WorldWideScience

Sample records for cementation process project

  1. ALARA Design Review for the Resumption of the Plutonium Finishing Plant (PFP) Cementation Process Project Activities

    International Nuclear Information System (INIS)

    The requirements for the performance of radiological design reviews are codified in 10CFR835, Occupational Radiation Protection. The basic requirements for the performance of ALARA design reviews are presented in the Hanford Site Radiological Control Manual (HSRCM). The HSRCM has established trigger levels requiring radiological reviews of non-routine or complex work activities. These requirements are implemented in site procedures HNF-PRO-1622 and 1623. HNF-PRO-1622 Radiological Design Review Process requires that ''radiological design reviews [be performed] of new facilities and equipment and modifications of existing facilities and equipment''. In addition, HNF-PRO-1623 Radiological Work Planning Process requires a formal ALARA Review for planned activities that are estimated to exceed 1 person-rem total Dose Equivalent (DE). The purpose of this review is to validate that the original design for the PFP Cementation Process ensures that the principles of ALARA (As Low As Reasonably Achievable) were included in the original project design. That is, that the design and operation of existing Cementation Process equipment and processes allows for the minimization of personnel exposure in its operation, maintenance and decommissioning and that the generation of radioactive waste is kept to a minimum

  2. ALARA Design Review for the Resumption of the Plutonium Finishing Plant (PFP) Cementation Process Project Activities

    CERN Document Server

    Dayley, L

    2000-01-01

    The requirements for the performance of radiological design reviews are codified in 10CFR835, Occupational Radiation Protection. The basic requirements for the performance of ALARA design reviews are presented in the Hanford Site Radiological Control Manual (HSRCM). The HSRCM has established trigger levels requiring radiological reviews of non-routine or complex work activities. These requirements are implemented in site procedures HNF-PRO-1622 and 1623. HNF-PRO-1622 Radiological Design Review Process requires that ''radiological design reviews [be performed] of new facilities and equipment and modifications of existing facilities and equipment''. In addition, HNF-PRO-1623 Radiological Work Planning Process requires a formal ALARA Review for planned activities that are estimated to exceed 1 person-rem total Dose Equivalent (DE). The purpose of this review is to validate that the original design for the PFP Cementation Process ensures that the principles of ALARA (As Low As Reasonably Achievable) were included...

  3. Quantitative modelling of the degradation processes of cement grout. Project CEMMOD

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Galindez, Juan-Manuel; Arcos, David; Molinero, Jorge (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-05-15

    Grout cement is planned to be used in the sealing of water-conducting fractures in the deep geological storage of spent nuclear fuel waste. The integrity of such cementitious materials should be ensured in a time framework of decades to a hundred of years as mimum. However, their durability must be quantified since grout degradation may jeopardize the stability of other components in the repository due to the potential release of hyperalkaline plumes. The model prediction of the cement alteration has been challenging in the last years mainly due to the difficulty to reproduce the progressive change in composition of the Calcium-Silicate-Hydrate (CSH) compounds as the alteration proceeds. In general, the data obtained from laboratory experiments show a rather similar dependence between the pH of pore water and the Ca-Si ratio of the CSH phases. The Ca-Si ratio decreases as the CSH is progressively replaced by Si-enriched phases. An elegant and reasonable approach is the use of solid solution models even keeping in mind that CSH phases are not crystalline solids but gels. An additional obstacle is the uncertainty in the initial composition of the grout to be considered in the calculations because only the recipe of low-pH clinker is commonly provided by the manufacturer. The hydration process leads to the formation of new phases and, importantly, creates porosity. A number of solid solution models have been reported in literature. Most of them assumed a strong non-ideal binary solid solution series to account for the observed changes in the Ca-Si ratios in CSH. However, it results very difficult to reproduce the degradation of the CSH in the whole Ca-Si range of compositions (commonly Ca/Si=0.5-2.5) by considering only two end-members and fixed nonideality parameters. Models with multiple non-ideal end-members with interaction parameters as a function of the solid composition can solve the problem but these can not be managed in the existing codes of reactive

  4. Quantitative modelling of the degradation processes of cement grout. Project CEMMOD

    International Nuclear Information System (INIS)

    Grout cement is planned to be used in the sealing of water-conducting fractures in the deep geological storage of spent nuclear fuel waste. The integrity of such cementitious materials should be ensured in a time framework of decades to a hundred of years as mimum. However, their durability must be quantified since grout degradation may jeopardize the stability of other components in the repository due to the potential release of hyperalkaline plumes. The model prediction of the cement alteration has been challenging in the last years mainly due to the difficulty to reproduce the progressive change in composition of the Calcium-Silicate-Hydrate (CSH) compounds as the alteration proceeds. In general, the data obtained from laboratory experiments show a rather similar dependence between the pH of pore water and the Ca-Si ratio of the CSH phases. The Ca-Si ratio decreases as the CSH is progressively replaced by Si-enriched phases. An elegant and reasonable approach is the use of solid solution models even keeping in mind that CSH phases are not crystalline solids but gels. An additional obstacle is the uncertainty in the initial composition of the grout to be considered in the calculations because only the recipe of low-pH clinker is commonly provided by the manufacturer. The hydration process leads to the formation of new phases and, importantly, creates porosity. A number of solid solution models have been reported in literature. Most of them assumed a strong non-ideal binary solid solution series to account for the observed changes in the Ca-Si ratios in CSH. However, it results very difficult to reproduce the degradation of the CSH in the whole Ca-Si range of compositions (commonly Ca/Si=0.5-2.5) by considering only two end-members and fixed nonideality parameters. Models with multiple non-ideal end-members with interaction parameters as a function of the solid composition can solve the problem but these can not be managed in the existing codes of reactive

  5. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  6. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anton K. Schindler; Steve R. Duke; Thomas E. Burch; Edward W. Davis; Ralph H. Zee; David I. Bransby; Carla Hopkins; Rutherford L. Thompson; Jingran Duan; Vignesh Venkatasubramanian; Stephen Giles.

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  7. Logistics Cost Modeling in Strategic Benchmarking Project : cases: CEL Consulting & Cement Group A

    OpenAIRE

    Nguyen Cong Minh, Vu

    2010-01-01

    This thesis deals with logistics cost modeling for a benchmarking project as consulting service from CEL Consulting for Cement Group A. The project aims at providing flows and cost comparison of bagged cement of all cement players to relevant markets in Indonesia. The results of the project yielded strategic elements for Cement Group A in planning their penetration strategy with new investments. Due to the specific needs, Cement Group A requested a flexible costing approach taking into ...

  8. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  9. Innovative cement plug setting process reduces risk and lowers NPT

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, T.; Rogers, H.; Lloyd, S.; Quinton, C. [Halliburton Energy Services, Calgary, AB (Canada); Tetrault, N. [Apache Canada, Calgary, AB (Canada)

    2006-07-01

    With increased drilling in mature fields and unconventional reservoirs, Canadian operators are experiencing a higher rate of lost circulation events. When drilling into lower fracture-gradient zones, operators face the risk of drilling through shallower depleted zones. The unique challenges associated with setting cement plugs in such open hole wells were described. The best solution to address lost circulation events is a properly designed cement slurry where cement can be squeezed into the lost circulation zones to strengthen the wellbore when set. The cement plug is drilled through, leaving the residual cement setting inside the problem zones. Since cement plugs are used for a wide range of reasons, such as healing losses, abandonment, and directional drilling, it is important that a competent cement plug is placed the first time. This paper presented a newly developed tool and a special process designed to meet the challenges associated with setting cement plugs. It is based on a tubing-release tool (TRT) in which a sacrificial tubing is placed into the lost circulation zone to balance the cement plug. The sacrificial tubing is released from the drillstring and remains in the wellbore. The TRT has been used as a plug-setting aid for lost-circulation plugs; shallow-water shut-off; kick-off plug placement; and multizone plugs to abandon. An overview of the TRT features was presented. The tool and process has been used by more than 20 operating companies around the world to successfully place cement plugs downhole on the first attempt. The disconnect has been used successfully in more than 120 wells throughout North and South America, Europe, the Middle East, and Australia. It has proven to lower the risk and non-productive time associated with drilling in mature fields and unconventional reservoirs. 7 refs., 5 figs.

  10. Study on EIA Technology in the Project of Waste Co-processing Using Cement Kiln%水泥窑协同处置废物环评技术探讨

    Institute of Scientific and Technical Information of China (English)

    殷捷; 钱炜

    2016-01-01

    利用水泥窑协同处置废物一般是通过新增预处理设施并对水泥窑进行一定的改造而实现的,对此类项目的环境影响评价时首先需要注意收集相关的标准、规范,在水泥生产线现状调查时应结合标准规范关注其规模和除尘设施的运行情况,同时需要协助企业依据周边市场调查结果,合理确定处理的废物种类,并依据需处理的固体废物的量及其重金属、元素氯和氟的含量论证处理规模是否合理,熟悉预处理工艺及其产排污环节,合理确定防护距离。%Utilizing the waste co-processing with cement kiln is usually achieved by adding pretreatment facilities and reforming the cement kiln. First of all, it is important to collect the relevant standards and specifications for the environmental impact assessment in such projects, and attention should be paid to the scale and operation status of the dust removal facilities to investigate the status of cement production line in accordance with the standards and regulations. Meanwhile, it is necessary to assist enterprises, on the basis of investigation results of surrounding market, to reasonably confirm the types of disposed waste, and discuss whether the disposal scale matches with the quantity of solid wastes and the content of heavy metal, chlorine and fluorine for disposal. At last, it's imperative to well understand the pre-processing technology and its steps of producing and eliminating wastes, and reasonably determine the protection distance.

  11. Influence of relationship water/cement upon the processing of cements with pozzolana in standard mortar

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-03-01

    Full Text Available The processing of standard mortar is completed following different methods in accordance with the country, but they exist two fundamental tendecies, the ISO and the ASTM. The cuban norm for mechanic-physic tests is based in ISO, and so they use a constant relationship water/cement in the processing of standard mortar a great problem concerning the cement users when they tested those mixed with puzzolanes, because they don't take care of the bigger water needs of those materials. In this work we present an study of the behaviour of Pozzolanic Portland cements (PP-250 elaborates with a fix and changeable relationship water/cement, obtained starting from the fluidity of the pure Portland cement. (P-350 The results obtained shows that the mechanical resistance decreased in cement mortars PP-250 realised with changeable relationship water/cement. So we recommend the adoption of an optional procedure to elaborate a quality mortar with pozzolana cements.

    La elaboración del mortero normalizado se realiza internacionalmente por diferentes métodos, pero existen dos tendencias fundamentales, la enunciada por ISO y por ASTM. La norma cubana de ensayos físico-mecánicos de cemento se basa en la norma ISO, por lo que para la elaboración del mortero normalizado se utiliza una relación agua/cemento constante. Esto ha provocado discrepancias con los usuarios del cemento, especialmente cuando se ensayan los cementos que contienen puzolanas, ya que se plantea que no se tiene en cuenta la mayor demanda de agua de estos materiales. En el presente trabajo se presenta un estudio del comportamiento de cementos Portland Puzolánicos (PP-250 elaborados con una relación agua/ cemento fija y variable, lograda a partir de la fluidez de la pasta de cemento Portland puro (P-350. Los resultados obtenidos indican que se producen disminuciones en la resistencia mecánica en los morteros de cemento PP-250 elaborados con agua/ cemento variable y recomienda la

  12. [Release amount of heavy metals in cement product from co-processing waste in cement kiln].

    Science.gov (United States)

    Yang, Yu-Fei; Huang, Qi-Fei; Zhang, Xia; Yang, Yu; Wang, Qi

    2009-05-15

    Clinker was produced by Simulating cement calcination test, and concrete samples were also prepared according to national standard GB/T 17671-1999. Long-term cumulative release amount of heavy metals in cement product from co-processing waste in cement kiln was researched through leaching test which refers to EA NEN 7371 and EA NEN 7375, and one-dimensional diffusion model which is on the base of Fick diffusion law. The results show that availabilities of heavy metals are lower than the total amounts in concrete. The diffusion coefficients of heavy metals are different (Cr > As > Ni > Cd). During 30 years service, the cumulative release amounts of Cr, As, Ni and Cd are 4.43 mg/kg, 0.46 mg/kg, 1.50 mg/kg and 0.02 mg/kg, respectively, and the ratios of release which is the division of cumulative release amount and availability are 27.0%, 18.0%, 3.0% and 0.2%, respectively. The most important influence factor of cumulative release amount of heavy metal is the diffusion coefficient, and it is correlative to cumulative release amount. The diffusion coefficient of Cr and As should be controlled exactly in the processing of input the cement-kiln. PMID:19558131

  13. Hydrothermal processing of new fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, W.; Roy, D.M. (Materials Research Lab., Pennsylvania State Univ., University Park, PA (United States))

    1992-04-01

    The recent Mount Pinatubo volcanic eruption in the Philippines, in which at least 268 people died, shows that volcanic eruptions can be highly destructive. The eruption shot ash and debris over the countryside; six towns near the volcano faced a high risk of devastating mudslides, and nearly 2000 U.S. service members and their families were evacuated from two nearby military bases. However, this paper reports that not all the consequences of volcanic eruptions are bad. Under hydrothermal conditions, volcanic ash can be transformed into zeolitic tuff and, eventually, into clay minerals that constitute agricultural soils. The Materials Research Laboratory (MRL) has recently used some artificial pozzolanas (fly ash) that when mixed with lime, under hydrothermal conditions, also produced a new type of cementitious material. This was categorized as a new fly ash cement. The formation of a new hydrothermally treated wood-fiber-reinforced composite has also been demonstrated. It is apparent, however, that with respect to concerns about detailed knowledge of the reactivity of calcium silicate-based materials under hydrothermal conditions, the application of the technology far outweighs the understanding of the underlying principles of reactivity. It would seem that an understanding of reactions on the molecular level is just beginning, and that work on hydrothermal reactions is still a potentially lucrative area of research.

  14. [Comparison of fixation effects of heavy metals between cement rotary kiln co-processing and cement solidification/stabilization].

    Science.gov (United States)

    Zhang, Jun-li; Liu, Jian-guo; Li, Cheng; Jin, Yi-ying; Nie, Yong-feng

    2008-04-01

    Both cement rotary kiln co-processing hazardous wastes and cement solidification/stabilization could dispose heavy metals by fixation. Different fixation mechanisms lead to different fixation effects. The same amount of heavy metal compounds containing As, Cd, Cr, Cu, Pb, Zn were treated by the two kinds of fixation technologies. GB leaching test, TCLP tests and sequential extraction procedures were employed to compare the fixation effects of two fixation technologies. The leached concentration and chemical species distribution of heavy metals in two grounded mortar samples were analyzed and the fixation effects of two kinds of technologies to different heavy metals were compared. The results show the fixation effect of cement rotary kiln co-processing technology is better than cement solidification/stabilization technology to As, Pb, Zn. Calcinations in cement rotary kiln and then hydration help As, Pb, Zn contained in hazardous wastes transform to more steady chemical species and effectively dispose these heavy metals compounds. Cr3+ is liable to be converted to much more toxic and more mobile Cr6+ state in cement rotary kiln. And so Cr wastes are more fit for treatment by cement solidification/stabilization technology. The work could provide a basis when choosing disposal technologies for different heavy metals and be helpful to improve the application and development of cement rotary kiln co-processing hazardous wastes.

  15. Effect of Microwave Processing on Aluminate Cement Clinkering

    Institute of Scientific and Technical Information of China (English)

    DONG Jianmiao; LONG Shizong

    2005-01-01

    When raw materials were preheated to 1000-1300 ℃ by electricity and microwave was inputted for 1 min 5 s-4 mins, then alunminate clinkers were obtained. The f-CaO contents,XRD patterns and lithofacies analysis show that the microwave processing accelerates the clinkering reaction,and Fe2O3 is contributed to the aluminate cement clinkering. The appearance of liquid phase in process of microwave heating increases the microwave absorbability of materials greatly.

  16. Early Implementation of Large Scale Carbon Dioxide Removal Projects through the Cement Industry

    Science.gov (United States)

    Zeman, F. S.

    2014-12-01

    The development of large-scale carbon dioxide reduction projects requires high purity CO2and a reactive cation source. A project seeking to provide both of these requirements will likely face cost barriers with current carbon prices. The cement industry is a suitable early implementation site for such projects by virtue of the properties of its exhaust gases and those of waste concrete. Cement plants are the second largest source of industrial CO2 emissions, globally. It is also the second largest commodity after water, has no ready substitute and is literally the foundation of society. Finally, half of the CO2 emissions originate from process reactions rather than fossil fuel combustion resulting in higher flue gas CO2concentrations. These properties, with the co-benefits of oxygen combustion, create a favorable environment for spatially suitable projects. Oxygen combustion involves substituting produced oxygen for air in a combustion reaction. The absence of gaseous N2 necessitates the recirculation of exhaust gases to maintain kiln temperatures, which increase the CO2 concentrations from 28% to 80% or more. Gas exit temperatures are also elevated (>300oC) and can reach higher temperatures if the multi stage pre-heater towers, that recover heat, are re-designed in light of FGR. A ready source of cations can be found in waste concrete, a by-product of construction and demolition activities. These wastes can be processed to remove cations and then reacted with atmospheric CO2 to produce carbonate minerals. While not carbon negative, they represent a demonstration opportunity for binding atmospheric CO2while producing a saleable product (precipitated calcium carbonate). This paper will present experimental results on PCC production from waste concrete along with modeling results for oxygen combustion at cement facilities. The results will be presented with a view to mineral sequestration process design and implementation.

  17. Based on the Analytic Hierarchy Process of Cement Production Projects Overseas Staff Safety Quality Assessment%基于层次分析法的海外水泥生产项目员工安全素质评估

    Institute of Scientific and Technical Information of China (English)

    龚腾; 孙祺

    2013-01-01

    Improve the index selection of the safety quality evaluation of the staff for overseas cement production projects is a complicated multi-objective selection problem,this paper uses analytic hierarchy process(AHP)to study the influence factors of overseas staff safety quality,overseas staff safety quality evaluation system is established. Select 7 overseas staff safety quality evaluation system of the main indicators,as a rule layer,and under which set up the index of 34 points,better improve the employee's safety quality evaluation system. After analysis to calculate the weight of each evaluation index,improved priorities of overseas staff safety quality index selection,and improvement measures are put forward.%改进海外水泥生产项目员工安全素质评估指标的选取是一个复杂的多目标选择问题,本文运用层次分析法研究了海外员工安全素质的影响因素,建立了海外员工安全素质评估体系。选取7个海外员工安全素质评估系统的主要指标,作为准则层,并在其下设置了34个分指标,更好地完善了海外员工安全素质的评估体系。分析计算出各个评估指标的权值后,得到改进海外员工安全素质指标选取的优先次序,并提出了改进措施。

  18. Characteristics of mercury cycling in the cement production process.

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2016-01-25

    The mercury cycling caused by dust shuttling significantly increases the atmospheric emissions from cement production. A comprehensive understanding of this mercury cycling can promote the development of mercury emission control technologies. In this study, the characteristics of mercury cycling in the cement production process were first investigated. Furthermore, the mercury enrichment and effects of dust treatment were evaluated based on the field tests conducted in two Chinese cement plants. The mercury cycling between the kiln system and the raw mill system was the most important aspect and contributed 57-73% to the total amount of mercury emitted from the kiln system. Mercury emitted from the kiln system with flue gas was enriched as high as 3.4-8.8 times in the two tested plants compared to the amount of mercury in the raw materials and coal due to mercury cycling. The mercury enrichment can be significantly affected by the proportion of mercury cycled back to the kiln system. The effects of dust treatment were evaluated, and dust treatment can efficiently reduce approximately 31-70% of atmospheric mercury emissions in the two plants. The reduction proportion approximately linearly decreased with the proportion of mercury removed from the collected dust. PMID:26448491

  19. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  20. Cement degradation and the alteration of host rocks. Studies within the Grimsel Test Site Project.

    Science.gov (United States)

    Soler, J. M.

    2009-04-01

    Cement is a major component of the engineered barrier system in proposed underground repositories for low- and intermediate-level radioactive waste. Cement grouting of highly-conductive fractures in the vicinity of such repositories is also planned. The interaction between the hyperalkaline solutions derived from the degradation of cement and the rocks hosting such repositories may change the physical and chemical properties of the host rocks. The HPF project (Hyperalkaline Plume in Fractured Rock; ANDRA-FR-, DOE-USA-, JAEA-JP-, NAGRA-CH-, POSIVA-FI-, SKB-SE-) studied the alteration of a fractured granite due to the circulation of a synthetic high-pH solution. A significant decrease in fracture permeability was observed both in the laboratory (core infiltration experiment; decimeter scale) and in the Grimsel Test Site (circulation along a fracture; meter scale), despite the relatively minor mineralogical alteration. Coupling of mineralogical alteration and permeability changes was incorporated into reactive transport modeling of the experiments. The hydration and degradation of cement are being explicitly incorporated into the new LCS (Long-Term Cement Studies; JAEA-JP-, NAGRA-CH-, NDA-GB-, POSIVA-FI-) project at Grimsel. New laboratory and field experiments including a cement source are being designed. Reactive transport modeling of the degradation of cement, causing the formation of hyperalkaline solutions and the alteration of the host rock, will be an essential part of the experiment.

  1. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  2. Carbon dioxide capture from a cement manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Gerald C. (North Augusta, SC); Falta, Ronald W. (Seneca, SC); Siddall, Alvin A. (Aiken, SC)

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  3. Microwave processing of cement and concrete materials – towards an industrial reality?

    Energy Technology Data Exchange (ETDEWEB)

    Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  4. IT Project Prioritization Process

    DEFF Research Database (Denmark)

    Shollo, Arisa; Constantiou, Ioanna

    2013-01-01

    In most of the large companies IT project prioritization process is designed based on principles of evidencebased management. We investigate a case of IT project prioritization in a financial institution, and in particular, how managers practice evidence-based management during this process. We use...... a rich dataset built from a longitudinal study of the prioritization process for the IT projects. Our findings indicate that managers reach a decision not only by using evidence but from the interplay between the evidence and the judgment devices that managers employ. The interplay between evidence...... and judgment devices is manifested in three ways: supplementing, substituting, and interpreting evidence. We show that while evidence does not fully determine the decision, it plays a central role in discussions, reflections, and negotiations during the IT prioritization process....

  5. Influence of the processed sunflower oil on the cement properties

    Science.gov (United States)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  6. Control of structurization processes in wood-cement systems at fixed pH

    Science.gov (United States)

    Subbotina, Natalia; Gorlenko, Nikolay; Sarkisov, Yuriy; Naumova, Ludmila; Minakova, Tamara

    2016-01-01

    The paper presents a study of structurization processes in the wood-cement systemmixed with the buffer solutions and the improvement of service properties of products produced therefrom. Infrared spectroscopy, X-ray phase analysis, and pH measurements show that structurization processes in wood-cement systems depend on the acidity of aqueous solution, the behavior of hydration, neutralization, and polycondensation reactions with the formation of polymer products including those with cement grout components and functional groups of wood. It is shown that phosphate buffer solutions used for mixing wood-cement compositions improve their strength properties and reduce water absorption. The optimum acidity of the buffered medium for service properties of the wood-cement systemis pH = 4.8.

  7. Produktie van cement

    NARCIS (Netherlands)

    Smit JRK; Coenen PWHG; Matthijsen AJCM; LAE; TAUW

    1995-01-01

    This document on cement production has been published within the SPIN project. In this project information has been collected on industrial plants or industrial processes to afford support to governmental policy on emission reduction. This document contains information on the processes, emission sou

  8. Effect of process variables on the preparation of artificial bone cements

    International Nuclear Information System (INIS)

    The present work concerns the preparation of bone cements based on poly(methyl methacrylate) (PMMA), used mainly for prosthesis fixation and cavity filling for correction of human bone failures. A typical bone cement recipe contains methyl methacrylate, which polymerizes in situ during cement application. An inherent problem of this reaction is the large amount of heat released during the cement preparation, which may lead to irreparable damage of living tissues. Optimization of PMMA-based bone cement recipes is thus an important step towards safe and reliable clinical usage of these materials. Important process variables related to the reaction temperature profile and the mixing of the recipe constituents were studied in order to allow for the adequate production of bone cements. It is shown that the average molar mass and size of the PMMA particles used in the production of the bone cement, as well as incorporation of radiopaque contrast, co-monomers and fillers into the bone recipe play fundamental roles in the course of the polymerization reaction. Furthermore, the injection vessel geometry may interfere dramatically with the temperature profile and the time for its occurrence. Finally, it has been observed that the morphology of the PMMA particles strongly affects the mixing of the bone cement components. (author)

  9. Effect of process variables on the preparation of artificial bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: pinto@peq.coppe.ufrj.br, E-mail: jjunior@peq.coppe.ufrj.br, E-mail: melo@peq.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Macromoleculas; Nele, M., E-mail: nele@eq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2013-10-15

    The present work concerns the preparation of bone cements based on poly(methyl methacrylate) (PMMA), used mainly for prosthesis fixation and cavity filling for correction of human bone failures. A typical bone cement recipe contains methyl methacrylate, which polymerizes in situ during cement application. An inherent problem of this reaction is the large amount of heat released during the cement preparation, which may lead to irreparable damage of living tissues. Optimization of PMMA-based bone cement recipes is thus an important step towards safe and reliable clinical usage of these materials. Important process variables related to the reaction temperature profile and the mixing of the recipe constituents were studied in order to allow for the adequate production of bone cements. It is shown that the average molar mass and size of the PMMA particles used in the production of the bone cement, as well as incorporation of radiopaque contrast, co-monomers and fillers into the bone recipe play fundamental roles in the course of the polymerization reaction. Furthermore, the injection vessel geometry may interfere dramatically with the temperature profile and the time for its occurrence. Finally, it has been observed that the morphology of the PMMA particles strongly affects the mixing of the bone cement components. (author)

  10. Development of Pack Cementation Aluminizing Process on Inner Surface of 316L Stainless Steel Tube

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In order to form the FeAl coatings on the inner surface of the 316L stainless steel tube,the pack cementation aluminizing process is introduced in this paper. The outside diameter,wall thickness and

  11. Developing an optimization model for CO2 reduction in cement production process

    Directory of Open Access Journals (Sweden)

    S. O. Ogbeide

    2010-01-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC has predicted global rise in temperature and carbon dioxide is amajor greenhouse gas responsible for global warming. The cement industry contributes approximately five per cent of thetotal CO2 emitted worldwide.Ewekoro cement Plant, located in Ewekoro, Ogun State was used as a case study to evaluate the results of various modificationson cement plants operation that can impact on the plant CO2 emissions. An economic model which objective is tohighlight the best selection strategy to reduce CO2 emissions with the least cost was developed using the industry data aspart of this paper. The cement Plant achieved a significant result of 23.6 per cent reduction in CO2 emissions per tonne ofcement produced. The results were achieved mainly by applying a progressive approach prioritizing project implementationeffort and feasibility.

  12. Characterization of vapor phase mercury released from concrete processing with baghouse filter dust added cement.

    Science.gov (United States)

    Wang, Jun; Hayes, Josh; Wu, Chang-Yu; Townsend, Timothy; Schert, John; Vinson, Tim; Deliz, Katherine; Bonzongo, Jean-Claude

    2014-02-18

    The fate of mercury (Hg) in cement processing and products has drawn intense attention due to its contribution to the ambient emission inventory. Feeding Hg-loaded coal fly ash to the cement kiln introduces additional Hg into the kiln's baghouse filter dust (BFD), and the practice of replacing 5% of cement with the Hg-loaded BFD by cement plants has recently raised environmental and occupational health concerns. The objective of this study was to determine Hg concentration and speciation in BFD as well as to investigate the release of vapor phase Hg from storing and processing BFD-added cement. The results showed that Hg content in the BFD from different seasons ranged from 0.91-1.44 mg/kg (ppm), with 62-73% as soluble inorganic Hg, while Hg in the other concrete constituents were 1-3 orders of magnitude lower than the BFD. Up to 21% of Hg loss was observed in the time-series study while storing the BFD in the open environment by the end of the seventh day. Real-time monitoring in the bench system indicated that high temperature and moisture can facilitate Hg release at the early stage. Ontario Hydro (OH) traps showed that total Hg emission from BFD is dictated by the air exchange surface area. In the bench simulation of concrete processing, only 0.4-0.5% of Hg escaped from mixing and curing BFD-added cement. A follow-up headspace study did not detect Hg release in the following 7 days. In summary, replacing 5% of cement with the BFD investigated in this study has minimal occupational health concerns for concrete workers, and proper storing and mixing of BFD with cement can minimize Hg emission burden for the cement plant. PMID:24444016

  13. A comprehensive model to describe radiolytic processes in cement medium

    DEFF Research Database (Denmark)

    Bouniol, P.; Bjergbakke, Erling

    2008-01-01

    Basic mechanisms controlling the radiolysis in cementitious matrices are reviewed in the specific context of the gamma irradiation, in closed system without upper vapour space, at 25 degrees C, with a pore solution representative of a Portland cement paste. A general survey of data corresponding...

  14. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    Science.gov (United States)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  15. CSER 96-013: Cementation Process, glovebox HA-20MB at PFP

    International Nuclear Information System (INIS)

    This evaluation provides criticality safety controls for the cementation processing in Glovebox HA-2OMB at the Plutonium Finishing Plant. Slag and crucible residues from Pu button making will be blended with Portland cement in 5k-in. diam. x 7-in. tall cans, for eventual disposition in special DOT 17C drums. A maximum of 180 g Pu is allowed per liquid-bearing container (mixing bowl, filter funnel, or cement can). In this SD revision, three separate areas with 500 g Pu limits each are established; the airlock cell for input S ampersand C cans, the reaction- and mixing-process area, and a cemented-can storage area. Number and spacing of containers within an area is not restricted, for areas spaced 6 inches apart. Acid addition in the reaction stage is allowed to the extent that plutonium dissolution will not occur

  16. Using portland cement for encapsulation of epipremnum aureum generated from phytoremediation process of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Phyto remediation process was recommended for treatment of low and intermediate level liquid radioactive waste. Epipremnum aureum (golden pothas plant) was used to bioabsorbe, bioaccumulate and biostabilize Cs-137 and Co-60 from simulated waste solution containing both radionuclides. After the phyto remediation process, the collected golden pothas was solidified using portland cement aiming at complete and safe management scheme. In this part of work x-ray diffraction , infrared analysis and electron microscope examination as non-destructive techniques were used to evaluate the characteristics of obtained final waste forms of cemented golden pothas. In addition, mechanical, porosity and chemical optimizations were performed under various experimental parameters to asses the suitability of the two processes i.e. phyto remediation and cementation for managing these wastes categories. The experimental results obtained confirmed that encapsulation of 3 % dry ground golden pothas that collected from treatment process of radioactive waste solution, in cement materials did not affect the hydration, setting and curing of the cement matrix. In addition , the obtained cemented waste form exhibits acceptable constitutions that comply with the final disposal requirements.

  17. Permeability Changes on Wellbore Cement Fractures Modified by Geochemical and Geomechanical Processes

    Science.gov (United States)

    Rod, K. A.; Um, W.

    2015-12-01

    Experimental studies were conducted using batch reactors, X-ray microtomography (XMT), and computational fluid dynamics (CFD) modeling to determine changes in cement fracture surfaces, fluid flow pathways and permeability, and cement fracture propagation with geochemical and geomechanical processes. Portland cement-basalt interface sample with artificial fractures was prepared to study the geochemical and geomechanical effects on the integrity of wellbores containing defects caused by subsurface activities. Cement-basalt interface sample was subjected to mechanical stress at 2.7 MPa before the chemical reaction. CFD modeling was performed to simulate flow of supercritical CO2 within the fractures before and after the application of mechanical stress. The model results highlighted the complex flow characteristics within the fracture and also changes in flow patterns due to application of geomechanical stress. The CFD model predicted ~45% increase in permeability after the application of geomechanical force, which increases the fracture aperture. The same sample was reacted with CO2-saturated groundwater with impurity H2S (1 wt.%) at 50°C and 10 MPa for 3 to 3.5 months under static conditions. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Even after a 3.5-month reaction with CO2-H2S-saturated groundwater at 50°C and 10 MPa, CaCO3 (s) precipitation occurred more extensively within the cement fracture rather than along the cement-basalt interfaces. Micro X-ray diffraction analysis also showed that major cement carbonation products of CO2-saturated groundwater reacting with impurity H2S were calcite, aragonite, and vaterite, consistent with cement carbonation by pure CO2-saturated groundwater, while pyrite was not identified due to low H2S content. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated

  18. Cement solidification method for liquid waste generated from primary loop resin elution process of PWR

    International Nuclear Information System (INIS)

    Since primary loop resin waste is eluted by sulfuric acid in The Kansai Electric Power Co., Inc., Mihama, Takahama and Ohi nuclear power station, liquid waste containing large amounts of sodium sulfate (Na2SO4) was stored in these plants. This liquid waste is planned to be solidified with cement, thus, we have carried out the cement solidification tests by use of some cement materials, and discussed a range of chemical composition and crud concentration of waste solution from resin elution process. In cases of using alumina cement material and ordinary portland cement material for solidification, properties of solidification have been examined and leaching tests of solid form for sulfate ion has been carried out. Volume reduction ratio of over 0.5 was achieved for 5 to 25wt% of sulfate ion and <5,000ppm of borate. Lithium ion restrained the solidification delay by borate. Based on this study, we concluded that these cement materials are applicable to all range of composition of waste solution from the resin elution process. (author)

  19. Effect of curing temperatura on hydration process of different cement

    OpenAIRE

    Elkhadiri, I.; Palacios, M.; Puertas, F.

    2009-01-01

    [EN]Hydration was studied in two cements (CEM I 42.5R and CEM II/A-V 42.5R) cured at temperatures ranging from 4 to 85°C. Hydration was monitored with a number of instrumental techniques: X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Backscattered Electron (BSE) imaging in conjunction with Energy Dispersive X-ray analysis (EDX) and Nuclear Magnetic Resonance (MAS NMR). The mechanical strength of the pastes was likewise determined at different ages, while mercury int...

  20. Investigation of a Gas-Solid Separation Process for Cement Raw Meal

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Clement, Karsten;

    2015-01-01

    The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation efficienc......The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation...

  1. Asbestos--cement pipeline experience at the Raft River Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.G.; Kunze, J.F.; Sanders, R.D.

    1977-04-01

    The first buried asbestos-cement (Transite) pipeline used in high temperature (approximately 300/sup 0/F) service for transport of geothermal fluids was installed in the fall of 1975, and has seen 1/sup 1///sub 2/ years of service. The line is 4000 ft long, between the deep geothermal wells No. 1 and No. 2, in the Raft River Valley of Idaho. The experience in using this pipeline has been satisfactory, and methods have been developed for minimizing the thermal expansion/thermal shock breakage problems. Recommendations on improved design and construction practices for future pipelines are given. The substantially reduced cost (factor of 2) of an asbestos-cement pipeline compared to the conventional steel pipeline, plus the esthetically desirable effect of a buried pipeline dictate adoption of this type as standard practice for moderate temperature geothermal developments. The Raft River Geothermal Project intends to connect all future wells with pipelines of asbestos-cement, insulated with 1 to 2-inches of urethane, and buried between 2 and 3 ft. Total cost will be approximately $110,000/mile for 10-inch diameter pipe, $125,000/mile for 12-inch diameter.

