear relation appeared to exist between the UCS and UPV of CPB samples. These findings have demonstrated that the UPV test can be reliably used for the estimation of the strength of CPB samples. PMID:24602334

  6. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.

    Science.gov (United States)

    Ercikdi, Bayram; Cihangir, Ferdi; Kesimal, Ayhan; Deveci, Haci; Alp, Ibrahim

    2010-07-15

    This study presents the effect of three different water-reducing admixtures (WRAs) on the rheological and mechanical properties of cemented paste backfill (CPB) samples. A 28-day strength of > or = 0.7 MPa and the maintenance of the stability (i.e. > or = 0.7 MPa) over 360 days of curing were desired as the design criteria. Ordinary Portland cement (OPC) and Portland composite cement (PCC) were used as binders at 5 wt.% dose. WRAs were initially tested to determine the dosage of a WRA for a required consistency of 7'' for CPB mixtures. A total of 192 CPB samples were then prepared using WRAs. The utilization of WRAs enhanced the flow characteristics of the CPB mixture and allowed to achieve the same consistency at a lower water-to-cement ratio. For OPC, the addition of WRAs appeared to improve the both short- and long-term performance of CPB samples. However, only polycarboxylate-based superplasticiser produced the desired 28-day strength of > or = 0.7 MPa when PCC was used as the binder. These findings suggest that WRAs can be suitably exploited for CPB of sulphide-rich tailings to improve the strength and stability in short and long terms allowing to reduce binder costs in a CPB plant. PMID:20382473

  7. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.

    Science.gov (United States)

    Ercikdi, Bayram; Baki, Hakan; İzki, Muhammet

    2013-01-30

    This paper presents the effect of desliming on the short- and long-term strength, stability and rheological properties of cemented paste backfill (CPB) produced from two different mill tailings. A 28-day unconfined compressive strength (UCS) of ≥1.0 MPa and the maintenance of stability over 224 days of curing were selected as the design criteria for the evaluation of paste backfill performance. Desliming induced some changes in the physical, chemical, mineralogical and rheological properties of the tailings. CPB mixture of the deslimed tailings achieved the required consistency at a lower water to cement ratio. The short-term UCSs of CPB samples of the deslimed tailings were found to be 30-100% higher than those samples of the reference tailings at all the binder dosages and curing times. CPB samples of the deslimed tailings achieved the long-term stability at relatively low binder dosages (e.g. 5 wt% c.f. ≥6.1% for the reference tailings). It was also estimated that desliming could allow a 13.4-23.1% reduction in the binder consumption depending apparently on the inherent characteristics of the tailings. Over the curing period, generation of sulphate and acid by the oxidation of pyrite present in the tailings was also monitored to correlate with the strength losses observed in the long term. Scanning electron microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses provided an insight into the microstructure of CPB and the formation of secondary mineral phases (i.e. gypsum) confirming the beneficial effect of desliming. These findings suggest that desliming can be suitably exploited for CPB of sulphide-rich mill tailings to improve the strength and stability particularly in the long term and to reduce binder consumption. PMID:23220652

  8. Performance of cemented coal gangue backfill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; WANG Xin-min

    2007-01-01

    Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong,and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars.The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue higher middle and long term comprehensive strength.

  9. Rheological Properties of Cemented Tailing Backfill and the Construction of a Prediction Model

    OpenAIRE

    Liu Lang; KI-IL Song; Dezheng Lao; Tae-Hyuk Kwon

    2015-01-01

    Workability is a key performance criterion for mining cemented tailing backfill, which should be defined in terms of rheological parameters such as yield stress and plastic viscosity. Cemented tailing backfill is basically composed of mill tailings, Portland cement, or blended cement with supplementary cement material (fly ash and blast furnace slag) and water, among others, and it is important to characterize relationships between paste components and rheological properties to optimize the w...

  10. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Directory of Open Access Journals (Sweden)

    Qingliang Chang

    2014-01-01

    Full Text Available Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  11. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Science.gov (United States)

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  12. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    OpenAIRE

    Qingliang Chang; Jianhang Chen; Huaqiang Zhou; Jianbiao Bai

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology a...

  13. Rheological Properties of Cemented Tailing Backfill and the Construction of a Prediction Model

    Directory of Open Access Journals (Sweden)

    Liu Lang

    2015-04-01

    Full Text Available Workability is a key performance criterion for mining cemented tailing backfill, which should be defined in terms of rheological parameters such as yield stress and plastic viscosity. Cemented tailing backfill is basically composed of mill tailings, Portland cement, or blended cement with supplementary cement material (fly ash and blast furnace slag and water, among others, and it is important to characterize relationships between paste components and rheological properties to optimize the workability of cemented tailing backfill. This study proposes a combined model for predicting rheological parameters of cemented tailing backfill based on a principal component analysis (PCA and a back-propagation (BP neural network. By analyzing experimental data on mix proportions and rheological parameters of cemented tailing backfill to determine the nonlinear relationships between rheological parameters (i.e., yield stress and viscosity and mix proportions (i.e., solid concentrations, the tailing/cement ratio, the specific weight, and the slump, the study constructs a prediction model. The advantages of the combined model were as follows: First, through the PCA, original multiple variables were represented by two principal components (PCs, thereby leading to a 50% decrease in input parameters in the BP neural network model, which covered 98.634% of the original data. Second, in comparison to conventional BP neural network models, the proposed model featured a simpler network architecture, a faster training speed, and more satisfactory prediction performance. According to the test results, any error between estimated and expected output values from the combined prediction model based on the PCA and the BP neural network was within 5%, reflecting a remarkable improvement over results for BP neural network models with no PCA.

  14. Paste-like self-flowing transportation backfilling technology based on coal gangue

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-min; ZHAO Bin; ZHANG Chuan-shu; ZHANG Qin-li

    2009-01-01

    A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a compos-ite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is I(cement):4(fly ash): 15(coal gangue), with a mass fraction of 72%-75%, theological paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 Yuan/t, good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry.

  15. Paste-like self-flowing transportation backfilling technology based on coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Xin-min Wang; Bin Zhao; Chuan-shu Zhang; Qin-li Zhang [Central South University, Changsha (China). School of Resources and Safety Engineering

    2009-03-15

    A paste-like self-flowing pipeline transportation backfilling technology with coal gangue as aggregate is proposed to remove the potential damage caused by coal gangue piles. As well, the difficult problems of recovering high quality safety coal pillars and deep mining of the Suncun Coal Mine (SCM), Xinwen Coal Group, Shandong are resolved. The physical-chemical properties of coal gangue, optimized proportion of materials, backfilling system and craft in the SCM were studied in the laboratory and then an industrial test was carried out on high quality coal pillars under a town. The results show that finely crushed kaolinized and fresh gangue with granularity less than 5 mm can be used as aggregate with fly ash to replace part of the cement and a composite water reducer as an additive, accounting for 1.0%-1.5% of the total amount of cement and fly ash. The recommended proportion is 1(cement):4(fly ash):15(coal gangue), with a mass fraction of 72%-75%, rheological paste-like properties and a strength of more than 0.7 MPa at 7 d. The sequence of adding cement, fly ash, water reducer and then coal gangue ensures that the suspended state of the slurry, reducing the wear and jam of pipelines. The working face is advancing continuously by the alternating craft of building block walls with coal gangue and backfilling mined-out gobs with paste-like slurry. The recovery rate is as high as 90% with a backfilling cost of 36.9 Yuan/t, good utilization of coal gangue and no subsidence on the surface. This technology provides a good theoretical basis and application experience for coal mines, cement backfilling with paste-like slurry. 17 refs., 6 figs., 3 tabs.

  16. Paste backfill of shallow mine workings for land reclamation in Canmore, Alberta

    International Nuclear Information System (INIS)

    The coal mining history in Canmore, Alberta was presented along with reclamation activities that mine regulators carried out following closure of the mines after nearly 100 years of underground mining. The 7 seams that were mined commercially extend over distances of a few hundred feet and have been displaced by faults. Voids and collapsed rubble in shallow underground workings pose a risk of potential ground subsidence that can affect the stability of surface structures and infrastructure, including the planned development of the proposed Three Sisters Mountain Village on land above the abandoned mines. The village includes plans for 10,000 residential homes, 2 golf courses, and a resource centre. A mine works mitigation program involved drilling primary injection boreholes on a 15 m grid pattern to map the constraint zones in order to gain a better perspective of the subsidence issues as well as the effects of subsidence on structural stress and public safety. When determining mitigation criteria, various land uses and ranges of subsidence hazards were considered to be compatible with each land use. A paste backfill composed of aggregate from a locally available till overburden site was mixed with cement and injected into the void spaces. This paper described the cemented paste backfill injection method; confirmatory methods; maximum volume and pressure criteria; survey for ground uplift; and borehole camera and manual checks for cemented paste backfill in adjacent boreholes. Quality control testing was carried out by means of slump tests. It was concluded that cemented paste backfill mix could be used successfully to stabilize abandoned mine workings for land recovery. 8 refs., 5 tabs., 7 figs

  17. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill

    Institute of Scientific and Technical Information of China (English)

    WU Di; CAI Si-jing

    2015-01-01

    Cemented tailings backfill (CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic, thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.

  18. A New Mode of Coal Mining Under Buildings with Paste-Like Backfill Technology

    Institute of Scientific and Technical Information of China (English)

    崔建强; 孙恒虎; 黄玉诚

    2002-01-01

    The formation of the paste-like backfill technology was introduced briefly in this paper. From the actual cases of coal mines, a new mode of coal mining un der buildings with the technology was proposed. And its specificity was analyzed , and a further introduction to the full-sand-soil solidifying material was given. The main parts of the backfill system, such as the backfill preparation system, the pipeline transportation system, the backfill systems in fully-mechanized mining faces and the backfill process, were presented emphatically.

  19. Chemistry and performance of blended cements and backfills for use in radioactive waste disposal

    International Nuclear Information System (INIS)

    The ability of NaCl and MgSO4 to impair the performance of Portland cement, blended cements containing slag and fly ash and of a permeable backfill have been measured. Performance is determined by decrease in pH, changes in mineralogy and loss of physical coherence. Experiments have been made at 25, 55 and 85 C and extensively backed up by chemical models of cement performance. NaCl, up to 1.5M, has a comparatively slight impact on performance but MgSO4 rapidly and almost quantitatively reacts, lowering system pH''s to 2 and magnesium silicates with gypsum

  20. The comparison between sulfate salt weathering of portland cement paste and calcium sulfoaluminate cement paste

    OpenAIRE

    Liu, Zanqun; Deng, Dehua; De Schutter, Geert

    2015-01-01

    In this paper, the damage performances of sulfate salt weathering of Portland cement paste and calcium sulfoaluminate (CSA) cement paste were compared according to authors' previous studies. It was found that the evaporation zone of speciments partially immersed in 10% Na2SO4 solution were both severely deteriorated for Portland cement and CSA cement. However, the differences were more significant: (1) the CSA cement paste were damaged just after 7 days exposure compared to the 5 months expos...

  1. Characterization of cement paste as engineered barrier of borehole repository

    International Nuclear Information System (INIS)

    Results of axial rupture by compression of cylindrical cement paste samples are presented. This is part of a research on cement paste behavior aiming at investigating the durability of cementitious materials in the environment of repositories for radioactive waste. Portland cement paste is intended to be used as a backfill in a deep borehole for disposal of sealed radiation sources which concept is under development. The service life of the engineered barrier materials plays an important role in the long term safety of such facilities. Accelerated tests in laboratory are being used to evaluate the performance of cement paste under the temperature expected at some hundred meters below grade, under exposure to the radiation emitted by the sources, and under the attack of aggressive chemicals dissolved in the groundwater, during the millennia necessary for the decay of the most active and long-lived radionuclides present in the waste. The large variability in results of mechanical strength as measured by axial compression of cylindrical samples is the subject of this short communication. (author)

  2. The chemistry of blended cements and backfills intended for use in radioactive waste disposal

    International Nuclear Information System (INIS)

    This project was initiated by Her Majesty's Inspectorate of Pollution (HMIP) at the time when UK NIREX had announced its intention to develop a repository for low and intermediate level nuclear waste in the vicinity of Sellafield. In this repository setting, two main barriers existed to the return of radio-isotopes to the biosphere: the natural, or geologic and hydrogeologic barriers, and the man-made barriers. These latter comprise relatively short-lived containers as well as an engineered backfill. The backfill was designed to condition a high pH in the repository, thereby lowering the solubility of many long-lived radionuclides yet not confine gases, which might be generated from chemical and radioactive waste within the repository vault. The Environment Agency for England and Wales had already taken independent steps to examine the suitability of alkaline backfills, based on Portland cement, limestone flour and Ca(OH)2, for the man-made barriers. Preliminary data on post-closure repository performance assessment at Sellafield suggested the importance of two additional factors which had not hitherto been considered in assessments: (i) temperature: Inclusion of heat generating waste could drive temperatures up to ∼80 deg. C in the post closure phase; (ii) salinity of deep groundwater: Much previous work has been done in initially-pure water but borehole analyses indicated high salinity at depth. Other potential deep repositories could also be saline. These impacts were likely to occur together throughout much of the post-closure phase: backfills were likely to be in prolonged contact with hot, saline groundwater. Previous studies demonstrated that cements achieve their performance by a sacrificial action. It is however essential that the cementitious materials should not dissolve too rapidly if prolonged backfill performance lifetimes are to be achieved. By dissolving cement backfills condition permeating water to a high pH and thereby lower the solubilities of

  3. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.; Glasser, Fred P.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements are...

  4. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  5. Multiple determinations of isotope diffusion in cementitious backfills and Ordinary Portland Cement (OPC) monoliths

    International Nuclear Information System (INIS)

    The full text of publication follows: The UK concept for geological disposal of intermediate level (ILW) and low level waste (LLW) includes backfill materials based on admixtures of Ordinary Portland Cement (OPC). It is expected that the evolution of these backfill materials will generate high pH conditions and the corrosion of the metal canisters used for disposal will promote a low Eh environment. This combination of conditions within the near field of the Geological Disposal Facility (GDF) will reduce the solubility of many radionuclides and retard migration. In addition, sorption to some of the cementitious phases may contribute significantly to the retardation of many radionuclides. It is clearly important to understand how diffusion of radionuclides contributes to the overall migration from the repository. However, it remains practically difficult to isolate the effect of diffusion from other processes such as sorption and advection which may also occur in the near field and far fields of the GDF. This presentation describes a series of experiments undertaken to evaluate the diffusion of a selection of relevant radionuclides in saturated backfills (including the NIREX reference vault backfill, NRVB) and OPC matrices. The experiments build upon a significant number of related sorption studies previously undertaken by the radiochemistry group at Loughborough University and complement a series of small scale advection experiments also being undertaken. The experimental technique uses small pre-cast blocks (monoliths) of the matrix under investigation. An appropriate concentration of the isotope of interest is introduced in a cavity in the centre of the block, which is then sealed, and finally, placed in a solution previously equilibrated with the matrix. The increase in concentration of the isotope in the external solution is then determined at defined time intervals. The interpretation of the results is undertaken with methods conventionally used for geological

  6. Microstructure Analysis of Heated Portland Cement Paste

    OpenAIRE

    Q. Zhang; Ye, G.

    2011-01-01

    When a concrete structure is exposed to high temperature, the mechanical damage and chemical transformation take place simultaneously, which will change the microstructure of material. On the other hand, the mechanical properties and transport properties depend on the development of microstructure of cement paste. In order to study the microstructure changes at high temperature, in this contribution the cement paste samples were firstly heated to varied temperatures from 100 °C to 1000 °C wit...

  7. Estimating the chloride transport in cement paste

    OpenAIRE

    Princigallo, A.

    2012-01-01

    A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method prov...

  8. INFLUENCE OF GLASS CULLET IN CEMENT PASTES

    Institute of Scientific and Technical Information of China (English)

    A.Karamberi; E.Chaniotakis; D.Papageorgiou; A.Moutsatsou

    2006-01-01

    The present study investigates glass and cement compatibility with a view to use glass as a cement replacement. Amber, flint and green glasses were chosen due to their prevalence in the Greek market as packaging materials. The factors under investigation were the pozzolanicity of the glass cullet, the hydration rate and the mechanical strength development of the cement pastes, as well as the expansion of the specimens due to alkali-silica reaction.Moreover, the potential enhancement of glass pozzolanic activity was examined. The results of the study were encouraging to show the potentiality of utilising glass cullet in cementitious products.

  9. An experimental study on factors affecting the leachability of Cs-137 in cement matrix and leaching model with backfill

    International Nuclear Information System (INIS)

    Various factors affecting the leachability of Cs-137 in cement matrix have been investigated. Factors investigated include such as pressure curing, vibration curing, pressure leaching, the effect of the clay addition, ion-exchange resin(IRN-77) addition, and CO2 or air injection. Leaching experiments were conducted by the method recommended by IAEA. To analyze the experimental results, pore structure analysis of cement matrices was carried out by BET method. Cement matrices may not contact directly with underground water in real repository, since the surroundings of disposed drums are filled with backfill. Thus, the effect of backfill to the leachability has been investigated. The well-known diffusion theory was utilized to predict long term leach rate and cumulative fraction leached of Cs-137 or non-radioactive species. (Author)

  10. Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash.

    Science.gov (United States)

    Wu, Di; Zhang, Yongliang; Liu, Yucheng

    2016-01-01

    Cemented gangue backfill (CGB) is prepared by mixing cement, coal gangue and water. Fly ash from the combustion of coal is commonly utilized as admixture to improve the mechanical performance and fluidity of CGB, as well as to reduce cost of preparing CGB. Uniaxial compressive strength (UCS) is one of the most commonly used indicators for evaluating the mechanical performance of CGB. Ultrasonic testing, which is a non-destructive measurement, can also be applied to determine the mechanical properties of cementitious materials such as CGB. So this paper investigates the UCS and ultrasonic pulse velocity (UPV) of CGB prepared at different fly ash dosage (19, 20 and 21 wt.%) and solid content (76.5, 77.5 and 78.5 wt.%), versus curing periods of 3-28 days. The UCS and UPV values of CGB increase with increasing fly ash dosage and solid content. In order to find out the correlation between the UCS and UPV values of CGB, different types (linear, logarithmic, exponential and power) of curve fitting are conducted on the CGB samples made at different solid content. An exponential relationship with the correlation coefficient of 0.959 appears to exist between the UCS and UPV for CGB samples. This obtained exponential relationship is validated to be available by performing the t- and F- tests. The results acquired by this paper are capable of providing guidance for utilizing UPV test to estimate the strength of underground CGB structures. PMID:26320702

  11. Experimental studies on the inventory of cement-derived colloids in the pore water of a cementitious backfill material

    International Nuclear Information System (INIS)

    The potential role of near-field colloids for the colloid-facilitated migration of radionuclides has stimulated investigations concerning the generation and presence of colloids in the near-field of a repository for low- and intermediate level waste (L/ILW). The highly gas permeable mortar (Nagra designation: mortar M1) is currently favoured as backfill material for the engineered barrier of the planned Swiss L/ILW repository. The cementitious backfill is considered to be a chemical environment with some potential for colloid generation. In a series of batch-style laboratory experiments the physico-chemical processes controlling the inventory of colloids in cement pore water of the backfill were assessed for chemical conditions prevailing in the initial stage of the cement degradation. In these experiments, backfill mortar M1 or quartz, respectively, which may be used as aggregate material for the backfill, were immersed in artificial cement pore water (a NaOH/KOH rich cement fluid). Colloid concentrations in the cement pore water were recorded as a function of time for different experimental settings. The results indicate that a colloid-colloid interaction process (coagulation) controlled the colloid inventory. The mass concentration of dispersed colloids was found to be typically lower than 0.02 ppm in undisturbed batch systems. An upper-bound value was estimated to be 0.1 ppm taking into account uncertainties on the measurements. To assess the potential for colloid generation in a dynamic system, colloid concentrations were determined in the pore water of a column filled with backfill mortar. The chemical conditions established in the mortar column corresponded to conditions observed in the second stage of the cement degradation (a Ca(OH)2- controlled cement system). In this dynamic system, the upper-bound value for the colloid mass concentration was estimated to be 0.1 ppm. Implications for radionuclide mobility were deduced taking into account the experimental

  12. Experimental studies on the inventory of cement-derived colloids in the pore water of a cementitious backfill material

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E

    2001-06-01

    The potential role of near-field colloids for the colloid-facilitated migration of radionuclides has stimulated investigations concerning the generation and presence of colloids in the near-field of a repository for low- and intermediate level waste (L/ILW). The highly gas permeable mortar (Nagra designation: mortar M1) is currently favoured as backfill material for the engineered barrier of the planned Swiss L/ILW repository. The cementitious backfill is considered to be a chemical environment with some potential for colloid generation. In a series of batch-style laboratory experiments the physico-chemical processes controlling the inventory of colloids in cement pore water of the backfill were assessed for chemical conditions prevailing in the initial stage of the cement degradation. In these experiments, backfill mortar M1 or quartz, respectively, which may be used as aggregate material for the backfill, were immersed in artificial cement pore water (a NaOH/KOH rich cement fluid). Colloid concentrations in the cement pore water were recorded as a function of time for different experimental settings. The results indicate that a colloid-colloid interaction process (coagulation) controlled the colloid inventory. The mass concentration of dispersed colloids was found to be typically lower than 0.02 ppm in undisturbed batch systems. An upper-bound value was estimated to be 0.1 ppm taking into account uncertainties on the measurements. To assess the potential for colloid generation in a dynamic system, colloid concentrations were determined in the pore water of a column filled with backfill mortar. The chemical conditions established in the mortar column corresponded to conditions observed in the second stage of the cement degradation (a Ca(OH){sub 2{sup -}} controlled cement system). In this dynamic system, the upper-bound value for the colloid mass concentration was estimated to be 0.1 ppm. Implications for radionuclide mobility were deduced taking into account the

  13. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which are...... not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square...

  14. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained by a...... valuable knowledge of SCMs, which is relevant for performance based design of concrete structures. In addition, the thesis provides guidelines for porosity investigations with focus on the applicability of the methods and sources of error. Pore structure was here determined by several methods, mercury...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also, the...

  15. Cement paste-epoxy adhesive interactions

    OpenAIRE

    Djouani, Fatma; CONNAN, Carole; Delamar, Michel; CHEHIMI, Mohamed M; BENZARTI, Karim

    2011-01-01

    In the field of civil engineering, the durability of concrete assemblies using adhesives is widely conditioned by the properties of the interface between the resin and the mineral support (concrete). In this context we studied first the molecular interactions at the interface between an epoxy resin and cement pastes by several approaches based on XPS and IR spectroscopies, DSC, and inverse gas chromatography (IGC). XPS showed evidence of crosslinking of the polymer at the surface of hardened ...

  16. Estimating the chloride transport in cement paste

    Directory of Open Access Journals (Sweden)

    Princigallo, A.

    2012-06-01

    Full Text Available A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method proved to be useful for exploring cement hydration-induced changes in the diffusion coefficient of cement paste.

    Se ha desarrollado un método para medir el coeficiente de difusión de los iones cloruro en la pasta de cemento, partiendo de una aplicación analítica de la segunda ley de Fick en un sistema de coordinadas cilíndrico. Este método, que es natural, demostró ser capaz de producir resultados de difusividad en tan solo un mes. Se consiguió reducir el tiempo de ensayo mediante el aprovechamiento de la tridimensionalidad del flujo desde el exterior al interior de la probeta. A fin de determinar la concentración de saturación, se sometieron las pastas de cemento Portland a una disolución de cloruros concentrada. Este método resultó ser útil en el estudio de los cambios del coeficiente de difusión de la pasta de cemento provocados por las reacciones de hidratación que tienen lugar en esta.

  17. Optical evaluation on the setting of cement paste

    International Nuclear Information System (INIS)

    In the construction area, one of the most widely used cement is the CPC 30R, it is a hydraulic binder consisting of CaO, SiO2, Al2O3 and Fe2O3, when mixed with water forms cement pastes and its four crystallographic phases start to hydrate. The diffuse reflection on cement paste can give an indication of the behaviour on optical properties on the hydration of the cement and early formation products. In this study, Portland cement (CPC) pastes were prepared with 0.45 a water to cement ratio (w/c). This work is aimed to evaluate the optical properties of cement pastes on the hydration reaction during the first 24 hours by measuring the intensity of diffuse reflection changes

  18. Mineralogy and chemistry of cement paste in borehole radioactive waste repository

    International Nuclear Information System (INIS)

    Results of chemical characterization of cement paste samples after irradiation and immersion in salt solutions are presented. This is part of a research on cement paste behavior aiming at investigating the durability of cementitious materials in the environment of repositories for radioactive waste. Portland cement paste is intended to be used as a backfill in a deep borehole for disposal of sealed radiation sources which concept is under development. The service life of the engineered barrier materials plays an important role in the long term safety of such facilities. Accelerated tests in laboratory are being used to evaluate the performance of cement paste under the temperature expected at some hundred meters below grade, under exposure to the radiation emitted by the sources, and under the attack of aggressive chemicals dissolved in the groundwater, during the millennia necessary for the decay of the most active and long-lived radionuclides present in the waste. ICP-OES, Ion chromatography, X-ray diffraction, SEM and TGA are some techniques being employed in this research project. (author)

  19. XRD Analysis of Cement Paste Samples Exposed to the Simulated Environment of a Deep Repository - 12239

    International Nuclear Information System (INIS)

    Portland cement materials are widely used as engineered barriers in repositories for radioactive waste. The capacity of such barriers to avoid the disposed of radionuclides to entering the biosphere in the long-term depends on the service life of those materials. Thus, the performance assessment of structural materials under a series of environmental conditions prevailing at the environs of repositories is a matter of interest. The durability of cement paste foreseen as backfill in a deep borehole for disposal of disused sealed radioactive sources is investigated in the development of the repository concept. Results are intended to be part of the body of evidence in the safety case of the proposed disposal technology. This paper presents the results of X-Ray Diffraction (XRD) Analysis of cement paste exposed to varying temperatures and simulated groundwater after samples received the radiation dose that the cement paste will accumulate until complete decay of the radioactive sources. The XRD analysis of cement paste samples realized in this work allowed observing some differences in the results of cement paste specimens that were submitted to different treatments. The cluster analysis of results was able to group tested samples according to the applied treatments. Mineralogical differences, however, are tenuous and, apart from ettringite, are hardly observed. The absence of ettringite in all the seven specimens that were kept in dry storage at high temperature had hardly occurred by natural variations in the composition of hydrated cement paste because ettringite is observed in all tested except the seven specimens. Therefore this absence is certainly the result of the treatments and could be explained by the decomposition of ettringite. Although the temperature of decomposition is about 110-120 deg. C, it may be initially decomposed to meta-ettringite, an amorphous compound, above 50 deg. C in the absence of water. Influence of irradiation on the mineralogical

  20. XRD Analysis of Cement Paste Samples Exposed to the Simulated Environment of a Deep Repository - 12239

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Eduardo G.A.; Marumo, Julio T.; Vicente, Roberto [Nuclear and Energy Research Institute, Sao Paulo (Brazil); Gobbo, Luciano [Institute of Geosciences, University of Sao Paulo, Sao Paulo (Brazil)

    2012-07-01

    Portland cement materials are widely used as engineered barriers in repositories for radioactive waste. The capacity of such barriers to avoid the disposed of radionuclides to entering the biosphere in the long-term depends on the service life of those materials. Thus, the performance assessment of structural materials under a series of environmental conditions prevailing at the environs of repositories is a matter of interest. The durability of cement paste foreseen as backfill in a deep borehole for disposal of disused sealed radioactive sources is investigated in the development of the repository concept. Results are intended to be part of the body of evidence in the safety case of the proposed disposal technology. This paper presents the results of X-Ray Diffraction (XRD) Analysis of cement paste exposed to varying temperatures and simulated groundwater after samples received the radiation dose that the cement paste will accumulate until complete decay of the radioactive sources. The XRD analysis of cement paste samples realized in this work allowed observing some differences in the results of cement paste specimens that were submitted to different treatments. The cluster analysis of results was able to group tested samples according to the applied treatments. Mineralogical differences, however, are tenuous and, apart from ettringite, are hardly observed. The absence of ettringite in all the seven specimens that were kept in dry storage at high temperature had hardly occurred by natural variations in the composition of hydrated cement paste because ettringite is observed in all tested except the seven specimens. Therefore this absence is certainly the result of the treatments and could be explained by the decomposition of ettringite. Although the temperature of decomposition is about 110-120 deg. C, it may be initially decomposed to meta-ettringite, an amorphous compound, above 50 deg. C in the absence of water. Influence of irradiation on the mineralogical

  1. Durability of cement paste as engineered barrier in borehole waste repository

    International Nuclear Information System (INIS)

    The Radioactive Waste Management Laboratory of the Nuclear and Energy Research Institute, in Sao Paulo, Brazil, is developing the concept of a repository for disposal of sealed radioactive sources. The concept is a deep borehole drilled a few hundred meters below surface in a granite batholith. Portland cement paste is the material intended to backfill the annular space between the steel casing and the geological formation around the borehole. The hardened cement paste is intended to function as barrier against water flow between the different strata of the geological setting crossed by the borehole and also as an additional barrier against inflow of water and migration of the radionuclides present in the sealed sources. A service life of thousands of years is a necessary characteristic of the engineered barriers in this repository because many sealed sources are long-lived. The durability of cementitious materials is known only for short periods and must be evaluated for long periods. This research aims at evaluating the durability of Portland cement paste under the repository conditions foreseen in that disposal facility, by accelerated tests in laboratory. In this paper we present results of mechanical strength, mass, and volume variations of cement samples under irradiation, high temperature and immersion in saline solutions, as a function of time. (author)

  2. Characteristics of Bamboo Leaf Ash Blended Cement Paste and Mortar

    OpenAIRE

    Umoh A.A.; Odesola I.

    2015-01-01

    The use of bamboo leaf ash as cement supplement can contribute to reduction in cost and environmental hazard associated with cement production as well as waste pollution caused by the littered bamboo leaves. Therefore, the characteristics of cement paste and mortar incorporating bamboo leaf ash were investigated. The results of the physical properties of the pastes were within the requirements stipulated by relevant standards while that of the mortar cubes indicated that the compressive stren...

  3. A positron annihilation study on the hydration of cement pastes

    International Nuclear Information System (INIS)

    Positron annihilation lifetime spectroscopy experiments were carried out in various ordinary Portland cement pastes, in an attempt to monitor the porosity of the pastes. It is found that positronium intensity is well correlated to the time evolution of the total porosity and it is influenced by the water-to-cement ratio. This parameter is also sensitive to the delayed hydration process induced by adding methanol to the water-cement mixture

  4. Experimental research on the strength of cemented backfilling body of waste rocks%废石尾砂胶结充填体强度试验研究

    Institute of Scientific and Technical Information of China (English)

    罗根平; 乔登攀

    2015-01-01

    Experimental study is systematically conducted on cemented backfilling with waste rocks.The paper states the applicability and mechanism of waste rock cemented filling process and focuses on the influencing factors on the strength of cemented filling body of waste rocks,namely the water-cement ratio,cement-sand ratio,cement content, the grading and proportioning of the particle size of waste rocks.The research results show that the lager the water-ce-ment ratio and cement-sand ratio are,the less the strength of cemented backfilling body becomes,contrary to that rela-tion between cement content and the backfilling body's strength.With constant strength,cemented filling with waste rocks consumes less cement per unit volume and cost less than other filling methods.%对废石尾砂胶结充填进行了系统的试验研究。阐述了废石尾砂胶结充填工艺的工业性及原理,着重研究了废石尾砂胶结充填体强度的影响因素:水灰比、灰砂比、水泥含量、废石尾砂的粒径级配及配比。研究结果表明,废石尾砂胶结充填体强度随水灰比、灰砂比的减小而增大,随水泥含量的增加而增加。在强度一定的条件下,废石尾砂胶结充填比其他充填方式,单位体积内水泥耗量少,成本低。

  5. Low porosity portland cement pastes based on furan polymers

    International Nuclear Information System (INIS)

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  6. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  7. Modifications induced by adding natural zeolitic pozzolans to cement paste

    OpenAIRE

    Blanco-Varela, M. T.; Martínez-Ramírez, S.; Gener, M.; Vázquez, T.

    2005-01-01

    Volcanic pozzolans owe their pozzolanic activity chiefly to the presence of vitreous or zeolitic material rich in SiO2, and Al20y compounds that react with the portlandite produced during cement hydration to generate amorphous gels with cementitious properties. The present study analyzes the modifications taking place in the composition, structure and micro structure of the hydra ted cement paste when 20% of the cement by we...

  8. Rheological Influence of Synthetic Zeolite on Cement Pastes

    Science.gov (United States)

    Baldino, N.; Gabriele, D.; Frontera, P.; Crea, F.; de Cindio, B.

    2008-07-01

    Self Compacting Concrete (SCC) is characterized by specific and particular mechanical properties, often due to the addition of components, able to modify the paste rheology. Concrete properties are strongly affected by characteristics of the fresh cement paste that is the continuous phase dispersing larger aggregates. Therefore, aiming to characterize mechanical properties of final concrete is relevant to know rheological properties of the base cement paste. In this work cement pastes for SCC were prepared by using, as additive, synthetic zeolite 5A in different amounts and they were analyzed by small amplitude oscillations. Experimental results have shown a relationship between dynamic moduli and zeolite content, identifying a proper level of zeolite addition. Moreover samples containing traditional fine additives, such as silica fume and limestone, were prepared and experimental data were compared to those obtained by using zeolite. It was found that zeolite seems to give better properties to cement paste than other additives can do.

  9. Pore Structure of Cement Pastes Blended with Volcanic Rock

    Institute of Scientific and Technical Information of China (English)

    YU Lehua; ZHOU Shuangxi; LI Liling

    2016-01-01

    The pore parameters of cement pastes blended with volcanic rock at the curing age of 1, 28 and 90 d were de-termined by a mercury intrusion porosimetry. The pore structure of the pastes was characterized through the analysis of porosity, average pore diameter, the most probable pore aperture, pore size distribution, as well as total pore volume. For the improvement of mechanical property and durability of cement-based material, the correlation of the formed pore structure with hydration time and replacement level of volcanic rock for cement was revealed. The results indicate that volcanic rock can diminish porosity and reduce pore size in cement paste when curing time prolongs, which is particu-larly prominent with replacement level of less than 20% in late period. The more harmful pores (i.e., capillary pore) are gradually transformed into harmless pore (i.e., gel pores or micropore), even fully filled and disappeared when hydration products increase. The pore structure of the cement paste is thus refined. The beneficial effect of volcanic rock on the pore structure of cement paste could enhance the mechanical property and durability of cement-based material.

  10. Rheological Behaviors of Fresh Cement Pastes with Polycarboxylate Superplasticizer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanrong; KONG Xiangming; GAO Liang; WANG Jiaxin

    2016-01-01

    The rheological behaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated. Inlfuential factors including superplasticizer to cement ratio (Sp/C), water to cement ratio (w/c), temperature, and time were discussed. Fresh cement pastes with Sp/Cs in the range of 0 to 2.0% and varied W/Cs from 0.25 to 0.5 were prepared and tested at 0, 20 and 40 °C, respectively. Flowability and rheological tests on cement pastes were conducted to characterize the development of the rheological behavior of fresh cement pastes over time. The exprimental results indicate that the initial lfowability and lfowability retention over shelf time increase with the growth in superplasticizer dosage due to the plasticizing effect and retardation effect of superplasticizer. Higher temperature usually leads to a sharper drop in initial lfowability and lfowability retention. However, for the cement paste with high Sp/C orw/c, the lfowability is slightly affected by temperature. Yield stress and plastic viscosity show similar variation trends to the flowability under the abovementioned inlfuential factors at low Sp/C. In the case of high Sp/C, yield stress and plastic viscosity start to decline over shelf time and the decreasing rate descends at elevated temperature. Moreover, two equations to roughly predict yield stress and plastic viscosity of the fresh cement pastes incorporating Sp/C,w/c, temperature and time are developed on the basis of the existing models, in which experimental constants can be extracted from a database created by the rheological test results.

  11. Porous and adsorption properties of hydrated cement paste

    Directory of Open Access Journals (Sweden)

    Marina Biljana S.

    2004-01-01

    Full Text Available Adsorption isotherms of benzene on hydrated cement pastes prepared by cement ground with and without the addition of grinding aids, triethanol amine (TEA and ethylene glycol (EG were investigated. The adsorption isotherms were interpreted by means of the Dubinin-Astakhov (DA and Dubinin-Radushkevich-Stoeckli (DRS equations. The microporous structure of cement gel (C-S-H in the cement pastes, and changes in the Gibbs free energy of adsorption were determined. The mechanical properties of the cement pastes were also measured. It was evident that pastes with additives had different parameters of the DRS and DA equations: the volume and dimensions of the gel pores, the distribution of the dimensions, the characteristic energy of adsorption, and the change in the Gibbs free energy of adsorption. The mechanical properties were also different. The dispersity of the additive-containing ground cements had a favorable effect on the hydration processes. When applying TEA, it was also necessary to analyze its influence on the chemical behavior of hydration in the starting period.

  12. Rheological and hydration characterization of calcium sulfoaluminate cement pastes

    OpenAIRE

    García-Maté, Marta; Santacruz, Isabel; de la Torre, Ángeles G.; León-Reina, Laura; Aranda, Miguel A. G.

    2012-01-01

    Calcium sulfoaluminate (CSA) cements are currently receiving a lot of attention because their manufacture produces less CO2 than ordinary Portland cement (OPC). However, it is essential to understand all parameters which may affect the hydration processes. This work deals with the study of the effect of several parameters, such as superplasticizer (SP), gypsum contents (10, 20 and 30 wt%) and w/c ratio (0.4 and 0.5), on the properties of CSA pastes during early hydration. This characteriza...

  13. Characterization of cement pastes by inverse gas chromatography

    OpenAIRE

    BENZARTI, K; V. Oliva; CHEHIMI, MM; BAETA NEVES, MI

    2002-01-01

    Two cement pastes, commonly used in concrete formulations, were characterized by IGC at 35-80°C before and after coating with an epoxy resin and a hardener. The cements are mixtures of hydrates in various proportions, such as calcium silicate hydrate (CaO-SiO2-H2O) and calcium hydroxyde Ca(OH)2. Apolar and polar probes were used to determine the cements dispersive and acid-base characteristics. The materials appear as high surface energy materials as judged from the dispersive contribution to...

  14. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2006-01-01

    the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the......Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... strain should in principle give identical results. However, the measuring results from the volumetric method are typically 3-5 times higher than the results from the linear technique. In this paper, water uptake from the buoyancy bath through the rubber membrane is identified as the principal artefact of...

  15. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the......Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... strain should in principle give identical results. However, the measuring results from the volumetric method are typically 3-5 times higher than the results from the linear technique. In this paper, water uptake from the buoyancy bath through the rubber membrane is identified as the principal artefact of...

  16. Temperature influence on water transport in hardened cement pastes

    International Nuclear Information System (INIS)

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed

  17. Temperature influence on water transport in hardened cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, Emeline [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Poyet, Stéphane, E-mail: stephane.poyet@cea.fr [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Torrenti, Jean-Michel [Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 Marne la Vallée cedex 2 (France)

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  18. Thermal analysis of cement pastes with superabsorbent polymers

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede; Lukosiute, Irena;

    2013-01-01

    Thermal analysis of cement systems is very helpful in the understanding of many different properties of cementitious compounds, both for the original reacting compounds, and also for the resulting hydration products. Superabsorbent polymers can be added to cement systems with many different reasons......, so it is relevant that fundamental knowledge of this new compound on the development of hydration is well understood [1-3]. This paper reports research on thermal analysis of cement pastes with superabsorbent polymers. We have studied several parameters: the concentration of SAP in the system, the...... effect of particle size distribution, and their influence on the hydration process with focus on cement-silica systems. This is done at different thermodynamic conditions, so the energy of activation in the different systems can be accessed. This paper provides information relevant to hydration modelling...

  19. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.;

    1999-01-01

    modelled on Fick's law modified by a term for chloride binding. Inclusion of chloride binding significantly improves the profile shape of the modelled ingress profiles. The presence of fine aggregate and formation of interfacial transition zones at paste-aggregate boundaries does not significantly affect...

  20. Prediction of chloride ingress and binding in cement paste

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Nielsen, Erik Pram; Herforth, Duncan

    2007-01-01

    Portland cement pastes at any content of chloride, alkalis, sulfates and carbonate was verified experimentally and found to be equally valid when applied to other data in the literature. The thermodynamic model for predicting the phase equilibria in hydrated Portland cement was introduced into an existing...... Finite Difference Model for the ingress of chlorides into concrete which takes into account its multi-component nature. The “composite theory” was then used to predict the diffusivity of each ion based on the phase assemblage present in the hydrated Portland cement paste. Agreement was found between...... steady state diffusion however. It simply implies that incremental increases in the concentration of diffusing ions in the pore solution will rapidly re-equilibrate with the hydrates present locally, where, the greater the ratio of bound to free ions, the greater the buffering effect which slows down the...

  1. Sedimentation and Bleeding of Cement Paste

    OpenAIRE

    Peng, Ya

    2014-01-01

    The lower viscosity and high matrix volume of Self-Compacting Concrete (SCC) compared to ordinary concrete can lead to instability in the form of particle segregation, sedimentation and bleeding. This is a problem for the exploitation of all the benefits from the use of SCC for the ready mix industry and contractors. This research started from the investigation on the main factors influencing the stability of the paste as well as the applicability of generally used theories on particle sedime...

  2. Interactions between chloride and cement-paste materials.

    Science.gov (United States)

    Barberon, Fabien; Baroghel-Bouny, Véronique; Zanni, Hélène; Bresson, Bruno; d'Espinose de la Caillerie, Jean-Baptiste; Malosse, Lucie; Gan, Zehong

    2005-02-01

    The durability of cement-based materials with respect to exterior aggressions is one of the current priorities in civil engineering. Depending on their use, the cement-based materials can be exposed to different types of aggressive environments. For instance, damages to concrete structures in contact with a saline environment (sea water on bridges, deicing salts on roads, etc.) are of utmost importance. Upon exposure to saline water, Cl- ions penetrate into the structures and subsequently lead to reinforcement corrosion. Chloride attack is often combined with other aggressive influences such as temperature (e.g., freezing) or the ingress of other ions (e.g., sulfates in sea water). We therefore aim to explore the effect of sodium chloride (NaCl) on the structural chemistry of cement paste. Existing studies about reinforcement corrosion by chloride have focused on the penetration of Cl- ions and the comparison between "free" ions (water-soluble ions) and bound ones. However, little is known about the fixation mechanisms, the localization of Cl in the cement matrix and the structural interaction between Cl and the silicate and aluminate hydrate phases present in cement paste. We present here results of a multinuclear nuclear magnetic resonance study on the fixation of chloride in the hydration products and the characterization of new phases potentially appearing due to chloride ingress. PMID:15833625

  3. Accelerated carbonation of Friedel's salt in calcium aluminate cement paste

    International Nuclear Information System (INIS)

    The stability of Friedel's salt with respect to carbonation has been studied in calcium aluminate cement (CAC) pastes containing NaCl (3% of Cl- by weight of cement). Carbonation was carried out on a powdered sample in flowing 5% CO2 gas at 65% relative humidity to accelerate the process. At an intermediate carbonation step, a part of the sample was washed and dried up to 10 cycles to simulate a dynamic leaching attack. The two processes were followed by means of X-ray diffraction (XRD), pH and Cl- analyses in the simulated pore solution

  4. Modifications induced by adding natural zeolitic pozzolans to cement paste

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2005-12-01

    Full Text Available Volcanic pozzolans owe their pozzolanic activity chiefly to the presence of vitreous or zeolitic material rich in SiO2, and Al20y compounds that react with the portlandite produced during cement hydration to generate amorphous gels with cementitious properties. The present study analyzes the modifications taking place in the composition, structure and micro structure of the hydra ted cement paste when 20% of the cement by weight is replaced by two finely ground zeolitic rocks from Cuban deposits. Hydrated cement pastes were prepared with a CEM I35 cement, as well as with mixes of the cement and two Cuban zeolitic rocks (20% by weight. After eight months of hydration, the pastes were characterized -mineralogically, chemically and microstructurally- with XRD, FTIR, 29Si and 27Al MAS NMR, DTA/TG, back scattered electron microscopy and mercury porosimetry techniques. The replacement of 20% by weight of the cement with two finely ground zeolitic rocks significantly modified the composition, structure, quantity and microstructure of the hydrated cement paste reaction product. The C-S-H gel formed in these pastes differed in quantity, which was larger, and composition from the original cement gel. Moreover, the gel formed in addition-free cement had a higher Ca and a lower Al content and shorter silicate chains than the C-S-H product formed in the pastes made with zeolitic rocks. Finally, the pastes with pozzolan additions had fewer and smaller pores.

    La actividad de las puzolanas de origen volcánico procede fundamentalmente de la presencia de material vitreo o zeolítico rico en SiO2 y Al2Oy que son los que reaccionan con la portlandita producida en la hidratación del cemento generando geles amorfos con propiedades cementantes. El objetivo del presente trabajo es estudiar las modificaciones que produce la sustitución del 20% en peso de cemento por dos

  5. A preliminary study of CO2 sequestration of cement paste

    Science.gov (United States)

    Choi, Y.; Lee, H.; Hwang, J.; Oh, J.; Lee, J.

    2013-12-01

    Recently, CO2 capture and storage technologies to reduce CO2 concentration in the atmosphere have been extensively studied because global warming is a worldwide issue. Waste cement is a potential raw material for mineral carbonation. In general, carbonation refers a calcite forming reaction in hydrated cement. The carbonation of portlandite in hydrated cement is very straightforward. However, the carbonation of CSH (calcium silicate hydrate: CaO-SiO2-H2O) composing the largest portion of hydrated cement involved in complex reactions and is a key to increase the carbonation efficiency of waste cement. The present study was conducted to have basic information for utilizing waste cement as a raw material for CO2 sequestration. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized, and fine grains sizing less than 0.15mm was used for experiment. For the direct aqueous carbonation experiment, 15g of sample is reacted with 200 ml of 1M NaHCO3 in 500ml HDPE bottle. 1M NaCl and 0.25 M MgCl2 was used for additives after leaching test with 0.25, 0.5, 1.0 and 1.5M NaCl and MgCl2 solutions, and the carbonation efficiency of these additives was evaluated. After reaction, the reacted cement paste and supernatant solution were separated from centrifuging at 5000rpm. The reacted cement paste was analyzed with XRD, DSC/TGA and SEM/EDS. The supernatant solution was filtered with 0.45um membrane filter, and nitric acid was added to lower 2 for preventing calcite precipitation. Then, chemical composition of solution was analyzed with ICP-OES. The leaching of Ca ion is increased with increasing NaCl concentration and is maximized at 1M solution. Extremely small leaching of Si ion indicates that NaCl feebly affect on the carbonation of CSH. The leaching of Ca ion in MgCl2 solution is 10 times greater than in NaCl solution and is maximized at 0.5M solution. The increased Ca leaching is probably caused by the decalcification of

  6. Preliminary analysis of SANS data from hydrated cement paste

    International Nuclear Information System (INIS)

    Full text: The microstructure of hydrated cement paste is investigated using the technique of Small Angle Neutron Scattering (SANS). The results from SANS measurements are dependent upon the thicknesses of the target materials. Reduction of target thickness is usually not a practical proposition owing to the difficulty in preparing sufficiently thin cement samples and also to the subsequent low count rates of the scattered beam relative to the transmitted beam. In this paper we present a method of analysis that takes advantage of the process of multiple scattering in thick samples. Using cement specimens, which are of different thicknesses, but are otherwise identical, SANS patterns with different degrees of multiple scattering have been obtained. It is shown how these measurements not only provide information about the shape and size of the scattering entities but also provide absolute values of the scattering contrast between the entities responsible for SANS and the matrix. This method of analysis has been used to analyse SANS data from hydrated cement paste. The data were collected on the Ultra High Resolution SANS Diffractometer at Oak Ridge National Laboratory, USA

  7. Poromechanical behaviour of hardened cement paste under isotropic loading

    CERN Document Server

    Ghabezloo, Siavash; Guédon, Sylvine; Martineau, Francçois; Saint-Marc, Jérémie

    2008-01-01

    The poromechanical behaviour of hardened cement paste under isotropic loading is studied on the basis of an experimental testing program of drained, undrained and unjacketed compression tests. The macroscopic behaviour of the material is described in the framework of the mechanics of porous media. The poroelastic parameters of the material are determined and the effect of stress and pore pressure on them is evaluated. Appropriate effective stress laws which control the evolution of total volume, pore volume, solid volume, porosity and drained bulk modulus are discussed. A phenomenon of degradation of elastic properties is observed in the test results. The microscopic observations showed that this degradation is caused by the microcracking of the material under isotropic loading. The good compatibility and the consistency of the obtained poromechanical parameters demonstrate that the behaviour of the hardened cement paste can be indeed described within the framework of the theory of porous media.

  8. Verification of hypothesis about incubation period of hardening cement paste

    Czech Academy of Sciences Publication Activity Database

    Demo, Pavel; Sveshnikov, Alexey; Vodák, F.

    Prague: Czech Technical University, 2005 - (Novák, J.; Novák, P.), s. 210-212 ISBN 80-01-03290-6. [Physical and Material Engineering 2005. Lysečinská bouda (CZ), 13.09.2005-15.09.2005] Institutional research plan: CEZ:AV0Z10100521 Keywords : cement paste * nucleation * incubation period Subject RIV: BM - Solid Matter Physics ; Magnetism

  9. Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes

    OpenAIRE

    Sung-Hwan Jang; Shiho Kawashima; Huiming Yin

    2016-01-01

    Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without...

  10. Modelling of nano-silica in cement paste

    Science.gov (United States)

    Rupasinghe, Madhuwanthi; Mendis, Priyan; Sofi, Massoud; Ngo, Tuan

    2013-08-01

    Recently published experimental evidence shows that nano-silica is a material that can be used to enhance the strength and durability characteristics of concrete. Engineered concrete at the nano-scale is achieved through the integration of nano-materials in suitable proportions and relevant mixing methods. Being a pozzolanic and reactive material along with nucleation effects and miniature particle size, nano-silica has been found to significantly improve the micro-structural characteristics of concrete making it denser and more uniform. The ongoing research work at the University of Melbourne is based on a novel modelling approach to further investigate the performance characteristics of nano-silica on cement paste at the micro-meter scale. The volumetric proportions of different phases present in concrete are computed considering hydration characteristics of cement and those of nanosilica. A Representative Volume Element (RVE) of the cement paste at micro scale is developed considering the hydrated gel as the matrix material while other phases present are integrated as randomly distributed spherical particles. Constitutive material models for these phases are assumed. The stress-strain relationship for the RVE is then generated using COMSOL Multiphysics software. The approach proposed in this paper is an initiation towards developing an acute and compressive model to predict the performance characteristics of nano-engineered concrete.

  11. Np sorption onto cement and Mg(OH)2-MgCl2-based backfill material in altered Q-brine

    International Nuclear Information System (INIS)

    Retention of actinides such as Np in the near field is critical for the long-term disposal and storage of radioactive waste in geological salt deposits. Portland cement and potential backfill material may have the capability to retard actinide migration through sorption processes. However, the effectiveness of the backfill material and cement (and their corrosion products, respectively) in concentrated MgCl2-NaCl solutions is not known. No models are available to evaluate sorption processes for such conditions based on thermodynamic data. In the present communication we report on results of site specific sorption experiments for the Asse mine. The Asse mine is situated in a diapir of Zechstein salt deposits. The salt mine operated for production of halite and potash. After termination of potash mining, low- and intermediate-level radioactive waste was emplaced in 13 of the excavated rooms in a depth of about 750, 725 and 511 m below surface ground. The salt mine was used thereafter as an underground research laboratory to develop technologies for disposal of high-level radioactive waste. Since termination of research in 1995, numerous excavated rooms, where no radioactive waste was emplaced, are being backfilled with crushed salt. Leaking of ca. 10 m3 d-1 NaCl- and CaSO4-rich brine into the mine is observed for several years now. The leaking is considered in the closure concept of the mine. In the present closure concept, systematic filling of the Asse mine with crushed rock salt and a MgCl2-rich solution, e.g. Q-brine, is planned. Recently, the use of a Mg(OH)2-MgCl2-based material, so called Mg-depot, was proposed for backfilling of the emplacement rooms of the Asse mine (Schuessler et al., 2001). As described in a forthcoming publication of the authors (Metz et al., 2004), the Mg-depot provides favorable chemical conditions with respect to actinide solubility. Currently there is a strong interest if the Mg-depot or brucite, one of its main constituent, provides

  12. Microstructural variation of hardened cement-fly ash pastes leached by soft water

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The microstructural variations of hardened cement-fly ash pastes leached by soft water were investigated by MIP, XRD, TG and SEM. The results show that the mass of hardened cement-fly ash paste reduces and its microstructure deteriorates partly after leaching of soft water. At the leaching duration of 180 days, the hardened paste containing fly ash deteriorated a little more serious than the plain cement paste, but the incorporation of fly ash in a proper ratio was helpful to defer the trend of deterioration of the hardened paste microstructure. The microstructural stability of hardened cement-fly ash paste wasn’t damaged severely during the 180 days leaching duration.

  13. Effect of polycarboxylate admixture structure on cement paste rheology

    OpenAIRE

    Aranda, M. A. G.; De la Torre, A.G.; Puertas, F.; Palacios, M.; Alonso, M M

    2007-01-01

    The purpose of the present study was to analyze the effect of the structural differences in four polycarboxylate and polyether admixtures on the rheological properties of cement pastes with different chemical and mineralogical compositions and different active additions (CEM I 42.5 R, CEM I 52.5 R, CEM I 52.5 N/SR, CEM II/AV 42.5R, CEM II/B-L 32.5 R, CEM III/B 32.5R, BL I 52.5R and CAC – European standard EN 197-1:2000). The results of the minislump test concurred with the variations ob...

  14. Pore structure and carbonation in blended lime-cement pastes

    OpenAIRE

    Álvarez, J. I.; Arandigoyen, M.

    2006-01-01

    The present study aims to gain a fuller understandingof the curing process in lime pastes (100, 90, 80, 70,60, 50 and 40% lime) blended with cement by analyzingcarbonation in these materials. A hydrated, airslaked lime powder and CEM II A/L 32.5 Portlandcement were used for the blends. These materialswere singled out for research primarily because theymay be used in the restoration of heritage monuments.Variation in weight was used as an indicator for carbonation.A new parameter, A, was found...

  15. Characterization of cement pastes by inverse gas chromatography

    OpenAIRE

    BENZARTI, K; V. Oliva; CHEHIMI, MM

    2001-01-01

    This contribution reports on the IGC characterization of two cement pastes which are commonly used in concrete formulations. These are mixtures of hydrates in various proportions, such as calcium silicate hydrate (CaO-SiO2-H2O) and calcium hydroxide Ca (OH)2. The materials were characterized at 60 and 80 °C using n-alkanes, 2,2,3-trimethylbutane (TMB), 1-alkenes, benzene, CCI4, chloroform (CHCl3), acetonitrile, diethyl ether, methyl acetate, methyethyl ketone and THF. The materials appear as ...

  16. Characterisation of thermally altered cement pastes. Influence on selenium sorption

    International Nuclear Information System (INIS)

    Full text of publication follows: In the French design of a deep geological radioactive waste repository, the temperature would eventually increase temporally from ambient to 70 deg. C, due to cement hydration exothermic reactions and to the heat generation of radioactive waste. The investigation of selenium sorption with thermally altered cementitious materials is of relevance for the understanding of sorption processes at the engineered cementitious barrier material. This work is the first study taking into account temperature as the main parameter in matrices preparation (cement cure, hydration, storage, alteration and individual phases syntheses) and batch sorption experiments. Cementitious materials (CEM I or OPC) and individual cement phases (mainly C-S-H and ettringite) have been synthesized with different temperature cycle conditions of curing, storage/hydration and alteration. C-S-H and ettringite were synthesized in order to compare to the sorption properties of thermally altered cementitious matrices. Equilibrium solutions and solid phases have been characterized in term of pH, Eh, [Ca], [Si], [Fe], [Al], by XRD (at 20 and 70 deg. C) and SEM techniques. The sorption of Se has been studied in a pH and Eh range, where Se(IV) is stable and precipitation is avoided. The operational solubility limit was determined in each equilibrium solutions at (21 ± 2) deg. C and (71 ± 2) deg. C. Sorption isotherms and sorption kinetics for selenite were determined, in the range of 5.5.10-8 to 1.3.10-3 mol/l of Se(IV). First results are i) storage temperature leads to significant changes in hydrated cement paste mineralogy ii) hydro-garnet and/or mono-sulfate (AFm) appears in spite of ettringite (AFt) with increasing temperature iii) C-S-H phases crystallinity increases with temperature. The Se sorption equilibrium was achieved within 10 days for C-S-H systems and within 20 days for the other systems. The Rd values for C-S-H phases increase with the CaO/SiO2 ratio, from

  17. Size effect of compressive strength of cemented backfill%胶结充填体力学强度尺寸效应

    Institute of Scientific and Technical Information of China (English)

    彭志华

    2009-01-01

    本文通过尾砂胶结充填体配比试验,研究了尾砂胶结充填体强度与试样尺寸和几何形状之间的关系.试验研究结果表明:在相同条件下,胶结充填体强度在试验范围内,随试样尺寸的增加而减小,其呈非线性变化;不同尺寸与几何形状的胶结充填体试样强度之间的换算比例关系为:152mm充填体试样强度大致为72mm和85mm试样强度的3/4,为70.7mm立方体试样强度的3/5.%This paper researches relation of compressive strength of cemented tailings fill and size、geometries of cemented backfill. The test results show under same condition compressive strength of cemented tailings fill will minish with size increasing, it show itself non-linear variety. 150mm diameter cylinder specimen fill strength averaged approximately three-quarter of 72mm and 85mm diameter cylinders specimen, about three fifths of 70.7mm cubes specimen.

  18. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature

    International Nuclear Information System (INIS)

    Self-compacting concrete, as a new smart building material with various advanced properties, has been used for a wide range of structures and infrastructures. However little investigation have been reported on the properties of Self-compacting when it is exposed to elevated temperatures. Previous experiments on fire test have shown the differences between high performance concrete and traditional concrete at elevated temperature. This difference is largely depending on the microstructural properties of concrete matrix, i.e. the cement paste, especially on the porosity, pore size distribution and the connectivity of pores in cement pastes. In this contribution, the investigations are focused on the cement paste. The phase distribution and microstructural changes of self-compacting cement paste at elevated temperatures are examined by mercury intrusion porosimetry and scanning electron microscopy. The chemical decomposition of self-compacting cement paste at different temperatures is determined by thermogravimetric analysis. The experimental results of self-compacting cement paste are compared with those of high performance cement paste and traditional cement paste. It was found that self-compacting cement paste shows a higher change of the total porosity in comparison with high performance cement paste. When the temperature is higher than 700 deg. C, a dramatic loss of mass was observed in the self-compacting cement paste samples with addition of limestone filler. This implies that the SCC made by this type of self-compacting cement paste will probably show larger damage once exposed to fire. Investigation has shown that 0.5 kg/m3 of Polypropylene fibers in the self-compacting cement paste can avoid the damage efficiently

  19. Physical Origins of Thermal Properties of Cement Paste

    Science.gov (United States)

    Abdolhosseini Qomi, Mohammad Javad; Ulm, Franz-Josef; Pellenq, Roland J.-M.

    2015-06-01

    Despite the ever-increasing interest in multiscale porous materials, the chemophysical origin of their thermal properties at the nanoscale and its connection to the macroscale properties still remain rather obscure. In this paper, we link the atomic- and macroscopic-level thermal properties by combining tools of statistical physics and mean-field homogenization theory. We begin with analyzing the vibrational density of states of several calcium-silicate materials in the cement paste. Unlike crystalline phases, we indicate that calcium silicate hydrates (CSH) exhibit extra vibrational states at low frequencies (factor of 4. Furthermore, full thermal conductivity tensors for all phases are calculated via the Green-Kubo formalism. We estimate the mean free path of phonons in calcium silicates to be on the order of interatomic bonds. This satisfies the scale separability condition and justifies the use of mean-field homogenization theories for upscaling purposes. Upscaling schemes yield a good estimate of the macroscopic specific-heat capacity and thermal conductivity of cement paste during the hydration process, independent of fitting parameters.

  20. 全尾砂新型充填胶凝材料开发及其水化机理探讨%Discussion on exploitation of new backfilling cementing materials with unclassified tailings and associated hydration mechanisms

    Institute of Scientific and Technical Information of China (English)

    李茂辉; 杨志强; 高谦; 王有团

    2015-01-01

    Based on the characteristics of unclassified tailings in the Sijiaying iron mine, experimental research on exploitation of new backfilling cementing materials that can replace the cement was carried out using lime, desulfurization gypsum, slag, and other solid wastes. Using scanning electron microscopy ( SEM) and X⁃ray diffraction ( XRD) analysis, the hydration mechanisms of the new backfilling cementing materials were analyzed, and the optimum ratio of activators was determined. The results show that the strength of the new backfilling cementing materials can meet the filling body strength requirements for safe mining in the Sijiaying iron mine when the mass fractions of slurry, lime, and desulfurization gypsum are 68%, 3. 5%, and 16. 0%, respectively, and the cement⁃sand ratio is 1∶8. The results also show that the new backfilling cementing materials have a more compact structure and coarser occurrence when compared with the cement. The hydration products of the new backfilling cementing materials are mainly AFt crystals and C⁃S⁃H gel, which greatly increases the age strength of the new backfilling cementing materials.%针对司家营铁矿全尾砂,利用石灰、脱硫石膏、矿渣等固体废弃物开展替代水泥的新型充填胶凝材料试验研究,并通过电镜扫描( SEM)和X射线衍射( XRD)分析,研究新型充填胶凝材料激发剂的水化机理,确定激发剂优化配比。研究表明,当料浆质量分数为68%、胶砂比为1∶8、石灰质量分数为3.5%、脱硫石膏质量分数为16.0%时能够满足司家营铁矿南区嗣后充填法采矿对充填体强度的要求。结果显示,新型充填胶凝材料胶砂体与水泥胶砂体相比,结构更致密、产状更粗大,水化产物主要为AFt晶体和无定型C⁃S⁃H凝胶,从而大幅度提高了新型充填胶凝材料胶砂体的龄期强度。

  1. Self-heating function of carbon nanofiber cement pastes

    Directory of Open Access Journals (Sweden)

    Galao, O.

    2014-05-01

    Full Text Available The viability of carbon nanofiber (CNF composites incement matrices as a self-heating material is reported in this paper. This functional application would allow the use of CNF cement composites as a heating element in buildings, or for deicing pavements of civil engineering transport infrastructures, such as highways or airport runways. Cement pastes with the addition of different CNF dosages (from 0 to 5% by cement mass have been prepared. Afterwards, tests were run at different fixed voltages (50, 100 and 150V, and the temperature of the specimens was registered. Also the possibility of using a casting method like shotcrete, instead of just pouring the fresh mix into the mild (with no system’s efficiency loss expected was studied. Temperatures up to 138 °C were registered during shotcrete-5% CNF cement paste tests (showing initial 10 °C/min heating rates. However a minimum voltage was required in order to achieve a proper system functioning.En este artículo se estudia la viabilidad del uso de matrices cementicias con adición de nanofibras de carbono (NFC como elementos calefactores. Esto permitiría aumentar la temperatura de estancias en edificación o el deshielo de pavimentos en obras civiles. Se han fabricado pastas de cemento con distintas dosificaciones de NFC (0, 1, 2 y 5% respecto masa del cemento y sometidas al paso de corriente continua a distintos potenciales fijos (50, 100 y 150 V, mientras se controlaba la temperatura en distintos puntos. Se ha estudiado la viabilidad de utilizar la proyección de la pasta fresca como método de puesta en obra, sin perjudicar la eficiencia del sistema. Se consiguieron temperaturas de hasta 138 °C (con velocidades iniciales de 10 °C/min para pasta proyectada con 5% NFC. Además se ha detectado la necesidad de un potencial mínimo para que la densidad de corriente resultante sea suficiente para producir el efecto esperado.

  2. Effect of polycarboxylate admixture structure on cement paste rheology

    Directory of Open Access Journals (Sweden)

    Aranda, M. A. G.

    2007-06-01

    Full Text Available The purpose of the present study was to analyze the effect of the structural differences in four polycarboxylate and polyether admixtures on the rheological properties of cement pastes with different chemical and mineralogical compositions and different active additions (CEM I 42.5 R, CEM I 52.5 R, CEM I 52.5 N/SR, CEM II/AV 42.5R, CEM II/B-L 32.5 R, CEM III/B 32.5R, BL I 52.5R and CAC – European standard EN 197-1:2000. The results of the minislump test concurred with the variations observed in the values of the rheological parameters (shear stress and plastic viscosity. The structural characteristic of the admixtures found to play the most prominent role in their fluidizing effect was the proportion of carboxylate (CG and polyether (EG group components. In cements characteristics such as fineness and the C3A/calcium sulphate and C3S/C3A ratios were also observed to be essential to admixture effectiveness. In this regard, the rheological parameters varied most widely in CEM I 52.5N/SR pastes and least in BL I 52.5R cement pastes. Of the additioned cements, the CEM III/B 32.5R pastes, which contained granulated blast furnace slag, showed the highest rises in flowability. Finally, the fluidizing effect of polycarboxylate superplasticizers was much more intense in calcium aluminate cements, although flowability declined rapidly in this material.El objetivo de este trabajo ha sido estudiar el efecto de las diferencias estructurales de cuatro aditivos basados en policarboxilatos y poliéteres sobre las propiedades reológicas de pastas de cemento con diferente composición química, mineralógica y con distintas adiciones activas (CEM I 42,5 R, CEM I 52,5 R, CEM I 52,5 N/SR, CEM II/AV 42,5R, CEM II/ B-L 32,5 R, CEM III/B 32,5R, BL I 52,5R y CAC - Norma EN 197-1:2000. Los resultados obtenidos sobre la fluidez de la pasta en el ensayo del “Minislump” coinciden con la evolución de los valores de los parámetros reológicos (esfuerzo de

  3. The effect of sugar on the microstructure of cement paste and its action/mechanism in cement set retardation

    International Nuclear Information System (INIS)

    Sugar is a good cement set retarder and improves the strength when used in a controlled manner. Strength depends upon the basic skeleton developed by cement pastes. The development of this basic skeleton depends upon a number of factors, including the addition of admixtures. This paper presents how microstructures are modified/amended when sugar is incorporated in cement-paste as a retarding admixture. For this purpose, slides of cement pastes containing different sugar-contents were prepared and monitored with a microscope and photographed. This study supports the mechanism of adsorption of sugar on the hydration products and poisoning their growth, which is essential for continued hydration of cement after the end of induction period. Sugar makes the network of fibrils denser and hence increases the strength. (author)

  4. Prediction of mechanical properties of cement paste at microscale

    Directory of Open Access Journals (Sweden)

    van Breugel, K.

    2010-02-01

    Full Text Available Prediction of the mechanical properties of cement paste at microscale has been done in this contribution by making use of 3D lattice fracture model. The microstructure of cement paste is simulated by HYMOSTRUC3D first, which is represented in terms of sphere particles. Then the microstructure is converted into a voxel-based image, and a lattice system is constructed based on the image of the microstructure through ImgLat (Image to Lattice. A virtual uni-axial tensile test is configured and the fracture process is simulated by GLAK (Generalized Lattice Analysis Kernel. The outputs of fracture process simulation are the load-displacement diagram and micro-cracks propagation. The load-displacement diagram reveals the tensile behavior of cement paste at microscale, from which the elastic modulus and tensile strength can be obtained. A numerical experiment is carried out to show how the model works, and the final results also demonstrate the feasibility of the above modeling procedure.

    En el presente trabajo se ha realizado una predicción de las propiedades mecánicas del cemento en la micro-escala, empleando un modelo de fractura reticular 3D. En primer lugar se simula la micro-estructura del cemento mediante el código HYMOSTRUC3D, representando dicha micro-estructura mediante partículas esféricas. A continuación, la micro-estructura generada se convierte en una imagen basada en “vóxeles”, y se construye un sistema reticular basado en esa imagen mediante el código ImgLat (Image to Lattice. Se define un ensayo de tensión uniaxial virtual, y se simula el proceso de fractura usando el código GLAK (Generalized Lattice Análisis Kernel. Los resultados obtenidos de esta simulación del proceso de fractura son diagramas de carga-desplazamiento y propagación de micro-roturas. El diagrama de carga-desplazamiento caracteriza el comportamiento a fractura de la pasta de cemento en la micro-escala, y a partir de éste se puede

  5. Carbonation profiles in cement paste analyzed by neutron diffraction

    Science.gov (United States)

    Galan, I.; Sanchez, J.; Andrade, C.; Evans, A.

    2012-02-01

    The present work deals with the carbonation process in cement based materials such as concrete. In order to clarify the evolution of the two main phases involved in the process, portlandite and calcium carbonate as a function of depth, spatially resolved neutron diffraction experiments have been performed at SALSA diffractometer at ILL in carbonated cement paste samples. Specimens submitted to different carbonation processes, both natural and accelerated, have been analyzed with this non destructive technique. The evolution of the main diffraction peaks of portlandite and calcite has been followed by means of neutron diffraction patterns measured at different depths. The results indicate that, in specimens subjected to CO2 atmospheres for 24 and 48 hours, the amount of calcite increases from the centre of the specimen to the surface. In both type of specimens calcite is formed at all depths analyzed, with higher quantities for the ones submitted to the longest carbonation period. Regarding the evolution of portlandite in these specimens, it almost completely disappeared, with only a low amount of the phase constant throughout the sample. In specimens subjected to air in a closed chamber for 21 months, higher amounts of portlandite were observed throughout the sample and little increase of calcite in the outer part, pointing out a much less severe reaction. The absorption effects are characterized by measuring in perpendicular directions and an absorption coefficient is calculated for portlandite.

  6. Monitoring the ettringite formation in cement paste using low field T2-NMR

    Science.gov (United States)

    Pop, Alexandra; Badea, Codruta; Ardelean, Ioan

    2013-11-01

    In the present work, we study the transverse relaxation time evolution of water molecules confined inside cement paste during the hydration process. The cement paste under study was manufactured with different water-to-cement ratios and using two types of cement: gray cement (CEM I 52.5 R) having a high content of magnetic impurities and white cement (CEM I 52.5 N) with lower amount of magnetic impurities. The two cement types were chosen in order to better distinguish the surface contribution to the relaxation process. On this basis a relationship between porosity evolution, ettringite formation and the transverse relaxation time evolution was established. It was also observed that the increase in the water-to-cement ratio better reveals the ettringite formation.

  7. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  8. Literature survey on phase composition of hardened cement paste containing fly ash

    International Nuclear Information System (INIS)

    The purpose of this literature survey is to collect the knowledge on the effect of fly ash in hardened cement paste and the information about evaluation of physicochemical performance based on phase composition of hardened cement paste. The performance of hardened cement paste containing fly ash is affected by the property of fly ash, hydration of cement and pozzolanic reaction of fly ash. Some properties of fly ash such as density and chemical composition are reflected in phase composition, showing the progress of cement hydration and pozzolanic reaction. Therefore clarification of the relationship of phase composition and performance will lead to appropriate evaluation of the property of fly ash. The amount of pore, chemical shrinkage, pore solution, compressive strength, Young modulus and alkali silica reaction have relations to the phase composition of hardened cement paste. It is considered as future subject to clarify the relationship of phase composition and performance for various properties of fly ash. (author)

  9. Relationship between chloride diffusivity and pore structure of hardened cement paste

    Institute of Scientific and Technical Information of China (English)

    Guo-wen SUN; Wei SUN; Yun-sheng ZHANG; Zhi-yong LIU

    2011-01-01

    Based on effective media theory, a predictive model, relating chloride diffusivity to the capillary pores, gel pores,tortuosity factor, and pore size distribution of hardened cement, is proposed. To verify the proposed model, the diffusion coefficient of chloride ions, the degree of hydration, and peak radius of capillary pores of cement paste specimens were measured. The predicted results for chloride diffusivity were compared with published data. The results showed that the predicted chloride diffusivity of hardened cement paste was in good agreement with the experimental results. The effect of the evolution of pore structures in cement paste on chloride diffusivity could be deduced simultaneously using the proposed model.

  10. Heterogeneous nucleation of ice from supercooled NaCl solution confined in porous cement paste

    OpenAIRE

    Zeng, Qiang; Li, Kefei; FEN CHONG, Teddy

    2015-01-01

    Clarifying the nucleation process of chloride-based deicing salt solution (e.g., NaCl solution) confined in cement-based porous materials remains an important issue to understand its detrimental effects on material substrates. In this study, the pore structures of hardened cement pastes were characterized by mercury-intrusion and nitrogen-sorption porosimetry. The ice nucleation temperature of NaCl solution of different concentrations confined in the hardened cement pastes was measured and an...

  11. Microstructure in hardened cement pastes measured by mercury intrusion porosimetry and low temperature microcalorimetry

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Baroghel, V.B.; Künzel, H.M.

    1996-01-01

    Cumulated pore size distributions for hardened cement pastes measured by mercury intrusion porosimetry from two laboratories and low temperature microcalorimetry from one laboratory are presented.......Cumulated pore size distributions for hardened cement pastes measured by mercury intrusion porosimetry from two laboratories and low temperature microcalorimetry from one laboratory are presented....

  12. Pore structure and carbonation in blended lime-cement pastes

    Directory of Open Access Journals (Sweden)

    Álvarez, J. I.

    2006-06-01

    Full Text Available The present study aims to gain a fuller understandingof the curing process in lime pastes (100, 90, 80, 70,60, 50 and 40% lime blended with cement by analyzingcarbonation in these materials. A hydrated, airslaked lime powder and CEM II A/L 32.5 Portlandcement were used for the blends. These materialswere singled out for research primarily because theymay be used in the restoration of heritage monuments.Variation in weight was used as an indicator for carbonation.A new parameter, A, was found to vary inverselywith the percentage of the cement because of theprevalence of Knudsen diffusion in the paste, in turndue to the characteristics of the pore structure, whichwas studied by mercury intrusion porosimetry (MIP.The hygroscopic study conducted on the different pastesprovided information on water content at a givenhumidity and its location, i.e., adsorbed on the surfaceof the pores or condensed inside them, obstructing thediffusion of CO2. The conclusion drawn from this studyof the curing process was that neither drying nor C3Shydration retarded lime carbonation.En este trabajo se estudia el proceso de carbonatacionen pastas mixtas de cal y cemento (100, 90, 80, 70, 60,50 y 40% de cal con el objeto de obtener un mejorconocimiento del proceso de curado en estos materiales.Para ello se ha empleado una cal aerea hidratada en polvoy un cemento Portland del tipo CEM II A/L 32,5. Enparticular, este estudio investiga estos materiales ya quepueden ser utilizados en la restauracion del PatrimonioCultural. Se ha utilizado la variacion de peso como indicadordel proceso de carbonatacion. Se ha establecidoun nuevo parametro, A, que varia inversamente con elporcentaje de cemento en la pasta, debido al predominiode la difusion de Knudsen como consecuencia de laestructura porosa, que ha sido estudiada por medio deporosimetria de intrusion de mercurio (PIM. El estudiohigroscopico realizado sobre las diversas pastas permiteconocer el contenido en agua a una

  13. Color agreement between nanofluorapatite ceramic discs associated with try-in pastes and with resin cements

    Directory of Open Access Journals (Sweden)

    Paulo Rigoni

    2012-12-01

    Full Text Available The aim of this study was to evaluate the in vitro color agreement between nanofluorapatite ceramic discs (e.max Ceram / Ivoclar Vivadent / A2 associated with try-in pastes and those bonded with resin cements (Vitique / DMG/ try-in shade A2½ and cement shade A2½, Variolink II / Ivoclar Vivadent / try-in shade A1 and cement shade A1, and Choice 2 / Bisco / try-in shade A2 and cement shade A2, and to evaluate the shade stability of the discs bonded with resin cements. The shades of composite resin discs (Lliss / FGM / A2 and nanofluorapatite ceramic discs with try-in pastes or cements were evaluated according to the Vita Classical shade guide by a digital spectrophotometer (Micro EspectroShade, MHT immediately after placing the try-in pastes or resin cements between composite resin discs and ceramic discs. Other evaluations were performed at 2, 5, and 6 day intervals after cementation with the resin cements. All ceramic discs that received try-in pastes presented an A2 shade. There was no statistical difference in the shade of the ceramic specimens fixed with different cements at the different intervals, as evaluated by the Friedman test (p > 0.05. Two try-in pastes presented shade compatibility with those recommended by the manufacturers. There was no similarity of shades between the ceramic discs with try-in pastes and those with the respective resin cements. Shade stability was observed in ceramic discs with resin cements within the intervals evaluated.

  14. Influence of electrified surface of cementitious materials on structure formation of hardened cement paste

    Science.gov (United States)

    Alekseev, A.; Gusakov, A.

    2015-01-01

    To provide high strength and durability of concrete it is necessary to study the influence of physical and chemical and mechanical principles of dispersed cementitious systems. The experimental bench was developed to study the influence of electrified surface of cementitious materials on structure formation of hardened cement paste. The test bench allows accelerating the processes of dissolution of cementing materials in water due to influence of electric discharge on their surface. Cement activation with high-voltage corona discharge when AC current is applied allows increasing the ultimate compressive strength of hardened cement paste by 46% at the age of one day and by 20% at the age of 28 days.

  15. Multi-scale simulation of capillary pores and gel pores in Portland cement paste

    OpenAIRE

    Gao, Peng; YE, guang; Wei, Jiangxiong; Yu, Qijun

    2015-01-01

    The microstructures of Portland cement paste (water to cement ratio is 0.4, curing time is from 1 day to 28 days) are simulated based on the numerical cement hydration model, HUMOSTRUC3D (van Breugel, 1991; Koenders, 1997; Ye, 2003). The nanostructures of inner and outer C-S-H are simulated by the packing of monosized (5 nm) spheres. The pore structures (capillary pores and gel pores) of Portland cement paste are established by upgrading the simulated nanostructures of C-S-H to th...

  16. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    Science.gov (United States)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  17. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    Energy Technology Data Exchange (ETDEWEB)

    Steshenko, Aleksei, E-mail: steshenko.alexey@gmail.com; Kudyakov, Aleksander; Konusheva, Viktoriya [Tomsk State University of Architecture and Building, 2 Solyanaya Sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  18. Various durability aspects of calcined Kaolin-blended Portland cement pastes and concretes

    OpenAIRE

    SAILLIO, Mickael; BAROGHEL BOUNY, Véronique; PRADELLE, Sylvain

    2015-01-01

    The use of calcined clay, in the form of metakaolin (MK), as a pozzolanic constituent for concrete has received considerable attention in recent years, due to the lower CO2 emission of this supplementary cementitious material compared to the production of a classic portland cement. Furthermore, concretes incorporating MK show some improve durability properties. In this paper, the durability of concretes and cement pastes with MK as partial replacement of cement (10 and 25%) has been investiga...

  19. Wet versus dry cement pastes and concretes: a mathematical approach to their strength and fracture properties

    International Nuclear Information System (INIS)

    The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads is considered. Taking into account the differences between the failure mechanisms of cement paste under tension and its failure mechanisms under compression, an analytical approach to the relation between water flow and fracture in saturated porous Portland cement pastes is developed. The well known differences in behaviour between the flexural and compressive strengths of wet and dry Portland cement pastes is explained. The extension of the obtained results to the flexural and compressive strength of normal concrete is briefly discussed, including suggestions for further experimental and digital simulation work

  20. A speciation solver for cement paste modeling and the semismooth Newton method

    International Nuclear Information System (INIS)

    The mineral assemblage of a cement paste may vary considerably with its environment. In addition, the water content of a cement paste is relatively low and the ionic strength of the interstitial solution is often high. These conditions are extreme conditions with respect to the common assumptions made in speciation problem. Furthermore the common trial and error algorithm to find the phase assemblage does not provide any guarantee of convergence. We propose a speciation solver based on a semismooth Newton method adapted to the thermodynamic modeling of cement paste. The strong theoretical properties associated with these methods offer practical advantages. Results of numerical experiments indicate that the algorithm is reliable, robust, and efficient

  1. Hydration and leaching characteristics of cement pastes made from electroplating sludge

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the 29Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.

  2. Hydration of blended cement pastes containing waste ceramic powder as a function of age

    Science.gov (United States)

    Scheinherrová, Lenka; Trník, Anton; Kulovaná, Tereza; Pavlík, Zbyšek; Rahhal, Viviana; Irassar, Edgardo F.; Černý, Robert

    2016-07-01

    The production of a cement binder generates a high amount of CO2 and has high energy consumption, resulting in a very adverse impact on the environment. Therefore, use of pozzolana active materials in the concrete production leads to a decrease of the consumption of cement binder and costs, especially when some type of industrial waste is used. In this paper, the hydration of blended cement pastes containing waste ceramic powder from the Czech Republic and Portland cement produced in Argentina is studied. A cement binder is partially replaced by 8 and 40 mass% of a ceramic powder. These materials are compared with an ordinary cement paste. All mixtures are prepared with a water/cement ratio of 0.5. Thermal characterization of the hydrated blended pastes is carried out in the time period from 2 to 360 days. Simultaneous DSC/TG analysis is performed in the temperature range from 25 °C to 1000 °C in an argon atmosphere. Using this thermal analysis, we identify the temperature, enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates gels dehydration, portlandite, vaterite and calcite decomposition and their changes during the curing time. Based on thermogravimetry results, we found out that the portlandite content slightly decreases with time for all blended cement pastes.

  3. Measurement of water transport from saturated pumice aggregates to hardening cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Bentz, Dale; Lange, David A.;

    2006-01-01

    stone to hydrating cement paste with water/cement ratio 0.3 took place in the first days after casting and covered a distance of at least 4 mm. As a consequence, the total amount of water released by the lightweight aggregates, rather than the spatial distribution of the aggregates, is in this case the...

  4. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  5. On the hydration of water-entrained cement-silica systems: Combined SEM, XRD and thermal analysis in cement pastes

    International Nuclear Information System (INIS)

    Research highlights: → A new model of hydration in SF-modified cement-based systems is presented. → Internal curing in cement-based materials is described by the thermogravimetric technique. → Pozzolanic activity is limited in low water and low porosity systems. → Internal curing by superabsorbent polymers results in enhanced hydration. - Abstract: The work described in this document focuses on the hydration of low water and low porosity SF-modified cement-based materials. The hydration of the clinker compounds was followed by X-ray diffraction (XRD), differential thermal analysis (DTA) and also by means of the thermo-gravimetric technique (TGA). This study was performed in three systems, each with a different composition namely a plain cement paste, a silica fume (SF)-modified cement paste and a water-entrained SF-modified cement paste with superabsorbent polymers (SAPs). In addition to the previous experiments, the microstructure of the systems was accessed by means of the scanning electron microscopy technique (SEM). This was primarily done with the purpose of supporting some ideas that have emerged when determining the hydration of these complex systems using the former techniques. However, in this manuscript only the results found through the TGA/DTA technique will be shown. Thus, in respect to the quantification of the CH phase developing in the system, the results taken by the TGA/DTA technique enable a more feasible description of the hydration of low water and low porosity SF-modified cement systems, including systems with water-entrainment by superabsorbent polymers. The results show that for cement-based materials with the physical nature of the systems that have been studied in this work, the pozzolanic activity is limited due to lack of water and/or space to accommodate additional hydration products, and as a consequence, a surplus of silica fume is to be found in the mature material. Due to either physical or chemical constraints, the system

  6. Coagulated silica - a-SiO2 admixture in cement paste

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Rovnaníková, Pavla; Pavlík, Zbyšek

    2016-07-01

    Amorphous silica (a-SiO2) in fine-grained form possesses a high pozzolanic activity which makes it a valuable component of blended binders in concrete production. The origin of a-SiO2 applied in cement-based composites is very diverse. SiO2 in amorphous form is present in various amounts in quite a few supplementary cementing materials (SCMs) being used as partial replacement of Portland cement. In this work, the applicability of a commercially produced coagulated silica powder as a partial replacement of Portland cement in cement paste mix design is investigated. Portland cement CEM I 42.5R produced according to the EU standard EN 197-1 is used as a reference binder. Coagulated silica is applied in dosages of 5 and 10 % by mass of cement. The water/binder ratio is kept constant in all the studied pastes. For the applied silica, specific surface area, density, loss on ignition, pozzolanic activity, chemical composition, and SiO2 amorphous phase content are determined. For the developed pastes on the basis of cement-silica blended binder, basic physical properties as bulk density, matrix density, and total open porosity are accessed. Pore size distribution is determined using MIP analysis. Initial and final setting times of fresh mixtures are measured by automatic Vicat apparatus. Effect of silica admixture on mechanical resistivity is evaluated using compressive strength, bending strength, and dynamic Young's modulus measurement. The obtained data gives evidence of a decreased workability of paste mixtures with silica, whereas the setting process is accelerated. On the other hand, reaction activity of silica with Portland cement minerals results in a slight decrease of porosity and improvement of mechanical resistivity of cement pastes containing a-SiO2.

  7. Experimental drying shrinkage of hardened cement pastes as a function of relative humidity

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Baroghel, V.B.

    1996-01-01

    The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared.......The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared....

  8. DURABILITY PERFORMANCE OF RFCC SPENT CATALYSTBLENDED PORTLAND CEMENT PASTE EXPOSED TO SEA WATER ATTACK

    OpenAIRE

    Allahverdi A.; Mahdavan M.

    2013-01-01

    This paper discusses the performance of the paste of Portland cement blended with spent catalyst from Resid Fluidized Catalytic Cracking (RFCC) unit of petroleum refining processes in sea water. 28-day cured paste specimens prepared from binary cement mixes containing different amounts of spent catalyst were exposed to Persian Gulf sea water. Compressive strength, weight, and length changes of the specimens were monitored and considered for evaluating the extent of deterioration. Laboratory t...

  9. Laser Radiation CO2 Effects in Cement Paste at Different Hydration Stages after Preparation

    OpenAIRE

    Moreno-Virgen M.R.; Soto-Bernal J.J.; Ortiz-Lozano J.A.; Frausto-Reyes C.; Bonilla-Petriciolet A.; González-Mota R.; Rosales-Candelas I.; Pineda-Piñón J.

    2011-01-01

    In this work the changes occurring in cement pastes irradiated by 10.6µm CO2 laser at diff erent stages of hydration after preparation are presented. Raman spectroscopy, X-ray diffraction and Scanning Electronic Microscopy (SEM) techniques were used to observe molecular structural changes. Intensity of cement paste Raman peaks after laser irradiation was monitored in samples irradiated 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 days after their preparation. Applied laser power changed Raman peaks inte...

  10. Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization

    International Nuclear Information System (INIS)

    Liquid manure, stored in silos often made of concrete, contains volatile fatty acids (VFAs) that are chemically very aggressive for the cementitious matrix. Among common cements, blast-furnace slag cements are classically resistant to aggressive environments and particularly to acidic media. However, some standards impose the use of low C3A content cements when constructing the liquid manure silos. Previous studies showed the poor performance of low-C3A ordinary Portland cement (OPC). This article aims at clarifying this ambiguity by analyzing mechanisms of organic acid attack on cementitious materials and identifying the cement composition parameters influencing the durability of agricultural concrete. This study concentrated on three types of hardened cement pastes made with OPC, low-C3A OPC and slag cement, which were immersed in a mixture of several organic acids simulating liquid manure. The chemical and mineralogical modifications were analyzed by electronic microprobe, XRD and BSE mode SEM observations. The attack by the organic acids on liquid manure may be compared with that of strong acids. The alteration translates into a lixiviation, and the organic acid anions have no specific effect since the calcium salts produced are soluble in water. The results show the better durability of slag cement paste and the necessity to limit the amount of CaO, to increase the amount of SiO2 (i.e., reduction of the Ca/Si ratio of C-S-H is not sufficient) and to favor the presence of secondary elements in cement

  11. Monitoring of sulphate attack on hardened cement paste studied by synchrotron XRD

    Science.gov (United States)

    Stroh, J.; Meng, B.; Emmerling, F.

    2015-10-01

    The complex matter of external sulphate attack on cement-based construction materials is still not completely understood. The concentration of sulphate is a crucial factor for the formation of secondary phases and phase transitions of cement hydrates due to sulphate ingress into the microstructure. The sulphate attack on building materials for high and low sulphate concentrations was monitored by laboratory experiments. Hardened cement paste consisting of ordinary Portland cement (CEM I) were exposed to aqueous solutions of sodium sulphate for 18 months. Three sample compositions were used for this research, including different supplementary cementitious materials (SCM). The phase composition was determined for different time spans by high resolution synchrotron X-ray diffraction. Cross sections of exposed cement prisms were investigated as a representation of the microstructural profile. Based on the data, a temporal and spatial determination of the stages of the sulphate attack and the deterioration course was possible. Cement matrices blended with slag showed the highest resistance against sulphate attack.

  12. Strength Development and Microstructure of Hardened Cement Paste Blended with Red Mud

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; ZHANG Yanna; XU Zhongzi

    2009-01-01

    Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 ℃ to 700 ℃. Results show that heating was ef-fective, among which thermal activation of red mud at 600 ℃ was most effective. Chemical analysis suggested that cement added with 600 ℃ thermally activated red mud yielded more calcium ion dur-ing the early stage of hydration and less at later stage in liquid phase of cement water suspension sys-tem, more combined water and less calcium hydroxide in its hardened cement paste. MIP measure-ment and SEM observation proved that the hardened cement paste had a similar total porosity and a less portion of large size pores hence a denser microstructure compared with that added with original red mud.

  13. Analyses of microstructural properties of VA/VeoVA copolymer modified cement pastes

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo M. Gomes

    2005-07-01

    Full Text Available Recently, modern techniques have been applied for analysis of the influence of polymers on microstructural properties of Portland cement, such as Thermogravimetric Analyses (TG, Scanning Electronic Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FT-IR and Mercury Intrusion Porosimetry (MIP. In this study, thermogravimetric analyses were used to study the influence of vinyl acetate-versatic vinylester copolymer (VA/VeoVA in seven pastes of 28-day old Portland cement, in which distinct polymer contents and water/cement ratios were employed. In addition, analyses of FT-IR and MIP on Portland cement pastes modified by the copolymer were employed. The results showed that the addition of polymer interferes significantly in the reduction of Portlandite formation and increases the porosity of the matrices. A possible chemical interaction between the copolymer and hydrated products of Portland cement was also observed.

  14. UNIFORMITY ASSESSMENT OF CARBON FIBRES DISPERSION IN CEMENT PASTE BY IMPEDANCE MEASUREMENTS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An alternating current was applied to measure the impedance of a hardened cement paste with various contents of carbon fibres.When the free water content in the hardened cement paste is 90%-98%,and the measuring frequency 500Hz,an approximate linear relationship was found between fibre content and impedance of the composite.Based on this relationship,a new attempt was made to evaluate the dispersion uniformity of carbon fibres in cement paste by impedance measurement.The standard deviation S and the coefficient of vriation S/(X-)i of impedance of the fibre-cement specimens randomly taken locating in different points were used as main parameters for the uniformity assessment.As a case,four different mixing processes were designed for dispersing carbon fibres into the cement paste.The results demonstrate that the relative longer mixing time increases the dispersion uniformity of carbon fibres in cement paste,and the addition of the water reducer dramatically improves the uniformity due to the change of the fluidity of the paste.The ground fly ash can increase the uniformity to a certain extent.

  15. Adsorption of Superplasticizers in Fly Ash Blended Cement Pastes and Its Rheological Effects

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; SHEN Peiliang; SHUI Zhonghe; FAN Jianfeng

    2012-01-01

    The adsorption of superplasticizers in fly ash blended cement paste and its rheological effects were investigated.It is shown that the absorption of superplasticizer on portland cement particles is very different from that on fly ash particles.The fly ash particles have smooth surfaces and are negatively charged,so its adsorption capacity is weaker than the portland cement particles.The amount of adsorbed SP in the fly ash blended cement paste depends highly on the replacement proportion of portland cement with fly ash,and to a much less extent on the nature of the fly ash.However,the amount of adsorbed superplasticizer does not correspond well the ζ-potential of the solid particles,due the strong adsorbing capacities of the Portland cement particles.When fly ash replaces portland cement in the paste,the rheological behavior is radically changed,which is closely related to the fineness and density of the ash.The packing and agglomeration of the solid particles are the controlling factors on the rheological parameters of the fresh paste,instead of the amount and type of adsorbed superplasticizer.

  16. Energy dispersive analysis of ettringites in cement paste samples

    International Nuclear Information System (INIS)

    In the energy dispersive analysis (electron microscope, scanning electron microscope) of ettringite monocrystals which are formed in highly aqueous cement suspensions a chemical composition is obtained which is very different from a phase in the generally accepted meaning of the term. A characteristic feature of this ettringite is that part of the Al2O3 content in the columns is replaced by SiO2. Besides, the SO3 in the canals may be partly replaced by SiO2. The differences in content are in all probability dependent on the type of cement initially used, the amount of sulphate additionally introduced, and the length of time of reaction. (orig.)

  17. Enhancing the mechanical properties of cement paste by growing in-situ fiber reinforcement during hydration

    Science.gov (United States)

    Constantinides, Margarita

    Efforts to improve the mechanical properties of concrete by modifying the cement paste matrix have focused entirely on strength enhancement. But the intrinsic brittleness of the cement paste matrix limits the possible improvement in the mechanical properties of concrete, and in particular the toughness of the material. Increasing the toughness of the cement paste matrix could lead to a reduction in flaw sensitivity by delaying unstable crack propagation. Consequently, the resistance of the material to cracking due to drying shrinkage, thermal shrinkage, expansive deterioration processes, and applied loads could increase considerably. The goal of this study was to grow in-situ fiber reinforcement in cement paste, a technique never before applied to cement-based materials, to enhance the toughness of the material. Ettringite, an existing, fiber-like hydration product was selected as the fiber reinforcement. Ettringite met all the necessary criteria to act as reinforcement in cement paste: adequate distribution in the matrix; adjustable volume fraction, aspect ratio and size; high stiffness along the fiber length; and finally compatibility with existing hydration products. Alkali-free accelerators were selected as the admixtures used to grow the ettringite in the cement paste. X-ray diffraction and scanning electron microscopy experiments were performed to study the volume fraction, distribution, size, and morphology of the ettringite crystals in the cement paste matrix (both plain and accelerator-containing). Mechanical tests (compression, splitting tension, flexural, compact tension) were used to evaluate the effect of the accelerators on the strength and toughness of cement paste. Microindentations on the surface of the cement paste matrix were performed to study the morphology of the cracks and the toughening mechanisms taking place. Through the characterization tests we identified that while more ettringite forms with the addition of the alkali-free accelerators

  18. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    OpenAIRE

    Ramírez-Arellanes, S.; Cano-Barrita, P. F. de J.; Julián-Caballero, F.; Gómez-Yañez, C.

    2012-01-01

    The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases ...

  19. Interfacial chemistry of epoxy adhesives on hydrated cement paste

    OpenAIRE

    Djouani, Fatma; CONNAN, Carole; CHEHIMI, Mohamed M; BENZARTI, Karim

    2008-01-01

    Epoxy resins [diglycidylether of bisphenol A, (DGEBA)] are the main adhesives used in civil engineering for the repair of damaged concrete structures (bridges, walls) or for assembly applications. Their interfacial molecular interactions with cement-type substrates are thus of prime importance and require surface- and interface-sensitive characterisation tools. In this context, we report an XPS, FTIR and differential scanning calorimeter (DSC) study of the interfacial chemistry of stoichiomet...

  20. The effects of nanomaterials on microstructures of sludge ash cement paste.

    Science.gov (United States)

    Lin, Deng-Fong; Tsai, Min-Chin

    2006-08-01

    To broaden the beneficial reuse of sewage sludge, small amounts of nanomaterial were considered as additives to evaluate influences of nanomaterials on microstructures of sludge cement paste. Paste specimens were manufactured using different mix designs and cured for various ages. Tests such as scanning electron microscope, X-ray diffraction, transmission electron microscope, and mercury intrusion porosimetry were then performed. Results obtained indicated that the quantities of crystallization in hydrates rose with the increased amounts of nanomaterial added. Moreover, nanomaterial additives could make crystallizations denser, pore sizes smaller, and the number of pores decreased. Consequently, the strength of sludge cement paste became better as more amounts of nanomaterial were added. PMID:16933647

  1. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette Rica; Krøyer, Hanne;

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates......, in comparison to the pure cement pasta and the paste containing kaolinite, a more open pore structure consisting of fine pores. Silica fume paste contains a significant amount of closed pores. As a secondary result, it is demonstrated that both the degree and duration of sample drying strongly modifies...

  2. Effect of tire rubber particles on crack propagation in cement paste

    Directory of Open Access Journals (Sweden)

    Nadia Segre

    2006-09-01

    Full Text Available Tire rubber particles (NaOH-treated and untreated were investigated as possible crack stabilizer and toughness enhancer when added to cement paste through in situ crack propagation measurements using two different types of cement, type I/II and an Interground polypropylene Fiber Cement (IFC. Crack deflection and crack bridging were observed in specimens with untreated rubber in cement type I/II. Crack tip mechanisms associated with crack pinning and acrack arrest were present in type I/II cement and IFC with treated rubber particles. Crack tip mechanisms in IFC with treated rubber lead to the increase in CMOD at the ultimate load level. Crack wake mechanisms in IFC with untreated or treated rubber lead to strain hardening and strain softening behavior. Crack wake bridging mechanisms were replaced by multiple cracking mechanisms in the IFC specimens with treated rubber. The IFC specimens with untreated rubber inclusions provided the best results with respect to toughness enhancement.

  3. Analysis of Pore Structures and Their Relations with Strength of Hardened Cement Paste

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wensheng; LI Beixing; WANG Hongxia; WEI Jiangxiong; CHEN Yimin

    2005-01-01

    Three cement samples were prepared, including OPC consisted of 100wt% portland cement, PFA consisted of 70wt% portland cement and 30wt% fly-ash, and CA consisted of 70wt% portland cement and 30wt% modified fly ash. The strength of hardened cement paste of these samples was tested and their pore structures were determined by a mercury intrusion porosimeter. Moreover,the data of the pore structures of three samples were comprehensively analyzed. The relations between the pore structures and the compressive strength of the three samples were studied. The experimental results show that the relations between the porosity determined by the mercury intrusion porosimeter and the compressive strength are not notable, and the total pore surface area, the average pore diameter and the median pore diameter could be used to explain the difference of the strength of the tested samples.

  4. The Influence of Free Water Content on Dielectric Properties of Alkali Active Slag Cement Paste

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dielectric performance of alkali activated slag (AAS) cement paste was investigated in the frequency range of 1 to 1000 MHz. The experimental results showed the unstable dielectric properties of harden paste were mostly influenced by the fraction of free water in paste or absorbed water from ambient, but not including hydration water and microstructure. The free water was completely eliminated by heat treatment at 105 ℃ about 4 hours, and then its dielectric loss was depressed; but with the exposure time in air increasing,the free water adsorption in ambient air made the dielectric property of harden cement paste to be bad. The temperature and relative humidity of environment was the key factors of free water adsorption; hence, if the influence of free water on dielectric constant was measured or eliminated, the cement-based materials may be applied in humidity sensitive materials or dielectric materials domains.

  5. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    International Nuclear Information System (INIS)

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently developed methodology allowed continuous monitoring of E-modulus from the time of casting. The methodology is a variant of classic resonant frequency methods, which are based on determination of the first resonant frequency of a composite beam containing the material. The hydration kinetics — and thus the rate of formation of solids — was determined using chemical shrinkage measurements. For the cements studied similar relationships between E-modulus and chemical shrinkage were observed for comparable water-to-binder ratio. For commercial cements it is suggested to model the E-modulus evolution based on the amount of binder reacted, instead of the degree of hydration.

  6. Reactivity of NO2 and CO2 with hardened cement paste containing activated carbon

    Science.gov (United States)

    Horgnies, M.; Dubois-Brugger, I.; Krou, N. J.; Batonneau-Gener, I.; Belin, T.; Mignard, S.

    2015-07-01

    The development of building materials to reduce the concentration of NO2 is growing interest in a world where the air quality in urban areas is affected by the car traffic. The main binder in concrete is the cement paste that is partly composed of calcium hydroxide. This alkaline hydrate composing the hardened cement paste shows a high BET surface area (close to 100 m2.g-1) and can absorb low-concentrations of NO2. However, the presence of CO2 in the atmosphere limits the de-polluting effect of reference cement paste, mainly due to carbonation of the alkaline hydrates (reaction leading to the formation of calcium carbonate). The results established in this paper demonstrate that the addition of activated carbon in the cement paste, because of its very high BET surface area (close to 800 m2.g-1) and its specific reactivity with NO2, can significantly improve and prolong the de-polluting effect in presence of CO2 and even after complete carbonation of the surface of the cement paste.

  7. Size effect on cubic and prismatic compressive strength of cement paste

    Institute of Scientific and Technical Information of China (English)

    苏捷; 叶缙垚; 方志; 赵明华

    2015-01-01

    A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio of 2. The experiment results show that size effect exists in the cubic compressive strength and prismatic compressive strength of the cement paste, and larger specimens resist less in terms of strength than smaller ones. The cubic compressive strength and the prismatic compressive strength of the specimens with side length of 200 mm are respectively about 91% and 89% of the compressive strength of the specimens with the side length of 40 mm. Water to binder ratio has a significant influence on the size effect of the compressive strengths of the cement paste. With a decrease in the water to binder ratio, the size effect is significantly enhanced. When the water to binder ratio is 0.2, the size effects of the cubic compressive strength and the prismatic compressive strength of the cement paste are 1.6 and 1.4 times stronger than those of a water to binder ratio of 0.6. Furthermore, a series of formulas are proposed to calculate the size effect of the cubic compressive strength and the prismatic compressive strength of cement paste, and the results of the size effect predicted by the formulas are in good agreement with the experiment results.

  8. Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes

    OpenAIRE

    Puertas, F.; Santos, H.; Palacios, M.; Martínez-Ramírez, Sagrario

    2005-01-01

    A study was conducted on the effect of a polycarboxylate (PC) admixture on the mechanical, mineralogical, microstructural and rheological behaviour of Portland cement pastes. It was observed that the presence of PC admixture retards the initial cement hydration reactions, although this effect may be offset by possible increased diffusion in later stages. Additionally, the PC admixtures produce a few alterations in the structure and composition of the formed C–S–H gel. The addition of 1% PC...

  9. Analyses of microstructural properties of VA/VeoVA copolymer modified cement pastes

    OpenAIRE

    Carlos Eduardo M. Gomes; Osny P. Ferreira

    2005-01-01

    Recently, modern techniques have been applied for analysis of the influence of polymers on microstructural properties of Portland cement, such as Thermogravimetric Analyses (TG), Scanning Electronic Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Mercury Intrusion Porosimetry (MIP). In this study, thermogravimetric analyses were used to study the influence of vinyl acetate-versatic vinylester copolymer (VA/VeoVA) in seven pastes of 28-day old Portland cement, in which di...

  10. Rheological Properties of Very High-Strength Portland Cement Pastes: Influence of Very Effective Superplasticizers

    Directory of Open Access Journals (Sweden)

    Riccardo Ricceri

    2010-01-01

    Full Text Available The influence of the addition of very effective superplasticizers, that are commercially available, employed for maximising the solid loading of very high-strength Portland cement pastes, has been investigated. Cement pastes were prepared from deionized water and a commercially manufactured Portland cement (Ultracem 52.5 R. Cement and water were mixed with a vane stirrer according to ASTM Standard C305. The 0.38 to 0.44 water/cement ratio range was investigated. Three commercial superplasticizing agents produced by Ruredil S.p.a. were used. They are based on a melamine resin (Fluiment 33 M, on a modified lignosulphonate (Concretan 200 L, and on a modified polyacrylate (Ergomix 1000. Rheological tests were performed at 25°C by using the rate controlled coaxial cylinder viscometer Rotovisko-Haake 20, system M5-osc., measuring device MV2P with serrated surfaces. The tests were carried out under continuous flow conditions. The results of this study were compared with those obtained in a previous article for an ordinary Portland cement paste.

  11. Strength Development and Physical Properties of Cement Paste with Incorporated Ceramic Powder

    Directory of Open Access Journals (Sweden)

    Tereza KULOVANÁ

    2016-05-01

    Full Text Available A possible usage of fine waste ceramic powder coming from precise brick cutting in production of blended cement is analyzed in the paper. For the studied ceramic powder, chemical and mineralogical composition is measured by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramic powder is accessed on laser diffraction principle. The ceramic powder is used in cement based pastes composition in cement mass replacements of 8, 16, 24, 32, and 40%. For the tested pastes, monitoring of strength development is done using measurement of time dependent mechanical parameters. Bulk density, matrix density, and total open porosity are measured for 28 days cured samples. In order to obtain information on the rate of hydration process, the formation of pastes’ solid structure is monitored using measurement of pore size distribution at chosen times of hydration. Application of waste ceramics is found to give the most promising mechanical properties of the cement-based paste for 8 and 16% cement replacement levels what makes good prerequisites for future research that will be focused on design and development of new types of cement-based composites with incorporated ceramic waste powder. However, also other tested mixtures provide acceptable results. This knowledge can be used for instance in the production of lower strength composites.

  12. Immobilization of Co (Ⅱ) Ions in Cement Pastes and Their Effects on the Hydration Characteristics

    Institute of Scientific and Technical Information of China (English)

    Eisa Hekal; Essam Kishar; Wafaa Hegazi; Maha Mohamed

    2011-01-01

    The immobilization of Co (Ⅱ) in various cement matrices was investigated by using the solidification/stabilization (S/S) technique. The different cement pastes used in this study were ordinary Portland cement in absence and presence of water reducing- and water repelling-admixtures as well as blended cement with kaolin. Two ratios of Co (Ⅱ) were used (0.5% and 1.0% by weight of the solid binder). The hydration characteristics of the used cement pastes were tested uia the determination of the combined water content, phase composition and compressive strength at different time intervals up to 180 d. The degree of immobilization of the added heavy metal ions was evaluated by determining the leached ion concentration after time intervals extended up to 180 d. The leachability experiments were carried out by using two modes: the static and the semi-dynamic leaching processes. It was noticed that the concentration of the leached Co2+ ions in the static mode of leachability was lower than the solubility of its hydroxide in all the investigated cement pastes.

  13. Hydration kinetics of cements by Time-Domain Nuclear Magnetic Resonance: Application to Portland-cement-derived endodontic pastes

    International Nuclear Information System (INIS)

    Time-Domain Nuclear Magnetic Resonance (TD-NMR) of 1H nuclei is used to monitor the maturation up to 30 days of three different endodontic cement pastes. The “Solid–liquid” separation of the NMR signals and quasi-continuous distributions of relaxation times allow one to follow the formation of chemical compounds and the build-up of the nano- and subnano-structured C–S–H gel. 1H populations, distinguished by their different mobilities, can be identified and assigned to water confined within the pores of the C–S–H gel, to crystallization water and Portlandite, and to hydroxyl groups. Changes of the TD-NMR parameters during hydration are in agreement with the expected effects of the different additives, which, as it is known, can substantially modify the rate of reactions and the properties of cementitious pastes. Endodontic cements are suitable systems to check the ability of this non-destructive technique to give insight into the complex hydration process of real cement pastes.