  2. Method for qualification of cementation process and its application to a vibration mixer

    International Nuclear Information System (INIS)

    The definition of homogeneity is discussed and methods to measure the 'degree of heterogeneity' of waste forms are proposed. The proposed methods were applied to a vibration assisted mixing process. There are many methods to evaluate homogeneity of waste form. The following methods were considered; visual inspection, the use of cement dye as a tracer, scanning of radioactive tracers and measurements of variations of density, water absorption, proposity and mechanical strength across the waste form. The process variables were waste/cement and water/cement ratios, mixer geometry, mixing time, and vibration intensity. Experimental methods and results were statistically analysed and compared with data obtained from samples adopted as the homogeneity standard. (Author)

  3. Effect of Fine Steel Slag Powder on the Early Hydration Process of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hydration heat evolution, non-evaporative water, setting time and SEM tests were performed to investigate the effect of fine steel slag powder on the hydration process of Portland cement and its mechanism.The results show that the effect of fine steel slag powder on the hydration process of Portland cement is closely related to its chemical composition, mineral phases, fineness, etc.Fine steel slag powder retards the hydration of portland cement at early age.The major reason for this phenomenon is the relative high content of MgO , MnO2, P2 O5in steel slag, and MgO solid solved in C3 S contained in steel slag.

  4. Understanding cement mechanical behavior in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zahacy, T. A. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but it can cause cracks in the cement sheath. These cracks are the result of high steam temperatures and thermal expansion. In order to mitigate this risk, improved well designs are required. The aim of this paper is to present the mechanical behavior of the cement sheath during the heating phase. An analysis of the impact of design and operating parameters was conducted through thermal hydraulic and thermal mechanical analyses to assess cement integrity. These analyses were then performed on an example of an SAGD project in the southern part of the Athabasca oilsands region to assess the performance of the cement sheath. Results showed that potential damage to the cement can be reduced by slow heating and a lower Young's modulus cement blend. This paper makes recommendations for optimizing cement design in thermal recovery wells.

  5. Characterization of waste products prepared from radioactive contaminated clayey soil cemented according to the GEODUR process

    International Nuclear Information System (INIS)

    Radioactive contaminated soil may arise due to accidents of various types or may be detected during decommisioning of nuclear installations. Ordinary surface soil cannot normally be conditioned using conventional cementation processes since the content of humic materials retards or prevents the solidification. An additive available from the Danish firm Geodur A/S makes it possible to circumvent this difficulty and to produce a monolithic, nondusting waste type using rather small amounts of cement. The report describes work on characterization of such a cemented waste product prepared on basis of clayey top soil from the Risoe area. The claimed advantages of the process was verified, and data for the compression strength (low), hydraulic conductivity (satisfactory) and other pore structure-related properties are given for the obtained products. Unfortunately the behaviour of cesium and strontium, representing two of the most relevant radionuclides, was not too promising. The retention of cesium is satisfactory, but less good than for the untreated soil. Greatly improved cesium retention after drying of the materials was noticed. Good retention of strontium is only obtained after reaction of the material with carbon dioxide from the atmosphere. The behaviour of the two isotopes in other types of cemented waste is somewhat similar, but the decrease in retention compared with untreated soil makes the process less interesting as a possibility for remedial actions after accidents, etc. Some further studies of the cemented soil waste are beeing made within the frame of the Nordic Nuclear Safety Studies. Elements forming low solublity components in the high pH environment in the cemented soil will probably be retained quite efficiently. This was demonstrated in case of Zn. (author) 11 tabs., 22 ills., 8 refs

  6. Effect of PCs superplasticizers on the rheological properties and hydration process of slag-blended cement pastes

    OpenAIRE

    Palacios, M.; Puertas, F.; Bowen, P.; Houst, Y. F.

    2009-01-01

    The effect of polycarboxylate (PC) superplasticizers with different structure on the rheological properties and hydration process of slag-blended cement pastes with a slag content between 0 and 75% has been studied. Fluidizing properties of PCs admixtures are significantly higher in slag-blended cement with respect to non-blended Portland cement. Also, it has been observed that the rise of the fluidity induced by the PCs on the cement pastes increases with the slag content. This effect is mainl...

  7. The Impact of Thermocycling Process on the Dislodgement Force of Different Endodontic Cements

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Saghiri

    2013-01-01

    Full Text Available To evaluate the effects of thermocycling (500 cycles, 5°C/55°C on the push-out bond strength of calcium silicate based cements including WMTA, Nano-WMTA, and Bioaggregate to root dentin. Forty-eight dentin slices were prepared and divided into 3 groups (n=16 and filled with Angelus WMTA, Nano-WMTA, or Bioaggregate. After incubation, half of the samples were thermocycled while the other half remained untreated. Push-out bond strength was calculated, and the modes of the bond failures were determined by SEM. The highest bond strength was seen in nonthermocycled Nano-WMTA samples and the lowest in thermocycled Bioaggregate samples. The significant differences between nonthermocycled and thermocycled samples were only noticed in WMTA and Nano-WMTA groups (P<0.001. The mode of failure for thermocycled samples of all three cements was mostly cohesive. Thermocycling process can drastically affect the push-out bond strength of calcium silicate based cements. The intrastructural damages occurred due to the thermal stresses, causing cohesive failures in set materials. Sealing property of endodontic cements which have experienced the thermal stresses can be jeopardized due to occlusal forces happening in furcation cites.

  8. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten;

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  9. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  10. Silicon Carbide Coating for Carbon Materials Produced by a Pack-Cementation Process

    OpenAIRE

    Paccaud, O.; Derré, A.

    1995-01-01

    A pack-cementation process has been developed in order to produce SiC coating on carbon materials. At high temperature gaseous silicon monoxide generated from a SiC-SiO2 powders mixture reacts with carbon substrate by converting the outer surfaces into silicon carbide. The correlation between density measurements and thermochemical calculations allows to determine the reaction path mechanism for the SiC layer formation. Iridium marker experiments are proposed to localize the substrate initial...

  11. Effect of rheology on flow displacement during cementing process in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Braghini, Andre; Naccache, Monica F.; Fonseca, Marcos I. [Dept. Mechanical Engineering. Pontificia Universidade Catolica (PUR-Rio), Rio de Janeiro, RJ (Brazil)], e-mails: mnaccache@puc-rio.br; Miranda, Cristiane R. de; Martins, Andre L.; Aranha, Pedro E. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)], e-mails: crisrichard@petrobras.com.br, aleibsohn@petrobras.com.br, pearanha@petrobras.com.br

    2010-07-01

    This paper describes a set of numerical simulations of the displacement flow of three non-Newtonian fluids through annular eccentric wells. The main application of this work is the studying of drilling and completion processes of oil wells where a cement slurry pushes the drilling mud, used in the drilling process to lubricate the drill and to remove the produced drilling cuts. To avoid contamination, a spacer fluid is usually inserted between them. Both drilling mud and cement slurry behave as non-Newtonian fluids, and the spacer fluid can be Newtonian or non-Newtonian. The analysis of flow and interface configuration between these fluids helps to determine contamination, and is an important tool for the process optimization. The numerical solution of the governing conservation equations of mass and momentum is obtained with the Fluent software, using the finite volume technique and the volume of fluid method. The effects of rheological parameters, density ratios and pumped volume of the spacer fluid are investigated. The results obtained show that the displacement is better when a more viscous spacer fluid is used. The results also show that using lower amounts of the spacer fluid can lead to contamination, which is worse in the smaller gap region of the annular space, in the case of non-rectilinear well. It was also observed that the density ratios play a major role in the cementing operation. (author)

  12. Energy audit and conservation opportunities for pyroprocessing unit of a typical dry process cement plant

    International Nuclear Information System (INIS)

    Cement production process has been highly energy and cost intensive. The cement plant requires 8784 h per year of the total operating hours to produce 640,809 tonnes of clinker. To achieve effective and efficient energy management scheme, thermal energy audit analysis was employed on the pyroprocessing unit of the cement plant. Fuel combustion generates the bulk of the thermal energy for the process, amounting to 95.48% (4164.02 kJ/kgcl) of the total thermal energy input. Thermal efficiency of the unit stands at 41%, below 50-54% achieved in modern plants. The exhaust gases and kiln shell heat energy losses are in significant quantity, amounting to 27.9% and 11.97% of the total heat input respectively. To enhance the energy performance of the unit, heat losses conservation systems are considered. Waste heat recovery steam generator (WHRSG) and Secondary kiln shell were studied. Power and thermal energy savings of 42.88 MWh/year and 5.30 MW can be achieved respectively. Financial benefits for use of the conservation methods are substantial. Environmental benefit of 14.10% reduction in Greenhouse gases (GHG) emissions could be achieved.

  13. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros-Pineda, Olga G.; Herrera Kao, Wilberth; Loría-Bastarrachea, María I. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Veranes-Pantoja, Yaymarilis [Centro de Biomateriales, Universidad de la Habana, Avenida Universidad, s/n, e/G y Ronda, C.P. 10600 C. de La Habana (Cuba); Cauich-Rodríguez, Juan V. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Cervantes-Uc, José M., E-mail: manceruc@cicy.mx [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico)

    2014-07-01

    The aim of this work was to provide some fundamental information for optimization of silanization of hydroxyapatite intended for bone cement formulations. The effect of 3-(trimethoxysilyl) propyl methacrylate (MPS) concentration and solvent system (acetone/water or methanol/water mixtures) during HA silanization was monitored by X-ray diffraction (XRD), FTIR spectroscopy and EDX analysis. The effect of silanized HA on the mechanical properties of acrylic bone cements is also reported. It was found that the silanization process rendered hydroxyapatite with lower crystallinity compared to untreated HA. Through EDX, it was observed that the silicon concentration in the HA particles was higher for acetone–water than that obtained for methanol–water system, although the mechanical performance of cements prepared with these particles exhibited the opposite behavior. Taking all these results together, it is concluded that methanol–water system containing MPS at 3 wt.% provides the better results during silanization process of HA. - Highlights: • Effect of MPS concentration and solvents during HA silanization was studied. • Silanization rendered HA has lower crystallinity compared to untreated HA. • Silicon concentration was higher for acetone than that obtained using methanol. • Methanol–water system containing MPS at 3 wt.% provides the better results.

  14. Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study.

    Science.gov (United States)

    Sinyoung, Suthatip; Songsiriritthigul, Prayoon; Asavapisit, Suwimol; Kajitvichyanukul, Puangrat

    2011-07-15

    The behavior of chromium during the production of cement clinker, during the hydration of cement and during the leaching of cement mortars was investigated. The microstructures of clinker and mortar properties were investigated using free lime, XRD, SEM/EDS, and TG/DTA techniques. Chromium was found to be incorporated in the clinker phase. The formation of new chromium compounds such as Ca(6)Al(4)Cr(2)O(15), Ca(5)Cr(3)O(12), Ca(5)Cr(2)SiO(12), and CaCr(2)O(7), with chromium oxidation states of +3, +4.6, +5, and +6, respectively, was detected. After the hydration process, additional chromium compounds were identified in the mortar matrix, including Ca(5)(CrO(4))(3)OH, CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), with chromium oxidation states of +4.6, +6, and +6, respectively. Additionally, some species of chromium, such as Cr(3+) from Ca(6)Al(4)Cr(2)O(15) and Cr(6+) from CaCr(2)O(7), CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), were leached during leaching tests, whereas other species remained in the mortar. The concentrations of chromium that leached from the mortar following U.S. EPA Method 1311 and EA NEN 7375:2004 leaching tests were higher than limits set by the U.S. EPA and the Environment Agency of England and Wales related to hazardous waste disposal in landfills. Thus, waste containing chromium should not be allowed to mix with raw materials in the cement manufacturing process.

  15. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM System

    Directory of Open Access Journals (Sweden)

    Bo Wan

    2016-08-01

    Full Text Available The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.

  16. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System.

    Science.gov (United States)

    Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu

    2016-08-10

    The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.

  17. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System.

    Science.gov (United States)

    Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu

    2016-01-01

    The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects. PMID:27517935

  18. Chromium behavior during cement-production processes: A clinkerization, hydration, and leaching study

    Energy Technology Data Exchange (ETDEWEB)

    Sinyoung, Suthatip [Department of Environmental Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Songsiriritthigul, Prayoon [Synchrotron Light Research Institute, PO Box 93 Nakhon Ratchasima, 30000 (Thailand); School of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Asavapisit, Suwimol, E-mail: suwimol_s@hotmail.com [Environmental Technology, School of Energy and Materials, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Kajitvichyanukul, Puangrat, E-mail: puangratk@nu.ac.th [National Center of Excellence for Environmental and Hazardous Waste Management, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000 (Thailand)

    2011-07-15

    Highlights: {yields} Behavior of chromium during cement-production processes. {yields} Formation of new chromium compounds in clinker with chromium oxidation states of +3, +4.6, +5, and +6. {yields} Addition of chromium altered the composition of the clinker phases, setting time, and compressive strength of hydrated mixes. {yields} Cr{sup 3+} and Cr{sup 6} were leached during leaching tests, whereas other species remained in the mortar. - Abstract: The behavior of chromium during the production of cement clinker, during the hydration of cement and during the leaching of cement mortars was investigated. The microstructures of clinker and mortar properties were investigated using free lime, XRD, SEM/EDS, and TG/DTA techniques. Chromium was found to be incorporated in the clinker phase. The formation of new chromium compounds such as Ca{sub 6}Al{sub 4}Cr{sub 2}O{sub 15}, Ca{sub 5}Cr{sub 3}O{sub 12}, Ca{sub 5}Cr{sub 2}SiO{sub 12}, and CaCr{sub 2}O{sub 7}, with chromium oxidation states of +3, +4.6, +5, and +6, respectively, was detected. After the hydration process, additional chromium compounds were identified in the mortar matrix, including Ca{sub 5}(CrO{sub 4}){sub 3}OH, CaCrO{sub 4}.2H{sub 2}O, and Al{sub 2}(OH){sub 4}CrO{sub 4}, with chromium oxidation states of +4.6, +6, and +6, respectively. Additionally, some species of chromium, such as Cr{sup 3+} from Ca{sub 6}Al{sub 4}Cr{sub 2}O{sub 15} and Cr{sup 6+} from CaCr{sub 2}O{sub 7}, CaCrO{sub 4}.2H{sub 2}O, and Al{sub 2}(OH){sub 4}CrO{sub 4}, were leached during leaching tests, whereas other species remained in the mortar. The concentrations of chromium that leached from the mortar following U.S. EPA Method 1311 and EA NEN 7375:2004 leaching tests were higher than limits set by the U.S. EPA and the Environment Agency of England and Wales related to hazardous waste disposal in landfills. Thus, waste containing chromium should not be allowed to mix with raw materials in the cement manufacturing process.

  19. Reengineering the project design process

    Science.gov (United States)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  20. Compressive Strength and Hydration Process of Self Compacting Concrete (SCC) mixed with Sea Water, Marine Sand and Portland Composite Cement

    OpenAIRE

    Tjaronge, Wihardi; Irmawaty, Rita

    2014-01-01

    In order to eliminate the main problems of shortage of clean water and fine aggregate in the low land areas and the distant islands, this research utilized sea water and marine sand and Portland composite cement to produce high performance of Self Compacting Concrete (SCC). Portland composite cement containing of fly ash. The evaluation result on the mix design, workability (slumpflow, segregation), mechanical properties (compressive strength-static modulus) and hydration process of SCC were ...

  1. Process development for utilizing asbestos cement waste in rotary kilns for the cement industry. Final report; Erarbeitung eines Verfahrens zur stofflichen Verwertung von zementgebundenen Asbestprodukten in Drehrohroefen fuer die Zementindustrie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, R.; Kieser, J.; Kraehner, A.

    1999-11-01

    The law for recycling and waste demands the utilization also for waste of asbestos cement (ac). The procedure of thermal utilization of ac in the flame of a rotary cement kiln was developed and patented by the research institute IBU-tec Weimar, Germany. The ac-material has to be pre-pulverized and grinded to a degree of fineness of R{sub 90}<15%. Considerations of safety engineering lead to the idea of common fine grinding of old oil (oo) and ac. This new procedure was searched in FuE-project in 1998/99 (financial support by BMBF). A mash of ac and oo was generated as a utilization product ready for firing which was injected into the flame of the rotary cement kiln. This particles of ac smelt to spherical shaped particles at a temperature above 1500 C. They were utilized by clinker formation. The material and gas stream leaving the kiln does not contain fibres of asbestos. This was demonstrated in a small equipment burning test. The industrial realization concerning cement plant Ruedersdorf, near Berlin, was searched, technologically described and safety engineeringly and financially assessed by a project study. Process-technical and financial advantages were seen for the dry fine grinding. The wet fine grinding with old oil could be used in cement plants using old oil as fuel. (orig.) [German] Das Kreislaufwirtschafts- und Abfallgesetz (1994) fordert u.a. die stoffliche Verwertung auch fuer Asbestzementabfaelle (AZ). Das vom Institut fuer Baustoff- und Umweltschutz-Technologie Weimar 1995 entwickelte und patentierte Verfahren zur thermischen Verwertung von AZ in der Flamme eines Zementdrehrohrofens erfuellt diese Forderung. Das AZ-Material muss vorzerkleinert und bis zur Rohmehlfeinheit (R{sub 90}<15%) feingemahlen werden. Sicherheitstechnische Ueberlegungen fuehrten zu der Idee, die Feinmahlung zusammen mit Altoel (AOe) zu erproben. Diese Verfahrensvariante wurde im Rahmen eines FuE-Projektes 1998/99 untersucht (finanzielle Foerderung durch das BMBF). Als

  2. Change in relative density of WC-Co cemented carbides in spark plasma sintering process

    Institute of Scientific and Technical Information of China (English)

    SUN Lan; LIN Chenguang; JIA Chengchang; JIA Xian; XIAN Min

    2008-01-01

    The relative density of WC-Co cemented carbides during spark plasma sintering (SPS) was analyzed.Based on the change in displacement of the ram in the SPS system,the relative densities in the sintering process can be achieved at different temperatures.The results indicated that densification of the samples started at near 900℃,the density rapidly reached its maximum at the increasing temperature stage,in which the temperature was lower than the sintering temperature of 1200℃,and most of the densification took place in the stage.Besides,the theoretcal values were consistent with the experimental results.

  3. Long-term model-based projections of energy use and CO2emissions from the global steel and cement industries

    OpenAIRE

    van Ruijven, Bas J.; van Vuuren, Detlef P.; Boskaljon, Willem; Neelis, Maarten L.; Saygin, Deger; Martin K. Patel

    2016-01-01

    This paper presents a global simulation-model for the steel and cement industries. The model covers the full modelling chain from economic activity, to materials consumption, trade, technology choice, production capacity, energy use and CO2emissions. Without climate policy, the future projections based on the SSP2 scenario show a rapid increase in the consumption of steel and cement over the next few decades, after which demand levels are projected to stabilize. This implies that over the sce...

  4. Review of technologies for mercury removal from flue gas from cement production processes

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian;

    2012-01-01

    kilns.Among the mercury control technologies, sorbent injection upstream of a particulate control device has shown the most promise. Due to material recirculation, and high moisture level in the cement kiln flue gas the application of sorbent injection to cement plants will be more challenging......Mercury is a pollutant of concern and mercury emissions from cement plants are under environmental regulation. After coal-fired power plants, mercury emissions from cement and mineral production are the second largest anthropogenic sources. Compared to fuels, cement raw materials are the major...... sources of mercury in the cement kiln flue gas. Cement plants are quite different from power plants and waste incinerators regarding the flue gas composition, temperature, residence time, and material circulation. Cement kiln systems have some inherent ability to retain mercury in the solid materials due...

  5. Laser-radiation scattering by cement in the process of hydration: simulation of the dynamics and experiment.

    Science.gov (United States)

    Gorsky, M P; Maksimyak, P P; Maksimyak, A P

    2012-04-01

    This paper discusses simulation of speckle-field dynamics during coherent light scattering by a cement surface in the process of hydration. Cement particles are represented by the spheres whose sizes and reflection indices are changing during the hydration process. The study of intensity fluctuations of scattered coherent radiation is a suitable technique for the analysis of both fast and slow processes of mineral binder hydration and formation of polycrystalline structures in the process of hardening. The results of simulation are in good agreement with the experimental data.

  6. Processing of concentrated radioactive wastes into cement and bitumens following calcination

    International Nuclear Information System (INIS)

    A brief characteristic is presented of the most frequently used processes of solidification of liquid radioactive wastes, viz., bituminization, cementation and their combination with calcination. The effect of individual parameters is assessed on the choice of the type of solidification process as is their importance in the actual process, in temporary storage, during transportation and under conditions of long-term storage. It has been found that a combination of the procedures could lead to a modular system of methods and equipment. This would allow to approach optimal solidification of wastes in the present period and to establish a research reserve for the development of more modern, economically advantageous and safer procedures. A rough estimate is made of the costs of the solidification of 1 m3 of radioactive concentrate from the V-1 power plant at a production of 380 m3/year, this for the cementation-calcination and bituminization-calcination procedures. The said rough economic analysis only serves to identify the major operating components which have the greatest effect on the economic evaluation of the solidification procedures. (Z.M.)

  7. Synthesis of partial-stabilized cement (PSC) via sol-gel process.

    Science.gov (United States)

    Wang, Wen-Hsi; Lee, Yuan-Ling; Lin, Chun-Pin; Lin, Feng-Huei

    2008-06-15

    The traditional method of preparing partial-stabilized cement (PSC), which is a kind of calcium silicate cement, is through power mixing method. Low reaction efficiency and initial strength limited the application of PSC as a dental root-end filling material. This study provides a one-step sol-gel process for the synthesis of PSC. A complexing ligand is used for tuning down the activity of aluminum sec-butoxide (ASB) in order to avoid possible self-polymerization. After the modification with complex ligand, there is no residue of reactant observed on the analysis of SDT, and bonding between metal atoms is observed in the FTIR spectrum. Each component of PSC is identified using XRD. The hydration product, which is called portlandite, of sol-gel-synthesized PSC is observed after 1 day of hydration, and crystallinity of portlandite increases much faster than that of traditional PSC. The initial strength of sol-gel-synthesized PSC achieves detectable level 24 h earlier than that of traditional PSC; microhardness value of sol-gel-synthesized PSC at 7th day is 2.98 HV, which is much higher than that of traditional PSC (2.05 HV). PSC is successfully synthesized and the initial strength of PSC is improved by this modified sol-gel process.

  8. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.

    Science.gov (United States)

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Lv, Qingzhi; Sun, Ye; Wang, Hongmei; Liu, Yu; Zhang, Fan

    2016-09-01

    The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system. Therefore, it is suggested that the injection amount of ammonia water in SNCR system may reduce to cut down the operating costs during co-processing the sewage sludge in cement kiln. In addition, the emission of total PAHs seems to increase with the increased amount of the sewage sludge feeding to the cement kiln. However, the distributions of PAHs were barely changed, and lower molecular weight PAHs were mainly distributed in gaseous phase, accounted for the major portion of PAHs when co-processing sewage sludge in cement kiln. PMID:27343866

  9. Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash.

    Science.gov (United States)

    Liu, Guorui; Zhan, Jiayu; Zhao, Yuyang; Li, Li; Jiang, Xiaoxu; Fu, Jianjie; Li, Chunping; Zheng, Minghui

    2016-07-01

    Co-processing municipal solid waste incinerator (MSWI) fly ash in cement kilns is challenging because the unintentional production of persistent organic pollutants (POPs) during the process is not well understood. The distributions, profiles and formation mechanisms of polychlorinated naphthalenes (PCNs) as new POPs covered under Stockholm Convention in two cement kilns co-processing MSWI fly ash were studied. The average concentrations of PCNs in stack gas samples were 710 ng m(-3). The PCN concentration in particle samples collected from different process stages in the cement kilns ranged from 1.1 to 84.7 ng g(-1). Three process sites including suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the major formation sites of PCNs in cement kilns co-processing MSWI fly ash. The PCN distribution patterns were similar to that of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs), which indicates the possibility for simultaneous control of PCNs and PCDD/Fs in cement kilns co-processing fly ash. Chlorination was suggested to be an important formation mechanism of PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. Thermodynamic calculations, including relative thermal energies (ΔE) and standard free energy of formation (ΔG), and the charge densities of the carbon atoms in PCN supported the proposed chlorination mechanisms for PCN formation. The results presented in this study might provide helpful information for developing techniques and strategies to control PCN emissions during cement kilns co-processing MSWI fly ash.

  10. Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash.

    Science.gov (United States)

    Liu, Guorui; Zhan, Jiayu; Zhao, Yuyang; Li, Li; Jiang, Xiaoxu; Fu, Jianjie; Li, Chunping; Zheng, Minghui

    2016-07-01

    Co-processing municipal solid waste incinerator (MSWI) fly ash in cement kilns is challenging because the unintentional production of persistent organic pollutants (POPs) during the process is not well understood. The distributions, profiles and formation mechanisms of polychlorinated naphthalenes (PCNs) as new POPs covered under Stockholm Convention in two cement kilns co-processing MSWI fly ash were studied. The average concentrations of PCNs in stack gas samples were 710 ng m(-3). The PCN concentration in particle samples collected from different process stages in the cement kilns ranged from 1.1 to 84.7 ng g(-1). Three process sites including suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the major formation sites of PCNs in cement kilns co-processing MSWI fly ash. The PCN distribution patterns were similar to that of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs), which indicates the possibility for simultaneous control of PCNs and PCDD/Fs in cement kilns co-processing fly ash. Chlorination was suggested to be an important formation mechanism of PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. Thermodynamic calculations, including relative thermal energies (ΔE) and standard free energy of formation (ΔG), and the charge densities of the carbon atoms in PCN supported the proposed chlorination mechanisms for PCN formation. The results presented in this study might provide helpful information for developing techniques and strategies to control PCN emissions during cement kilns co-processing MSWI fly ash. PMID:27135696

  11. Effect of Nano-TiO2 Addition on the Hydration and Hardening Process of Sulphoaluminate Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; LI Hainan; MEI Junpeng; OUYANG Pei

    2015-01-01

    The influences of nano-TiO2 on the setting time, hydration process, hydration products and morphology of sulphoaluminate cement were studied by Vicat apparatus, isothermal calorimetry, X-ray diffraction (XRD), thermal analysis and scanning electron microscopy (SEM). The experimental results show that the incorporation of nano-TiO2 can obviously promote the setting and hardening process of sulphoaluminate cement, and shorten the interval between the initial and ifnal setting time, the hydration induction period of sulphoaluminate cement is significantly shortened and the acceleration period begins immediately, but the hydration exothermic rate at hydration stationary phase is not obviously impacted. The nano-TiO2 additives have inlfuence on the formation rate and degree of crystallinity, but do not affect the type of hydration process. The structure of hydration products is compact at middle age, but their content and microstructure do not change.

  12. FUZZY LOGIC CONTROLLER AS MODELING TOOL FOR THE BURNING PROCESS OF A CEMENT PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    P.B. Osofisan

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A comprehensive optimisation of the cement production process presents a problem since the input variables as well as the output variables are non-linear, interdependent and contain uncertainties. To arrive at a solution, a Fuzzy Logic controller has been designed to achieve a well-defined relationship between the main and vital variables through the instrumentality of a Fuzzy Model. The Fuzzy Logic controller has been simulated on a digital computer using MATLAB 5.0 Fuzzy Logic Tool Box, using data from a local cement production plant.

    AFRIKAANSE OPSOMMING: Die omvattende optimisering van 'n proses wat sement vervaardig, word beskryf deur nie-linieêre inset- en uitsetveranderlikes wat onderling afhanklik is, en ook van onsekere aard is. Om 'n optimum oplossing te verkry, word 'n Wasigheidsmodel gebruik. Die model word getoets deur gebruik te maak van die MATLAB 5.0 Fuzzy Logic Tool Box en data vanaf 'n lokale sementvervaardigingsaanleg.

  13. THEORETICAL AND EXPERIMENTAL STUDIES OF ENERGY-EFFICIENT GRINDING PROCESS OF CEMENT CLINKER IN A BALL MILL

    Directory of Open Access Journals (Sweden)

    Kuznetsova M.M.

    2014-08-01

    Full Text Available The article presents results of theoretical and experimental research of grinding process of bulk materials in a ball mill. The new method of determination of energy efficiently mode of operation of ball mills in a process of a cement clinker grinding is proposed and experimentally tested.

  14. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  15. CONCEPTUAL ANALYSIS OF FORMING PROCESSES PROJECT TEAM

    OpenAIRE

    Celovalnikova, E.

    2010-01-01

    In the article the conceptual analysis of the stages of forming of project team and processes is conducted management its project activity with the purpose of achievement of successful completion of the put aims in a project.

  16. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project

  17. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  18. From Project Management to Process Management - Effectively Organising Transdisciplinary Projects

    OpenAIRE

    Moschitz, Heidrun

    2013-01-01

    In transdisciplinary projects, the roles of researchers change. In addition to being a source of knowledge, they are required to engage in knowledge exchange processes. This results in an alteration at project level: researchers need to creatively manage projects as group processes.

  19. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  20. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  1. A New Kind of Eco-Cement Made of Cement Kiln Dust and Granular Blast Furnace Slag

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A research project was conducted to manufacture eco-cement for sustainable development using cement kiln dust( CKD ) and granular blast furnace slag( GBFS ).In the project, the burning process and mineral compositions of CKD clinker were investigated.Dife rent mineralizers such as CaSO4 and CaF2 , sulfur and alkali content were considered.The strength of CKD and GBFS eco-cement were evaluated.The results indicate the CKD clinker can not only form ordinary cement clinker minerals such as C3 S, C2 S and C4 AF, but also form strength to the Portland cement grade 32.5 when blend proportion is properly applied.

  2. Information processing in global virtual NPD projects

    OpenAIRE

    Lohikoski, P. (Päivi)

    2016-01-01

    Abstract In knowledge-based economy an increasing amount of work is conducted in projects in dispersed virtual organisational settings. Information is the raw material of virtual knowledge-based project work and therefore an understanding of information processing in virtual NPD (New Product Development) projects is essential. Information processing is particularly crucial for virtual NPD projects, which are typically implemented in demanding, turbulent and complex institutional settings,...

  3. Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste.

    Science.gov (United States)

    Jin, Rong; Zhan, Jiayu; Liu, Guorui; Zhao, Yuyang; Zheng, Minghui

    2016-09-01

    Pilot studies of unintentionally produced pollutants should be performed before waste being co-processed in cement kilns. Polychlorinated naphthalene (PCN) formation and emission from cement kilns co-processing sorted municipal solid waste, sewage sludge, and waste acid, however, have not previously been studied. Here, PCNs were analyzed in stack gas samples and solid samples from different stages of three cement production runs. PCN destruction efficiencies were higher when waste was co-processed (93.1% and 88.7% in two tests) than when waste was not co-processed (39.1%), so co-processing waste would not increase PCN outputs. The PCN concentrations were higher in particle samples from the C1 preheater and stages at back end of kiln than in particle samples from other stages, suggesting that cyclone preheater and back end of kiln should be focused for controlling PCN emissions. Besides that, based on the variation of PCN concentrations and corresponding operating conditions in different stages, the temperature, feeding materials, and chlorine content were suggested as the main factors influencing PCN formation. The PCN homologue and congener profiles suggested chlorination and dechlorination were the main PCN formation and decomposition pathways, and congeners CN-23, CN-46, and CN-59 appear to be appropriate indicators of PCNs emitted from coal-burning sources. PMID:27187059

  4. Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste.

    Science.gov (United States)

    Jin, Rong; Zhan, Jiayu; Liu, Guorui; Zhao, Yuyang; Zheng, Minghui

    2016-09-01

    Pilot studies of unintentionally produced pollutants should be performed before waste being co-processed in cement kilns. Polychlorinated naphthalene (PCN) formation and emission from cement kilns co-processing sorted municipal solid waste, sewage sludge, and waste acid, however, have not previously been studied. Here, PCNs were analyzed in stack gas samples and solid samples from different stages of three cement production runs. PCN destruction efficiencies were higher when waste was co-processed (93.1% and 88.7% in two tests) than when waste was not co-processed (39.1%), so co-processing waste would not increase PCN outputs. The PCN concentrations were higher in particle samples from the C1 preheater and stages at back end of kiln than in particle samples from other stages, suggesting that cyclone preheater and back end of kiln should be focused for controlling PCN emissions. Besides that, based on the variation of PCN concentrations and corresponding operating conditions in different stages, the temperature, feeding materials, and chlorine content were suggested as the main factors influencing PCN formation. The PCN homologue and congener profiles suggested chlorination and dechlorination were the main PCN formation and decomposition pathways, and congeners CN-23, CN-46, and CN-59 appear to be appropriate indicators of PCNs emitted from coal-burning sources.

  5. Processing of diamond enhanced cemented tungsten carbide insert for rock drilling

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-chang; SUN You-hong; ZHANG Zu-pei

    2004-01-01

    This paper introduced the structure, component and sintering procedure of the Diamond/WC-Co composite insert fabricated by high pressure and high temper ature (HPHT) method as well as by hot pressing method. In HPHT method, to avoid breakage and delamination of the diamond layer, two transition layers were added between the most outer diamond layer and the WC-Co body. The transition layers compensate for differences in thermal expansion coefficient and elastic modulus of diamond layer and WC-Co substrate. Thus reduces the residual stress induced by cooling the inserts from sintering temperature to room temperature. In hot pressing method, to decrease sintering temperature so as to protect diamond, an active sintering process which achieved by adding nickel and phosphorus into the starting mixed powder is adopted. To increase the toughness of the inserts to resist breakage, proper amount of rare earth compound, LaNi5 and CeO2, are added into the original mixed powder, too. Laboratory tests indicated that both of the diamond enhanced inserts fabricated by HPHT method and by hot pressing method have relatively high hardness and impact toughness, while their wear resistance is about hundreds of times greater than that of conventional cemented tungsten carbide inserts. The results of field drilling test indicated that the diamond enhanced inserts can meet the demands of rotary percussion drilling.

  6. Process-based software project management

    CERN Document Server

    Goodman, F Alan

    2006-01-01

    Not connecting software project management (SPM) to actual, real-world development processes can lead to a complete divorcing of SPM to software engineering that can undermine any successful software project. By explaining how a layered process architectural model improves operational efficiency, Process-Based Software Project Management outlines a new method that is more effective than the traditional method when dealing with SPM. With a clear and easy-to-read approach, the book discusses the benefits of an integrated project management-process management connection. The described tight coup

  7. Long-term model-based projections of energy use and CO2emissions from the global steel and cement industries

    NARCIS (Netherlands)

    Van Ruijven, Bas J.; Van Vuuren, Detlef P.; Boskaljon, Willem; Neelis, Maarten L.; Saygin, Deger; Patel, Martin K.

    2016-01-01

    This paper presents a global simulation-model for the steel and cement industries. The model covers the full modelling chain from economic activity, to materials consumption, trade, technology choice, production capacity, energy use and CO2emissions. Without climate policy, the future projections ba

  8. Sustainable Building through Project Planning Process

    OpenAIRE

    Anuar Alias; Nor Kalsum Mohd Isa; Zulkiflee Abdul Samad

    2014-01-01

    Planning process has a significant impact on the ability of a construction project to success. This is the stage where the detailed directions are given which would affect thewhole course of the project. The process is argued to be the most crucial stage which the principles of sustainability are integrated throughout the whole life of building. The purpose of this research was to investigate the Malaysian building project stakeholders’ perspectives on the most significant strategies to integ...

  9. PORE STRUCTURE MODEL OF CEMENT HYDRATES CONSIDERING PORE WATER CONTENT AND REACTION PROCESS UNDER ARBITRARY HUMIDITY

    Science.gov (United States)

    Fujikura, Yusuke; Oshita, Hideki

    A simulation model to estimate the pore structure of cement hydrates by curing in arbitrary relative humidity is presented. This paper describes procedures for predicting phase compositions based on the classical hydration model of Portland cement, calculating the particle size distribution of constituent phases and evaluating the pore size distribution by stereological and statistical considerations. And to estimate the water content in pore structure under any relative humidity, we proposed the simulation model of adsorption isotherm model based on the pore structure. To evaluate the effectiveness of this model, simulation results were compared with experimental results of the pore size distribution measured by mercury porosimetry. As a result, it was found that the experimental and simulated results were in close agreement, and the simulated results indicated characterization of the po re structure of cement hydrates.