  14. Characterization of different types of ceramic waste and its incorporation to the cement paste

    International Nuclear Information System (INIS)

    The porcelain tike is a product resulting from the technological development of ceramic plating industry. Its large acceptation by the consumer market is probably linked with certain properties, such as low porosity, high mechanical resistance, facility in maintenance, besides being a material of modern and versatile characteristics. The aim of this work was characterizing the different ceramic wastes (enameled and porcelain tike) and evaluating its influence on the mechanical behavior in cement pastes. The wastes were characterized through the determination of its chemical composition, size particle distribution and X-ray diffraction. Cement pastes + wastes were prepared in 25% and 50% proportions and glue time determination, water absorption and resistance to compression assays were taken. The results indicate that although the wastes don't show any variation in the elementary chemical composition, changes in the cement paste behavior related to the values of resistance to compression were observed. (author)

  15. The effect of using hybrid nanomaterials on drying shrinkage and strength of cement pastes

    Directory of Open Access Journals (Sweden)

    Saaid I. Zaki

    2016-04-01

    Full Text Available The aim of this work is to study the effect of nanomaterials on the properties of cement paste, the experimental program included three parts: a- two types of nanosilica, locally produced NS1 and imported NS2, b- nanoclay (NC and c- Hybrid nanoparticles (NS1 & NC. In each part, cement paste was used with different percentages of nanoparticles. Compressive strength and drying shrinkage tests were applied in each part on the cured and uncured samples. The results showed that the compressive strength improved in the cement paste mixtures in the cured condition, the optimum percentages was 1% for NS1, 1% for NS2, 5% for NC, and 5% (0.5%NS1 & 4.5%NC for hybrid nanoparticles. The drying shrinkage increases with adding nanosilica and hybrid nanoparticles, while it decreases when adding NC.

  16. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, State University of New York at Stony Brook, New York 11794 (United States); Bae, Sungchul [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Duan, Xiaonan [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Giannelis, Emmanuel P. [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Center for Refining and Petrochemicals, The Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Monteiro, Paulo M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g{sup −1} and 257 mg g{sup −1}, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol{sup −1} or 121 mg g{sup −1}), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix.

  17. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    International Nuclear Information System (INIS)

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g−1 and 257 mg g−1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol−1 or 121 mg g−1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix

  18. Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste

    CERN Document Server

    Ghabezloo, Siavash

    2010-01-01

    The results of a macro-scale experimental study performed on a hardened class G cement paste [Ghabezloo et al. (2008) Cem. Con. Res. (38) 1424-1437] are used in association with the micromechanics modelling and homogenization technique for evaluation of the complete set of poroelastic parameters of the material. The experimental study consisted in drained, undrained and unjacketed isotropic compression tests. Analysis of the experimental results revealed that the active porosity of the studied cement paste is smaller than its total porosity. A multi-scale homogenization model, calibrated on the experimental results, is used to extrapolate the poroelastic parameters to cement pastes prepared with different water-to-cement ratio. The notion of cement paste active porosity is discussed and the poroelastic parameters of hardened cement paste for an ideal, perfectly drained condition are evaluated using the homogenization model.

  19. Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Hansen, Per Freiesleben

    1996-01-01

    Even during sealed curing and at a constant temperature a hardening cement paste will deform and the relative humidity within its pores will lower. This autogenous deformation and autogenous relative humidity change may be so significant that the cement paste cracks if the deformation is restrained....... This article focuses on the influence of silica fume addition on autogenous deformation and autogenous relative humidity change. Continuous measurement of autogenous deformation and autogenous relative humidity change for more than 1 year and 1« years, respectively, was performed. The investigations...... show thatsilica fume addition markedly increases the autogenous shrinkage as well as the autogenous relative humidity change....

  20. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    Science.gov (United States)

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  1. A Confocal Microscopic Evaluation of the Dehydration Effect on Conventional, Resin Reinforced Powder/Liquid and Paste to Paste Glass Ionomer Luting Cements

    OpenAIRE

    George, Liza; Kandaswamy, D

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of dehydration of resin-modified glass ionomer powder/liquid system, resin-modified glass ionomer paste/paste luting cements in three different quantities and to compare them with a conventional glass ionomer luting cement using confocal laser scanning microscope. Materials and Methods: A conventional glass ionomer (Group I), a resin modified powder/liquid system (Group II), and a resin-modified paste/paste system (Group III) we...

  2. Effect of coal gangue with different kaolin contents on compressive strength and pore size of blended cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yimin; Zhou Shuangxi; Zhang Wensheng [China Building Materials Academy, Beijing (China)

    2008-02-15

    The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and one lower, were used to partially replace Portland cement at 0%, 10%, and 30% by weight. The water to binder ratio of 0.5 was used for all the blended cement paste mixes. Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content. The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.

  3. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    International Nuclear Information System (INIS)

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine

  4. Influence of ultra-fine fly ash on hydration shrinkage of cement paste

    Institute of Scientific and Technical Information of China (English)

    GAO Ying-li; ZHOU Shi-qiong

    2005-01-01

    Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data analysis in a series of experimental studies, the influence of ultra-fine fly ash on the hydration shrinkage of composite cementitious materials was investigated. It is found that ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 39.7% when the ultra-fine fly ash replaces cement from 20% to 50%. Moreover, the microscopic mechanism of the ultra-fine fly ash restraining the hydration shrinkage was also studied by scanning electron microscopy, X-ray diffraction and hydrated equations. The results show that the hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash does not participate in the hydration at the early stage and the secondary hydration products are different at the later stage.

  5. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions

    Science.gov (United States)

    Sáez de Ibarra, Y.; Gaitero, J. J.; Erkizia, E.; Campillo, I.

    2006-05-01

    Since their discovery in 1991 by Iijima [1], carbon nanotubes (CNTs) have probably become the most promising nanomaterials due to their unique mechanical, electronic and chemical properties. Our aim is to improve the mechanical properties of cement pastes by the addition of CNTs, giving rise to a new and higher-performance composite material. To reach an efficient cement-based composite with nanotubes, we have studied the addition of different CNT concentrations in the mix design in order to obtain enhanced mechanical properties with respect to plain cement pastes. We have measured the micro-hardness and Young's modulus of the composites by nanoindenting with a sharp diamond three-sided pyramidal tip mounted on an Atomic Force Microscope probe. These measurements have been correlated with the average macroscopic Young's modulus.

  6. Heterogeneous nucleation of ice from supercooled NaCl solution confined in porous cement paste

    Science.gov (United States)

    Zeng, Qiang; Li, Kefei; Fen-Chong, Teddy

    2015-01-01

    Clarifying the nucleation process of chloride-based deicing salt solution (e.g., NaCl solution) confined in cement-based porous materials remains an important issue to understand its detrimental effects on material substrates. In this study, the pore structures of hardened cement pastes were characterized by mercury-intrusion and nitrogen-sorption porosimetry. The ice nucleation temperature of NaCl solution of different concentrations confined in the hardened cement pastes was measured and analyzed by classical heterogeneous nucleation theory. The kinetic factor, contact-angle factor including the contact angle between ice and the substrate were evaluated. The results revealed that the contact angle between ice and the substrate showed the minimum value when adding 3% NaCl into water. The heterogeneous ice nucleation rates were found to be proportional to the water activity shifts.

  7. Influence of the degraded surface layer on the long-term behavior of cement pastes

    International Nuclear Information System (INIS)

    Leaching of a cement paste by a demineralized solution results in the progressive dissolution of the zone in contact with the aggressive solution. In the long term, this dissolution will determine the kinetics of degradation of the material. These kinetics will depend principally on the solubility of calcium in the zone in contact with the aggressive solution

  8. Standard Test Method for Autogenous Strain of Cement Paste and Mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro; Goodwin, Fred;

    This test method measures the bulk strain of a sealed cement paste or mortar specimen, including those containing admixtures, various supplementary cementitious materials (SCM), and other fine materials, at constant temperature and not subjected to external forces, from the time of final setting...

  9. Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede; van Breugel, Klaas

    2003-01-01

    mechanical and thermodynamical basis. Furthermore, this mechanism is easily applicable in a numerical model when dealing with a continuously changing microstructure. In order to test the numerical model, autogenous deformation and internal relative humidity (RH) of a Portland cement paste were measured...

  10. Laser Radiation CO2 Effects in Cement Paste at Different Hydration Stages after Preparation

    Directory of Open Access Journals (Sweden)

    Moreno-Virgen M.R.

    2011-07-01

    Full Text Available In this work the changes occurring in cement pastes irradiated by 10.6µm CO2 laser at diff erent stages of hydration after preparation are presented. Raman spectroscopy, X-ray diffraction and Scanning Electronic Microscopy (SEM techniques were used to observe molecular structural changes. Intensity of cement paste Raman peaks after laser irradiation was monitored in samples irradiated 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 days after their preparation. Applied laser power changed Raman peaks intensity at 187.5cm-1, 563cm-1, 695cm-1, 750cm-1, 897cm-1, 1042cm-1 and 1159cm-1 that correspond to compounds already present in cement pastes. X-ray diffraction, SEM images and changes in the Raman peaks confirm the recrystalization of cement paste compounds into new phases (alite and belite after irradiation. The produced changes show a clear dependence on the applied laser power density and age of samples.

  11. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    International Nuclear Information System (INIS)

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied

  12. Hydrating cement pastes as a complex disordered system

    Science.gov (United States)

    Häussler, F.; Hempel, M.; Eichhorn, F.; Hempel, A.; Baumbach, H.

    1995-01-01

    In small-angle neutron scattering (SANS) experiments, realized on the MURN facility of the pulsed reactor IBR-2 of the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research, Dubna, the hydration processes in samples of ordinary Portland cement (OPC) and single clinker minerals are studied. The measured scattering curve contains information about the fractal behaviour of the interfaces and the size distribution of the scattering particles. Furthermore, a variation of the heavy and light water composition for the hydration water supports the selection of the observable microstructural objects. In dependence on the size distribution of the clinker grains a various time-dependent behaviour of the potential law of the scattering curve is shown. Considering the SANS results of hydrating OPC the exponents of the scattering curve in a given Q-range are varying in dependence on the hydration time and sample thickness. They lie in an interval from about -2 to -4. This is believed to be associated with fractal behaviour. A set of four hydrating C3S-samples is divided into 2 parts after an under water storage of 53 days. Then 2 samples were stored in an H2O/D2O-mixture for reducing the variety of the several hydration products by changing the neutron optical contrast. Considering the time-dependent change of the potential law of the scattering curves of hydrating C3S-samples some differences in contrast to hydrating OPC powder are visible. Within about 100 days after mixing the dry C3S powder with water the exponents of the SANS curves in the measured Q-range are higher than -3. If the hydration products of C3S are forming fractal structures then volume or mass fractals of some nanometers are shown.

  13. Effect of Limestone Powder on Acid Attack Characteristics of Cement Pastes

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2014-12-01

    Full Text Available The acid resistance of cement pastes containing limestone powder with two different water-binder (w/b ratios exposed to acetic (pH = 4 and sulfuric acid (pH = 2 solutions respectively were investigated in this paper. Limestone powder, fly ash and silica fume were also added to the cement paste mixture at different proportions. Static and flowing aqueous environments were set in this experiment. Strength and microstructure of the pastes after acid attack were investigated by using strength test, X-ray diffractometer (XRD and scanning electron microscopy (SEM. The experimental results show that the erosion degree depends not only on pH value of the solution and w/b ratio of the pastes, but also on the content of limestone powder. Acetic acid reacts with calcium hydroxide and carbonate thus dissolving the pastes, while sulfuric acid consumed calcium hydroxide, and generated gypsum and ettringite. The consumption of calcium hydroxide in the flowing solution group is higher than that in the static solution because the flowing sulfuric acid solution has negative effect upon the gypsum crystallization. Fly ash and silica fume are beneficial to limestone cement paste because of the less calcium hydroxide formation, which is among the hydrates vulnerable to acid erosion. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6231

  14. The application of waterworks sludge ash to stabilize the volume of cement paste.

    Science.gov (United States)

    Luo, H L; Kuo, W T; Lin, D F

    2008-01-01

    In order to extend the recycling of waterworks sludge to engineering applications, this paper addresses the influence of nano-SiO2 on incinerated waterworks sludge ash (IWSA) cement paste attacked by sulfate. Tests were performed such as length measurement for volume change, compressive strength, weight loss, and micro-structural testing using scanning electron microscopy (SEM). The results indicate that when a portion of the cement in the paste was replaced by IWSA, the IWSA diluted the cementitious material C3A, and filled the capillary pores in the hardened paste. Moreover, since IWSA has potential pozzolanic activity, it can chemically react with Ca(OH)2 crystals in the paste and can consequently improve the resistance of the paste to sulfate attack. Test results also show that due to the fully developed pozzolanic effect of IWSA, the major reaction products of sulfate attack, gypsum and ettringite, were clearly reduced. Hence, the expansion rate in length decreased with the increase of IWSA replacement. Furthermore, the addition of nano-SiO2 to IWSA cement paste can also reduce the length expansion rate. PMID:18235178

  15. POF based smart sensor for studying the setting dynamics of cement paste

    International Nuclear Information System (INIS)

    Fiber optic smart sensors are used to monitor the civil structures. One of the important parameters in civil engineering is the setting characteristics of concrete made of cement. The paper discusses how a simple polymer optical fiber can be used to characterise the setting dynamics of various grades of cement. The results explain the comparative performance of polymer fiber over silica fiber. The basic principle underlying the sensor is that as the cement sets, it exerts a stress on the sensing fiber, which is laid within the cement paste. This stress induces strain on the optical fiber, which can be thought of as a series of aperiodic microbends on the surface of the fiber. This in turn changes the characteristics of the light signal transmitted through the fiber and can be viewed as stress induced modulation of light in the fiber. By monitoring the intensity variation of transmitted light signal with time we can determine the cement setting rate. This can be used as an effective tool for quality testing of commercially available cements of different grades

  16. Chemical and dimensional evolution of cationic ions exchange resins in cement pastes

    International Nuclear Information System (INIS)

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. After use they are usually encapsulated in cementitious materials. However, the solidified waste forms can exhibit a strong expansion, possibly leading to cracking. Its origin is not well understood as well as the conditions when it occurs.In this work, the interactions between cationic resins in the Na+ or Ca2+ form and tricalcium silicate (C3S), Portland cement (CEM I) or Blast furnace slag cement (CEM III/C) are investigated at an early age in order to gain a better understanding of the expansion process.The results show that during the hydration of a paste of C3S or CEM I containing IERs in the Na+ form, the resins exhibit a transient expansion of small magnitude due to the decrease in the osmotic pressure of the interstitial solution. This expansion, which occurs just after cement setting, is sufficient to damage the material which is poorly consolidated for several reasons: small hydration degree, precipitation of less cohesive sodium bearing C-S-H, heterogeneous microstructure with highly porous zones and lastly cleavable crystals of portlandite at the interface between resins and paste. This expansion can be prevented by performing a calcium pretreatment of the resins or by using a CEM III/C cement with a slower rate of hydration than that of Portland cement. (author)

  17. Cracking in cement paste induced by autogenous shrinkage

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede; Weiss, Jason

    2009-01-01

    Detection and quantification of microcracks caused by restrained autogenous shrinkage in high-performance concrete is a difficult task. Available techniques either lack the required resolution or may produce additional cracks that are indistinguishable from the original ones. A recently developed...... shrinkage of the paste and may cause crack formation. The crack pattern is identified by impregnation with gallium and analyzed by optical and scanning electron microscopy. In this study, a non-linear numerical analysis of the samples was performed. Autogenous strain, elastic modulus, fracture energy, and...

  18. Chloride diffusivity in hardened cement paste from microscale analyses and accounting for binding effects

    Science.gov (United States)

    Carrara, P.; De Lorenzis, L.; Bentz, D. P.

    2016-08-01

    The diffusion of chloride ions in hardened cement paste (HCP) under steady-state conditions and accounting for the highly heterogeneous nature of the material is investigated. The three-dimensional HCP microstructures are obtained through segmentation of x-ray images of real samples as well as from simulations using the cement hydration model CEMHYD3D. Moreover, the physical and chemical interactions between chloride ions and HCP phases (binding), along with their effects on the diffusive process, are explicitly taken into account. The homogenized diffusivity of the HCP is then derived through a least square homogenization technique. Comparisons between numerical results and experimental data from the literature are presented.

  19. Drying effect on cement paste porosity at early age observed by NMR methods

    OpenAIRE

    FAURE, Paméla; CARE, Sabine; Magat, Julie; Chaussadent, Thierry

    2012-01-01

    Nuclear Magnetic Resonance (NMR) methods (imaging and relaxation time) allow studying water content and porous network in cementitious materials. Hydration of cement pastes with two water to cement ratios (W/C of 0.4 and 0.45) has been studied under two conditions (with drying or without drying) at early age. The objectives of this study were, firstly to determine the water content and the drying mechanisms with Magnetic Resonance Imaging (MRI) and to validate this result with oven-drying met...

  20. Inlfuence of Specimen Size on Compression Behavior of Cement Paste and Mortar under High Strain Rates

    Institute of Scientific and Technical Information of China (English)

    CHEN Xudong; CHEN Chen; QIAN Pingping; XU Lingyu

    2016-01-01

    Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes (f68 mm×32 mm,f59 mm×29.5 mm andf32 mm×16 mm) to study the inlfuence of specimen size on the compression behavior of cement-based materials under high strain rates. The static tests were applied using a universal servo-hydraulic system, and the dynamic tests were applied by a spilt Hopkinson pressure bar (SHPB) system. The experimental results show that for mortar and paste specimens, the dynamic compressive strength is greater than the quasi-static one, and the dynamic compressive strength for specimens of large size is lower than those of small size. However, the dynamic increase factors (DIF) has an opposite trend. Obviously, both strain rate and size effect exist in mortar and paste. The test results were then analyzed using Weibull, Carpinteri and Bažant’s size effect laws. A good agreement between these three laws and the test results was reached on the compressive strength. However, for the experimental results of paste and cement mortar, the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.

  1. Influence of superplasticizers on the rheology and stability of limestone and cement pastes

    International Nuclear Information System (INIS)

    The influence of superplasticizers on the rheological properties and dynamic stability of cement and reference limestone pastes were examined at room temperature. The pastes were initially formulated to exhibit nearly identical rheological parameters and bleeding-segregation characteristics, with w/c = 0.50 for the limestone and 0.55 for the cement. The former was examined at equilibrium pH ∼ 10 and at pH 12.5 following addition of Ca(OH)2 to allow distinction of effects related to high pH and Ca+2 from those related to cement hydration reactions. Both polynaphthalene- (PNS) and polyacrylate-type (PC) superplasticizers were investigated, adjusting the dosages to cover the same range of paste fluidity. Superplasticizer-particle interactions were monitored through binding isotherms and zeta potential measurements. The rheology of the pastes was evaluated through the mini-slump test and dynamic viscosity measurements which yielded key rheological parameters: yield stress, elastic and loss moduli (G' and G'') and zero-shear viscosity (η0). The paste stability was monitored as function of time, i.e. migration of solids and liquid phase measured in-situ and in 'real time', through surface bleeding measurements and from a multipoint conductivity method. The results provide new insight on the relative modes of action of PNS- and PC-type superplasticizers as dispersants. Also, the combined rheology and stability data allow an improved description of the processes responsible for bleeding and segregation in cementitious and reference systems

  2. Experimental and modeling study of Portland cement paste degradation in boric acid

    International Nuclear Information System (INIS)

    In the framework of Spent Fuel Pools (SFP) lifetime studies, an investigation of the Portland cement degradation in boric acid has been requested by the Electric Power Research Institute. The main goal of this study is to identify the physico-chemical degradation mechanisms involved in boric acid media. Both experimental and modeling approaches are considered. Concerning degradation experiments, sample of cement paste are immersed during three and nine months in a boric acid solution at 2400 ppm that is periodically renewed. Boric acid concentration has been chosen to be representative of SFP solution. Results will be confronted with reactive transport numerical calculations performed by the reactive transport code HYTEC associated with a dedicated extended database called Thermoddem. The analysis of degradation solution revealed a main ions release mechanism driven by diffusion especially for calcium, nitrate, sodium and sulfate. Leaching behavior of magnesium seems to be more complex. Decalcification is the major degradation process involved, even if a non-negligible contribution of further cations (Mg2+, Na+) and anions (SO42-) has been noticed. Analysis of degradation soution also revealed that kinetic of Portland cement paste degradation in boric acid is higher than in pure water, regarding the degraded depths measured and calcium leaching rate. This observation has been confirmed by solid characterization. Microstructure analysis of degraded Portland cement paste showed a global porosity increase in the degraded zone that might be mainly attributed to Portlandite dissolution. An Ettringite reprecipitation in the degraded zone has been suspected but could also be Ettringite-like phases containing boron. The analysis techniques used did not allow us to differentiate it, and no others specific mineral phases containing boron has been identified. Profile pattern by XRD analysis allowed us to identify four zones composing the degraded Portland cement paste

  3. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    Directory of Open Access Journals (Sweden)

    Hong Jae Yim

    2016-03-01

    Full Text Available When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50.

  4. Effect of PCs superplasticizers on the rheological properties and hydration process of slag-blended cement pastes

    OpenAIRE

    Palacios, M.; Puertas, F.; Bowen, P.; Houst, Y. F.

    2009-01-01

    The effect of polycarboxylate (PC) superplasticizers with different structure on the rheological properties and hydration process of slag-blended cement pastes with a slag content between 0 and 75% has been studied. Fluidizing properties of PCs admixtures are significantly higher in slag-blended cement with respect to non-blended Portland cement. Also, it has been observed that the rise of the fluidity induced by the PCs on the cement pastes increases with the slag content. This effect is mainl...

  5. Undrained heating and anomalous pore-fluid pressurization of a hardened cement paste

    Science.gov (United States)

    Ghabezloo, S.; Sulem, J.; Saint-Marc, J.

    2009-04-01

    Temperature increase in a fluid-saturated porous material in undrained condition leads to volume change and pore pressure increase due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the pore volume. This increase of the pore fluid pressure induces a reduction of the effective mean stress, and can lead to shear failure or hydraulic fracturing. This phenomenon is important is important in environmental engineering for radioactive (exothermal) waste disposal in deep clay geological formations as well as in geophysics in the studies of rapid fault slip events when shear heating tends to increase the pore pressure and to decrease the effective compressive stress and the shearing resistance of the fault material (Sulem et al. 2007). This is also important in petroleum engineering where the reservoir rock and the well cement lining undergo sudden temperature changes for example when extracting heavy oils by steam injection methods. This rapid increase of temperature could damage cement sheath integrity of wells and lead to loss of zonal isolation. The values of the thermal pressurization coefficient, defined as the pore pressure increase due to a unit temperature increase in undrained condition, is largely dependent upon the nature of the material, the state of stress, the range of temperature change, the induced damage. The large variability of the thermal pressurization coefficient reported in the literature for different porous materials with values from 0.01MPa/°C to 1.5MPa/°C highlights the necessity of laboratory studies. This phenomenon of thermal pressurization is studied experimentally for a fluid-saturated hardened cement paste in an undrained heating test. Careful analysis of the effect of the dead volume of the drainage system of the triaxial cell has been performed based on a simple correction method proposed by Ghabezloo and Sulem (2008, 2009). The drained and undrained thermal expansion coefficients of the hardened

  6. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  7. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    Science.gov (United States)

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  8. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Raphael Pilo

    2016-03-01

    Full Text Available The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC or Self Adhesive Resin Cement (SARC. Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa were significantly higher than those for SARC (2.28 ± 0.58 MPa. The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  9. Pore solution analysis of cement pastes and nanostructural investigations of hydrated C3S

    International Nuclear Information System (INIS)

    Pore solution investigations of cement pastes which had been prepared with the addition of ethanolamine showed that the ethanolamine had not been bound by cement during hydration and remained more or less completely dissolved in the capillary water, which can (theoretically) be expressed. This suggests that no significant binding of ethanolamine had occurred, neither chemically nor by way of adsorption and that the physically bound water (gel water) could not act as a solvent for the ethanolamine. The latter seems to be in contrast to the frost theory according to which a part of the gel water is mobile [M. Setzer, Micro ice lens formation, in: M.J. Setzer (Ed.), Proceedings of the 3rd International Bolomey Workshop 'Pore Solution in Hardened Cement Paste', University of Essen, June 1998, AEDIFICATIO Publishers, Freiburg, 2000, pp. 89-112]. This shows that a better understanding of structural details in the nanometer range of hardened cement is necessary. Therefore, small-angle neutron scattering (SANS) experiments were performed to study this part of the structure using C3S. SANS studies allow a nondestructive description of statistically representative microstructures in the scale range from micrometer to nanometer. In contrast to the established methods for microstructural investigations like MIP or BET, nondried samples can be used. Moreover, the scattering signals can be analyzed in a variety of ways, and therefore, a more detailed insight can be provided into the very complex cement paste microstructure. In this study, the signals were evaluated with respect to the specific inner surface and the particle-size distribution in the investigated nanometer range up to ∼100 nm

  10. Evaluation of water transfer from saturated lightweight aggregate to cement paste matrix by neutron radiography

    International Nuclear Information System (INIS)

    In high-strength concrete with low water-cement ratio, self-desiccation occurs due to cement hydration and causes shrinkage and an increased risk of cracking. While high-strength concrete has a denser matrix than normal-strength concrete, resulting in lower permeability, early-age cracks would cancel out this advantage. For the mitigation of this self-desiccation and resultant shrinkage, water-saturated porous aggregate, such as artificial lightweight aggregate, may be used in high-strength concrete. In this contribution, for the purpose of clarification of the volume change of high-strength concrete containing water-saturated lightweight aggregate, water transfer from the lightweight aggregate to cement paste matrix is visualized by neutron radiography. As a result, it is clear that water was supplied to the cement paste matrix in the range 3-8 mm from the surface of the aggregate, and the osmotic forces may yield water transfer around lightweight aggregate in a few hours after mixing.

  11. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application

    Science.gov (United States)

    Cui, Hongzhi; Yang, Shuqing; Memon, Shazim Ali

    2015-01-01

    Microencapsulated phase-change materials (MPCM) can be used to develop a structural–functional integrated cement paste having high heat storage efficiency and suitable mechanical strength. However, the incorporation of MPCM has been found to degrade the mechanical properties of cement based composites. Therefore, in this research, the effect of carbon nanotubes (CNTs) on the properties of MPCM cement paste was evaluated. Test results showed that the incorporation of CNTs in MPCM cement paste accelerated the cement hydration reaction. SEM micrograph showed that CNTs were tightly attached to the cement hydration products. At the age of 28 days, the percentage increase in flexural and compressive strength with different dosage of CNTs was found to be up to 41% and 5% respectively. The optimum dosage of CNTs incorporated in MPCM cement paste was found to be 0.5 wt %. From the thermal performance test, it was found that the cement paste panels incorporated with different percentages of MPCM reduced the temperature measured at the center of the room by up to 4.6 °C. Inverse relationship was found between maximum temperature measured at the center of the room and the dosage of MPCM. PMID:25867476

  12. The Mechanical Properties and Hydration Characteristics of Cement Pastes Containing Added-calcium Coal Gangue

    Institute of Scientific and Technical Information of China (English)

    LI Dongxu; SONG Xuyan

    2008-01-01

    The mechanical properties of several kinds of coal gangue calcined with limestone were Researched so as to find the optimum way of calcinations with limestone. Mierostructure and property of hydration process of cement pastes containing added-calcium coal gangue were analyzed by means of scanning electron microscope (SEM) and method of mercury in trusion poremeasurement (MIP), etc. The experiment can approve those results: when proper amounst of gypsum and fluorite were taken as mineralizers in the course of calcinations of added-calcium coal gangue, activity of coal gangue can be effectively improved. The results of mechanical property and structural characteristic such as hydration process, hydration product and microstructure etc. of cement pastes containing added-calcium coal gangue are consistent.

  13. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  14. The mechanical properties and hydration characteristics of cement pastes containing added-calcium coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Dongxu Li; Xuyan Song [Nanjing University of Technology, Nanjing (China). College of Material Science and Engineering

    2008-04-15

    The mechanical properties of several kinds of coal gangue calcined with limestone were researched so as to find the optimum way of calcinations with limestone. The microstructure and property of hydration process of cement pastes containing added-calcium coal gangue were analyzed by means of scanning electron microscope (SEM) and the method of mercury in trusion poremeasurement. When the proper amounst of gypsum and fluorite were taken as mineralizers in the course of calcinations of added-calcium coal gangue, the activity of coal gangue can be effectively improved. The results of mechanical property and structural characteristics such as hydration, hydration products and microstructure etc. of cement pastes containing added-calcium coal gangue are consistent.

  15. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    1999-01-01

    This paper deals with autogenous deformation and autogenous relative humidity change (RH change) in hardening cement paste. Theoretical considerations and experimental data are presented, which elucidate the influence of temperature on these properties. This is an important subject in the control...... of early age cracking of concrete. It is demonstrated that the traditional maturity concept generally is not applicable to autogenous deformation and autogenous RH change. (C) 1999 Elsevier Science Ltd. All rights reserved....

  16. Nucleation of portlandite clusters in cement paste at very early stageof hydration

    Czech Academy of Sciences Publication Activity Database

    Demo, Pavel; Sveshnikov, Alexey; Hošková, Š.; Tichá, P.; Kožíšek, Zdeněk

    636-637, Pt. 1-2 (2010), s. 1234-1238. ISSN 0255-5476. [5th International Materials Symposium/14th Conference of the Sociedade-Portuguesa-de-Materiais. Lisbon, 05.04.2009-08.04.2009] Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrating cement paste * nucleation * critical size of cluster of portlandite Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Freezing behavior of cement pastes saturated with NaCl solution

    OpenAIRE

    Zeng, Qiang; FEN CHONG, Teddy; Li, Kefei

    2014-01-01

    This study investigates the freezing behaviors of two cement pastes saturated with water and salt (NaCl) solutions of different concentrations. Special experimental set-up was designed to measure the freezing strains of cylindrical specimens in undrained condition. Using the interfacial curvature properties involved in mercury intrusion under pressure and ice penetration under freezing, the pore ice saturation degree is evaluated through mercury intrusion porosimetry (MIP) data. Experimental ...

  18. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  19. Deteriorated hardened cement paste structure analyzed by XPS and 29Si NMR techniques

    International Nuclear Information System (INIS)

    In this report, X-ray photoelectron spectroscopy (XPS) and 29Si-MAS-NMR was used for the evaluation of deteriorated hardened cement pastes. The deterioration by ammonium nitrate solution was accompanied by changes in the pore structure as well as by structural changes in the C–S–H in the hardened cement paste. The CaO/SiO2 ratio of the C–S–H decreased with the progress of deterioration, there was also polymerization of the silicate in the C–S–H. It was confirmed that the degree of polymerization of silicate of the C–S–H in hardened cement paste can be determined by XPS. It was also shown that the polymerization depends on the structure of the C–S–H. -- Highlights: •The polymerization of silicate of the C–S–H in the HCP can be observed by XPS. •The structure of C–S–H changed with the degree of calcium leaching. •The NMR result about silicate in C–S–H was in good agreement with the XPS result

  20. Use of admixtures in organic-contaminated cement-clay pastes.

    Science.gov (United States)

    Gallo Stampino, Paola; Zampori, Luca; Dotelli, Giovanni; Meloni, Paola; Sora, Isabella Natali; Pelosato, Renato

    2009-01-30

    In this work microstructure, porosity and hydration degree of cement-based solidified/stabilized wasteforms were studied before assessing their leaching behaviour. 2-Chloroaniline was chosen as a model liquid organic pollutant and included into cement pastes, which were also modified with different admixtures for concrete: a superplasticizer based on acrylic-modified polymer, a synthetic rubber latex and a waterproofing agent. An organoclay, modified with an ammonium quaternary salt (benzyl-dimethyl-tallowammonium, BDMTA), was added to the pastes as pre-sorbent agent of the organic matter. All the samples were dried up to constant weight in order to stop the hydration process at different times during the first 28 days of curing, typically, after 1 day (1d), 7 days (7d) and 28 days. Then, the microstructure of the hardened cement-clay pastes was investigated by powder X-ray diffraction (XRD). The hydration degree and porosity were studied by thermal analysis (TG/DTA) and mercury intrusion porosimetry (MIP), respectively. For samples cured for 28 days a short-term leach test set by Italian regulation for industrial waste recycling (D.M. 5 February 1998) was performed. The best results showed a 5% release of the total initial amount of organic pollutant. PMID:18514398

  1. Characterization and modeling of the rheology of cement paste: With applications toward self-flowing materials

    Science.gov (United States)

    Saak, Aaron Wilbur

    The objective of this research is to better understand the important mechanisms that control the rheology of cement paste. In order to understand these mechanisms, new experimental techniques are developed. The insights gained through these studies are then applied toward designing self-flowing materials, particularly self-compacting concrete (SCC). A new testing program is developed where both the peak and equilibrium stress flow curves of cement paste are obtained by testing only one sample. Additionally, the influence of wall slip on yield stress and viscoelastic measurements is determined using a vane. The results indicate that a slip layer develops when the shear stress approaches the yield point. A three-dimensional model relating slump to yield stress is derived as a function of cone geometry. The results indicate that the model fits experimental data for cylindrical slumps over a wide range of yield stress values for a variety of materials. When compared to other published models, the results suggest that a fundamental relationship exists between yield stress and slump that is material independent and largely independent of cone geometry. The affect of various mixing techniques on the rheology of cement paste is investigated using a rheometer as a highly controlled mixer. The results suggest that there is a characteristic shear rate where the viscosity of cement paste is minimized. The influence of particle packing density, morphology and surface area on the viscosity of cement paste is quantified. The data suggest that even though packing density increases with the addition of fine particles, the benefits are largely overshadowed by a dramatic increase in surface area. Finally, a new methodology is introduced for designing self-compacting concrete. This approach incorporates a "self-flow zone" where the rheology of the paste matrix provides high workability, yet segregation resistance. The flow properties of fresh concrete are measured using a U

  2. Effects of water-to-cement ratio and temperature on diffusion of water in hardened cement pastes

    International Nuclear Information System (INIS)

    Apparent diffusion coefficients (Da) of water and activation energies (Ea) of diffusion in hardened cement pastes (HCPs) were determined as a function of water-to-cement (w/c) ratio (0.36–0.60) and temperature (293–323 K) using HTO and H218O as tracers. The values of Da and Ea ranged from 1.1×10−11 to 1.7×10−10 m2 s−1 and from 21.5 to 31.3 kJ mol−1, respectively. No significant difference between the Da values of HTO and H218O suggests that water predominantly diffuses as H2O molecule and dissociation of water is not significant even at high pH range in HCP. The values of Ea at low w/c ratio were higher than in bulk liquid water, suggesting a contribution of a different water regime, such as supercooled bulk water. Two simple models consisting of capillary and gel pores were considered to estimate the volume ratio of gel pores to total pores by optimizing the model to fit with the experimental data. The result suggests that HCP has a pore network mostly consisting of capillary pores with some very narrow pores plugged with hydrates, where HTO must diffuse through gel pores. This view of the HCP pore network was made available through analysis of Ea values. (author)

  3. Phase development in conventional and active belite cement pastes by Rietveld analysis and chemical constraints

    International Nuclear Information System (INIS)

    High belite cements may be an alternative to reduce CO2 emissions. Although CO2 emissions may be depleted up to 10%, unfortunately, the hydration reactivity of belite phases is slow which leads to low mechanical strengths at early ages. In order to enhance their hydraulic reactivity, the activation of these cements by doping with alkaline oxides has been proposed. Here, we have synthesised a laboratory belite clinker without activation (47 wt.% of β-C2S and 19 wt.% of αH'-C2S) and two alkaline oxide activated clinkers (one with 13 wt.% of β-C2S, 24 wt.% of αH'-C2S and 19 wt.% of α-C2S; and the second with 12 wt.% of β-C2S, 42 wt.% of αH'-C2S and 5 wt.% of α-C2S). We have also developed a methodology to analyse quantitatively the phase evolution of cement pastes and we have applied it to these high belite cements. Rietveld quantitative phase analysis of synchrotron X-ray powder diffraction data, together with chemical constraints, is used to determine the phase development up to 1 year of hydration in the belite cement pastes. β-C2S almost does not react during the first 3 months, meanwhile αH'-C2S reacts on average more than 50% in the same period. Moreover, the degree of reaction of α-C2S is slightly larger (on average about 70% after three months) than that of αH'-C2S. Full phase analyses are reported and discussed including the time evolution of amorphous phases and free water.

  4. Chemical Composition and Microstructure of Hydration Products of Hardened White Portland Cement Pastes Containing Admixtures

    Institute of Scientific and Technical Information of China (English)

    LI Qiu

    2015-01-01

    This study investigated the nature of hydration products of white portland cement (WPC) containing 20 mM malic acid or 1 M calcium chloride hydrated for 11 years. The study identiifed the hydration products and characterized the chemical composition, morphology, micro/nano structure of C-S-H and the main binding phase in cementitious materials. Calcium hydroxide (CH), ettringite and C-S-H were identiifed in WPC with 20 mM malic acid paste hydrated for 11 years. WPC with 1 M calcium chloride paste hydrated for 11 years contained the same phases, but with less CH, and the presence of Friedel’s salt (Ca2Al(OH)6Cl·2H2O). There were still small amount of anhydrous cement particles remaining in both pastes after 11 years hydration according to the SEM and29Si MAS NMR results. The hydration products of paste containing malic acid had a lower porosity than those prepared with calcium chloride upon visual inspection under SEM. The morphology of the outer product (Op) C-S-H was coarse ifbrillar and the inner product (Ip) C-S-H had a very ifne microstructure in both pastes under TEM. Both Ip and Op C-S-H formed in paste containing malic acid had lower Ca/Si and higher Al/Si than those in paste containing calcium chloride. C-S-H in paste containing calcium chloride had longer MCL and less percentage of bridging tetrahedra occupied by aluminum in silicon/aluminum chains due to relatively lessQ1 and moreQ2. A new type of silicon tetrahedra,Q2B, was introduced during deconvolution of29Si MAS NMR results. Ip and Op C-S-H in both pastes had aluminum substituted tobermorite-type and jennite-type structure, and all the charges caused by aluminum substituting silicon bridging tetrahedra were balanced by Ca2+.

  5. Reproducibility of the uptake of U(VI) onto degraded cement pastes and calcium silicate hydrate phases

    International Nuclear Information System (INIS)

    The U(VI) uptake in degraded cement pastes was undertaken in the laboratories of CEA/L3MR and SUBATECH in order to check the reproducibility of the study. Two well hydrated cement pastes, CEM I (ordinary portland cement, OPC) and CEM V (blast furnace slag (BFS) and fly ash added to OPC) were degraded using similar protocols. Equilibrium solutions and solid materials were characterised for three degradation states for each paste. All samples are free of portlandite and the pH of the equilibrated cement solutions vary in the range 9.8-12.2. Three calcium silicate hydrate phases (C-S-H) were synthesised in order to compare the sorption properties of degraded cement pastes and of hydrate phases in similar pH conditions. In order to avoid precipitation processes, the operational solubility limit was evaluated before batch experiments. These solubility values vary significantly in the pH range [9-13] with a 2.4 x 10-7 mol L-1 minimum at pH close to 10.5. In batch sorption experiments, the distribution ratio Rd values are high: 3 x 104 - 1.5 x 105 mL g-1. The uptake of U(VI) increases when comparing the least and the most degraded cement pastes whereas the initial composition of cement has relatively insensitive effect. Sorption isotherms, expressed as a log [U(VI)solid]/log[U(VI)solution] plots are linear. A slope of 1 is calculated indicating the predominance of sorption processes. As sorption and desorption values are close, the uptake mechanism seems reversible. The Rd values measured in C-S-H suspensions are in good agreement with Rd values of degraded cement pastes, and C-S-H materials could be one of the cementitious phases which control U(VI) uptake in cement pastes. (orig.)

  6. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  7. The influence of pluronic P123 micelles on corrosion behaviour of steel in cement extract and bulk matrix properties of cement paste

    OpenAIRE

    Koleva, D.A.; Denkova, A.G.; Hu, J.; van Breugel, K

    2012-01-01

    The influence of Pluronic P123 (PEO20-PPO20-PEO70) micelles (of 10 nm size) on the corrosion behaviour of low carbon steel in cement extract (CE) was studied using electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarisation (PDP). Additionally, mercury intrusion porosimetry (MIP) was emplo ed to derive the impact of admixed micelles on porosity and pore-size distribution of cement paste. The motivation for carrying out this investigation has two main aspects: first, previou...

  8. Pore Distribution and Water Uptake in a Cenosphere-Cement Paste Composite Material

    Science.gov (United States)

    Baronins, J.; Setina, J.; Sahmenko, G.; Lagzdina, S.; Shishkin, A.

    2015-11-01

    Alumina silicate cenospheres (CS) is a significant waste material from power plants that use a coal. Use CS as Portland cement replacement material gives opportunity to control physical and mechanical properties and makes a product lighter and more cost-effective. In the frame of this study, Portland cement paste samples were produced by adding CS in the concentration range from 0 to 40 volume %. Water uptake of hardened samples was checked and pore size distribution by using the mercury porosimetry was determined. In a cold climate where the temperature often falls below 0 °C, it is important to avoid the amount of micrometer sized pores in the final structure and to decrease water absorption capacity of material. In winter conditions, water fills such pores and causes additional stresses to their walls by expansion while freezing. It was found that generally water uptake capacity for cement paste samples decreased up to 20% by increasing the concentration of CS up to 40 volume %, at the same time, the volume of micrometer sized opened pores increases.

  9. DURABILITY PERFORMANCE OF RFCC SPENT CATALYSTBLENDED PORTLAND CEMENT PASTE EXPOSED TO SEA WATER ATTACK

    Directory of Open Access Journals (Sweden)

    Allahverdi A.

    2013-12-01

    Full Text Available This paper discusses the performance of the paste of Portland cement blended with spent catalyst from Resid Fluidized Catalytic Cracking (RFCC unit of petroleum refining processes in sea water. 28-day cured paste specimens prepared from binary cement mixes containing different amounts of spent catalyst were exposed to Persian Gulf sea water. Compressive strength, weight, and length changes of the specimens were monitored and considered for evaluating the extent of deterioration. Laboratory techniques of X-ray diffractometry, scanning electron microscopy, and Energy dispersive X-ray spectroscopy were also used to study the deteriorated specimens. The results confirm that at relatively high replacement levels, the pozzolanic property of the spent catalyst and the increased open pore volume of such blended cements may result in contradictory consequences. Specimens of relatively higher replacement levels exhibit higher rates of deterioration in spite of their superior mechanical strength behavior caused by pozzolanic reaction. The results obtained by X-ray diffractometry confirm the presence of higher amounts of chlorine-containing Friedel’s salt in specimens containing RFCC spent catalyst compared to plain reference specimens.

  10. Effect of Coal Gangue with Different Kaolin Contents on Compressive Strength and Pore Size of Blended Cement Paste

    Institute of Scientific and Technical Information of China (English)

    CHEN Yimin; ZHOU Shuangxi; ZHANG Wensheng

    2008-01-01

    The effects of activated coal gangue on compressive strength,porosity and pore size distribution of hardened cement pastes were investigated.Activated coal gangue with two different kaolin contents,one higher and one lower,were used to partially replace Portland cement at 0%,10%,and 30% by weight.The water to binder ratio(w/b)of 0.5 was used for all the blended cement paste mixes.Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content.The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.

  11. Modeling the degradation of Portland cement pastes by biogenic organic acids

    International Nuclear Information System (INIS)

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  12. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting [Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024 (China); Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Vandeperre, Luc J. [Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheeseman, Christopher R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-11-15

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.

  13. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    International Nuclear Information System (INIS)

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa

  14. The influence of silanized nano-SiO2 on the hydration of cement paste: NMR investigations

    Science.gov (United States)

    Bede, A.; Pop, A.; Moldovan, M.; Ardelean, I.

    2015-12-01

    It is known that by adding a small amount of nanoparticles to the cement-based materials a strong influence on the workability, strength and durability is obtained. These characteristics of the material are fundamentally determined by the hydration process taking place after mixing the cement grains with water. In the present study the influence introduced by the addition of nano-silica with silanized surfaces on the hydration process was investigated using low-field nuclear magnetic resonance (NMR) relaxometry. The cement samples were prepared using gray cement at a water-to-cement ratio of 0.4 and a 5% addition of nanosilica. The surface of the nanoparticles was modified using a coating of Silane A174. The cement pastes were monitored during their standard curing time of 28 days. It was established that, by using unmodified nanosilica particles, an acceleration of the hydration process takes place as compared with the pure cement paste. On the other side, by adding silanized nanoparticles, the dormancy stage significantly extends and the hydration process is slower. This slowing down process could enhance the mechanical strength of cement based materials as a result of a better compaction of the hydrated samples.

  15. The influence of silanized nano-SiO{sub 2} on the hydration of cement paste: NMR investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bede, A., E-mail: Andrea.Bede@phys.utcluj.ro; Pop, A.; Ardelean, I. [Technical University of Cluj-Napoca, Department of Physics and Chemistry, 400114 Cluj-Napoca (Romania); Moldovan, M. [“Babes-Bolyai” University, “Raluca Ripan” Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania)

    2015-12-23

    It is known that by adding a small amount of nanoparticles to the cement-based materials a strong influence on the workability, strength and durability is obtained. These characteristics of the material are fundamentally determined by the hydration process taking place after mixing the cement grains with water. In the present study the influence introduced by the addition of nano-silica with silanized surfaces on the hydration process was investigated using low-field nuclear magnetic resonance (NMR) relaxometry. The cement samples were prepared using gray cement at a water-to-cement ratio of 0.4 and a 5% addition of nanosilica. The surface of the nanoparticles was modified using a coating of Silane A174. The cement pastes were monitored during their standard curing time of 28 days. It was established that, by using unmodified nanosilica particles, an acceleration of the hydration process takes place as compared with the pure cement paste. On the other side, by adding silanized nanoparticles, the dormancy stage significantly extends and the hydration process is slower. This slowing down process could enhance the mechanical strength of cement based materials as a result of a better compaction of the hydrated samples.

  16. Application of water vapor sorption measurements for porosity characterization of hardened cement pastes

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Water vapor sorption can be used to study important properties of porous materials including specific surface area and pore size distribution (PSD). However, the data analysis is somewhat inconsistent in literature. In this work, the important factors influencing the analyzed results using sorption...... data were reviewed. Water vapor sorption measurements were then applied to two hardened cement pastes and one model porous material MCM-41. The specific surface area was calculated based on different equations accounting for multilayer adsorption and the PSD was analyzed from both the absorption and...

  17. Application of experimental plans method to formulate a self compacting cement paste

    Directory of Open Access Journals (Sweden)

    Mebrouki, A.

    2010-06-01

    Full Text Available The self-compacting concrete formulation means to elaborate a self-compacting cement paste to which will be injected aggregates. The purpose of this work is to find the composition of this cement paste containing local materials (pozzolanic cement, limestone fillers, superplasticizer and water having self-compacting properties. The use of the experimental plans method shows that it is possible to delimit an experimental field bounded by the volumetric proportions of materials composing the paste. The field was transformed in equations form conditioned by implicit constraints, defining zones of minimal shearing threshold and maximum viscosity; numerical resolution submitted to the optimization criteria permitted to define the volumetric proportions of each mixing parameter contributing to the preparation of an optimal paste. After experimental checking to validate obtained results, conclusions are that, from results given by ternary diagrams and desirability’s functions, a composition of an optimal self-compacting cement pas was obtained.

    En este trabajo se estudia la constitución de una pasta autocompactante a base de materiales locales argelinos (cemento binario de base puzolánica natural de Beni Saf y filler calizo de cantera. La reología de la pasta se estudia en función de las dosificaciones de cemento, caliza, superplastificante y agua. La fluidez de las pastas así formadas se deducen de los ensayos de escurrimiento del mini cono y del tiempo de flujo en el cono de Marsh. Utilizando el diseño estadístico de mezclas, el número de ensayos se ha visto considerablemente reducido, el problema se transformó en ecuaciones y después se resolvió numéricamente. A partir de las curvas de los diagramas ternarios, uniendo las respuestas de escurrimiento y el tiempo de flujo de las pastas en función de las dosificaciones en constituyentes y estudiando las funciones de conveniencia para cada respuesta, se terminará por deducir una

  18. Pozzolanic Reaction Rate of Fluid Catalytic Cracking Residue (FC3R) in Cement Pastes

    OpenAIRE

    Paya Bernabeu, Jorge Juan; Monzó Balbuena, José Mª; Borrachero Rosado, María Victoria; SERGIO VELAZQUEZ RODRIGUEZ

    2013-01-01

    Fluid catalytic cracking catalyst residue (FC3R) is a waste material generated in the petroleum industry. Previous research has shown that FC3R exhibits excellent pozzolanic properties in Portland cement mixtures. The pozzolanic activity of FC3R was studied by means of thermogravimetric analysis (measurement of lime fixation) and cold hydrochloric acid treatment (quantification of FC3R reacted). A water/binder ratio of 0.40 was used in the study in the preparation of a control paste (without ...

  19. Time-dependent behaviour of hardened cement paste under isotropic loading

    OpenAIRE

    Manh-Huyen, Vu; Sulem, Jean; Ghabezloo, Siavash; Jean-Benoît, Laudet; André, Garnier; Guédon, Sylvine

    2012-01-01

    International audience The experimental results of isotropic compression tests performed at 20°C and 90°C on a class G hardened cement paste hydrated at 90°C (Ghabezloo et al., 2008, Cem. Conc. Res. 38, 1424-1437) have been revisited considering time-dependent response. Within the frame of a viscoplastic model, the non-linear responses of the volumetric strains as observed in drained and undrained tests and of the pore pressure in undrained tests are analysed. The calibration of model para...

  20. Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash

    OpenAIRE

    Zornoza, E.; Catalá, G.; Jiménez, F.; Andión, L. Gª; Garcés, P.

    2010-01-01

    The study described in this article explored the effect of adding different types of carbon materials (graphite powder and three types of carbon fibre), fly ash (with 5.6%, 15.9% and 24.3% Fe2O3), and a mix of both on electromagnetic interference (EMI) shielding in Portland cement pastes. The parameters studied included the type and aspect ratio of the carbonic material, composite material thickness, the frequency of the incident electromagnetic r...

  1. Effect of AlF3 Production Waste on the Properties of Hardened Cement Paste

    Directory of Open Access Journals (Sweden)

    Danutė VAIČIUKYNIENĖ

    2012-06-01

    Full Text Available The possibility to use by-product SiO2·nH2O (often called AlF3 production waste in cement casting has been attracting the interest of researchers for many years, although high content of fluorine makes the use of amorphous SiO2 problematic. Finding the way of utilizing waste products is a very important research topic at the moment. In this study AlF3 production waste was investigated as the basic ingredient of a new pozzolanic material. The goal of this study is to investigate the possibilities of using AlF3 production waste, washed in ammonia solution, in cement stone specimens. Chemically treated silica gel additive was proved to reduce the amount of Ca(OH2 and CaCO3 in hardened cement paste samples. Experimental research has revealed that the density in hydrated samples reduces from 2220 kg/m3 to 2030 kg/m3 with the increase of silica gel content from 0 % to 35 %. The compressive strength of samples containing 10 % of silica gel additive increased by 8.04 % compared to the samples without the additive. SiO2 additive used at 10 % and 20 % increased the maximum hydration temperature. In this case, the additive modifies the hydration kinetics.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1925

  2. Effect of various Portland cement paste compositions on early-age strain

    Science.gov (United States)

    Guzzetta, Alana G.

    Early-age strain in paste, mortar, and concrete mixtures was investigated using a new method where the specimen shape was a cone frustum. Strain of the specimen from both the horizontal and vertical directions was captured by height change measurement. The volumetric strain was then calculated as a function of the height change and was plotted versus time. A correlation was found between the slopes of the volumetric strain curve resulting from this test method and the initial setting time of the tested material. An initial evaluation of the repeatability of this innovative test method was conducted. The early-age strain effects of aggregate volume, shrinkage reducing admixture, water-cementitious ratio (w/cm), and partial cement replacement with supplementary cementitious materials were tested and individually compared. From these comparisons, it was observed that ambient temperature, bleed water development, and rheological properties had a significant impact on the volumetric strain results. Data showed increased strain as aggregate volume was reduced and as the w/cm was changed from 0.25 up to 0.50. The addition of shrinkage reducing admixture generally caused an increase in the 36-hour volumetric strain value. In most of the mixtures, cement replacement with 20% fly ash or 10% metakaolin reduced the measured volumetric strain when the w/cm was 0.30. Replacement of cement with 10% silica fume caused an insignificant change in volumetric strain results.