  10. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  11. Investment Projects Evaluation in Decision Making Process

    Directory of Open Access Journals (Sweden)

    Dunja Škalamera-Alilović

    2005-08-01

    Full Text Available One of the most important criteria in classifying investment projects is economic dependence between new and existing projects. Economic dependence causes the neccessity of specific information in decision making process. The prerequisite of shaping incremental effects projections is to take opportunity effects, caused by economic dependence, into account. Basic principles of risk estimation that are well known in the field of financial assets, are concerning real investments as well. An enterprise can be viewed as portfolio of investment projects that cannot be perfectly diversified and where market risk is not the most important risk. In the field of real investments, individual risk and added risk to the total risk of enterprise, besides market risk, have to be estimated. This paper explains basic principles of risk estimation in the field of investment projects in the selection of project variants. It researches types of economic dependence among various investment projects and their influence into decision making process.

  12. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  13. Quantification of the Reduced Environmental Impacts with Use of Co-Processing in Cement Kilns in India

    Directory of Open Access Journals (Sweden)

    Ankur Tiwary

    2014-10-01

    Full Text Available Coupled with resource conservation and reduced carbon emissions, co-processing technology is a preferable alternative for sound and environmental friendly waste disposal over incinerators & non-scientific methods. It is not only solution to the waste disposal menace, but also reduces burden on secured landfills & TSDFs. Apart from using energy and material value of wastes, co-processing not only fixes the inorganic content of the wastes within the clinker, but also, it destroys the wastes completely due to high temperature and long residence time, avoiding need of further processing as in case of incineration. Trial run identifies wastes suitable for co-processing, source emission monitoring assesses environmental impacts and the quantification of reduced environmental impacts gives a clear picture of actual benefits of co-processing. The results show that the suggested process is efficient, economized and environmental friendly, particularly for a populated country, such as India, as there was no adverse effect on quality of cement, stack emission and air quality of environment due to co-processing of variety of identified wastes in cement kiln. Also, the quantified data of coal saved, CO2 emissions reduced & landfill volume avoided by the waste utilization will help in convincing all the stakeholders that co-processing of waste is the best environmentally sound technology for waste disposal. DOI: http://dx.doi.org/10.5755/j01.erem.69.3.6736

  14. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  15. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  16. Modelling the effect of electrical current flow on the hydration process of cement-based materials

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.; Koenders, E.A.B.

    2014-01-01

    Stray current is essentially an electrical current “leakage” from metal conductors and electrical installations. When it flows through cement-based systems, electrical energy is converted to thermal energy that causes increasing temperature due to Joule heating phenomena. The aim of this paper is to

  17. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, whi

  18. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,Si)N/TiN coatings obtained by the cathodic arc evaporation process

    OpenAIRE

    Leszek A. Dobrzañski; Klaudiusz Golombek

    2005-01-01

    This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,Si)N/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting...

  19. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.

  20. Human-Systems Integration Processes (HSIP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In FY12, this project removed the commercial-specific content from the Commercial Human-Systems Integration Design Processes (CHSIP), identified gaps in the...

  1. Project Management of SAP ERP Implementation Process

    OpenAIRE

    Necas, Josef

    2016-01-01

    This paper‘s aim is primarily to identify and analyze critical success factors of SAP ERP implementation process. Secondary aim is to provide an overall summary of all topics directly related to SAP ERP implementation, including project management. The overall target is to address the issue of the implementation process management. The theoretical part provides an overview of project management concepts as well as the specifics of IS/IT implementation. SAP ERP system is presented. ERP syst...

  2. PROCESSING OF ZIRCONIA AND CALCIUM ALUMINATE CEMENT MIXTURES BY SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Y. L. Bruni

    2015-12-01

    Full Text Available Spark Plasma sintering (SPS was applied for the densification of Calcia stabilized ZrO2 based composites obtained from mixtures of pure zirconia (m-ZrO2 and calcium aluminate cement (HAC. Two commercial powders of pure zirconia were employed as reactants. One of these powders had a coarse mean particle size (d50 = 8 μm and the other was a submicrometer sized power (d50 = 0.44 μm. Several compositions containing different proportions of HAC (5 to 30 mol. % CaO in ZrO2 were sintered by SPS at temperatures between 1200 and 1400ºC under a pressure of 100 MPa during 10 min. The effect of processing conditions on phase composition, densification, microstructure and Vickers hardness of the obtained composites was examined. SPS significantly enhanced the densification in both type of composites (relative density > 93 % as compared to those previously produced by conventional sintering. Composites with low CaO content consisted of mixtures of c-ZrO2, (Ca0.15Zr0.85O1.85, unreacted m-ZrO2 and calcium dialuminate (CaAl4O7 or CA2. The highest hardness was determined for composites sintered at 1400ºC being related to the maximum relative density (~ 99 %. High densification of composites with 30 mol. % CaO composed by similar proportions of CaAl4O7 and c-ZrO2 were obtained even at 1200ºC but led to a slightly lower hardness. In general, the use of the finer m-ZrO2 powder contributed to increase both the c-ZrO2 content and densification of composite sintered at a relatively lower temperature. For these composites, best hardness (Hv near to 10 GPa resulted when the microstructure consisted of a fine grained ZrO2 matrix surrounding the dispersed CaAl4O7 grains instead of large interconnection between grains of both phases existed.

  3. Processing and characterisation of calcium sulphoaluminate (CSA) eco-cements with tailored performances

    OpenAIRE

    García-Maté, Marta

    2014-01-01

    Climate change mitigation usually involves the reduction of greenhouse gases emissions, such as carbon dioxide (CO2). Every tonne of Ordinary Portland Cement (OPC) produces about one tonne of CO2. Consequently, OPC accounts for 5-6% of anthropogenic CO2 emissions and for 4% of total global warming. Due to these environmental problems the industry of building materials is under increasing pressure to reduce the energy used in the production of OPC and the greenhouse gas emissions. Hence, t...

  4. A nanoscale study of dissolution and growth processes in cement hydrates

    OpenAIRE

    Rheinheimer, Vanessa

    2012-01-01

    This thesis aims at providing new knowledge on the, otherwise poorly known, molecular-scale mechanisms that operate during hydration of cement phases and dissolution of their hydrates. In order to pursue this objective, a novel approach has been followed, including the development of a new procedure to synthesize thin films of calcium silicates, real time characterization of grain growth and dissolution with liquid-cell atomic force microscopy, and monitoring of their chemical evolution by X-...

  5. Recycling of water from manufacturing of asbestos/cement panels and pipes. Monograph; Fabrication de panneaux et tuyaux en amiante-ciment avec recyclage des eaux de process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-15

    The company manufactures asbestos-cement panels and pipes and recycles the water used in the process. The asbestos and the cement are mixed in water. The resulting mixture is placed on a cloth rolling at high speed, is drained and forms a thin layer that serves as a base for the panels and pipes. The water drained off in both processes is decanted twice. The residue from the first decanting is recycled; that from the second is also recycled in the low pollution process, while it is discharged in the standard process.

  6. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.

    Science.gov (United States)

    Legrand, A P; Sfihi, H; Lequeux, N; Lemaître, J

    2009-10-01

    The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca(3)(PO(4))(2), beta-TCP] and monocalcium phosphate monohydrate [Ca(H(2)PO(4))(2).H(2)O, MCPM] in presence of water, with formation of dicalcium phosphate dihydrate or brushite [CaHPO(2).2H(2)O, DCPD]. Analysis of the initial beta-TCP paste has shown the presence of beta-calcium pyrophosphate [Ca(2)P(2)O(7), beta-CPy] and that of the initial MCPM a mixture of MCPM and dicalcium phosphate [CaHPO(4), DCP]. Follow-up of the chemical composition by (31)P Solid-State NMR enables to show that the chemical setting process appeared to reach an end after 20 min. The constant composition observed at the end of the process was similarly determined.

  7. A risk management process for complex projects

    OpenAIRE

    Brown, Robert G

    1995-01-01

    A more effective and efficient method to identify, assess, track and document project risks was explored. Using the systems engineering approach, an adaptable, repeatable risk management process was designed for complex projects (typically multi-million dollar electronics I defense contracts with advanced technology, aggressive schedules and multiple contractors I subcontractors). Structured tools and techniques were synthesized to increase the probability of risk identification, to facili...

  8. PROJECT INITIATION PROCESS AND SUSTAINABLE DEVELOPMENT

    OpenAIRE

    Victoria Cupet

    2012-01-01

    Increasing interest in the topic of sustainable development is observable in business context (Porter & Kramer, 2011). The necessity to integrate sustainability principles into core processes of a company to receive performance benefits are widely discussed (Wagner 2007). During the last years increasing attention on the consideration of sustainability principles in projects was provided in the research as well as practice community. Projects strongly contribute to value creation in companies...

  9. Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash

    OpenAIRE

    Zornoza, E.; Catalá, G.; Jiménez, F.; Andión, L. Gª; Garcés, P.

    2010-01-01

    The study described in this article explored the effect of adding different types of carbon materials (graphite powder and three types of carbon fibre), fly ash (with 5.6%, 15.9% and 24.3% Fe2O3), and a mix of both on electromagnetic interference (EMI) shielding in Portland cement pastes. The parameters studied included the type and aspect ratio of the carbonic material, composite material thickness, the frequency of the incident electromagnetic r...

  10. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    International Nuclear Information System (INIS)

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (4) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Conducting bench-scale tests to produce coke and acceptable tar from the process to satisfy Koppers, a prospective stakeholder; Consolidation of the project team players to execute the full size commercial cokemaking reactor demonstration; and Progress made in advancing the design of the full size commercial cokemaking reactor

  11. Accumulating project management knowledge through process theory

    NARCIS (Netherlands)

    Niederman, Fred; March, Salvatore T.; Mueller, Benjamin

    2014-01-01

    This paper describes how the general notion of process theory can provide a foundational component in a portfolio of project management theories. The paper begins by outlining a variety of views pertaining to the nature of theory and theory development. This forms a basis for understanding how theor

  12. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    OpenAIRE

    Nediljka Gaurina-Međimurec; Davorin Matanović; Gracijan Krklec

    1994-01-01

    During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures) and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production...

  13. Dust occurring in the processing of asbestos cement as complex mixture of toxic agents

    Energy Technology Data Exchange (ETDEWEB)

    Roedelsperger, K.; Manke, J.; Brueckel, B.; Knecht, U.; Woitowitz, H.J.

    1982-10-01

    In a study on construction sites in Hessen asbestos cement fine and total dust mass concentrations were measured on 89 construction sites by static and personal sampling. For craftsmen themselves cutting with the grinding machine the mean fine dust mass concentration amounts to 1,8 mg/m/sup 3/ during roof coverings with corrugated sheets, 1,3 mg/m/sup 3/ during siding work, 2,8 mg/m/sup 3/ during installation of ventilation shafts and 1,8 mg/m/sup 3/ during installation of pipes. During fire insulation 1,5 mg/m/sup 3/ were reached without the grinding machine. The analysis of harmful components was performed by infrared spectroscopy, analytical electron microscopy and atomic absorption spectroscopy. Asbestos fine dust mass concentration above the limit value (TRK) especially resulted from personal sampling during the use of the grinding machine and from operation within doors.

  14. A RISK MANAGEMENT APPROACH FOR THE PROJECT MANAGEMENT PROCESS

    OpenAIRE

    D.K. Kohlmeyer; J.K. Visser

    2012-01-01

    ENGLISH ABSTRACT: A number of project management and project risk management processes have been developed by various researchers, consultants and project managers. Most project managers apply some project management process that comprises a number of steps or phases that are executed in a systematic way. At some point in the project management process a risk management process, also comprising a number of steps, is usually initiated and executed. An initial risk analysis process is ...

  15. Analysing the effect of DSM projects at South African cement factories / Johannes Paulus Spangenberg

    OpenAIRE

    Spangenberg, Johannes Paulus

    2015-01-01

    In any developing country an increasingly higher demand for electricity supply exists. South Africa experienced load shedding during late 2007 and early 2008 and again in 2014 due to a supply shortfall. New power stations are being built to increase the capacity of the national power grid. However this is a lengthy process. Demand Side Management (DSM) was adopted by Eskom’s Integrated Demand Management (IDM) division. DSM is a short-term solution to stabilise the national grid in South Af...

  16. Itataia project - Development of the process

    International Nuclear Information System (INIS)

    The phosphoro-uraniferous ore body of Itataia/Ceara is located 170 Km far from Fortaleza and has resources of 142,000 t U3O8 and 14 000 000 t P2O5. NUCLEBRAS studied and developed processes for the ore treatment at 'Centro de Desenvolvimento da Tecnologia Nuclear-CDTN' and established conditions for process flowsheets to recover uranium (as a concentrate) and phosphoric acid. The developed processes include: physical concentration, leaching and solvent extraction. Laboratory and pilot plant investigation showed that the percentage recovery obtained guarantees the technical-economic feasibility of the project. (Author)

  17. Cement Kiln Process Control Methods%水泥窑头工艺控制方法研究

    Institute of Scientific and Technical Information of China (English)

    刘冰; 何云霄

    2014-01-01

    本文介绍了系统对水泥窑头生产线的组态方法,它使用西门子新型全集成控制系统PCS7,重点分析了关键工艺参数---入窑的二次风量,及其控制要求和影响因素,并提出了它的控制方法。%This paper describes the system configuration method for cement kiln production line that using Siemens new fully integrated control system PCS7, mainly analyzes the critical process parameter- secondary air volume when entering the kiln, the control requirements and influencing factors, and proposes control methods.

  18. Effect of temperature on the hydration process and strength development in blends of Portland cement and activated coal gangue or fly ash

    Institute of Scientific and Technical Information of China (English)

    Pei-ming WANG; Xian-ping LIU

    2011-01-01

    This paper describes the results of an investigation into the effect of the variation of curing temperatures between 0 and 60 ℃ on the hydration process,pore structure variation,and compressive strength development of activated coal gangue-cement blend (ACGC).Hardened ACGC pastes cured for hydration periods from 1 to 360 d were examined using the non-evaporable water method,thermal analysis,mercury intrusion porosimetry,and mechanical testing.To evaluate the specific effect of activated coal gangue (ACG) as a supplementary cementing material (SCM),a fly ash-cement blend (FAC) was used as a control.Results show that raising the curing temperature accelerates pozzolanic reactions involving the SCMs,increasing the degree of hydration of the cement blends,and hence increasing the rate of improvement in strength.The effect of curing temperature on FAC is greater than that on ACGC.The pore structure of the hardened cement paste is improved by increasing the curing temperature up to 40 ℃,but when the curing temperature reaches 60 ℃,the changing nature of the pore structure leads to a decrease in strength.The correlation between compressive strength and the degree of hydration and porosity is linear in nature.

  19. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    Energy Technology Data Exchange (ETDEWEB)

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E., E-mail: robin.beddoe@tum.de

    2015-08-15

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone between the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.

  20. Calderon cokemaking process/demonstration project

    International Nuclear Information System (INIS)

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (iv) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Consolidation of the project team-players; Recruiting Koppers Industries as an additional stakeholder; Developing a closed system for the production of binder pitch from tar in the Calderon coking process as the incentive for Koppers to join the team; Gathering appropriate equipment for conducting a set of experiments at bench scale to simulate tar quality produced from the Calderon coking process for the production of binder pitch; and Further progress made in the design of the commercial coking reactor

  1. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Albert Calderon

    1998-04-08

    This project deals with the demonstration of a coking reactor (Process Development Unit-- PDU-11) using Calderon's proprietary technology for making commercially acceptable coke. The activities of the past quarter were focused on the following: 1. Testing and Designing of the Submerged Quenching Closed System for the Process; 2. Usage of the Cracked Desulfurized Gas as a Reducing Gas to Make Directly Reduced Iron (DRI) in Order to Make the Process Economics Viable; 3. Changes in the Ceramic Liners for Supporting Them in the Coking Reactor; 4. Work Towards Testing of U.S. Steel's Coal in the Existing Process Development Unit in Alliance (PDU-1); 5. Permitting.

  2. Manufacture and properties of fluoride cement

    Science.gov (United States)

    Malata-Chirwa, Charles David

    process. It was observed in the laboratory simulated production of fluoride cement, that the clinkering temperature is much lower (around 1 170 °C) compared to that for the production of ordinary Portland cement. The other observed differences were attributed to the different mineralogical composition as a result of fluoride incorporation into the cement. While fluorine content is very minimal in fluoride cement, not more than 2 %, the resulting cementitious products are altered significantly as was observed from the study. Part of the experimental results has been used as reference material in the preparation of a draft Malawi Standard on fluoride cement. This draft standard will be submitted to the Malawi Bureau of Standards for further processing before it can be officially endorsed as a Malawi Standard.

  3. CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT

    International Nuclear Information System (INIS)

    This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (4) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Consolidation of the team of stakeholders; Move the site for the commercial demonstration to LTV Steel, Cleveland, Ohio; Permitting for new site; Site specific engineering; Cost update of the project as it relates to the Cleveland location; FETC update; DCAA audit; and Updated endorsement of Calderon process by Ohio EPA and U.S. EPA, Region 5

  4. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    Energy Technology Data Exchange (ETDEWEB)

    2005-11-01

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  5. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  6. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  7. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    Science.gov (United States)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  8. Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash

    Directory of Open Access Journals (Sweden)

    Zornoza, E.

    2010-12-01

    Full Text Available The study described in this article explored the effect of adding different types of carbon materials (graphite powder and three types of carbon fibre, fly ash (with 5.6%, 15.9% and 24.3% Fe2O3, and a mix of both on electromagnetic interference (EMI shielding in Portland cement pastes. The parameters studied included the type and aspect ratio of the carbonic material, composite material thickness, the frequency of the incident electromagnetic radiation and the percentage of the magnetic fraction in the fly ash. The findings showed that the polyacrylonitrile-based carbon fibres, which had the highest aspect ratio, provided more effective shielding than any of the other carbon materials studied. Shielding was more effective in thicker specimens and at higher radiation frequencies. Raising the magnetic fraction of the fly ash, in turn, also enhanced paste shielding performance. Finally, adding both carbon fibre and fly ash to the paste resulted in the most effective EMI shielding as a result of the synergies generated.

    En el presente trabajo se investiga la influencia de la adición de diferentes tipos de materiales carbonosos (polvo de grafito y 3 tipos de fibra de carbono, de una ceniza volante con diferentes contenidos de fase magnética (5,6%, 15,9% y 24,3% de Fe2O3 y de una mezcla de ambos, sobre la capacidad de apantallar interferencias electromagnéticas de pastas de cemento Pórtland. Entre los parámetros estudiados se encuentra: el tipo de material carbonoso, la relación de aspecto del material carbonoso, el espesor del material compuesto, la frecuencia de la radiación electromagnética incidente y el porcentaje de fracción magnética en la ceniza volante. Los resultados obtenidos indican que entre los materiales carbonosos estudiados son las fibras de carbono basadas en poliacrilonitrilo con una mayor relación de aspecto las que dan mejores resultados de apantallamiento. Al aumentar

  9. The cement recycling of the earthquake disaster debris by Hachinohe Cement Co., Ltd

    International Nuclear Information System (INIS)

    A tremendous quantity of earthquake disaster debris and tsunami sediment was resulted by the Great East Japan Earthquake on March 11, 2011. Hachinohe Cement Co., Ltd., a Sumitomo Osaka Cement subsidiary, was the first cement industry company to receive and process such waste materials outside of their usual prefecture area, while the company is performing their treatment and recycling services locally in Hachinohe City and Aomori Prefecture. This report provides an explanation about the recycling mechanism of waste materials and by-products in cement manufacturing process, and introduces an example of actual achievements for the disaster debris treatment by utilizing the cement recycling technologies at the Hachinohe Cement Plant. (author)

  10. Kiln process impact of alternative solid fuel combustion in the cement kiln main burner - Mathematical modelling and full-scale experiment

    OpenAIRE

    Ariyaratne, Hiromi Wijesinghe; Melaaen, Morten Christian; Tokheim, Lars André; Manjula, Edirisinghe V. P. J.

    2014-01-01

    Increased use of alternative fuels in cement kilns is a trend in the world. However, replacing fossil fuels like coal with different alternative fuels will give various impacts on the overall kiln process due to the fuel characteristics. Hence, it is important to know to what extent the fossil fuels can be replaced by different alternative fuels without severely changing process conditions, product quality or emissions. In the present study, a mass and energy balance for the combustion of dif...

  11. Managing Software Development Projects, The Project Management Process

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2011-07-01

    Full Text Available Software development projects are logically divided into phases that are composing the project life cycle. The name and number of these phases are industry dependent, so they are completely different from one field of activity to another. Typically, the phases are scheduled sequentially but in some cases a project may take clear advantages by running the phases concurrently.

  12. Process for capturing CO2 arising from the calcination of the CaCO3 used in cement manufacture.

    Science.gov (United States)

    Rodríguez, N; Alonso, M; Grasa, G; Abanades, J Carlos

    2008-09-15

    This paper outlines a new CaCO3 calcination method for producing a stream of CO2 (suitable for permanent geological storage after purification and compression). The process is based on the use of very hot CaO particles (T >1000 degrees C) to transfer heat from a circulating fluidized bed combustor (CFBC) to a calciner (fluidized with CO2 and/or steam). Since the fluidized bed combustor and calciner have separate atmospheres, the CO2 resulting from the decomposition of CaCO3 can be captured, while the CO2 generated in the combustion of the fuel in air is emitted to the atmosphere. We demonstrate that with this system it is possible to reduce the CO2 emissions of a cement plant by around 60%. Furthermore, since the key pieces of equipment are similar to the commercial CFBCs used in power generation plants, it is possible to establish the additional investment required for the system and to estimate the cost per ton of CO2 avoided for this process to be about 19 $/tCO2 avoided. PMID:18853819

  13. Process for capturing CO2 arising from the calcination of the CaCO3 used in cement manufacture.

    Science.gov (United States)

    Rodríguez, N; Alonso, M; Grasa, G; Abanades, J Carlos

    2008-09-15

    This paper outlines a new CaCO3 calcination method for producing a stream of CO2 (suitable for permanent geological storage after purification and compression). The process is based on the use of very hot CaO particles (T >1000 degrees C) to transfer heat from a circulating fluidized bed combustor (CFBC) to a calciner (fluidized with CO2 and/or steam). Since the fluidized bed combustor and calciner have separate atmospheres, the CO2 resulting from the decomposition of CaCO3 can be captured, while the CO2 generated in the combustion of the fuel in air is emitted to the atmosphere. We demonstrate that with this system it is possible to reduce the CO2 emissions of a cement plant by around 60%. Furthermore, since the key pieces of equipment are similar to the commercial CFBCs used in power generation plants, it is possible to establish the additional investment required for the system and to estimate the cost per ton of CO2 avoided for this process to be about 19 $/tCO2 avoided.

  14. Laboratory studies on the longevity of cement grouts

    International Nuclear Information System (INIS)

    This paper describes laboratory studies of the longevity of cement-based grouts being carried out as part of the International Stripa Project Phase III. The longevity properties determined for a reference grout (90% Sulphate Resistant Portland Cement, 10% silica fume, 0.4< water/cement<0.6 and superplasticizer) are compared with those of a slag cement grout. Laboratory tests have been carried out to determine the following: the mechanistic function of superplasticizer in fresh cement pastes; the leachability of the sorbed superplasticizer and its location in the structure of hardened cement paste; and the general leaching properties of selected cement-based grouts

  15. IV&V Project Assessment Process Validation

    Science.gov (United States)

    Driskell, Stephen

    2012-01-01

    The Space Launch System (SLS) will launch NASA's Multi-Purpose Crew Vehicle (MPCV). This launch vehicle will provide American launch capability for human exploration and travelling beyond Earth orbit. SLS is designed to be flexible for crew or cargo missions. The first test flight is scheduled for December 2017. The SLS SRR/SDR provided insight into the project development life cycle. NASA IV&V ran the standard Risk Based Assessment and Portfolio Based Risk Assessment to identify analysis tasking for the SLS program. This presentation examines the SLS System Requirements Review/System Definition Review (SRR/SDR), IV&V findings for IV&V process validation correlation to/from the selected IV&V tasking and capabilities. It also provides a reusable IEEE 1012 scorecard for programmatic completeness across the software development life cycle.

  16. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  17. Technological, economic and financial prospects of carbon dioxide capture in the cement industry

    International Nuclear Information System (INIS)

    Cement is the second largest anthropogenic emission source, contributing approximately 7% of global CO2 emissions. Carbon dioxide capture and storage (CCS) technology is considered by the International Energy Agency (IEA) as an essential technology capable of reducing CO2 emissions in the cement sector by 56% by 2050. The study compares CO2 capture technologies for the cement manufacturing process and analyses the economic and financial issues in deploying CO2 capture in the cement industry. Post-combustion capture with chemical absorption is regarded as a proven technology to capture CO2 from the calcination process. Oxyfuel is less mature but Oxyfuel partial capture—which only recycles O2/CO2 gas in the precalciner—is estimated to be more economic than post-combustion capture. Carbonate looping technologies are not yet commercial, but they have theoretical advantages in terms of energy consumption. In contrast with coal-fired power plants, CO2 capture in the cement industry benefits from a higher concentration of CO2 in the flue gas, but the benefit is offset by higher SOx and NOx levels and the smaller scale of emissions from each plant. Concerning the prospects for financing cement plant CO2 capture, large cement manufacturers on average have a higher ROE (return on equity) and lower debt ratio, thus a higher discount rate should be considered for the cost analysis than in power plants. IEA estimates that the incremental cost for deploying CCS to decarbonise the global cement sector is in the range US$350–840 billion. The cost estimates for deploying state-of-the art post-combustion CO2 capture technologies in cement plants are above $60 to avoid each tonne of CO2 emissions. However, the expectation is that the current market can only provide a minority of financial support for CO2 capture in cement plants. Public financial support and/or CO2 utilisation will be essential to trigger large-scale CCS demonstration projects in the cement industry

  18. Krsko periodic safety review project prioritization process

    International Nuclear Information System (INIS)

    Definition of a Krsko Periodic Safety Review (PSR) project is a comprehensive safety review of a plant after last ten years of operation. The objective is a verification by means of a comprehensive review using current methods that Krsko NPP remains safety when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. This objective encompasses the three main criteria or goals: confirmation that the plant is as safe as originally intended, determination if there are any structures, systems or components that could limit the life of the plant in the foreseeable future, and comparison the plant against modern safety standards and to identify where improvements would be beneficial at justifiable cost. Krsko PSR project is structured in the three phases: Phase 1: Preparation of Detailed 10-years PSR Program, Phase 2: Performing of 10-years PSR Program and preparing of associated documents (2001-2003), and Phase 3: Implementation of the prioritized compensatory measures and modifications (development of associated EEAR, DMP, etc.) after agreement with the SNSA on the design, procedures and time-scales (2004-2008). This paper presents the NEK PSR results of work performed under Phase 2 focused on the ranking of safety issues and prioritization of corrective measures needed for establishing an efficient action plan. Safety issues were identified in Phase 2 during the following review processes: Periodic Safety Review (PSR) task; Krsko NPP Regulatory Compliance Program (RCP) review; Westinghouse Owner Group (WOG) catalog items screening/review; SNSA recommendations (including IAEA RAMP mission suggestions/recommendations).(author)

  19. Thoughts on the Current Cement Industry Development

    Institute of Scientific and Technical Information of China (English)

    Gan Zhihe

    2003-01-01

    According to the analysis of cement capacity andits relations with macro economy running index, the mainreasons for the present rapid development of cement capacityare the rapid development of economy and the shot up ofwhole society fixed asset investment. According to the presentspeed of economy development, cement still enjoys a po-tential increase, So here has not been an overall excessivepopularity of cement industry. The best way to prevent lowlevel repeated construction is to promote the development ofnew dry- process cement as well as try to get rid of blindness.

  20. The application of soft sensors in the pulp and paper and cement manufacturing sectors for process and energy performance improvement : opportunity analysis and technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, M. [Effective Assets Inc., Ottawa, ON (Canada); Amazouz, M.; Platon, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2005-06-01

    Information from process experts and operators, research and development experts and sensors and control systems developers and providers is presented in order to help with the development and implementation of soft sensor technology. A soft sensor is the correlation from various raw data sources to create a new source of relevant information. Soft sensor technology is a useful tool in reducing energy consumption, operating costs, environmental impact and in improving final product quality. This report presents an introduction to soft sensor technology with reference to the need for soft sensors; first principal models; statistical based models; black box models; key success factors for a soft sensor project; benefits and drawbacks of soft sensor technology; and barriers to implementation of soft sensors. It discusses the state of the art in soft sensor research and development and industrial applications including design techniques and commercial software tools. Potential applications of soft sensors in the pulp and paper industry were discussed with reference to chemical pulping; mechanical pulping; newsprint and papermaking; and current applications of sensors in pulp and paper in Canada. Potential applications of soft sensors in the cement industry were also discussed. A survey was also conducted to obtain the opinions of industry experts, such as developers, suppliers and end-users of soft sensor applications. Interview notes were included in annex form. Key areas of future research and development include development of multi-grade models; development of adaptive models able to cope with production changes and shutdowns; increasing the awareness of plant managers and operators; development of user-friendly software; and recommendations on future work. 26 refs., 3 tabs., 6 figs., 2 appendices.

  1. PRINCIPLES OF RE-ENGINEERING METHODOLOGY FOR TECHNOLOGICAL PROCESS IN PROCESSING OF RAW MATERIAL COMPONENTS WHILE PRODUCING CEMENT AND SILICATE PRODUCTS

    Directory of Open Access Journals (Sweden)

    I. A. Busel

    2014-01-01

    necessity to modernize technological equipment used for grinding raw material components with the purpose to improve efficiency and quality, power- and resource saving. The possibility of using various grinding aids that permit to increase grinding productivity is shown in the paper. The paper studies an automation concept of the control system which used for grinding process of mineral raw material. A conceptual model for complexation of various methods grinding aids has been proposed in the paper. The paper presents methodological principles for simulation of technological process used for processing of mineral raw material while producing cement and silicate products. The parameters which are to be controlled and which are necessary for development of computer simulations of technological grinding process have been determined in the paper. The paper justifies an application of imitation simulation for creation of computer models. Methodology for imitation simulation of the technological process has been studied in the paper. The paper confirms the possibility to use analytical and probability methods. Imitation simulations of a grinding mill operation have been developed on the basis of experimental data and probability functions. The possibility of controlling technological process of raw material grinding has been demonstrated in the paper.While implementing the proposed complex of organizational and technical recommendations it is possible to increase grinding productivity up to 30-50 % and significantly reduce и существенно снизить energy consumption for mineral raw material grinding during production of cement and silicate products. The combined reengineering methodology for grinding process including all the mentioned intensification methods substantially increases quality of final products and reduces its self-cost that will favour its compatibility and attractiveness for consumers.

  2. The Added Value of the Project Selection Process

    Directory of Open Access Journals (Sweden)

    Adel Oueslati

    2016-06-01

    Full Text Available The project selection process comes in the first stage of the overall project management life cycle. It does have a very important impact on organization success. The present paper provides defi nitions of the basic concepts and tools related to the project selection process. It aims to stress the added value of this process for the entire organization success. The mastery of the project selection process is the right way for any organization to ensure that it will do the right project with the right resources at the right time and within the right priorities

  3. Adapting benchmarking to project management : an analysis of project management processes, metrics, and benchmarking process models

    OpenAIRE

    Emhjellen, Kjetil

    1997-01-01

    Since the first publication on benchmarking in 1989 by Robert C. Camp of “Benchmarking: The search for Industry Best Practices that Lead to Superior Performance”, the improvement technique benchmarking has been established as an important tool in the process focused manufacturing or production environment. The use of benchmarking has expanded to other types of industry. Benchmarking has past the doorstep and is now in early trials in the project and construction environment....

  4. Risk management and post project evaluation processes for research and development projects

    OpenAIRE

    Altuğ, Sema Nur; Altug, Sema Nur

    2002-01-01

    Project risk management has become a popular subject in the last decade, in parallel with the developments in the field of project management to adopt to the uncertain and changing environment. Risk management is the systematic process of identifying, analyzing, andresponding to project risk. Successful project risk management will greatly improve theprobability of project success. It is necessary to learn from risk management activities, for obtaining improvements in the project management p...

  5. MANAGING PROJECT UNCERTAINTY BY USING AN ENHANCED RISK MANAGEMENT PROCESS

    OpenAIRE

    Olsson, Rolf

    2006-01-01

    An increasing number of companies are focusing their efforts on project management. Project management is frequently used as an enabler for meeting an uncertain and turbulent environment. Consequently, the overall effectiveness of the project management process is essential for long-term profitability. The aim and final effects of project management are to predict the outcome, i.e. cost, time and quality. However, uncertainty is inherent in the objectives of the project itself, as we use assu...

  6. Hovercraft Project Teaches Design and Testing Processes

    Science.gov (United States)

    Keesling, Daryl

    2011-01-01

    Building hovercraft has proven very popular with the author's engineering students at Knightstown Community High School. The activity uses inexpensive, readily available materials: foam board, a pop-up water bottle cap, a balloon, and hot glue. In this article, the author describes the hovercraft project and how the project provides excellent…

  7. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  8. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J

    2003-06-12

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R&D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities.

  9. Process development status report for advanced manufacturing projects

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  10. Revision stapes surgery for lysis of the long process of the incus: comparing hydroxyapatite bone cement versus malleovestibulopexy and total ossicular replacement prosthesis.

    Science.gov (United States)

    Pitiot, Vincent; Hermann, Ruben; Tringali, Stéphane; Dubreuil, Christian; Truy, Eric

    2016-09-01

    The objective of the study was to report audiological results in revision stapes surgery, comparing hydroxyapatite (HAP) bone cement, malleovestibular (MV) prosthesis, and total ossicular replacement prosthesis (TORP). The study is a retrospective case review conducted in a tertiary referral center. Patients treated for revision stapes surgery from 2010 to 2014, where a lysis of the long process of the incus (LPI) was observed with the use of HAP bone cement, MV prosthesis, or a TORP were included in the study. The main outcomes measured were pre- and postoperative bone conduction (BC) and air conduction (AC) pure-tone averages (PTA) (0.5, 1, 2, 3 kHz), including high frequencies BC (HFBC) (1, 2, 3, 4 kHz) and air-bone gap (ABG). 107 revision stapes surgery were performed in 96 ears. Main cause of failure was LPI lysis in 38 cases (39.6 %). 31 patients were analyzed: HAP bone cement was used in 11 patients (Group I), MV prosthesis in ten patients (Group II), and TORP in ten patients (Group III). The mean post-operative ABG was 10.7 dB (±7.4) (p = 0.003), 10.7 dB (±8.8) (p = 0.001), and 16.9 dB (±9.8) (p = 0.001), respectively. There were no significant differences between groups. In Group I, the mean change in HFBC revealed an improvement of 5.6 dB (±7.9) (p = 0.03), while in Group III there was a significant deterioration of the thresholds of 5.8 dB (±7.6) (p = 0.04). There were no cases of post-operative anacusis. In revision stapes surgery when LPI is eroded, we recommend to perform a cement ossiculoplasty for stabilizing a standard Teflon piston when LPI is still usable, the LPI lengthening with cement being not recommended. When LPI is too eroded, we prefer performing a malleovestibulopexy, and reserve TORP for cases with a bad anatomical presentation. PMID:26690574

  11. Process competencies in a problem and project based learning environment

    DEFF Research Database (Denmark)

    Du, Xiangyun; Kolmos, Anette

    2006-01-01

    Future engineers are not only required to master technological competencies concerning solving problems, producing and innovating technology, they are also expected to have capabilities of cooperation, communication, and project management in diverse social context, which are referred to as process...... with the expected professional competencies. Based on the educational practice of PBL Aalborg Model, which is characterized by problem-orientation, project-organization and team work, this paper examines the process of developing process competencies through studying engineering in a PBL environment from...... process competencies through doing problem and project based work in teams? 2) How do students perceive their achievement of these process competencies?...