  3. Analysis of Factors Affecting the Compressive Strength of Cemented Backfill%胶结充填体抗压强度的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    杨安国; 周宗红; 张秋华

    2014-01-01

    This paper introduces some factors influencing the compressive strength of cemented filling body, in order to demonstrate that the compressive strength of cemented filling body is affected by cementitious materials, inert material, slurry concentration, material ratio and curing conditions. In addition, this paper also points out some problems in mine cemented filling process and the improvement direction.%本文通过介绍影响胶结充填体抗压强度的若干因素,目的是为了说明胶结充填体抗压强度受到胶凝材料、惰性材料、料浆浓度以及物料配比和养护条件等因素的影响。此外,本文还指出了目前矿山胶结在充填过程中存在的一些问题以及改进的方向。

  4. Development of methodology for evaluation of long-term safety aspects of organic cement paste components

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, M.; Holgersson, S. (Chalmers University of Technology, Goeteborg (Sweden)); Ervanne, H. (Helsinki Univ. (Finland)) (and others)

    2008-12-15

    Long-term safety aspects of superplasticizers (SP) and other cement paste components were studied in this joint Nagra - NUMO - SKB - Posiva project with aim to develop a methodology for the evaluation of the long-term safety aspects of superplasticizers (SP) and other organic components of cement pastes. The study also evaluated the effects of SPs and other cement paste components that have already been used or that are most likely to be used in the construction of the high-level nuclear waste repositories in Sweden, Switzerland, Finland and Japan. The main long-term safety issue of concern is whether the superplasticizers and/or other organic components of cement pastes might affect the transport properties of radionuclides. A full evaluation of whether the superplasticizers can be used in a high-level nuclear waste repository cannot be answered based on the studies but a classification of the superplasticizers based on their impact on sorption of radionuclides has been done. The basic methodology for testing, leaching and analyzing of leachants and solid samples of different types was developed at CRIEPI. Two different methodologies for studying the impact of SPs on the sorption of Eu on crushed rock were tested and developed by Helsinki University (HU) and Chalmers University of Technology (CTH). Methods for analyzing organics leaching from grouts were successfully tested by CRIEPI and CTH (Chalmers University of Technology). At CRIEPI the total organic content (TOC) of the leachants was analyzed by Infrared absorption spectrometry (IR) followed by Gel Permeation Chromatography (GPC) for the identification of the organic compounds. At CTH several different analytical methods were tested (e.g. IR, UV spectroscopy, NMR, MALDI-TOF), but these methods still require improvement. In addition to SPs, organics are present in several components of cement pastes, for example in cement grinding aid (CGA) and micro silica slurry. The results suggests that the main high

  5. Development of methodology for evaluation of long-term safety aspects of organic cement paste components

    International Nuclear Information System (INIS)

    Long-term safety aspects of superplasticizers (SP) and other cement paste components were studied in this joint Nagra - NUMO - SKB - Posiva project with aim to develop a methodology for the evaluation of the long-term safety aspects of superplasticizers (SP) and other organic components of cement pastes. The study also evaluated the effects of SPs and other cement paste components that have already been used or that are most likely to be used in the construction of the high-level nuclear waste repositories in Sweden, Switzerland, Finland and Japan. The main long-term safety issue of concern is whether the superplasticizers and/or other organic components of cement pastes might affect the transport properties of radionuclides. A full evaluation of whether the superplasticizers can be used in a high-level nuclear waste repository cannot be answered based on the studies but a classification of the superplasticizers based on their impact on sorption of radionuclides has been done. The basic methodology for testing, leaching and analyzing of leachants and solid samples of different types was developed at CRIEPI. Two different methodologies for studying the impact of SPs on the sorption of Eu on crushed rock were tested and developed by Helsinki University (HU) and Chalmers University of Technology (CTH). Methods for analyzing organics leaching from grouts were successfully tested by CRIEPI and CTH (Chalmers University of Technology). At CRIEPI the total organic content (TOC) of the leachants was analyzed by Infrared absorption spectrometry (IR) followed by Gel Permeation Chromatography (GPC) for the identification of the organic compounds. At CTH several different analytical methods were tested (e.g. IR, UV spectroscopy, NMR, MALDI-TOF), but these methods still require improvement. In addition to SPs, organics are present in several components of cement pastes, for example in cement grinding aid (CGA) and micro silica slurry. The results suggests that the main high

  6. A comparative study of the pore structures and surfaces of hardened cement pastes of potential use in radioactive waste repositories

    International Nuclear Information System (INIS)

    Measurements of water vapour adsorption at 200C and mercury intrusion have been used to compare the surfaces and pore structures of hardened cement pastes made from ordinary portland cement (OPC) and the additives blast furnace slag (BFS) and pulverised fuel ash (PFA). The results suggest that each additive, after taking part in the hydration reaction with OPC, produces a paste whose gel pore structure is similar to that derived from OPC alone. The BET adsorption surface area of the cement pastes, in the form of half inch diameter coupons was ca. 55 m2 g-1 and was not influenced by the presence of the additives. However the pastes containing the additives have a larger and better interconnected meso and macropore structure than OPC which may account for larger diffusion coefficients reported elsewhere for caesium ions passing through concrete containing BFS in comparison with a concrete containing OPC alone. (author)

  7. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    International Nuclear Information System (INIS)

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack

  8. Influence of portland cement replacement in high calcium fly ash geopolymer paste

    Directory of Open Access Journals (Sweden)

    Tanakorn Phoo-ngernkham

    2014-03-01

    Full Text Available This article presents the influence of ordinary Portland cement (OPC replacement in high calcium fly ash (FA geopolymer paste. FA was used to replace OPC at the rate of 5, 10 and 15% by mass of binder. Sodium silicate (Na2SiO3 and 10 molar sodium hydroxide (NaOH solutions were used as the alkaline solution in the reaction. The Na2SiO3/NaOH ratio of 2.0 and the liquid/binder (L/B ratio of 0.60 were used in all mixtures. The results of increase OPC replacement, the setting time and compressive strain capacity decreased while the compressive strength and modulus of elasticity increased. The compressive strength and modulus of elasticity at 28 days of geopolymer pastes with 15% OPC replacement were 36.7 MPa and 13,300 MPa, respectively.

  9. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    International Nuclear Information System (INIS)

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl2, NaCl, NaCl + MgCl2, MgSO4 + MgCl2 and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding for NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite

  10. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no [Department of Structural Engineering, Norwegian University of science and Technology, Trondheim (Norway); SINTEF Building and Infrastructure, Trondheim (Norway); Orsáková, D. [Department of Civil Engineering, Technical University of Brno, Brno (Czech Republic); Geiker, M.R. [Department of Structural Engineering, Norwegian University of science and Technology, Trondheim (Norway)

    2014-11-15

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding for NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.

  11. Influence of Superplasticizers on Early Age Drying Shrinkage of Cement Paste with the Same Consistency

    Institute of Scientific and Technical Information of China (English)

    LAI Junying; ZHANG Lifeng; QIAN Xiaoqian; SHEN Chong; ZHANG Jinjian

    2014-01-01

    The influence of superplasticizer (SP) on the early age drying shrinkage of cement paste with the same consistency was investigated. To conduct the test, which lasted for 72 hours, three paste mixtures were used for comparison. The 72 hours early age drying shrinkage staring from the initial setting time was measured by a clock gauge. The pore size distribution was measured by Mercury Intrusion Method. The surface tension of capillary simulation liquid and mass loss of paste were also measured. The experimental results showed that the addition of SP increased the early drying shrinkage greatly. The ratios of water evaporation and the total free water in mixtures added with SPs showed great differences. SPs fined the capillary pores of paste, and the volume of pore with diameter within 50 nm was well consistent with shrinkage rate. The addition of SPs did not raise the capillary liquid surface tension. It showed that with the volume of pore with diameter within 50 nm and the ratio of water evaporation and the total free water a tolerable shrinkage result of paste added with SP could be predicted, and the elastic modulus could have an influence on the early shrinkage. These results have never been proposed before.

  12. Carbonation of low heat portland cement paste procured in water for different time

    Institute of Scientific and Technical Information of China (English)

    Deping Chen; Etsuo Sakai; Masaki Daimon; Yoko Ohba

    2007-01-01

    The carbonation technique was applied to accelerate the hydration of low heat portland cement (LHC). Before carbonation, the demoulded pastes were precured in water for 0, 2, 7, and 21 d, respectively. The results show that procuring time in water strongly influences the carbonation process. The phenolphthalein test indicates that the paste precured in water for a shorter time is more quickly carbonated than that for a longer time. The content of calcium hydroxide increases with increasing the procuring time in water, whereas, the amount of absorbed carbon dioxide changes contrarily. Scanning electron microscope (SEM) observation shows that portlandite always fills up big air bubbles in the paste during precuring in water, and the mercury intrusion porosimetry (MIP) results show that there are less large capillary pores in the paste precured in water for a longer time. It is found that the paste without precuring in water has more carbon dioxide absorption during curing in carbon dioxide atmosphere, and its total pore volume decreases remarkably with an increase in the carbonation time than that precured in water. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) surface area analyses indicate that the carbonate products are vaterite and calcite; CxSHy,, formed from carbonation has low BET surface area in comparison with that of C-S-H formed from curing in water.

  13. Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag

    OpenAIRE

    B. Safi; A. Benmounah; Saidi, M.

    2011-01-01

    This study aimed to analyse the re-use of dam silt as a supplementary binder for self-compacting concrete (SCC). When burnt, silt becomes more reactive because the kaolin it contains is converted into metakaolin. Portland cement, calcined or burnt silt and ground granulated blast furnace slag were used in this research. Cement pastes were prepared with blends containing two or three of these materials. The replacement ratio for burnt silt in both cases was 10 % and 20 % by cement weight and t...

  14. Usability of cement paste containing carbon nanofibres as an anode in electrochemical chloride extraction from concrete

    Directory of Open Access Journals (Sweden)

    Moral, B. del

    2013-03-01

    Full Text Available In the application of the electrochemical chloride extraction (ECE technique, traditionally, the Ti-RuO2 wire netting has been used as the external anode. This article provides the results of the research based on the use of conductive cement paste with addition of carbon nanofibers (CNF as anodes and its application in ECE. The tests were developed in concrete specimens previously contaminated with chloride. The efficiencies achieved were compared with those obtained using a traditional anode (Ti-RuO2 and cement pastes with the addition of other carbonaceous materials. The results show the feasibility of using conductive cement paste with CNF as the anode in the electrochemical extraction of chlorides in concrete, finding similar efficiencies to those obtained with traditional Ti-RuO2 wire netting but with the added advantage that it can be adapted to complex structural geometries as it can be applied as a paste.

    En la aplicación de la técnica de extracción electroquímica de cloruros (EEC, tradicionalmente se ha venido empleando como ánodo externo una malla de Ti-RuO2. En este artículo se aportan los resultados de investigaciones basadas en la utilización de ánodos formados por pasta de cemento conductora con adición de nanofibras de carbono (NFC y su aplicación en EEC. Las experiencias se desarrollaron en probetas de hormigón contaminado previamente con cloruro. Las eficiencias alcanzadas se compararon con las obtenidas empleando un ánodo tradicional (Ti-RuO2 así como pastas de cemento con adición de otros materiales carbonosos. Los resultados muestran la viabilidad en la utilización de la pasta de cemento conductora con NFC como ánodo en la aplicación en EEC en hormigón, encontrándose eficiencias similares a las obtenidas con la tradicional malla de Ti-RuO2 pero teniendo la ventaja añadida sobre ésta de que es posible adaptarla a geometrías estructurales complejas al ser aplicada en forma de pasta.

  15. Microstructure and mechanical properties of microwave-assisted heating of pozzolan-Portland cement paste at a very early stage

    Directory of Open Access Journals (Sweden)

    Natt Makul

    2013-12-01

    Full Text Available Portland-pozzolan cement pastes at a very early stage subjecting to microwave heating were investigated. Microwave with a 2.45 GHz and multimode cavity was used for the experiments. The pastes containing pozzolan materials (pulverized fuel ash, metakaolin and silica fume were proportioned with a 0.38 water/solid mass ratio and a 20% by weight replacement of total solid content. It was observed that the temperature increased continuously during microwave heating. Some ettringite rods and amorphous C-S-H fibers appear at 4 hrs. The metakaolin-cement paste exhibited little difference between the watercured and microwave-cured pastes. For the silica fume-cement paste the SF particles under microwave curing had dispersed more than with the 4 hr–cement paste. The produced phases included calcium silicate hydrate, calcium hydroxide and xenotile. The pastes can be developed in compressive strength quite rapidly and also consumed more Ca(OH2 in the pozzolan reaction to produce more C-S-H.

  16. Characterization of high-calcium fly ash and its influence on ettringite formation in portland cement pastes

    Science.gov (United States)

    Tishmack, Jody Kathleen

    High-calcium Class C fly ashes derived from Powder River Basin coal are currently used as supplementary cementing materials in portland cement concrete. These fly ashes tend to contain significant amounts of sulfur, calcium, and aluminum, thus they are potential sources of ettringite. Characterization of six high-calcium fly ashes originating from Powder River Basin coal have been carried out. The hydration products formed in pastes made from fly ash and water were investigated. The principal phases produced at room temperature were ettringite, monosulfate, and stratlingite. The relative amounts formed varied with the specific fly ash. Removal of the soluble crystalline sulfur bearing minerals indicated that approximately a third of the sulfur is located in the fly ash glass. Pore solution analyses indicated that sulfur concentrations increased at later ages. Three fly ashes were selected for further study based on their ability to form ettringite. Portland cement-fly ash pastes made with the selected fly ashes were investigated to evaluate ettringite and monosulfate formation. Each of the fly ashes were mixed with four different types of portland cements (Type I, I/II, II, and III) as well as three different Type I cements exhibiting a range of C3A and sulfate contents. The pastes had 25% or 35% fly ash by total weight of solids and a water:cement-fly ash ratio of 0.45. The samples were placed in a curing room (R.H. = 100, 23°C) and were then analyzed at various ages by x-ray diffraction (XRD) and differential scanning calorimetry (DSC) to determine the principal hydration products. The hydration products identified by XRD were portlandite, ettringite (an AFt phase), monosulfate, and generally smaller amounts of hemicarboaluminate and monocarboaluminate (all AFm phases). Although the amount of ettringite formed varied with the individual cement, only a modest correlation with cement sulfate content and no correlation with cement C3A content was observed. DSC

  17. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    International Nuclear Information System (INIS)

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1

  18. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    Energy Technology Data Exchange (ETDEWEB)

    Schroefl, Christof, E-mail: christof.schroefl@tu-dresden.de [Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Baustoffe, DE-01062 Dresden (Germany); Mechtcherine, Viktor [Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Baustoffe, DE-01062 Dresden (Germany); Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard [Paul Scherrer Institut, Laboratory for Neutron Scattering and Imaging, CH-5232 Villigen/AG (Switzerland)

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  19. The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials

    DEFF Research Database (Denmark)

    Snoeck, D.; Jensen, Ole Mejlhede; De Belie, N.

    2015-01-01

    Fly ash and blast-furnace slag containing binders are frequently used in the construction industry and it is important to know the extent of autogenous shrinkage and its (ideal) mitigation by superabsorbent polymers in these systems as a function of their age. In this paper, the autogenous...... shrinkage was determined by manual and automated shrinkage measurements. Autogenous shrinkage was reduced in cement pastes with the supplementary cementitious materials versus Portland cement pastes. At later ages, the rate of autogenous shrinkage is higher due to the pozzolanic activity. Internal curing by...... means of superabsorbent polymers is successful, independent of this long term higher rate of shrinkage in mixtures with supplementary cementitious materials....

  20. Influence of the pore network on hydrogen diffusion through blended cement pastes

    International Nuclear Information System (INIS)

    This article presents a study on the influence of the pore size distribution on gas diffusion through CEM V cement pastes, for different water saturation degrees. The numerical results are compared to the experimental hydrogen diffusion coefficients obtained with water saturation levels ranging from 20% to 95%. The model developed in our research group accounts for the various types of transfer through the pore network: Knudsen diffusion or molecular diffusion depending on the pore size, together with hydrogen diffusion through water. The virtual pore network is created from mercury porosimetry data as a result of the combination of different sizes pore families. By testing different combinations, we could propose pore arrangements leading to diffusion coefficients corresponding to the experimental ones, and show how the combinations of the biggest pore family contribute to control the gas diffusion process. (authors)

  1. Microstructural and bulk property changes in hardened cement paste during the first drying process

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Ippei, E-mail: ippei@dali.nuac.nagoya-u.ac.jp [Graduate School of Environmental Studies, Nagoya University, ES Building, No. 546, Furo-cho, Chikusa-ku, Nagoya 464–8603 (Japan); Nishioka, Yukiko; Igarashi, Go [Graduate School of Environmental Studies, Nagoya University, ES Building, No. 539, Furo-cho, Chikusa-ku, Nagoya 464–8603 (Japan); Matsui, Kunio [Products and Marketing Development Dept. Asahi-KASEI Construction Materials Corporation, 106 Someya, Sakai-machi, Sashima-gun, Ibaraki, 306–0493 (Japan)

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreased for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.

  2. Moisture migration and drying properties of hardened cement paste and mortar

    International Nuclear Information System (INIS)

    Moisture content and movement have a significant influence on mechanical properties of concrete. Therefore, many studies have been done on the migration or loss of water in concrete mostly without any external loads. Concrete in actual structures, however, is usually under stresses. As the microstructure of concrete is changed by the load, the observed moisture movement phenomena may be changed. Hence it is necessary to study the moisture migration in concrete under compressive stress in order to estimate rationally the mechanical behavior such as creep and shrinkage in actual concrete structures. In this paper, the influence of compressive stress on moisture migration and water loss of hardened cement paste were studied experimentally and analytically. Furthermore, comparing them with the results of mortar specimens, the influence of containing aggregates was also discussed

  3. Long-term leaching test of organo-contaminated cement-clay pastes.

    Science.gov (United States)

    Zampori, L; Stampino, P Gallo; Dotelli, G

    2009-10-30

    The aim of the present work is to investigate the effect of a prolonged leaching test (more than a year) on the microstructure of solidified cementitious wasteforms. A set of four different cement-based monoliths (Ap, Bp, Cp and Dp) was prepared, and for each series an uncontaminated sample was prepared as reference (A-D). An organoclay was added in all pastes as pre-sorbent material for the pollutant; a model liquid organic pollutant, 2-chloroaniline (2-CA), was added only in the contaminated ones and different types of admixtures, chosen among those typically employed in the concrete mix-design, were used. After the first 28 days of curing, all the monoliths, contaminated and uncontaminated, underwent a dynamic leach testing (DLT) for more than 1 year in deionized water. PMID:19524362

  4. Early age volume changes in concrete due to chemical shrinkage of cement paste

    Directory of Open Access Journals (Sweden)

    Ebensperger, L.

    1991-12-01

    Full Text Available Unrestrained early age volume changes due to chemical shrinkage in cement pastes, mortars and concretes have been determined. The measurements were performed on sealed and unsealed samples which were stored under water. The chemical shrinkage of unsealed specimens represents the amount of absorbed water due to the chemical reaction of the cement It depends only on the cement content of the sample and does not lead to changes of the external dimensions. However the chemical shrinkage of sealed specimens is connected with a real volume change due to self-desiccation and the effect of internal pressures. The shrinkage depends in this case on the restraining effect of coarse aggregates as well as the cement content. The chemical shrinkage measured on sealed concretes was much higher than the one expected to ocurr on concretes, because normally an equalization of pressure takes place to some extent in the interior of the concrete. The use of expansive additives showed that they may compensate the chemical shrinkage, but its dosage is very sensitive and should be defined exactly for each case particularly.

    Se han determinado los cambios volumétricos que ocurren en pastas de cemento, morteros y hormigones a edad temprana debido al efecto de la retracción química. Las mediciones se realizaron en probetas selladas y no selladas sumergidas bajo agua. La retracción química en probetas no selladas representa la cantidad de agua absorbida debido a la reacción química del cemento. Depende solamente del contenido de cemento de la probeta y no produce ningún cambio en las dimensiones de la probeta. Por el contrario, la retracción química en probetas selladas está relacionada con un cambio volumétrico real debido al efecto de la autodesecación y presiones internas. La retracción en este caso depende tanto de la restricción que imponen los áridos, como del contenido de cemento. La retracción química medida en hormigones sellados

  5. Influence of CO2 Laser Radiation on the Mechanical Properties of Portland Cement Pastes

    Directory of Open Access Journals (Sweden)

    González-Mota, R.

    2011-03-01

    Full Text Available This article presents the results of the treatment of fresh cement pastes with CO2 laser radiation (10.6μm, in order to improve its mechanical properties in addition to obtaining lower setting times than those of a natural setting (without radiation . It was observed that the CO2 laser radiation has a positive influence on the mechanical properties of cement paste, not due to the heat produced during irradiation, but due to the effect of electric field propagation on water molecules, whose are arranged around functional groups of the binder and by the effect of ration, causes a micro vibration effect, resulting in a more compact and less porous paste which has better mechanical properties compared to natural setting paste. The internal and surface temperature of the samples, the evolution of setting, Young's modulus (using ultrasonic pulse velocity and compressive strength were registered.En este artículo se presentan los resultados correspondientes al tratamiento de pastas frescas de cemento con radiación láser de CO2 (10.6µm, con el propósito de mejorar sus propiedades mecánicas además de obtener tiempos de fraguado menores a los del fraguado en forma natural (sin radiación. Se demostró que la radiación con láser de CO2 influye positivamente en las propiedades mecánicas de la pasta de cemento, no por el calentamiento producido durante la irradiación, sino por el efecto de la propagación del campo eléctrico sobre las moléculas de agua que están dispuestas alrededor de los grupos funcionales del aglutinante y que al rotar producen un efecto equivalente a micro vibraciones, dando como resultado un material más compacto, con menos poros y mejores propiedades mecánicas respecto al fraguado natural. Se registró la temperatura interna y superficial de las muestras, la evolución del fraguado, el módulo de Young y la resistencia a compresión.

  6. Probing the hydration of composite cement pastes containing fly ash and silica fume by proton NMR spin-lattice relaxation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Proton NMR spin-lattice relaxation (T1) was used as a prober for observing the hydration process of composite cement pastes blending fly ash and silica fume during the early age.The distribution at initial time,evolution curves and signals intensity of T1 were shown in this paper.Results demonstrate that the T1 distribution curves at initial time exhibit two peaks,which are regarded as two different water phases in the pastes.The evolution curves of T1 are in good agreement with the hydration process of composite pastes and could be roughly divided into four stages:initial period,dormant period,acceleration period and steady period.The hydration mechanism for each stage was discussed.The hydration of the composite cement pastes was retarded by the addition of fly ash and silica fume when compared to that of pure cement.However,the hydration degree of the cement in the blends was promoted.

  7. Characteristics solidified cement waste using heavy concrete and light concrete paste generated from KRR-2 and UCP

    International Nuclear Information System (INIS)

    As the number of obsolete research reactors and nuclear facilities increases, dismantling nuclear facilities has become an influential issue. During the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete wastes are generated. In Korea, the decontamination and decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant at KAERI has been under way. By dismantling KRR-2, more than 260 tons of radioactive concrete wastes were generated among the total 2,000 tons of concrete wastes and more than 60 tons of concrete wastes contaminated with uranium compounds have been generated. Typically, the contaminated layer is only 1∼10mm thick because cement materials are porous media, the penetration of radionuclides may occur up to several centimeters from the surface of a material. Concrete is a structural material which generally consists of a binder (cement), water, and aggregate. The binder is typically a portland cement which comprises the four principal clinker phases tricalcium silicate (Ca3SiO5) and constitutes 50-70%, decalcium silicate (Ca2SiO4), tricalcium aluminate (Ca3Al2O6), and calcium aluminoferrite (Ca4Al2Fe2O10). Cement powder (anhydrous cement) created from the co-grinding of clinkers and gypsum is mixed with waster and hydrate phase are formed. The interaction between highly charged C-S-H particles in the presence of divalent calcium counter ions is strongly attractive because of ion-ion correlations and a negligible entropic repulsion. In the temperature range 100-300 .deg. C, these evolutions are mainly attributed to the loss of the bound water from the C-S-H gel. Similar consequences have been reported for mortars and concretes enhanced sometimes by the appearance of micro-cracks related to the strain incompatibilities between the aggregates and the cement paste. Concrete aggregates are combined mutually strongly by hydrated cement paste. Radionuclides may be found

  8. Impact of the associated cation on chloride binding of Portland cement paste

    International Nuclear Information System (INIS)

    Well hydrated cement paste was exposed to MgCl2, CaCl2 and NaCl solutions at 20 °C. The chloride binding isotherms for free chloride concentrations ranging up to 1.5 mol/l were determined experimentally. More chlorides were found to be bound when the associated cation was Mg2 + or Ca2 + compared to Na+. The chloride binding capacity of the paste appeared to be related to the pH of the exposure solution. In order to explain the cation dependency of the chloride binding a selection of samples was investigated in detail using experimental techniques such as TG, XRD and SEM–EDS to identify the phases binding the chlorides. The experimentally obtained data were compared with the calculations of a thermodynamic model, GEMS. It was concluded that the measured change in chloride binding depending on the cation was mainly governed by the pH of the exposure solution and thereby the binding capacity of the C-S-H

  9. Nanostructural Deformation Analysis of Calcium Silicate Hydrate in Portland Cement Paste by Atomic Pair Distribution Function

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    2016-01-01

    Full Text Available The deformation of nanostructure of calcium silicate hydrate (C-S-H in Portland cement (PC paste under compression was characterized by the atomic pair distribution function (PDF, measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a short-range order below 2.0 nm, close to the size of the C-S-H globule, while the deformation for a long-range order was similar to that of a calcium hydroxide phase measured by Bragg peak shift. The compressive deformation of the C-S-H nanostructure was comprised of three stages with different interactions between globules. This behavior would originate from the granular nature of C-S-H, which deforms with increasing packing density by slipping the interfaces between globules, rearranging the overall C-S-H nanostructure. This new approach will lead to increasing applications of the PDF technique to understand the deformation mechanism of C-S-H in PC-based materials.

  10. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes

    Science.gov (United States)

    Zeng, Qiang; Li, Kefei; Fen-Chong, Teddy; Dangla, Patrick

    2010-11-01

    The surface fractal dimensions of high-volume fly-ash cement pastes are evaluated for their hardening processes on the basis of mercury intrusion porosimetry (MIP) data. Two surface fractal models are retained: Neimark's model with cylindrical pore hypothesis and Zhang's model without pore geometry assumption. From both models, the logarithm plots exhibit the scale-dependent fractal properties and three distinct fractal regions (I, II, III) are identified for the pore structures. For regions I and III, corresponding to the large (capillary) and small (C-S-H inter-granular) pore ranges respectively, the pore structure shows strong fractal property and the fractal dimensions are evaluated as 2.592-2.965 by Neimark's model and 2.487-2.695 by Zhang's model. The fractal dimension of region I increases with w/ b ratio and hardening age but decreases with fly-ash content by its physical filling effect; the fractal dimension of region III does not evolve much with these factors. The region II of pore size range, corresponding to small capillary pores, turns out to be a transition region and show no clear fractal properties. The range of this region is much influenced by fly-ash content in the pastes. Finally, the correlation between the obtained fractal dimensions and pore structure evolution is discussed in depth.

  11. Backfill design 2012

    International Nuclear Information System (INIS)

    This report describes both the concept and the detailed design of backfilling in KBS-3V deposition tunnels. The purpose of the backfill is to keep the buffer in place, maintain favourable and predictable conditions for the buffer and the canister, and also favourable rock mechanical, hydrological and geochemical conditions in the near-field and to retard the transport of released radionuclides in case of canister failure. In addition to the description of the overall backfill design, detailed designs for the components of the backfill (foundation, block and pellet fill) are provided in this report. The deposition tunnel end plug design is not presented in this document. In the backfill design, the deposition tunnels are to be filled with a foundation layer material, precompacted clay blocks and extruded bentonite pellets. The foundation layer consists of Milos bentonite granules, which are compacted in situ in order to level the deposition tunnel floor, providing an even and stable base for the block filling. On the foundation layer, a rigid assemblage of overlapping layers of pre-compacted blocks made of Friedland clay are installed. The void space between the blocks and the rock wall is filled with extruded pellets made of bentonite similar to raw material of Cebogel QSE product. (orig.)

  12. Backfilling techniques and materials in underground excavations: Potential alternative backfill materials in use in Posiva's spent fuel repository concept

    International Nuclear Information System (INIS)

    A variety of geologic media options have been proposed as being suitable for safely and permanently disposing of spent nuclear fuel or fuel reprocessing wastes. In Finland the concept selected is construction of a deep repository in crystalline rock (Posiva 1999, 2006; SKB 1999), likely at the Olkiluoto site (Posiva 2006). Should that site prove suitable, excavation of tunnels and several vertical shafts will be necessary. These excavations will need to be backfilled and sealed as emplacement operations are completed and eventually all of the openings will need to be backfilled and sealed. Clay-based materials were selected after extensive review of materials options and the potential for practical implementation in a repository and work over a 30+ year period has led to the development of a number of workable clay-based backfilling options, although discussion persists as to the most suitable clay materials and placement technologies to use. As part of the continuous process of re-evaluating backfilling options in order to provide the best options possible, placement methods and materials that have been given less attention have been revisited. Primary among options that were and continue to be evaluated as a potential backfill are cementitious materials. These materials were included in the list of candidate materials initially screened in the late 1970's for use in repository backfilling. Conventional cement-based materials were quickly identified as having some serious technical limitations with respect their ability to fulfil the identified requirements of backfill. Concerns related to their ability to achieve the performance criteria defined for backfill resulted in their exclusion from large-scale use as backfill in a repository. Development of new, less chemically aggressive cementitious materials and installation technologies has resulted in their re-evaluation. Concrete and cementitious materials have and are being developed that have chemical, durability

  13. Development of a quantitative accelerated sulphate attack test for mine backfill

    Science.gov (United States)

    Shnorhokian, Shahe

    Mining operations produce large amounts of tailings that are either disposed of in surface impoundments or used in the production of backfill to be placed underground. Their mineralogy is determined by the local geology, and it is not uncommon to come across tailings with a relatively high sulphide mineral content, including pyrite and pyrrhotite. Sulphides oxidize in the presence of oxygen and water to produce sulphate and acidity. In the concrete industry, sulphate is known to produce detrimental effects by reacting with the cement paste to produce the minerals ettringite and gypsum. Because mine backfill uses tailings and binders---including cement---it is therefore prone to sulphate attack where the required conditions are met. Currently, laboratory tests on mine backfill mostly measure mechanical properties such as strength parameters, and the study of the chemical aspects is restricted to the impact of tailings on the environment. The potential of sulphate attack in mine backfill has not been studied at length, and no tests are conducted on binders used in backfill for their resistance to attack. Current ASTM guidelines for sulphate attack tests have been deemed inadequate by several authors due to their measurement of only expansion as an indicator of attack. Furthermore, the tests take too long to perform or are restricted to cement mortars only, and not to mixed binders that include pozzolans. Based on these, an accelerated test for sulphate attack was developed in this work through modifying and compiling procedures that had been suggested by different authors. Small cubes of two different binders were fully immersed in daily-monitored sodium sulphate and sulphuric acid solutions for a total of 28 days, after 7 days of accelerated curing at 50°C. In addition, four binders were partially immersed in the same solutions for 8 days for an accelerated attack process. The two procedures were conducted in tandem with leach tests using a mixed solution of

  14. Accelerated tests of hardened cement pastes alteration by organic acids: analysis of the pH effect

    International Nuclear Information System (INIS)

    Effluents, such as liquid manure and silage effluents, stored in silos often made of concrete, contain organic acids that are chemically very aggressive for the cement-based matrix. The pH of liquid manure is comprised between 6 and 8, and the pH of silage effluent is about 4. There has already been much research done on manure's effect on concrete using aggressive solutions with a pH of or inferior to 4, in order to accelerate alteration kinetics. These studies aimed at simulating liquid manure and silage effluent, equally. The goal of this article is to validate the use of solutions with a pH of 4 to implement accelerated studies on alterations occurring to structures exposed to the acidic part of liquid manure. In this study, the alteration mechanisms of the cement-based matrix produced by two solutions of organic acids with pH of 4 and 6 were compared. At the end of the experiment, carried out on ordinary Portland cement and slag cement pastes, the kinetics of alteration of the cement pastes immersed in the solution with a pH of 4 was ninefold higher than in the solution with a pH of 6. The chemical and mineralogical modifications of the paste were analyzed by electron microprobe, XRD and BSE mode observations. It was shown that the alteration mechanisms of the paste are sensibly identical for both solutions: almost complete decalcification, the disappearance of the crystallized or amorphous hydrated phases and the probable formation of a silica gel containing aluminum and iron, mainly. The differences in alteration mechanisms between the two solutions are minor and mainly concern the stability of the anhydrous phases: C4AF and slag grains

  15. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, I., E-mail: ippei@dali.nuac.nagoya-u.ac.jp [Graduate School of Environmental Studies, Nagoya University, ES Building, No. 539, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Teramoto, A. [Graduate School of Environmental Studies, Nagoya University, Faculty of Engineering, ES Building, No. 546, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-08-15

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflection point and with increase in temperature inside concrete members with large cross sections.

  16. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    International Nuclear Information System (INIS)

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflection point and with increase in temperature inside concrete members with large cross sections

  17. Influence of the calcium sulfate source on the rheological behaviour of calcium sulfoaluminate cement pastes

    OpenAIRE

    Santacruz, Isabel; García-Maté, Marta; G. Aranda, Miguel Ángel; De la Torre, Ángeles G.

    2013-01-01

    Calcium sulfoaluminate (CSA) cements are receiving increasing attention since their manufacture produces much less CO2 than ordinary Portland cement (OPC) [1]. In addition, they show interesting properties such as high early-age strengths, short setting times and impermeability. The main uses of these CSA cements are for quick repairs and pre-cast products or floor concrete applications. They are prepared by mixing the clinker with different amounts of a calcium sulfate set regulator such as ...

  18. Permeability and elastic modulus of cement paste as a function of curing temperature

    International Nuclear Information System (INIS)

    The permeability and elastic modulus of mature cement paste cured at temperatures between 8 °C and 60 °C were measured using a previously described beam bending method. The permeability increases by two orders of magnitude over this range, with most of the increase occurring when the curing temperature increases from 40 °C to 60 °C. The elastic modulus varies much less, decreasing by about 20% as the curing temperature increases from 20 °C to 60 °C. All specimens had very low permeability, k 2, despite having relatively high porosity, φ ∼ 40%. Concomitant investigations of the microstructure using small angle neutron scattering and thermoporometry indicate that the porosity is characterized by nanometric pores, and that the characteristic size of pores controlling transport increases with curing temperature. The variation of the microstructure with curing temperature is attributed to changes in the pore structure of the calcium–silicate–hydrate reaction product. Both the empirical Carmen–Kozeny, and modified Carmen–Kozeny permeability models suggest that the tortuosity is very high regardless of curing temperature, ξ ∼ 1000.

  19. Moisture migration and shrinkage of hardened cement paste at elevated temperatures

    International Nuclear Information System (INIS)

    The drying shrinkage of concrete is caused by the loss of water in the concrete. The moisture diffusion behavior influences the mechanical properties of concrete. When concrete is exposed to high temperature, the rate of moisture migration becomes fast, and moisture gradient is formed. This gradient causes cracks on the concrete surface. Accordingly, it is important to study on the relation between the drying shrinkage and the water diffusion in concrete when its mechanical properties at elevated temperature are discussed. In this paper, the results of the experiment which was carried out by using thin-walled cylinder specimens kept at different temperature and stress are reported. The specimens, the drying shrinkage of concrete and acoustic emission (AE), the thermal expansion of hardened cement paste, the influence that temperature change exerted to the drying shrinkage, and the influence that compressive stress and temperature exerted to water migration are described. The thin-walled cylinder specimens were useful for these experimental studies. (K.I.)

  20. Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash

    Directory of Open Access Journals (Sweden)

    Zornoza, E.

    2010-12-01

    Full Text Available The study described in this article explored the effect of adding different types of carbon materials (graphite powder and three types of carbon fibre, fly ash (with 5.6%, 15.9% and 24.3% Fe2O3, and a mix of both on electromagnetic interference (EMI shielding in Portland cement pastes. The parameters studied included the type and aspect ratio of the carbonic material, composite material thickness, the frequency of the incident electromagnetic radiation and the percentage of the magnetic fraction in the fly ash. The findings showed that the polyacrylonitrile-based carbon fibres, which had the highest aspect ratio, provided more effective shielding than any of the other carbon materials studied. Shielding was more effective in thicker specimens and at higher radiation frequencies. Raising the magnetic fraction of the fly ash, in turn, also enhanced paste shielding performance. Finally, adding both carbon fibre and fly ash to the paste resulted in the most effective EMI shielding as a result of the synergies generated.

    En el presente trabajo se investiga la influencia de la adición de diferentes tipos de materiales carbonosos (polvo de grafito y 3 tipos de fibra de carbono, de una ceniza volante con diferentes contenidos de fase magnética (5,6%, 15,9% y 24,3% de Fe2O3 y de una mezcla de ambos, sobre la capacidad de apantallar interferencias electromagnéticas de pastas de cemento Pórtland. Entre los parámetros estudiados se encuentra: el tipo de material carbonoso, la relación de aspecto del material carbonoso, el espesor del material compuesto, la frecuencia de la radiación electromagnética incidente y el porcentaje de fracción magnética en la ceniza volante. Los resultados obtenidos indican que entre los materiales carbonosos estudiados son las fibras de carbono basadas en poliacrilonitrilo con una mayor relación de aspecto las que dan mejores resultados de apantallamiento. Al aumentar

  1. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    Directory of Open Access Journals (Sweden)

    Ramírez-Arellanes, S.

    2012-09-01

    Full Text Available The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases setting times, reduces flow, slows cement hydration, and inhibits the formation of calcium hydroxide crystals in comparison with the control. Capillary absorption was significantly reduced in concrete containing mucilage, and chloride diffusion coefficients dropped up to 20% in the mixture with a mucilage/cement ratio = 0.30. The mixture with a mucilage/cement ratio = 0.45 displayed marginal reduction, and the mixture with mucilage/cement ratio = 0.60 exhibited a diffusion coefficient that was greater than the control for the specimens without moist curing.En esta investigación se evaluó el efecto de una solución de mucílago de nopal al 3% en los tiempos de fraguado, fluidez, hidratación y microestructura de pastas de cemento, y absorción capilar de agua y difusión de cloruros en concreto. La hidratación fue caracterizada por XRD y la microestructura por medio de SEM. Las relaciones solución de mucílago/cemento y agua/cemento fueron 0,30; 0,45 y 0,60. Los resultados en las pastas de cemento indican que el mucílago retarda los tiempos de fraguado, reduce la fluidez, retarda la hidratación del cemento, e inhibe la formación de cristales de hidróxido de calcio, comparados con los controles. La absorción capilar en concreto conteniendo mucílago se redujo significativamente y los coeficientes de difusión de cloruros disminuyeron hasta 20% en la mezcla mucílago/cemento = 0.30. En la relación mucílago/cemento = 0.45 la reducción fue marginal y

  2. Nano-structural Changes of C-S-H in Hardened Cement Paste during Drying at 50°C

    OpenAIRE

    AONO, Yoshimichi; MATSUSHITA, Fumiaki; SHIBATA, Sumio; HAMA, Yukio

    2007-01-01

    Pore structural changes in hardened cement pastes, subjected to drying and wetting/drying cycles, were studied at micrometer and nanometer levels. Characterization techniques included Nuclear Magnetic Resonance (NMR), nitrogen and water vapor adsorption, mercury intrusion porosimetry (MIP) and under-water weighing. Coarsening of pore structure was observed with MIP and increase in the true density of C-S-H was suggested by the result of under-water weighing. Decrease in specific surface area ...

  3. A numerical-statistical approach to determining the representative elementary volume (REV) of cement paste for measuring diffusivity

    OpenAIRE

    Zhang, M. Z.; Ye, G.; van Breugel, K

    2010-01-01

    Concrete diffusivity is a function of its microstructure on many scales, ranging from nanometres to millimetres. Multi-scale techniques are therefore needed to model this parameter. Representative elementary volume (REV), in conjunction with the homogenization principle, is one of the most common multi-scale approaches. This study aimed to establish a procedure for establishing the REV required to determine cement paste diffusivity based on a three-step, numerical-statistical approach. First,...

  4. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    Science.gov (United States)

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665

  5. Effect of Additives and pH on the Formation of Carbonate Mineral by CO2 Sequestration of Cement Paste

    Science.gov (United States)

    Lee, J. H.; Hwang, J.; Lee, H.; Son, B. S.; Oh, J.

    2015-12-01

    CO2 in the atmosphere causes a global warming that is a big issue nowadays. Many studies of CO2 capture and storage (CCS) technologies have been studied all over the world. Waste cement is a good source for aqueous carbonation because it is rich in calcium. Therefore, this study was performed to develop the aqueous carbonation method for waste cement powder. Cement paste was made with water/cement ratio of 6:4 and cured for 28 days in water bath. The cement paste was pulverized into a fine powder sizing less than 0.15 mm. To study effect of additives and pH on the formation of carbonate minerals, aqueous carbonation experiments were conducted. The mineral compositions and morphology of carbonate mineral were identified by XRD and SEM/EDS analysis. 1.0 M NaCl and 0.25 M MgCl2 were applied as additives. Aqueous carbonation experiment was conducted with injecting pure CO2 gas (99.9%) to a reactor containing 200 ㎖ of reacting solution. The pH of reacting solution was controled to determine formational condition of carbonate minerals. In 0.25 M MgCl2 solution, calcite was dominant mineral at high pH. More aragonite, however, formed as decreasing pH of solution with injection of CO2. The presence of Mg2+ in solution makes aragonite more dominant than calcite. Aragonite was mainly formed at the high pH of solution with 1.0 M NaCl additive, whereas calcite was more preponderant mineral than aragonite as falling pH. It show that unstable aragonite transformed to calcite as decreasing pH. In no additive solution, vaterite was dominantly formed at the initial stage of experiement, but unstable vaterite transformed to well crystallized calcite with further carbonation.

  6. Effect of different retarders on the hydration of calcium sulfoaluminate eco-cement pastes

    OpenAIRE

    García-Maté, Marta; De la Torre, Ángeles G.; Aranda, Miguel A. G.; Santacruz, Isabel

    2014-01-01

    The manufacture of Calcium SulfoAluminate (CSA) cements is more environmentally friendly than that of OPC [1] as their production releases up to 40% less CO2 than the latter. The main performances of CSA cements are fast setting time, good-chemical resistance properties and high early strengths. CSA cements are prepared by mixing CSA clinker with different amounts of a calcium sulfate set regulator such as gypsum (CaSO4•2H2O), bassanite (CaSO4•½H2O), or anhydrite (CaSO4), or mixtures of th...

  7. Effect of thermally activated paper sludge on the mechanical properties and porosity of cement pastes

    Directory of Open Access Journals (Sweden)

    García, R.

    2009-06-01

    Full Text Available The present article discusses the effect of paper sludge additions, calcined at 700 ºC for two hours, on cement paste pore structure and mechanical strength. Both total and capillary porosity were observed to depend on the percentage of calcined sludge added to the cementitious matrix. While a 10% addition induced values for both slightly higher than the control, adding 20% prompted the opposite result, reducing porosity values with respect to the control. Substantial refinement was observed, with a rise in pores smaller than 0.01 μm (gel pores when the calcined sludge was added. Such refinement was greater at the higher percentage of sludge. After approximately 15 days, strength was lower in both the additioned pastes compared to the control. A high correlation (R2≥0.939 was found between total porosity and compressive strength for both percentages studied.El presente trabajo muestra el resultado de una investigación llevada a cabo en pastas de cemento que contienen un 10 y un 20% de lodo de papel calcinado a 700 ºC, durante 2h. Se estudia cómo afecta esta adición activa en la estructura porosa y las resistencias mecánicas. Se demuestra que tanto la porosidad total como la capilar dependen del porcentaje de lodo calcinado añadido a la matriz cementante. Así, un 10% de adición muestra para ambas porosidades valores ligeramente superiores al de la pasta de referencia, sin embargo la incorporación de un 20% produce un resultado contrario, disminuyendo ambas porosidades con respecto a la pasta control. Para el caso de poros de tamaño inferior a 0,01 μm (poros de gel se detecta un importante proceso de refinamiento con la incorporación del lodo calcinado, este refinamiento es tanto mayor cuanto mayor es el porcentaje añadido. En cuanto a los valores de resistencia, para los dos porcentajes de adición se produce una disminución a partir de aproximadamente 15 días, respecto a la pasta patrón. Se muestra una buena correlaci

  8. A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette

    2014-01-01

    cement pastes prepared by two types of cements, i.e., CEM 132.5 R and CEM III/B 42.5 N. Using the modeled ionic concentrations, the calculated differential pore size distributions for the studied samples with and without considering the temperature depression caused by the ions in the pore solution were...

  9. Various durability aspects of cement pastes and concretes with supplementary cementitious materials

    OpenAIRE

    SAILLIO, Mickael; BAROGHEL BOUNY, Véronique; PRADELLE, Sylvain

    2016-01-01

    The use of supplementary cementitious materials (SCMs) as a constituent for concrete receives considerable attention, due to the lower CO2 emission of these materials compared to the production of classic Portland cement. Furthermore, concretes incorporating SCMs show some improved durability properties. SCMs are mainly pozzolanic materials (Fly Ash or Metakaolin) or alkali-activated materials such as ground granulated blast slag (GGBS). In this paper, the durability of concretes and cement p...

  10. Self-Shrinkage Behaviors of Waste Paper Fiber Reinforced Cement Paste considering Its Self-Curing Effect at Early-Ages

    Directory of Open Access Journals (Sweden)

    Zhengwu Jiang

    2016-01-01

    Full Text Available The aim of this paper was to study how the early-age self-shrinkage behavior of cement paste is affected by the addition of the waste paper fibers under sealed conditions. Although the primary focus was to determine whether the waste paper fibers are suitable to mitigate self-shrinkage as an internal curing agent under different adding ways, evaluating their strength, pore structure, and hydration properties provided further insight into the self-cured behavior of cement paste. Under the wet mixing condition, the waste paper fibers could mitigate the self-shrinkage of cement paste and, at additions of 0.2% by mass of cement, the waste paper fibers were found to show significant self-shrinkage cracking control while providing some internal curing. In addition, the self-curing efficiency results were analyzed based on the strength and the self-shrinkage behaviors of cement paste. Results indicated that, under a low water cement ratio, an optimal dosage and adding ways of the waste paper fibers could enhance the self-curing efficiency of cement paste.

  11. A numerical-statistical approach to determining the representative elementary volume (REV of cement paste for measuring diffusivity

    Directory of Open Access Journals (Sweden)

    Zhang, M. Z.

    2010-12-01

    Full Text Available Concrete diffusivity is a function of its microstructure on many scales, ranging from nanometres to millimetres. Multi-scale techniques are therefore needed to model this parameter. Representative elementary volume (REV, in conjunction with the homogenization principle, is one of the most common multi-scale approaches. This study aimed to establish a procedure for establishing the REV required to determine cement paste diffusivity based on a three-step, numerical-statistical approach. First, several series of 3D cement paste microstructures were generated with HYMOSTRUC3D, a cement hydration and microstructure model, for different volumes of cement paste and w/c ratios ranging from 0.30 to 0.60. Second, the finite element method was used to simulate the diffusion of tritiated water through these microstructures. Effective cement paste diffusivity values for different REVs were obtained by applying Fick’s law. Finally, statistical analysis was used to find the fluctuation in effective diffusivity with cement paste volume, from which the REV was then determined. The conclusion drawn was that the REV for measuring diffusivity in cement paste is 100x100x100 μm3.

    La difusividad del hormigón depende de su microestructura a numerosas escalas, desde nanómetros hasta milímetros, por lo que se precisa de técnicas multiescala para representar este parámetro. Junto con el principio de homogeneización, uno de los métodos multiescala más habituales es el volumen elemental representativo (VER. El objeto de este estudio era establecer un procedimiento que permitiera determinar el VER necesario para calcular la difusividad de la pasta de cemento, basándose en un método numéricoestadístico que consta de tres etapas. Primero, se crearon varias series de microestructuras de pasta de cemento en 3D con HYMOSTRUC3D, un programa que permite crear un modelo de la hidratación y microestructura del cemento. Luego se empleó el método de

  12. Some characteristics of potential backfill materials

    International Nuclear Information System (INIS)

    A backfill material is one of the multiple barriers that may be involved in the disposal of nuclear waste. Such backfill should be a desiccant with the hydrous product having acceptable stability; it should sorb any released radioisotopes, and it should reseal any breached site. The backfill must also have acceptable thermal conductivity. This report presents data on the rate of hydration and the nature of the product of reaction of some candidate backfill materials with water and with brine. Thermal conductivity data is reported for both the reactants and the products. Granular MgO at 1500C completely hydrates in less than 10 hours. At 600C and 200C, such extensive hydration requires about 100 and 1000 hours, respectively. The product of the reaction is stable to more than 3000C. A doped discalcium silicate was less reactive and the product contains less water of crystallization than the MgO. The reaction product of dicalcium silicate is cementous, but it has low thermal stability. Bentonite readily reacts with water and expands. The reaction product has the properties of vermiculite, which indicates that magnesium ions have diffused into the bentonite structure and are not simply adsorbed on the surface. If bentonite is emplaced in a saline environment, the properties of vermiculite, the reaction product, should also be considered. The thermal conductivity of MgO, discalcium silicate, and bentonite is primarily dependent on the porosity of the sample. A slight increase in thermal conductivity was found with increased temperature, in contrast to most rocks. If the conductive data for the different materials is equated to the same porosity, MgO has the superior thermal conductivity compared to bentonite or discalcium silicate

  13. The alteration test of hydrate cement paste by water-permeation using centrifugal force

    International Nuclear Information System (INIS)

    The high pH condition of aqueous solution in the radioactive waste repository can be produced by dissolution of hydrated cement. Many studies have been reported to clarify the mechanism to maintain high pH for a long term, however, these can not represent all phenomena related to the dissolution process of the cement hydrates because of the lack of solid phase analyses. We have studied not only the aqueous phase but the change of the solid phase simultaneously. We have studied the applicability of the permeability test method using centrifugal force to percolate pore water. By using this method, we have investigated the dissolution phenomena of hydrated cement within acceptable period of experiment. As a result, the solid phase analysis indicated the clear distinction between altered and unaltered area and the existence of a dissolution front was identified. On the altered area of the solid phase, it was confirmed that Ca(OH)2 was dissolved. An obvious change of microstructure was observed. The relation between the volume of percolated water and concentration of the liquid phase composition contained in percolated water through a specimen of hydrated cement was found to be quite similar to that of the test data by Pfingsten et. al. and consequently the dissolving process of cement was found to be identical. (author)

  14. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste

    International Nuclear Information System (INIS)

    With the increasing application of self-compacting concrete (SCC) in construction and infrastructure, the fire spalling behavior of SCC has been attracting due attention. In high performance concrete (HPC), addition of polypropylene fibers (PP fibers) is widely used as an effective method to prevent explosive spalling. Hence, it would be useful to investigate whether the PP fibers are also efficient in SCC to avoid explosive spalling. However, no universal agreement exists concerning the fundamental mechanism of reducing the spalling risk by adding PP fiber. For SCC, the reduction of flowability should be considered when adding a significant amount of fibres. In this investigation, both the micro-level and macro-level properties of pastes with different fiber contents were studied in order to investigate the role of PP fiber at elevated temperature in self-compacting cement paste samples. The micro properties were studied by backscattering electron microscopy (BSE) and mercury intrusion porosimetry (MIP) tests. The modification of the pore structure at elevated temperature was investigated as well as the morphology of the PP fibers. Some macro properties were measured, such as the gas permeability of self-compacting cement paste after heating at different temperatures. The factors influencing gas permeability were analyzed. It is shown that with the melting of PP fiber, no significant increase in total pore volume is obtained. However, the connectivity of isolated pores increases, leading to an increase of gas permeability. With the increase of temperature, the addition of PP fibers reduces the damage of cement pastes, as seen from the total pore volume and the threshold pore diameter changes. From this investigation, it is concluded that the connectivity of pores as well as the creation of micro cracks are the major factors which determine the gas permeability after exposure to high temperatures. Furthermore, the connectivity of the pores acts as a dominant factor

  15. Influence of chemical composition of civil construction waste in the cement paste; Influencia da composicao quimica dos residuos da construcao civil a pasta de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C., E-mail: valeria@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2009-07-01

    The construction and demolition waste when disposed inappropriately might cause serious public health problems. Its reutilization focusing on the development of new products using simple production techniques, assuring a new product life cycle and not damaging the environment is inserted in sustainable concept. The aim of this work was identifying the characteristics of types of waste generated in a residential reform (glassy ceramic and fill dirt leftovers) verifying separately its influence on cement pastes mechanical behavior. Cement pastes + wastes were prepared in 25% and 50% proportions with an approximately 0,35 water/cement relation and, glue time determination, water absorption, resistance to compression and X-ray fluorescence assays were taken. The results indicate that the chemical composition of the waste causes changes in the behavior of cement pastes, reflecting on their resistance to compression. (author)

  16. Liquid water permeability of partially saturated cement paste assessed by dem-based methodology

    NARCIS (Netherlands)

    Li, K.; Stroeven, P.; Stroeven, M.; Sluys, L.J.

    2015-01-01

    Permeability of virtual cement seems to exceed experimental data by several orders of magnitude. The differences may actually not be that dramatic, since experimental samples are in practice not always fully saturated as generally assumed. This paper demonstrates that this has enormous effects on pe

  17. Microleakage of Three Types of Glass Ionomer Cement Restorations: Effect of CPP-ACP Paste Tooth Pretreatment

    OpenAIRE

    Maryam Doozandeh; Fereshteh Shafiei; Mostafa Alavi

    2015-01-01

    Statement of the Problem: Casein phosphopeptide–amorphous calcium phos-phate (CPP-ACP) increases the mineral content of tooth structure. This may enhance the chemical bonding of glass ionomer cements (GIC) and marginal sealing of their restorations. Purpose: The aim of this study was to evaluate the effect of CPP-ACP paste pretreatment on the microleakage of three types of GIC. Materials and Method: In this study, 72 Class V cavities were prepared on the buccal and lingual surfaces of m...

  18. Uniaxial backfill block compaction

    International Nuclear Information System (INIS)

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  19. Measurement and modeling of the surface potential evolution of hydrated cement pastes as a function of degradation

    International Nuclear Information System (INIS)

    Hydrated cement pastes (HCP) have a high affinity with a lot of (radio)toxic products and can be used as waste confining materials. In cementitious media. elements are removed from solution via (co)precipitation reactions or via sorption/diffusion mechanisms as surface complexation equilibria. In this study, to improve the knowledge of the surface charge evolution vs the degradation of the HCP particles, two cements have been studied: CEM-I (ordinary Portland cement, OPC) and CEM-V (blast furnace slag and fly ash added to OPC). Zeta potential measurements showed that two isoelectric points exist vs HCP leaching, i.e., pH. Zeta potential increases from -17 to +20 mV for pH 13.3 to pH 12.65 (fresh HCP states) and decreases from 20 to -8 mV for pH 12.65 to I I (degraded HCP states). The use of a simple surface complexation model of C-S-H, limited in comparison with the structural modeling of C-S-H in literature, allows a good pr?diction of the surface potential evolution of both HCP. Using this operational modeling, the surface charge is controlled by the deprotonation of surface sites (> SO-) and by the sorption of calcium (> SOCa+), which brings in addition a positive charge. The calcium concentration is controlled by portlandite or calcium silicate hydrate (C-S-H) solubilities. (authors)

  20. Changes in Cement Paste and Mortar Fluidity after mixing induced by PCP: A parametric study

    OpenAIRE

    Regnaud, Laure; Nonat, André; Pourchet, Sylvie; Pellerin, Bruno; Maitrasse, Philippe; Perez, Jean-Philippe; Georges, Sebastien

    2006-01-01

    The interaction mechanism between polycarboxylate-type superplasticizer (PCP) and cement hydration is not fully understood and incompatibilities between concrete and additive are sometimes observed. In some cases, the fluidity tends to increase (“overfluidification”) few minutes after mixing. This is a problem because the overfluidification leds to bleeding of the concrete which could be critical on job site. Our study consisted first in highlighting the phenomenon of “over-fluidification” by...