  12. Teaching an advanced processing course with hands-on projects

    OpenAIRE

    Simar, Aude; International Conference on Materials Education

    2015-01-01

    The present work discusses an advanced processing course with 10 magisterial courses (2h each) where theoretical aspects are covered and three hands-on projects. This advanced manufacturing course follows a basic course reviewing all manufacturing technologies. The courses concern process selection, advanced machining and additive manufacturing. To each of these topics a project is associated where the use of computer technologies for manufacturing is emphasized. The process selection process...

  13. Project Communication in Functions, Process and Project-Oriented Industiral Companies

    Science.gov (United States)

    Samáková, Jana; Koltnerová, Kristína; Rybanský, Rudolf

    2012-12-01

    The article is focused on the project communication management. Industrial enterprises, which use project management must constantly search the new ways for improving. One of the possibilities is the change of management from a functional oriented to the projectoriented or process-oriented. Process-oriented and project-oriented companies have better project communication management during the all project life cycle. Communication in the project is a very important factor. According to the arguments of several authors, one of the biggest problem is that threaten the success of the project is just the communication. In each project is an important pillar - and that is communication. Only on the base of communication can the project move forward and achieve the target.

  14. Process Acceptance and Adoption by IT Software Project Practitioners

    Science.gov (United States)

    Guardado, Deana R.

    2012-01-01

    This study addresses the question of what factors determine acceptance and adoption of processes in the context of Information Technology (IT) software development projects. This specific context was selected because processes required for managing software development projects are less prescriptive than in other, more straightforward, IT…

  15. A Course in Project Evaluation in the Chemical Process Industries.

    Science.gov (United States)

    Valle-Riestra, J. Frank

    1983-01-01

    Describes a course designed to expose neophytes to methodology used in chemical process industries to evaluate commercial feasibility of proposed projects. Previously acquired disciplines are integrated to facilitate process synthesis, gain appreciation of nature of industrial projects and industrial viewpoint in managing them, and to become adept…

  16. INTRODUCTION OF PROJECT MANAGEMENT FOR A SMALL PROCESSING MANUFACTURE

    OpenAIRE

    РЕЗЕР А.В.

    2014-01-01

    This article presents the major problems of small processing plants, and presents a solution of these problems through the introduction of project management. This article will include the phased implementation of the scheme of project management in a small processing plant.

  17. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for...

  18. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  19. Software Defined Common Processing System (SDCPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Coherent Logix, Incorporated proposes the Software Defined Common Processing System (SDCPS) program to facilitate the development of a Software Defined Radio...

  20. Software Defined Common Processing System (SDCPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Coherent Logix, Incorporated (CLX) proposes the development of a Software Defined Common Processing System (SDCPS) that leverages the inherent advantages of an...

  1. Tympanoplasty with ionomeric cement.

    Science.gov (United States)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  2. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  3. The Use of Project Time Management Processes and the Schedule Performance of Construction Projects in Mexico

    Directory of Open Access Journals (Sweden)

    Rómel G. Solís-Carcaño

    2015-01-01

    Full Text Available Delays have been frequently reported as the cause of several conflicts that affect the different parties involved in construction projects. Project Time Management (PTM includes a number of planning and controlling processes that are recommended for complying with requirements related to project time. The study reported in this paper aimed at assessing the use of PTM processes and its relation with project schedule performance (i.e., timely completion. Seven PTM processes and seventy-seven tasks associated with them were identified from the literature that is globally relevant to project management. The study included the assessment of fourteen school construction projects executed by a public agency in the Yucatan Peninsula, Mexico. These projects were monitored during the construction phase in order to measure two different variables: the use of processes related to PTM (i.e., schedule planning and controlling processes and the project schedule performance. For each of these projects a Use Index was obtained for assessing the first variable, while the Schedule Performance Index and the Schedule Variance were computed to assess the second one. The results demonstrated there is statistical dependence between these two variables. Most of the projects that attained timely completion also made a greater use of the PTM processes.

  4. Software Project Management A Process-Driven Approach

    CERN Document Server

    Ahmed, Ashfaque

    2011-01-01

    To build reliable, industry-applicable software products, large-scale software project groups must continuously improve software engineering processes to increase product quality, facilitate cost reductions, and adhere to tight schedules. Emphasizing the critical components of successful large-scale software projects, Software Project Management: A Process-Driven Approach discusses human resources, software engineering, and technology to a level that exceeds most university-level courses on the subject. The book is organized into five parts. Part I defines project management with information o

  5. Mieruka project on the science communication process

    Science.gov (United States)

    Sugiyama, Tooru; Takahashi, Keiko; Application Laboratory Team

    2013-04-01

    Detailed and inner mechanisms of science and technology are the black boxes for people, because the number of topics is too large / wide to understand the mechanisms. Therefore, careful introduction and explanation to stakeholders are necessary when the topics are related with some kinds of assessments. However, it is frequently observed that the assessment statements/results submitted by different associations conflict each other, even though these statements are completely analyzed with the scientific methods. Stakeholders are definitely confused because of these conflicts. One of the reasons of these conflicts is the conditions of the analysis are not clear. Another reason is they use a different model. To overcome these conflicts and confusion, we introduce "Mieruka" project. "Mieruka" is referred as the identifying problems and bringing them to the foreground. Sometimes referred as "visualization" or "Transparency". The procedure will be strongly concerned with the role of the facilitator on the consensus conference. In this presentation, we introduce an outline of this project. In addition to the most important style of the science communication, that is, the face to face communication, we introduce a style using the information and communication technology, in which "bi-directionality" is the key word.

  6. Techniques for managing projects risk in capital budgeting process

    OpenAIRE

    Sinisa Bogdan; Suzana Baresa; Goran Karanovic

    2010-01-01

    The paper examines capital budgeting process and techniques of risk analysis in the process of selecting optimal project. Corporate manager in process of capital budgeting uses numerous techniques some of them are based on intuition and experience of manager, and some of them are analytic based on sensitive, scenario, decision tree and Monte Carlo method. All methods are used to determinate and to predict risk influence on the projects. Article deals with analytical techniques and real proble...

  7. Multicore Rad Hard Processing in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to research and develop a high performance computing/processing platform for NASA space missions. Leveraging our previous work for both NASA...

  8. Closed Loop Waste Processing Dryer (DRYER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a gravity-independent pasteurization and hot air drying process suitable for stabilization of ALS wet cabin waste,...

  9. Cements in radioactive waste management. Characterization requirements of cement products for acceptance and quality assurance purposes

    International Nuclear Information System (INIS)

    Cementitious materials are used as immobilizing matrices for low (LLW) and medium-level wastes (MLW) and are also components of the construction materials in the secondary barriers and the repositories. This report has concerned itself with a critical assessment of the quality assurance aspects of the immobilization and disposal of MLW and LLW cemented wastes. This report has collated the existing knowledge of the use and potential of cementitious materials in radioactive waste immobilization and highlighted the physico-chemical parameters. Subject areas include an assessment of immobilization objectives and cement as a durable material, waste stream and matrix characterization, quality assurance concepts, nature of cement-based systems, chemistry and modelling of cement hydration, role and effect of blending agents, radwaste-cement interaction, assessment of durability, degradative and radiolytic processes in cements and the behaviour of cement-based matrices and their near-field interactions with the environment and the repository conditions

  10. Evaluation of a lime-mediated sewage sludge stabilisation process. Product characterisation and technological validation for its use in the cement industry.

    Science.gov (United States)

    Rodríguez, N Husillos; Granados, R J; Blanco-Varela, M T; Cortina, J L; Martínez-Ramírez, S; Marsal, M; Guillem, M; Puig, J; Fos, C; Larrotcha, E; Flores, J

    2012-03-01

    This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100°C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge. Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500°C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500°C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution.

  11. Incineration process for chlorinated alpha-contaminated wastes: industrial application to the Valduc project

    International Nuclear Information System (INIS)

    The Commissariat a l'Energie Atomique (CEA) has pursued a broad research and development program for a number of years concerning the incineration of chlorinated α-contaminated wastes produced by work in confined atmosphere. This program has now reached the stage where an alternative solution is available to the conventional direct cement embedding method currently used for such wastes. The proposed solution is based on a two-step incineration process offering a significant volume reduction that constitutes a serious economic advantage for geological disposal. Moreover, the process produces ashes of a quality suitable for direct online vitrification, or for Pu recovery by dissolution with silver II. The process was developed under nonradioactive conditions in the IRIS incineration pilot facility operated by the CEA's Fuel Cycle Division (CEA/DCC), opening the way for the first industrial facility, planned for the VALDUC Research Center. USSI is the prime contractor in this 36-month project. The basic design work has now been completed, and the French safety authorities have authorized construction of the incinerator, based in large part on the experience and expertise acquired by the process licenser CEA/DCC. (author). 6 figs., 3 tabs

  12. Cement Formation:A Success Story in a Black Box: High Temperature Phase Formation of Portland Cement Clinker

    OpenAIRE

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten; Dam-Johansen, Kim

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledgeabout the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in ...

  13. The Process to Estimate Economical Benefits of Six Sigma Projects

    Directory of Open Access Journals (Sweden)

    Jan Kosina

    2013-07-01

    Full Text Available This paper seeks to define the process for the continuous evaluation of the financial benefits during Six Sigma project life time. The financial criteria are critical success factors of a Six Sigma project. The process has been developed as part of the six sigma project monitoring in order to estimate proper allocation of the resources taking in account the expected project benefits as well as evaluationof real achievements. The evaluation of the finacial benefits based on the quality costs is not sufficient in the real life and has to be accomplished with key financial performance indicators of the business to visualize the results. The evaluation based on the savings seems to be too difficult especially for green belts. The early involvement of the finance department in the project definition as well as ongoing evaluation is key. The defined process has been applied to real business enviroment.

  14. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    International Nuclear Information System (INIS)

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity

  15. Application of X-ray Computed Tomography in Characterization Microstrueture Changes of Cement Pastes in Carbonation Process

    Institute of Scientific and Technical Information of China (English)

    HAN Jiande; SUN Wei; PAN Ganghua; WANG Caihui; RONG Hui

    2012-01-01

    The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomography (XCT),where three types water-to-cement ratio of 0.53,0.35 and 0.23 were considered.The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software.The mesodefect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis.The 3D meso-defects volume fractions before carbonation were 0.79%,0.38% and 0.05%corresponding to w/c ratio=0.53,0.35 and 0.23,respectively.The 3D meso-defects volume fractions after carbonation were 2.44%,0.91% and 0.14% corresponding to w/c ratio=0.53,0.35 and 0.23,respectively.The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly.At the same time,meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated.

  16. STEP cement: Solar Thermal Electrochemical Production of CaO without CO2 emission.

    Science.gov (United States)

    Licht, Stuart; Wu, Hongjun; Hettige, Chaminda; Wang, Baohui; Asercion, Joseph; Lau, Jason; Stuart, Jessica

    2012-06-18

    New molten salt chemistry allows solar thermal energy to drive calcium oxide production without any carbon dioxide emission. This is accomplished in a one pot synthesis, and at lower projected cost than the existing cement industry process, which after power production, is the largest contributor to anthropogenic greenhouse gas emissions. PMID:22540130

  17. In-Process Monitoring of Additive Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this project is the implementation of an Imaging Fourier Transform Spectrometer (IFTS) for in situ metal additive manufacturing process...

  18. Camera calibration based on the back projection process

    International Nuclear Information System (INIS)

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method. (paper)

  19. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  20. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2005-01-01

    -technical innovation in a situation where the organisational change process and the IS development process are parallel but incongruent. We also argue that iterative software engineering frameworks are well structured to support process interaction. Finally, we advocate that the IS project manager needs to manage......Increasingly, information systems must be developed and implemented as a part of business change. This is a challenge for the IS project manager, since business change and information systems development usually are performed as separate processes. Thus, there is a need to understand and manage...... the relationship between these two kinds of processes. To understand the interaction between information systems development and planned organisational change we introduce the concept of process interaction. We draw on a longitudinal case study of an IS development project that used an iterative and incremental...

  1. The Role of Demonstration Projects in Construction innovation processes

    DEFF Research Database (Denmark)

    Clausen, Lennie

    1999-01-01

    The article is describing the methodology of a case-study approach to the investigation of demonstration projects and their impact on the development of process and product innovations in the construction industry.......The article is describing the methodology of a case-study approach to the investigation of demonstration projects and their impact on the development of process and product innovations in the construction industry....

  2. Risk Factors in ERP Implementation Projects for Process Oriented

    Directory of Open Access Journals (Sweden)

    Andrzej Partyka

    2009-09-01

    Full Text Available This paper present review and analysis of risk factors, which could affect successful implementation of ERP system, for project performed in project oriented organizations. Presented risk breakdown structure and the list of common risk factors, are well-suited for ERP implementation projects. Considered risk categories allow for complex risk analysis. Additionally, mapping of risk importance for particular implementation phases is presented. Making presented model an important input for project risk management process, especially for the beginning phases which require identification of risk factors.

  3. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  4. The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste

    International Nuclear Information System (INIS)

    Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste

  5. A Systematic Approach to Modelling Change Processes in Construction Projects

    Directory of Open Access Journals (Sweden)

    Ibrahim Motawa

    2012-11-01

    Full Text Available Modelling change processes within construction projects isessential to implement changes efficiently. Incomplete informationon the project variables at the early stages of projects leads toinadequate knowledge of future states and imprecision arisingfrom ambiguity in project parameters. This lack of knowledge isconsidered among the main source of changes in construction.Change identification and evaluation, in addition to predictingits impacts on project parameters, can help in minimising thedisruptive effects of changes. This paper presents a systematicapproach to modelling change process within construction projectsthat helps improve change identification and evaluation. Theapproach represents the key decisions required to implementchanges. The requirements of an effective change processare presented first. The variables defined for efficient changeassessment and diagnosis are then presented. Assessmentof construction changes requires an analysis for the projectcharacteristics that lead to change and also analysis of therelationship between the change causes and effects. The paperconcludes that, at the early stages of a project, projects with a highlikelihood of change occurrence should have a control mechanismover the project characteristics that have high influence on theproject. It also concludes, for the relationship between changecauses and effects, the multiple causes of change should bemodelled in a way to enable evaluating the change effects moreaccurately. The proposed approach is the framework for tacklingsuch conclusions and can be used for evaluating change casesdepending on the available information at the early stages ofconstruction projects.

  6. Sunray project - A long-term, nationwide educational process

    International Nuclear Information System (INIS)

    The Sunray project is a nationwide educational process coordinated by the Economic Information Bureau (TaT Group) for ninth graders in Finnish comprehensive schools. The project aims at giving thorough and versatile information on radiation within the framework of various subjects (physics, biology, domestic science, history, European languages, mother tongue, health education etc.). The Sunray project covers all ninth graders of the existing 600 Finnish comprehensive schools; in all involving some 65 000 pupils. The project, which has been repeated five times, was initiated as part of the European Science and Technology week in 1995. During the first two years it was strongly linked with the science week as natural sciences were seen as a good framework for the chosen perspective. Since 1997, the project has been run as an event in its own right. The project has applied the method of processing integrated groups of themes, which is an objective of the comprehensive school system and the experimental method of science. As schools make their own decisions about the educational programmes to be adopted every semester, the project has been marketed to schools at the beginning of May. The TaT Group has arranged marketing events in some 10 localities in Finland. The Economic Information Bureau of Finland coordinates the project and in 1995-2000 the Radiation and Nuclear Safety Authority (STUK), the Finnish Energy Industries' Federation, the Finnish Electricity Association, Fortum Oyj and Teollisuuden Voima Oy have participated in the project

  7. Process simulation and parametric modeling for strategic project management

    CERN Document Server

    Morales, Peter J

    2013-01-01

    Process Simulation and Parametric Modeling for Strategic Project Management will offer CIOs, CTOs and Software Development Managers, IT Graduate Students an introduction to a set of technologies that will help them understand how to better plan software development projects, manage risk and have better insight into the complexities of the software development process.A novel methodology will be introduced that allows a software development manager to better plan and access risks in the early planning of a project.  By providing a better model for early software development estimation and softw

  8. UTILIZATION OF AGARWOOD DISTILLATION WASTE IN OILWELL CEMENT AND ITS EFFECT ON FREE WATER AND POROSITY

    OpenAIRE

    Arina Sauki; Muhammad Hazman Md. Shahid; Ku Halim Ku Hamid; Azlinda Azizi; Siti Khatijah Jamaludin; Tengku Amran Tengku Mohd; Nur Hashimah Alias

    2013-01-01

    The intent of this research is to utilize the waste produced by distillation process of Agarwood oil and convert it into a profitable oilwell cement additive. Common problem during oilwell cementing is free wáter separation. This problem could weaken cement at the top, gas migration problem and non uniform density of cement slurry that are even worst in cementing deviated well. Another concern on cementing design is the porosity of the hardened cement. If the cement is too porous, it can lead...

  9. The effects of the mechanical-chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste.

    Science.gov (United States)

    Chen, Cheng-Gang; Sun, Chang-Jung; Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun

    2013-04-01

    A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium-silicate-hydrates (C-S-H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste. PMID:23375995

  10. Project Interface Requirements Process Including Shuttle Lessons Learned

    Science.gov (United States)

    Bauch, Garland T.

    2010-01-01

    Most failures occur at interfaces between organizations and hardware. Processing interface requirements at the start of a project life cycle will reduce the likelihood of costly interface changes/failures later. This can be done by adding Interface Control Documents (ICDs) to the Project top level drawing tree, providing technical direction to the Projects for interface requirements, and by funding the interface requirements function directly from the Project Manager's office. The interface requirements function within the Project Systems Engineering and Integration (SE&I) Office would work in-line with the project element design engineers early in the life cycle to enhance communications and negotiate technical issues between the elements. This function would work as the technical arm of the Project Manager to help ensure that the Project cost, schedule, and risk objectives can be met during the Life Cycle. Some ICD Lessons Learned during the Space Shuttle Program (SSP) Life Cycle will include the use of hardware interface photos in the ICD, progressive life cycle design certification by analysis, test, & operations experience, assigning interface design engineers to Element Interface (EI) and Project technical panels, and linking interface design drawings with project build drawings

  11. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik;

    2010-01-01

    of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B.......Eng. education, one course is designated the “project” course, which should draw on material learned in parallel courses. In the 6th semester, Process Design is the project course. Process Control and Reaction Engineering are then incorporated into the final plant design project. Specifically, almost all......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...

  12. A new geopolymeric binder from hydrated-carbonated cement

    OpenAIRE

    Paya Bernabeu, Jorge Juan; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Soriano Martinez, Lourdes; Mitsuuchi Tashima, Mauro

    2012-01-01

    This paper evaluates the use of hydrated Portland cement as the raw material in the production of geopolymers. The silicon and aluminium oxides needed for the geopolymerization process were produced by the carbonation of hydrated Portland cement, which transforms CSH and CAH (Portland cement hydrates) into silica and alumina gels. Hydrated-carbonated Portland cement was alkali activated with a NaOH/waterglass solution. Pastes and mortars were prepared, and micro-structural and mechanical prop...

  13. Project INOVEMAR: Innovation in Sea Produce Processment

    Directory of Open Access Journals (Sweden)

    Maria Alberta Araújo

    2014-06-01

    Following information conveyed by Docapesca, the less valued species captured in the region are different mackerel species, Atlantic horse mackerel, pout, octopus and mullet. Mackerel and Atlantic horse mackerel, due to their high subcutaneous fat were used for smoking and for the production of canned smoked fillets and patés, with different sauces.The smoking process included: washing fresh fish, 30 minutes immersion in a 80º brine, followed by dripping and drying for 48h. Smoking was carried out at 70ºC during 3h, with a final stage at 90ºC. Several paté formulations were developed with mackerel and atlantic horse mackerel, with different types and quantities of ingredients and flavourings to obtain different products. Special attention was paid to the amounts of thickeners and emulsifiers to attain a pleasant spread ability. All preparations were sterilized for 15 minutes at 121ºC. A sensory panel with 10 judges and a consumer panel with 59 consumers were used to test the developed products. The 59 consumers (17-25 years of age classified smoked products as moderately pleasant. 82% of the consumers tested expressed willingness to purchase the product. In what concerns patés, sensory judges as well as consumers rated the majority of products as very good in the several parameters under evaluation, indication that there is a great potential for these type of commodities. Several fish species are being studied for pre-cooking conservation. In all the cases studied, typical Portuguese cuisine is being used, followed by rapid chilling and packing with modified atmospheres. Preparations, preservation and subsequent consumption are being carried out at the school's canteen. The results obtained until now show that low commercial valued species can be used with success, providing some culinary expertise is added. This is a very important aspect since, transferring this technology to industry, may lead to the development of new products and help an easy flow of

  14. A project management focused framework for assuring quality work processes

    Energy Technology Data Exchange (ETDEWEB)

    Gamsby, S.O.; Mize, J.D. [Allied Signal, Inc., Albuquerque, NM (United States). Federal Mfg. and Technologies; Reid, R.A. [New Mexico Univ., Albuquerque, NM (United States)

    1996-10-01

    Federal Manufacturing & Technologies/New Mexico (FM&T/NM) of AlliedSignal is an organization of approximately 300 associates providing operations support, engineering, and other technical services for DOE, New Mexico`s National Laboratories, etc. Work performed is primarily project-oriented and ranges from executing a major long-term contract for retrofitting and maintaining a large fleet of escort vehicles to creating a single, small, prototype electronic device for measuring radiation in a unique environment. FM&T/NM is functionally organized and operates in a classic matrix format with functional departments providing personnel with technical expertise, necessary physical resources, and administrative support to several project-based groups. Like most matrix-based organizations that provide support to diverse customers, FM&T/NM has encountered problems that occur when a group of project managers is expected to work together in using and scheduling a shared set of limited resources for the good of the organization as a whole. The framework for managing projects that we present focuses on developing, understanding, and managing the relationships between the functional organization structure, the system of work processes, and the management of projects. FM&T/NM retains its functional structure which primarily assigns personnel to work processes. The evolving role of the process leader focuses primarily on designing, managing, and improving the process, and the interactions among the subprocesses. The project manager is responsible for (1) translating customer requirements into product specifications, (2) determining the sequence of activities needed to meet project goals, (3) scheduling the required work processes, (4) monitoring project progress, (5) providing liaison between the customer and process leaders, and (6) having the desired product and/or service delivered to a satisfied customer in a timely manner.

  15. VCM Process Design: An ABET 2000 Fully Compliant Project

    Science.gov (United States)

    Benyahia, Farid

    2005-01-01

    A long experience in undergraduate vinyl chloride monomer (VCM) process design projects is shared in this paper. The VCM process design is shown to be fully compliant with ABET 2000 criteria by virtue of its abundance in chemical engineering principles, integration of interpersonal and interdisciplinary skills in design, safety, economics, and…

  16. TECHNIQUES FOR MANAGING PROJECTS RISK IN CAPITAL BUDGETING PROCESS

    Directory of Open Access Journals (Sweden)

    Sinisa Bogdan

    2010-12-01

    Full Text Available The paper examines capital budgeting process and techniques of risk analysis in the process of selecting optimal project. Corporate manager in process of capital budgeting uses numerous techniques some of them are based on intuition and experience of manager, and some of them are analytic based on sensitive, scenario, decision tree and Monte Carlo method. All methods are used to determinate and to predict risk influence on the projects. Article deals with analytical techniques and real problems that can arise in capital budgeting process. Trough case study in article we analyzed risks that may emerge from different techniques. Conclusion that emerges from analyzing different methods of risk techniques is that only with right combination of these techniques corporate manager could decide correctly to choose optimal capital project.

  17. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  18. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: A way to reduce CO2 footprint from cement industry

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2016-01-01

    Use of properly calcined kaolinite rich clay (i.e., metakaolin) to offset part of CO2-intensive clinkers not only reduces CO2 footprint from cement industry but also improves the performance of concrete. However, calcination under inappropriately high temperatures or long retention times may...... deplete metakaolin into unwanted products (e.g., mullite), which limits the use of the calcines as a supplementary cementitious material. With this regard, a dynamic model of flash calcination of kaolinite rich clay particles is developed using gPROMS (general PROcess Modeling System) to predict...... the impacts of calcination temperature and residence time on the transformation of the clay particles and to derive a favorable production path that is able to achieve optimum amount of the desired product. Flash calcination tests of the kaolinite rich clay particles are also performed in a pilot-scale gas...

  19. Development Process of an Experience Concept - Project Vintage Hunt System

    OpenAIRE

    Punkari, Susanna

    2015-01-01

    This thesis is implemented as a project oriented process between September 2014 and March 2015. The main idea was to publish a booklet that would assist on advancing the visibility of the growing selection of vintage and second-hand clothing and accessory stores in Helsinki, Finland, while promoting the scene for locals and visitors. But while the project continued and more finalized ideas were generated and compared, the booklet was transformed into a concept serving the same mean, but opera...

  20. Intercultural Judgment Accuracy and the Role of Social Projection Processes

    OpenAIRE

    Mor, Shira; De Toma, Claudia; Schweinsberg, Martin; Ames, Daniel DR

    2015-01-01

    The present research examines intercultural accuracy—people’s ability to make accurate judgments about outgroup values- and the role of social projection processes. Across four studies, Westerners showed overall low levels of intercultural accuracy, yet were more accurate in predicting collectivistic than individualistic values of Chinese. In parallel to the observed effects on accuracy, Westerners projected more on values that are not part of their core cultural values—collectivistic (rather...

  1. Feasibility study on energy conservation through modernization of cement plant (Sichuan Double Horse Cement Group Co. Ltd.)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was conducted of possibilities of energy conservation and greenhouse effect gas emission reduction in the cement production process of Double Horse Cement Co., Mianyang City, Sichuan Province, China. Double Horse Cement adopts the wet type long kiln production system and has a production ability of approximately 1.5 million t/y. In the project, as to three production lines out of the six production lines, improvement was planned to be made of the technologies on the following: mixing of raw materials, grinding of raw materials, NSP, clinker cooler, clinker pre-grinder, high-efficiency separator, waste heat use power generation, etc. As a result of the study, it was found that the energy conservation amount obtained was 54,646 toe/y. And, the amount of greenhouse effect gas reduction was 169,086 t-CO2/y. The total fund required for this project was approximately 5.553 billion yen and the internal earning rate was 7.36% after tax. When the project is carried out, expenses vs. effects are 9.8 toe/million yen in energy conservation amount and 30.4 t-CO2/million yen in greenhouse effect gas reduction. (NEDO)

  2. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  3. Isothermal Calorimetry Study of Blended Cements and its Application in Numerical Simulations

    NARCIS (Netherlands)

    Xiong, X.; Van Breugel, K.

    2001-01-01

    Apparent activation energy (E) is generally used to consider the effect of temperature on the kinetics of cement hydration in the numerical simulation of cement hydration processes. This paper deals with an experimental study on the kinetics of Portland cement and blast furnace slag cement using iso

  4. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  5. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll;

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  6. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG)

  7. 小议桥梁工程中水泥混凝土技术性能及其应用%Technical Performance of Cement Concrete and Its Application in the Bridge Project

    Institute of Scientific and Technical Information of China (English)

    宫北辰

    2012-01-01

    在桥梁工程中应用最广泛的是普通混凝土:以水泥为胶凝材料,以砂,石为骨料,加水拌制成的水泥混凝土.普通混凝土normal concrete一般指以水泥为主要胶凝材料,与水、砂、石子,必要时掺入化学外加剂和矿物掺合料,按适当比例配合,经过均匀搅拌、密实成型及养护硬化而成的人造石材.因此,水泥混凝土技术性能控制对工程质量保证至关重要.%What is the most widely used in bridge engineering is the normal concrete which takes the cement as the cementitious material, the sand and stone as the aggregate, and then add water to mix. Normal concrete is generally refers to the artificial stone with cement which is the main cementitious material, water, sand and gravel, including chemical admixtures and mineral admixtures if necessary, with an appropriate proportion, uniform mixing, forming dense and conservation rigidification. Therefore, the technical performance control of cement concrete is essential to project quality assurance.

  8. The suitability of a supersulfated cement for nuclear waste immobilisation

    Science.gov (United States)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  9. Neutron Scattering Studies of Cement

    Science.gov (United States)

    Allen, Andrew

    2010-03-01

    Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

  10. Evaluating the Project based Organizational Teaching-Learning Process

    Directory of Open Access Journals (Sweden)

    S. Justus

    2013-06-01

    Full Text Available Organizational Training and Learning are among the 22 key process areas in CMM. These two processes are subject for improvement based on its framework and execution. In this paper, we have worked on project-based frameworks for organizational training and learning and have attempted to validate them in the software developmental organizations and in an institution teaching software engineering.The empirical validation is carried out with those case studies and significant results are obtained in assessing the improvement in the two process areas. Moreover, this work is also extended to accommodate improvement in the regular conventional OTL processes.

  11. Distributed Processing of Projections of Large Datasets: A Preliminary Study

    Science.gov (United States)

    Maddox, Brian G.

    2004-01-01

    Modern information needs have resulted in very large amounts of data being used in geographic information systems. Problems arise when trying to project these data in a reasonable amount of time and accuracy, however. Current single-threaded methods can suffer from two problems: fast projection with poor accuracy, or accurate projection with long processing time. A possible solution may be to combine accurate interpolation methods and distributed processing algorithms to quickly and accurately convert digital geospatial data between coordinate systems. Modern technology has made it possible to construct systems, such as Beowulf clusters, for a low cost and provide access to supercomputer-class technology. Combining these techniques may result in the ability to use large amounts of geographic data in time-critical situations.

  12. Examining Perceptions of the Science Fair Project: Content or Process?

    Science.gov (United States)

    Watson, Jinx Stapleton

    2003-01-01

    Discusses student research, information literacy and research skills, and the role of inquiry in the research process. Presents a case study of a middle school science fair project that examined what students should accomplish in their research and what the role of stakeholders is, including teachers, parents, and school library media specialists.…

  13. A Framework for Coordination Process into Construction Projects

    Directory of Open Access Journals (Sweden)

    Alaloul Wesam S.

    2016-01-01

    Full Text Available Construction industry is recognized as high fragmentation, low efficiency, cost and time overruns in contrast with other industries. These peculiarities are the main roots of poor performance facing by the industry. Effective coordination is vital in construction projects success and mitigate the fragmentation dilemma, however it is often difficult to achieve and need iterative process. Coordination is core issue to improve performance in construction project. Relevant studies have addressed the coordination process importance and implementation, but not in a framework. This paper propose a framework for coordination process in construction projects, as well as its relationship with performance. The objective of the framework is to provide a roadmap for the construction parties to realize operational excellence so that collectively stakeholders can recognize the effect of coordination process application on the project performance. The data were obtained from literature review and structured interviews with five experts. The analysis produced the framework of coordination based on the extensively used procedures for information and data flow between stakeholders.

  14. 33 CFR 385.11 - Implementation process for projects.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Implementation process for projects. 385.11 Section 385.11 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE PROGRAMMATIC REGULATIONS FOR THE COMPREHENSIVE EVERGLADES RESTORATION PLAN...

  15. 技术不确定下的硬质合金R & D预算分配研究%The Optimal Allocation of Budget Funds among Cemented Carbide R & D Projects

    Institute of Scientific and Technical Information of China (English)

    胡启明

    2013-01-01

      硬质合金 R&D 项目既面临项目收益的不确定性,又面临着技术的不确定性。如何在不确定下优化企业资源配置,以达到企业收益的最大化也是许多 R&D 项目资金分配中的难题。在 Liu 研究的基础上,引入了 R&D 项目成功概率的逻辑增长函数,建立了 R&D 项目资金配置模糊随机期望值模型,并给出了模糊随机模拟技术和遗传算法的模型求解。%Different with ordinary projects, Cemented Carbide R&D project is uncertain both in the revenue and technology. Thus, it is a difficulty for enterprises to allocate resources to maximize the revenue. Integrating the logical growth function of success possibility with revenue uncertainty, this paper develops a fuzzy random expected value model to solve the difficulty of resource allocation among cemented carbide R&D project. A heredity algorithm for the fuzzy random expected value model is designed.

  16. Analysis on Impacts and Co-Abatement Effects of Implementing the Low Carb on Cement Standard

    Institute of Scientific and Technical Information of China (English)

    PANG Jun; SHI Yuan-Chang; FENG Xiang-Zhao; WU Shi-Yu; SUN Wen-Long

    2014-01-01

    Based on the MAP-CGE model, this paper simulated the impacts on the output, energy consumption and pollutant emissions of different cement production processes when implementing a low carbon cement standard in China. It also calculated the impacts on the marginal abatement cost and equilibrium price of the cement industry, and analyzed the co-abatement effects of different pollutants. The results showed that implementing the low carbon cement standard will be beneficial in promoting an upgrading of cement production processes, and strengthening the energy conservation and emission reduction in the cement industry. If there is no change in the existing technology, the cement industry will reduce SO2 emissions by 1.17 kg and NOx emissions by 4.44 kg per ton of CO2 emission reduction. Implementing low carbon cement standard can also promote NOx abatement in the cement industry. However, the cement industry will bear the abatement costs, and their equilibrium price will increase slightly.

  17. Post-project geomorphic assessment of a large process-based river restoration project

    Science.gov (United States)

    Erwin, Susannah O.; Schmidt, John C.; Allred, Tyler M.

    2016-10-01

    This study describes channel changes following completion of the Provo River Restoration Project (PRRP), the largest stream restoration project in Utah and one of the largest projects in the United States in which a gravel-bed river was fully reconstructed. We summarize project objectives and the design process, and we analyze monitoring data collected during the first 7 years after project completion. Post-project channel adjustment during the study period included two phases: (i) an initial phase of rapid, but small-scale, adjustment during the first years after stream flow was introduced to the newly constructed channel and (ii) a subsequent period of more gradual topographic adjustment and channel migration. Analysis of aerial imagery and ground-survey data demonstrate that the channel has been more dynamic in the downstream 4 km where a local source contributes a significant annual supply of bed material. Here, the channel migrates and exhibits channel adjustments that are more consistent with project objectives. The upstream 12 km of the PRRP are sediment starved, the channel has been laterally stable, and this condition may not be consistent with large-scale project objectives.

  18. Post-project geomorphic assessment of a large process-based river restoration project

    Science.gov (United States)

    Erwin, Susannah O.; Schmidt, John C.; Allred, Tyler M.

    2016-01-01

    This study describes channel changes following completion of the Provo River Restoration Project (PRRP), the largest stream restoration project in Utah and one of the largest projects in the United States in which a gravel-bed river was fully reconstructed. We summarize project objectives and the design process, and we analyze monitoring data collected during the first 7 years after project completion. Post-project channel adjustment during the study period included two phases: (i) an initial phase of rapid, but small-scale, adjustment during the first years after stream flow was introduced to the newly constructed channel and (ii) a subsequent period of more gradual topographic adjustment and channel migration. Analysis of aerial imagery and ground-survey data demonstrate that the channel has been more dynamic in the downstream 4 km where a local source contributes a significant annual supply of bed material. Here, the channel migrates and exhibits channel adjustments that are more consistent with project objectives. The upstream 12 km of the PRRP are sediment starved, the channel has been laterally stable, and this condition may not be consistent with large-scale project objectives.