  1. Investigation of Pozzolanic Reaction in Nanosilica-Cement Blended Pastes Based on Solid-State Kinetic Models and 29Si MAS NMR

    Directory of Open Access Journals (Sweden)

    Jiho Moon

    2016-02-01

    Full Text Available The incorporation of pozzolanic materials in concrete has many beneficial effects to enhance the mechanical properties of concrete. The calcium silicate hydrates in cement matrix of concrete increase by pozzolanic reaction of silicates and calcium hydroxide. The fine pozzolanic particles fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. In this study, Ordinary Portland Cement (OPC was mixed with 1% and 3% nanosilica by weight to produce cement pastes with water to binder ratio (w/b of 0.45. The specimens were cured for 7 days. 29Si nuclear magnetic resonance (NMR experiments are conducted and conversion fraction of nanosilica is extracted. The results are compared with a solid-state kinetic model. It seems that pozzolanic reaction of nanosilica depends on the concentration of calcium hydroxide.

  2. A neutron-diffraction study of changes induced in aluminous cement paste by the application of external electric fields

    International Nuclear Information System (INIS)

    The influence of an external DC voltage in an aluminous cement paste has been studied by in situ neutron diffraction, by monitoring the evolution of CaAl2O4 and Ca3Al2(OH)12 at different distances from the electrodes. The microstructure of the whole aluminous paste becomes dramatically altered. Both phases have been more attacked in zones closer to the electrodes. Major changes took place in the zone next to the positive electrode, in which the anhydrous phase has disappeared completely and the Ca3Al2(OH)12, has decreased significantly. In the cathodic zone, a decrease is also noticed due to the aluminium amphoteric character. The noticeable background diffraction increase in the area close to the positive electrode has been attributed to the formation of an amorphous alumina-like-gel that incorporated water to its composition

  3. 蒸汽养护制度对水泥石孔结构的影响%Effect of Steam Curing System on Pore Structure of Cement Paste

    Institute of Scientific and Technical Information of China (English)

    耿健; 彭波; 孙家瑛

    2011-01-01

    Mercury intrusion method was used to study the effect of steam curing system on pore structure of cement paste. The major reason for inferior permeation resistance of steam cured concrete compared with standard cured concrete is that steam curing process can cause inferior pore structure of cement paste. The influence of steam curing-related parameters on the pore structure of cement paste is significant,a longer curing period favors improvement of the pore structure of cement paste, but a higher temperature rise speed,a longer constant temperature time and a higher constant temperature are unfavorable to the pore structure of cement paste.%采用压汞法研究了蒸汽养护(蒸养)制度对水泥石孔结构的影响.结果表明:蒸养过程会导致水泥石孔结构变差,这是造成蒸养混凝土抗渗性能下降的主要原因;蒸养制度中各参数的变化对水泥石孔结构有明显的影响,静养时间的延长对水泥石孔结构具有改善作用,而较快的升温速率、较长的恒温时间及过高的恒温温度均会对水泥石的孔结构产生不利影响.

  4. Impact of a 70°C temperature on an ordinary Portland cement paste/claystone interface: An in situ experiment

    OpenAIRE

    Lalan, Philippines; Dauzères, Alexandre; De Windt, Laurent; Bartier, Danièle; Sammaljärvi, Juuso; BARNICHON, Jean-Dominique; Techer, Isabelle; Detilleux, Valéry

    2016-01-01

    Radioactive wastes in future underground disposal sites will induce a temperature increase at the interface between the cementitious materials and the host rock. To understand the evolution of Portland cement in this environment, an in situ specific device was developed in the Underground Research Laboratory in Tournemire (France). OPC cement paste was put into contact with clayey rock under water-saturated conditions at 70°C. The initial temperature increase led to ettringite dissolution and...

  5. Features of the influence of carbonaceous nanoparticles on the rheological properties of cement paste and technological properties of the fine-grained concrete

    Directory of Open Access Journals (Sweden)

    TOLMACHEV Sergei Nikolaevich

    2014-10-01

    Full Text Available The article describes the technological features of the manufacture of cement concrete road with carbonaceous nanoparticles. The research was carried out to determine the influence of the carbonaceous nanoparticles (CNP on the properties of cement paste and monominerals cement clinker. The method of determination of mobility and the viscosity of the cement paste due to vibration has been developed. It is shown that the optimal content of the CNP in the cement paste leads to increase of its mobility and reduced viscosity. Introduction of CNP into the cement paste helps to prolong the life setting. The investigations of zeta potential of the suspensions of the cement and cement clinker monominerals with CNP have been done. They showed that the introduction of the CNP into suspension monominerals cement clinker tricalcium aluminate (S3A and tetracalcium alyumoferrita (S4AF leads to dramatic increase of electronegativity and the change of the sign of the potential of these monominerals to the opposite. The effect of carbonaceous nanoparticles on the mechanical and structural characteristics of the cement stone and concrete with CNP was determined. It is shown that the effectiveness of the impact of the CNP on the processes of structure decreases when shifting from submikrostructure to micro-structure and further to meso- and macrostructure. Efficacy of CNP depends on the concrete mixtures compaction method: hard mixture compression or vibropressing leads to two times larger increase in strength when introducing CNP than vibration compaction of moving mixtures. The electron-microscopic studies of the structure of vibrocompacted and pressed cement stone and concrete have been done. One can observe that in the structure of concrete with CNP there are spatial frames inside and around which tumor crystallization takes place. That intensifies the processes of structure formation. Concrete with CNP can be characterized by prevailing dense structure, the

  6. A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Min, E-mail: miwu@byg.dtu.dk [Department of Civil Engineering, Technical University of Denmark, Building 118, 2800 Lyngby (Denmark); Johannesson, Björn [Department of Civil Engineering, Technical University of Denmark, Building 118, 2800 Lyngby (Denmark); Geiker, Mette [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim (Norway)

    2014-08-10

    Highlights: • Ionic concentrations in cement pore solution at freezing temperatures were simulated. • Effects of ions in determining pore sizes by low temperature calorimetry were studied. • Ions in cement pore solution affect the pore size determination to a limited extent. - Abstract: Thermodynamic modeling was used to predict the ionic concentrations in the pore solution of cement pastes at different temperatures during a freezing and melting measurement in low temperature calorimetry (LTC) studies. By using the predicted ionic concentrations, the temperature depressions caused by the ions presented in the pore solution were determined. The influence of the freezing/melting point depression caused by the ions on the determined pore size distribution by LTC was demonstrated. Thermodynamic modeling using the program PHREEQC was performed on the cylinder and powder samples of cement pastes prepared by two types of cements, i.e., CEM I 32.5 R and CEM III/B 42.5 N. Using the modeled ionic concentrations, the calculated differential pore size distributions for the studied samples with and without considering the temperature depression caused by the ions in the pore solution were compared. The results indicate that for the studied cement paste samples, the influence of the temperature depression caused by the presence of the ions in the pore solution on the determination of the pore size distribution by LTC is limited.

  7. A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry

    International Nuclear Information System (INIS)

    Highlights: • Ionic concentrations in cement pore solution at freezing temperatures were simulated. • Effects of ions in determining pore sizes by low temperature calorimetry were studied. • Ions in cement pore solution affect the pore size determination to a limited extent. - Abstract: Thermodynamic modeling was used to predict the ionic concentrations in the pore solution of cement pastes at different temperatures during a freezing and melting measurement in low temperature calorimetry (LTC) studies. By using the predicted ionic concentrations, the temperature depressions caused by the ions presented in the pore solution were determined. The influence of the freezing/melting point depression caused by the ions on the determined pore size distribution by LTC was demonstrated. Thermodynamic modeling using the program PHREEQC was performed on the cylinder and powder samples of cement pastes prepared by two types of cements, i.e., CEM I 32.5 R and CEM III/B 42.5 N. Using the modeled ionic concentrations, the calculated differential pore size distributions for the studied samples with and without considering the temperature depression caused by the ions in the pore solution were compared. The results indicate that for the studied cement paste samples, the influence of the temperature depression caused by the presence of the ions in the pore solution on the determination of the pore size distribution by LTC is limited

  8. Effect of poly car boxy late admixtures on portland cement paste setting and rheological behaviour

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2005-03-01

    Full Text Available The objective of the work was to determine the effects of polycarboxilated-type admixture on the setting times and the rheological properties of different types of cements including CEM I 42.5 R, CEM Il/B-V 42.5 N and CEM III/B 32.5 N, defined according to the UNE EN 197-1:2000 standard. The results show that there is a lineal relationship between the initial setting times and the admixture dosage. Mathematical equations that model this behaviour for each of the cements have been determined. The data obtained from the minislump test and from the rheological parameters determined using the rheometer (plastic viscosity and yield stress point to similar conclusions. It was also verified that the workability effect of the polycarboxilate admixture is most intense for blended cements.

    El objetivo de este trabajo ha sido estudiar el efecto de la dosificación de un aditivo basado en policarboxilatos sobre el inicio de tiempo de fraguado y las propiedades reo lógicas en pastas de diferentes tipos de cemento (CEM 142.5 R, CEM 11/ B-V42.5 NYCEMIII/B 32.5 N-Norma EN 197-1:2000. existe una relación lineal entre el inicio del fraguado y la dosificación del aditivo, se han determinado las ecuaciones matemáticas que describen este comportamiento para cada cemento, los resultados obtenidos sobre la fluidez de la pasta en el ensayo del "minislump" coinciden con la evolución de los valores de los parámetros reológicos (esfuerzo de cizalladura y viscosidad plástica determinados a través de un reómetro. el efecto fluidificante del aditivo superplastificante basado en policarboxilatos es mucho más marcado en cementos que contienen adiciones.

  9. Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Safi, B.

    2011-09-01

    Full Text Available This study aimed to analyse the re-use of dam silt as a supplementary binder for self-compacting concrete (SCC. When burnt, silt becomes more reactive because the kaolin it contains is converted into metakaolin. Portland cement, calcined or burnt silt and ground granulated blast furnace slag were used in this research. Cement pastes were prepared with blends containing two or three of these materials. The replacement ratio for burnt silt in both cases was 10 % and 20 % by cement weight and the ratio for the slag was a constant 30 % by weight of the blend. Rheological and zeta potential tests were conducted to evaluate paste electrokinetics and rheological behaviour. The findings showed that burnt silt is apt for use as an addition to cement for SCC manufacture.

    En el presente trabajo se ha analizado la posibilidad de utilizar los lodos procedentes de embalses como adición en la fabricación del hormigón autocompactante (HAC. Con la calcinación, estos materiales se vuelven más reactivos debido a la transformación en metacaolín, del caolín que forma parte de su composición. Las materias primas empleadas en esta investigación son: cemento Pórtland, lodos de embalse calcinados y escorias granuladas de horno alto. Se prepararon pastas de cemento con mezclas que contenían dos o tres de estos materiales. El porcentaje de reemplazo de los lodos calcinados osciló entre el 10 y el 20 % en peso del cemento, mientras que el de la escoria fue del 30 % en peso de la mezcla. Se llevaron a cabo ensayos reológicos y de potencial zeta para evaluar el comportamiento electrocinético y reológico de las distintas pastas. De acuerdo con los resultados obtenidos, una vez calcinados, los lodos de embalse son aprovechables como adición al cemento con destino a la preparación de HAC.

  10. Development of porosity of cement paste blended with supplementary cementitious materials after carbonation

    OpenAIRE

    Wu, B.; YE, guang

    2015-01-01

    Supplementary cementitious materials (SCMs) like fly ash (FA) and blast furnace slag (BFS) are normally used to replace parts of Ordinary Portland cement (OPC) to reduce the cost and CO2 emission. Some consequences are the reduction of portlandite (CH) content and the formation of C-S-H with low Ca/Si ratio, due to pozzolanic reactions. It is known that carbonation of portlandite leads to a reduction in the porosity which is ascribed to the positive difference of molar volumes between CH and ...

  11. Engineering solution for the backfilling and sealing of radioactive waste repositories

    International Nuclear Information System (INIS)

    To ensure the safety of radioactive waste deep disposal, backfilling and sealing materials (engineered barriers) have to be used to fill residual voids. For granite medium, stress is put on emplacement techniques for cement- and clay-based materials, including in-situ validation. For clay medium, mined repository and deep boreholes drilled from the surface are considered. In the case of the first solution, the thermomechanical behaviour of a clay backfill is studied. In the same way, backfill made of excavated crushed salt is considered and thermomechanical properties evaluated by means of laboratory tests and in-situ experiments. Finally, basic works on quality assurance procedures and historic concretes behaviour are reported

  12. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    International Nuclear Information System (INIS)

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate

  13. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    Energy Technology Data Exchange (ETDEWEB)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr [MINES ParisTech, PSL Research University, Centre de Géosciences, 35 Rue St-Honoré, 77305 Fontainebleau Cedex (France); Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles [University of Toulouse, UPS/INSA/LMDC, 135 Av. de Rangueil, 31077 Toulouse Cedex 04 (France)

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.

  14. Characterization of different types of ceramic waste and its incorporation to the cement paste; Caracterizaco de diferentes tipos de residuos ceramicos e sua incorporacao a pasta de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, G.A.; Evangelista, A.C.J.; Almeida, V.C. de, E-mail: valeria@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2009-07-01

    The porcelain tike is a product resulting from the technological development of ceramic plating industry. Its large acceptation by the consumer market is probably linked with certain properties, such as low porosity, high mechanical resistance, facility in maintenance, besides being a material of modern and versatile characteristics. The aim of this work was characterizing the different ceramic wastes (enameled and porcelain tike) and evaluating its influence on the mechanical behavior in cement pastes. The wastes were characterized through the determination of its chemical composition, size particle distribution and X-ray diffraction. Cement pastes + wastes were prepared in 25% and 50% proportions and glue time determination, water absorption and resistance to compression assays were taken. The results indicate that although the wastes don't show any variation in the elementary chemical composition, changes in the cement paste behavior related to the values of resistance to compression were observed. (author)

  15. 矿山废石全尾砂充填研究现状与发展趋势%The directions of R&D on backfill with waste rock and total tailings in underground mine

    Institute of Scientific and Technical Information of China (English)

    王贤来; 姚维信; 王虎; 乔登攀; 程伟华; 张磊

    2011-01-01

    矿产资源开发过程中产生的废石、尾砂和冶炼渣,等占我国工业固体废料排放量的85%左右.大量矿山固体废料堆放地表,易造成严重污染,诱发泥石流、尾矿溃坝事故.固体废料充填工艺是解决矿山废尾排放的最有效途径.本文介绍了低浓度分级尾砂充填、全尾砂高浓度充填、膏体似膏体充填、块石胶结充填工艺的研究与应用现状,并分析了矿山废石全尾砂充填技术的研究与发展方向.%The waste rock, tailings and smelter slag in the process of the exploitation of mineral resources accounted the industrial solid wastes for about 85% in China based on traditional mining pattern. A large number of the solid waste pilled up on the ground in mine can cause serious pollutions, and may induce mudflows and tailings dam-break accidents. Undoubtedly, the solid waste backfill is the most effective way to solve the discharge of mine waste. In this paper, the present situation of research and application of several filling technology are described with regard to low-density classified tailings backfill, high-density total tailings backfill, paste and like paste backfill, as well as rock cemented backfill. Furthermore, the directions of R&D on backfill with waste rock and total tailings in underground mine were analyzed.

  16. The effect of {alpha}-isosaccharinic acid on the stability of and Th(IV) uptake by hardened cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Tits, J.; Dobler, J.P.; Spieler, P. [Paul Scherrer Inst., Waste Management Lab., Villigen PSI (Switzerland)

    2002-07-01

    The effect of {alpha}-isosaccharinic acid (ISA) on Th(IV) uptake by hardened cement paste (HCP) has been investigated under alkaline conditions (pH 13.3). Prior to performing the uptake studies the stability of HCP was determined in the presence of ISA. It was observed that the formation of Ca-ISA complexes in solution enhances portlandite solubility. The fraction of portlandite dissolved from the HCP matrix depends on the solid to liquid (S/L) ratio of the system and the ISA concentration in solution. Th(IV) uptake by HCP was found to be reduced above an aqueous ISA concentration of about 10{sup -4} M. Reduction of Th(IV) uptake can be modelled taking into account the formation of a Th : ISA : Ca = 1 : 2 : 1 complex in solution. It is indicated that the formation of ternary Th(IV)-ISA complexes may be important in cement systems. The final interpretation of the data however fails due to the large uncertainties in the distribution ratios measured in the absence of ISA. (orig.)

  17. The effect of α-isosaccharinic acid on the stability of and Th(IV) uptake by hardened cement paste

    International Nuclear Information System (INIS)

    The effect of α-isosaccharinic acid (ISA) on Th(IV) uptake by hardened cement paste (HCP) has been investigated under alkaline conditions (pH 13.3). Prior to performing the uptake studies the stability of HCP was determined in the presence of ISA. It was observed that the formation of Ca-ISA complexes in solution enhances portlandite solubility. The fraction of portlandite dissolved from the HCP matrix depends on the solid to liquid (S/L) ratio of the system and the ISA concentration in solution. Th(IV) uptake by HCP was found to be reduced above an aqueous ISA concentration of about 10-4 M. Reduction of Th(IV) uptake can be modelled taking into account the formation of a Th : ISA : Ca = 1 : 2 : 1 complex in solution. It is indicated that the formation of ternary Th(IV)-ISA complexes may be important in cement systems. The final interpretation of the data however fails due to the large uncertainties in the distribution ratios measured in the absence of ISA. (orig.)

  18. Evaluation of the properties of bitumen and cement pastes and mortars used in the immobilization of waste radioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Vanessa Mota; de Tello, Cledola Cassia Oliveira, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The Project RBMN was launched in November 2008 and aims to establish, manage and execute all tasks for implementing the Brazilian Repository, from its conception to its construction. The concept to be adopted will be a near-surface repository. The inventory includes wastes from the operation of nuclear power plants, fuel cycle facilities and from the use of radionuclides in medicine, industry and activities research and development. The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. In Brazil, for the immobilization and solidification of radioactive waste of low and intermediate level of radiation from NPPs are used cement, in Angra 1, and bitumen, in Angra 2. Studies indicate serious concerns about the risks associated with bituminization radioactive waste, much related to the process as the product. There are two major problems due to the presence of products bituminization in repositories, swelling of the waste products and their degradation in the long term. To accommodate the swelling, filling the drums must be limited to 70 - 90% of its volume, which reduces the structural stability of the repository and the optimization of deposition. This study aims to evaluate of the properties of bitumen and cement pastes and mortars used in the immobilization of waste radioactive. (author)

  19. Microstructure: Surface and cross-sectional studies of hydroxyapatite formation on the surface of white Portland cement paste in vitro

    International Nuclear Information System (INIS)

    The formation of hydroxyapatite was investigated at the surface and at the cross-section of white Portland cement paste samples before and after immersion in simulated body fluid. Scanning electron microscope images showed that hydroxyapatite were found at the surface of white Portland cement after immersion in simulated body fluid. Hydroxyapatite grains of mostly ∼1 μm size with some grain size of ∼2-3 μm were seen after 4 days immersion period. More estabilshed hydroxyapatite grain size of ∼3 μm grains were observed at longer period of immersion at 7 and 10 days. The cross-section of the samples was investigated using line scanning technique and was used to determine the hydroxyapatite layer. A strong spectrum of phosphorus is detected up to 6-8 μm depth for samples after 4, 7 and 10 days immersion in simulated body fluid when compared to weak spectrum detected before immersion. The increase in the phosphorus spectrum corresponds to the hydroxyapatite formation on the surface of the samples after the samples were placed in simulated body fluid.

  20. Evaluation of the properties of bitumen and cement pastes and mortars used in the immobilization of waste radioactive

    International Nuclear Information System (INIS)

    The Project RBMN was launched in November 2008 and aims to establish, manage and execute all tasks for implementing the Brazilian Repository, from its conception to its construction. The concept to be adopted will be a near-surface repository. The inventory includes wastes from the operation of nuclear power plants, fuel cycle facilities and from the use of radionuclides in medicine, industry and activities research and development. The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. In Brazil, for the immobilization and solidification of radioactive waste of low and intermediate level of radiation from NPPs are used cement, in Angra 1, and bitumen, in Angra 2. Studies indicate serious concerns about the risks associated with bituminization radioactive waste, much related to the process as the product. There are two major problems due to the presence of products bituminization in repositories, swelling of the waste products and their degradation in the long term. To accommodate the swelling, filling the drums must be limited to 70 - 90% of its volume, which reduces the structural stability of the repository and the optimization of deposition. This study aims to evaluate of the properties of bitumen and cement pastes and mortars used in the immobilization of waste radioactive. (author)

  1. A study of the water vapor sorption isotherms of hardened cement pastes: Possible pore structure changes at low relative humidity and the impact of temperature on isotherms

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Using water vapor sorption isotherms measured by the “dynamic vapor sorption” (DVS) method, a resaturation study was conducted to investigate possible pore structure changes of hardened cement paste samples caused by the drying at low relative humidity during desorption measurements. The results ...... temperatures are mainly caused by the temperature dependent properties of water.......Using water vapor sorption isotherms measured by the “dynamic vapor sorption” (DVS) method, a resaturation study was conducted to investigate possible pore structure changes of hardened cement paste samples caused by the drying at low relative humidity during desorption measurements. The results...

  2. Diffusion and sorption on hardened cement pastes - experiments and modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A.; Sarott, F.-A.; Spieler, P.

    1999-08-01

    Large parts of repositories for low and intermediate level radioactive waste consist of cementitious materials. Radionuclides are transported by diffusion in the cement matrix or, in case of fractured or highly permeable cement, by advection and dispersion. In this work we aim at a mechanistic understanding of diffusion processes of some reactive tracers. On the laboratory scale, ten through-diffusion experiments were performed to study these processes for Cl{sup -}, I{sup -}, Cs{sup +} and Ni{sup 2+} ions in a Sulphate Resisting Portland Cement (SRPC) equilibrated with an artificial pore water. Some of the experiments continued up to nearly three years with daily measurements. In all the experiments, a cement disk initially saturated with an artificial pore water was exposed on one side to a highly diluted solution containing the species of interest. On the second side, a near-zero concentration boundary was maintained to drive through-diffusion of the tracer. The changes of concentrations on both sides of the samples were monitored, allowing careful mass balances. From these data, values of the diffusive flux and the mass of tracer taken up by the cementitious material were determined as a function of time. In the subsequent modelling, the time histories of these tracer breakthroughs were fitted using five different models. The simplest model neglects all retarding mechanisms except pure diffusion. More complex models either account for instantaneous equilibrium sorption in form of linear or non-linear (Freundlich) sorption or for first-order sorption kinetics where the forward reaction may be linear or non-linear according to the Freundlich isotherm, while the back-reaction is linear. Hence, the analysis allows the extraction of the diffusion coefficient and parameter values for the sorption isotherm or rate-constants for sorption and desorption. The fits to the experimental data were carried out by an automated Marquardt-Levenberg procedure yielding error

  3. Diffusion and sorption on hardened cement pastes - experiments and modelling results

    International Nuclear Information System (INIS)

    Large parts of repositories for low and intermediate level radioactive waste consist of cementitious materials. Radionuclides are transported by diffusion in the cement matrix or, in case of fractured or highly permeable cement, by advection and dispersion. In this work we aim at a mechanistic understanding of diffusion processes of some reactive tracers. On the laboratory scale, ten through-diffusion experiments were performed to study these processes for Cl-, I-, Cs+ and Ni2+ ions in a Sulphate Resisting Portland Cement (SRPC) equilibrated with an artificial pore water. Some of the experiments continued up to nearly three years with daily measurements. In all the experiments, a cement disk initially saturated with an artificial pore water was exposed on one side to a highly diluted solution containing the species of interest. On the second side, a near-zero concentration boundary was maintained to drive through-diffusion of the tracer. The changes of concentrations on both sides of the samples were monitored, allowing careful mass balances. From these data, values of the diffusive flux and the mass of tracer taken up by the cementitious material were determined as a function of time. In the subsequent modelling, the time histories of these tracer breakthroughs were fitted using five different models. The simplest model neglects all retarding mechanisms except pure diffusion. More complex models either account for instantaneous equilibrium sorption in form of linear or non-linear (Freundlich) sorption or for first-order sorption kinetics where the forward reaction may be linear or non-linear according to the Freundlich isotherm, while the back-reaction is linear. Hence, the analysis allows the extraction of the diffusion coefficient and parameter values for the sorption isotherm or rate-constants for sorption and desorption. The fits to the experimental data were carried out by an automated Marquardt-Levenberg procedure yielding error estimates of the fit

  4. 水泥浆体体系ζ-电位探究%Study on ζ-potential of Cement Paste System

    Institute of Scientific and Technical Information of China (English)

    张翠; 王智; 王林龙; 张磊

    2013-01-01

    The paper determined ζ-potential of cement paste system systematic using electrophoresis method,researched the effect of five controllable factors on ζ-potential of cement paste system,The results illustrates:hydration time and admixtures have little influence on ζ-potential of cement paste; low water/cement ratio,the concentration of ion electrolyte is high in cement paste; Polycarboxylate superplasticizer could enhance ζ-Potential of cement paste effectively,however,the impact of ζ-potential naphthalene superplasticizer is stronger than that of Polycarboxylate superplasticizer; certain amount of sulfate could improve the ζ-potential on the cement particles with addition of Polycarboxylate superplasticizer.So the increase of the electrostatic repulsion contributes to the dispersion ability and fluidity.It had high reference value in dielectric properties and rheological properties of cement paste,and cement dispersion ability with superplasticizer in theory.%本文通过电泳法系统测定了水泥浆体体系的ζ-电位,研究了实际工程应用中,对水泥浆体性质影响较大、实际可控的五个因素对水泥浆体ζ-电位的影响规律.研究证明:水化时间,掺合料对水泥浆体的ζ-电位影响不大;低水灰比时,水泥浆体中电解质离子浓度较高;聚羧酸减水剂能有效提高水泥颗粒表面ζ-电位,但聚羧酸减水剂对ζ-电位的影响不如萘系减水剂的大;适量硫酸盐可提高掺聚羧酸减水剂的水泥浆体ζ-电位,增加水泥颗粒间静电斥力,对水泥浆体的分散性和流动性有利.实验结论对研究水泥浆体的介电性质、流变性能及水泥与减水剂的分散性具有较高的理论参考价值.

  5. Preparation and characterization of injectable calcium phosphate cement paste modified by polyethylene glycol-6000

    Energy Technology Data Exchange (ETDEWEB)

    Chen Fangping, E-mail: chenfangping06@yahoo.com.cn [The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liu Changsheng, E-mail: liucs@ecust.edu.cn [The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wei Jie [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen Xiao; Zhao Zhen; Gao Yanli [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2011-02-15

    An ICPC with high structure recoverability and paste stability was successfully developed directly incorporating PEG-6000 into the liquid phase of CPC. The rheological behavior of ICPC was investigated with rheometric scientific ARES902-30004 controlled strain rheometer. Novel approaches of flow rate, shear thinning index (SI), shear stress slowdown ({Delta}{tau}) and thixotropy loop area have been applied to assess the injectability and structure recoverability of the ICPC paste. The addition of PEG-6000 to ICPC resulted in a thixotrophic structure with shortened setting time, slightly increased viscosity, larger thixotropic hysteresis loop area and lower {Delta}{tau}, with the improvement largely dependent on the PEG-6000 content. With acceptable injectability and shortened setting time, ICPC (1%) showed the lowest {Delta}{tau} and the highest SI, endowing the paste good structure recoverability and paste stability. The ICPC (1%) was bioactive and facilitated cell attachment and proliferation. The optimized ICPC (1%) paste with a relatively good structure stability and paste stability may serve as a good candidate for tooth root-canal fillings and percutaneous vertebroplasty in microinvasive surgery.

  6. Preparation and characterization of injectable calcium phosphate cement paste modified by polyethylene glycol-6000

    International Nuclear Information System (INIS)

    An ICPC with high structure recoverability and paste stability was successfully developed directly incorporating PEG-6000 into the liquid phase of CPC. The rheological behavior of ICPC was investigated with rheometric scientific ARES902-30004 controlled strain rheometer. Novel approaches of flow rate, shear thinning index (SI), shear stress slowdown (Δτ) and thixotropy loop area have been applied to assess the injectability and structure recoverability of the ICPC paste. The addition of PEG-6000 to ICPC resulted in a thixotrophic structure with shortened setting time, slightly increased viscosity, larger thixotropic hysteresis loop area and lower Δτ, with the improvement largely dependent on the PEG-6000 content. With acceptable injectability and shortened setting time, ICPC (1%) showed the lowest Δτ and the highest SI, endowing the paste good structure recoverability and paste stability. The ICPC (1%) was bioactive and facilitated cell attachment and proliferation. The optimized ICPC (1%) paste with a relatively good structure stability and paste stability may serve as a good candidate for tooth root-canal fillings and percutaneous vertebroplasty in microinvasive surgery.

  7. Durability of API class B cement pastes exposed to aqueous solutions containing chloride, sulphate and magnesium ions

    Directory of Open Access Journals (Sweden)

    Hernández, M. E.

    2008-12-01

    Full Text Available This paper discusses a durability study conducted on API class B cement, the type used in shallow oil wells, when exposed to aggressive formation water. Its resistance to the major ions, namely –SO4=, Mg+2 and Cl-–, is related both to its capacity to assimilate the aggressive action of each harmful agent and to the changes in the chemical reactivity of some of its components. The methodology used consisted in preparing and immersing cement specimens in neutral solutions containing variable concentrations of these ions to monitor the chemical reactions taking place. These solutions were analyzed and XRD studies were conducted for over a year to identify mineralogical variations. The purposes of the study were to determine the effects of joint ionic attack on this kind of cement and to monitor the variations in the calcium concentration in the aqueous solutions of Na2SO4, MgCl2 and NaCl in contact with API class B cement pastesEste trabajo se basa en el estudio de la durabilidad de un cemento API clase B, utilizado en pozos petrolíferos someros, frente a la agresividad de las aguas de formación a las que puede estar expuesto. Su eficacia frente a la exposición a los iones más importantes –SO4=, Mg+2 y Cl-– se relaciona con su capacidad de asimilar la acción agresiva de cada agente perjudicial, así como de las reacciones químicas que sufra por la reactividad de alguno de sus compuestos. La metodología aplicada supone la preparación de probetas de este cemento y su inmersión en disoluciones neutras, conteniendo los referidos iones a distintas concentraciones, para evaluar el desarrollo de las reacciones existentes en su seno. A tal fin se realizaron análisis de las disoluciones y estudios de DRX durante más de un año para conocer su evolución mineralógica. El objetivo del trabajo ha sido determinar los efectos resultantes de los ataques conjuntos de los citados iones al referido cemento; así como la observación de las

  8. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 2: Significance of transition zones on physical and mechanical properties of portland cement mortar; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.F.F.; Cohen, M.D.; Chen, W.F.; Zhang, Y.

    1998-08-01

    The research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  9. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo, S.M., E-mail: sm.monteagudo@alumnos.upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Moragues, A., E-mail: amoragues@caminos.upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Gálvez, J.C., E-mail: jaime.galvez@upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Casati, M.J., E-mail: mariajesus.casati@upm.es [Departamento de Vehículos Aeroespaciales, Escuela de Ingeniería Aeronáutica, Universidad Politécnica de Madrid (Spain); Reyes, E., E-mail: encarnacion.reyes@upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain)

    2014-09-20

    Highlights: • A proposal of hydration degree calculation for blended cement pastes is presented. • The method is based both on the contributions of various authors and on DTA–TG results. • Paste and mortar specimens with BFS, FA and SF mineral admixtures were used. • The evaluation of CH gives information on hydration and pozzolanic reactions. • The assessment of α provides an insight into future strength evolution. - Abstract: The degree of hydration assessment of cement paste from differential thermal and thermogravimetric analysis data has been performed by several authors that have offered a number of proposals for technical application to blended cements. In this paper, two calculation methods are studied in detail. Then, a proposal of the degree of hydration calculation for blended cements, based on the analysis of experimental results of DTA–TG, is presented. The proposed method combines the contributions of the authors and allows straightforward calculation of the degree of hydration from the experimental results. Validation of the methodology was performed by macroscopic and microstructural tests through paste and mortar specimens with blast furnace slag, flying ash and silica fume mineral admixtures bei(g)ng used. Tests of scanning electron microscopy with an energy dispersive analyser on paste specimens, and of mechanical strength on mortar specimens with the same percentages of substitution, were performed. They showed good agreement with the information derived from the differential thermal and thermogravimetric analysis data.

  10. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases

    International Nuclear Information System (INIS)

    Highlights: • A proposal of hydration degree calculation for blended cement pastes is presented. • The method is based both on the contributions of various authors and on DTA–TG results. • Paste and mortar specimens with BFS, FA and SF mineral admixtures were used. • The evaluation of CH gives information on hydration and pozzolanic reactions. • The assessment of α provides an insight into future strength evolution. - Abstract: The degree of hydration assessment of cement paste from differential thermal and thermogravimetric analysis data has been performed by several authors that have offered a number of proposals for technical application to blended cements. In this paper, two calculation methods are studied in detail. Then, a proposal of the degree of hydration calculation for blended cements, based on the analysis of experimental results of DTA–TG, is presented. The proposed method combines the contributions of the authors and allows straightforward calculation of the degree of hydration from the experimental results. Validation of the methodology was performed by macroscopic and microstructural tests through paste and mortar specimens with blast furnace slag, flying ash and silica fume mineral admixtures bei(g)ng used. Tests of scanning electron microscopy with an energy dispersive analyser on paste specimens, and of mechanical strength on mortar specimens with the same percentages of substitution, were performed. They showed good agreement with the information derived from the differential thermal and thermogravimetric analysis data

  11. Influence of Nano-SiO2 on the Consistency, Setting Time, Early-Age Strength, and Shrinkage of Composite Cement Pastes

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2016-01-01

    Full Text Available The study outlined the raw materials and mix proportions to prepare composite cement pastes with the addition of silica-based micro- and nanoparticles. The effects of amorphous nano-SiO2 on the early-age properties, including the consistency, setting time, early-age strength, and chemical and autogenous shrinkages, were investigated. Under the condition of the same dosage of superplasticizer used, the consistency of cement paste with nano-SiO2 is higher than that with silica fume. Significant reductions of the initial and final setting times are observed especially for nano-SiO2 addition groups, and the time difference between the initial and final setting times goes up with the increasing proportions of nano-SiO2. The addition of nano-SiO2 is more helpful to the improvement of early-age strengths of the paste with or without fly ash admixed than silica fume additive for the same mass proportion. Both the chemical and autogenous shrinkages of cement paste develop with the increasing amount of micro- or nanolevel silica particles; however, nano-SiO2 plays a more active role than silica fume in inspiring early-age shrinkage. The physical and chemical mechanisms of nano-SiO2 in cement paste are also discussed.

  12. Tests to determine water uptake behaviour of tunnel backfill

    International Nuclear Information System (INIS)

    likely that the backfill can handle somewhat higher inflow rates and provide a longer time period before exiting the backfill. This would provide more capacity to handle interruptions in backfilling operations before remedial actions will be necessary to ensure backfill competence. Based on preliminary data the quantity of material removed by water flowing into and past the backfill in the first 48 hours after inflow begins will range from 0 to 35 g/l. Beyond 48 hours the erosion rate drops to 5 to 15 g per litre of water through-flow. It is flow amount rather than rate that will determine the amount of material removed by water movement along the rock-pellet interfaces. These data provide guidance to the planning and conduct of larger (1/2 scale) tests that will quantify the effects of scale, time, flow path length and flow rate on backfill performance

  13. Tests to determine water uptake behaviour of tunnel backfill

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Anttila, S.; Viitanen, M. (Poeyry InfRa Oy (Finland)); Keto, Paula (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-12-15

    is likely that the backfill can handle somewhat higher inflow rates and provide a longer time period before exiting the backfill. This would provide more capacity to handle interruptions in backfilling operations before remedial actions will be necessary to ensure backfill competence. Based on preliminary data the quantity of material removed by water flowing into and past the backfill in the first 48 hours after inflow begins will range from 0 to 35 g/l. Beyond 48 hours the erosion rate drops to 5 to 15 g per litre of water through-flow. It is flow amount rather than rate that will determine the amount of material removed by water movement along the rock-pellet interfaces. These data provide guidance to the planning and conduct of larger (1/2 scale) tests that will quantify the effects of scale, time, flow path length and flow rate on backfill performance

  14. Microleakage of Three Types of Glass Ionomer Cement Restorations: Effect of CPP-ACP Paste Tooth Pretreatment

    Directory of Open Access Journals (Sweden)

    Maryam Doozandeh

    2015-09-01

    Full Text Available Statement of the Problem: Casein phosphopeptide–amorphous calcium phos-phate (CPP-ACP increases the mineral content of tooth structure. This may enhance the chemical bonding of glass ionomer cements (GIC and marginal sealing of their restorations. Purpose: The aim of this study was to evaluate the effect of CPP-ACP paste pretreatment on the microleakage of three types of GIC. Materials and Method: In this study, 72 Class V cavities were prepared on the buccal and lingual surfaces of molars with occlusal margins in enamel and gin-gival margins in root. The cavities were divided into 6 groups. Cavities in group 1 and 2 were restored with Fuji II, group 3 and 4 with Fuji II LC, and group 5 and 6 with Ketac N100 with respect to the manufacturers’ instructions. In groups 2, 4 and 6, CPP-ACP containing paste (MI paste was placed into the cavities for 3 minutes before being filled with GIC. The teeth were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. Kruskall-Wallis and Chi-Square tests were used to analyze the data. Result: There were no statistically significant differences between the control and the CPP-ACP pretreatment groups in enamel and dentin margins. In pairwise comparisons, there were no significant differences between the control and the experimental groups in enamel margin, and in dentin margins of G1 and 2, G5 and 6; however, a significant differences was detected in dentin margins between G3 and 4 (p= 0.041. Conclusion: CPP-ACP paste pretreatment did not affect the microleakage of Fuji II and Ketac N100 in enamel or dentin, but decreased the microleakage in dentine margins of Fuji II LC when cavity conditioner was applied before sur-face treatment.

  15. Surface Modification of Fly Ashes with Carbide Slag and Its Effect on Compressive Strength and Autogenous Shrinkage of Blended Cement Pastes

    Institute of Scientific and Technical Information of China (English)

    HAO Chengwei; DENG Min; MO Liwu; LIU Kaiwei

    2012-01-01

    Surfaces of grade Ⅲ fly ashes were modified through mixing with carbide slag and calcining at 850 ℃ for 1 h.Mineralogical compositions and surface morphology of fly ashes before and after modification were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM),respectively.Effect of surface-modified fly ashes on compressive strength and autogenous shrinkage of blended cement pastes was investigated.Microstructures of cement pastes were examined by backscattered electron (BSE) imaging and mercury intrusion porosimetry (MIP).The experimental results showed that β-C2S was formed on the surfaces of fly ashes after modification.Hydration of β-C2S on the surface-modified fly ashes densified interface zone and enhanced bond strength between particles of fly ashes and hydrated clinkers.In addition,surface modification of fly ashes tended to decrease total porosity and 10-50 nm pores of cement pastes.Surface modification of fly ashes increased compressive strength and reduced autogenous shrinkage of cement pastes.

  16. Diffusion of Tritiated Water (HTO) and 22Na+-Ions through Non-Degraded Hardened Cement Pastes - II. Modelling Results

    International Nuclear Information System (INIS)

    In this report, the procedure and the results of an inverse modelling study on the through-diffusion of tritiated water (HTO) and 22Na+-ions are presented using high-porous hardened cement pastes with a water/cement ratio of 1.3 in the first stage of the cement degradation. For the analysis two alternative models were applied: 1) a diffusion model where a possible sorption of the tracer was entirely neglected, and 2) a diffusion model with linear sorption. The analysis of the through-diffusion phase allowed extracting values for the effective diffusion coefficient (De) and the rock-capacity factor (α). Both models could fit the breakthrough curves equally well, and also mass-balance considerations did not allow to clearly preferring one of the two competing models to the other. But blind-predictions for tracer out-diffusion using the best-fit parameter values deduced from analysing the former through-diffusion phase gave a clear indication that linear sorption had to be included in the diffusion model. The extracted Kd values for HTO are in excellent agreement with values from batch sorption experiments and are of the order of 0.8. 10-3 m3/kg. Those for 22Na+ are of the order of 1.0. 10-3 m3/kg and are by a factor of two larger than values from batch sorption experiments. The values for the effective diffusion coefficients for HTO are of the order of (2-3).10-10 m2/s, and those for sodium are roughly by a factor of two smaller than values for HTO. On the one hand, the observed tracer uptake could only partially be addressed to isotope exchange; the most obvious process which could account for the remaining part of the uptaken tracer mass is diffusion into a second type of porosity, the dead-end pores. On the other hand, the results and conclusions drawn are encouraging for future investigations; therefore no major deficiency concerning the applied equipment and the modelling methodology could be detected. In the report, however, some suggestions for new and

  17. Status of Research on Magnesium Oxide Backfill

    Energy Technology Data Exchange (ETDEWEB)

    PAPENGUTH,HANS W.; KRUMHANSL,JAMES L.; BYNUM,R. VANN; WANG,YIFENG; KELLY,JOHN W.; ANDERSON,HOWARD; NOWAK,E. JAMES

    2000-07-31

    For the WIPP, chemical and physical characteristics of MgO suggest it to be the most beneficial backfill choice, particularly because it has the ability to buffer the aqueous chemical conditions to control actinide volubility. In the current experimental program, the authors are developing a technical basis for taking credit for the complete set of attributes of MgO in geochemical, hydrogeological, and geomechanical technical areas, resulting in an improved conceptual model for the WIPP such as the following. Water uptake by MgO will delay the development of mobile actinides and gas generation by microbes and corrosion. Reduced gas generation will reduce or even eliminate spallings releases. As MgO hydrates, it swells, reducing porosity and permeability, which will inhibit gas flow in the repository, in turn reducing spallings releases. Hydration will also result in a self-sealing mechanism by which water uptake and swelling of MgO adjacent to a groundwater seep cuts off further seepage. Reaction with some groundwaters will produce cementitious materials, which will help to cement waste particles or produce a cohesive solid mass. Larger particles are less likely to be entrained in a spallings release. If sufficient water eventually accumulates in a repository to support microbial gas generation, magnesium carbonate cements will form; also producing good cohesion and strength.

  18. Status of Research on Magnesium Oxide Backfill

    International Nuclear Information System (INIS)

    For the WIPP, chemical and physical characteristics of MgO suggest it to be the most beneficial backfill choice, particularly because it has the ability to buffer the aqueous chemical conditions to control actinide volubility. In the current experimental program, the authors are developing a technical basis for taking credit for the complete set of attributes of MgO in geochemical, hydrogeological, and geomechanical technical areas, resulting in an improved conceptual model for the WIPP such as the following. Water uptake by MgO will delay the development of mobile actinides and gas generation by microbes and corrosion. Reduced gas generation will reduce or even eliminate spallings releases. As MgO hydrates, it swells, reducing porosity and permeability, which will inhibit gas flow in the repository, in turn reducing spallings releases. Hydration will also result in a self-sealing mechanism by which water uptake and swelling of MgO adjacent to a groundwater seep cuts off further seepage. Reaction with some groundwaters will produce cementitious materials, which will help to cement waste particles or produce a cohesive solid mass. Larger particles are less likely to be entrained in a spallings release. If sufficient water eventually accumulates in a repository to support microbial gas generation, magnesium carbonate cements will form; also producing good cohesion and strength

  19. Forward and inverse dielectric modeling of oven-dried cement paste specimens in the frequency range of 1.02 GHz to 4.50 GHz

    Science.gov (United States)

    Owusu Twumasi, Jones; Yu, Tzuyang

    2015-04-01

    The use of radar non-destructive evaluation (NDE) technique for condition assessment of deteriorated civil infrastructure systems is an effective approach for preserving the sustainability of these systems. Radar NDE utilizes the interaction between radar signals (electromagnetic waves) and construction materials for surface and subsurface sensing based on dielectric properties and geometry. In the success of radar inspection, it is imperative to develop models capable of predicting the dielectric properties of the materials under investigation. The dielectric properties (dielectric constant and loss factor) of oven-dried cement paste specimens with water-to-cement (w/c) ratios (0.35, 0.40, 0.45, 0.50, 0.55) in the frequency range of 1.02 GHz to 4.50 GHz were studied and modeled using modified Debye's models. An open-ended coaxial probe and a network analyzer were used to measure dielectric properties. Forward models are proposed and inversed for predicting the w/c ratio of a given oven-dried cement paste specimen. Modeling results agreed with the experimental data. The proposed models can be used for predicting the dielectric properties of oven-dried cement paste specimens. Also, the modeling approach can be applied to other cementitious materials (e.g., concrete) with additional modification.

  20. EXAFS investigation on U(VI) immobilization in hardened cement paste. Influence of experimental conditions on speciation

    Energy Technology Data Exchange (ETDEWEB)

    Mace, N.; Wieland, E.; Daehn, R.; Tits, J. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Waste Management; Scheinost, A.C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Rossendorf Beamline (ROBL), Grenoble (France). ESRF

    2013-08-01

    Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the coordination environment of U(VI) in cementitious materials. The EXAFS measurements were carried out on U(VI)-doped samples prepared under varying conditions, such as samples from sorption, hydration and diffusion experiments, and using different cementitious materials, such as crushed hydrated hardened cement paste (HCP) and calcium silicate hydrates (C-S-H). The samples had U(VI) loadings ranging from 1700 {mu}g/g to 45000 {mu}g/g. Applying principal component analysis (PCA) on 13 EXAFS spectra (each spectra corresponding to a minimum of five different scans) of the low loading samples, one single species is obtained indicating a similar U(VI) coordination environment for both HCP and C-S-H samples. This result confirms that C-S-H phases control the uptake of U(VI) in the complex cement matrix. The coordination environment structure of this species is similar to a U(VI) surface complex or to U(VI) in uranyl silicate minerals (two axial O atoms at 1.82 {+-} 0.02 A; four equatorial O atoms at 2.25 {+-} 0.01 A; one Si atom at 3.10 {+-} 0.03 A). At high U(VI) loading, PCA revealed a second U(VI) species, with a coordination environment similar to that of U(VI) in calcium uranate (two axial O atoms at 1.94 {+-} 0.04 A; five equatorial O atoms at 2.26 {+-} 0.01 A; four Ca atoms at 3.69 {+-} 0.05 A and five U atoms at 3.85 {+-} 0.04 A). This study suggest that, at low U(VI) loading, U(VI) is bound to C-S-H phases in HCP while at high U(VI) loading, the immobilization of U(VI) in cementitious materials is mainly controlled by the precipitation of a calcium uranate-type phase. (orig.)

  1. The influence of pluronic P123 micelles on corrosion behaviour of steel in cement extract and bulk matrix properties of cement paste

    NARCIS (Netherlands)

    Koleva, D.A.; Denkova, A. .G.; Hu, J.; van Breugel, K.

    2012-01-01

    The influence of Pluronic P123 (PEO20-PPO20-PEO70) micelles (of 10 nm size) on the corrosion behaviour of low carbon steel in cement extract (CE) was studied using electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarisation (PDP). Additionally, mercury intrusion porosimetry (MIP)

  2. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    -T data automatically during slow heating and cooling. The generated data are subjected to regression analysis leading to very close curve fitting of the P-T data and enabling appropriate enthalpy and entropy computations. The TPA system's absolute accuracy is checked by generating P-T data for pure water......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P....... The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from...

  3. Pore structure of blended cement paste by means of pressurization¿depressurization cycling mercury intrusion porosimetry

    NARCIS (Netherlands)

    Zhang, Y.; Wu, B.; Zhou, J.; Ye, G.; Shui, Z.

    2014-01-01

    Concrete containing supplementary cementitious materials (SCMs) has different durability properties from that containing pure Portland cement. The durability of concrete is always associated with the properties of microstructure, especially pore structure. Pressurization–Depressurization Cycling Mer

  4. Pore structure of blended cement paste by means of pressurization¿depressurization cycling mercury intrusion porosimetry

    OpenAIRE

    Zhang, Y.; Wu, B.; Zhou, J.; Ye, G.; Shui, Z.

    2014-01-01

    Concrete containing supplementary cementitious materials (SCMs) has different durability properties from that containing pure Portland cement. The durability of concrete is always associated with the properties of microstructure, especially pore structure. Pressurization–Depressurization Cycling Mercury Intrusion Porosimetry (PDC-MIP) was recently developed which can overcome the “ink bottle” effect and provide a more accurate estimation of the pore size distribution in cement-based materials...

  5. Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio

    International Nuclear Information System (INIS)

    This paper describes the influence of the magnesia-to-phosphate (M/P) molar ratios ranging from 4 to 12, on the properties and microstructures of magnesium potassium phosphate cement (MKPC) pastes with a large water-to-solid ratio (w/s) of 0.50. The setting behavior, compressive strength, tensile bonding strength and thermal conductivity of the MKPC pastes, were investigated. The results show that an increase in the M/P ratio can slow down the setting reaction, and clearly degrade the mechanical strengths, but clearly improve the thermal conductivity of MKPC pastes. Furthermore, micro-characterizations including X-ray diffraction, scanning electron microscopy and thermogravimetric analysis, on the MKPC pastes reveal that a lower M/P ratio can facilitate better crystallization of the resultant magnesium potassium phosphate hexahydrate (MKP) and a denser microstructure. Moreover, strong linear correlations are found between the mechanical strengths and the MKP-to-space ratio, and between thermal conductivity and the volume ratio of the unreacted magnesia to the MKP. - Highlights: • Increase of M/P molar ratio causes clear mechanical degradations on MKPC pastes. • Thermal conductivity of MKPC pastes is improved with increase of M/P molar ratio. • Lower M/P ratio leads to better MKP crystallization and denser microstructure. • Strengths of MKPC pastes are linearly correlated to the MKP-to-space ratios. • Thermal conductivity is affected by the volume ratio of unreacted magnesia to MKP

  6. Physical response of backfill materials to mineralogical changes in a basalt environment

    International Nuclear Information System (INIS)

    Backfill materials surrounding waste canisters in a high-level nuclear waste repository are capable of ensuring very slow flow of groundwater past the canisters, and thereby increase the safety of the repository. However, in the design of a repository it will be necessary to allow for possible changes in the backfill. In this experimental program, changes in permeability, swelling behavior, and plastic behavior of the backfill at the temperatures, pressures, and radiation levels expected in a repository are investigated. The emphasis is on investigation of relevant phenomena and evaluation of experimental procedures for use in licensing procedures. The permeability of a slightly compacted sand-clay mixture containing 25% bentonite, with a dry bulk density of 1.59 g/cm3, was determined to be 0.9 x 10-18 m2 in liquid water at 25 and 2000C, respectively. This is sufficiently low to demonstrate the potential effectiveness of proposed materials. In practice, fractures in the host rock may form short circuits around the backfill, so an even lower flow rate is probable. However, alteration by any of several mechanisms is expected to change the properties of the backfill. Crushed basalt plus bentonite is a leading candidate backfill for a basalt repository. Experiments show that basalt reacts with groundwater vapor or with liquid groundwater producing smectites, zeolites, silica, and other products that may be either beneficial or detrimental to the long-term performance of the backfill. Concentration of groundwater salts in the backfill by evaporation would cause immediate, but possibly reversible, reduction of the swelling abaility of bentonite. Moreover, under some circumstances, gamma radiolysis of moist air in the backfill could produce up to 0.5 mole of nitric acid or ammonia per liter of pore space. 27 references, 7 figures, 4 tables

  7. Strength and Durability of Concrete: Effects of Cement Paste-Aggregate Interfaces, Part I: Theoretical Study on Influence of Interfacial Transition Zone on Properties of Concrete Materials

    OpenAIRE

    Zhang, Yiguo; Chen, Wai-Fah

    1998-01-01

    This research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-HZ) on strength and durability of concrete. Part I dealt with the theoretical study and Part II dealt with the experimental. Part I, the theoretical part, illustrates the effect of ITZ on the concrete properties by assuming its elastic moduli to be varied continuously in the region. A four-phase composite model is employed and three func...

  8. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste

    International Nuclear Information System (INIS)

    Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) and nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales

  9. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Bossa, Nathan, E-mail: bossanathan@gmail.com [Aix-Marseille Université (AMU), CNRS, IRD, CEREGE UM34, BP 80, 13545 Aix-en-Provence, Cedex 4 (France); INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence (France); Chaurand, Perrine [Aix-Marseille Université (AMU), CNRS, IRD, CEREGE UM34, BP 80, 13545 Aix-en-Provence, Cedex 4 (France); iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence (France); Vicente, Jérôme [Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille (France); Borschneck, Daniel; Levard, Clément [Aix-Marseille Université (AMU), CNRS, IRD, CEREGE UM34, BP 80, 13545 Aix-en-Provence, Cedex 4 (France); iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence (France); Aguerre-Chariol, Olivier [INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); Rose, Jérôme [Aix-Marseille Université (AMU), CNRS, IRD, CEREGE UM34, BP 80, 13545 Aix-en-Provence, Cedex 4 (France); iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence (France)

    2015-01-15

    Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) and nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales.

  10. Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics.