  19. Through Lean Manufacturing Techniques Improvement InProduction of Cement Plant

    Directory of Open Access Journals (Sweden)

    Udai Singh Chouhan

    2016-07-01

    Full Text Available The production of cement is a process industry which is distinct from manufacturing and the main objective here is to apply lean manufacturing technique to the eradicate waste to the processes and parameters which are common between process and discrete manufacturing. Lean signifies a major advance over traditional mass production methods. Value stream mapping is used first to identify different waste present in the current state. This paper will describe work undertaken investigating the application of lean thinking to a continuous production environment, in this instance exemplified by the cement industry. Implementation of lean helps many organizations to improve their productivity and efficiency Cement plays a vital role in economic development of any country. Having more than a hundred and fifty years history, it has been used extensively in construction of anything, from a small building to a mammoth multi-purpose project. The need for improving the efficiency of the cement production line is widely acknowledged in order to reduce the downtime rates, and satisfy high levels of market demand where the demand for cement is mostly second substance behind water. This paper articulates a methodology for data collection, knowledge extraction, model creation and experimentation that combines the use of process mapping, computational simulation. A detailed description of each step of the process is given and is illustrated by results from a case study undertaken during the research. This paper describes work undertaken to implement lean practices in the continuous process sector as represented by cement production. One of the major barriers to lean implementation is providing evidence of its potential benefit to end-users. This work aims to overcome this obstacle by producing a tool which can be used to easily visualize the benefits of adopting lean practices without requiring disruption to the production environment

  20. Green Project System Design of Machine Process Factory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the specialty of the product and the dim conscio us ness of environmental protection, the status of dirty, chaos and difference is l ong-term existed in the machine process factory. It seriously affects workers' work and living environment, and restricts the total level of the environment p rotection in our country. The project is the fatal scientific research task of H enan province in 2001. As the members' endeavor of task group, we have finished the total plan of green project system and some other ...

  1. PROFILING AND THE STUDENT PROJECT PEER APPRAISAL PROCESS

    OpenAIRE

    Rodley C. Pineda; Bonita B. Barger; Linda D. Lerner

    2011-01-01

    Past research on team formation and composition reveals that team member attributes play a role in how students perceive each others’ contributions to a team project. Can attribute-based profiling be used during the peer appraisal process so that a holistic-based assessment tool can still provide meaningful feedback to the student being rated? Our study shows that students can develop a profile of the ideal team member at the start of the project that is consistent with their overall assess...

  2. Using bio-based polymers for curing cement-based materials

    OpenAIRE

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying shrinkage. Continuous cement hydration also guarantees a strong bond between aggregate, fewer voids, and depercoliation of capillary pores. Thus, a properly cured cement-based material is prepared for...

  3. PLANNING PROCESS, BETWEEN EXPERT PROJECT AND COLLECTIVE ACTION

    OpenAIRE

    Thibault, Serge; Verdelli, Laura

    2009-01-01

    texte présenté au colloque annuel de l'AESOP Foundations, planning theory and method, planning and complexity - 24th AESOP Annual Conference, Finland The content of this paper concerns some recent evolutions of the planning process in France. Analyzing two study cases, we'll show that today, two types of process are coexisting and, in a way, confronting. The first one corresponds to the "classic" plan for which the project is the principal stage of a linear process. This linear plan is org...

  4. Project and Innovation Management in New Product Development Processes

    DEFF Research Database (Denmark)

    Henriksen, Leif; Gayretli, Ahmet

    2010-01-01

    Although the process of innovation is one of the most important drivers behind the growth and prosperity of today’s global economy, it is one of the least understood. This paper aims to address specific problems in carrying out new product development processes. There are crucial issues related...... to product design processes like inefficient project management, increasing product complexity, conflict management, shortfall of existing methods and tools, and high failures in new product introduction. A new approach has been proposed for a system based platform, which consist of a product platform...

  5. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  6. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  7. Influence of process parameters on thickness and wear resistance of rare earth modified chromium coatings on P110 steel synthesized by pack cementation

    Institute of Scientific and Technical Information of China (English)

    LIN Naiming; XIE Faqin; WU Xiangqing; TIAN Wei

    2011-01-01

    The pack cementation was employed to produce rare earth modified chromium coatings on P110 steel aiming at improving its performance and increasing the usage lifetime during operation. The orthogonal array design (OAD) was applied to set experiments. Contents of NH4Cl, types of RE, contents of RE, test temperature and soaking time were the main factors, and each factor was endowed with four levels.While the range analysis and analysis of variance were used to investigate the results of OAD tests on thickness and wear resistance. The results indicated that for a promising coating with higher thickness value and excellent anti-wear property, the test temperature was the most significant process factor. The potential promising conditions for chromizing treatment were: adding 1% NH4Cl and 1% LaCl3, maintaining the test temperature at 1000 ℃ for 8 h. The results of verification showed that the coating formed under the optimal process parameter had a valid thickness of 28 μm and a reduction of 0.32 mg in wear resistance test.

  8. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.

    Science.gov (United States)

    Ramos, A; Simões, J A

    2009-11-13

    Experimental models can be used for pre-clinical testing of cemented and other type of hip replacements. Total hip replacement (THR) failure scenarios include, among others, cement damage accumulation and the assessment of accurate stress and strain magnitudes at the cement mantle interfaces (stem-cement and cement-bone) can be used to predict mechanical failure. The aseptic loosening scenario in cemented hip replacements is currently not fully understood, and methods of evaluating medical devices must be developed to improve clinical performance. Different results and conclusions concerning the cement micro-cracking mechanism have been reported. The aim of this study was to verify the in vitro behavior of two cemented femoral stems with respect to fatigue crack formation. Fatigue crack damage was assessed at the medial, lateral, anterior and posterior sides of the Lubinus SPII and Charnley stems. All stems were loaded and tested in stair climbing fatigue loading during one million cycles at 2 Hz. After the experiments each implanted synthetic femur was sectioned and analyzed. We observed more damage (cracks per area) for the Lubinus SPII stem, mainly on the proximal part of the cement mantle. The micro-cracking formation initiated in the stem-cement interface and grew towards the direction of cortical bone of the femur. Overall, the cement-bone interface seems to be crucial for the success of the hip replacement. The Charnley stem provoked more damage on the cement-bone interface. A failure index (maximum length of crack/maximum thickness of cement) considered was higher for the cement-stem interface of the Lubinus SPII stem. For a cement mantle thickness higher than 5 mm, cracking initiated at the cement-bone interface and depended on the opening canal process (reaming procedure and instrumentation). The analysis also showed that fatigue-induced damage on the cement mantle, increasing proximally, and depended on the axial position of the stem. The cement

  9. A research paper of `the basic sciences of the radioactive waste treatment` (Jul. 28,29, 1994) and `Interface and surface science of solid waste processing and disposal -differences between cement and bentonite` (Dec. 14, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report contains copies of OHP at the meetings of which discussions were centered upon the points of sameness and difference between cement and bentonite. There are sixteen papers, eleven in the first meeting and five in the second one. The following studies were read as under, on the first meeting, the role of retardation effect on the safety of high level atomic waste stratum processing, determination of colloid particle diameters by use of fieldflow fractionation, adsorption behavior of uranium, into black mica in granite, masstransfer mechanism of Cs and Se in the compression-bentonite, delay mechanism under conditions of mineral alteration, effects of humus on the behavior of radionuclides in stratum, formation of actinoids - humic acid complex and its effect on adsorption behavior, characteristic properties of water in bentonite, measurement of solubility of uranium and niobium, behavior of colloidal Am in the bentonite, illite - water system, effects of aging deterioration of bentonite on diffusion of nuclides, and on the second meeting, a view of cement materials, chemical behavior and long period stability of cement - relating to Atkinson model -, the present conditions of studies about sorption in cement, chemical properties of pore water in bentonite and interaction of bentonite and nuclides in solid - liquid interface. (S.Y.)

  10. Strength improvement of fibre cement product

    Directory of Open Access Journals (Sweden)

    Waranya Sonphuak

    2013-10-01

    Full Text Available This paper presents a methodology to improve the strength or the Modulus of Rupture (MOR of fibre cement. The Six Sigma approach with the DMAIC steps was applied to a case study company. This research started from defining problem, setting the project objective and the project scope. Next, the measurement system was analyzed and the process map was set up. The potential factors of the problem was then determined. Due to there were many factors that affect the MOR, the Cause and Effect Matrix and the Failure Mode and Effect Analysis technique were then used to reduce the number of factors to be studied further. Next, three process factors, which were the pulp slurry freeness, the film-layer thickness, and the pressure step, were optimized using the results from the Box-Behnken experimental design. Other 13 remaining factors were improved by creating or revising the standard work instructions and training the operators. After that, the statistical process control and the control plan were set up to control the production processes. After improvement, the process capability index (Ppk significantly increased from 0.26 to 1.35.

  11. Processing and characterisation of Calcium SulfoAluminate (CSA) eco-cements coated with a hybrid organo-inorganic material for photocatalytic applications

    OpenAIRE

    Morales-Cantero, Alejandro; Cabeza, Aurelio; De la Torre, Ángeles G.; Aranda, M. A. G.; Santacruz, Isabel

    2015-01-01

    On the one hand, Calcium SulfoAluminate (CSA) eco-cements are receiving increasing attention since their manufacture produces up to 40% less CO2 than ordinary Portland cement (OPC). In addition, they show interesting properties such as high early-age strengths, short setting times, impermeability, sulfate and chloride corrosion resistance and low alkalinity. On the other hand, water treatment is a key issue and it will become much more important in the decades ahead. We have developed a p...

  12. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    International Nuclear Information System (INIS)

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site

  13. Coordination of student teams focused on project management processes

    OpenAIRE

    Aquere, André Luiz; Mesquita, Diana; Lima, Rui M.; Monteiro, Simone Borges Simão; Zindel, Marcia

    2012-01-01

    Engineering learning processes are expected to develop technical and transversal competencies on students that are demanded by the engineering professional bodies. The need for the development of competencies raised an incremental interest in applying innovative approaches in Engineering education. One of the methodologies used in this context is Project-Based Learning (PBL). At the University of Brasilia, a course degree in Production Engineering was created having as a main reference the Pr...

  14. UMTRA Ground Water Project management action process document

    International Nuclear Information System (INIS)

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards

  15. Process Intensification via Membrane Reactors, the DEMCAMER Project

    Directory of Open Access Journals (Sweden)

    Fausto Gallucci

    2016-05-01

    Full Text Available This paper reports the findings of a FP7 project (DEMCAMER that developed materials (catalysts and membranes and new processes for four industrially relevant reaction processes. In this project, active, stable, and selective catalysts were developed for the reaction systems of interest and their production scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed; in particular, dense supported thin palladium-based membranes for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in various lab-scale reactors for water gas shift (WGS, using both packed bed and fluidized bed reactors, and Fischer-Tropsch (FTS using packed bed reactors and in prototype reactors for WGS and FTS. Mixed ionic-electronic conducting membranes in capillary form were also developed for high temperature oxygen separation from air. These membranes can be used for both Autothermal Reforming (ATR and Oxidative Coupling of Methane (OCM reaction systems to increase the efficiency and the yield of the processes. The production of these membranes was scaled up to TRL3–4. The project also developed adequate sealing techniques to be able to integrate the different membranes in lab-scale and prototype reactors.

  16. Statistical Study on Cement-Soil Mixture Strength

    Institute of Scientific and Technical Information of China (English)

    YU Zhiqiang; CAO Yonghua; YAN Shuwang

    2005-01-01

    This paper presents an investigation on strength of cement deep mixing (CDM) mixture. Four typical works of offshore or land-based projects are introduced. With samples from these projects and laboratory tests, statistical analysis is made on the increment law of the strength of cement-soil mixture with different amount of cement, and strengths under different working conditions are compared. It is found that the amount of cement in the cement-soil mixture is closely related to the unconfined compressive strength of the mixture. At the age of 90 d,the unconfined compressive strength of the cement-soil mixture increased by 0.054 Mpa-0.124 Mpa with each cement increasing 10 kg/m3 in the cement-soil mixture, averagely increased by 0.085 Mpa, while that at the age of 120 d increased by 11% in comparison.The quality of the cement-soil mixture should be comprehensively evaluated in accordance with the trimmed average of strength, coefficient of variation and rock quality designation (RQD) indicators of sampling ratio.

  17. Acrylic Bone Cements Modified with Starch

    OpenAIRE

    Krilova, V; Vītiņš, V

    2010-01-01

    The successful result of restorative and replacement surgical operation depends significantly on properties of used bone cement. Acrylic bone cements are usually based on methylmethacrylate polymer, while monomer polymerization begins after mixing of components in mixing device and terminates in living tissue. Polymerization of methylmethacrylate is exothermic process, and temperature increase might cause tissue necrosis with concomitant implant aseptic loosening. Developed non-ionogenic and ...

  18. Examination of solidified and stabilized matrices as a result of solidification and stabilization process of arseniccontaining sludge with portland cement and lime

    Directory of Open Access Journals (Sweden)

    Tanapon Phenrat

    2004-02-01

    Full Text Available By solidification and stabilization (S/S with Portland cement and lime, it is possible to reduce arsenic concentration in leachate of the arsenic-containing sludge from arsenic removal process by coagulation with ferric chloride. From the initial arsenic concentration in leachate of unsolidified /unstabilized sludge which was around 20.75 mg/L, the arsenic concentrations in leachate of solidified/stabilized waste were reduced to 0.3, 0.58, 1.09, and 1.85 mg/L for the waste-to-binder ratios of 0.15, 0.25, 0.5, and 1, respectively, due tothe formation of insoluble calcium-arsenic compounds. To be more cost effective for the future, alternative uses of these S/S products were also assessed by measurement of compressive strength of the mortar specimens. It was found that the compressive strengths of these matrices were from 28 ksc to 461 ksc. In conclusion, considering compressive strength and leachability of the solidified matrices, some of these solidified/ stabilized products have potential to serve as an interlocking concrete paving block.

  19. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    International Nuclear Information System (INIS)

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties

  20. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  1. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2012-01-01

    Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...... the relationship between these two kinds of processes. In this paper we draw on a longitudinal case study. We suggest a framework to analyze the case as interaction between software development processes and organizational change processes. In the analysis we find that the framework enables us to understand...... critical events in the case, what led to the events, and what the consequences are. We discuss the implications for information systems research and in particular we discuss the contribution to project management of iterative and incremental software development....

  2. Curing time effect on the fraction of 137Cs from cement-ion exchange resins-bentonite clay composition

    Directory of Open Access Journals (Sweden)

    Plećaš Ilija

    2010-01-01

    Full Text Available To assess the safety of disposal of radioactive waste material in cement, curing conditions and time of leaching radionuclides 137Cs have been studied. Leaching tests in cement-ion exchange resins-bentonite matrix, were carried out in accordance with a method recommended by IAEA. Curing conditions and curing time prior to commencing the leaching test are critically important in leach studies since the extent of hydration of the cement materials determines how much hydration product develops and whether it is available to block the pore network, thereby reducing leaching. Incremental leaching rates Rn[cm/d] of 137Cs from cement-ion exchange resins-bentonite matrix after 240 days were measured. The results presented in this paper are examples of results obtained in a 30-year concrete testing project which will influence the design of the engineer trenches system for future central Serbian radioactive waste storing centre.

  3. Aligning BIM with FM: streamlining the process for future projects

    Directory of Open Access Journals (Sweden)

    Colleen Kasprzak

    2015-10-01

    Full Text Available A study performed by the National Institute of Standards and Technology (NIST, USA in 2004 found that owners account for approximately $10.6 billion of the $15.8 billion total inadequate interoperability costs of U.S. capital facility projects in 2002. Because of these inefficiency costs, it becomes vital that information produced during the design and construction phases of a project be transferred into operations with maximum leverage to the end users. However, very few owners have defined these informational needs or developed an integration strategy into existing maintenance management systems. To increase operational efficiency, an organization must first develop an understanding of their operating systems, as well as identify how Building Information Modeling (BIM will add value to their daily tasks. The Pennsylvania State University (PSU has a unique opportunity to diversely implement BIM processes because not only does the University act as an owner, but also as designer and construction manager on the majority of projects. The struggle that PSU faces is one that is unique only to owners with a large, existing, multifaceted building inventory. This paper outlines the current initiative by the Office of Physical Plant (OPP, the asset manager at PSU, to develop an information exchange framework between BIM and FM applications to be used internally. As a result of this research, PSU has been able to define owner operational requirements for future projects and develop a flexible integration framework to support additional BIM tasks and information exchanges.

  4. Aligning BIM with FM: streamlining the process for future projects

    Directory of Open Access Journals (Sweden)

    Colleen Kasprzak

    2012-12-01

    Full Text Available A study performed by the National Institute of Standards and Technology (NIST, USA in 2004 found that owners account for approximately $10.6 billion of the $15.8 billion total inadequate interoperability costs of U.S. capital facility projects in 2002. Because of these inefficiency costs, it becomes vital that information produced during the design and construction phases of a project be transferred into operations with maximum leverage to the end users. However, very few owners have defined these informational needs or developed an integration strategy into existing maintenance management systems. To increase operational efficiency, an organization must first develop an understanding of their operating systems, as well as identify how Building Information Modeling (BIM will add value to their daily tasks. The Pennsylvania State University (PSU has a unique opportunity to diversely implement BIM processes because not only does the University act as an owner, but also as designer and construction manager on the majority of projects. The struggle that PSU faces is one that is unique only to owners with a large, existing, multifaceted building inventory. This paper outlines the current initiative by the Office of Physical Plant (OPP, the asset manager at PSU, to develop an information exchange framework between BIM and FM applications to be used internally. As a result of this research, PSU has been able to define owner operational requirements for future projects and develop a flexible integration framework to support additional BIM tasks and information exchanges.

  5. Tympanoplasty with ionomeric cement

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy...

  6. Spent Nuclear Fuel (SNF) Project Design Verification and Validation Process

    International Nuclear Information System (INIS)

    This document provides a description of design verification and validation activities implemented by the Spent Nuclear Fuel (SNF) Project. During the execution of early design verification, a management assessment (Bergman, 1999) and external assessments on configuration management (Augustenburg, 1999) and testing (Loscoe, 2000) were conducted and identified potential uncertainties in the verification process. This led the SNF Chief Engineer to implement corrective actions to improve process and design products. This included Design Verification Reports (DVRs) for each subproject, validation assessments for testing, and verification of the safety function of systems and components identified in the Safety Equipment List to ensure that the design outputs were compliant with the SNF Technical Requirements. Although some activities are still in progress, the results of the DVR and associated validation assessments indicate that Project requirements for design verification are being effectively implemented. These results have been documented in subproject-specific technical documents (Table 2). Identified punch-list items are being dispositioned by the Project. As these remaining items are closed, the technical reports (Table 2) will be revised and reissued to document the results of this work

  7. Spent Nuclear Fuel (SNF) Project Design Verification and Validation Process

    Energy Technology Data Exchange (ETDEWEB)

    OLGUIN, L.J.

    2000-09-25

    This document provides a description of design verification and validation activities implemented by the Spent Nuclear Fuel (SNF) Project. During the execution of early design verification, a management assessment (Bergman, 1999) and external assessments on configuration management (Augustenburg, 1999) and testing (Loscoe, 2000) were conducted and identified potential uncertainties in the verification process. This led the SNF Chief Engineer to implement corrective actions to improve process and design products. This included Design Verification Reports (DVRs) for each subproject, validation assessments for testing, and verification of the safety function of systems and components identified in the Safety Equipment List to ensure that the design outputs were compliant with the SNF Technical Requirements. Although some activities are still in progress, the results of the DVR and associated validation assessments indicate that Project requirements for design verification are being effectively implemented. These results have been documented in subproject-specific technical documents (Table 2). Identified punch-list items are being dispositioned by the Project. As these remaining items are closed, the technical reports (Table 2) will be revised and reissued to document the results of this work.

  8. Lessons learned in process control at the Halden Reactor Project

    International Nuclear Information System (INIS)

    This report provides a list of those findings particularly relevant to regulatory authorities that can be derived from the research and development activities in computerized process control conducted at the Halden Reactor Project. The report was prepared by a staff member of the US Nuclear Regulatory Commission working at Halden. It identifies those results that may be of use to regulatory organizations in three main areas: as support for new requirements, as part of regulatory evaluations of the acceptability of new methods and techniques, and in exploratory research and development of new approaches to improve operator performance. More than 200 findings arranged in nine major categories are presented. The findings were culled from Halden Reactor Project documents, which are listed in the report

  9. The Setting Chemistry of Glass Ionomer Cement

    Institute of Scientific and Technical Information of China (English)

    CHENG Hanting; LIU Hanxing; ZHANG Guoqing

    2005-01-01

    The setting chemistry of glass ionomer cement was investigated by using mechanical determination of compressive strength at predetermined intervals, and measurement of structure changes of corresponding fracture sample by means of IR spectra and differential scanning calorimetry ( DSC). Zinc polycarboxylate cement was used as a comparison sample. The compressive strength of glass ionomer cement (GIC) increases with aging. IR spectra and DSC of corresponding fracture sample show the structure changes of the matrix and interface layer comprising of silica gel during the predetermined intervals studied, however, no significant changes occur in the zinc polycarxyolate cement. Hence the structure changes of the matrix and/or interface layer are responsible for compressive strength increasing with aging. The structure changes include the crosslink density, the ratio of complex form to ionic form, the content ratio of Al-PAA to Ca-PAA, the forming and mauring process of the interface layer comprising of silica gel.

  10. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    Science.gov (United States)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  11. The Plasma Hearth Process demonstration project for mixed waste treatment

    International Nuclear Information System (INIS)

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Integrated Program (MWIP). Testing to date has yielded encouraging results in displaying potential applications for the PHP technology. Early tests have shown that a wide range of waste materials can be readily processed in the PHP and converted to a vitreous product. Waste materials can be treated in their original container as received at the treatment facility, without pretreatment. The vitreous product, when cooled, exhibits excellent performance in leach resistance, consistently exceeding the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP) requirements. Performance of the Demonstration System during test operations has been shown to meet emission requirements. An accelerated development phase, being conducted at both bench- and pilot-scale on both nonradioactive and radioactive materials, will confirm the viability of the process. It is anticipated that, as a result of this accelerated technology development and demonstration phase, the PHP will be ready for a final field-level demonstration within three years

  12. Energy economy and industrial ecology in the Brazilian cement sector; Economia de energia e ecologia industrial no setor cimenteiro brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Planejamento Energetico]. E-mail: marinatavares@openlink.com.br; roberto@ppe.ufrj.br

    1999-07-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector.

  13. Immobilisation of MTR waste in cement (product evaluation). Final report. December 1987

    International Nuclear Information System (INIS)

    The enriched uranium/aluminium fuel used in Material Testing Reactors is reprocessed at Dounreay Nuclear Power Development Establishment (DNE). The main chemical component of the liquid waste produced by this process is acid deficient aluminium nitrate. This is stored in stainless steel tanks at DNE. As a result of work carried out under the UKAEA radioactive waste management programme a decision was taken to immobilise the waste in cement. The programme had two main components, plant design and development of the cementation process. The plant for the cementation of MTR waste is under construction and will be commissioned in 1988/9. The primary objective of this project is to find a suitable process for changing the highly mobile radioactive waste into an inert stable solid. Work carried out on the development of the immobilisation process showed that a conditioning stage (neutralisation) is required to make the acid waste compatible with cement. Small scale experiments showed that adding Ordinary Portland Cement blended with ground granulated Blast Furnace Slag to Simulant MTR Liquor produces an acceptable product. The process has been demonstrated at full scale (200 litres) and the products have been subjected to an extensive programme of destructive and non-destructive testing. Specimens have been tested up to 1200 days after manufacture and show no significant signs of deterioration even when stored underwater or when subjected to freeze thaw cycling. Development work has also shown that the process can successfully immobilise simulant MTR liquor over a wide range of liquor concentrations. The programme therefore successfully produced a formulation that met all the requirements of both the process and product specification. (author)

  14. The Iron Project:. Radiative Atomic Processes in Astrophysics

    Science.gov (United States)

    Nahar, Sultana N.

    2011-06-01

    Astronomical objects, such as, stars, galaxies, blackhole environments, etc are studied through their spectra produced by various atomic processes in their plasmas. The positions, shifts, and strengths of the spectral lines provide information on physical processes with elements in all ionization states, and various diagnostics for temperature, density, distance, etc of these objects. With presence of a radiative source, such as a star, the astrophysical plasma is dominated by radiative atomic processes such as photoionization, electron-ion recombination, bound-bound transitions or photo-excitations and de-excitations. The relevant atomic parameters, such as photoionization cross sections, electron-ion recombination rate coefficients, oscillator strengths, radiative transition rates, rates for dielectronic satellite lines etc are needed to be highly accurate for precise diagnostics of physical conditions as well as accurate modeling, such as, for opacities of astrophysical plasmas. for opacities of astrophysical plasmas. This report illustrates detailed features of radiative atomic processes obtained from accurate ab initio methods of the latest developments in theoretical quantum mechanical calculations, especially under the international collaborations known as the Iron Project (IP) and the Opacity Project (OP). These projects aim in accurate study of radiative and collsional atomic processes of all astrophysically abundant atoms and ions, from hydrogen to nickel, and calculate stellar opacities and have resulted in a large number of atomic parameters for photoionization and radiative transition probabilities. The unified method, which is an extension of the OP and the IP, is a self-consistent treatment for the total electron-ion recombination and photoionization. It incorporates both the radiative and the dielectronic recombination processes and provides total recombination rates and level-specific recombination rates for hundreds of levels for a wide range of

  15. Numerical Simulation of Bulk Cement Truck Tank Unloading Process Based on Fluent Secondary Development%基于Fluent二次开发的散装水泥运输车卸料过程数值模拟

    Institute of Scientific and Technical Information of China (English)

    纪宏超; 李耀刚; 王玉彬

    2012-01-01

    Aiming at the situation that fluid software Fluent cannot be taken fall use of in the design of bulk cement truck tank in domestic, the programming language of VB 6,0 was used to develop man-machine interface for secondary development of Fluent software. The special features of numerical simulation on bulk cement truck tank unloading process were achieved. The effects of air distributor on unloading process in bulk cement truck tank unloading process were simulated by an example. The results indicate that the interface is intuitive and the operation is simple. The fluidized and unloading process of bulk cement truck tank can be well simulated and applied to the development of cement truck tank. Enlarging the diameter of air distributor can reduce the unloading time effectively. The unloading efficiency and the stability of unloading process can be improved. Under the permitted conditions, the diameter of air distributor should be enlarged.%针对国内散装水泥车罐体设计中不能充分利用流体软件Fluent 的情况,利用VB 6.0编程语言编程开发人机交互界面,时Fluent软件进行二次开发,实现散装水泥车罐体卸料过程的数值模拟的专用功能;通过一个实例模拟散装水泥罐车在卸料过程中布风板对卸料过程的影响.结果表明,把Gambit和Fluent内部封装,界面直观、操作简单,能够很好地模拟水泥罐车流态化与卸料过程,并应用到水泥车罐体的开发中;增大布风板的直径能够有效地减少卸料时间,提高卸料效率,并且提高卸料过程的平稳性,在条件允许的情况下应增大布风板的直径.

  16. In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells

    Science.gov (United States)

    Kupresan, D.; Radonjic, M.; Heathman, J.

    2013-12-01

    mechanical manipulation (shear stress). The main advantage of this methodology is that mechanical manipulation of cement can induce healing of existing fractures, channels and microannulus seal in a wellbore without introducing new materials (e.g. cement squeeze jobs). Furthermore, this methodology is less sensitive to the influence of downhole conditions such as pressure, temperature and formation fluids, since it uses cement pore water as a medium to alter cement sheath. Based on lab experiments observation, it is possible to perceive that once tested at the industrial scale and if successful, the implementation of this method in the field can potentially mitigate leaky wells in CO2 sequestration projects, wellbores completed for hydraulic-fracturing and other conventional oil and gas producing wells. Key words: Wellbore cement integrity; Leaky wells; Cement microstructures; Casing expansion effect on cement mineralogy alterations.

  17. Steam gasification of coal, project prototype plant nuclear process heat

    International Nuclear Information System (INIS)

    This report describes the tasks, which Bergbau-Forschung has carried out in the field of steam gasification of coal in cooperation with partners and contractors during the reference phase of the project. On the basis of the status achieved to date it can be stated, that the mode of operation of the gas-generator developed including the direct feeding of caking high volatile coal is technically feasible. Moreover through-put can be improved by 65% at minimum by using catalysts. On the whole industrial application of steam gasification - WKV - using nuclear process heat stays attractive compared with other gasification processes. Not only coal is conserved but also the costs of the gas manufactured are favourable. As confirmed by recent economic calculations these are 20 to 25% lower. (orig.)

  18. Study on the hardening mechanism of cement asphalt binder

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydration and hardening mechanism of cement asphalt binder(CAB) was studied.The early hydration process,hydration products and paste microstructure of CAB made by Portland cement and anionic asphalt emulsion were investigated by calorimetry,X-ray diffraction,and environmental scanning electron microscopy.The early hydration process of CAB can be characterized as 5 stages similar to those of Portland cement.There is no chemical reaction detected between cement and asphalt,hence no new hydration products other than those of Portland cement are produced.The hardening of CAB begins with the hydration of cement.When the hydration of cement comes into the acceleration period and its exothermic rate comes to the maximum,the coalescence of asphalt particles in asphalt emulsion is triggered.In the hardened system of CAB,it was found that the hydration products of cement form the skeleton and are covered by the continuous asphalt film.They formed an interpenetrating network system.The emulsifiers in the asphalt emulsion may retard the hydration process of cement.

  19. A practical data processing workflow for multi-OMICS projects.

    Science.gov (United States)

    Kohl, Michael; Megger, Dominik A; Trippler, Martin; Meckel, Hagen; Ahrens, Maike; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-Claudius; Baba, Hideo A; Sitek, Barbara; Schlaak, Jörg F; Meyer, Helmut E; Stephan, Christian; Eisenacher, Martin

    2014-01-01

    Multi-OMICS approaches aim on the integration of quantitative data obtained for different biological molecules in order to understand their interrelation and the functioning of larger systems. This paper deals with several data integration and data processing issues that frequently occur within this context. To this end, the data processing workflow within the PROFILE project is presented, a multi-OMICS project that aims on identification of novel biomarkers and the development of new therapeutic targets for seven important liver diseases. Furthermore, a software called CrossPlatformCommander is sketched, which facilitates several steps of the proposed workflow in a semi-automatic manner. Application of the software is presented for the detection of novel biomarkers, their ranking and annotation with existing knowledge using the example of corresponding Transcriptomics and Proteomics data sets obtained from patients suffering from hepatocellular carcinoma. Additionally, a linear regression analysis of Transcriptomics vs. Proteomics data is presented and its performance assessed. It was shown, that for capturing profound relations between Transcriptomics and Proteomics data, a simple linear regression analysis is not sufficient and implementation and evaluation of alternative statistical approaches are needed. Additionally, the integration of multivariate variable selection and classification approaches is intended for further development of the software. Although this paper focuses only on the combination of data obtained from quantitative Proteomics and Transcriptomics experiments, several approaches and data integration steps are also applicable for other OMICS technologies. Keeping specific restrictions in mind the suggested workflow (or at least parts of it) may be used as a template for similar projects that make use of different high throughput techniques. This article is part of a Special Issue entitled: Computational Proteomics in the Post

  20. Case Study of the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  1. POZZOLAN AND CEMENTS WITH POZZOLAN

    OpenAIRE

    Kaplan, Hasan; Hanifi BİNİCİ

    1995-01-01

    Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, ce...

  2. Solidification of Spent Ion Exchange Resin Using ASC Cement

    Institute of Scientific and Technical Information of China (English)

    周耀中; 云桂春; 叶裕才

    2002-01-01

    Ion exchange resins (IERs) have been widely used in nuclear facilities. However, the spent radioactive IERs result in major quantities of low and intermediate level radioactive wastes. This article describes a laboratory experimental study on solidification processing of IERs using a new type of cement named ASC cement. The strength of the cementation matrix is in the range of 18-20 MPa (28 d); the loading of the spent IER in the cement-resin matrix is over 45% and leaching rates of 137Cs, 90Sr and 60Co are 7.92×10-5, 5.7×10-6, and 1.19×10-8 cm/d. The results show that ASC cement can be a preferable cementation material for immobilization of radioactive spent IER.

  3. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  4. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    International Nuclear Information System (INIS)

    Under the Tritium Facility Modernization ampersand Consolidation (TFM ampersand C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM ampersand C Project also provides for a new replacement R ampersand D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H

  5. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  6. Developments of laser processing technologies in the Japanese MITI project

    Science.gov (United States)

    Yoshida, Takehito; Sato, Toshio; Yoshida, Yoshiaki; Matsuno, Ken-ichi

    2000-06-01

    The 'Advanced Photon Processing and Measurement Technologies' project was started in August 1997 as part of the Industrial Science and Technology Frontier Program of the Agency of Industrial Science and Technology, the Ministry of International Trade and Industry in Japan. Thirteen private companies, one university, and four national research institutes are developing new technologies using high-quality photon beams, in the three technology fields: 'Photon-applied processing technology', 'Photon- applied measurement technology', and 'Photon generation technology'. Recent topics in the 'Photon generation technology' field are 3.3 kW output power form LD-pumped all-solid-state Nd:YAG lasers of both rod-type and slab- type, and 20 W VU output power via CLBO crystals. There are various topics also in the other two technologies. In 'Photon-applied processing technology' field, high speed defects-free welding properties have been confirmed for 10 mm thick stainless steel, by using a 8.5 kW iodine laser and nitrogen assist gas. Furthermore, we have developed integrated process systems of pulsed laser ablation in helium background gas, size classification using a differential mobility analyzer, and deposition onto a substrate, for the purpose of synthesizing for semiconductor and refractory metal nanoparticles size-controlled accurately. Consequently, we have deposited the size- controlled accurately. Consequently, we have deposited the size-controlled nanoparticles onto substrates with sharp size distributions in geometrical standard deviation: 1.2.

  7. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill

    Institute of Scientific and Technical Information of China (English)

    WU Di; CAI Si-jing

    2015-01-01

    Cemented tailings backfill (CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic, thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.

  8. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  9. Leaching of metals from cement under simulated environmental conditions.

    Science.gov (United States)

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.

  10. Development of nanosilica bonded monetite cement from egg shells

    International Nuclear Information System (INIS)

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement

  11. China’s Hongqi Group Invests 500 Million Yuan in Guixi Copper Processing Project

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>China’s Hongqi Group recently signed an agreement with Guixi municipality to invest 500 million yuan in developing the copper processing project in Guixi.It is reported that this is the seveth copper processing project with

  12. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Y.C.P RAMANA BABU

    2013-04-01

    Full Text Available India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO and carbon dioxide (CO2 are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green house gases (i.e., CO and CO2 and also saves lot of money in the long run process. A small amount of these gases in environment can cause major problems over time. Use of white cement in composite pavement design where there is heavy traffic loads are acting as well as number of vehicles are more such as junctions, bus stops, check posts etc., can perform better and acts asenvironment friendly. Its light colour reflects more than bituminous pavement so that it can be easily identified and avoid accidents to some extent. White cement helps to lower the average bus stop, junction temperature providing comfort to the people because it has high solar reflectance there by reducing “urban heat island” effect. In addition to this it has some more advantages which increase the sustainability, durability and workability of the pavements.

  13. An Overview of the JPSS Ground Project Algorithm Integration Process

    Science.gov (United States)

    Vicente, G. A.; Williams, R.; Dorman, T. J.; Williamson, R. C.; Shaw, F. J.; Thomas, W. M.; Hung, L.; Griffin, A.; Meade, P.; Steadley, R. S.; Cember, R. P.

    2015-12-01

    The smooth transition, implementation and operationalization of scientific software's from the National Oceanic and Atmospheric Administration (NOAA) development teams to the Join Polar Satellite System (JPSS) Ground Segment requires a variety of experiences and expertise. This task has been accomplished by a dedicated group of scientist and engineers working in close collaboration with the NOAA Satellite and Information Services (NESDIS) Center for Satellite Applications and Research (STAR) science teams for the JPSS/Suomi-NPOES Preparatory Project (S-NPP) Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) instruments. The presentation purpose is to describe the JPSS project process for algorithm implementation from the very early delivering stages by the science teams to the full operationalization into the Interface Processing Segment (IDPS), the processing system that provides Environmental Data Records (EDR's) to NOAA. Special focus is given to the NASA Data Products Engineering and Services (DPES) Algorithm Integration Team (AIT) functional and regression test activities. In the functional testing phase, the AIT uses one or a few specific chunks of data (granules) selected by the NOAA STAR Calibration and Validation (cal/val) Teams to demonstrate that a small change in the code performs properly and does not disrupt the rest of the algorithm chain. In the regression testing phase, the modified code is placed into to the Government Resources for Algorithm Verification, Integration, Test and Evaluation (GRAVITE) Algorithm Development Area (ADA), a simulated and smaller version of the operational IDPS. Baseline files are swapped out, not edited and the whole code package runs in one full orbit of Science Data Records (SDR's) using Calibration Look Up Tables (Cal LUT's) for the time of the orbit. The purpose of the regression test is to

  14. Implications of critical chain methodology for business process flexible automation projects in economic organizations

    OpenAIRE

    Paul BRUDARU

    2009-01-01

    Business processes flexible automation projects involve the use of methods and technologies from Business Processes Management area (BPM) that aim at increasing the agility of organizations in changing the business processes as response to environmental changes. BPM-type projects are a mix between process improvement projects and software development which implies a high complexity in managing them. The successful implementation of these projects involves overcoming problems inherent as delay...

  15. New Management Whole Process Evaluation of DSM Projects Based on Fuzzy-AHP Approach

    OpenAIRE

    Xiaoli Zhu; Mingjuan Ma; Song Xue; Dinglin Li; Ming Zeng

    2013-01-01

    In order to promote the development of DSM projects, it is necessary to establish a management evaluation indicator system considering whole process. This study analyzes key factors of every stage of DSM projects combining with the whole process theory and proposes a new evaluation indicator system of DSM projects management. Also we use fuzzy analytic hierarchy process which combines analytic hierarchy process and fuzzy comprehensive evaluation method to evaluate DSM projects management cons...

  16. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  17. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  18. Process of Planning of Project for Pharmaceutical Production

    OpenAIRE

    Derenskaya Yana N.

    2012-01-01

    In the article the model of process of planning of project is developed in the conditions of pharmaceutical production, including implementation to twenty two subprocesses of planning of project (with pointing of incoming and outgoing documents and performers of subprocesses).В статье разработана модель процесса планирования проекта в условиях фармацевтического производства, включающая выполнение двадцати двух подпроцессов планирования проекта (с указанием входящих и исходящих документов и ис...

  19. Social Psychology of Facts, Processes and Projects. Object and Time

    Directory of Open Access Journals (Sweden)

    Gil, Adriana

    2006-05-01

    Full Text Available A dimension that must be considered, in the reflection that social sciences offer to society, is temporality. I would like to highlight the implicit idea of temporality within the different forms of psychosocial knowledge. In this article I propose that the different types of social psychology orientations can be situated on an axis of temporality which makes a distinction between those orientations that assume that the object of social knowledge is a fact (that is an object without temporality, being change a mere succession of independent facts, and those orientations that assume that their object is a process (that is an object in movement or perpetual change. Finally, I propose a potential social psychology of projects as an essential part of my own concept of what social psychology is

  20. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  1. Calibration of stereo rigs based on the backward projection process

    Science.gov (United States)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui; Zhao, Zixin

    2016-08-01

    High-accuracy 3D measurement based on binocular vision system is heavily dependent on the accurate calibration of two rigidly-fixed cameras. In most traditional calibration methods, stereo parameters are iteratively optimized through the forward imaging process (FIP). However, the results can only guarantee the minimal 2D pixel errors, but not the minimal 3D reconstruction errors. To address this problem, a simple method to calibrate a stereo rig based on the backward projection process (BPP) is proposed. The position of a spatial point can be determined separately from each camera by planar constraints provided by the planar pattern target. Then combined with pre-defined spatial points, intrinsic and extrinsic parameters of the stereo-rig can be optimized by minimizing the total 3D errors of both left and right cameras. An extensive performance study for the method in the presence of image noise and lens distortions is implemented. Experiments conducted on synthetic and real data demonstrate the accuracy and robustness of the proposed method.

  2. From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.

    Science.gov (United States)

    Philippines Univ., Quezon City. Science Education Center.

    This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…

  3. Using bio-based polymers for curing cement-based materials

    NARCIS (Netherlands)

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying shr

  4. Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling.

    Science.gov (United States)

    García, Xavier; Medina, Ernesto

    2007-06-01

    The effect of cementation processes on the acoustical properties of sands is studied via molecular dynamics simulation methods. We propose numerical methods where the initial uncemented sand is built by simulating the settling process of sediments. Uncemented samples of different porosity are considered by emulating natural mechanical compaction of sediments due to overburden. Cementation is considered through a particle-based model that captures the underlying physics behind the process. In our simulations, we consider samples with different degrees of compaction and cementing materials with distinct elastic properties. The microstructure of cemented sands is taken into account while adding cement at specific locations within the pores, such as grain-to-grain contacts. Results show that the acoustical properties of cemented sands are strongly dependent on the amount of cement, its stiffness relative to the hosting medium, and its location within the pores. Simulation results are in good correspondence with available experimental data and compare favorably with some theoretical predictions for the sound velocity within a range of cement saturation, porosity, and confining pressure.

  5. NASA Ocean Altimeter Pathfinder Project. Report 1; Data Processing Handbook

    Science.gov (United States)

    Koblinsky, C. J.; Beckley, Brian D.; Ray, Richard D.; Wang, Yan-Ming; Tsaoussi, Lucia; Brenner, Anita; Williamson, Ron

    1998-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-sedes data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. This report describes the processing schemes used to produce a consistent data set and two of the products derived f rom these data. Other reports have been produced that: a) describe the validation of these data sets against tide gauge measurements and b) evaluate the statistical properties of the data that are relevant to climate change. The use of satellite altimetry for earth observations was proposed in the early 1960s. The first successful space based radar altimeter experiment was flown on SkyLab in 1974. The first successful satellite radar altimeter was flown aboard the Geos-3 spacecraft between 1975 and 1978. While a useful data set was collected from this mission for geophysical studies, the noise in the radar measured and incomplete global coverage precluded ft from inclusion in the Ocean Altimeter Pathfinder program. This program initiated its analysis with the Seasat mission, which was the first satellite radar altimeter flown for oceanography.

  6. Quality control of cemented waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Slate, L.J.

    1994-12-31

    To insure that cemented radwaste remains immobilized after disposal, certain standards have been set in Europe by the Commission of the European Communities. One such standard is compressive strength. If the compressive strength can be predicted during the early curing stages, time and money can be saved and the quality of the final waste form guaranteed. It was determined that the 7- and 28-day compressive strength from radwaste cementation can be predicted during the mixing and early curing stages by at least three methods. The three that were studied were maturity, rheology, and impedance. Maturity is a temperature-to-time measurement, rheology is a shear stress-to-shear rate measurement, and impedance is the opposition offered to the flow of alternating current. These three methods were employed on five different cemented radwaste concentrations with three different water-to-cement ratios; thus, a total of 15 different mix designs were considered. The results showed that the impedance was the easiest to employ for an on-line process. The results of the impedance method showed a very good relationship between impedance and water-to-cement ratio; therefore, an accurate prediction of compressive strength of cemented radwaste can be drawn from this method. The results of the theology method were very good. The method showed that concrete conforms to the Bingham plastic rheologic model, and the theology method can be used to predict the compressive strength of cemented radwaste, but may be too cumbersome. The results of the maturity method were shown to be limited in accuracy for determining compressive strength.

  7. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.

    Science.gov (United States)

    Grosso, Mario; Dellavedova, Stefano; Rigamonti, Lucia; Scotti, Sergio

    2016-01-01

    The paper describes the performances of the energy recovery pathway from the residual waste based on the production of a Solid Recovered Fuel (SRF) to be exploited via co-combustion in a cement kiln. The SRF is produced in a single stream Mechanical-Biological Treatment plant, where bio-drying of the waste is followed by mechanical refining in order to fulfil the quality requirements by the cement kilns. Peculiar of this MBT is the fact that sorting residues are disposed in a nearby landfill, managed according to a bioreactor approach, where landfill gas is collected for electric energy recovery. A detailed mass and energy balance of the system is presented based on one year operational data, followed by its Life Cycle Assessment. Results show that the system is energetically and environmentally effective, with most of the impacts being more than compensated by the savings of materials and energy. Major role in determining such outcome is the displacement of petcoke in the cement kiln, both in terms of its fossil CO2 emissions and of its life cycle impacts, including the trans-oceanic transport. To check the robustness of the results, two sensitivity analyses are performed on the landfill gas collection efficiency and on the avoided electric energy mix. PMID:26601731

  8. THE MEASUREMENT AND EVALUATION OF THE INTERNAL COMMUNICATION PROCESS IN PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Pop Alexandra Mihaela

    2013-07-01

    The model is a useful tool for improving the internal communication process of a project and help the project raise its efficiency. It has been created based on the characteristics of the information flow within a project. Also the Internal Communication Analysis Model – ICAM – helps improve the projects‘ deliverables by making sure that everyone in the project understood their roles correctly.

  9. Project Management, Critical Praxis, and Process-Oriented Approach to Teamwork

    Science.gov (United States)

    Ding, Huiling; Ding, Xin

    2008-01-01

    To help alleviate issues of free-riding and conflicts in team projects, this study proposes the systematic incorporation of project management methods to introduce a process-oriented approach to and a critical praxis in team projects. We examined how the systematic use of project management methods influenced students' performance in team…

  10. Upgrading of oil palm wastes by radiation processing - project review

    International Nuclear Information System (INIS)

    Early works on oil palm waste treatment at MINT started in 1984 with the objective of degrading EFB (Empty Fruit Bunches) by radiation. This idea was shared by JAERI that adopted the research project with MINT in 1986 under the Japanese Science and Technology Agency (STA) programme. The results of these preliminary works show that EFB can be degraded using gamma radiation at a dose of ranging from 500 to 1000 kGy - 50 to 100 times higher than what is considered to be the economic dose. It is generally accepted that the economics of radiation treatment process could only be realised if the treatment dose can be kept below 10 kGy, which was incidentally, during the course of this early works, found to be the pasteurisation dose for oil palm by - products. With these information, MINT and JAERI agreed to pursue further research in this area and formulated a bilateral research co-operation in radiation pasteurisation of EFB and subsequent degradation by cellulolytic fungi or mushrooms. The research has the objective of upgrading EFB, which was not considered as suitable for feed due to its known physical properties as coarse and highly fibrous, to animal feed as well as substrate for mushroom cultivation and enzyme production. In addition to the desire to provide an environment friendly method for waste disposal to a growing industry, the possibility of catalysing the development of livestock industry by commercial farming in the process is another motivation for this project. Malaysia is estimated to be only about 40% self-sufficient in beef production. Thus there is great opportunity for the growth and expansion of this industry in Malaysia. However, growth in ruminant population should not result in the alienation of land for pastures. Among the reasons for the lack of interest in livestock production through commercial farming is the unavailability of local feed material which could be cheaper than imported feed grains, particularly maize. Feed is one the main cost

  11. Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA cement blends

    Directory of Open Access Journals (Sweden)

    P. Herrmann

    2014-05-01

    Full Text Available Calcium sulfoaluminate (CSA is a comparatively new cementitious material that is mainly established in China where it is produced in a large scale. CSA cement is not covered by European standards. However, it provides different beneficial properties such as rapid hardening and high early strength development. Furthermore, the usage of CSA cement can save energy during production process in comparison to established cementitious materials. Therefore it is also more environmental friendly. Insufficient knowledge of this material behaviour restricts the possibilities and makes further research necessary. The research project applied a laboratory test program to elaborate the characterization of the materials. The obtained knowledge from these tests was then applied to further tests to determine application relevant key properties of CSA based pastes and mortars.The properties of pure CSA cement had been compared with the properties of CSA blends. The additions were PC, HAC, FA and GGBS with quantities of 10, 20 and 30%. The water to cement ratio was varying between 0.4, 0.5 and 0.6. General tests like fineness, XRD and XRF were used to define the present non-standardized material. Investigation of fresh pastes included measurement of setting time and calorimetry. Hardened mortar specimens of different ages were examined for compressive strength. The results showed that CSA itself hardens very rapidly and gives an early strength development. Possible ways of utilization of CSA based mortars and concretes were also emphasized in the paper.

  12. Pack cementation diffusion coatings for iron-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1995-02-01

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels. The Cr-Si ferrite layers have proven to be very resistant to high temperature cyclic oxidation and to pitting in aqueous solutions. The process has been patented, and is being transferred for industrial application, e.g. for water walls of utility boilers, etc. In the proposed extension of this project, the use of mixed pure metal powders in the pack will be extended to achieve similar ferrite Fe-Cr-Al coatings with excellent oxidation resistance, with the eventual transfer of the technology to industry. In other recent studies, Ni-base alloy rods were aluminized by the halide-activated pack cementation process to bring their average composition to that for the ORNL-developed Ni{sub 3}Al, for use as a welding rod. A similar effort to develop a welding rod for the ORNL Fe{sub 3}Al alloy did not yield reproducible coating compositions or growth kinetics. The continued effort to produce Duriron-type (Fe-18Si-5Cr) coatings on steels was not successful. Literature for the intrinsic diffusion coefficients suggests that this task cannot be achieved.

  13. 公路粉煤灰水泥水化过程的研究%Studies on Hydrated Process of High Road Fly Ash Cement

    Institute of Scientific and Technical Information of China (English)

    付兴华; 孙景旭; 董友军; 文福民

    2001-01-01

    The hydrated products and pore size distribution of high road fly ash cements were studied by means of XRD,DTA,Mercury porosimeter,etc.,The experiment results showed that C-S-H gel,AFt were the main hydrated products in high road fly ash cement,but the contents of Ca(OH)2 were lower.The exothermic peaks of the formation of AFt and AFm appeared in hydrated exotermic curves of this cements,while the peaks of C-H-S gel and Ca(OH)2 were not.Although the total porosity of this cement stone were higher,the volume porosity of large pores which sizes were more than 1000A。 were lower after 7 days,the micropores and gel pores which size were little than 500A。 were higher.Thus,the cement stone was fine and close in texture,properties were also higher in late ages.%采用X-射线衍射、差热分析、微量热计及压汞测孔仪对公路粉煤灰水泥的水化产物、水化放热曲线、孔尺寸分布进行了研究。实验结果表明,公路粉煤灰水泥的主要水化产物是C-S-H凝胶、AFt及少量的Ca(OH)2。在该水泥的1天水化放热曲线上仅出现了AFt及AFm的形成放热峰,未出现C-S-H凝胶及Ca(OH)2的快速形成放热峰。尽管该水泥的空隙率较高,但水化7天以后大于1000A。的连通大孔体积率较低,而小于500A。的微孔及凝胶孔体积率较高,因此水泥石的结构致密,后期性能较好。

  14. FY 2000 report on the basic survey to promote Joint Implementation, etc. Energy conservation by modernization of a cement plant (Double Horse Cement Co.) in China; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Chugoku cement kojo (Double Horse Cement) kindaika ni yoru sho energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was conducted of possibilities of energy conservation and greenhouse effect gas emission reduction in the cement production process of Double Horse Cement Co., Mianyang City, Sichuan Province, China. Double Horse Cement adopts the wet type long kiln production system and has a production ability of approximately 1.5 million t/y. In the project, as to three production lines out of the six production lines, improvement was planned to be made of the technologies on the following: mixing of raw materials, grinding of raw materials, NSP, clinker cooler, clinker pre-grinder, high-efficiency separator, waste heat use power generation, etc. As a result of the study, it was found that the energy conservation amount obtained was 54,646 toe/y. And, the amount of greenhouse effect gas reduction was 169,086 t-CO2/y. The total fund required for this project was approximately 5.553 billion yen and the internal earning rate was 7.36% after tax. When the project is carried out, expenses vs. effects are 9.8 toe/million yen in energy conservation amount and 30.4 t-CO2/million yen in greenhouse effect gas reduction. (NEDO)

  15. Quality tools in a process of technical project management

    Directory of Open Access Journals (Sweden)

    A. Gwiazda

    2006-08-01

    Full Text Available Purpose: The aim of this paper is to show how it could utilize the tools of quality management for the processof project management. Also it could be presented a modification of the Ishikawa diagram.Design/methodology/approach: In presented work has been applied the research methodology that bases onthe theoretical analysis and on the empirical researches. It is also presented a practical solution that proved thevalidity of proposed method.Findings: The base finding of the presented work is the new concept of the Ishikawa diagram. The secondfinding is the stratification method. This new management tools let change the process of technical solutionpreparation.Research limitations/implications: In presented work it has been used only one improved quality tool. It isconsider with the fact that the aim of the paper is to present the possibility of the improved management tool.Practical implications: The article, and particularly the presented method allow to develop the researchesconsider with quality tools. Secondly, this paper shows the importance of integration the management andtechnical procedure. And thirdly in this article is presented a technical solution that is also a result of improvedwork technique.Originality/value: The presented improve Ishikawa diagram and stratification analysis is the original authorproposition. Also presented technical solutions are original.

  16. Chemical recycling of carbon dioxide emissions from a cement plant into dimethyl ether, a case study of an integrated process in France using a Reverse Water Gas Shift (RWGS) step

    International Nuclear Information System (INIS)

    Recycling of carbon dioxide (CO2) and hydrogen (H2) into liquid fuel technology has recently gained wide public interest since it is a potential pathway to increase the liquid fuel supply and to mitigate CO2 emissions simultaneously. In France, the majority of the electricity production is derived from nuclear and renewable energy which have a low CO2 footprint. This electricity power enables a potential for massive hydrogen production with low carbon emissions. We studied the possibility to develop this technology at an industrial scale in the French context on a typical industrial example of a cement manufacture in the south of France. An integrated process is proposed, which enables the use of the heat released by the CO2 to fuel process to help to capture the CO2 released by the cement manufacture. Some technological issues are discussed, and a potential solution is proposed for the catalyst used in the critical step of the Reverse Water Gas-Shift reaction (RWGS) of the process. (authors)

  17. Richland Environmental Restoration Project management action process document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines.

  18. Risk Factors in ERP Implementation Projects for Process Oriented

    OpenAIRE

    Andrzej Partyka

    2009-01-01

    This paper present review and analysis of risk factors, which could affect successful implementation of ERP system, for project performed in project oriented organizations. Presented risk breakdown structure and the list of common risk factors, are well-suited for ERP implementation projects. Considered risk categories allow for complex risk analysis. Additionally, mapping of risk importance for particular implementation phases is presented. Making presented model an important input for proje...

  19. Richland Environmental Restoration Project management action process document

    International Nuclear Information System (INIS)

    This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines

  20. Post Process Characterization of Friction Stir Welded Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes in this STTR Phase II project to continue development and validation of Luna's amplitude-dependent, nonlinear ultrasonic...

  1. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  2. Cement og politik

    DEFF Research Database (Denmark)

    Lund, Joachim

    2012-01-01

    as well as in the public sphere. Most of the extensive job creating measures he carried out as a minister for public works necessarily involved the use of great amounts of cement – the primary produce of F.L. Smidth & Co. Gunnar Larsen thus became an easy target for Communist propaganda, picturing him...... of the Soviet Union (including an F.L. Smidth & Co. cement plant in former Estonia). He spent the last 15 months of the occupation in Sweden and was arrested after having returned to Copenhagen in May, 1945. Although a Copenhagen city court prison sentence for economic collaboration was reversed, he had...

  3. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  4. Implications of critical chain methodology for business process flexible automation projects in economic organizations

    Directory of Open Access Journals (Sweden)

    Paul BRUDARU

    2009-12-01

    Full Text Available Business processes flexible automation projects involve the use of methods and technologies from Business Processes Management area (BPM that aim at increasing the agility of organizations in changing the business processes as response to environmental changes. BPM-type projects are a mix between process improvement projects and software development which implies a high complexity in managing them. The successful implementation of these projects involves overcoming problems inherent as delays in the activities of projects, multi-tasking, lack of focus which can not be solved by traditional project management tools. An approach which takes account of the difficulties of BPM projects is critical chain methodology. Using critical chain method provides the methodology fundament necessary for the successful completion of BPM-type projects.

  5. Cementing a wellbore using cementing material encapsulated in a shell

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  6. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  7. Advanced cement solidification technique for spent resins

    International Nuclear Information System (INIS)

    In the past 40 years, the nuclear facilities of China Institute of Atomic Energy (CIAE) produced an amount of radioactive organic resins, a kind of problematic stream in nuclear industry. As these facilities were stepping into decommissioning, the treatment of the spent organic resins was put on the agenda. The various routes for spent resin treatment such as incineration, advanced oxidation, cement immobilization, etc, were considered. Each method has its advantages and disadvantages when applied in the treatment of spent resins. Since the quantities of the spent organic resins were relatively small and an experience with variety of cementation processes existed in CIAE, predominately for immobilization of the evaporated concentrates, the option of direct encapsulation of the spent organic resins into cementitious materials was adopted in 2003, as a preferred method from the point of view of saving the on the cost of the disposal. In order to realize the end goal, the main work consisted of: the survey of the source terms; cementitious material formula investigation; and the process development. This work, which was undertaken in the following years, is addressed as follows. Source terms of the spent resins in CIAE were to be made clear firstly. The results showed that a total of 24-29 m3 of spent resins was generated and accumulated in the past 40 years. Spent resin arose from two research reactors (heavy water reactor and light water reactor), and from the waste management plant. The amount of the spent resins from the heavy water reactor was 1m3 or so, but its radioactive concentration was high to ∼108-∼109Bq/m3. Two kinds of cements, ASC and OPC cement were selected next, as the solidifying matrix to be investigated. A mixture surface response approach was employed to design experiment and interpret data. In comparison, ASC was superior to OPC cement and it displayed preferable performances to encapsulate spent resins. The optimum formulation is:1) resin

  8. Tools to Improve the Process of Engineering Design: An Analysis of Team Configuration and Project Support

    OpenAIRE

    Smith, Paige Elizabeth

    2004-01-01

    The purpose of this research was to determine how team design and project management (planning and tracking) affected planning and design performance and the people involved in the process. A laboratory study was conducted to evaluate three factors: team design (individuals versus groups of three), project support (no project support versus manual project support versus automated project support), and the engineering design life-cycle, which includes conceptual design, preliminary design, an...

  9. The Process of Selecting Project Team Members in a Matrix Organization with Multiproject Environment

    OpenAIRE

    Andersson, Johan; Finnserud, Mikael

    2003-01-01

    In a matrix organization, the process of selecting project team members is a collaboration between the functions and the projects. A project’s success or failure does often depend on that collaboration. This thesis work examines the present situation at Saab Gripen Customer Support. The process is examined from four different perspectives: the roles of the functional and the project manager, competence development, behavioural science team roles and the complexity of the projects. The result ...

  10. Establishing the Framework of Assessing the Development Process of Chinese Forest Carbon Offset Projects

    OpenAIRE

    Wang, Jue

    2015-01-01

    Forest carbon offset projects have been growing vigorously in China in the last ten years. It is necessary to form an overall picture of the projects, to analyze the quality of their development processes, and to shed light on the development of upcoming projects. In order to evaluate their development process, a framework of assessment was built up and applied in practical project assessment. In this thesis, firstly, the situation of the global carbon markets and Chinese forest carbon of...

  11. In vitro bioactivity of a tricalcium silicate cement

    International Nuclear Information System (INIS)

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca3SiO5, obtained by sol-gel process, and a Na2HPO4 solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca3SiO5 would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)

  12. Utilisation and Improvement of the Initialisation of Project Communication Processes During the Management of Projects in Industrial Enterprises in Slovakia

    Science.gov (United States)

    Samáková, Jana; Šujanová, Jana; Špirková, Marta

    2016-06-01

    Nowadays, project communication is slowed due to the need for compliance with strict rules. Therefore the aim of this paper is to analyse the use of the communication environment as a basic part of the initialisation of project communication in industrial enterprises in Slovakia, and to propose measures to improve the process of initialisation of project communication in these enterprises. In this paper, theoretical and empirical research (quantitative and qualitative) approaches were chosen. On the basis of the research we can conclude, that communication as a basic part of the "Initialisation of project communication" is not adequately elaborated in international methodologies and standards of project management and in industrial enterprises. Industrial enterprises do not deal with processes of the communication environment and this results in negative consequences.

  13. Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    T Calvo-Fernández

    2010-10-01

    Full Text Available This paper reports a biological evaluation of a non-resorbable acrylic cement loaded with alendronate for the treatment of osteoporotic vertebral compression fractures. The cement formulation was based on polymethyl methacrylate and acrylic monomers; one of these had covalently linked vitamin E residues. The same cement in the absence of alendronate was used as a control. The setting of the charged cement presented a maximum polymerization temperature of 44ºC, a setting time of 24 min, a residual monomer content lower than 3 wt.%, a compressive strength of 99±10 MPa and an elastic modulus of 1.2±0.2 GPa. Cytotoxicity studies using human osteoblast cultures revealed that the leachable substances of the alendronate loaded cement collected between 1 and 7 days decreased cell viability to values lower than 80%. However, morphological changes and cellular damage in cells produced by the extracts decreased with the leak time. Cell adhesion and growth on charged cement was significantly lower than on the control. Implantation of the cement paste in the intra-femoral cavity of rabbits showed that initially the osteogenic activity was evident for the cement charged with alendronate, and the osteosynthesis process took place mainly in the trabeculae and was manifested by the presence of a non-mineralised osseous spicule. The interface between material and adjacent bone tissue was initially characterized by a variable fibrous response that in many cases it appeared reduced to thin connective tissue after a 24-week-period.

  14. Macrodefect-free cements: chemistry and impact of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M.; Galikova, L.; Mojumdar, S.C. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry

    2002-07-01

    To control and improve the moisture resistance is a long felt necessity of the MDF cements, chemical approaches together with material science contribute to the progress. Present results support our previous hypothesis about the impregnation or barier effect of poly-P on the MDF cements and enlarge the validity of this hypothesis to the blends of SAFB clinker, Portland cement and HPMC or poly-P. Compactness of Al(Fe)-O-P cross-links increases the intrinsic density and, consequently, impregnates the system against the uptake of moisture. In a sense of the theory of functional polymers, the intensity of grafting of polymer chains to the surface of grains increases if poly-P is used and with the prolonged processing. The scope of moisture attack on MDF cements synthesized from the blends of SAFB clinker, Portland cement and HPMC or poly-P, as quantified using mass changes as measure of moisture resistance, is strongly affected by the nature of polymer. The addition of Portland cement in the raw mix improves the moisture resistance of MDF cements. Thermal analysis shows: (i) the irreversible mass gain of 3 - 10% is arisen from carbonation and secondary hydration of cement grains and (ii) the Al(Fe)-O-C(P) cross-links remain intact in the moist environment at either ambient or extreme levels of humidity. (orig.)

  15. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  16. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  17. ACACIA Project – Development of a Post-Combustion CO2 Capture Process. Case of the DMXTM Process

    Directory of Open Access Journals (Sweden)

    Gomez A.

    2014-11-01

    Full Text Available The objective of the ACACIA project was to develop processes for post-combustion CO2 capture at a lower cost and with a higher energetic efficiency than first generation processes using amines such as MonoEthanolAmine (MEA which are now considered for the first Carbon Capture and Storage (CCS demonstrators. The partners involved in this project were: Rhodia (Solvay since then, Arkema, Lafarge, GDF SUEZ, Veolia Environnement, IFP Energies nouvelles, IRCE Lyon, LMOPS, LTIM, LSA Armines. To validate the relevance of the breakthrough processes studied in this project, techno-economic evaluations were carried out with comparison to the reference process using a 30 wt% MEA solvent. These evaluation studies involved all the industrial partners of the project, each partner bringing specific cases of CO2 capture on their industrial facilities. From these studies, only the process using demixing solvent, DMXTM, developed by IFPEN appears as an alternative solution to the MEA process.

  18. ACACIA Project - Development of a Post-Combustion CO2 Capture Process. Case of the DMXTM Process

    International Nuclear Information System (INIS)

    The objective of the ACACIA project was to develop processes for post-combustion CO2 capture at a lower cost and with a higher energetic efficiency than first generation processes using amines such as Monoethanolamine (MEA) which are now considered for the first Carbon Capture and Storage (CCS) demonstrators. The partners involved in this project were: Rhodia (Solvay since then), Arkema, Lafarge, GDF SUEZ, Veolia Environnement, IFP Energies nouvelles, IRCE Lyon, LMOPS, LTIM, LSA Armines. To validate the relevance of the breakthrough processes studied in this project, techno-economic evaluations were carried out with comparison to the reference process using a 30 wt% MEA solvent. These evaluation studies involved all the industrial partners of the project, each partner bringing specific cases of CO2 capture on their industrial facilities. From these studies, only the process using de-mixing solvent, DMXTM, developed by IFPEN appears as an alternative solution to the MEA process. (authors)

  19. Process-oriented knowledge-sharing platform for chemical engineering design projects

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A process-oriented knowledge-sharing platform is studied to improve knowledge sharing and project management of chemical engineering design enterprises. First, problems and characteristics of knowledge sharing in multi-projects of chemical engineering design are analyzed. Then based on theories of project management, process management, and knowledge management, a process-oriented knowledge-sharing platform is proposed. The platform has three characteristics: knowledge is divided into professional knowledge...

  20. Estimated longevity of performance of Portland cement grout seal materials

    International Nuclear Information System (INIS)

    The sealing of boreholes, fractures and underground workings of repositories is a common concern for all programs investigating the deep burial of nuclear waste as a disposal mechanism. Two grouting materials, bentonite and portland cement, have been identified by many programs as likely candidate seal materials. The longevity of performance of both of these materials is currently being investigated under the auspices of the Stripa Project. These investigations comprise coordinated laboratory, field and modeling studies to produce fundamental data, practical experience and estimates of long-range performance, respectively. Long-term performance is an especially sensitive issue for cement because the phases that comprise cement are metastable. Accordingly, it may be assumed that cement grout performance will degrade with time. For a simplified cement system, two mechanisms for chemical degradation have been considered: phase change and dissolution. When considering dissolution, both equilibrium (slow flow) and open (fast flow) systems have been analyzed to establish bounds. Granitic terrain groundwaters ranging from fresh to saline have been taken as solvents. To assess the consequences in terms of flow, an empirical relation between cement permeability and porosity has been developed. Predictions of performance changes with time have been produced by making conservative estimates of local hydraulic head conditions for various periods of repository history. For the crystalline rock environments considered, preliminary results indicate that cement grout performance may be acceptable for tens of thousands to millions of years providing its initial hydraulic conductivity is on the order of 10-12 m/s

  1. An application of stochastic processes for analyzing risks in highway projects

    Directory of Open Access Journals (Sweden)

    S. Meysam Mousavi

    2015-01-01

    Full Text Available The successes on highway projects are uncertain because of organizational features, improper scope definitions and long lasting complicated processes. Highway projects under uncertain environment can effectively be managed with the application of risk management throughout their life cycles. Risk management within highway projects, therefore, has been recognized vital to improve their performances and increase the success of these projects. Processes of the projects are dynamic by nature. Therefore, commonly used static techniques do not analyze the potential risks properly. The stochastic process is a highly effective tool to quantitatively deal with the risk analysis. In this paper, a new approach based on Markov chain is proposed to assess the potential risks of highway projects in a dynamic framework. The approach takes advantage of the capability of probabilistic tools. Furthermore, using an application example in highway projects, the proposed approach is demonstrated in detail. Finally, the risk management effectiveness of using the stochastic processes is illustrated.

  2. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H2. Because the H2 generation began immediately just after the mixing, H2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  3. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  4. Effect of mixing water magnetic activation cycle on cement stone structure

    Science.gov (United States)

    Kugaevskaya, S. A.; Abzaev, Yu A.; Safronov, V. N.; Sarkisov, Yu S.; Gorlenko, N. P.; Ermilova, T. A.

    2015-01-01

    The paper presents results of investigations of hydration processes and structure formation of the cement paste matrix mixed with water activated by magneto static field using water treatment cycle technology. It is shown that crystallization of phases occurs in the cement-water system at different rates, and phase redistribution in the structure of the cement paste matrix is described before and after magnetic activation of mixing water. Also, modeling of the cement-water system and calculations of amorphous and crystalline phases using the Rietveld refinement method before and after magnetic activation show that strength properties of the cement paste matrix depend not only on quantitative but also qualitative relationship between phases.

  5. Destruction of meat and bone meals in cement plants; Destruction des farines animales dans les cimenteries

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-10-01

    Following the crisis of the bovine spongiform encephalopathy disease ('mad cow' disease), the French cement industrialists have been requested by the government since 1996 to eliminate the forbidden meat and bone meals in cement kilns where they are used as fuel substitutes. This article presents the advantages of the cement industry file in the destruction of such wastes, the validation and the safety aspects of this process. Meat and bone meal represents a high-grade fuel that lowers the environmental impact of cement production and does not affect the quality of cement. (J.S.)

  6. Substitution of the clayey mineral component by lignite fly ash in portland cement clinker synthesis

    OpenAIRE

    Jovanović Nataša; Komljenović Miroslav; Petrašinović-Stojkanović Ljiljana; Baščarević Zvezdana; Bradić Violeta; Rosić Aleksandra

    2006-01-01

    Fly ash from four power plants in Serbia (PP "Morava" - Svilajnac, PP "Kolubara" - Veliki Grijani, PP "Kostolac" - units B1 and B2 - Kostolac and PP "Nikola Tesla" - units A and B - Obrenovac) was utilized as the starting raw component for Portland cement clinker synthesis. Limestone and quartz sand from the "Holcim - Serbia, a.d." cement factory were the other two starting raw components. Based on the chemical composition of the raw components and from the projected cement moduli, the amount...

  7. Assessing CO2 interaction with cement and steel over a two-year injection period: current state and future risks for the MovECBM project in Poland

    NARCIS (Netherlands)

    Loizzo, M.; Bressers, P.; Benedictus, T.; Guen, Y. le; Poupard, O.

    2009-01-01

    On the site of Kaniow (Poland) a new well was used to inject supercritical CO2 into coal seams over a two year period. The injection was part of an experiment on Enhanced Coal-Bed Methane recovery sponsored by the RECOPOL and MovECBM European project. Part of the interest in ECBM is the possibility

  8. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect th

  9. Jinchuan Group Breaks Ground for a 300,000-ton Copper Deep Processing Project

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>According to Jinchang Municipal Government of Gansu,on August 21,Jinchuan Group broke ground for its 400,000-ton ionic membrane caustic soda project,300,000-ton PVC project,300,000-ton copper deep processing project,

  10. WC基钢结硬质合金磨损机理研究%STUDY OF WEAR MECHANISM OF THE WC STEEL-BONDED CEMENTED CARBIDE MANUFACTURED BY A NEW PROCESS

    Institute of Scientific and Technical Information of China (English)

    杜晓东; 尤显卿; 郑玉春

    2001-01-01

    The WC steel-bonded cemented carbide manufactured by a new process w as oil-quenched at 1150℃ and tempered at the low temperature 150℃ after anneal ing, and its wearability and wear mechanism were analyzed. The results show that the wear of the tested cemented carbide is caused by flaking of the hard phase, and that the development and propagation of cracks along the phase boundary between the hard phase and the substrate or the other hard phase is the reason why the h ard phase flakes.%将新工艺制造的WC钢结硬质合金退火后经1150℃油淬,150℃低温回火,分析其磨损特性和磨损机理,结果表明实验合金的磨损是由硬质相剥落造成的,裂纹沿硬质相与基体或硬质相之间的相界面萌生和扩展是硬质相剥落的原因。

  11. Numerical Simulation of Projection Welding Processes for Door Hinge of Automobile Based on Coupled Fields Analysis

    Institute of Scientific and Technical Information of China (English)

    QIAN Chang-ming; LUO Ai-hui; CHEN Guan-long

    2007-01-01

    Projection welding is a variation of electric resistance welding with the dynamic changes of the flow paths for heat and electrical properties with changing temperature caused by the large plastic deformation collapse of projection. As the joint type between the auto door hinge and the inner plate, projection welding may bring welding distortions and would affect the assembly quality of auto body. A comprehensive electric-thermal-mechanical numerical simulation was performed to quantitatively simulate the processes of projection welding by using a coupled finite element method. The mechanism of projection collapse and the formation process of nugget were discussed and good conclusions have been achieved comparing with the test results.