    Science.gov (United States)

    Williams, Sarah L; Kirisits, Mary Jo; Ferron, Raissa Douglas

    2016-04-01

    Microbial-induced calcium carbonate precipitation has been identified as a novel method to improve durability and remediate cracks in concrete. One way to introduce microorganisms to concrete is by replacing the mixing water with a bacterial culture in nutrient medium. In the literature, yeast extract often has been used as a carbon source for this application; however, severe retardation of hydration kinetics has been observed when yeast extract is added to cement. This study investigates the suitability of alternative carbon sources to replace yeast extract for microbial-induced calcium carbonate precipitation in cement-based materials. A combination of meat extract and sodium acetate was identified as a suitable replacement in growth medium for Sporosarcina pasteurii; this alternative growth medium reduced retardation by 75 % (as compared to yeast extract) without compromising bacterial growth, urea hydrolysis, cell zeta potential, and ability to promote calcium carbonate formation. PMID:26795346

  11. The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste

    International Nuclear Information System (INIS)

    Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste

  12. Effect of Curing Regime on Degree of Al3+Substituting for Si4+in C-S-H Gels of Hardened Portland Cement Pastes

    Institute of Scientific and Technical Information of China (English)

    HU Chenguang; HU Shuguang; DING Qingjun; FENG Xiaoxin; HUANG Xiulin

    2014-01-01

    The effect of curing regime on degree of Al3+substituting for Si4+(Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80℃) and variable temperature (simulated internal temperature of mass concrete with 60℃peak). The results indicate that constant temperature of 20℃is beneficial to substitution of Al3+for Si4+, and Al/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40℃is less than that at 20℃for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20℃curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of Al/Si ratio which is still lower than that at constant temperature regime of 20℃for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount of Al3+which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.

  13. The effects of the mechanical-chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste.

    Science.gov (United States)

    Chen, Cheng-Gang; Sun, Chang-Jung; Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun

    2013-04-01

    A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium-silicate-hydrates (C-S-H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste. PMID:23375995

  14. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  15. Flowable Backfill Materials from Bottom Ash for Underground Pipeline

    Directory of Open Access Journals (Sweden)

    Kyung-Joong Lee

    2014-04-01

    Full Text Available The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%–45% of in-situ soil, 30% of bottom ash, 10%–20% of fly ash, 0%–3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus (E50 was (0.07–0.08 qu. The ranges of the internal friction angle and cohesion for mixtures were 36.5°–46.6° and 49.1–180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88–2.41 mm and horizontal deflection of 0.83–3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill.

  16. Chemical behaviour of montmorillonite in a final repository backfill

    International Nuclear Information System (INIS)

    With a view to supplementing an earlier report (NTB 86-12, EIR 576), publications appearing in the interim period have been evaluated. Particular emphasis was placed on the thermodynamic status of the clay minerals, the long term stability of montmorillonite and interactions with other repository components. Smectites and illites are presumably thermodynamically unstable and even the formation of metastable solubility equilibria is questionable. Basic problems are thus encountered when formulating equilibrium models for the clay/water interaction. It can be concluded from investigations of argillaceous sediments that, given a repository temperature of 50 to 60 degrees C, a maximum of 50 % of the montmorillonite will alter to illite over a period of around 108 years. The formation of such illite/smectite interstratifications does not impair the function of the backfill material. Since the alteration of calcium montmorillonite is very restricted in comparison with that of the sodium variant, a calcium bentonite should be foreseen as the backfill material. Magnetite is probably unstable in the presence of montmorillonite. The thermodynamic data and experimental results necessary to allow a reliable assessment of potential interactions between the bentonite and the steel canister corrosions products are lacking. Given the current state of knowledge, the formation of iron-rich microcrystalline layer silicates is to be expected. Montmorillonite in contact with alkaline cement pore-waters reacts to form zeolites. This alteration is linked with a volume increase and a loss of plasticity. (author) 127 refs., 31 figs., 4 tabs

  17. Structure and dynamics of confined H2O and D2O in cement paste matrix studied by quasielastic and inelastic neutron scattering

    International Nuclear Information System (INIS)

    Understanding the state of hydration water in cements, the dynamics of water confined in nanopore structures, and the two-step dynamic process similar to the one in glasses and known as β- and α-relaxation is a topic of high fundamental interest in condensed matter physics. Aside from being theoretically challenging, it also has a broad range of applications. The results of a scientific research conducted in the frame of an international cooperation at the European Union Center of Excellence (CEX-IDRANAP) of IFIN-HH are given in this paper. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) are very powerful tools for studying the dynamics and structure of condensed matter from simple liquids to the very exciting phenomena related to the supercooled state, nanostructure and fractal nucleation. QENS and INS experiments on hydrated cement pastes after a long aging time were performed using the TOF spectrometer DIN 2PI at IBR-2 reactor, JINR Dubna. Our experimental results confirmed the conclusions of the recent theoretical and MD simulation papers on the existence of supercooled water confined in the matrix structure of cement. A wave vector transfer Q dependence of the dynamic structure factor S(Q, ε) at constant energy transfer ε = ℎω revealed a nanometric structure where the water molecules were trapped in the nanoporous matrix. The water dynamics resembled the relaxing cage model. In the short term, the orientation of the water molecule considered was fixed by H-bonds (H-B) to its neighbors and the molecule performed harmonic oscillation around H-B. In the longer term, the bonds broke, the trap began to relax, and the molecule was able to reorient losing memory of its initial orientation. The relaxation dynamics suggested the existence of a fractal process. (authors)

  18. Systematic Selection and Application of Backfill in Underground Mines

    OpenAIRE

    Masniyom, Manoon

    2009-01-01

    The use of backfill in underground mining is increasing due to need for systematic backfilling of mine openings and workings to avoid surface damage, increase safety and contribution to sustainable mining. This study is to investigate backfill materials and new methods suited for systematic selection and application of backfill in underground mines. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special a...

  19. Experimental plans method to formulate a self-compacting cement paste: Eksperimentalno načrtovana metoda za določitev samozgoščujoče cementne malte:

    OpenAIRE

    Belas, Nadia; Bouhamou, Nasr-Eddine; Mebrouki, Abdelkader

    2010-01-01

    This paper presents a self-compacting cement-paste formulation using Algerian local materials (a binary cement consisting of natural pozzolana and limestone fillers). In this study, simple laboratory instruments were used, i.e., a mini-slump for spreading out diameters and a Marsh cone for flow-times measurements. A wide variation of combinations was used as preliminary tests to select pastes with acceptable properties and the use of the mixture-plans method has shown that it is possible to d...

  20. Effects of grouting, shotcreting and concrete leachates on backfill geochemistry

    International Nuclear Information System (INIS)

    The use of concrete to seal open fractures (grouting) and to impermeabilise the deposition tunnels (shotcreting) has been envisaged in the construction of a high level nuclear waste (HLNW) repository according to SKB designs. Nevertheless, the geochemical effect of using concrete in the repository is not fully understood. Concrete degradation due to the interaction with groundwater can affect the performance of other repository barriers, such as the backfill material used for sealing the deposition tunnels. One of the main effects of concrete degradation is the generation of alkaline plumes. For this reason, SKB is currently planning to use a type of concrete whose degradation result in lower pH values than those developed with Ordinary Portland Cement (OPC). In order to assess the long-term geochemical effect of including low-pH concrete elements in a HLNW repository, we performed a 2D reactive-transport model of a backfilled deposition tunnel that intersects a hydraulic conductive fracture which has been partially grouted. An additional case has been modelled where part of the deposition tunnel walls were covered with a shotcrete layer. The modelling results predict the development of a high-alkalinity plume, larger in the case of considering a grouted fracture, accompanied by the precipitation of CSH-phases in the fracture. However, the effect on the backfill material is only significant if concrete is in contact with the backfill (shotcrete case). In order to conduct these models, and considering that at the beginning of the present work there was not a specific composition for such a low-pH concrete, its composition has been assumed in order to meet the expected geochemical evolution of concrete degradation according to SKB expectations. This is a pH of pore water of around 11 and the degradation of CSH phases resulting in a source for Ca and Si into the system. For this reason, jennite and tobermorite have been selected, although it is known that jennite is

  1. Effects of grouting, shotcreting and concrete leachates on backfill geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Miguel; Arcos, David; Duro, Lara [Enviros Consulting, Valldoreix, Barc elona (Spain)

    2007-11-15

    The use of concrete to seal open fractures (grouting) and to impermeabilise the deposition tunnels (shotcreting) has been envisaged in the construction of a high level nuclear waste (HLNW) repository according to SKB designs. Nevertheless, the geochemical effect of using concrete in the repository is not fully understood. Concrete degradation due to the interaction with groundwater can affect the performance of other repository barriers, such as the backfill material used for sealing the deposition tunnels. One of the main effects of concrete degradation is the generation of alkaline plumes. For this reason, SKB is currently planning to use a type of concrete whose degradation result in lower pH values than those developed with Ordinary Portland Cement (OPC). In order to assess the long-term geochemical effect of including low-pH concrete elements in a HLNW repository, we performed a 2D reactive-transport model of a backfilled deposition tunnel that intersects a hydraulic conductive fracture which has been partially grouted. An additional case has been modelled where part of the deposition tunnel walls were covered with a shotcrete layer. The modelling results predict the development of a high-alkalinity plume, larger in the case of considering a grouted fracture, accompanied by the precipitation of CSH-phases in the fracture. However, the effect on the backfill material is only significant if concrete is in contact with the backfill (shotcrete case). In order to conduct these models, and considering that at the beginning of the present work there was not a specific composition for such a low-pH concrete, its composition has been assumed in order to meet the expected geochemical evolution of concrete degradation according to SKB expectations. This is a pH of pore water of around 11 and the degradation of CSH phases resulting in a source for Ca and Si into the system. For this reason, jennite and tobermorite have been selected, although it is known that jennite is

  2. Leaching of calcium sulfo-aluminate cement pastes by water at regulated pH and temperature: Experimental investigation and modeling

    International Nuclear Information System (INIS)

    Two cement pastes, prepared with a ye'elimite-rich calcium sulfo-aluminate binder containing 0% or 20% gypsum, were leached by water at regulated pH (7) and temperature (20 C) for three months with the aim of understanding and modeling the degradation processes. The cumulative quantities of Ca2+, OH- and SO42- ions in the leachates increased linearly versus the square root of time, showing that leaching was controlled by diffusion. The gypsum-free material exhibited the highest decalcification rate. Examination of the solid samples after three months revealed three zones: - the surface layer, highly porous and composed of AH3, perovskite and possibly C-(A)-S-H, - an intermediate zone, less porous, in which several precipitation and dissolution fronts occurred, and - the sound core. The hydrated phase evolution along depth was accurately determined and qualitatively reproduced with a model coupling transport by diffusion and chemical reactions. (authors)

  3. A 3D lattice Boltzmann effective media study: understanding the role of C-S-H and water saturation on the permeability of cement paste

    International Nuclear Information System (INIS)

    A 3D lattice Boltzmann model is developed and used to calculate the water and gas permeabilities of model cement pastes at different degrees of water saturation. In addition to permeable micron-sized capillary pores and impermeable solid inclusions, the lattice Boltzmann model comprises weakly-permeable nano-porous calcium silicate hydrate (C-S-H). The multi-scale problem is addressed by using an effective media approach based on the idea of partial bounce-back. The model cement paste microstructures are generated with the platform µic. The critical parameters, C-S-H density and capillary porosity, are taken from 1H nuclear magnetic resonance relaxation analysis. The distribution of water and air is defined according to the Kelvin–Laplace law. It is found that when the capillary porosity is completely saturated with a fluid (either water or gas), the calculated intrinsic permeability is in good agreement with measurements of gas permeability on dried samples (10−17–10−16 m2). However, as the water saturation is reduced, the calculated apparent water permeability decreases and spans the full range of experimentally measured values (10−16–10−22 m2). It is concluded that the degree of capillary water saturation is the major cause for variation in experimental permeability measurements. It is further concluded that the role of the weakly-permeable C-S-H, omitted in earlier modelling studies, is critical for determining the permeability at low capillary saturation. (paper)

  4. Colonization of compacted backfill materials by microorganisms

    International Nuclear Information System (INIS)

    Experiments were carried out to investigate the occurrence of pore clogging in backfill by bacterial activity. Four differently prepared and treated backfill materials were used to determine the effects of the quality and preparation method of the backfill materials on the occurrence of pore clogging. The backfills were compacted in permeameters which were infused with either groundwater or sterile distilled water. A constant pressure was applied to increase the rate of saturation. Results showed different inflow rates for the four materials despite the use of the same packing method for each specimen, the same dry density for each backfill and indications of similar initial pore volumes. These differences were likely caused by the fact that the two slowest-flowing permeameters contained a mixture of Na-bentonite and illitic shale simulating a glacial lake clay. Hydraulic conductivities measured ranged from 5 x 10-11 m/s to 5 x 10-12 m/s for the backfills containing glacial lake clay and 4 x 10-12 m/s to 9 s 10-13 m/s for the backfills containing a mixture of Na-bentonite and illitic shale. Weekly samples of outflow from the permeameters were analyzed microbially. Aerobic heterotrophs were low initially but stabilized around 106 to 107 colony forming units (CFU)/mL after about one week. Anaerobic heterotrophs stabilized at around 102 to 103 CFU/mL. Sulphate-reducing bacteria (SRB) were measured by the most probable number (MPN) method. Results showed low initial numbers but they stabilized around 104 MPN/mL after one to two months. No significant numbers of aerobic or anaerobic sulphur oxidizing bacteria were found. Enumeration of methanogens indicated that they were generally present in the permeameters that contained non-autoclaved backfill. Results are partially inconclusive because of the lack of confirmation of methane gas present in the headspace of part of the MPN culture tubes. Microbial pore clogging was not evident for the two fastest-flowing permeameters

  5. Role of aluminous component of fly ash on the durability of Portland cement-fly ash pastes in marine environment

    International Nuclear Information System (INIS)

    The durability, of mixtures of two kinds of Spanish fly ashes from coal combustion (ASTM class F) with 0, 15 and 35% replacement of Portland cement by fly ash, in a simulated marine environment (Na2SO4+NaCl solution of equivalent concentration to that of sea water: 0.03 and 0.45 M for sulphate and chloride, respectively), has been studied for a period of 90 days. The resistance of the different mixtures to the attack was evaluated by means of the Koch-Steinegger test. The results showed that all the mixtures were resistant, in spite of the great amount of Al2O3 content of the fly ash. The diffusion of SO42-, Na+ and Cl- ions through the pore solution activated the pozzolanic reactivity of the fly ashes causing the corresponding microstructure changes, which were characterized by X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). As a result, the flexural strength of the mixtures increased, principally for the fly ash of a lower particle size and 35% of addition

  6. Effect of Fly Ash and Silica Fume on Hydration Rate of Cement Pastes and Strength of Mortars

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; ZHANG Yun; LIU Runqing; ZHANG Bing

    2014-01-01

    The effect of fly ash and silica fume on hydration rate and strength of cement in the early stage was studied. Contrast test was applied to the complex cementitious system to investigate the hydration rate. Combined with mechanical strength, the influence of fly ash and silica fume during the hydration process of complex binder was researched. The peak of the rate of hydration heat evolution and the mechanical strength decreased as the ratio of fly ash increased, however, as the ratio of silica fume increased, the peak of the rate of hydration heat evolution and the mechanical strength increased obviously. When the ratios of fly ash and silica fume are 10%and 5%, the peak of the rate of hydration heat evolution is the highest. At the same time 7 days of flexural and compressive strength are the highest as 8.89 MPa and 46.52 MPa, respectively. Fly ash and silica fume are the main factors affecting the hydration rate and the mechanical property.

  7. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill − Part 1

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2015-06-01

    Full Text Available In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investigated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF. The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The mechanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength and physical (water retention properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  8. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill L Part 1

    Institute of Scientific and Technical Information of China (English)

    M. Kermani; F.P. Hassani; E. Aflaki; M. Benzaazoua; M. Nokken

    2015-01-01

    In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investi-gated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF). The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The me-chanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength) and physical (water retention) properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP) revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  9. A Historical Review of WIPP Backfill Development

    Energy Technology Data Exchange (ETDEWEB)

    Brush, L.H.; Krumhansl, J.L.; Molecke, M.A.; Papenguth, H.W.

    1999-07-15

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. It's introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  10. A Historical Review of WIPP Backfill Development

    International Nuclear Information System (INIS)

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. It's introduction was motivated by the need to scavenging CO2 [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits

  11. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 1: Theoretical study on influence of interfacial transition zone on properties of concrete materials; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Chen, W.F.

    1998-08-01

    This research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  12. Diffusion of Tritiated Water (HTO) and {sup 22}Na{sup +}-Ions through Non-Degraded Hardened Cement Pastes - II. Modelling Results

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A

    2002-12-01

    In this report, the procedure and the results of an inverse modelling study on the through-diffusion of tritiated water (HTO) and {sup 2}2Na{sup +}-ions are presented using high-porous hardened cement pastes with a water/cement ratio of 1.3 in the first stage of the cement degradation. For the analysis two alternative models were applied: 1) a diffusion model where a possible sorption of the tracer was entirely neglected, and 2) a diffusion model with linear sorption. The analysis of the through-diffusion phase allowed extracting values for the effective diffusion coefficient (D{sub e}) and the rock-capacity factor ({alpha}). Both models could fit the breakthrough curves equally well, and also mass-balance considerations did not allow to clearly preferring one of the two competing models to the other. But blind-predictions for tracer out-diffusion using the best-fit parameter values deduced from analysing the former through-diffusion phase gave a clear indication that linear sorption had to be included in the diffusion model. The extracted K{sub d} values for HTO are in excellent agreement with values from batch sorption experiments and are of the order of 0.8. 10{sup -3} m{sup 3}/kg. Those for {sup 2}2Na{sup +} are of the order of 1.0. 10{sup -3} m{sup 3}/kg and are by a factor of two larger than values from batch sorption experiments. The values for the effective diffusion coefficients for HTO are of the order of (2-3).10{sup -1}0 m{sup 2}/s, and those for sodium are roughly by a factor of two smaller than values for HTO. On the one hand, the observed tracer uptake could only partially be addressed to isotope exchange; the most obvious process which could account for the remaining part of the uptaken tracer mass is diffusion into a second type of porosity, the dead-end pores. On the other hand, the results and conclusions drawn are encouraging for future investigations; therefore no major deficiency concerning the applied equipment and the modelling methodology

  13. Equivalence between electrical measurements and X ray diffraction in the formation of crystalline phases of cement paste; Equivalencia entre medidas electricas y difraccion de rayos X en la formacion de fases cristalinas de pastas de cemento

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, E.; Frutos, J. de

    2011-07-01

    In this paper a comparative study of the hydration process in a very early age, first 20 hours, between a conventional cement paste and its equivalent with a replacement of slag of about 12%, is done. The study was undertaken through semiadibatic calorimetry, electrical impedance spectroscopy and X-ray diffraction. It shows that using electrical impedance spectroscopy we can determine the state of crystallization of the cement with and without additions, thereby determining the time at which the different processes are initiated in the hydration. (Author) 31 refs.

  14. Development and validation of a CFD model predicting the backfill process of a nuclear waste gallery

    Energy Technology Data Exchange (ETDEWEB)

    Gopala, Vinay Ramohalli, E-mail: gopala@nrg.eu [Nuclear Research and consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Lycklama a Nijeholt, Jan-Aiso [Nuclear Research and consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Bakker, Paul [Van Hattum en Blankevoort, Woerden (Netherlands); Haverkate, Benno [Nuclear Research and consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands)

    2011-07-15

    Research highlights: > This work presents the CFD simulation of the backfill process of Supercontainers with nuclear waste emplaced in a disposal gallery. > The cement-based material used for backfill is grout and the flow of grout is modelled as a Bingham fluid. > The model is verified against an analytical solution and validated against the flowability tests for concrete. > Comparison between backfill plexiglas experiment and simulation shows a distinct difference in the filling pattern. > The numerical model needs to be further developed to include segregation effects and thixotropic behavior of grout. - Abstract: Nuclear waste material may be stored in underground tunnels for long term storage. The example treated in this article is based on the current Belgian disposal concept for High-Level Waste (HLW), in which the nuclear waste material is packed in concrete shielded packages, called Supercontainers, which are inserted into these tunnels. After placement of the packages in the underground tunnels, the remaining voids between the packages and the tunnel lining is filled-up with a cement-based material called grout in order to encase the stored containers into the underground spacing. This encasement of the stored containers inside the tunnels is known as the backfill process. A good backfill process is necessary to stabilize the waste gallery against ground settlements. A numerical model to simulate the backfill process can help to improve and optimize the process by ensuring a homogeneous filling with no air voids and also optimization of the injection positions to achieve a homogeneous filling. The objective of the present work is to develop such a numerical code that can predict the backfill process well and validate the model against the available experiments and analytical solutions. In the present work the rheology of Grout is modelled as a Bingham fluid which is implemented in OpenFOAM - a finite volume-based open source computational fluid dynamics

  15. Development and validation of a CFD model predicting the backfill process of a nuclear waste gallery

    International Nuclear Information System (INIS)

    Research highlights: → This work presents the CFD simulation of the backfill process of Supercontainers with nuclear waste emplaced in a disposal gallery. → The cement-based material used for backfill is grout and the flow of grout is modelled as a Bingham fluid. → The model is verified against an analytical solution and validated against the flowability tests for concrete. → Comparison between backfill plexiglas experiment and simulation shows a distinct difference in the filling pattern. → The numerical model needs to be further developed to include segregation effects and thixotropic behavior of grout. - Abstract: Nuclear waste material may be stored in underground tunnels for long term storage. The example treated in this article is based on the current Belgian disposal concept for High-Level Waste (HLW), in which the nuclear waste material is packed in concrete shielded packages, called Supercontainers, which are inserted into these tunnels. After placement of the packages in the underground tunnels, the remaining voids between the packages and the tunnel lining is filled-up with a cement-based material called grout in order to encase the stored containers into the underground spacing. This encasement of the stored containers inside the tunnels is known as the backfill process. A good backfill process is necessary to stabilize the waste gallery against ground settlements. A numerical model to simulate the backfill process can help to improve and optimize the process by ensuring a homogeneous filling with no air voids and also optimization of the injection positions to achieve a homogeneous filling. The objective of the present work is to develop such a numerical code that can predict the backfill process well and validate the model against the available experiments and analytical solutions. In the present work the rheology of Grout is modelled as a Bingham fluid which is implemented in OpenFOAM - a finite volume-based open source computational fluid

  16. 掺黏度改性剂与减水剂水泥浆的zeta电位研究%Study on Zeta Potential of Cement Pastes with Viscosity Modifying Admixtures and Superplasticizers

    Institute of Scientific and Technical Information of China (English)

    钟世云; 李晋梅; 韩冬冬; 倪坤

    2012-01-01

    采用zeta(ξ)电位仪研究了黏度改性剂(VMA)、减水剂单掺以及VMA与减水剂复掺对水泥浆ξ电位的影响.结果表明:由于水泥粒子吸附VMA或减水剂分子,因此单掺VMA或减水剂水泥浆ξ电位降低.VMA与聚羧酸系减水剂(PC)同掺水泥浆表现出来的主要是水泥粒子吸附PC分子后的ξ电位特性;VMA与萘系减水剂(NF)同掺水泥浆ξ电位绝对值比单掺NF水泥浆低.无论是滴加PC到掺VMA水泥浆中还是滴加VMA到掺PC水泥浆中,水泥浆ξ电位都有所提高;VMA的加入使得掺NF水泥浆的ξ电位升高,但仍低于两者同掺水泥浆的ξ电位;在掺VMA水泥浆中,当NF滴加量达到一定值时,水泥浆ξ电位绝对值甚至高于两者同掺水泥浆ξ电位绝对值.%The influence of viscosity modifying admixturesC VMA) and superplasticizers and mixing of these two agents on zeta(ζ) potential of cement pastes(fresh) were analyzed using the ZetaProbe instrument. The experimental results show that since cement grains adsorb VMA or superplasticizer molecules, the ζ potential of cement pastes with VMA or superplasticizer decreases. The ζ potential of cement pastes with both VMA and polycarboxylic superplasticizer (PC) shows that cement grains primarily adsorb PC molecules, whereas the absolute value of ζ potential of cement pastes with both VMA and naphthalene formaldehyde condensate superplasticizer(NF) is lower than that with only NF. To add PC into cement pastes with VMA or to add VMA into cement pastes with PC will result in the ζ potential increase. The ζ potential of cement pastes with NF increases from —8 mV to —3 mV as VMA is added in. However, it is still lower than that with both VMA and NF. The f potential of cement pastes with VMA decreases as NF is added in, and the ζ potential absolute value is higher than that with both VMA and NF when the use level of NF increases to a certain value.

  17. INFLUENCE OF GROUND MINERAL ADMIXTURES ON PORE STRUCTURE OF HARDENED CEMENT PASTE AND STRENGTH OF CEMENT MORTAR%磨细矿物掺合料对水泥硬化浆体孔结构及砂浆强度的影响

    Institute of Scientific and Technical Information of China (English)

    李永鑫; 陈益民

    2006-01-01

    采用压汞法研究了钢渣、矿渣、粉煤灰单掺或复掺对水泥硬化浆体孔结构的影响.同时还研究了掺合料单掺或复掺对水泥砂浆抗压强度的影响.结果表明:掺合料单掺或复掺对早期水泥硬化浆体的孔结构有一定的劣化作用;水化后期,矿渣与钢渣均明显降低了水泥硬化浆体的孔隙率,矿渣与粉煤灰均明显降低了水泥硬化浆体的中值孔径并改善了水泥石的孔径分布,掺合料复掺对改善水泥硬化浆体的孔结构有积极作用,尤其是掺合料三元复合可取得最佳的效果.3种掺合料降低水泥硬化浆体孔隙率能力的大小顺序为:矿渣>钢渣>粉煤灰.3种掺合料降低水泥硬化浆体孔径并改善孔径分布能力的大小顺序为:矿渣>粉煤灰>钢渣.掺合料降低了水泥砂浆早期的抗压强度,却增加了水泥砂浆90 d的抗压强度.掺合料的活性大小顺序为:矿渣>钢渣>粉煤灰.%The influence of singly and compositely adding steel slag, blast furnace slag and fly ash on the pore structure of handened cement paste was studied using mercury intrusion porosimetry (MIP). Furthermore, their influence on the compressive strength of cement mortar was also investigated. The results show that the pore structure of cement paste become worse at early ages by singly or compositely adding any of the mineral admixtures. At later ages, adding either blast furnace slag or steel slag remarkably reduces the porosity of cement paste, while either blast furnace slag or fly ash remarkably reduces median pore diameter and improves pore size distribution. The most reduction in the porosity of cement paste is observed for the cement with blast furnace slag, while the cement with steel slag less, and the cement with fly ash the least. The biggest improvement on pore structure is observed for the cement with blast furnace slag, while the cement with fly ash smaller, and the cement with steel slag the smallest. Pore structure

  18. EFFECT OF INORGANIC SALTS ON DEGREE OF HYDRATION AND PORE STRUCTURE OF CEMENT PASTES%无机盐对水泥石水化程度和孔结构的影响

    Institute of Scientific and Technical Information of China (English)

    杨文萃; 葛勇; 袁杰; 张宝生

    2009-01-01

    采用压汞法研究了水灰比为0.3和0.5的掺加无机盐外加剂[CaCl2,Na2SO4,NaNO2和Ca(NO3)2]水泥石在3 d和28d时的孔结构,并测试化学结合水含量.结果表明:CaCl2,Na2SO4 NaNO2能促进水泥水化:CaCl2促进水泥水化作用最为明显,并可降低水泥石大孔和毛细孔孔隙率;Na2SO4增大了大孔孔隙率;NaNO2能显著减小28d时毛细孔连通孔径和毛细孔孔隙率;Ca(NO3)2在前3d对水泥水化没有明显的作用,在3d时水泥石中大孔和毛细孔孔隙率以及毛细孔连通孔径增大.%The pore structures of cement paste with a water-cement ratio of 0.3 and 0.5 in mass, containing inorganic salts admixture (CaCl2, Na2SO4, NaNO2 and Ca(NO3)2) were studied by mercury intrusion porosimetry at 3 d and 28 d. The hydration degree of ce-ment pastes was also analyzed. The results show that CaCl2, Na2SO4 and NaNO2 can improve the hydration of cement. The accelerat-ing effect of CaCl2 is dominant, compared to the other salts. CaCl2 can also reduce the porosity of the coarse pores and capillary pores of the pastes, and Na2SO4 can increase the porosity of the coarse pores in cement pastes. The throat size of an interconnected capillary net-work and the porosity of the capillary pores in pastes with NaNO2 at 28 d decrease. Ca(NO3)2 does not improve the cement hydration during 3 d, but it can increase the porosity of the coarse pores or the capillary pores as well as the throat size in the paste at 3 d.

  19. Time-dependent nuclide transport through backfill into a fracture

    International Nuclear Information System (INIS)

    This paper presents a transient analysis of radionuclide transport through backfill into a fissure. This report considers a waste canister surrounded by backfill in a borehole intersected by a fracture, in water-saturated rock. Radionuclides are released at a constant concentration C/sub s/ at the waste surface into the backfill. Ground water flows in the fissure. We assume no ground-water flow in the backfill, so that radionuclide transport through the backfill is controlled by molecular diffusion. 3 refs., 2 figs

  20. Backfill Mining Technology and Development Tendency in China Coal Mine%我国煤矿充填开采技术及其发展趋势

    Institute of Scientific and Technical Information of China (English)

    胡炳南

    2012-01-01

    Based on the requirements of the sustainable development and environment protection, the paper stated the necessity of the backfill mining in mine. With the collection and analysis on the application of 20 typical backfill mining faces in China, the paper systematically stated the technical features and suitable conditions of the mine roadway heading with the rejects backfill, conventional longwall mining with the rejects backfill, fully mechanized longwall coal mining with rejects backfill, high water material backfill and others. The solid rejects backfill of mine roadway heading is suitale for minor output and important protected buildings places. The longwall fully mech- anized mining with solid rejects and paste backfill is saitable for the meohanized coal mining and conventional mining under the protected buildings places. The high water backfill materia is suitable for the mine with shortage of backfill material and a single seam. The coal pro- duction, backfill value, coal recovery rate, cost per ton of coal, backfill rate, convergence value, subsidence value, subsidence reduction rate, deformation value and protected area were provide as the evaluation indexes of the backfill mining effect. Finally, a fruther study should be conducted on high efficient backfill mining, backfill space sealing and others.%基于煤矿可持续发展与环境保护的要求,阐述了煤矿充填开采的必要性,通过收集分析我国20个典型充填开采应用实例,系统论述了巷道掘进抛矸充填、长壁普采矸石充填、长壁综采矸石充填、膏体充填和高水充填等技术特点,得出了巷道掘进矸石充填适用于配采和重要保护场合,长壁综采矸石和膏体充填适用于主采和普通保护场合,高水充填适用于缺少充填材料和单一煤层场合;提出了采煤量、充填量、采出率、吨煤成本、充满率、移近量、下沉量、减沉率、变形量和保护面积可作为充填开采效果的评价指

  1. 偏高岭土对硅酸盐水泥浆体干燥收缩行为的影响及机理%Effect of Metakaolin on Drying Shrinkage Behaviour of Portland Cement Pastes and its Mechanism

    Institute of Scientific and Technical Information of China (English)

    罗旌旺; 卢都友; 许涛; 许仲梓

    2011-01-01

    In order to explore the mechanism of the effect of the metakaolin (MK) effect on the drying shrinkage of cementitious ma- terials, the drying shrinkage and mass loss of blended Portland cement pastes with various MK contents (0, 5%, 10%, 15%) and different maturities (precured in water for 3 d and 28 d, respectively), were investigated by drying at 20 ℃ and 55% relative humidity. The composition and microstructure of cement pastes were determined by thermal analysis and mercury intrusion porosimetry. The results show that the effect of MK on the drying shrinkage of cement pastes is closely related to the MK content and maturity of the pastes. The late-age drying shrinkage of cement pastes with different maturities decreased with the increase of MK contents. However, the effect on the early age drying shrinkage depended on the maturity of paste. The MK increased slightly the early age drying shrinkage of the paste pre-cured for 3 d, and decreased the early age shrinkage of the paste pre-cured for 28 d. The drying shrinkage of cement paste was proportional to its mass loss and the mechanism of water loss and its relation with the drying shrinkage varied. The decrease of drying shrinkage of blended cement paste with the MK was due to the result of less and slower evaporation of water in the MK blended cement paste with low porosity and refined pores structure by the micro-filler effect, nuclear effect and/or pozzolanic reaction of the MK.%为探究偏高岭土(metakaolin,MK)影响水泥基材料干燥收缩(干缩)机理,研究了不同MK掺量(0、5%、10%、15%)、不同成熟度(水中分别预养护3d和28d)硅酸盐水泥浆体在20℃、55%相对湿度下的干缩和质量损失行为,并采用综合热分析和压汞法研究了不同成熟度水泥浆体的组成和微观结构。结果表明:MK对浆体干燥收缩行为的影响与掺量和浆体成熟度密切相关;MK使不同成熟度水泥浆体长期(28

  2. Assessment of backfill design for KBS-3V repository

    International Nuclear Information System (INIS)

    Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and materials for backfilling of deposition tunnels. This report summarises the work done in the third and final phase of the BACLO programme. The main objective of this phase was to study how the various processes active during backfill installation and saturation as well as technical constraints affect its design basis. The work focused on the performance and technical feasibility of a block backfill concept, which calls for filling the majority of the tunnel volume with pre-compacted backfill blocks and the remaining volume with bentonite pellets. Several backfill composition alternatives were chosen for study and they consisted of clay materials with differing amounts of swelling minerals. A large body of information was gained on the effect of different processes on the performance of these backfill options, e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer in various laboratory and small-scale field tests. More practical tests included e.g. studies how the blocks and pellets could be installed to the deposition tunnel. Based on the new information on the effect of the processes investigated and the estimated achievable block filling degree and backfill density, recommendations were made concerning material selection, backfill layout and technical issues. In addition, issues requiring further attention to verify the long-term performance of the proposed backfill concept are identified and listed

  3. Assessment of backfill design for KBS-3V repository

    Energy Technology Data Exchange (ETDEWEB)

    Keto, Paula (B+tech, Eurajoki (Finland)); Dixon, David (AECL, Harwell (United Kingdom)); Jonsson, Esther; Gunnarsson, David (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hansen, Johanna (Posiva (Finland))

    2009-12-15

    Posiva and SKB initiated a joint programme BACLO (Backfilling and Closure of the Deep repository) in 2003 with the aim to develop methods and materials for backfilling of deposition tunnels. This report summarises the work done in the third and final phase of the BACLO programme. The main objective of this phase was to study how the various processes active during backfill installation and saturation as well as technical constraints affect its design basis. The work focused on the performance and technical feasibility of a block backfill concept, which calls for filling the majority of the tunnel volume with pre-compacted backfill blocks and the remaining volume with bentonite pellets. Several backfill composition alternatives were chosen for study and they consisted of clay materials with differing amounts of swelling minerals. A large body of information was gained on the effect of different processes on the performance of these backfill options, e.g. water inflow, piping, erosion, self-healing, homogenisation and interaction between backfill and buffer in various laboratory and small-scale field tests. More practical tests included e.g. studies how the blocks and pellets could be installed to the deposition tunnel. Based on the new information on the effect of the processes investigated and the estimated achievable block filling degree and backfill density, recommendations were made concerning material selection, backfill layout and technical issues. In addition, issues requiring further attention to verify the long-term performance of the proposed backfill concept are identified and listed

  4. The interaction of pH, pore solution composition and solid phase composition of carbonated blast furnace slag cement paste activated with aqueous sodium monofluorophosphate

    NARCIS (Netherlands)

    Kempl, J.; Copuroglu, O.

    2015-01-01

    Blast Furnace Slag (BFS) is a waste product of industrial steel production and a common additive in the cement industry in Northern European countries. However, cementitious materials made from slag-rich cement, particularly CEM III /B, are very susceptible to carbonation. Recent investigations have

  5. Tunnel backfill erosion by dilute water

    International Nuclear Information System (INIS)

    The goal was to estimate smectite release from tunnel backfill due to dilute groundwater pulse during post glacial conditions. The plan was to apply VTT's two different implementations (BESWD and BESWS) of well-known model of Neretnieks et al. (2009). It appeared difficult to produce repeatable results using this model in COMSOL 4.2 environment, therefore a semi-analytical approximate approach was applied, which enabled to take into account both different geometry and smectite content in tunnel backfill as compared to buffer case. The results are quite similar to buffer results due to the decreasing effect of smaller smectite content and the increasing effect of larger radius. (orig.)

  6. Tunnel backfill erosion by dilute water

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2014-03-15

    The goal was to estimate smectite release from tunnel backfill due to dilute groundwater pulse during post glacial conditions. The plan was to apply VTT's two different implementations (BESW{sub D} and BESW{sub S}) of well-known model of Neretnieks et al. (2009). It appeared difficult to produce repeatable results using this model in COMSOL 4.2 environment, therefore a semi-analytical approximate approach was applied, which enabled to take into account both different geometry and smectite content in tunnel backfill as compared to buffer case. The results are quite similar to buffer results due to the decreasing effect of smaller smectite content and the increasing effect of larger radius. (orig.)

  7. Crystallographic characterization of cement pastes hydrated with NaCl; Caracterizacao cristalografica de pastas de cimento hidratadas com NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Carina Gabriela de Melo e; Martinelli, Antonio Eduardo; Melo, Dulce Maria Araujo; Melo, Marcus Antonio de Freitas; Melo, Vitor Rodrigo de Melo e [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    One of the major current challenges faced by oil companies is the exploration of pre salt basins. Salt layers deposited upon the evaporation of ocean water and continental separation are mainly formed by NaCl and isolate immense oil reservoirs. The mechanical stability and zonal isolation of oil wells that run through salt layers must be fulfilled by cement sheaths saturated with NaCl to assure chemical compatibility between cement and salt layer. The present study aimed at evaluating the effect of NaCl addition on the hydration of oil well cement slurries as well as identifying the nature of crystalline phases present in the hardened cement. To that end, cement slurries containing NaCl were mixed, hardened and characterized by X-ray diffraction. The results revealed that the presence of NaCl affects the formation of hydration products by the presence of Friedel's salt. The intensity of the corresponding peaks increase as the contents of NaCl in the slurry increase. High concentrations of NaCl in Portland slurries increase the setting time of cement and the presence of Friedel's salt decreases the strength of the hardened cement. (author)

  8. Wormhole Formation in RSRM Nozzle Joint Backfill

    Science.gov (United States)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and

  9. Design, production and initial state of the deposition tunnel backfill

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the Finnish KBS-3V type repository for spent nuclear fuel the deposition tunnels are closed with backfill consisting of different clay based components and a concrete plug constructed at the mouth of the deposition tunnels. The work described in this paper was initiated by Posiva Oy and is reported in Keto et al. (2012). The objectives of the report was to present the design basis, requirements, design, production and initial state of the backfill and to work as background material for the construction license application for the Finnish repository for spent nuclear fuel. This paper is limited to presenting the backfill part of the work. The performance targets for the backfill are to limit advective flow along the deposition tunnels, keep the buffer in place and contribute to the mechanical stability of deposition tunnels. In addition, the chemical composition of the backfill shall not jeopardize the performance of the buffer, canister or bedrock. The backfill design consists of three different main components: foundation layer installed at site, pre-compacted backfill blocks and bentonite pellets. Approximately 86% of the nominal tunnel volume will be filled with backfill blocks and the remaining volume with the other two components. The backfill blocks consist of Friedland clay from Germany with smectite content between 30-38%. The foundation layer material and pellets consist of bentonite clay from Greece with smectite content of 75-90%. The production chain for backfill consists of excavation and processing of the materials at site, delivery, acceptance of the material batch to production, transport, handling and storage of raw materials and components in different phases and manufacturing and installation of backfill components. Quality control is included in all phases of the production chain. The initial state of the backfill describe the material properties of the components and the average properties

  10. Dessicant materials screening for backfill in a salt repository

    International Nuclear Information System (INIS)

    Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)2 which carbonates with CO2 in air to form CaCO3 and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO2 from the repository atmosphere

  11. Dessicant materials screening for backfill in a salt repository

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, D.R.

    1980-10-01

    Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)/sub 2/ which carbonates with CO/sub 2/ in air to form CaCO/sub 3/ and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO/sub 2/ from the repository atmosphere.

  12. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)

  13. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  14. Effect of metakaolin on drying shrinkage behaviour of cement pastes%偏高岭土对硅酸盐水泥浆体干燥收缩的影响

    Institute of Scientific and Technical Information of China (English)

    罗旌旺; 卢都友; 许涛

    2012-01-01

    为探究偏高岭土(MK)影响水泥基材料干燥收缩机制,研究不同MK掺量、不同成熟度硅酸盐水泥浆体在20℃、55%湿度下的干燥收缩和质量损失,并采用压汞法(MIP)研究不同成熟度水泥浆体的孔结构.结果表明:MK对浆体干燥收缩行为的影响与掺量和浆体成熟度密切相关;虽然MK使不同成熟度水泥浆体长期(28 d以上)干缩均减小,掺量越大,干缩越小,但对早期干缩的影响则存在差异.MK使预养护3d的浆体早期干缩略有增大,而预养护28d则相反.MK对浆体的干燥收缩与质量损失的影响有明显的一致对应关系,浆体质量损失越大,则收缩越明显.MK通过微填充效应、晶核效应和火山灰效应使不同成熟度浆体孔隙率下降、孔径细化,导致浆体在干燥条件下蒸发失水减少、过程减缓,从而减小浆体干燥收缩.%For exploring the mechanism of the effect of metakaolin ( MK) on drying shrinkage of eementi-tous materials, the drying shrinkage and weight loss of blended cement pastes with various replacement levels of MK and different maturities, were studied by being dried at 20 ℃ ,55% RH. The pore structure of cement pastes was measured by mercury intrusion porosimetry ( MIP). Results showed that the effect of MK on drying shrinkage of cement pastes was closely related to the MK content and maturity of cement paste. The long-term drying shrinkage of cement pastes with different maturities decreased with the increasing MK contents. The early age drying shrinkage of the paste pre-cured increased with MK for 3 d, while the early age shrinkage of the paste procured decreased for 28 d. The effect of MK on the mass loss of paste agreed well with its effect on drying shrinkage, the higher the mass loss, the larger the shrinkage. The decrease of drying shrinkage of blended cement paste with MK was due to the less and slower e-vaporation of water in the paste with lower porosity and refined pore structure

  15. 粉煤灰表面改性及其对水泥浆体强度和自收缩的影响%Surface Modification of Fly Ashes and Its Effect on Strength and Autogenous Shrinkage of Cement Pastes

    Institute of Scientific and Technical Information of China (English)

    郝成伟; 邓敏; 莫立武; 刘开伟

    2011-01-01

    研究了白云石对Ⅲ级粉煤灰表面改性,并测定了掺改性粉煤灰水泥浆体的自收缩和抗压强度.利用X射线衍射、扫描电镜和能谱分析等测试方法对经950℃煅烧1 h后改性粉煤灰的物相结构和化学组成进行了表征,通过背散射扫描电镜观察和压汞试验研究了掺改性粉煤灰水泥浆体的微观结构.结果表明:改性粉煤灰颗粒表面生成了具有水化活性的β-C2S,其水化产生C-S-H凝胶,明显改善水泥浆体中粉煤灰颗粒与水泥基体的界面,降低水泥浆体孔隙率,提高改性粉煤灰水泥浆体的早期强度.白云石分解的MgO水化产生膨胀,补偿水泥浆体自收缩.%The surface of Grade Ⅲ fly ash particles was modified via addition of dolomite and calcination at 950 ℃ for 1 h. The microstructure, mineral phase and chemical compositions of the modified fly ash were analyzed by X-ray diffraction (XRD), scanning electron microscope and energy dispersive spectrometer. In addition, the effect of modified fly ash on the autogenous shrinkage and compressive strength of cement pastes was invesfgated, and the microstructure of cement pastes was determined by mercury intrusion porosimetry and back scattered electron microscope. The results show that the β-C2S phases were formed on the surface of fly ash particles after the surface modification. Due to the hydration of β-C2S, the porosity of cement pastes with the modified fly ashes was decreased, and the early strength of fly ash cement pastes was increased. The hydration of MgO due to the decomposition of dolomite can generate the expansion, leading to the compensation of the autogenous shrinkage of cement paste.

  16. The interaction of pH, pore solution composition and solid phase composition of carbonated blast furnace slag cement paste activated with aqueous sodium monofluorophosphate

    OpenAIRE

    Kempl, J.; Copuroglu,O.

    2015-01-01

    Blast Furnace Slag (BFS) is a waste product of industrial steel production and a common additive in the cement industry in Northern European countries. However, cementitious materials made from slag-rich cement, particularly CEM III /B, are very susceptible to carbonation. Recent investigations have shown that the surface application of aqueous sodium monofluorophosphate (Na-MFP) as pre- and post-carbonation treatment can improve the surface durability of cementitious materials with a high BF...

  17. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  18. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara [Enviros Spain S.L., Barcelona (Spain)

    2006-11-15

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS{sub 2}) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  19. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    International Nuclear Information System (INIS)

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS2) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in both

  20. Backfilling with Fairness and Slack for Parallel Job Scheduling

    International Nuclear Information System (INIS)

    Parallel job scheduling typically combines a basic policy like FCFS with backfilling, i.e. moving jobs to an earlier than their regular scheduling position if they do not delay the jobs ahead in the queue according to the rules of the backfilling approach applied. Commonly used are conservative and easy backfilling which either have worse response times but better predictability or better response times and poor predictability. The paper proposes a relaxation of conservative backfilling by permitting to shift jobs within certain constraints to backfill more jobs and reduce fragmentation and subsequently obtain better response times. At the same time, deviation from fairness is kept low and predictability remains high. The results of the experimentation evaluation show that the goals are met, with response-time performance lying as expected between conservative and easy backfilling.

  1. Study on molasses in retarding and water reducing properties of cement pastes%甘蔗糖蜜对水泥缓凝和减水的性能研究

    Institute of Scientific and Technical Information of China (English)

    刘金芝; 冉千平; 张建纲; 江姜

    2012-01-01

    Molasses is not only retarding but also water reducing on cement paste. Colloidal component and Non -colloidal component of molasses were separated by alcohol coagulation method. This paper explains the reasons of property of retardation and water reduction of molasses on cement paste by way of cement hydration heat, surface tension and adsorption performance. All studies show that colloidal component Qf molasses is mainly for dispersion and that Non-colloidal component is mainly for retardation.%甘蔗废糖蜜对水泥同时具有缓凝和减水作用.采用酒精凝聚法分离废糖蜜得到胶体和非胶体组份:从水泥水化热、表面张力以及吸附性能阐述了其对水泥减水和缓凝的原因.结果表明,糖蜜中的胶体组份主要起分散作用,而非胶体组份主要起缓凝作用.

  2. Effect of Pulverized Fuel Ashes on Autogenous Shrinkage and Compressive Strength of Cement Pastes%粉煤灰对水泥浆体自收缩和抗压强度的影响

    Institute of Scientific and Technical Information of China (English)

    郝成伟; 邓敏; 莫立武; 刘开伟

    2011-01-01

    Autogenous shrinkage of cement pastes with different contents of pulverized fuel ashes(PFA) and different water-to-binder ratio were measured by a shrinkage test device. Compressive strength of sealed cement paste were also measured. The influence of PFA on the pore structures and micrograph of hydration products were investigated through mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM) , on which the influence mechanism was analyzed. Experimental results demonstrated that autogenous shrinkage of cement pastes decreased with the increased contents of PFA at early age (before 7 d) , this may be ascribed to inhibition of PFA on the shrinkage. After 7 d, however, both autogenous shrinkage, and compressive strength of cement pastes increased. This may be attributed to decrease of pore radius and densification of cement hydration products due to the pozzolanic reaction of fly ash.%设计组装了水泥浆体自收缩测量装置,进行了不同粉煤灰掺量和水胶比的水泥浆体自收缩和抗压强度测试,采用压汞测孔仪(MIP)、扫描电镜(SEM)等测试技术研究了粉煤灰对水泥浆体孔结构、产物形貌等微观结构的影响,并对其影响机理进行了分析.结果表明:粉煤灰能够有效抑制水泥浆体的早期自收缩,在7d前,其自收缩随着粉煤灰掺量的增加而减小;与纯硅酸盐水泥浆体相比,粉煤灰水泥浆体7d后的抗压强度增幅较大,但自收缩增长速率也趋于增大;火山灰反应引起的孔径细化、水化产物结构致密是粉煤灰影响水泥浆体自收缩和抗压强度的根本原因.

  3. 软水溶蚀环境中水泥-矿渣复合胶凝材料的浆体结构变化%Microstructural Variation of Hardened Cement-slag Pastes Leached by Soft Water

    Institute of Scientific and Technical Information of China (English)

    刘仍光; 张波; 阎培渝

    2013-01-01

    利用压汞、X 射线衍射、扫描电子显微镜和热重等方法研究了水泥-矿渣复合胶凝材料硬化浆体遭受软水溶蚀后的孔隙结构、水化产物、浆体形貌以及Ca(OH)2含量的变化,并研究了软水溶蚀作用下水泥-矿渣复合胶凝材料硬化浆体的微观结构变化规律。结果表明:水泥-矿渣复合胶凝材料硬化浆体经长期软水溶蚀作用后,浆体中的Ca(OH)2含量充足,C-S-H凝胶的Ca/Si比稍有降低,但没有分解的迹象;水泥-矿渣复合胶凝材料硬化浆体的孔隙率比纯水泥试样的低,浆体微观结构致密;矿渣掺量在70%以内的水泥-矿渣复合胶凝材料均表现出良好的抗溶蚀性能。%The pore structure, hydration products, microtopography and Ca(OH)2 content of hardened cement-slag complex binder pastes leached by soft water were investigated by means of mercury intrusion porosimetry, X-ray diffraction, scanning electron mi-croscopy and thermogravimetry, respectively. The effect of soft water leaching on the microstructure of binder paste was discussed. The results show that the Ca(OH)2 content in pastes is abundant, and the Ca/Si ratio of C-S-H gel slightly decreases. But there is not the decomposition sign of C-S-H gel after prolonged leaching of soft water. The porosity of cement-slag complex binder pastes is lower, and their microstructure is more compact than that of pure cement paste, resulting in that the cement-slag complex binder con-taining slag of <70% has a good leaching resistance.

  4. The assessment of borehole cement sealing characteristics by acoustic waveform analysis

    International Nuclear Information System (INIS)

    Acoustic waveform analysis has been used to provide a quantitative analysis of the effectiveness of cement grouting for sealing three adjacent boreholes drilled at Harwell, Oxon, as part of a research programme into the disposal of radioactive wastes into argillaceous formations. Results indicate that bonding at cement/casing and cement/formation interfaces would be inadequate for sealing a radioactive waste repository and the use of a backfilling material such as bentonite is advocated. (U.K.)

  5. Effect of Adding Time of Water Reducing Agent on the Rheologic Properties of Fresh Cement Pastes%减水剂的加入时间对新拌水泥浆体流变性能的影响

    Institute of Scientific and Technical Information of China (English)

    曹强; 朱斌

    2012-01-01

    研究了三聚氰胺甲醛磺酸盐(MFS)减水剂的掺加时间对普通硅酸盐水泥浆体在初始120 min的水化时间内流变性能的影响,研究中MFS的后掺时间为0 min、5 min、10 min、15 min、20 min和25 min。检测了在不同减切速率(3~147 s-1)下水泥浆体水化30 min和120 min时的剪切应力和表观粘度。测定了水化120 min后的水泥浆体的Ca2+浓度和化学结合水。结果表明:推迟减水剂的后掺时间降低了水泥浆体在120 min内的屈服应力和表观粘度,减水剂MFS的最佳后掺时间为10~15 min。%The influence of the time addition of melamine formaldehyde sulfonate(MFS) water reducing agent on the rheological properties of ordinary portland cement pastes through the first 120 min of hydration was investigated.The admixture addition was delayed by 0,5,10,15,20,and 25 min.Shear stress and apparent viscosity of the cement pastes were determined at different shear rates(3~147 s-1) and hydration times of 30 and 120 min.The concentration of Ca2+ and the combined water content of the cement pastes were determined after 120 min.The results showed that an increase in the addition time of the admixture reduced the yield stress and the plastic viscosity of the cement pastes at the early ages(120 min).The optimum delaying time of MFS addition was found to be 10~15 min.

  6. PERFORMANCE OF ALKALI-ACTIVATED PHOSPHOR SLAG-FLY ASH CEMENT AND THE MICROSTRUCTURE OF ITS HARDENED PASTE%碱-磷渣-粉煤灰胶凝材料的性能与硬化浆体结构

    Institute of Scientific and Technical Information of China (English)

    方永浩; 毛哲军; 王成; 朱琦

    2007-01-01

    The performance of alkali-activated phosphor slag-fly ash cement with different phosphor slag/fly ash proportions was studied, and the pore and microstructure of the hardened pastes were analyzed by mercury intrusion porosimetry and scanning electron microscope. The results show that alkali-activated phosphor slag cement has normal setting performance, which is different from that of alkali-activated blast furnace slag cement. The compressive strengths of the cement at 3 d and 28 d reach as high as 30.9 MPa and 98.8 MPa, respectively, and the flexural strengths are lower compared with ordinary portland cement. Adding 0-30% (in mass)fly ash into the alkali-phosphor slag system will slightly increase the setting time, however it will reduce the compressive strength,and improve the flexural strength. The corrosion resistance and freeze/thaw resistance of alkali-activated cement are much better, and the drying shrinkage rate is much greater than ordinary portland cement. Substituting phosphor slag partly with fly ash reduces the drying shrinkage to some extent. The hardened alkali-activated phosphor slag-fly ash cement paste is very dense due to very low porosity and a small mean pore diameter.%为充分利用磷渣和粉煤灰两种工业废渣生产高性能胶凝材料,研究了不同磷渣/粉煤灰配合比的碱-磷渣-粉煤灰胶凝材料性能,并用扫描电子显微镜和压汞仪分析了硬化浆体的细观结构和孔结构.结果表明:碱-磷渣-粉煤灰胶凝材料的凝结时间正常,在粉煤灰掺量为0~30 %(质量分数)范围内,随粉煤灰的掺量的增加,碱-磷渣-粉煤灰胶凝材料的凝结时间略有延长.与普通硅酸盐水泥相比,碱-磷渣胶凝材料的抗压强度较高,其3d和28d抗压强度分别可达到30.9MPa和98.8MPa,但其抗折强度相对较低.掺加粉煤灰后碱胶凝材料的抗压强度降低,而抗折强度提高.碱-磷渣-粉煤灰胶凝材料的耐蚀性和抗冻性能均显著优于硅酸盐水

  7. Backfilling and closure of the deep repository. Assessment of backfill concepts

    International Nuclear Information System (INIS)

    This report presents the results from work made in Phase 1 of the joint SKB-Posiva project 'Backfilling and Closure of the Deep Repository' aiming at selecting and developing materials and techniques for backfilling and closure of a KBS-3 type repository for spent nuclear fuel. The aim of phase 1, performed as a desk study, was to describe the potential of the suggested backfill concepts in terms of meeting SKB and Posiva requirements, select the most promising ones for further investigation, and to describe methods that can be used for determining the performance of the concepts. The backfilling concepts described in this report differ from each other with respect to backfill materials and installation techniques. The concepts studied are the following: Concept A: Compaction of a mixture of bentonite and crushed rock in the tunnel. Concept B: Compaction of natural clay with swelling ability in the tunnel. Concept C: Compaction of non-swelling soil type in the tunnel combined with application of pre-compacted bentonite blocks at the roof. Concept D: Placement of pre-compacted blocks; a number of materials are considered. Concept E: Combination of sections consisting of a) crushed rock compacted in the tunnel and b) pre-compacted bentonite blocks. The bentonite sections are installed regularly above every disposal hole. Concept F: Combination of sections consisting of a) crushed rock compacted in the tunnel and b) pre-compacted bentonite blocks. The distance between the bentonite sections is adapted to the local geology and hydrology.The assessment of the concepts is based on performance requirements set for the backfill in the deposition tunnels for providing a stable and safe environment for the bentonite buffer and canister for the repository service time. In order to do this, the backfill should follow certain guidelines, 'design criteria' concerning compressibility, hydraulic conductivity, swelling ability, long-term stability, effects on the barriers and

  8. Backfilling and closure of the deep repository. Assessment of backfill concepts

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, David; Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Keto, Paula [Saanio Riekkola Oy (Finland); Tolppanen, Pasi [Jaakko Poeyry Infra (Finland); Hansen, Johanna [Posiva Oy, Helsinki (Finland)

    2004-06-01

    This report presents the results from work made in Phase 1 of the joint SKB-Posiva project 'Backfilling and Closure of the Deep Repository' aiming at selecting and developing materials and techniques for backfilling and closure of a KBS-3 type repository for spent nuclear fuel. The aim of phase 1, performed as a desk study, was to describe the potential of the suggested backfill concepts in terms of meeting SKB and Posiva requirements, select the most promising ones for further investigation, and to describe methods that can be used for determining the performance of the concepts. The backfilling concepts described in this report differ from each other with respect to backfill materials and installation techniques. The concepts studied are the following: Concept A: Compaction of a mixture of bentonite and crushed rock in the tunnel. Concept B: Compaction of natural clay with swelling ability in the tunnel. Concept C: Compaction of non-swelling soil type in the tunnel combined with application of pre-compacted bentonite blocks at the roof. Concept D: Placement of pre-compacted blocks; a number of materials are considered. Concept E: Combination of sections consisting of a) crushed rock compacted in the tunnel and b) pre-compacted bentonite blocks. The bentonite sections are installed regularly above every disposal hole. Concept F: Combination of sections consisting of a) crushed rock compacted in the tunnel and b) pre-compacted bentonite blocks. The distance between the bentonite sections is adapted to the local geology and hydrology.The assessment of the concepts is based on performance requirements set for the backfill in the deposition tunnels for providing a stable and safe environment for the bentonite buffer and canister for the repository service time. In order to do this, the backfill should follow certain guidelines, 'design criteria' concerning compressibility, hydraulic conductivity, swelling ability, long-term stability, effects on

  9. Strata movement controlling effect of waste and fly ash backfillings in fully mechanized coal mining with backfilling face

    Institute of Scientific and Technical Information of China (English)

    Zhang Jixiong; Zhang Qiang; Huang Yanli; Liu Jinwei; Zhou Nan; Zan Dongfeng

    2011-01-01

    A fully mechanized coal mining with backfilling (FMCMB) provides advantages of safety and efficiency for coal mining under buildings,railways,and water bodies.According to the field geological conditions,we analyzed the controlling effect of strata movement by the waste and fly ash backfilling in FMCMB face.Based on the key strata theory,we established the equivalent mining thickness model,and analyzed the action of the bulk factor of backfilling body to the equivalent mining thickness.In addition,we numerically simulated the controlling function of the strata movement by backfilling bodies with different strength.And the numerical simulation result show that the deformation of stratum and the subsidence of surface can be controlled by FMCMB.The result provides references to the effective execution of fully mechanized coal mining with solid waste backfilling in goal.

  10. Dedicated heterogeneous node scheduling including backfill scheduling

    Science.gov (United States)

    Wood, Robert R.; Eckert, Philip D.; Hommes, Gregg

    2006-07-25

    A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.

  11. Development of Multiple Cement Mixture and Its Applied Technology

    Science.gov (United States)

    Sun, Jie; Li, Qiaoling; Liu, Feng; Liu, Shipeng

    Currently, materials used to backfill grooves in municipal pipeline projects are pure soil and lime earth generally. Besides, punning or rolling compaction is used. Thus, it is difficult to compact or tamp haunches under pipes. Because of immersion of surface water and activities of underground water and as water inside pipes or underground structures leaks outward, fine-grained soil in backfill move with activities of underground water and collapse is caused for ground. This thesis mainly introduces multiple cement mixture and its performance.

  12. Evolución de la Porosidad de Pastas de Cemento Portland por la Incorporación de una Puzolana Natural Evolution of Porosity in Portland Cement Pastes by addition of Natural Pozzolan

    Directory of Open Access Journals (Sweden)

    J.L. Fernández

    2004-01-01

    Full Text Available Se ha determinado la evolución que se produce en la porosidad de las pastas elaboradas con cemento Portland para uso general (CPN IRAM 50000, al incorporarle una puzolana natural de la región, en distintas proporciones y en función del tiempo de curado. El ensayo de porosidad se realiza según Norma API-RP-40, basada en la ley de Boyle, por la cual se determina el volumen de los vacíos de las pastas. Este se determina por diferencia entre el volumen total del gas a una presión P1 de 6.9.10(5 Pa y el volumen calibrado de una celda donde se encuentra la muestra a presión atmosférica P0. Posteriormente, se ingresa en la curva de calibración del porosímetro y se obtienen los volúmenes de sólido de las mezclas. Como conclusión se demuestra que la porosidad de las pastas disminuye con el aumento de la cantidad de cemento reemplazado y del tiempo de curadoA determination was made of the evolution of porosity in Portland cement pastes for general usage (CPN IRAM 50000 by incorporating different proportions of natural pozzolan from the region, and as a function of curing time. The API-RP-40 norm based on Boyle´s law was used to measure the porosity, determining the paste effective void volume. This is done by calculating the difference between the total gas space at a pressure P1 of 6,9 .10(5 Pa and the calibrated volume of the cell at atmospheric pressure P0. Then the paste volume was obtained by porosimeter calibration curves. In conclusion, this study demonstrates that the porosity of pastes decreases as a function of the amount of cement replaced and time of cure

  13. Rock segments for reducing the amount of cement used on high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Methods for constructing tunnels using the minimum quantities of cement-type support materials in high-level radioactive waste disposal facilities have been developed. Research and development concerning the technical aspects of the formation of rock segments using low alkali mortar have been conducted. This study examined the mechanical characteristics of rock segments and backfill materials and analyzed the stability of the drift that is supported by the rock segments and gravel backfill. The results confirmed the technical aspects of the formation of the rock segments and the effectiveness of the planned efforts to further reduce the amount of cement used. (author)

  14. Development of rock segment for reduction of amount of cement use

    International Nuclear Information System (INIS)

    The authors have been developing methods for constructing tunnels using the minimum quantities of cement-type support materials in high-level radioactive waste disposal facilities and advancing research and development about the technical formation of rock segment using low alkali mortar. In this study, the mechanical characteristic values concerning the rock segment and backfill materials were examined. The stability analysis of drift supported by the rock segment and backfilling with gravel were performed. Technical formation and effectiveness of the support planned for further reduction in cement influence was confirmed from the study result. (author)

  15. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten;

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including an...... overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  16. Preliminary investigation of the effect of air-pollution-control residue from waste incineration on the properties of cement paste and mortar

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Kjeldsen, Ane Mette; Galluci, Emmanuel;

    2006-01-01

    For preliminary assessment of the engineering properties of concrete with air-pollution-control residue from waste incineration (APC) the possible reactivity of APC and the effect of APC on cement hydration were investigated by isothermal calorimetry, chemical shrinkage (pychnometry), thermal...... analysis (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Furthermore, compressive strength development was measured and impregnated plane sections were prepared. The APC was from a Danish wet process plant. Although the APC contained high amounts of chloride (approx. 10%) and heavy...

  17. Exchangeability of bentonite buffer and backfill materials

    International Nuclear Information System (INIS)

    Clay-based buffer and tunnel backfill materials are important barriers in the KBS-3 repository concept for final disposal of spent nuclear fuel in Finland. One issue that is relevant to material properties is the degree to which different bentonite compositions can be regarded as interchangeable. In Posiva's current repository design, the reference bentonite composition is MX-80, a sodium montmorillonite dominated clay. Posiva would like to be able to use bentonite with Ca-montmorillonite as the dominant clay mineral. However, at this stage, it is not clear what supporting data need to be acquired/defined to be able to place the state of knowledge of Ca-bentonite at the same level as that of Na-bentonite. In this report, the concept of bentonite exchangeability has been evaluated through consideration of how bentonite behaviour may be affected in six key performance-relevant properties, namely (1) mineralogical composition and availability of materials, (2) hydraulic conductivity, (3) mechanical and rheological properties, (4) long-term alteration, (5) colloidal properties, and (6) swelling pressure. The report evaluates implications for both buffer and backfill. Summary conclusions are drawn from these sections to suggest how bentonite exchangeability may be addressed in regulatory assessments of engineered barrier design for a future geological repository for spent fuel in Finland. Some important conclusions are: (a) There are some fundamental differences between Ca- and Na-bentonites such as colloidal behaviour, pore structure and long-term alteration that could affect the exchangeability of these materials as buffer or backfill materials and which should be further evaluated; (b) Additional experimental data are desirable for some issues such as long-term alteration, hydraulic properties and swelling behaviour, (c) The minor mineral content of bentonites is very variable, both between different bentonites and within the same bentonite type, it is not clear

  18. Laboratory studies on the longevity of cement grouts

    International Nuclear Information System (INIS)

    This paper describes laboratory studies of the longevity of cement-based grouts being carried out as part of the International Stripa Project Phase III. The longevity properties determined for a reference grout (90% Sulphate Resistant Portland Cement, 10% silica fume, 0.4< water/cement<0.6 and superplasticizer) are compared with those of a slag cement grout. Laboratory tests have been carried out to determine the following: the mechanistic function of superplasticizer in fresh cement pastes; the leachability of the sorbed superplasticizer and its location in the structure of hardened cement paste; and the general leaching properties of selected cement-based grouts

  19. Numerical modeling of subsidence associated with different backfill configurations

    International Nuclear Information System (INIS)

    Due to the continuing use of abandoned mine lands over room and pillar mines it has become important to control the damages caused by surface subsidence. This paper deals with an investigation of the subsidence associated with different backfill configurations. Subsidence corresponding to a typical room and pillar abandoned mine in a number of geological columns were studied by using the finite element method. Subsidence profile was determined by the incorporation of bulking factors and varying depths of backfill. The results of the study show that the grout backfill configurations can be altered to reach a desired subsidence profile. This may increase the ability to protect a structure from large differential settlements without totally backfilling the mine. 10 refs., 5 figs., 4 tabs

  20. Shrinkage of backfill gutta-percha upon cooling

    OpenAIRE

    Lottanti, Silvio; Tauböck, Tobias T; Zehnder, Matthias

    2014-01-01

    INTRODUCTION The temperature and related shrinking kinetics of gutta-percha injected from heat guns are not known; therefore, we investigated them in this study. METHODS The temperatures of 3 different backfill gutta-percha brands extruded from 3 commercially available heat guns set to 200°C were studied. To validate the results, temperature development of 1 gutta-percha brand injected from a heat gun during a simulated backfilling procedure was assessed in single-rooted human teeth contai...

  1. Tracing interactions between natural argillites and hyper-alkaline fluids from engineered cement paste and concrete: Chemical and isotopic monitoring of a 15-years old deep-disposal analogue

    International Nuclear Information System (INIS)

    Samples of Toarcian argillite were collected both next to and far from a CEM II cement paste and a CEM II concrete, within the specific context of a 15-a old borehole located in the Tournemire Experimental Platform (Aveyron, France). The objectives were evaluation of the mineralogical and geochemical changes of the claystone at the contact with the cementitious materials and determination of the spatial extent of the interactions. The approach includes the examination of the mineralogical (XRD, SEM, TEM), chemical (major, trace, rare earth elements) and isotopic (Sr, C, O) compositions of argillite whole-rocks and of various soluble phases, at two scales: in the rock matrix (P1 scale) and along micro-cracks (P2 scale). The two study scales outline nearly similar mineralogical modifications, shown by the presence of Ca silicate hydrates (C–S–H) and newly-formed CaCO3 within 10–15 mm of the cement paste and concrete. Chemical data from whole-rock argillites indicate few changes in a slightly thicker zone (18–20 mm), mainly consisting of an increase in the CaO wt.%, and a decrease in Sr contents. The other elementary contents remained quite constant except for MgO, which suggests redistribution with precipitation of a Mg-rich mineral phase at 20 mm from cement paste/concrete interface. Acetic acid leachates had more pronounced variations, including a decrease of the total elementary content in the same ‘geochemical disturbed zone’ (GDZ), together with a significant increase of the Sr isotopic ratios. A combination of Sr and C/O isotopic patterns was used to distinguish the behavior of secondary cementitious phases in the clay-rich rock: (i) calcite dissolution and re-precipitation is supported by C/O isotopic data and (ii) C–S–H neoformation is evidenced by the 87Sr/86Sr ratios; this tool also contributes to determine the origin of the fluids. The proportion of newly-formed C–S–H in the matrix and in the micro-cracks of the argillite is modeled.

  2. System design of backfill - An ongoing project with the aim to test SKB's backfill installation concept in tunnel conditions

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. SKB in Sweden is developing and implementing concepts for final disposal of spent nuclear fuel. A KBS-3V repository consists of deposition tunnels with copper canisters containing spent fuel placed in vertical deposition holes. The canisters are embedded in highly compacted bentonite. After placement of canisters and bentonite, the deposition tunnels are backfilled with pre-compacted blocks of bentonite stacked on a bed of bentonite pellets. The remaining slot between the blocks and rock wall will be filled with bentonite pellets. The project described in this abstract is an ongoing project aiming to further develop the concept for backfill described in SKB's licence application for a Spent Fuel Repository in Forsmark. Results from this project will give important input for the Preliminary Safety Analysis Report (PSAR) needed to get permission to start the construction of the Spent Fuel Repository. The main objective with this project is to ensure that the method selected for backfill including methods for inspection works as intended with reasonable efficiency. The backfill design needs to be set since it forms the basis for requirements on deposition tunnels, deposition sequence etc. This project System Design of Backfill was started in early 2010 and will continue until the end of 2013. The project budget is 26 MSEK. The work consists of investigations, calculations, laboratory tests, tests in the Bentonite Laboratory and underground tests at Aespoe HRL, Sweden. The project objective is to further develop SKB's reference concept for backfill by performing a system design and to ensure that the reference method works as intended with reasonable efficiency. The stacking pattern for backfill blocks has been developed, see Figure 1. A stacked brick pattern is more stable than a pattern with continuous joints which implies less need for a compacted foundation bed. A conclusion from performed tests is that it is

  3. The suitability of a supersulfated cement for nuclear waste immobilisation

    Science.gov (United States)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  4. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  5. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    OpenAIRE

    Nediljka Gaurina-Međimurec; Davorin Matanović; Gracijan Krklec

    1994-01-01

    During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures) and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production...

  6. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Konstantin Sobolev

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  7. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  8. The solubility limited source term for cement-conditioned wastes: A status report

    International Nuclear Information System (INIS)

    An important function of the cement backfill in a nuclear waste repository is to react with aqueous waste species and reduce their solubility. However, to quantify backfill performance it is first necessary to prove the existence and establish the nature of the chemical solubility controls. This can be done by characterizing the solubility-limiting phases, determining their solubility and thermodynamic functions, and assessing their stability and persistence and solubility during backfill degradation. Much of the necessary data must be acquired experimentally. The title paper describes briefly the progress of experimental work on selected species including nickel, chromium(III,VI), tin(IV), molybdenum(VI), uranium(VI), Ce(III,IV), thorium, actinide simulants (III,IV) and chloride. Data needs are assessed and although much experimental work remains to be done, methodologies have been developed which will expedite progress. The expectation of a more quantitative performance assessment of cement barriers is, therefore, attainable

  9. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    International Nuclear Information System (INIS)

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react

  10. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Durdziński, Paweł T., E-mail: pawel.durdzinski@gmail.com [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Dunant, Cyrille F. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Haha, Mohsen Ben [HeidelbergCement Technology Center GmbH (HeidelbergCement AG), Rohrbacher Str. 95, 69181 Leimen (Germany); Scrivener, Karen L. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-15

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react.

  11. A historical review of Waste Isolation Pilot Plant backfill development

    International Nuclear Information System (INIS)

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO2 [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits

  12. A historical review of Waste Isolation Pilot Plant backfill development

    Energy Technology Data Exchange (ETDEWEB)

    KRUMHANSL,JAMES L.; MOLECKE,MARTIN A.; PAPENGUTH,HANS W.; BRUSH,LAURENCE H.

    2000-06-05

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  13. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  14. Ocean disposal of heat generating radioactive waste backfilling requirements

    International Nuclear Information System (INIS)

    This report describes the backfilling requirements arising from the disposal of HGW in deep ocean sediments. The two disposal options considered are the drilled emplacement method and the free fall penetrator method. The materials best suited for filling the voids in the two options are reviewed. Candidate materials are selected following a study of the property requirements of each backfill. Placement methods for the candidate materials, as well as the means available for verifying the quality of the filling, are presented. Finally, an assessment of the overall feasibility of each placement method is given. The main conclusion is that, although the proposed methods are feasible, further work is necessary to test in inactive trials each of the proposed filling methods. Moreover, it is difficult to envisage how two of the backfilling operations in drilled emplacement option can be verified by non destructive methods. (author)

  15. Backfilling of deposition tunnels: Use of bentonite pellets

    International Nuclear Information System (INIS)

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  16. Piping and erosion in buffer and backfill materials. Current knowledge

    International Nuclear Information System (INIS)

    The water inflow into the deposition holes and tunnels in a repository will mainly take place through fractures in the rock and will lead to that the buffer and backfill will be wetted and homogenised. But in general the buffer and backfill cannot absorb all water that runs through a fracture, which leads to that a water pressure will be generated in the fracture when the inflow is hindered. If the counter pressure and strength of the buffer or backfill is insufficiently high, piping and subsequent erosion may take place. The processes and consequences of piping and erosion have been studied in some projects and several laboratory test series in different scales have been carried through. This brief report describes these tests and the results and conclusions that have emerged. The knowledge of piping and erosion is insufficient today and additional studies are needed and running

  17. On the risk of liquefaction of buffer and backfill

    International Nuclear Information System (INIS)

    The necessary prerequisites for liquefaction of buffers and backfills in a KBS-3 repository exist but the stress conditions and intended densities practically eliminate the risk of liquefaction for single earthquakes with magnitudes up to M=8 and normal duration. For buffers rich in expandable minerals it would be possible to reduce the density at water saturation to 1,700 - 1,800 kg/m3 or even less without any significant risk of liquefaction, while the density at saturation of backfills with 10 - 15% expandable clay should not be reduced to less than about 1,900 kg/m3. Since the proposed densities of both buffers and backfills will significantly exceed these minimum values it is concluded that there is no risk of liquefaction of the engineered soil barriers in a KBS-3 repository even for very significant earthquakes

  18. Backfilling of deposition tunnels: Use of bentonite pellets

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (Canada)); Sanden, Torbjoern (Clay Technology AB (Sweden)); Jonsson, Esther (Swedish Nuclear Fuel and Waste Mangaement Co. (Sweden)); Hansen, Johanna (Posiva Oy (Finland))

    2011-02-15

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  19. Deep repository - Engineered barrier system. Erosion and sealing processes in tunnel backfill materials investigated in laboratory

    International Nuclear Information System (INIS)

    SKB in Sweden and Posiva in Finland are developing and plan to implement similar disposal concepts for the final disposal of spent nuclear fuel. Co-operation and joint development work between Posiva and SKB with the overall objective to develop backfill concepts and techniques for sealing and closure of the repository have been going on for several years. The investigation described in this report is intended to acquire more knowledge regarding the behavior of some of the candidate backfilling materials. Blocks made of three different materials (Friedland clay, Asha 230 or a bentonite/ballast 30/70 mixture) as well as different bentonite pellets have been examined. The backfill materials will be exposed to an environment simulating that in a tunnel, with high relative humidity and water inflow from the rock. The processes and properties investigated are: 1. Erosion properties of blocks and pellets (Friedland blocks, MX-80 pellets, Cebogel QSE pellets, Minelco and Friedland granules). 2. Displacements of blocks after emplacement in a deposition drift (Blocks of Friedland, Asha 230 and Mixture 30/70). 3. The ability of these materials to seal a leaking in-situ cast plug cement/rock but also other fractures in the rock (MX-80 pellets). 4. The self healing ability after a piping scenario (Blocks of Friedland, Asha 230 Mixture 30/70 and also MX-80 pellets). 5. Swelling and cracking of the compacted backfill blocks caused by relative humidity. The erosion properties of Friedland blocks were also investigated in Phase 2 of the joint SKBPosiva project 'Backfilling and Closure of the Deep Repository, BACLO, which included laboratory scale experiments. In this phase of the project (3) some completing tests were performed with new blocks produced for different field tests. These blocks had a lower density than intended and this has an influence on the erosion properties measured. The erosion properties of MX-80 pellets were also investigated earlier in the project but an

  20. 30 CFR 819.19 - Auger mining: Backfilling and grading.

    Science.gov (United States)

    2010-07-01

    ... environment. (5) Spoil placed on the outslope during previous mining operations shall not be disturbed if such... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Backfilling and grading. 819.19 Section 819.19 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF...

  1. Ion-exchange equilibria and diffusion in engineered backfill

    International Nuclear Information System (INIS)

    Engineered backfill can add confidence to confinement times of high-level nuclear waste stored in geologic media. This paper discusses the design and operation of a unique radial-flow diffusion cell to determine ion migration rates in backfill material under realistic repository conditions. New experimental results were reported for diffusion of CsCl in a background of NaCl into compacted bentonite and bentonite/quartz mixtures. Representation of the measured diffusion rates by the traditional, homogeneous porous-medium model significantly underestimates cesium penetration distances into the backfill. Surface diffusion is suggested as an additional mechanism by which cations transport in swollen montmorillonite; the surface diffusion coefficients for cesium is determined to be approximately 10-7 cm2/s. An electrostatic site-binding model is developed for ion-exchange equilibria on montmorillonite clay. The effect of pH, ionic strength, and specific adsorption are evaluated and compared favorably to new, experimental exchange isotherms measured on disaggregated clay. The electrostatic site-binding model permits a prediction of the influence of backfill compaction on K/sub d/ values. We find that for strongly adsorbing cations, compactions has little effect. However, anions exhibit significant Donnan exclusion with clay compaction. 40 references, 12 figures

  2. Protection against flashback by backfilling with rock salt gruss

    International Nuclear Information System (INIS)

    If wastes are disposed of in deep geological formations, e.g. in salt domes, radiolytically produced hydrogen may escape from the waste forms into the boreholes, forming an inflammable mixture with air. Complementary to part I (Report Juel-Spez--573), here the protection against flashback by salt gruss backfillings, the volume and form of the flammability range are examined. It was found out that salt gruss backfillings, under certain conditions, can prevent flashbacks in hydrogen-air mixtures, the most important condition being that the backfillings contain trickling material of the finest particle size of between 0 and 2 mm. Unfractional backfillings drilled in the domes of rock salt formations meet this requirement in their dry state. Their water content must not exceed 2 mass per cent. For flashback, the flammability point referred to as 'near' is more critical than the one referred to as 'far'. The length-diameter ratio of the hollow space where the mixture is ignited only has a secondary influence on the flashback. It hardly plays a role either whether the surfaces of the flammability ranges are rough or smooth. (orig./BBR)

  3. The Buffer and Backfill Handbook. Part 2: Materials and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2001-12-01

    Improved technology and prospection yielding more pure and homogeneous raw materials for preparing buffers and backfills will ultimately outdate the clays and ballast materials described in the present part of the Handbook. It describes experimentally investigated materials of potential use in repositories but other, more suitable materials will replace them in the future. The Handbook will hence have to be reviewed regularly, making room for superior materials in future, upgraded Handbook versions. Buffer is the term for dense clay used for embedment of canisters with highly radioactive waste, while backfill is soil used for filling tunnels and shafts in repositories. Examples of soil materials of potential use as buffers and backfills in repositories of KBS-3 type are described in this part of the Handbook. They are: smectitic clay materials intended for preparation of buffers (canister-embedding clay) and used as clay component in artificially prepared tunnel and shaft backfills consisting of mixtures of clay and ballast. Ballast materials intended for backfilling of tunnels and shafts and used as components of artificially prepared backfills. Smectitic natural clay soils intended for use as buffers and backfills. Very fine-grained smectite clay used as grout for sealing rock fractures. In this part of the Handbook for Buffers and Backfills, description of various candidate materials will be made with respect to their mineral composition and physical properties, with respect to the groundwater chemistry that can be expected in a deep repository in Swedish bedrock. Chapter 3 deals with smectitic clay materials intended for embedment of heat-producing canisters with highly radioactive waste. Focus is on the nature of the buffer constituents, i. e. the smectite content, the non-expanding clay minerals colloidal and the accessory non-clay minerals as well as amorphous matter and organic substances. The dominant part of the chapter describes the occurrence and origin

  4. The Buffer and Backfill Handbook. Part 2: Materials and techniques

    International Nuclear Information System (INIS)

    Improved technology and prospection yielding more pure and homogeneous raw materials for preparing buffers and backfills will ultimately outdate the clays and ballast materials described in the present part of the Handbook. It describes experimentally investigated materials of potential use in repositories but other, more suitable materials will replace them in the future. The Handbook will hence have to be reviewed regularly, making room for superior materials in future, upgraded Handbook versions. Buffer is the term for dense clay used for embedment of canisters with highly radioactive waste, while backfill is soil used for filling tunnels and shafts in repositories. Examples of soil materials of potential use as buffers and backfills in repositories of KBS-3 type are described in this part of the Handbook. They are: smectitic clay materials intended for preparation of buffers (canister-embedding clay) and used as clay component in artificially prepared tunnel and shaft backfills consisting of mixtures of clay and ballast. Ballast materials intended for backfilling of tunnels and shafts and used as components of artificially prepared backfills. Smectitic natural clay soils intended for use as buffers and backfills. Very fine-grained smectite clay used as grout for sealing rock fractures. In this part of the Handbook for Buffers and Backfills, description of various candidate materials will be made with respect to their mineral composition and physical properties, with respect to the groundwater chemistry that can be expected in a deep repository in Swedish bedrock. Chapter 3 deals with smectitic clay materials intended for embedment of heat-producing canisters with highly radioactive waste. Focus is on the nature of the buffer constituents, i. e. the smectite content, the non-expanding clay minerals colloidal and the accessory non-clay minerals as well as amorphous matter and organic substances. The dominant part of the chapter describes the occurrence and origin

  5. Analysis of factors affecting the stability of backfill materials

    International Nuclear Information System (INIS)

    Storage of high-level nuclear waste in subsurface repositories involves a backfill material as a physical/chemical barrier between the solid waste canisters and host rock. Chemical, structural, and textural changes due to hydrothermal reaction may degrade the backfill performance over the life of the repository. In order to evaluate the potential for such changes, we have: (1) carried out hydrothermal experiments on candidate backfill materials (smectite, illite, basalt) under conditions analogous to those at the repository, (2) performed a complete characterization of these materials before and after hydrothermal treatment using EMPA, XRD, SEM/EDS, and, especially, STEM/AEM techniques, and (3) reviewed and analyzed geologic systems which are analogous to the backfill systems. These serve as natural experimental systems with ages up to many tens of millions of years. The Umtanum basalt contains up to 25% of immiscible, two-phase glasses and late opal and nontronite in fractures. These materials are especially subject to solution effects and the glass may provide K to groundwater. The kinetics of the smectite to illite and illite to muscovite transitions are primarily controlled by Al/Si diffusion which is sluggish, rather than by rapid alkali ion diffusion. Thus, even though smectite (bentonite), mixed-layer illite/smectite and illite are all metastable phases transitional to muscovite plus other phases, reactions occur so slowly that these phases are retained even within a geologic time scale for temperatures of approximately 150, 200 and 3000C, respectively. A high ratio of Ca/K (perhaps supplied by solution of calcite) inhibits the transitions. If clay layers are compacted to form a continuous matrix, water may be prevented from penetrating the backfill and promoting the clay mineral transition

  6. Backfilling of KBS-3V deposition tunnels - possibilities and limitations

    International Nuclear Information System (INIS)

    By definition for the SKB repository concept, the backfill of KBS-3V deposition tunnels must be so designed that transport of dissolved matter is controlled by diffusion and not by advective water flow. This requires that the hydraulic conductivity of the backfill does not exceed about E-10 m/s. The backfilling materials also have to adequately resist compression caused by upward expansion of the buffer. It must also exert an effective pressure of at least 100 kPa on the rock in order to provide support to the rock and minimize spalling of the rock. These criteria are fulfilled by several approaches and options for backfill materials, placed and compacted layer wise or in the form of blocks of compacted clay powder. Based on the experience from comprehensive lab studies and considering practical issues, SKB has selected a concept where the major part of the backfill consists of stacked blocks that are surrounded by clay pellets. Using this concept a basis for a detailed evaluation, a study of three different techniques for placing the blocks has been undertaken. The three block placement techniques examined are the 'Block', 'Robot', and 'Module' methods. They involve different block sizes and techniques for handling and placing the blocks but the same way of preparing the foundation bed of the blocks and placing the pellet filling. The blasted tunnels have a varying cross section, caused by the orientation of the blast-holes. This requires that a varying fraction of blocks be installed in the backfilling along the blasted tunnel interval if sufficiently high density and low hydraulic conductivity is to be achieved. The efficiency of filling will depend on the type of clay used in the blocks. For example, using Friedland clay for block preparation, the filling efficiency must be 80% while it can be reduced to 60% if more smectite-rich clay is used. The use of a clay with high smectite content increases margins and is concluded to be superior from emplacement point

  7. Relationship Between Electrical Property and Microstructure of Mineral Admixtures-Cement Paste%矿物掺和料-水泥浆体电学特性与其微结构的关系

    Institute of Scientific and Technical Information of China (English)

    李化建; 万广培; 谢永江; 黄佳木

    2013-01-01

    The electrical properties of fly ash ,slag and limestone powder-cement paste were studied by the methods of Cyclic Voltammetry and AC Impedance Spectroscopy .The results of electrical test were fitted by equivalent circuit . The correlations between electrical parameters of paste and unevaporable water content ,pore structure by mercury porosimetry were compared .The results show that there is a positive relation between the unevaporable water content and the electrical resistivity of paste .If the unevaporable water content is higher ,the hydration degree is higher and the electrical resistivity of paste is higher .The electrical resistivity of paste is increased with fly ash and slag ,and it is unaffected with limestone powder of 5% dosage .The resistance Rs of pore solution of paste is increased with the prolongation of hydration ,and the changes of resistance Rs and the electrical resistivity are unanimous .The resistance Rp and electrical capacitance C of gel are related to C -S-H content ,and there is a negative relation between the resistance Rp and electrical capacitance C of gel . The complexity of pore structure of paste is increased with the prolongation of hydration . T he constant phase angle exponent P by AC Impedance Spectroscopy is decreased and the value of fractal dimension by mercury porosimetry is increased .%采用循环伏安法和交流阻抗法系统研究了粉煤灰、矿渣粉和石灰石粉水泥浆体的电学特性,通过等效电路对电学测试结果进行拟合,并将拟合所得浆体电学参数与浆体化学结合水和压汞所测孔结构之间的相关性进行比较。结果表明:浆体的化学结合水与其电阻率具有较好的正相关性,即化学结合水越多,水化程度越大,浆体电阻率越高;粉煤灰和矿渣粉可以提高浆体电阻率,而石灰石粉在5%掺量下对浆体电阻率无影响;随着水化龄期的延长,浆体孔溶液电阻增大,其变化规律与浆体电

  8. Backfilling of KBS-3V deposition tunnels - possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Wimelius, Hans (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Pusch, Roland (Geodevelopment International AB, Lund (Sweden))

    2008-12-15

    By definition for the SKB repository concept, the backfill of KBS-3V deposition tunnels must be so designed that transport of dissolved matter is controlled by diffusion and not by advective water flow. This requires that the hydraulic conductivity of the backfill does not exceed about E-10 m/s. The backfilling materials also have to adequately resist compression caused by upward expansion of the buffer. It must also exert an effective pressure of at least 100 kPa on the rock in order to provide support to the rock and minimize spalling of the rock. These criteria are fulfilled by several approaches and options for backfill materials, placed and compacted layer wise or in the form of blocks of compacted clay powder. Based on the experience from comprehensive lab studies and considering practical issues, SKB has selected a concept where the major part of the backfill consists of stacked blocks that are surrounded by clay pellets. Using this concept a basis for a detailed evaluation, a study of three different techniques for placing the blocks has been undertaken. The three block placement techniques examined are the 'Block', 'Robot', and 'Module' methods. They involve different block sizes and techniques for handling and placing the blocks but the same way of preparing the foundation bed of the blocks and placing the pellet filling. The blasted tunnels have a varying cross section, caused by the orientation of the blast-holes. This requires that a varying fraction of blocks be installed in the backfilling along the blasted tunnel interval if sufficiently high density and low hydraulic conductivity is to be achieved. The efficiency of filling will depend on the type of clay used in the blocks. For example, using Friedland clay for block preparation, the filling efficiency must be 80% while it can be reduced to 60% if more smectite-rich clay is used. The use of a clay with high smectite content increases margins and is concluded to be

  9. Radon emanation from backfilled mill tailings in underground uranium mine

    International Nuclear Information System (INIS)

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as 226Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12–7.03 Bq m−2 s−1 with geometric mean of 1.01 Bq m−2 s−1 and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08–0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between 222Rn emanation rate and 226Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. - Highlights: • 222Rn emanation rate of the backfilled tailings varied from 0.12 to 7.03 Bq m−2 s−1. • Good correlation between 222Rn emanation rate and 226Ra activity concentration found. • Higher 222Rn emanation rate was obtained from moist backfilled tailings. • Radon emanation factor of the backfilled tailings varied in the range of 0.08–0.23. • Emanation factor of wet tailings was about 3 times higher than that of dry tailings

  10. Evaluation of low-pH cement degradation in tunnel plugs and bottom plate systems in the frame of SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Galindez, Juan-Manuel; Molinero, Jorge; Arcos, David (Amphos XXI Consulting S.L., Barcelona (Spain))

    2010-09-15

    Low-pH concrete plugs are going to be used during the backfilling of depositional tunnels of the high-level nuclear waste repository. The stability of these plugs, however, is thought to be affected by water-concrete interaction that may lead to cement degradation and dissolution. Alkaline plumes derived from such a degradation could jeopardize the chemical stability of the clay material in the backfill due to the enhanced dissolution kinetics under high-pH solutions. In this study, the cement durability of concrete plugs to be used in the repository is numerically evaluated by performing reactive transport simulations based on the geochemical degradation of the cement compounds, mainly calcium silicate hydrates (CSH). The implementation of degradation process into the geochemical model is based on a solid solution approach for CSH alteration. The numerical model also takes into account the dependency of transport properties (e.g. molecular diffusion coefficient) with the changes in porosity due to mineral precipitation-dissolution. The simulations predict that the effect of low-pH concrete alteration on the stability of backfill materials would be low. The main process governing geochemistry in the backfill-concrete boundary would be the quick loss of porosity due to ettringite precipitation. The very high molar volume of this mineral enhances the rate of clogging. The ettringite formation is mainly driven by the high sulphate concentration in the backfill porewater, which in turn is controlled by the equilibrium with gypsum in the backfill. The release and diffusion of calcium (from CSH replacement) and Al (from katoite dissolution) from concrete causes ettringite precipitation at the concrete-backfill boundary. The loss of porosity dramatically reduces solute diffusion and, consequently, the backfill-concrete system remains almost invariably for hundreds of years

  11. Evaluation of low-pH cement degradation in tunnel plugs and bottom plate systems in the frame of SR-Site

    International Nuclear Information System (INIS)

    Low-pH concrete plugs are going to be used during the backfilling of depositional tunnels of the high-level nuclear waste repository. The stability of these plugs, however, is thought to be affected by water-concrete interaction that may lead to cement degradation and dissolution. Alkaline plumes derived from such a degradation could jeopardize the chemical stability of the clay material in the backfill due to the enhanced dissolution kinetics under high-pH solutions. In this study, the cement durability of concrete plugs to be used in the repository is numerically evaluated by performing reactive transport simulations based on the geochemical degradation of the cement compounds, mainly calcium silicate hydrates (CSH). The implementation of degradation process into the geochemical model is based on a solid solution approach for CSH alteration. The numerical model also takes into account the dependency of transport properties (e.g. molecular diffusion coefficient) with the changes in porosity due to mineral precipitation-dissolution. The simulations predict that the effect of low-pH concrete alteration on the stability of backfill materials would be low. The main process governing geochemistry in the backfill-concrete boundary would be the quick loss of porosity due to ettringite precipitation. The very high molar volume of this mineral enhances the rate of clogging. The ettringite formation is mainly driven by the high sulphate concentration in the backfill porewater, which in turn is controlled by the equilibrium with gypsum in the backfill. The release and diffusion of calcium (from CSH replacement) and Al (from katoite dissolution) from concrete causes ettringite precipitation at the concrete-backfill boundary. The loss of porosity dramatically reduces solute diffusion and, consequently, the backfill-concrete system remains almost invariably for hundreds of years

  12. Improvement of Cement Strength by Induction Method

    Institute of Scientific and Technical Information of China (English)

    YANG Li-yuan; LIN Zong-shou

    2004-01-01

    The induction method of improving the strength of Portland cement by adding fine slag powder,high aluminate component and hydrated paste was investigated through determining the physical properties,hydration heat and pore size distribution,and its mechanism was discussed.The experimental results reveal that a certain content of high aluminate component,fine slag powder and hydrated paste can improve remarkably the strength of Portland cement.

  13. Geotechnical investigations on backfill materials in the Asse salt mine

    International Nuclear Information System (INIS)

    The compression behaviour of rock salt grit is being investigated by compression tests at the Asse salt mine. The various test parameters are introduced and their results are discussed. The permeability of rock salt grit with saturated NaCl-brine in dependency upon the grain size and compactness, resp. the porosity, is being determined at the Asse salt mine. The test equipment and the results determined here are shown. In addition to laboratory tests, geotechnical investigations are taking place in a carnallitic chamber of the Asse salt mine which had been backfilled in earlier years. They chiefly concern measurements of the deformation rates in drifts - which were mined between the chambers in remaining pillars - as well as horizontal deformation measurements in the backfilling. (orig./DG)

  14. Backfill as an engineered barrier for nuclear waste management

    International Nuclear Information System (INIS)

    The swelling, plastic flow, and relative impermeability of bentonite and hectorite were observed and measured after wetting with concentrated brines. Measurements of stable values of pH > 6.5 for the interstitial brines in wetted bentonite and hectorite confirmed conditions favorable for precipitation and sorption of transuranics. Values of K/sub d/ > 2000 ml/g were measured for Pu and Am. Calculated estimates of the effectiveness of a one-foot-thick backfill barrier are presented. They show that the breakthrough of Pu and other transuranics (K/sub d/ = 2000 ml/g) can be delayed for 104 to 105 years. The breakthrough of most fission products (K/sub d/ = 200 ml/g) can be delayed for 103 to 104 years, sufficient time for them to decay to very low concentrations. A backfill barrier can contribute significantly to a radioactive waste isolation system

  15. Federal Republic of Germany/backfilling and sealing program - outline

    International Nuclear Information System (INIS)

    After 1978 the Asse salt mine was used exclusively for research work which serves to make available scientific and technical data for the planning, construction and operation of repositories for radioactive wastes. This presentation delineates the advantages of the geological formation rock salt with a view to the final disposal of radioactive wastes subsequent to a short description of the 'Waste Management Concept' of the Federal Republic of Germany. The individual components of the internationally accepted 'Multiple Barrier System' are described, while the technical barriers 'backfilling and sealing' are subject of special consideration. A general formulation of the requirements and objectives of each specific component in the backfilling and sealing system is presented. (orig./DG)

  16. A new geopolymeric binder from hydrated-carbonated cement

    OpenAIRE

    Paya Bernabeu, Jorge Juan; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Soriano Martinez, Lourdes; Mitsuuchi Tashima, Mauro

    2012-01-01

    This paper evaluates the use of hydrated Portland cement as the raw material in the production of geopolymers. The silicon and aluminium oxides needed for the geopolymerization process were produced by the carbonation of hydrated Portland cement, which transforms CSH and CAH (Portland cement hydrates) into silica and alumina gels. Hydrated-carbonated Portland cement was alkali activated with a NaOH/waterglass solution. Pastes and mortars were prepared, and micro-structural and mechanical prop...

  17. Reactive backfills in radioactive waste disposal selenium sorption on apatite

    International Nuclear Information System (INIS)

    Apatites are investigated as possible high performance material for reactive backfills in radioactive waste disposal. An experimental study showed an excellent selenite retaining rate and established the main characteristic of this element sorption on natural and synthetic apatites. Thermodynamical parameters have been calculated and integrated in a geochemical computer code in order to demonstrate the excellent potentialities of the apatite as a trap mineral for the selenium. (A.L.B.)

  18. Approach for Measuring Swelling Stress of Buffer Backfilling Material

    OpenAIRE

    Ming Zhang; Huyuan Zhang; Suli Cui; Lingyan Jia

    2012-01-01

    The characteristics of swelling stress of buffer backfilling material have been studied by forcebalance method and constant volume test method in this paper. The constant volume test apparatus was designed by the authors. Results show that swelling stress changing with time is a little different between the two methods. The value of swelling stress measured by constant volume test is more accurate; besides, uptaking water with time could also be monitored by constant volume test. The constant...

  19. Groundwater recovery problems associated with opencast mine backfills

    OpenAIRE

    Reed, S M

    1986-01-01

    The research outlined in this thesis is concerned with the environmental aspects of groundwater re-establishment as a consequence of surface mining. No principal effects which have been identified as being detrimental to the restored land area are as follows; i). The vertical and horizontal displacements of backfill materials following restoration, and ii). The pollution of groundwater from contact with weathered rockfill materials. The research into settlement has attempted to cl...

  20. Water quality and hydrologic impacts of disposal of uranium mill tailings by backfilling

    International Nuclear Information System (INIS)

    Backfilling of the sand portion of spent uranium mill tailings has been practised for years in the Grants Mineral Belt of New Mexico, USA. Until recently, it has been limited to abandoned stopes requiring roof support to enable continued ore production. Recent environmental regulations of surface disposal make backfilling an increasingly attractive alternative for disposal of a greater fraction of the tails. This paper discusses the impacts of the backfill process on groundwater resources. Immediate and long-term hydrologic effects are evaluated. Whereas backfilling does lead to some changes in minewater flows, these changes are localized, of slight magnitude, and of short duration. In the long term, backfilling will have inconsequential impact on regional hydrology. Short- and long-term water quality impacts are considered. In general, backfill decant is contaminated with the same constituents found in normal mine wastewater, but at elevated concentrations. During the backfill process, backfill decant is returned to the surface and treated along with dewatering discharge. In the longer term, there may exist some potential for contaminants mobilized from backfill media in a flooded mine to migrate into the surrounding aquifer. It is predicted that low groundwater velocities and geochemical interactions including precipitation will together prevent any backfill-caused deterioration of regional groundwater quality. (author)

  1. Cemented backfilling technology with unclassified tailings based on vertical sand silo

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new technology characterized by rapidly non-mechanical settlement of unclassified tailings was developed based on a large number of tests,and dynamic settlement and continual slurry preparation without hardening in vertical sand silo were eventually realized by the addition of an effective flocculating agent (NPA).The results show that the sedimentation velocity of interface between unclassified tailings and water after the addition of NPA increases by 10-20 times,the sedimentation mass fraction of unclassified tailings at the bottom of vertical sand silo is up to 64%,the solid particle content of waste water meets the national standard,and the side influences of NPA can be removed by the addition of fly ash.The industrial test result shows that the system,the addition manner and the equipments are rational,and the vertical sand silo is used efficiently.This developed system is simple with large throughput,and the processing cost is 2.2 yuan(RMB)/m3,only 10%-20% of that by mechanical settlement.

  2. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  3. Alkali segregation in Portland cement pastes

    Directory of Open Access Journals (Sweden)

    Triviño, F.

    1966-09-01

    Full Text Available Not availableEn el presente trabajo se pone de manifiesto experimentalmente la formación y presencia de aphthitalita -sulfato doble de potasio y sodio en la relación S04K2/S04Na2 = 3/1 en las pastas puras de cemento portland, desde el comienzo del fraguado de las mismas. Se estudia el mecanismo de la citada formación, íntimamente relacionada con el proceso general de formación de eflorescencias salinas, a base de una emigración de sulfatos alcalinos hacia las partes externas de las pastas, en virtud de fenómenos de exudación equivalentes a arrastres capilares. Se sintetiza y aísla la aphthitalita por dos procedimientos y se obtiene su difractograma.de rayos· X, a efectos de su identificación y de la confirmación de los resultados experimentales obtenidos, así como de la interpretación de los mismos.

  4. Microstructure Analysis of Heated Portland Cement Paste

    NARCIS (Netherlands)

    Zhang, Q.; Ye, G.

    2011-01-01

    When a concrete structure is exposed to high temperature, the mechanical damage and chemical transformation take place simultaneously, which will change the microstructure of material. On the other hand, the mechanical properties and transport properties depend on the development of microstructure o

  5. Pore structure in blended cement pastes

    OpenAIRE

    Canut, Mariana Moreira Cavalcanti; Geiker, Mette Rica

    2011-01-01

    Alternative mineralske bindere (SCMs), fx slagge og flyveaske, bliver i stigende grad brugt til delvis erstatning af portlandcement. Dette både for at forbedre betonens ingeniørmæssige egenskaber og for at mindske den miljømæssige belastning. Forbedring af den hærdnede betonens egenskaber forklares ved en mere gunstig porestruktur af cementpastaen. Mikrostrukturen af cementpastaen er bl.a. bestemt af de fysiske og kemiske egenskaber af binderne og hærdeforholdene (fugt og temperatur).Denne af...

  6. Backfilling technology and strata behaviors in fully mechanized coal mining working face

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiang; Zhang Jixiong; Huang Yanli; Ju Feng

    2012-01-01

    Based on the principle of fully mechanized backfilling and coal mining technology and combined with theXingtai Coal Mine conditions,we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology,Firstly,we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail backfilling,step by step swinging up of the tamping arm.gradual compacting,moving formed backfilling scraper conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement".Meanwhile,the stress changes of backfill body in coal mined out area was monitored by stress sensors,and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face.The site tests results show that using this new backfilling and coal mining integrated technology,the production capacity in the 7606 working face can reach to 283,000 ton a year,and 282,000 ton of solid materials (waste and fly ash) is backfilled,which meets the needs of high production and efficiency.The goaf was compactly backfilled with solid material and the strata behavior was quite desirable,with an actual maximum vertical stress of the backfill body of 5.5 MPa.Backfill body control the movement of overburden within a certain range,and there is no collapses of major areas in the overlying strata upon backfilled gob.The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively,which proved the practical significance of this integrated technology.

  7. Relative Density of Backfilled Soil Material around Monopiles for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo; Frigaard, Peter

    2012-01-01

    The relative density of backfilled soil material around offshore monopiles is assessed through experimental testing in the Large Wave Channel (GWK) of the Coastal Research Centre (FZK) in Hannover. The relative density of the backfill material was found to vary between 65 and 80 %. The dependency...... of the relative density of backfill on the maximum pile bending moment is assessed through three-dimensional numerical modeling of a monopile foundation located at the offshore wind farm at Horns Reef, Denmark....

  8. Investigations on backfilling and sealing of chambers and shafts in a final salt repository

    International Nuclear Information System (INIS)

    Soil mechanical laboratory investigations as well as geotechnical in situ measurements were carried out. The laboratory tests provided important information on the material behaviour of selected backfill and sealing materials. Initial conclusions on the long-term behaviour of backfill and seals as well as on their interaction with the rock were gained with the results of in situ measurements in backfilled chambers and seals and in the surrounding rock of the Asse salt mine. (orig./DG)

  9. Geotechnical charcterization of coal refuse for use as a backfill material

    OpenAIRE

    Bowman, Charles H

    1991-01-01

    Both active and residual mine subsidence resulting from underground coal mining have caused surface damage to land and structures. A method of subsidence mitigation successfully used abroad, and to a much lesser extent in U.S. coal mines, is backfilling. In addition to the possible benefits of subsidence mitigation, backfilling has the potential to increase coal recovery, enhance ventilation control, and to minimize mine fires. Backfilling can also be used as a means of mine refuse disposal, ...

  10. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  11. Behavior of Radionuclides and RCRA Elements in Tank Backfill Grouts

    International Nuclear Information System (INIS)

    One approach to decommissioning emptied high-level waste tanks is to backfill them with grout. Because of the long lives and high toxicity of some of the contaminants, the chemical behavior of the contaminants in the grout need to be understood, especially as the grout ages and weathers over long times. In this paper, the sequestration of technetium and iodine in contact with two grout formulations, and their component materials, is discussed. Preliminary results are presented of experiments examining the solubility of actinides in contact with the grouts as pH is lowered and carbonate content increased, representing conditions of a weathered grout system. (authors)

  12. Feasibility studies of air placed techniques as emplacement means of different backfilling materials in underground radioactive waste disposal

    International Nuclear Information System (INIS)

    Air placed techniques are likely to be used as emplacement means of different backfilling materials in underground waste repositories. A literature survey of the air placed techniques and equipments leads to the choice of the dry process taking into account the emplacement constraints (distance: 300 m, flow: 10 m3/h) and the large variety of materials to be placed. Tests performed in the case of cement-based materials (with and without addition of silica fumes), for different types of cement and as a function of the incidence of the jet, show that it is possible to put in place mortars of good quality. However heterogeneity in the material composition is found when the jet is stopped. This problem may be partly solved by a better automation of the process. Complementary tests, carried out with the preselected clay of Fourges Cahaignes, clearly demonstrate the ability of the air placed technique to put in place pure clay: a dry density of 1.50kg/m3 is reached in the case of coarse material and for a final water content of 30% (in weight). Feasibility tests performed on clay-sand mixtures are not conclusive due to an unappropriate granulometry distribution of the sand. 11 figs., 9 tabs

  13. Development of Clinical Cement of Nanoapatite and Polyamide Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new type of inorganicorganic biomimetic bone cement consisting of nanohydroxyapatite and polyamide 66 composite was investigated. This cement can be handled as paste and easily shaped into any contour. Nanoapatite and polyamide composite cement has a reasonable setting time, excellent washout resistance, high mechanical strength and bioactivity, and it is easily handled and shaped, which can be developed as a clinical cement. It can be predicted that nanoapatite/polymer composite cement would be a new trend of biomedical material, showing a promising prospect.

  14. Movement and deformation laws of the overlying strata in paste filling stope

    Institute of Scientific and Technical Information of China (English)

    Xu Ying; Chang Qingliang; Zhou Huaqiang; Cao Zhong; Li Xiushan; ChenJianhang

    2011-01-01

    We combined the similar simulation with numerical simulation to analyze the movement and deformation features of overlying strata caused by paste backfill mining,study the movement and deformation laws of the overlying strata in paste backfill mining,structural movement of the stope strata as well as the stope stress distribution laws.Furthermore,authors also explored the key factors to the movement and deformation of the overlying strata in paste backfill mining.The results indicate that a caving zone existed in the bending zone only in the overlying strata of the paste backfill mining.Compared with the roof caving mining,the degree of stress concentration and area of influence in the paste filling stope were apparently smaller.And the degree of destruction and area of the overlying strata decreased prominently.Also,there was no apparent strata behavior in the working face.Lastly,the filling ratio was the key to control the movement and deformation of the overlying strata.Combined with a specific engineering example,the author proved the reliability of the simulation results and provided a theoretical basis for the further extension of the paste backfill mining.