  12. A Novel Method for Assessing and Optimizing Software Project Process Based Risk Control

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new approach for assessing and optimizing software project process based on software risk control pre-sented, which evaluates and optimizes software project process from the view of controlling the software project risks. A model for optimizing software risk control is given, a discrete optimization algorithm based on dynamic programming is proposed and an example of using above method to solve a problem is also included in this paper. By improving the old passive post-project control into an active effective pre-action, this new method can greatly promote the possibility of success of software projects.

  13. 水泥检测中的影响因素及质量检测探究%Explore Influence Factors and Quality Inspection of Cement Testing

    Institute of Scientific and Technical Information of China (English)

    姜云

    2013-01-01

    在建筑规模不断扩大的背景下,建筑项目的安全质量问题备受关注。而水泥作为最主要的建筑材料之一,就成为了保障工程质量的决定性因素,也是确保水泥质量的最有效措施。本文从水泥检测的重要性和必要性入手,分析水泥检测过程中的影响因素。对于完善水泥质量检测的过程,提出了切实有效的改进措施。%Under the background of the construction scale ex-pands unceasingly, safety and quality of building projects got to be concerned. While the cement as one of the main building materials, has became the decisive factor to guarantee engine-ering quality, and also to be the most effective measures to en-sure the quality of cement. This paper from the necessity and the importance of cement detection, analyzes influencing fact-ors of cement in the process of detection. To improve the proc-ess of the cement quality detection, it puts forward the meas-ures to improve the effective.

  14. POZZOLAN AND CEMENTS WITH POZZOLAN

    Directory of Open Access Journals (Sweden)

    Hasan KAPLAN

    1995-02-01

    Full Text Available Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, cement with pozzolan is produced by adding the pozzolan, which has a large reservoir in the country, in cement in sertain amount. However this type of cement is consumed in the construction sector, sortage of scientific investigation and speculative news on the subject.are worried the users and producers. In this paper, prior to an experimental study on the cements having pozzolan additive, historical development of pozzolan, reservoir of Turkiye, and comparison with portland cement is carried out. Advantages and disadvantages of pozzolan are also discussed in some points.

  15. Environmental assessment process for the Port Hope project and the Port Granby project: a responsible authority perspective

    International Nuclear Information System (INIS)

    Detailed environmental assessments were initiated very early in project planning for two Government of Canada projects proposing to clean up and locally manage historic low-level radioactive waste over the long-term in the Port Hope area of Ontario. Both the Port Hope Project and the Port Granby Project are based on conceptual approaches proposed by the local communities as local solutions to a long standing environmental issue. In a legal agreement signed in 2001 with the affected municipalities, the Government of Canada accepted the community approaches as potentially suitable solutions for management of the waste. Federal environmental assessments of the proposals were launched shortly thereafter and have been used as planning tools to further define the community approaches with the participation of the local municipalities and the public. The environmental assessment process has been designed to allow for preferred alternatives for implementing each project to emerge that are environmentally, technically and socially acceptable. (author)

  16. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  17. Effective ERP adoption processes: the role of project activators and resource investments

    OpenAIRE

    Bernroider, Edward

    2013-01-01

    The aim of this paper is to demonstrate whether stakeholders activating a project shape team building, the structure and magnitude of resource investment levels, and to what extent these levels impact ERP project effectiveness. The process view of an ERP project includes project initiation, system justification and funding, implementation, and early system use. Results from a nationwide empirical survey conducted in Austria (N = 88) show that activating actors influence team fo...

  18. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    .17, H/S ratio of 2.5 and N/S ratio of 0.18. In the second phase of this research, theoretical models are built using a modified version of an existing cement hydration modelling code, "CEMHYD3D", to simulate the chemical reaction of the activated glass powder hydration and glass powder in cement. The modified model, which is referred to as the "MOD-model" is further used to predict the types, compositions and quantities of reaction products. Furthermore, the glass powder hydration data, which is obtained experimentally, is incorporated into the MOD-model to determine the effect of adding glass powder to the paste on the process of cement hydration and resulting paste properties. Comparisons between theoretical and experimental results are made to evaluate the developed models. The MOD-model predictions have been validated using the experimental results, and were further used to investigate various properties of the hydrated glass powder cement paste. These properties include, for example, CH content of the paste, porosity, hydration degree of the glass powder and conventional C-S-H and GP CS-H contents. The results show that the MOD-model is capable of accurately simulating the hydration process of glass powder-blended cement paste and can be used to predict various properties of the hydrating paste.

  19. Development of a Multipurpose Extruder/Press Food Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is to develop versatile, low mass, energy efficient, and easily maintained multipurpose seed processing (MSP) equipment for food processing in space...

  20. SpiderFab: Process for On-Orbit Construction of Kilometer-Scale Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops a process for automated on-orbit construction of very large structures and multifunctional components. The foundation of this process is a...

  1. Autonomous, On-board Processing for Sensor Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fuse high performance reconfigurable processors with emerging fault-tolerance & autonomous processing techniques for a 10-100x decrease in processing time....

  2. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  3. SSP: a simple software process for small- size software development projects

    OpenAIRE

    Ochoa, Sergio; Pino, José A.; Luis A. Guerrero; Cesar A Collazos

    2006-01-01

    A large number of software development projects in Latin- American countries are small-size, poorly defined and time pressured. These projects usually involve under qualified people. Provided that well-known software development models have shown limited applicability in such scenario, developers usually carry out ad-hoc software processes. Therefore, the obtained results are unpredictable. This article presents a Simple Software Process (SSP) for small-size software projects involving under ...

  4. A functional-dynamic reflection on participatory processes in modeling projects.

    Science.gov (United States)

    Seidl, Roman

    2015-12-01

    The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.

  5. Utilization from Cement Kiln Dust in Removal of Acid Dyes

    OpenAIRE

    Mohamed E.S.I. Saraya; Mahmoud E.S. Aboul-Fetouh

    2012-01-01

    Problem statement: The growth of industries and day to day changes in human activities has resulted in an increase in the volume and complexity of wastewater to the environment. Textile industry is one of the most water consumers industries of Egypt, thus discharges large amounts of wastewater effluents during processing, especially, in the coloring and washing steps. Cement kiln dust is a solid waste in cement manufacturing. Approximately 2.5-3.0 (6-9%) million tons of cement kiln dust is pr...

  6. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    Science.gov (United States)

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-07-01

    Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.

  7. Keynote presentation: Project Management, Technology and Evolving Work Processes

    DEFF Research Database (Denmark)

    Kampf, Constance Elizabeth

    not be used in the workplace when students graduate, but rather on the ”engine” of problem solving and communication strategies which drives projects and affects project success from the stakeholders point of view. Once students understand the engine, they are able to not only use software tools...... management documents looked like, but also how these documents are interconnected and work together to solve a problem. In addition, as they were in communication with a real client, they needed to work iteratively, ch anging their understanding of the problem, which in turn changed their options for solving...... the problem as well as planning and communicating the solution. This dynamic participation in problem solving helped students gain experience beyond recognition and reproduction  Campus Encounters – Bridging Learners Conference “Developing Competences for Next Generation Service Sectors” April 13–14, 2011...

  8. Analysis and Development of a Project Evaluation Process.

    Energy Technology Data Exchange (ETDEWEB)

    Coutant, Charles C.; Cada Glenn F.

    1985-01-01

    The Bonneville Power Administration has responsibility, assigned by the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (Public Law 96-501; 16 USC 839), for implementing the Columbia River Basin Fish and Wildlife Program of the Northwest Power Planning Council. One aspect of this responsibility is evaluation of project proposals and ongoing and completed projects. This report recommends formalized procedures for conducting this work in an accurate, professional, and widely respected manner. Recommendations and justifications are based largely on interviews with federal and state agencies and Indian tribes in the Northwest and nationally. Organizations were selected that have evaluation systems of their own, interact with the Fish and Wildlife Program, or have similar objectives or obligations. Perspective on aspects to be considered were obtained from the social science of evaluation planning. Examples of procedures and quantitative criteria are proposed. 1 figure, 2 tables.

  9. The Characteristics and the Countermeasures of the Occupational Hazards for New Dry Process Cement Production Line%新型干法水泥生产线职业危害特点及防治对策

    Institute of Scientific and Technical Information of China (English)

    王超洋; 秦文华

    2013-01-01

      为探讨新型干法水泥生产工艺的职业病危害因素的特点,并提出相应的防治对策,选取某企业5000 t/d新型干法水泥熟料生产线为代表,对其工作场所中存在的职业病危害因素进行识别,并对该规模下职业病危害因素的浓度或强度进行检测.结果表明,粉尘和噪声为该工艺的主要职业病危害因素,其岗位达标率分别为60%和51.5%,毒物及工频电场等均满足职业卫生标准限值的要求.根据职业危害的关键控制岗位,提出防治对策以减少职业病发生.%  For discussing the characteristics of the occupational hazards for new dry process cement production line, and advancing the corresponding countermeasures,the authors select a company with the production of 5000 t/d new dry process cement as the representative,identify the factors of occupational hazards in workplace and detect the concentration or intensity of occupational hazards. The results show that dust and noise are the major occupational hazards in the process,the post compliance rates were 60% and 51.5%. The poison and power frequency electric field,etc. meet the requirements of occupational health standard limits. According to the occupational hazards of critical control positions,the control measures for reducing occupational diseases is put forward.

  10. Quality tools in a process of technical project management

    OpenAIRE

    Gwiazda, A.

    2006-01-01

    Purpose: The aim of this paper is to show how it could utilize the tools of quality management for the processof project management. Also it could be presented a modification of the Ishikawa diagram.Design/methodology/approach: In presented work has been applied the research methodology that bases onthe theoretical analysis and on the empirical researches. It is also presented a practical solution that proved thevalidity of proposed method.Findings: The base finding of the presented work is t...

  11. Integrated Project Scheduling and Staff Assignment with Controllable Processing Times

    OpenAIRE

    Victor Fernandez-Viagas; Framinan, Jose M.

    2014-01-01

    This paper addresses a decision problem related to simultaneously scheduling the tasks in a project and assigning the staff to these tasks, taking into account that a task can be performed only by employees with certain skills, and that the length of each task depends on the number of employees assigned. This type of problems usually appears in service companies, where both tasks scheduling and staff assignment are closely related. An integer programming model for the problem is proposed, tog...

  12. YES Africa: Geoscience Projects for Development (GPD) (Strategy and Process)

    Science.gov (United States)

    Barich, A.; Nkhonjera, E.; Venus, J.; Gonzales, L. M.

    2011-12-01

    For various reasons, Earth Science in Africa has been acareer path that has not been promoted or a preferred option. In January 2011, the YES Network in Africa launched the Network in Africa through a symposium. This took place at the University of Johannesburg, in conjunction with the Colloquium of Africa Geology in January 2011. The Symposium brought together young geoscientists from all regions of Africa to talk about their geoscience research that focused on geohazards and professional development within the African continent. The YES Africa Symposium also aimed to improve the participation of students in African geosciences issues and to also discuss how geoscience education in Africa can be promoted to attract more students to choose a career in the profession. The YES Africa Symposium resulted in ambitious short/long term projects. Symposium participants agreed unanimously that spreading awareness throughout the society about geological hazards, climate change, water management strategies and sustainable development remains a priority. As a direct result local projects are being developed by the YES Network's African National Chapters to develop a long-term geoscience taskforce within the continent. These projects will be developed by implementing student chapters in universities and strengthening the ties with local geoscience organizations and governments. Many YES Network African National Chapters have already taken the lead in developing their local projects, and some have been very successful in their efforts. Collaboration with the various YES Network National Chapters will be critical in developing a geo-hazard portal which links regional organizations and institutions together. This will help to disseminate geo-information more efficiently, and also to develop the next generation of young African geoscience students and early-career professionals. This presentation will detail a variety of innovative outreach methods used to connect with the public

  13. Evaluation of ternary blended cements for use in transportation concrete structures

    Science.gov (United States)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  14. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  15. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  16. Utilization from Cement Kiln Dust in Removal of Acid Dyes

    Directory of Open Access Journals (Sweden)

    Mohamed E.S.I. Saraya

    2012-01-01

    Full Text Available Problem statement: The growth of industries and day to day changes in human activities has resulted in an increase in the volume and complexity of wastewater to the environment. Textile industry is one of the most water consumers industries of Egypt, thus discharges large amounts of wastewater effluents during processing, especially, in the coloring and washing steps. Cement kiln dust is a solid waste in cement manufacturing. Approximately 2.5-3.0 (6-9% million tons of cement kiln dust is produced annually in Egypt and that cause significant environmental problems. Approach: This study aims to investigate removal of some acid dyes from aqueous solution using cement kiln dust and monitoring the dye in colored cement kiln dust. Solution with 0.4 g L-1 concentration was treated with cement kiln dust until the color of dye disappears. The colored cement kiln residue was separate by filtration and dried. The concentration of dye was measured before and after treatment by UV-Vis spectroscopy as well as after washing of colored residue. Also, the colored residue was investigated with, XRD, IR and DSC techniques as well as the loss on ignition at 450°C. Results: The results found that the cement kiln dust has the power to remove all existing acid dyes and the residue has the same color of dye. When colored residue was washed with water, there was no back diffusion of dye in to water. This may be mainly due to chemical reaction that took place between cement kiln dust and dye. Thus analysis such as IR, XRD and DSC are in agreement with these results. Conclusion: CKD is efficient in the processes of dye removal from aqueous solutions. The interaction between acid dye and CKD is fast (just minutes. So, we suggest using spent CKD for dye removal of waste water.

  17. [Haemotoxicity of dental luting cements].

    Science.gov (United States)

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality. PMID:2626769

  18. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  19. Accelerated Numerical Processing API Based on GPU Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent performance increases in graphics processing units (GPUs) have made graphics cards an attractive platform for implementing computationally intense...

  20. Process for planning and control of software projects using XedroGESPRO

    Directory of Open Access Journals (Sweden)

    Jacqueline Marín-Sánchez

    2014-04-01

    Full Text Available The software project management in Cuba has become a key area for improving production processes and decisionmaking in organizations. Several models and standards for process improvement, related with project management, proposed best practices on issues of planning and control of projects. However, they are generic guidelines that describe only those activities to execute, leaving the responsibility for implementing to organizations, using sometimes , expensive proprietary informatics tools to achieve these goals. This research proposes a process for planning and control of software projects using Xedro-GESPRO: an open-source software tool for project management domestically implemented. The proposal is successfully being applied by the network of production centers of the Informatic Sciences University of Cuba, observing greater efficiency and effectiveness in the planning and control of their projects.

  1. UTILIZATION OF AGARWOOD DISTILLATION WASTE IN OILWELL CEMENT AND ITS EFFECT ON FREE WATER AND POROSITY

    Directory of Open Access Journals (Sweden)

    Arina Sauki

    2013-10-01

    Full Text Available The intent of this research is to utilize the waste produced by distillation process of Agarwood oil and convert it into a profitable oilwell cement additive. Common problem during oilwell cementing is free wáter separation. This problem could weaken cement at the top, gas migration problem and non uniform density of cement slurry that are even worst in cementing deviated well. Another concern on cementing design is the porosity of the hardened cement. If the cement is too porous, it can lead to gas migration and casing corrosion. All tests were conducted according to API Specification-10B. Free water test was determined at different concentrations of Agarwood Waste Additive (AWA, different inclination angles and different temperatures. Based on the findings, it was observed that zero free water was produced when 2% BWOC of AWA was used at all angles. The findings also revealed that AWA can maintain good thermal stability as it could maintain zero free water at increased temperature up to 60˚C.  The porosity of AWA cement was comparable with standard API neat cement as the porosity did not differ much at 2% BWOC of AWA. Therefore, it can be concluded that the AWA is suitable to  be used as an additive in oil well cement (OWC  with 2% BWOC is taken as the optimum concentration.

  2. A review on emission analysis in cement industries

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.B.; Saidur, R.; Hossain, M.S. [University of Malaya, Kuala Lumpur (Malaysia). Faculty of Engineering

    2011-06-15

    The cement subsector consumes approximately 12-15% of the total industrial energy use. Therefore, this subsector releases CO{sub 2} emissions to the atmosphere as a result of burning fossil fuels to produce energy needed for the cement manufacturing process. The cement industry contributes about 7% of the total worldwide CO{sub 2} emissions. This study complied a comprehensive literature in terms of Thesis (MS and PhD), peer reviewed journals papers, conference proceedings, books, reports, websites for emission generation and mitigation technique. Emission released associated with the burning of fuels have been presented in this paper. Different sources of emissions in a cement industry has been identified and presented in this study. Different techniques to reduce CO{sub 2} emissions from the cement manufacturing industries are reviewed and presented in this paper. The major techniques are: capture and storage CO{sub 2} emissions, reducing clinker/cement ratio by replacing clinker with different of additives and using alternative fuels instead of fossil fuels. Apart from these techniques, various energy savings measures in cement industries expected to reduce indirect emissions released to the atmosphere. Based on review results it was found that sizeable amount of emission can be mitigated using different techniques and energy savings measures.

  3. Cementation of Upper Miocene reefs in western Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, M.; Calvet, F.

    1983-03-01

    Coral reefs in the western Mediterranean (southeast Spain, Balearic Island, northern Morocco, Sicily, and Italy) show a wide variety of cement types, ranging from completely tight, well-cemented, to poorly cemented reefs with most of the primary porosity still preserved. Cementation processes in those coral reefs appear to be controlled to a great extent by repeated changes of relative sea levels and regional variations of seawater chemistry. Reef progradation occurred during four to six (or more) important sea level changes, resulting in complicated geometric relationships of reef complexes and their freshwater lenses. Progradation occurred during sea level rises and falls and is reflected in abrupt escarpments in some field localities, generally separated by important terraced erosional surfaces. Various types of aragonitic isopachous cement fringes of marine origin, 0.1 to 1.5 cm (.04 to .6 in.) thick, are well preserved in some localities. This is probably due to subsequent plugging by gypsum cement during the Messinian salinity crises. Another possible effect of salinity fluctuations is the abundance of thick crusts of peletoidal, micrite cement of marine origin, locally forming about three-fourths of the volume of the reef core.

  4. PHYSICO-CHEMICAL MODIFICATION OF MONOLITHIC CONCRETE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2015-10-01

    Full Text Available Purpose. The paper is aimed to the development of scientific bases of the technology of modified concrete of new generation for special facilities by managing the processes of structure formation of modified cement system in conditions of hardening. Methodology. For the achievement the goal: 1 the research of rheological characteristics of modified concrete mixes for special facilities purpose and processes of structure formation of modified cement system of natural curing concrete was conducted; 2 there were defined methods of reliable evaluation of concrete strength at the removal time of formwork and transmission of loads to the constructions where the concrete has not reached the designed strength. Findings. The author found that the structure formation process develops in the hydrating modified cement system as a result of interaction of various macroions. In this process its active parts prevail, which considerably exceed its dissipative part compared to normal conditions of hardening. Originality. There were established the regularities of structure formation of modified cement system, reinforced with synthesized, well crystallized helical filamentary crystals, mechanical grip of which is considered as a principal source of strength in combination with an additional coupling achieved due to cross-germination of crystals. Practical value. In the study the increased binding capacity of cement in high strength concretes and the use of modified cement systems in the special conditions of concreting were considered. The organo-mineral modifying complex that provides the dispersed reinforcement of concrete cement matrix which allows modifying the process of cement matrix structure formation by changing the nature of the surface of binder and modifier was developed. The temperature factor has no negative influence on the hardening concrete and complex modifier provides the improved physico-mechanical characteristics of cement matrix and concrete

  5. Penetration of natural gas in industrial processes for direct burning: the case of ceramics, cement and glass industries; Penetracao do gas natural em processos industriais de queima direta: caso das industrias ceramica, cimento e vidro

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti; Leite, Alvaro A. Furtado [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Dorileo, Ivo Leandro [Universidade Federal do Mato Grosso (NIEPE/UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos em Planejamento Energetico; Bajay, Sergio Valdir [Universidade estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: bajay@fem.unicamp.com.br

    2008-07-01

    Industrial sector can use the natural gas (NG) as raw material, as fuel and in co-generation. The NG as fuel is used, predominantly, to produce heat in the Brazilian industries. That rate, both main forms of industrial use of the NG are its direct burning in kilns - when the direct contact is had with the product - and the supply of process heat through boilers, for instance. Direct burning is used in the ceramic, cement and glass industries. This work discuss the penetration opportunity of the NG in the direct burning regarding the fuel oil and other energy that it can substitute, the environmental effects and the co-generation possibilities in each one of the analyzed industrial blanches in this work. (author)

  6. In-situ monitoring of early-age electrical resistivity change process of cement-based materials%原位监测水泥基材料早期电阻率的变化过程

    Institute of Scientific and Technical Information of China (English)

    刘志勇; 张云升; 姜骞; 孙国文

    2012-01-01

    To explore the effect of the supplementary binders and fine aggregates on the hydration process, the early-age microstructure evolution process was in-situ continuously monitored by using a new electrodeless resistivity apparatus for various cement-based materials. The influence of the water-to-binder ratio, the silica fume replacement percentage, the slag replacement percentage, the fly ash replacement percentage, the volume percentage of fine aggregates and the grain size of fine aggregates on the electrical resistivity were systematically investigated. The experimental results show that according to the development curve of the electrical resistivity of the cement-based materials, the 3 000 min early-age hydration process of the cement-based materials can be clearly classified into four stages: the dissolution stage, the dormant stage, the acceleration stage, and the deceleration stage. The development rate in the electrical resistivity decreases with the increase in the water-to-binder ratio. The electrical resistivity of the mortar is greater than that of the cement paste at the same water-to-binder ratio. The change rate of the electrical resistivity in the late stage is reduced by the mineral admixtures, while the hydration acceleration stage is advanced by the addition of the silica fume. During the early-age hydration process, the silica fume has the highest activity followed by the slag, and the fly ash has the lowest activity. The larger the volume percentage and grain size of the fine aggregates, the higher the electrical resistivity of the mortar.%为了考察辅助性胶凝材料和细骨料对水泥水化的影响,利用新型无电极电阻率仪原位连续监测水泥基材料早期的微结构演变进程,系统分析了水胶比、硅灰掺量、矿渣掺量、粉煤灰掺量、细骨料体积分数和骨料粒级对水泥基材料电阻率的影响.试验结果表明:在水化3 000 min内,根据水泥基材料电阻率的发展曲线,可将水

  7. Cement encapsulation of low-level radioactive slurries of complex chemistry

    International Nuclear Information System (INIS)

    Investigations have been carried out to solidify in cement a low-level radioactive waste of complex chemistry which should be produced in a new plant designed to process radioactive effluents from CEA Cadarache Research Center. Direct cementation comes up against a major problem: a very long setting time of cement due to strong inhibition by borates from the waste. A two-stage process, including a chemical treatment prior to immobilization, has been elaborated and the resulted material characterized. (authors)

  8. Cement encapsulation of low-level radioactive slurries of complex chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C. [CEA/Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DESD), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    Investigations have been carried out to solidify in cement a low-level radioactive waste of complex chemistry which should be produced in a new plant designed to process radioactive effluents from CEA Cadarache Research Center. Direct cementation comes up against a major problem: a very long setting time of cement due to strong inhibition by borates from the waste. A two-stage process, including a chemical treatment prior to immobilization, has been elaborated and the resulted material characterized. (authors)

  9. Use of Oscillatory Shear to Study the Effect of Limestone Filler on the Rheology of Early-Age Portland Cement

    OpenAIRE

    Barney, Christopher W; Erk, Kendra

    2013-01-01

    Cement is a material that has been in use since the ancient times and is the most widely manufactured material in industry today. During the production of cement, limestone undergoes a process called calcination which releases CO2. In order to reduce the environmental impact and cost of cement production it has become standard practice to replace a portion of the cement mixture with ground limestone, but this causes a change in the rheological profile of the mixture. This change in rheology a...

  10. Improving the CO2 performance of cement, part III : The relevance of industrial symbiosis and how to measure its impact

    OpenAIRE

    Ammenberg, Jonas; Baas, Leo; Eklund, Mats; Feiz, Roozbeh; Helgstrand, Anton; Marshall, Richard

    2015-01-01

    Cement production contributes to extensive CO2 emissions. However, the climate impact can vary significantly between different production systems and different types of cement products. The market is dominated by ordinary Portland cement, which is based on primary raw materials and commonly associated with combustion of vast amounts of fossil fuels. Therefore, the production of Portland cement can be described as a rather linear process. But there are alternative options, for example, involvi...

  11. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  12. Processamento de concretos refratários zero-cimento contendo alumina e microssílica Processing of zero-cement refractory castables containing alumina and microsilica

    Directory of Open Access Journals (Sweden)

    P. Bonadia Neto

    2000-03-01

    Full Text Available Os concretos auto-escoantes de reduzido teor de cimento aliam facilidade de aplicação a um bom desempenho em temperaturas elevadas. Estudos anteriores mostraram que a auto-escoabilidade e o empacotamento de partículas necessário para redução do teor de cimento são função da granulometria e do estado de dispersão da matriz do concreto. Bonadia e outros propuseram, então, uma metodologia de formulação de concretos baseada nestes dois conceitos, enfocando a otimização dos parâmetros granulométricos. Com a granulometria otimizada, Studart et al. geraram mapas de estabilidade, que fornecem as condições ideais para dispersão de uma matriz contendo apenas alumina. Com o auxílio destes mapas foi possível preparar concretos auto-escoantes isentos de cimento (zero-cimento. Devido à importância da microssílica como precursora da fase mulita no concreto, o objetivo deste trabalho foi gerar mapas de estabilidade para matrizes contendo alumina e microssílica. Os resultados mostraram uma correlação entre a fluidez dos concretos e as regiões de menor viscosidade e tensão de escoamento indicadas nos mapas.Low and ultra-low cement self-flow castables combine good high temperature performance and faster application rate. It has been shown that the castable self-flow ability and packing is a function of its particle size distribution and matrix rheological conditions. Bonadia and others proposed a castable formulation methodology based on these two concepts, focusing mainly the particle size distribution parameters. Stability maps, which predict the ideal matrix dispersion conditions, were generated by Studart et al. for aluminous castables in order to complete the proposed methodology. Such maps allowed the preparation of self-flow zero-cement (without any hydraulic binder castables compatible with industrial applications. Since microsilica is essential for mullite formation in castables, the main objective of this work is to generate

  13. Respiratory Health among Cement Workers in Ethiopia

    OpenAIRE

    Zeleke, Zeyede K.

    2011-01-01

    Background: Little is known on dust exposure and respiratory health among cement cleaners. There are only a few follow-up studies on respiratory health among cement factory workers and also studies on acute effects of cement dust exposure are limited in numbers. Objective: This study aimed at assessing cement dust exposure and adverse respiratory health effects among Ethiopian cement production workers, with particular focus on cement cleaners. Method: The first paper was...

  14. Energy conservation in citrus processing. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Leo, M.A.; Lari, R.I.; Moore, N.R.; Broussard, M.R.; Gyamfi, M.

    1981-11-01

    Alternative energy conserving systems for use in citrus processing plants were synthesized and evaluated in terms of energy savings and economic return. The energy intensive operations that are carried out in citrus processing plants include conveying and extraction, concentration, peel drying, refrigeration, and pasteurization. The alternative energy conserving systems are synthesized from components and subsystems that are arranged to make use of energy cascading and thermodynamic regeneration to reduce the overall energy usage. System requirements such as air pollution rules and plant processing load cycles, a characterization of major operations, description of alternative system concepts, and the evaluation of alternative systems in terms of economic parameters and energy usage are identified.

  15. The asbestos cement container and its characterization program

    International Nuclear Information System (INIS)

    A new type of packing container is designed in France, by SGN, for the reprocessing wastes conditioning: the asbestos cement container (CAC) made by the industrial process for pipes fabrication. Two types of CAC are studied, differing from each other by their wall thickness. The technology of which SGN is in charge is presented. A characterization program is operated by CEA in view of satisfying to regulatory requirements. Emphasis is placed upon the radionuclides migration study, through different asbestos cement samples

  16. Rheological and hydration characterization of calcium sulfoaluminate cement pastes

    OpenAIRE

    García-Maté, Marta; Santacruz, Isabel; de la Torre, Ángeles G.; León-Reina, Laura; Aranda, Miguel A. G.

    2012-01-01

    Calcium sulfoaluminate (CSA) cements are currently receiving a lot of attention because their manufacture produces less CO2 than ordinary Portland cement (OPC). However, it is essential to understand all parameters which may affect the hydration processes. This work deals with the study of the effect of several parameters, such as superplasticizer (SP), gypsum contents (10, 20 and 30 wt%) and w/c ratio (0.4 and 0.5), on the properties of CSA pastes during early hydration. This characteriza...

  17. Cultural differences and process adaptation in international R&D project management

    DEFF Research Database (Denmark)

    Li, Xing; Li, J. Z.

    2009-01-01

    process can be effectively tuned to align with local cultural environment through a new generation stage-gate process model. The overseas company's branch has recognized the need to make its process both faster and more effective for telecommunication software development, and has gained remarkable...... project success. At the same time, lessons and recommendations on the adaptability to Chinese style business and management interactions will be drawn from the case study for international companies that locate R&D projects in China....

  18. Nanorack Compatible Standardized Data Processing, Communication, and Control Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I study will design and develop a NanoRacks Control Module (NCM) that provides communications, control functions and data processing in a NanoRacks...

  19. Reactive Atom Plasma Processing of Slumped Glass Wedges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Reactive Atom Plasma (RAPTM) process will be evaluated as a rapid and practical method for fabricating precision wedges in glass sheets. The glass sheets are to...

  20. Crack Closure Based Self Healing Process for Metallic Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Analytical Services and Materials, Inc. (AS&M) is proposing to develop and validate a process that can extend the fatigue life of and potentially self-heal...

  1. Enhancing the Processing Characteristics of Edible Beans Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced life-support systems, which use chemical, physical, and biological processes, are being developed to support future long-term human planetary exploration....

  2. Fault Management: Degradation Signature Detection, Modeling, and Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fault to Failure Progression (FFP) signature modeling and processing is a new method for applying condition-based signal data to detect degradation, to identify...

  3. Onboard Optical Navigation Measurement Processing in GEONS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this IRAD is to establish in-house onboard OpNav measurement data processing capabilities through software development and testing.  Software...

  4. Reactive-Separator Process Unit for Lunar Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's plans for a lunar habitation outpost call out for process technologies to separate hydrogen sulfide and sulfur dioxide gases from regolith product gas...

  5. Broadband Reflective Coating Process for Large FUVOIR Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZeCoat Corporation will develop and demonstrate a set of revolutionary coating processes for making broadband reflective coatings suitable for very large mirrors...

  6. Real-Time Smart Tools for Processing Spectroscopy Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose novel and real-time smart software tools to process spectroscopy data. Material abundance or compositional maps will be generated for rover guidance,...

  7. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  8. Assessment of cement durability in repository environment

    International Nuclear Information System (INIS)

    The present research aimed at investigating the durability of cement paste under nuclear waste repository conditions using accelerated tests. Cement paste samples are examined after being exposed to the environmental conditions that are expected to prevail in the repository environment and the results are compared with those obtained with unexposed specimens or specimens exposed to reference conditions. The following exposure conditions were selected: a) Immersion in salt solution, distilled water, or kept in dry storage; b) Room temperature (20 C. degrees) or high temperature (60 C. degrees); c) Immersion time of 30 days or 60 days (not for dry storage); d) Irradiation to a dose of (400 kGy) or background radiation (0 kGy). After exposure to the stressing conditions, the effects of each factor on the cement paste samples were observed by changes in their characteristics. Compressive strength tests were performed on all samples and some of them were investigated in terms of changes in mineralogy by X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). With the results obtained so far it was possible to point out the following conclusions. First, after a period of immersion in water, cement paste samples further hydrated and presented higher mechanical resistance, as expected. Secondly, dry storage did not allow a complete hydration as a consequence of pore water evaporation. High temperatures intensified this process and led to the ettringite decomposition to meta-ettringite. Thirdly, higher temperature accelerated hydration kinetics and promoted higher mechanical resistance in samples kept under immersion. Fourthly, the irradiation dose applied was unable to change the mineralogy of cement paste samples and fifthly, no statistically significant differences were observed between 30 or 60 days exposure time, for the test conditions

  9. 微型桩芯搅拌桩工程实践与工作机理研究%Project practice and work mechanism about micropile-core cement mixing pile

    Institute of Scientific and Technical Information of China (English)

    包华; 邓亚光; 张慧

    2012-01-01

    微型桩芯水泥搅拌桩复合地基在江苏沿海、沿江地区广泛应用。结合实际工程简要介绍了该复合桩的施工工艺与构造、承载力设计方法。研究了桩芯、桩体与地基土三者之间的应力分布与荷载分担规律。结果表明,微型桩芯的打入提高了复合桩与桩周土之间的摩阻力,复合桩表现出摩擦桩工作特性。微型桩芯搅拌桩复合地基具有刚性桩复合地基的工作特点,荷载通过桩芯到桩体再到桩周土逐步向外有效地扩散到整个基础持力层。%Composite foundation composited of micropile-core cement mixing pile and foundation soil is widely used in coastal and riverside area of Jiangsu.Based on the actual project practice,the construction technology,details and design method of bearing capacity for this composited pile were introduced.Stress distribution and load share law were studied among pile core,mixing-pile body and foundation soil.The results show that piling core can enhance the friction force between piles and soil around pile.Composite pile shows the working characteristics of friction pile.This composited piled foundation is rigid,and the load can be transferred effectively from inside to outside through pile core,mixing-pile body and soil around pile.

  10. Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties

    Science.gov (United States)

    Rau, J. V.; Fosca, M.; Graziani, V.; Egorov, A. A.; Zobkov, Yu. V.; Fedotov, A. Yu.; Ortenzi, M.; Caminiti, R.; Baranchikov, A. E.; Komlev, V. S.

    2016-01-01

    Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content. PMID:27096874

  11. Reactive-Transport Model of Buffer Cementation

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Randy; Wei Zhou [Monitor Scientific LLC, Denver, CO (United States)

    2005-10-15

    Thermal gradients during the early, non-isothermal period of near-field evolution in a KBS-3 repository for spent nuclear fuel could alter the mineralogy of the bentonite buffer and cause the constituent clay particles to become cemented together by mineral precipitates. Cementation is a potential concern because it could alter the ductility, mechanical strength and swelling pressure of the buffer, thereby possibly adversely affecting the primary performance function of this key barrier to provide a stable diffusional transport pathway between the canister and rock. The present study uses the TOUGHREACT computer program to simulate reactive-transport processes that are thought to control buffer cementation. TOUGHREACT is generally applicable to problems involving non-isothermal, multiphase reactive transport in variably saturated media. For cementation problems, the modeling approach must account specifically for the temperature dependence of equilibrium and kinetic constraints on dissolution/precipitation reactions involving the primary smectite clays and accessory phases in bentonite, and for diffusive transport of aqueous reactants and products along concentration gradients that are aligned with, or in opposition to, the direction of decreasing temperatures across the near field. The modeling approach was evaluated in two stages. A conceptual model of buffer cementation was first calibrated using observations from field tests carried out at the Stripa mine and Aespoe HRL (LOT pilot experiments). The calibrated model was then used to simulate the geochemical evolution of the KBS-3 buffer during the non-isothermal period of repository evolution. This model accounts for the imbibition of groundwater from a granitic host rock into initially unsaturated buffer materials under capillary and hydraulic pressure gradients, and uses realistic time-temperature constraints on the thermal evolution of the near-field. Preliminary results suggest that the total extent of

  12. Developing 21st Century Process Skills through Project Design

    Science.gov (United States)

    Yoo, Jeong-Ju; MacDonald, Nora M.