  15. Retention Capability of Local Backfill Materials 1-Simulated Disposal Environment

    International Nuclear Information System (INIS)

    In Egypt, a shallow ground disposal facility was the chosen option for the disposal of low and and intermediate radioactive wastes. The impact of the waste disposal facility on the environment depends on the nature of the barriers, which intend to limit and control contaminant migration. Owing to their physical, chemical and mechanical characteristics. Local soil materials were studied to illustrate the role of the back fill as part of an optimized safety multi-barrier system, which can provide the required level of protection of the environment and meet economic and regulatory requirements. A theoretical model was proposed to calculate the transport phenomena through the backfill materials. The credibility and validity of the proposed model was checked by the experimental results obtained from a three-arms arrangement system. The obtained data for the distribution coefficient (Kd) and the apparent diffusion coefficient (Da) were in good agreement with those previously obtained in the literatures. Taking in consideration the prevailing initial conditions, the data calculated by the theoretical model applied show a reasonable agreement with the results obtained from experimental work. Prediction of radioactive cesium migration through the backfill materials using the proposed model was performed as a function of distance. The results obtained show that after 100 years, a fraction not exceeding 1E-9 of the original activity could be detected at 1m distance away from the waste material

  16. Physical and chemical characterization of pastes of bone cements with ZrO{sub 2}; Caracterizacion fisica y quimica de pastas de cementos oseos con ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quinto H, A. [Instituto Tecnologico de Zacatepec, A.P. 45, 62900 Zacatepec, Morelos (Mexico); Pina B, M.C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, 04510 Mexico D.F. (Mexico)

    2003-07-01

    Setting times and temperature of sixteen calcium phosphate cements added with ZrO{sub 2} were evaluated. Their behaviors were analysed to be used like injectable formulations in surgery of bone. Two cements of calcium phosphates enriched with ZrO{sub 2} with the best characteristics in setting times and temperature, were mechanically tested after 1 and 7 days of prepared. Density was determined using a pycnometer, chemical composition was determined by X-ray diffraction and the molecular structure was determined by infrared spectroscopy. (Author)

  17. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...... seven days, dilatometers were manually recorded during at least 56 days. The dispersion model was applied to fit chemical shrinkage results and to estimate the maximum (or ultimate) value for calculation of degree of hydration. Except for a pure Portland cement best fits were obtained by the general...

  18. The backfilling and sealing of radioactive waste repositories. V. 2. Figure - Tables - Appendices

    International Nuclear Information System (INIS)

    The two volumes of this report present a review study about backfilling and sealing of radioactive waste repositories in granites, argillaceous and salt formations. Volume 2 contains all the figures, table and appendices A detailed account of candidate backfill materials is given in a standardized format

  19. Densified ultra-light cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    production comprehends one of the relevant carbon emission footprints in the world. The substitution of cement by supplementary cementitious additions encompasses several other health hazards, risks and also technical difficulties such as limited or incoherent pozzolanic activity. Superabsorbent polymers can...... be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with......Densified cement systems were developed in the early 1980s, about three decades past. The research led to historical developments in cement and concrete research, forming the baseline for the design of modern cement systems, the socalled high-performance and ultra-high performance concrete. Cement...

  20. Neutron Scattering Studies of Cement

    Science.gov (United States)

    Allen, Andrew

    2010-03-01

    Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

  1. Radionuclide sorption and migration studies of getters for backfill barriers

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, E.J.

    1980-07-01

    Bentonite and hectorite clay minerals were chosen for study and development as potential backfill materials for testing in the proposed Waste Isolation Pilot Plant (WIPP), a radioactive waste repository and test facility in bedded salt. This choice of materials was based on initial screening results which are presented and on the predicted physical properties of these materials. These properties were verified experimentally in concentrated brines specific to the WIPP site. Distribution coefficients, K/sub d/, were calculated from batch sorption measurements on bentonite and hectorite in the nearly saturated brines A and B. The resulting K/sub d/ values were in the range of (1 to 5) x 10/sup 3/ ml/g for europium; (2 to 40) x 10/sup 3/ ml/g for plutonium(IV); and (4 to 16) x 10/sup 3/ ml/g for americium(III). A silica- and calcite-containing sand mixed with bentonite and hectorite acted as a sorber of americium(III) but was merely an inert diluent for plutonium(IV). Pertechnetate anions (TcO/sub 4//sup -/) sorbed on activated charcoal with K/sub d/ values in the range of (0.2 to 0.4) x 10/sup 3/ ml/g. Pertechnetate, cesium, and strontium ions in brine were not sorbed appreciably by bentonite or hectorite. Although experimental evidence is given for a possible role of solubility in the sorption of europium on getters, other data presented here and evidence from the literature are inconsistent with a simple single reaction sorption mechanism. It is concluded that a backfill containing bentonite on hectorite and activated charcoal is potentially an effective barrier to the migration of Eu(III), Pu(IV), and Am(III) cations and, with further development, to the migration of TcO/sub 4//sup -/ anions as well.

  2. Radionuclide sorption and migration studies of getters for backfill barriers

    International Nuclear Information System (INIS)

    Bentonite and hectorite clay minerals were chosen for study and development as potential backfill materials for testing in the proposed Waste Isolation Pilot Plant (WIPP), a radioactive waste repository and test facility in bedded salt. This choice of materials was based on initial screening results which are presented and on the predicted physical properties of these materials. These properties were verified experimentally in concentrated brines specific to the WIPP site. Distribution coefficients, K/sub d/, were calculated from batch sorption measurements on bentonite and hectorite in the nearly saturated brines A and B. The resulting K/sub d/ values were in the range of (1 to 5) x 103 ml/g for europium; (2 to 40) x 103 ml/g for plutonium(IV); and (4 to 16) x 103 ml/g for americium(III). A silica- and calcite-containing sand mixed with bentonite and hectorite acted as a sorber of americium(III) but was merely an inert diluent for plutonium(IV). Pertechnetate anions (TcO4-) sorbed on activated charcoal with K/sub d/ values in the range of (0.2 to 0.4) x 103 ml/g. Pertechnetate, cesium, and strontium ions in brine were not sorbed appreciably by bentonite or hectorite. Although experimental evidence is given for a possible role of solubility in the sorption of europium on getters, other data presented here and evidence from the literature are inconsistent with a simple single reaction sorption mechanism. It is concluded that a backfill containing bentonite on hectorite and activated charcoal is potentially an effective barrier to the migration of Eu(III), Pu(IV), and Am(III) cations and, with further development, to the migration of TcO4- anions as well

  3. THE INFLUENCE OF ORTHOPHOSPHATES ON THE PROPERTIES OF PORTLAND CEMENT

    OpenAIRE

    Antanas Kaziliunas

    2014-01-01

    The article continues the research of input reduction of phosphogypsum preparation for the production of building materials. Desiccated apatite (2.18 % P2O5 in gypsum) makes the least changes in the properties of Portland cement: it prolongs the cement setting times and reduces the compressive strength about 10 %. The apatite formation in the pastes of soluble orthophosphate-cement occurs during the formation of X-ray amorphous colloidal calcium orthophosphate hydrate, which prolo...

  4. Dry-grinded ultrafine cements hydration. physicochemical and microstructural characterization

    OpenAIRE

    Foteini Kontoleontos; Petros Tsakiridis; Apostolos Marinos; Nikolaos Katsiotis; Vasileios Kaloidas; Margarita Katsioti

    2013-01-01

    The aim of the present research work was the evaluation of the physicochemical and microstructural properties of two ultrafine cements, produced by dry grinding of a commercial CEM I 42.5N cement. The effect of grinding on particle size distribution was determined by laser scattering analyzer. All cements were tested for initial and final setting times, consistency of standard paste, soundness, flow of normal mortar and compressive strengths after 1, 2, 7 and 28 days. The effect of the finene...

  5. Sandstone cementation and its geomorphic and hydraulic implications

    Czech Academy of Sciences Publication Activity Database

    Adamovič, Jiří

    2005-01-01

    Roč. 44, - (2005), s. 21-24. ISSN 1682-5519. [Sandstone Landscapes in Europe. Past, Present and Future. International Conference on Sandstone Landscapes /2./. Vianden, 25.05.2005-28.05.2005] R&D Projects: GA AV ČR(CZ) IAA3013302 Institutional research plan: CEZ:AV0Z30130516 Keywords : sandstone * paleohydraulics * geomorphology * siliceous cement * carbonate cement * ferruginous cement * sandstone landsforms Subject RIV: DB - Geology ; Mineralogy

  6. Design and application of solid, dense backfill advanced mining technology with two pre-driving entries

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiang; Zhang Jixiong; Guo Shuai; Gao Rui; Li Weikang

    2015-01-01

    New solid backfill mining technology provides unique technical advantages for‘three-under’ coal min-ing which refers to coal resources trapped under buildings, railways, and water bodies. This technology has a much higher recovery rate and can effectively control the surface subsidence. However, successful application of this technology depends heavily on geological conditions. To avoid the disadvantages asso-ciated with downward mining and overhead backfilling with this new technology, a new advanced solid backfill mining design with two pre-driving entries is proposed here to ensure the backfill effect. Taking Huayuan coal mine as an example, this paper tests the double gob-side entries retaining with no pillar left scheme and optimizes an integrated technology setup for backfill mining and gob-side entry retain-ing. Field applications show that the recovery rate increased from 40%for strip mining to 85%for backfill mining. Moreover, the new backfill technology allowed for better control over the surrounding rock deformation caused by the gob-side entry retaining effect and better control of ground subsidence as compared to strip mining.

  7. Research on backfilling and sealing of Rooms and Galleries in a repository in salt

    International Nuclear Information System (INIS)

    The multibarrier concept for the final disposal of radioactive wastes comprises backfilling and sealing of the mine in order to guarantee a safe enclosure of the waste. To provide for these properties, soil mechanical laboratory as well as geotechnical in situ measurements were carried out at the Asse mine. The soil mechanical investigations were performed on salt grit and precompacted backfilling material of different grain-size distribution and clay admixtures. They showed a significant dependence upon permeability and compression velocity of the type and quantity of clay used. A favourable grain-size distribution of the salt results in an acceleration of its compaction ability. Besides the investigation on a laboratory scale, first conclusions were obtained on the long-term in situ behaviour of backfilled chambers and seals and their corresponding geomechanical interaction with the surrounding rock. The geotechnical in situ stress and deformation measurements in an approximately 27.000 m3 large chamber have so far shown no supporting effect against the surrounding rock four years after backfilling. A compaction of up to 3% of the backfill was registered. In situ measurements as well as laboratory tests on drilling cores from 60 years old backfill showed porosities of approximately 7% and a compaction effect of the backfill from the wall, decreasing towards the centre of the chamber due to the converging rock. 108 figs., 8 refs., 24 tabs

  8. Research on U-steel yieldable support with backfill technology in rock roadway

    Institute of Scientific and Technical Information of China (English)

    LUO Yong; CHANG Ju-cai

    2009-01-01

    The loading on U-steel yieldable support cannot be organically combined with the law of strata behaviors from the surrounding rocks of roadway. In order to effectively solve the problem, U-steel yieldable support with backfill material and the performance requirements of backfill material were analyzed on the basis of structural mechanics. The mechanical properties of backfill material selected were tested in the laboratory, and the test results show that the ratio of the backfill material complies with the requirements of backfill technology; it can effectively optimize the relationship between the support and the surrounding rock, and the filling layer can avoid the partial stress concentration and fully improve the support performance. Compared with U-steel yieldable support with gangue filling, the filed application shows that the supporting result of U-steel yieldable support with backfill technology is satisfactory, the stress on U-steel yieldable support with backfill technology decreases greatly and distributes uniformly, convergence of the surrounding rock of roadway is decreased by more than 50%, and the surrounding rocks of roadway are controlled effectively.

  9. Research on U-steel yieldable support with backfill technology in rock roadway

    Energy Technology Data Exchange (ETDEWEB)

    Yong Luo; Ju-cai Chang [Huainan Mining Group Co. Ltd., Huainan (China). Postdoctoral Scientific Research Station

    2009-12-15

    The loading on U-steel yieldable support cannot be organically combined with the law of strata behaviors from the surrounding rocks of roadway. In order to effectively solve the problem, U-steel yieldable support with backfill material and the performance requirements of backfill material were analyzed on the basis of structural mechanics. The mechanical properties of backfill material selected were tested in the laboratory, and the test results show that the ratio of the backfill material complies with the requirements of backfill technology; it can effectively optimize the relationship between the support and the surrounding rock, and the filling layer can avoid the partial stress concentration and fully improve the support performance. Compared with U-steel yieldable support with gangue filling, the filed application shows that the supporting result of U-steel yieldable support with backfill technology is satisfactory, the stress on U-steel yieldable support with backfill technology decreases greatly and distributes uniformly, convergence of the surrounding rock of roadway is decreased by more than 50%, and the surrounding rocks of roadway are controlled effectively.

  10. Realizing of Optimization of Binder Backfill Material Under Certain Strength with Fuzzy Sets

    Institute of Scientific and Technical Information of China (English)

    崔明义; 胡华

    2001-01-01

    The main factors deciding the compressive strength of binder backfill body are tailing density and binder dosage in binder backfill materials. Based on the antecedent of certain pulp density, the method of increasing the tailing density and reducing the binder dosage, or the manner of cutting down the tailing density and gaining the binder dosage are taken to guarantee the strength of backfill body. The problem that should be solved is how to determine the tailing density and the binder dosage rationally. This paper tries to realize the correct selection of the tailing density and the binder dosage in computer with the method of fuzzy mathematics.

  11. Evaluation of using synthetic zeolite as a backfill material in radioactive waste disposal facility

    International Nuclear Information System (INIS)

    The fundamental safety concept for the disposal of radioactive wastes is to isolate the waste from the accessible environment for a period sufficiently long to allow substantial decay of the radionuclides and to limit release of residual radionuclides into the accessible environment. The underground disposal of radioactive waste is based upon a multi barrier concept. Backfill material is an important component of a multi-barrier disposal facility for low and intermediate level radioactive wastes. For long-term performance assessment of radioactive repositories, knowledge concerning the migration of radionuclides in the backfill material is required. Radionuclide migration through porous media (backfill materials) is governed by diffusion, advection, dispersion, retardation, and radionuclide decay. The work presented in this thesis is an examination of the feasibility of using synthetic zeolite NaA-X blend prepared from fly ash (FA) as backfill material in the proposed radioactive waste disposal facility in Egypt. The migration behavior of cesium and strontium ions, as two of the most important radionuclides commonly encountered in the Egyptian waste streams, through the proposed backfill material is studied using mathematical models. This approach considers the advective and dispersive transport of solutes dissolved in groundwater, which may undergo linear sorption (i.e retardation) and simple first order decay. To achieve these goals, the following investigations were carried out:1- Review of the materials most commonly used as engineered backfill to identify the important features to be considered in the examination of the proposed backfill material (zeolite Na A-X blend).2- Sorption experimental investigation aimed to study the sorption properties of the candidate backfill material towards the concerned radionuclides, cesium and strontium. Such studies are performed to establish clear understanding of the principle factors that control the sorption process, i

  12. The backfilling and sealing of radioactive waste repositories. V. 1. Text - Reference - List of symbols

    International Nuclear Information System (INIS)

    The report is in two volumes: Volume 1 contains the main text, the references and a list of symbols, and Volume 2, all the figues, tables and appendices. In Volume 1, backfilling and sealing is considered in relation to the geological, physical and chemical environments. There follows a detailed evaluation of the role and performance of the backfilling and sealing system in terms of thermal, hydraulic, chemical buffering, radionuclide retention, mechanical properties and behaviour as well as longevity. The results of the listing, screening and classification of a comprehensive range of candidate backfill materials are summarized. The different candidate materials are examined

  13. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  14. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

    2003-10-01

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron

  15. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities

    International Nuclear Information System (INIS)

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron

  16. Thermo-Hydraulic Modelling of Buffer and Backfill

    International Nuclear Information System (INIS)

    The temporal evolution of saturation, liquid pressure and temperature in the components of the engineered barrier system was studied using numerical methods. A set of laboratory tests was conducted to calibrate the parameters employed in the models. The modelling consisted of thermal, hydraulic and thermo-hydraulic analysis in which the significant thermo-hydraulic processes, parameters and features were identified. CODEBRIGHT was used for the finite element modelling and supplementary calculations were conducted with analytical methods. The main objective in this report is to improve understanding of the thermo-hydraulic processes and material properties that affect buffer behaviour in the Olkiluoto repository and to determine the parametric requirements of models for the accurate prediction of this behaviour. The analyses consisted of evaluating the influence of initial canister temperature and gaps in the buffer, and the role played by fractures and the rock mass located between fractures in supplying water for buffer and backfill saturation. In the thermo-hydraulic analysis, the primary processes examined were the effects of buffer drying near the canister on temperature evolution and the manner in which heat flow affects the buffer saturation process. Uncertainties in parameters and variations in the boundary conditions, modelling geometry and thermo-hydraulic phenomena were assessed with a sensitivity analysis. The material parameters, constitutive models, and assumptions made were carefully selected for all the modelling cases. The reference parameters selected for the simulations were compared and evaluated against laboratory measurements. The modelling results highlight the importance of understanding groundwater flow through the rock mass and from fractures in the rock in order to achieve reliable predictions regarding buffer saturation, since saturation times could range from a few years to tens of thousands of years depending on the hydrogeological

  17. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill e Part 2:Effects of mixing time and curing temperature

    Institute of Scientific and Technical Information of China (English)

    M. Kermani; F.P. Hassani; E. Aflaki; M. Benzaazoua; M. Nokken

    2015-01-01

    The effects of mixing time and curing temperature on the uniaxial compressive strength (UCS) and microstructure of cemented hydraulic fill (CHF) and sodium silicate-fortified backfill (Gelfill) were investigated in the laboratory. A series of CHF and Gelfill samples was mixed for time periods ranging from 5 min to 60 min and cured at temperatures ranging from 5 ?C to 50 ?C for 7 d, 14 d or 28 d. Increasing the mixing time negatively influenced the UCS of Gelfill samples, but did not have a detectable effect on CHF samples. The curing temperature had a strong positive impact on the UCSs of both Gelfill and CHF. An elevated temperature caused rapid UCS development over the first 14 d of curing. Mercury intrusion porosimetry (MIP) indicated that the pore size distribution and total porosity of Gelfill were altered by curing temperature.

  18. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    International Nuclear Information System (INIS)

    The main objectives of this report are to: 1) present density criteria considering deposition tunnels for the investigated backfill materials, 2) evaluate what densities can be achieved with the suggested backfill methods, 3) compare the density criteria to achievable densities, 4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, 5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling project can be divided into three main categories: 1. Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 230), and one high and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The high-grade bentonites are used in different bentonite-ballast mixtures. 2. Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (0, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The relationships between dry densities and hydraulic conductivity, swelling pressure and compressibility in saturated state for these materials were investigated. Most of the tests were performed with a groundwater salinity of 3.5%. This salinity is comparable to sea water and can be expected to be at the high end of salinities occurring during the assessment period. The purpose of the investigations was to determine the dry densities required to meet the function indicator criteria. These densities are referred to as the density criteria. However throughout the assessment period a loss of material and thus

  19. Method for the determination of the retention capacity of backfill materials and seals for gaseous radionuclides

    International Nuclear Information System (INIS)

    With the aid of radioindicator technology, the retention capacity of two backfill materials (iron ore and country rock) for the gases CH4, CO, CO2 (all 14C), HT, HTO, 131I2, CH3131I, 85Kr and 222Rn and was determined by performing fixed bed column experiments. In the experiments, iodine was converted to iodide and bound to the backfill materials obtained from the Konrad mine (R > 3x104). HTO and 14CO2 passed through the backfill material bed with a time delay. The other indicators showed no interaction with the backfill material. In addition to the retardation factors (R), the effective diffusion coefficients (D) were also determined. For all indicators, this value was in the range 0.16 cm2/s to 0.42 cm2/s. With 10 refs., 9 tabs., 4 figs

  20. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, David; Moren, Lena; Sellin, Patrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Keto, Paula [Saanio and Riekkola Oy, Helsinki (Finland)

    2006-09-15

    The main objectives of this report are to: 1) present density criteria considering deposition tunnels for the investigated backfill materials, 2) evaluate what densities can be achieved with the suggested backfill methods, 3) compare the density criteria to achievable densities, 4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, 5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling project can be divided into three main categories: 1. Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 230), and one high and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The high-grade bentonites are used in different bentonite-ballast mixtures. 2. Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (0, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The relationships between dry densities and hydraulic conductivity, swelling pressure and compressibility in saturated state for these materials were investigated. Most of the tests were performed with a groundwater salinity of 3.5%. This salinity is comparable to sea water and can be expected to be at the high end of salinities occurring during the assessment period. The purpose of the investigations was to determine the dry densities required to meet the function indicator criteria. These densities are referred to as the density criteria. However throughout the assessment period a loss of material and thus

  1. Review of the properties and uses of bentonite as a buffer and backfill material

    International Nuclear Information System (INIS)

    similar studies elsewhere and is therefore contentious and open to debate. There seems to be a general lack of integration of analogue studies with modelling and experimental work in terms of a model of the evolution of the chemistry of bentonite pore fluids with time (i.e. analogue evidence demonstrates the importance of mineral dissolution and precipitation, but this is not incorporated into the chemical modelling approach). Some rationalisation of approaches is required for a credible model of bentonite pore water evolution to be created. There is little apparent use of modelled bentonite pore water chemistry for the calculation of radionuclide solubility, sorption and speciation in PA (c.f. approaches used by Nagra, JNC, TVO). Although recent work in part redresses this imbalance, SKB is alone amongst disposal agencies in this approach. There is little published work by SKB on the interaction of bentonite with cement. There is now a growing literature elsewhere on this subject which does not seem to be reflected in studies carried out by SKB. Collaboration with other waste disposal authorities interested in this topic is recommended. It may be necessary to incorporate chemical processes into the current SKB conceptual model of gas transport in buffer and backfill materials. Dissolved or gaseous H2 is generated by Fe corrosion under anaerobic conditions, and this gas may be reactive with several minerals in bentonite, including smectite. Although field tests carried out by SKB suggest that the emplacement of compacted bentonite will not be a problem from the perspective of buffer performance, borehole, shaft and vault sealing, there are apparent problems for block manufacture. The introduction of oil as a lubricant in block manufacture, for example may pose problems for long-term behaviour of the near-field due to the presence of these organic materials. Better manufacturing methods are therefore required

  2. Review of the properties and uses of bentonite as a buffer and backfill material

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.; Lind, A. [QuantiSci Ltd., Melton Mowbray (United Kingdom); Arthur, R.C. [QuantiSci lnc., Denver, CO (United States)

    1999-05-01

    similar studies elsewhere and is therefore contentious and open to debate. There seems to be a general lack of integration of analogue studies with modelling and experimental work in terms of a model of the evolution of the chemistry of bentonite pore fluids with time (i.e. analogue evidence demonstrates the importance of mineral dissolution and precipitation, but this is not incorporated into the chemical modelling approach). Some rationalisation of approaches is required for a credible model of bentonite pore water evolution to be created. There is little apparent use of modelled bentonite pore water chemistry for the calculation of radionuclide solubility, sorption and speciation in PA (c.f. approaches used by Nagra, JNC, TVO). Although recent work in part redresses this imbalance, SKB is alone amongst disposal agencies in this approach. There is little published work by SKB on the interaction of bentonite with cement. There is now a growing literature elsewhere on this subject which does not seem to be reflected in studies carried out by SKB. Collaboration with other waste disposal authorities interested in this topic is recommended. It may be necessary to incorporate chemical processes into the current SKB conceptual model of gas transport in buffer and backfill materials. Dissolved or gaseous H{sub 2} is generated by Fe corrosion under anaerobic conditions, and this gas may be reactive with several minerals in bentonite, including smectite. Although field tests carried out by SKB suggest that the emplacement of compacted bentonite will not be a problem from the perspective of buffer performance, borehole, shaft and vault sealing, there are apparent problems for block manufacture. The introduction of oil as a lubricant in block manufacture, for example may pose problems for long-term behaviour of the near-field due to the presence of these organic materials. Better manufacturing methods are therefore required 112 refs, 4 figs, 4 tabs

  3. DEVELOPING A NEW GENERATION OF HIGH PERFORMANCE COMPOSITE CEMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposed a new generation of high performance composite cement which is designed according to the optimization of composition and structure of cement paste and is manufactured by blending the different components with special composite techniques. Each of these components has its different special property, and should be compatible with each other and match each other, and the properties of them are complementary mutually. At present, such kind of high performance composite cement can be manufactured with high reactivity cement clinker, ground granulated blast-furnace slag, high grade fly ash, silica fume etc.

  4. Seepage/Cement Interactions

    International Nuclear Information System (INIS)

    The Development Plan (CRWMS M andO 1999a) pertaining to this task defines the work scopes and objectives for development of various submodels for the Physical and Chemical Environment Abstraction Model for TSPA-LA. The Development Plan (CRWMS M andO 1999a) for this specific task establishes that an evaluation be performed of the chemical reactions between seepage that has entered the drift and concrete which might be used in the repository emplacement drifts. The Development Plan (CRWMS M andO 1999a) then states that the potential effects of these water/grout reactions on chemical conditions in the drift be assessed factoring in the influence of carbonation and the relatively small amount of grout. This task is also directed at: (1) developing a conceptualization of important cement/seepage interactions and potential impacts on EBS performance, (2) performing a screening analysis to assess the importance of cement/seepage interactions. As the work progresses and evolves on other studies, specifically the Engineered Barrier System: Physical and Chemical Environment (P andCE) Model (in progress), many of the issues associated with items 1 and 2, above, will be assessed. Such issues include: (1) Describing the mineralogy of the specified cementitious grout and its evolution over time. (2) Describing the composition of the water before contacting the grout. (3) Developing reasonable upper-bound estimates for the composition of water contacting grout, emphasizing pH and concentrations for anions such as sulfate. (4) Evaluating the equilibration of cement-influenced water with backfill and gas-phase CO2. (5) Developing reasonable-bound estimates for flow rate of affected water into the drift. The concept of estimating an ''upper-bound'' range for reaction between the grout and the seepage, particularly in terms of pH is based on equilibrium being established between the seepage and the grout. For example, this analysis can be based on equilibrium being established as

  5. Mesoscale texture of cement hydrates.

    Science.gov (United States)

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  6. REQUIREMENT OF FLUIDITY OF HIGH WATER CONTENT MATERIALS FORTHE GETWAY-SIDE BACKFILLING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    QiTaiyue; MaNianjie

    1996-01-01

    Through analyzing the effects of water consumption, diameter of solid particle, and flow velocity on the fluidity of high water content material slurry, the relationship among the fluidity, the isotropy of the slurry, and the pumping facilities applied in getway-side backfilling has been found. And the requirment of fluidity of high water content material for the design of getway-side backfilling technique is put forward in the paper.

  7. Experimental and Numerical Modeling of Seismic Earth Pressures on Retaining Walls with Cohesive Backfills

    OpenAIRE

    CANDIA, GABRIEL ALFONSO

    2013-01-01

    Observations from recent earthquakes show that all types of retaining structures with non-liquefiable backfills perform very well and there is limited evidence of damage or failures related to seismic earth pressures. Even retaining structures designed only for static loading have performed well during strong ground motions suggesting that special seismic design provisions may not be required in some cases. The objective of this study was to characterize the seismic interaction of backfill-wa...

  8. Effects of bituminous layer as backfill material on mechanical behavior in tunnel model

    OpenAIRE

    Moriyoshi, Akihiro; Takano, Shin-ei; Urata, Hiroyuki; Suzuki, Tetsuya; Yoshida, Takaki

    2001-01-01

    This paper describes the effects of bituminous material as a backfill material on mechanical behavior in model tunnel in laboratory. It is known that load spreading and relaxation of bituminous material are good properties. Then if we use bituminous material as a backfill material of tunnel, the tunnel will have waterproof, good load spreading property. We used new bituminous material (Aquaphalt) which can solidify in water. We conducted relaxation test in tension for new bituminous mat...

  9. Design, production and initial state of the backfill and plug in deposition tunnels

    International Nuclear Information System (INIS)

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the backfill and plug in deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the backfill and plug shall be handled and installed. The report presents the design premises and reference designs of the backfill and plug in deposition tunnels and verifies their conformity to the design premises. It also describes the production of the backfill from excavation and delivery of backfill material to installation in the deposition tunnel, and gives an outline of the installation of the plug. Finally, the initial states of the backfill and plug and their conformity to the reference designs and design premises are presented

  10. Design, production and initial state of the backfill and plug in deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Lennart; Gunnarsson, David; Johannesson, Lars-Erik; Jonsson, Esther

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the backfill and plug in deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the backfill and plug shall be handled and installed. The report presents the design premises and reference designs of the backfill and plug in deposition tunnels and verifies their conformity to the design premises. It also describes the production of the backfill from excavation and delivery of backfill material to installation in the deposition tunnel, and gives an outline of the installation of the plug. Finally, the initial states of the backfill and plug and their conformity to the reference designs and design premises are presented

  11. 采空区回填体隧道冒顶塌方处理技术%Treatment Technology on Roof Fall and Landslide of Backfilled Tunnel in Goaf

    Institute of Scientific and Technical Information of China (English)

    谈东亚

    2014-01-01

    以铜陵市五松隧道在施工中遇到的采空区回填体塌方处理为例,针对采空区回填体导致冒顶塌方的特点,从安全顺利的角度,通过临时环向竖向钢支撑加固未塌方段、套管法超前管棚超前预支护、水泥水玻璃注浆加固、预留核心土法开挖支护、回填轻质混凝土、换拱等技术,安全顺利地处理完该塌方,为今后类似工程提供一定的参考。%Based on the example of treatment on backfilled landslide in goaf encountered in Wusong Tunnel construction in Tongling,according to the characteristics of goaf backfilling roof fall and landslide,from the safety angle,measures are used to deal with the landslide,like temporary reinforcement of the sound section with circumferential vertical steel support,ad-vanced support with cuff shed pipe,grouting reinforcement with cement water glass,reservation core soil excavation,backfill-ing of light weight concrete,arch replacement technology,so as to provide references for similar projects in the future.

  12. Performance of concrete backfilling materials for shafts and tunnels in rock formations. Volume 1: concrete selection and properties

    International Nuclear Information System (INIS)

    Preplaced Aggregate Concrete (PAC) consists of graded coarse aggregate, immobilised by cementitious grout injected into the voids. PAC can be considered as a suitable backfill material for mined radioactive waste repositories. PAC is also reported to be amenable to mechanical/remote placement and have usefully improved properties when compared with conventionally placed concretes. In particular reduced shrinkage and heat cycle during cement hydration, higher densities and improved plant economics are claimed. This study attempts to establish the validity of these claims both from reported experience and by practical demonstration through experimentation. A literature study supported the claims made for the PAC system but all reported experiences recorded the use of organic admixtures (workability aids, retarders etc). Because of the lack of long term durability data on such admixtures, especially in a radiation environnement, it was decided to prepare a sample of PAC without organic admixtures. Considerable experimental difficulties were encountered in obtaining a satisfactory quality for test specimens. The necessary grout fluidity was only achieved by the inclusion of bentonite. The test data collected indicates that the PAC system employed did not improve mechanical properties compared with conventional concretes. This is attributed to the non-usage of organic admixtures to achieve the expected performance. Further research on low permeability concretes would require the use of organic admixtures. The effect of radiation on these materials, and their leaching rate needs to be quantified

  13. EFFECT OF NATURAL ZEOLITE ON THE COMPRESSIVE STRENGTH AND FREEZE-THAW RESISTANCE OF PORTLAND CEMENT

    OpenAIRE

    Bayartsetseg, E.; Lkhagvajargal, G.; Batgerel, D.; Sarangerel, D.; Ochirkhuyag, B

    2011-01-01

    Effects of zeolites in various natural deposits as replacement cementing material on mechanical performance of Portland cement were studied. The blended cement pastes with zeolites were cured at room temperature in air for various durations (1, 7 and 28 days). Mechanical performance of the blended cement samples such as setting time, volume of water, compressive strength, normal consistency and freeze-thaw resistance of the mortar are determined. The optimal substitution ratio was 20 wt. % of...

  14. Mechanical interaction buffer/backfill. Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill

    International Nuclear Information System (INIS)

    The mechanical interaction between the buffer material in the deposition hole and the backfill material in the deposition tunnel is an important process in the safety assessment since the primary function of the backfill is to keep the buffer in place and not allow it to expand too much and thereby loose too much of its density and barrier properties. In order to study the upwards swelling of the buffer and the subsequent density reduction a number of finite element calculations have been performed. The calculations have been done with the FE-program Abaqus with 3D-models of a deposition hole and the deposition tunnel. In order to refine the modelling only the two extreme cases of completely un-wetted (dry) and completely water saturated (wet) backfill have been modelled. For the wet case the influence of different factors has been studied while only one calculation of the dry case has been done. The calculated upwards swelling of the buffer varied between 2 and 15 cm for the different wet cases while it was about 10 cm for the dry case. In the wet reference case the E-modulus of the block and pellets fillings was 50 MPa and 3.24 MPa respectively, the friction angle between the buffer and the rock and canister was 8.7 deg and there were no swelling pressure from the backfill. There is a strong influence of the friction angle on both the upwards swelling and the canister heave. The friction is important for preventing especially canister displacements. The unrealistic case of no friction yielded strong unacceptable influence on the buffer with an upwards swelling of 15 cm and a strong heave of 5 cm of the canister. The influence of the backfill stiffness is as expected strong. Both buffer swelling and canister heave are twice as large at the E-modulus E = 25 MPa than at the E-modulus E = 100 MPa. The influence of the stiffness of the pellets filling is not strong since there are no pellets on the floor in the model used. The influence of the swelling pressure of the

  15. Mechanical interaction buffer/backfill. Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T-Engineering AB, Vaesteraas (Sweden))

    2009-10-15

    The mechanical interaction between the buffer material in the deposition hole and the backfill material in the deposition tunnel is an important process in the safety assessment since the primary function of the backfill is to keep the buffer in place and not allow it to expand too much and thereby loose too much of its density and barrier properties. In order to study the upwards swelling of the buffer and the subsequent density reduction a number of finite element calculations have been performed. The calculations have been done with the FE-program Abaqus with 3D-models of a deposition hole and the deposition tunnel. In order to refine the modelling only the two extreme cases of completely un-wetted (dry) and completely water saturated (wet) backfill have been modelled. For the wet case the influence of different factors has been studied while only one calculation of the dry case has been done. The calculated upwards swelling of the buffer varied between 2 and 15 cm for the different wet cases while it was about 10 cm for the dry case. In the wet reference case the E-modulus of the block and pellets fillings was 50 MPa and 3.24 MPa respectively, the friction angle between the buffer and the rock and canister was 8.7 deg and there were no swelling pressure from the backfill. There is a strong influence of the friction angle on both the upwards swelling and the canister heave. The friction is important for preventing especially canister displacements. The unrealistic case of no friction yielded strong unacceptable influence on the buffer with an upwards swelling of 15 cm and a strong heave of 5 cm of the canister. The influence of the backfill stiffness is as expected strong. Both buffer swelling and canister heave are twice as large at the E-modulus E = 25 MPa than at the E-modulus E = 100 MPa. The influence of the stiffness of the pellets filling is not strong since there are no pellets on the floor in the model used. The influence of the swelling pressure of the

  16. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  17. Reactivity of Ordinary Portland Cement (OPC) grout and various lithologies from the Harwell research site

    International Nuclear Information System (INIS)

    Ordinary Portland Cement (OPC) has been used in the completion of boreholes on the Harwell Research Site, AERE, Oxfordshire. The purpose of this study was to examine the effect of OPC and the alkaline pore fluids generated during its setting on the various lithological types encountered in the boreholes. To facilitate this, samples of core representing the various rock types were selected and cement-rock composites were prepared from these in the laboratory to simulate the borehole cements. After a curing period of 15 months the cores and associated cement plugs were examined for any signs of reactivity or bonding. The best cement-rock bonding was shown by naturally well-cemented sandstone and limestone lithologies. Although no significant chemical reaction was seen to have occurred between OPC and rock, the OPC appears able to bind onto the rock surface because of the rigidity of the rock surface. Therefore, the best cement rock bonding and seal with OPC may be expected in the limestones of the Great Oolite Group, Inferior Oolite Group and parts of the Corallian Beds. Because of the reactivity of OPC towards certain lithologies a better borehole seal in such a sedimentary sequence might be achieved using a bentonite backfill in those parts of the sequence which either react with or bond only weakly to OPC. (author)

  18. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  19. Experimental evaluation of cement materials for solidifying sodium nitrate

    International Nuclear Information System (INIS)

    Low-level liquid waste containing sodium nitrate is planned to be transformed to salt block by evaporation with sodium borate in the Low-level Waste Treatment Facility (LWTF), then salt block will be stored temporally. It should be important to investigate the method how to treat these liquid waste suitable to final disposal criteria that will be settled in future. Cement solidification is one of promising candidates because it has been achieved as the solidification material for the shallow land disposal. The research was conducted to evaluate applicability of various cement materials to solidification of sodium nitrate. The following cements were tested. Ordinary Portland Cement (OPC). Portland Blast-furnace Slag Cement; C type (PBFSC). Alkali Activated Slag Cement (AASC, supplied by JGC). The test results are as follows; (1) AASC is characterized by a high sodium nitrate loading (-70 wt%) compared with other types of cement material. High fluidity of the cement paste, high strength after solidification, and minimization of free water on the cement paste are achieved under all test conditions. (2) OOPC and PBFSC produced free water on the cement paste in the early days and delayed the hardening period. 3 or more days are required to harden evan with 30 wt% content of sodium nitrate. (3) Though PBFSC contains blast furnace slag similar to AASC, there is no advantage prior to OPC. To design an ideal cement conditioning system for sodium nitrate liquid waste in the LWTF, the further studies are necessary such as the simulated waste test, Kd test, pilot test, and layout design. (author)

  20. 2D and 3D finite element analysis of buffer-backfill interaction

    International Nuclear Information System (INIS)

    Methods for backfilling and sealing of disposal tunnels in an underground repository for spent nuclear fuel are studied in cooperation between Finland (Posiva Oy) and Sweden (Svensk Kaernbraenslehantering AB, SKB) in 'BAckfilling and CLOsure of the deep repository' (Baclo) programme. Baclo phase III included modelling task force SP1: Finite element modelling of deformation of the backfill due to swelling of the buffer. The objective of the finite element modelling of the backfill was to study the interaction between the buffer and backfilling. The calculations aimed to find out how large deformations can happen in the buffer-backfill interface causing loosening of the buffer bentonite above the canister. The criterion used was that the saturated density of the buffer right above the canister should be higher than 1990 kg/m3. This report presents the results of finite element numerical analyses carried out by Wesi Geotecnica Srl. The modelling calculations were conducted with the so-called OL1-2 deposition tunnel geometry (Juvankoski 2009). Several parameters have been considered, varying from geometry variations to different mechanical constitutive models for different components of the model. In all analyses it has been assumed that the buffer material is fully saturated, thus exerting the isotropic swelling pressure estimated in the range 7 MPa .. 15 MPa, against a fully-dry backfill, which is no doubt the 'worst case scenario' with the highest risk to lead in decrease in dry density of the buffer. Friedland clay has been considered for backfill blocks and 30/70 mixture for foundation bed on which backfill blocks are installed. Preliminarily, finite element analyses have been performed with newly released PLAXIS 2D 2010 within the assumption of axial symmetry, the purpose of this first set of calculations being the evaluation of most relevant parameters influencing the deformations of buffer material. Hence, full 3D calculations have been performed with PLAXIS 3D

  1. Optimization of backfill pellet properties AASKAR DP2 - Laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Linus; Sanden, Torbjoern [Clay Technology AB, Lund (Sweden)

    2012-12-15

    Bentonite pellets are planned to be used as a part of the backfill in the Swedish spent nuclear fuel deep repository concept KBS-3. This report describes testing and evaluation of different backfill pellet candidates. The work completed included testing of both pellet material and pellet type. The materials tested were sourced from India (ASHA), Greece (IBECO, 2 products) and Wyoming USA (MX-80 clay). The majority of the tests were completed on the ASHA clay as well as the IBECO-RWC-BF products, with only limited testing of the others. The pellets tested were manufactured using both extrusion and roller compaction techniques and had different sizes and geometries. The following tests have been performed and are presented in this report: 1. General tests. Water content, bulk density and dry density have been determined for both the pellet filling and the individual pellets. The compressibility of the pellet filling was tested with CRS-tests and the strength of the individual pellets was tested with a special compression test. The water content varied from 11.3% to 18.7% and was highest for the extruded pellets. The dry density was somewhat higher for the roller-compacted pellets and their compressibility was lower. The strength of the individual pellets was generally higher for the extruded pellets. 2. Erosion. The pellet filling will be exposed to groundwater inflow when installed in the tunnel. This flow could possibly cause significant erosion on the pellet filling. Erosion tests have been performed with comparisons in erosion resistance made on the various material- and pellet-types. The influence of variations in water salinity and flow rates was also tested. The IBECO extruded 6- and 10- mm diameter rods and the compacted Posiva spec.-A pellet filling seem to have the lowest tendency to erode. It is also the IBECO extruded pellet filling that withstands variations in water salinity and flow rates best. 3. Water storing capacity. The pellet filling

  2. Optimization of backfill pellet properties AASKAR DP2-Laboratory tests

    International Nuclear Information System (INIS)

    Bentonite pellets are planned to be used as a part of the backfill in the Swedish spent nuclear fuel deep repository concept KBS-3. This report describes testing and evaluation of different backfill pellet candidates. The work completed included testing of both pellet material and pellet type. The materials tested were sourced from India (ASHA), Greece (IBECO, 2 products) and Wyoming USA (MX-80 clay). The majority of the tests were completed on the ASHA clay as well as the IBECO-RWC-BF products, with only limited testing of the others. The pellets tested were manufactured using both extrusion and roller compaction techniques and had different sizes and geometries. The following tests have been performed and are presented in this report: 1. General tests. Water content, bulk density and dry density have been determined for both the pellet filling and the individual pellets. The compressibility of the pellet filling was tested with CRS-tests and the strength of the individual pellets was tested with a special compression test. The water content varied from 11.3% to 18.7% and was highest for the extruded pellets. The dry density was somewhat higher for the roller-compacted pellets and their compressibility was lower. The strength of the individual pellets was generally higher for the extruded pellets. 2. Erosion. The pellet filling will be exposed to groundwater inflow when installed in the tunnel. This flow could possibly cause significant erosion on the pellet filling. Erosion tests have been performed with comparisons in erosion resistance made on the various material- and pellet-types. The influence of variations in water salinity and flow rates was also tested. The IBECO extruded 6- and 10- mm diameter rods and the compacted Posiva spec.-A pellet filling seem to have the lowest tendency to erode. It is also the IBECO extruded pellet filling that withstands variations in water salinity and flow rates best. 3. Water storing capacity. The pellet filling's ability to

  3. Assessment of cement durability in repository environment

    International Nuclear Information System (INIS)

    The present research aimed at investigating the durability of cement paste under nuclear waste repository conditions using accelerated tests. Cement paste samples are examined after being exposed to the environmental conditions that are expected to prevail in the repository environment and the results are compared with those obtained with unexposed specimens or specimens exposed to reference conditions. The following exposure conditions were selected: a) Immersion in salt solution, distilled water, or kept in dry storage; b) Room temperature (20 C. degrees) or high temperature (60 C. degrees); c) Immersion time of 30 days or 60 days (not for dry storage); d) Irradiation to a dose of (400 kGy) or background radiation (0 kGy). After exposure to the stressing conditions, the effects of each factor on the cement paste samples were observed by changes in their characteristics. Compressive strength tests were performed on all samples and some of them were investigated in terms of changes in mineralogy by X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). With the results obtained so far it was possible to point out the following conclusions. First, after a period of immersion in water, cement paste samples further hydrated and presented higher mechanical resistance, as expected. Secondly, dry storage did not allow a complete hydration as a consequence of pore water evaporation. High temperatures intensified this process and led to the ettringite decomposition to meta-ettringite. Thirdly, higher temperature accelerated hydration kinetics and promoted higher mechanical resistance in samples kept under immersion. Fourthly, the irradiation dose applied was unable to change the mineralogy of cement paste samples and fifthly, no statistically significant differences were observed between 30 or 60 days exposure time, for the test conditions

  4. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project

  5. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    International Nuclear Information System (INIS)

    The main objectives of this report are to: (1) present density criteria considering deposition tunnels for the investigated backfill materials, (2) evaluate what densities can be achieved with the suggested backfill methods, (3) compare the density criteria to achievable densities, (4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, (5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling programme can be divided into three main categories: (1) Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 2 0), and one high- and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The highgrade bentonites are used in different bentonite-ballast mixtures. (2) Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). (3) Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (30, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The general conclusion from the comparison between estimated achievable densities and the density criteria is that placing pre-compacted blocks of swelling clay or 50/50 mixture and pellets in the tunnel results in the highest safety margin. (orig.)

  6. Kekuatan perlekatan geser semen ionomer kaca terhadap dentin dan NiCr alloy (Shear bond strenght of glass ionomer cement in dentin and NiCr alloy

    Directory of Open Access Journals (Sweden)

    Mira Leonita

    2006-03-01

    Full Text Available Glass ionomer cements were used broadly in restorative dentistry. That’s why researchers always try to invent new form of glass ionomer cement. The newest invention was the paste-paste formulation. Shear bond strenght of powder-liquid glass ionomer cement and paste-paste glass ionomer cement in dentin and NiCr alloy was tested to 4 groups of samples. Each group consisted contain 6 samples that were shaped into cylinder with 4 mm of diameter and 5 mm of height. Group A was dentin with powder-liquid glass ionomer cement, group B was dentin with paste-paste glass ionomer cement, group C was alloy with powder-liquid glass ionomer cement, and group D was alloy with paste-paste glass ionomer cement. Each sample in each group was tested with Autograph. The datas were analyzed statistically using T-test with level of signficance 0.05. The result showed that powder-liquid glass ionomer cement shear bond strenght was 211 N and paste-paste glass ionomer cement was 166.92 N. That showed that powder-liquid glass ionomer cement had a better shear bond strenght.

  7. Vertical transportation system of solid material for backfilling coal mining technology

    Institute of Scientific and Technical Information of China (English)

    Ju Feng; Zhang Jixiong; Zhang Qiang

    2012-01-01

    For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology,we developed a new vertical transportation system to transport this type of solid backfill material.Given the demands imposed on safely in feeding this material,we also investigated the structure and basic parameter of this system.For a mine in the Xingtai mining area the results show that:(1) a vertical transportation system should include three main parts,i.e.,a feeding borehole,a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes,the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process.To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel,we propose a series of security technologies for anti-blockage,storage silo cleaning.high pressure air release and aspiration.This vertical transporting system has been applied in one this particular mine,which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.

  8. Mechanical analyses of WIPP disposal rooms backfilled with either crushed salt or crushed salt-bentonite

    International Nuclear Information System (INIS)

    In this paper numerical calculations of disposal room configurations at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM are presented. Specifically, the behavior of either crushed salt or a crushed salt- bentonite mixture, when used as a backfill material in disposal rooms, is modeled in conjunction with the creep behavior of the surrounding intact salt. The backfill consolidation model developed at Sandia National Laboratories was implemented into the SPECTROM-32 finite element program. This model includes nonlinear elastic as well as deviatoric and volumetric creep components. Parameters for the models were determined from laboratory tests with deviatoric and hydrostatic loadings. The performance of the intact salt creep model previously implemented into SPECTROM-32 is well documented. Results from the SPECTROM-32 analyses were compared to a similar study conducted by Sandia National Laboratories using the SANCHO finite element program. The calculated deformations and stresses from the SPECTROM-32 and SANCHO analyses agree reasonably well despite differences in constitutive models and modeling methodology. These results provide estimates of the backfill consolidation through time. The trends in the backfill consolidation can then be used to estimate the permeability of the backfill and subsequent radionuclide transport

  9. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Atomic Energy of Canada Limited, Chalk River (Canada); Jonsson, E. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hansen, J. [Posiva Oy, Olkiluoto (Finland); Hedin, M. [Aangpannefoereningen, Stockholm (Sweden); Ramqvist, G. [Eltekno AB, Figeholm (Sweden)

    2011-04-15

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill

  10. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    International Nuclear Information System (INIS)

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill material and

  11. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT

    International Nuclear Information System (INIS)

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 microm; a search with EPMA for vesicles in the range of 1-20 microm proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from 29Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, 2H NMR of d8-toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste)

  12. Study on the hardening mechanism of cement asphalt binder

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydration and hardening mechanism of cement asphalt binder(CAB) was studied.The early hydration process,hydration products and paste microstructure of CAB made by Portland cement and anionic asphalt emulsion were investigated by calorimetry,X-ray diffraction,and environmental scanning electron microscopy.The early hydration process of CAB can be characterized as 5 stages similar to those of Portland cement.There is no chemical reaction detected between cement and asphalt,hence no new hydration products other than those of Portland cement are produced.The hardening of CAB begins with the hydration of cement.When the hydration of cement comes into the acceleration period and its exothermic rate comes to the maximum,the coalescence of asphalt particles in asphalt emulsion is triggered.In the hardened system of CAB,it was found that the hydration products of cement form the skeleton and are covered by the continuous asphalt film.They formed an interpenetrating network system.The emulsifiers in the asphalt emulsion may retard the hydration process of cement.

  13. In-Situ interaction between cement and clay: implications for geological disposal

    International Nuclear Information System (INIS)

    The extent and the consequences of interactions between cementitious materials used in radioactive waste management and clay host rock are described. In-situ tests were performed on seven cement formulations representing materials applied in repository construction, for backfilling or for solidification of radioactive waste. Samples were exposed to realistic repository conditions of the Boom Clay Formation in the HADES underground laboratory. Chemical, physical and mineralogical changes across the cement-clay interface were identified by combined observations from Electron Probe Microanalysis, Infrared microscopy and X-Ray powder diffraction. Significant interactions in both the cement and the clay part were found in a zone extending up to several hundreds of microns. The most prominent features are (1) leaching of cement with loss of calcium and/or silicon; (2) development of a calcium-rich zone in Boom Clay close to or at contact; (3) the formation of a contact zone marked by the precipitation of a (hydrated) magnesium aluminate phase; (4) reduction in apparent porosity of initially porous/permeable materials and (5) precipitation of calcite within the cement. This elemental exchange tends to diminish pH and reduce the buffering capacity of the cement. Although hydroxide will diffuse into the clay, the development of an extensive alkaline halo in the surrounding clay is unlikely owing to the buffering capacity of the Boom Clay pore water. Copyright (2001) Material Research Society

  14. The Hydration of Blended Cement at Low W/B Ratio

    Institute of Scientific and Technical Information of China (English)

    HU Shu-guang; LU Lin-nu; HE Yong-jia; LI Yue; DING Qing-jun

    2003-01-01

    The hydration process, hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD , thermo analysis , and calorimetry instrument, and they were compared with those of pure cement paste. The results show that pure cement and blended cement at low W/B ratio have the same types of hydration products, but their respective amounts of hydration products of various blended cements at same ages and the vatiation law of the amount of same hydration products with ages are different; Tim joint effect of tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore and riff caused by the crystalloid ettringite is the impetus of the volume expansion of cement paste , and the former effect is much greater than the latter one .

  15. Managing the risks of the backfill production line from material acquisition to installation

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The tunnel backfill of Finnish KBS-3V type repository for spent nuclear fuel consists of foundation layer that is installed at site, pre-compacted backfill blocks that fill most of the tunnel and bentonite pellets to fill the gap between blocks and tunnel wall. In order to ensure the quality, availability, and timely delivery of backfill materials and components, and further to ensure the fulfillment of the requirements and specifications set for backfilling of deposition tunnels, the backfill production line was explored step-by-step, and risks related were defined and analyzed. The work described in this paper was initiated by Posiva Oy and is reported in Keto et al. (2012). The first part of the backfill production line is described in Figure 1 for Friedland clay that is designed to be used for the backfill blocks. It consists of excavation, processing and delivery of materials to backfill production facility. Second part of the production line consists of manufacturing of the backfill components, and the third part is the installation. A preliminary risk assessment was done in 2011 for the acquisition of Friedland clay and manufacturing and installation of foundation layer, blocks and pellets. The critical points of the production line were determined using a material flow description where risk is defined as a probability of something unwanted to happen times the severity of the consequences. Risk analysis was performed by going through the whole backfill production line step by step and analyzing all the incidents, which have occurred (or might occur) during the backfilling operations. A risk number from 1 to 25 was given to each step of the chain depending on how long delay the problem causes and how often it occurs. Low risk was the target for each step of the chain, medium risk was considered tolerable, for high risks management actions to decrease the risk number were considered and extremely high risks

  16. Testing of candidate waste-package backfill and canister materials for basalt

    International Nuclear Information System (INIS)

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill

  17. Identification and evaluation of appropriate backfills for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    A backfill system has been designed for the Waste Isolation Pilot Plant (WIPP) which will control the chemical environment of the post-closure repository to a domain where the actinide solubility is within its lowest region. The actinide solubility is highly dependent on the chemical species which constitute the fluid, the resulting pH of the fluid, and the oxidation state of the actinide which is stable under the specific conditions. The use of magnesium oxide (MgO) has the backfill material not only controls the pH of the expected fluids, but also effectively removes carbonate from the system, which has a significant impact on actinide solubility. The backfill selection process, emplacement system design, and confirmatory experimental results are presented

  18. Applications of Moessbauer spectroscopy in cement studies

    International Nuclear Information System (INIS)

    In the last two decades Moessbauer spectrometer has been employed to investigate cement and its clinker. In this work some of these investigations are exhibited briefly hoping that this would facilitate further investigations. It has already been seen that Moessbauer spectroscopy gives good information about some vague points which were present before using this technique as a tool in cement studies such as clinker formation, iron solubility, the iron states in the different phases of clinker as well as the effect of hydration at different times on the states of iron cement pastes, methods for the quality control of the manufactured clinker, the evaluation of the degree of hydration and the compressive strength have been assessed. A concept about the Moessbauer spectroscopy is presented. (author)

  19. Advanced cementation concepts

    International Nuclear Information System (INIS)

    The purpose of this programme of work was to investigate whether improvements could be made to existing formulations for cement suitable for the immobilization of intermediate level radioactive waste. Two additives were selected, microsilica and limestone flour. Improvements to the cement were only slight. (author)

  20. Research and development of buffer/backfilling material in deep geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    The author reviews the R and D of buffer/backfilling materials in deep geological disposal of high-level radioactive waste, and summarizes the research findings about buffer/backfilling material's properties including water permeability, heat property, swelling property. The direction for the future study of this field is pointed out