    2014-01-01

    The goal of this paper is to illustrate how the promotion of 21st Century process skills can be used to enhance student learning and workplace skill development: thinking, problem solving, collaboration, communication, leadership, and management. As an illustrative case, fashion merchandising and design students conducted research for a…

  13. Applications of thermal energy storage in the cement industry

    Science.gov (United States)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  14. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    This thesis comprises an investigation of the mechanisms involved in forming and reducing NOx in kiln systems for cement production. Particularly the mechanisms forming and reducing NOx in calciners are dealt with in detail, as altered calciner design and operation are most applicable...... to controlling NOx emission by primary measures. The main focus has been on elucidating NOx formation and reduction mechanisms involving reactions of char, and on determining their relative importance in calciners.The first three chapters give an introduction to cement production, combustion and NOx. In modern...... cement production processes cement is typically produced by thermally treating a mixture of limestone and clay minerals in kiln systems consisting of a rotary kiln and a calciner. Clinker burning at a temperature of about 1450 °C takes place in the internally fired rotary kiln and calcination, which...

  15. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    International Nuclear Information System (INIS)

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors

  16. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors.

  17. Factors influencing ERP projects success in the vendor selection process

    OpenAIRE

    Luminita HURBEAN

    2009-01-01

    Successful implementation of an ERP system is the result of knowledgeable and dedicated people working together. It entails company-wide commitment, openness to change, good planning and experienced guidance. These primary criteria determine the probability of gaining significant return on investment (ROI) from an ERP system. Using these criteria as guidelines during the system selection process and subsequent implementation can ensure that the chosen system will support and enable the busine...

  18. Improvement of the Biogas Production Process : Explorative project (EP1)

    OpenAIRE

    Karlsson, Anna; Björn, Annika; Sepehr, Shakeri Yekta; Svensson, Bo

    2014-01-01

    There are several ways to improve biogas production in anaerobic digestion processes and a number of strategies may be chosen. Increased organic loading in existing plants will in most cases demand the introduction of new substrate types. However, to substantially increase the Swedish biogas production new, large-scale biogas plants digesting new substrate types need to be established. Better utilization of existing digester volumes can be linked to:  Increase of organic loading rates and/or ...

  19. 75 FR 16820 - Delegated Processing for Certain 202 Supportive Housing for the Elderly Projects

    Science.gov (United States)

    2010-04-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT Delegated Processing for Certain 202 Supportive Housing for the Elderly Projects... 202 Supportive Housing for the Elderly projects. OMB Approval Number: 2502-New. Form Numbers:...

  20. Intensification of the Learning Process: Project Description. A Series of Reports Designed for Classroom Use.

    Science.gov (United States)

    Bucks County Public Schools, Doylestown, PA.

    The Personalizing Educational Prescriptions (PEP) Project has two main objectives: (1) the improvement of the diagnostic process with emphasis on the development of personalized educational prescriptions for all pupils; and (2) the improvement and expansion of multimedia services for all pupils. This report describes project goals, approaches, and…

  1. The Studies of the Welding Processes and Procedures on the West-East Pipeline Project

    Institute of Scientific and Technical Information of China (English)

    SuiYongli; HuangFuxiang; ZhaoHaihong; YinChanghua

    2004-01-01

    The West-East pipeline project attracted the attention from all over the world for its long distance, huge diameter, complex geographic conditions, and diversified welding techniques being applied. In this paper the detail welding process and procedures used in the project are discussed and the distinguished achievements on welding techniques of China pipeline construction are described.

  2. High Performance Parallel Processing Project: Industrial computing initiative. Progress reports for fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Koniges, A.

    1996-02-09

    This project is a package of 11 individual CRADA`s plus hardware. This innovative project established a three-year multi-party collaboration that is significantly accelerating the availability of commercial massively parallel processing computing software technology to U.S. government, academic, and industrial end-users. This report contains individual presentations from nine principal investigators along with overall program information.

  3. Latin American Universities and the Bologna Process: From Commercialisation to the "Tuning" Competencies Project

    Science.gov (United States)

    Aboites, Hugo

    2010-01-01

    Through the "Tuning-Latin America" competencies project, Latin American universities have been incorporated into the Bologna Process. In 2003 the European Commission approved an initiative of this project for Latin America and began to promote it among ministries, university presidents' organisations and other institutions in Latin America. This…

  4. Improving Packet Processing Performance in the ATLAS FELIX Project

    CERN Document Server

    Schumacher, Jorn; The ATLAS collaboration; Borga, Andrea; Boterenbrood, Hendrik; Chen, Hucheng; Chen, Kai; Drake, Gary; Francis, David; Gorini, Benedetto; Lanni, Francesco; Lehmann Miotto, Giovanna; Levinson, Lorne; Narevicius, Julia; Roich, Alexander; Ryu, Soo; Schreuder, Frans Philip; Vandelli, Wainer; Zhang, Jinlong; Vermeulen, Jos

    2015-01-01

    Experiments in high-energy physics (HEP) and related fields often impose constraints and challenges on data acquisition systems. As a result, these systems are implemented as unique mixtures of custom and commercial-off-the-shelf electronics (COTS), involving and connecting radiation-hard devices, large high-performance networks, and computing farms. FELIX, the Frontend Link Exchange, is a new PC-based general purpose data routing device for the data-acquisition system of the ATLAS experiment at CERN. Performance is a very crucial point for devices like FELIX, which have to be capable of processing tens of gigabyte of data per second. Thus it is important to understand the performance limitations for typical workloads on modern hardware. We present an analysis of a packet processing algorithm that is used in FELIX, and show how the PC system's memory architecture plays a key factor in the overall data throughput achieved by the application. Finally, we present optimizations that increase the processing throug...

  5. Enhancement of cemented waste forms by supercritical CO{sub 2} carbonation of standard portland cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Carey, J.; Taylor, C.M.V.

    1997-08-01

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented.

  6. Enhancement of cemented waste forms by supercritical CO2 carbonation of standard portland cements

    International Nuclear Information System (INIS)

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented

  7. Reduction of soil pollution by usingwaste of the limestone in the cement industry

    Science.gov (United States)

    Muñoz, M. Cecilia Soto; Robles Castillo, Marcelo; Blanco Fernandez, David; Diaz Gonzalez, Marcos; Naranjo Lamilla, Pedro; Moore Undurraga, Fernando; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    In the cement manufacturing process (wet) a residue is generated in the flotation process. This builds up causing contamination of soil, groundwater and agricultural land unusable type. In this study to reduce soil and water pollution 10% of the dose of cement was replaced by waste of origin limestone. Concretes were produced with 3 doses of cement and mechanical strengths of each type of concrete to 7, 28 and 90 days were determined. the results indicate that the characteristics of calcareous residue can replace up to 10% of the dose of cement without significant decreases in strength occurs. It is noted that use of the residue reduces the initial resistance, so that the dose of cement should not be less than 200 kg of cement per m3. The results allow recommends the use of limestone waste since it has been observed decrease in soil and water contamination without prejudice construction material Keywords: Soil contamination; Limestone residue; Adding concrete

  8. Delivering Software Process-Specific Project Courses in Tertiary Education Environment: Challenges and Solution

    Science.gov (United States)

    Rong, Guoping; Shao, Dong

    2012-01-01

    The importance of delivering software process courses to software engineering students has been more and more recognized in China in recent years. However, students usually cannot fully appreciate the value of software process courses by only learning methodology and principle in the classroom. Therefore, a process-specific project course was…

  9. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  10. Cement industry control system based on multi agent

    Institute of Scientific and Technical Information of China (English)

    王海东; 邱冠周; 黄圣生

    2004-01-01

    Cement production is characterized by its great capacity, long-time delay, multi variables, difficult measurement and muhi disturbances. According to the distributed intelligent control strategy based on the multi agent, the multi agent control system of cement production is built, which includes integrated optimal control and diagnosis control. The distributed and multiple level structure of multi agent system for the cement control is studied. The optimal agent is in the distributed state, which aims at the partial process of the cement production, and forms the optimal layer. The diagnosis agent located on the diagnosis layer is the diagnosis unit which aims at the whole process of the cement production, and the central management unit of the system. The system cooperation is realized by the communication among optimal agents and diagnosis agent. The architecture of the optimal agent and the diagnosis agent are designed. The detailed functions of the optimal agent and the diagnosis agent are analyzed.At last the realization methods of the agents are given, and the application of the multi agent control system is presented. The multi agent system has been successfully applied to the off-line control of one cement plant with capacity of 5 000 t/d. The results show that the average yield of the clinker increases 9.3% and the coal consumption decreases 7.5 kg/t.

  11. Review of the SR-Can project regarding microbial processes

    International Nuclear Information System (INIS)

    In the main report of the SR-Can project (SKB TR-06-09) the corrosion of the copper canister is modeled with data input according to different scenarios. That is, first the scenarios are set up and thereafter the model is predicting the possible corrosion effect. All scenarios presume an uneven general corrosion and chemical input data to the models are average data from field observations and/or chemical equilibrium calculations. The models used are assuming a homogenous environment around the canister. This approach is not consistent with natural environments where variations in data are the most common and where a mean value seldom is observed. Conservative estimates on the corrosion of copper should be retrieved from models where not only average numbers but also end members of each data set are used. I would also like to see another approach to the corrosion problem. First answer the question 'What are the prerequisites to corrode the canister to such an extent that a penetration of the 5 cm copper is achieved in 1,000,000 years?'. Thereafter look for necessary scenarios and find out whether they can be expected from a realistic point of view. In the main report it is stated that corrosion from sulphate-reducing bacteria cannot be ruled out, but it is not clear that this has been taken into account in any of the models. The microbes' impact is ruled out and they are assumed to have a negligible effect on the copper coverage of the canisters. The evidences presented for such an assumption are far from convincing

  12. Process-Hardened, Multi-Analyte Sensor for Characterizing Rocket Plum Constituents Under Test Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project aims to develop a process-hardened, simple and low cost multi-analyte sensor for detecting components of rocket engine plumes. The sensor will be...

  13. Thermal/Heat Transfer Analysis Using a Graphic Processing Unit (GPU) Enabled Computing Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project was to use GPU enabled computing to accelerate the analyses of heat transfer and thermal effects. Graphical processing unit (GPU)...

  14. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  15. Signal Processing System for the CASA Integrated Project I Radars

    Energy Technology Data Exchange (ETDEWEB)

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  16. Integrating chemical engineering fundamentals in the capstone process design project

    OpenAIRE

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik; Abildskov, Jens

    2010-01-01

    All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30 students. The B.Eng. education lasts for 3½ years (seven semesters), of which the 5th semester consists of practical training with a company and the final (7th) semester consists of a research proje...

  17. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  18. An ERC Starting Grant project on p-process nucleosynthesis concluded

    CERN Document Server

    Gyürky, Gy; Szücs, T; Kiss, G G; Fülöp, Zs

    2015-01-01

    In 2008 a Starting Grant project supported by the European Research Council titled "Nuclear reaction studies relevant to the astrophysical p-process nucleosynthesis" was launched. After five years of successful research related to the experimental investigation of proton- and alpha-induced nuclear reaction for the astrophysical p-process, the project came to an end. In this paper a summary of the research and the most important achievements is given.

  19. Modelling for integrated energy optimisation in cement production plants / J.A. Swanepoel.

    OpenAIRE

    Swanepoel, Jan Adriaan

    2013-01-01

    Cement production is an energy intensive process. In South Africa the cost of energy increased since 2006, while cement sales have dropped dramatically. It has become important to focus on methods to optimise energy consumption to achieve cost savings in the cement industry. Various methods of reducing production cost by improving energy efficiency are available, but require extended installation periods and high initial capital expenditure. Other methods such as operational optimisation can ...

  20. Biomass use in the Dutch cement industry ENCI, Maastricht, The Netherlands

    OpenAIRE

    Junginger, H.M.

    2009-01-01

    Based in the Netherlands, ENCI is a division of HeidelbergCement active in the Benelux countries. It possesses three main production facilities in the Netherlands, of which the biggest is the integrated production plant in Maastricht. ENCI has been generating cement from Maastricht since 1926, and directly employs 212 people. There, the full cement production process is realised, as limestone is extracted from the 135-hectare quarry and burnt in a kiln to make clinker, which is then ground in...

  1. Heterogeneous nucleation of ice from supercooled NaCl solution confined in porous cement paste

    OpenAIRE

    Zeng, Qiang; Li, Kefei; FEN CHONG, Teddy

    2015-01-01

    Clarifying the nucleation process of chloride-based deicing salt solution (e.g., NaCl solution) confined in cement-based porous materials remains an important issue to understand its detrimental effects on material substrates. In this study, the pore structures of hardened cement pastes were characterized by mercury-intrusion and nitrogen-sorption porosimetry. The ice nucleation temperature of NaCl solution of different concentrations confined in the hardened cement pastes was measured and an...

  2. Alternative fuels in cement industry; Alternativa braenslen i cementindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, K.E.; Ek, R. [Finnsementti Oy, Parainen (Finland); Maekelae, K. [Finreci Oy (Finland)

    1997-10-01

    In this project the cement industry`s possibilities to replace half of the fossil fuels with waste derived fuels are investigated. Bench-scale experiments, pilot plant tests and full scale tests have been done with used tires and plastics wastes

  3. Process, cost modeling and simulations for integrated project development of biomass for fuel and protein

    International Nuclear Information System (INIS)

    The construction of the models for biomass project development are described. These models, first constructed using QPRO electronic spread sheet for Windows, are now being developed with the aid of visual and object oriented program as tools using DELPHI V.1 for windows and process simulator SUPERPRO, V.2.7 Intelligent Inc. These models render the process development problems with economic objectives to be solved very rapidly. The preliminary analysis of cost and investments of biomass utilisation projects which are included for this study are: steam, ammonia, carbon dioxide and alkali pretreatment process, methane gas production using anaerobic digestion process, aerobic composting, ethanol fermentation and distillation, effluent treatments using high rate algae production as well as cogeneration of energy for drying. The main project under developments are the biomass valuation projects with the elephant (Napier) grass, sugar cane bagasse and microalgae, using models for mass balance, equipment and production cost. The sensibility analyses are carried out to account for stochastic variation of the process yield, production volume, price variations, using Monte Carlo method. These models allow the identification of economical and scale up problems of the technology. The results obtained with few preliminary project development with few case studies are reported for integrated project development for fuel and protein using process and cost simulation models. (author)

  4. A Genetic Fuzzy Analytical Hierarchy Process Based Projection Pursuit Method for Selecting Schemes of Water Transportation Projects

    Institute of Scientific and Technical Information of China (English)

    JIN Juliang; LI Lei; WANG Wensheng; ZHANG Ming

    2006-01-01

    The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix A it produces is relatively small, and the result obtained is both stable and accurate; therefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.

  5. A genetic fuzzy analytical hierarchy process based projection pursuit method for selecting schemes of water transportation projects

    Science.gov (United States)

    Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming

    2006-10-01

    The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix A it produces is relatively small, and the result obtained is both stable and accurate; therefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.

  6. Resistance Factors in the Implementation of Software Process Improvement Project in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd H.N.M. Nasir

    2008-01-01

    Full Text Available For the past two decades, improving the quality of software has become an important agenda in the software industries as they have been assessed according to standards such as the CMM, CMM-I, ISO 9000 SIX-SIGMA and etc. As the result, software process improvement project implementations have been the main targets by most software companies. However, many initiatives are facing variety of problems and difficulties due to lack of guidance and experience. Hence, this research attempted to identify and analyze main resistance factors which influenced the implementation of the software process improvement project specifically companies operated in Malaysia including local and multi-national companies. The findings helped other software companies to manage future projects through the use of preventive actions or proper planning which intended to lessen anticipated problems during software process improvement projects implementation. This research used a survey instrument to gather data from 29 companies operated across Malaysia with the total of 174 business and software professionals responded. Average of 4 to 8 questionnaires were distributed to each company with the objective of getting wider views on each SPI project. The questionnaires were mainly distributed to professionals who are directly involved in SPI projects. The results showed that the most critical resistance factor is lack of adhesion and participation of the entire individual involved in SPI projects. This result is similar with the result gained by Brietzke and Rabello which they have conducted it in Brazil and corroborated the research findings experience in SPI project.

  7. Grouting Rock Fractures with Cement Grout

    Science.gov (United States)

    El Tani, Mohamed

    2012-07-01

    The radial flow rate of a cement grout in a rock fracture is obtained from Bingham's relation and the fact that the power expended by the injection mechanism is the energy dissipated by viscous effects. The energy balance reveals that the advance ratio is of fundamental importance in the grouting process and is inherently related to the rest and advance phases of a cement grout. This allows giving a precise definition of the zero flow path that divides the energy diagram into two distinct domains for advancing and non-advancing grout. The advance ratio and the zero flow path are used to explore the grouting of one or more fractures, analyze the GIN model in the context of the SL dispute, draw a terminal sequence considering the energy interval alternative, and reformulate the refusal criterion of the North American grouting method. Secondary grouting effects are also investigated.

  8. DESIGN OF CEMENT COMPOSITES WITH INCREASED IMPERMEABILITY

    Directory of Open Access Journals (Sweden)

    Fedyuk Roman Sergeevich

    2016-05-01

    Full Text Available The paper deals with the development of composite binders for producing concrete with improved characteristics of gas, water and vapor permeability. The authors investigate the processes of composite materials formation in order of decreasing scale levels from macro to nanostructures. The criteria for optimization of the volume of dispersed additives in concrete are offered. The authors theoretically studied the technological features of the formation of hydrated cement stone structure. A positive effect of nanodispersed additives on the structure and physico-mechanical properties of cement composite materials are predicted. Thanks to its improved features, such as good ratio of strength and body density, high density and lifetime, the modified concrete may be used when solving various practical tasks of the construction branch.

  9. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  10. Leaching tests of cemented organic radioactive waste

    International Nuclear Information System (INIS)

    The use of radioisotopes in research, medical and industrial activities generates organic liquid radioactive wastes. At Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) are produced organic liquid wastes from different sources, one of these are the solvent extraction activities, whose the waste volume is the largest one. Therefore a research was carried out to treat them. Several techniques to treat organic liquid radioactive wastes have been evaluated, among them incineration, oxidation processes, alkaline hydrolysis, distillation, absorption and cementation. Laboratory experiments were accomplished to establish the most adequate process in order to obtain qualified products for storage and disposal. Absorption followed by cementation was the procedure used in this study, i.e. absorbent substances were added to the organic liquid wastes before mixing with the cement. Initially were defined the absorbers, and evaluated the formulation in relation to the compressive strength of its products. Bentonite from different suppliers (B and G) and vermiculite in two granulometries (M - medium and F - small) were tested. In order to assess the product quality the specimens were submitted to the leaching test according the Standard ISO 6961 and its results were evaluated. Then they were compared with the values established by Standard CNEN NN 6.09 Acceptance criteria for waste products to be disposed, to verify if they meet the requirements for safely storage and disposal. Through this study the best formulations to treat the organic wastes were established. (author)

  11. Accelerator Production of Tritium project process waste assessment

    Energy Technology Data Exchange (ETDEWEB)

    Carson, S.D.; Peterson, P.K.

    1995-09-01

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

  12. Accelerator Production of Tritium project process waste assessment

    International Nuclear Information System (INIS)

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2)

  13. Software Process Models and Analysis on Failure of Software Development Projects

    OpenAIRE

    Kaur, Rupinder; Sengupta, Jyotsna

    2013-01-01

    The software process model consists of a set of activities undertaken to design, develop and maintain software systems. A variety of software process models have been designed to structure, describe and prescribe the software development process. The software process models play a very important role in software development, so it forms the core of the software product. Software project failure is often devastating to an organization. Schedule slips, buggy releases and missing features can me...

  14. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  15. Cement/slag chemistry studies

    International Nuclear Information System (INIS)

    The performance of cement-based matrices intended for radwaste immobilization is assessed. The long-term performance of the matrix is characterized by thermodynamic evaluation of experimental data. The results are presented in a general form, amenable to a range of specific formulations. The interaction of specific radwaste components with cements has been studied, using Iodine as an example. It occurs as both I- and IO3- species, but these differ sharply in sorption characteristics. The effect of ionizing radiation of the pH and Eh of cement matrices is reported. (author)

  16. Dust Exposure and Respiratory Health Effects in Cement Production

    Directory of Open Access Journals (Sweden)

    Golamreza Pouryaghoub

    2012-02-01

    Full Text Available Dust can be produced by almost all production processes in Portland cement factory. Dust exposure potentially can affect respiratory function. But evidence for respiratory effect of cement dust exposure has not been conclusive. In this study we assessed effect of cement dust exposure on respiratory function in a cement production factory. A respiratory symptoms questionnaire was completed and pulmonary function tests were carried out on 94 exposed and 54 non exposed workers at a cement factory in the east of Iran. Additionally, respirable dust level was determined by the gravimetric method. X-ray fluorescence (XRF technique was performed to determine the silica phases and the SiO2 contents of the bulk samples. The arithmetic means (AM of personal respirable dust were 30.18 mg/m3 in the crushing, 27 mg/m3 in the packing, 5.4 mg/m3 in the cement mill, 5.9 mg/m3 in the kiln and 5.48 mg/m3 in the maintenance that were higher than threshold limit value (TLV of the American Conference of Governmental Industrial Hygienists (ACGIH which is 5 mg/m3. This value in the unexposed group was 0.93 mg/m3. In this study cough, sputum, wheezing and dyspnea were more prevalent among exposed subjects. Exposed workers compared to the unexposed group showed significant reduction in Forced Expiratory Volume in one second (FEV1, Forced Vital Capacity (FVC, and Forced Expiratory Flow between 25% and 75% of the FVC (FEF25-75% (P<0.05. It can be concluded that in our study there was close and direct association between cement dust exposure and functional impairment among the cement factory workers.

  17. A Study of Metal-Cement Composites with Additives

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2014-12-01

    Full Text Available The application of small-sized metal fillers (SMF provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction. Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers.

  18. Porous and adsorption properties of hydrated cement paste

    Directory of Open Access Journals (Sweden)

    Marina Biljana S.

    2004-01-01

    Full Text Available Adsorption isotherms of benzene on hydrated cement pastes prepared by cement ground with and without the addition of grinding aids, triethanol amine (TEA and ethylene glycol (EG were investigated. The adsorption isotherms were interpreted by means of the Dubinin-Astakhov (DA and Dubinin-Radushkevich-Stoeckli (DRS equations. The microporous structure of cement gel (C-S-H in the cement pastes, and changes in the Gibbs free energy of adsorption were determined. The mechanical properties of the cement pastes were also measured. It was evident that pastes with additives had different parameters of the DRS and DA equations: the volume and dimensions of the gel pores, the distribution of the dimensions, the characteristic energy of adsorption, and the change in the Gibbs free energy of adsorption. The mechanical properties were also different. The dispersity of the additive-containing ground cements had a favorable effect on the hydration processes. When applying TEA, it was also necessary to analyze its influence on the chemical behavior of hydration in the starting period.

  19. Carbonate Looping for De-Carbonization of Cement Plants

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Andersen, Maria Friberg; Lin, Weigang;

    2011-01-01

    feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of CO2. Integration of carbonate looping process into cement pyroprocess has two advantages: 1......) to capture emitted CO2 and 2) to generate power for internal use, because high quality energy can be recovered from carbonate looping which is operated at high temperature unlike amine process. A simple carbonate looping process model was developed based on average conversion of calcined limestone defined...... on the calciner capacity is also investigated. The results from this simple model show the importance of cement industry to the carbon capture technology for its application to power plants....

  20. A new radionuclide sorption database for benchmark cement accounting for geochemical evolution of cement

    International Nuclear Information System (INIS)

    This paper presents the data selection strategy and the selected sorption values on cement for twenty-five elements (Ag, Am, Be, C, Ca, Cl, Cs, H, I, Mo, Nb, Ni, Np, Pa, Pb, Pd, Pu, Ra, Sr, Se, Sn, Tc, Th, U, Zr) that need to be considered in safety assessment calculations for the future near-surface disposal facility at Dessel, Belgium. Mainly on the basis of literature data, best estimate sorption values in addition to upper and lower bound values were determined for a so-called benchmark cement - the unperturbed cement without effects of organics, high chloride content or other chemical components that might adversely impact radionuclide sorption. Effects of perturbing components are discussed separately. The geochemical evolution of the cementitious engineered barriers was also addressed to clarify the conditions under which sorption values are applicable. A substantial part of the scientific basis supporting the data selection was established at several meetings of an International Panel of Experts who reviewed and endorsed the data selection. To this end, the sorption data were checked for: reliability, appropriateness for the conditions expected for the Dessel disposal facility, data quality, time frames (i.e. states of cement degradation), heterogeneity (presence of components in conditioned wastes that could affect sorption) and completeness (in terms of mechanisms explaining the sorption processes). (authors)

  1. Clean Development Mechanism: Laterite as Supplementary Cementing Material (SCM

    Directory of Open Access Journals (Sweden)

    Syed Zaighum Abbass

    2013-02-01

    Full Text Available Carbon dioxide (CO2 a major Green House Gas (GHG in the atmosphere, is believed to be largely responsible for global climate change through industrial emissions. The level of CO2 concentration has exponentially increased from about 280 ppm at the start of the industrial revolution to about 380 ppm to date. Although Kyoto protocol has bound industrialized nations to reduce green house gas emissions by 5.2% below 1990 levels around year 2008-2012, but violation continues. The cement industry is one of the major emitter of green house gases, particularly CO2 due to its energy intensive production process. It is estimated that approximately 1 tone of CO2 is released during the manufacturing of each tone of Portland cement. Most of CO2 emissions originate from burning fossil fuels and de-carbonization of limestone in a cement plant. During past several decades, the use of by-product materials in concrete, either as components of blended cements or as admixtures, has increased significantly. In this study, another alternate Supplementary Cementing Material (SCM, Laterite has been used with the objectives: to evaluate the performance of cement containing different percentages of laterite (5, 10, 15, 20, 25, and 30 %; to identify the optimum replacement percentage; and to investigate the effects of different concentrations of laterite on various properties of cement. For that purpose, laterite was tested: before blending (for elemental and mineralogical composition by using XRF, SEM and XRD: after blending (Elemental analysis using XRF, fineness test by using Blaine’s air permeability test and for particle size % on 45, 90 and 200 µ sieve, respectively; and after hydration (for mineralogical analysis using SEM. Furthermore, physical tests of manufactured cement, i.e., water consistency, setting time, Le-Chatlier-expansion and compressive strength were also evaluated and compared with limestone and fly-ash cement blends. The results show that with the

  2. A new resin-reinforced glass ionomer cement for use with orthodontic attachments.

    Science.gov (United States)

    Cohen, M; Silverman, E

    1997-08-01

    Resin cements are commonly used to bond orthodontic appliances. However, etching enamel and bracket bonding is an extremely technique-sensitive process. Moisture and saliva control, particularly in the gingival third of posterior teeth, is difficult and time-consuming, but is critical to success. Recently, a light-cure resin-reinforced glass ionomer cement was shown to perform with equal bonding capacity. This is accomplished in a wet field, without etching, and with the glass ionomer feature of fluoride release. Now, a self-cure resin-reinforced glass ionomer cement has been introduced. The self-cure cement will provide equal clinical success in areas where light curing is not possible or desired. This article compares traditional resin cements and glass ionomer cements for bonding orthodontic appliances.

  3. The Hydration of Blended Cement at Low W/B Ratio

    Institute of Scientific and Technical Information of China (English)

    HU Shu-guang; LU Lin-nu; HE Yong-jia; LI Yue; DING Qing-jun

    2003-01-01

    The hydration process, hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD , thermo analysis , and calorimetry instrument, and they were compared with those of pure cement paste. The results show that pure cement and blended cement at low W/B ratio have the same types of hydration products, but their respective amounts of hydration products of various blended cements at same ages and the vatiation law of the amount of same hydration products with ages are different; Tim joint effect of tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore and riff caused by the crystalloid ettringite is the impetus of the volume expansion of cement paste , and the former effect is much greater than the latter one .

  4. Decision Process Analysis on Project Priority Strategy: A Case Study of an ICT Design Firm

    Directory of Open Access Journals (Sweden)

    Vincent F. Yu

    2014-01-01

    Full Text Available Project priority strategy is the benchmarking of a corporate operation management strategy and in particular is used by a projects-based research and development firm in the complex competence environment of the information and communication technology (ICT industry. This research takes the variables of external environments and internal resources into account for a firm’s market, technology, and finance assets in order to present a decision process on a project priority strategy. This empirical study also addresses the key factors of the interaction between business on a project development’s supply chain: clients, the examined firm, and suppliers. The findings indicate that a profit-driven project can dominate the firm’s strategic operations and management from the resource-based view and analytic hierarchy process technique perspectives. At the same time, the analysis results contribute significant values to project decision management, which is highly recommended for small-medium enterprises conducting product/project development, project portfolio management, and strategic business management.

  5. THE INFLUENCE OF CO2 ON WELL CEMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2010-12-01

    Full Text Available Carbon capture and storage is one way to reduce emissions of greenhouse gases in the atmosphere. Underground gas storage operations and CO2 sequestration in aquifers relay on both the proper wellbore construction and sealing properties of the cap rock. CO2 injection candidates may be new wells or old wells. In both cases, the long-term wellbore integrity (up to 1 000 years is one of the key performance criteria in the geological storage of CO2. The potential leakage paths are the migration CO2 along the wellbore due to poor cementation and flow through the cap rock. The permeability and integrity of the set cement will determine how effective it is in preventing the leakage. The integrity of the cap rock is assured by an adequate fracture gradient and by sufficient set cement around the casing across the cap rock and without a micro-annulus. CO2 storage in underground formations has revived the researc of long term influence of the injected CO2 on Portland cements and methods for improving the long term efficiency of the wellbore sealant. Some researchers predicted that set cement will fail when exposed to CO2 leading to potential leakage to the atmosphere or into underground formations that may contain potable water. Other researchers show set cement samples from 30 to 50 year-old wells (CO2 EOR projects that have maintained sealing integrity and prevented CO2 leakage, in spite of some degree of carbonation. One of reasons for the discrepancy between certain research lab tests and actual field performance measurements is the absence of standard protocol for CO2 resistance-testing devices, conditions, or procedures. This paper presents potential flow paths along the wellbore, CO2 behaviour under reservoir conditions, and geochemical alteration of hydrated Portland cement due to supercritical CO2 injection.

  6. Cementing porcelain-fused-to-metal crowns.

    Science.gov (United States)

    Vadachkoria, D

    2009-12-01

    The clinical success of fixed prosthodontic restorations can be complex and involve multifaceted procedures. Preparation design, oral hygiene/micro flora, mechanical forces, and restorative materials are only a few of the factors which contribute to overall success. One key factor to success is choosing the proper cement. Popular use of cements for PFM crowns has shifted from zinc phosphate and glass ionomer cements to resin-reinforced glass ionomer, or RRGI, cements. This change has been rapid and profound. Dental cements have always been less than ideal materials, but this is shift to the relatively new RRGI category justified. Resin-reinforced glass ionomer (RRGI) cements appear to be better than zinc phosphate and glass ionomer cements when placing porcelain-to-metal crowns. RRGI cements, such as RelyX Luting, Fuji Plus and Vitremer Luting Cement, satisfy more of the ideal characteristics of PFM cementation than any other previous cement. Expansion of all three cements has not caused any apparent problems with the cements when used with PFM or metal crowns, but these cements, however, should be avoided when cementing all-ceramic crowns. PMID:20090144

  7. The PHARUS Project; Real Time Digital Processing of Airborne Polarimetric Radar Signals

    NARCIS (Netherlands)

    Pouwels, H.; Hoogeboom, P.; Koomen, P.J.; Snoeij, P.

    1992-01-01

    The Dutch PHARUS project aims for the developrlenÈ of a polarimetric C-band aircraft SAR, to be finalized in 1994. The PHARUS systen consists of three subsystens: the radar, the subsystem for the onboard data processing and recording and the ground-based subsystem for SAR processing. PHARUS is a ver

  8. 1. annual workshop proceedings of integrated project fundamental processes of radionuclide migration IP Funmig

    International Nuclear Information System (INIS)

    These are the proceedings of the 1. Annual Workshop Proceedings of the Integrated Project FUNMIG (fundamental processes of radionuclide migration). The Annual Workshop was hosted by CEA and held in Saclay, 28 November - 1 December 2005. The project started January 2005 and has a duration of four years. The project makes use of annual workshops bringing the project partners together and inviting external groups to participate and contribute. Consequently, the present proceedings will be followed by another three proceedings from the forthcoming annual workshops to be held the end of 2006, 2007 and 2008. The 2. Annual Workshop will be hosted by SKB and be held in Stockholm, 21-23 November 2006. The proceedings serve several purposes. The key purpose is to document and make available to a broad scientific community the outcome of this project. A considerable part of the project activity reporting is also done through the proceedings. For this reason the first parts of the proceedings are structured around the workshop and the project. A large part of the proceedings, however, also contain individual scientific contributions by the project partners as well as external contributors. Information about the project can be found under www.funmig.com. (authors)

  9. Prioritizing the countries for BOT nuclear power project using Analytic Hierarchy Process

    International Nuclear Information System (INIS)

    This paper proposes factors influencing the success of BOT nuclear power projects and their weighting method using Analytic Hierarchy Process (AHP) to find the optimal country which developer intends to develop. To summarize, this analytic method enable the developer to select and focus on the country which has preferable circumstance so that it enhances the efficiency of the project promotion by minimizing the opportunity cost. Also, it enables the developer to quantify the qualitative factors so that it diversifies the project success strategy and policy for the targeted country. Although the performance of this study is insufficient due to the limitation of time, small sampling and security of materials, it still has the possibility to improve the analytic model more systematically through further study with more data. Developing Build-Own(or Operate)-Transfer (BOT) nuclear power project carrying large capital in the long term requires initially well-made multi-decision which it prevents sorts of risks from unexpected situation of targeted countries. Moreover, the nuclear power project in most case is practically implemented by Government to Government cooperation, so the key concern for such nuclear power project would be naturally focused on the country situation rather than project viability at planning stage. In this regard, it requires the evaluation of targeted countries before involving the project, comprehensive and proper decision making for complex judgment factors, and efficient integration of expert's opinions, etc. Therefore, prioritizing and evaluating the feasibility of country for identification of optimal project region is very meaningful study

  10. The Basalt Waste Isolation Project technical program evaluation process: A criteria-based method

    International Nuclear Information System (INIS)

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the BWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (NWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP will be further formalized and further applied to the review of BWIP technical activities

  11. New methodology for gas migration prediction before oil well cementing

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, G.H.V.P.; Martins, A.L.; Rocha, J.M.S. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: gustavo_cep@yahoo.com.br; Martinelli, A.E. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-04-15

    Many challenges have been presented in oil well drilling including preventing gas migration after cementing operations. This phenomenon is potentially dangerous since the gas can migrate to the surface causing the annular pressurization or lead to a blowout with catastrophic results that may include the loss of the well. If the hydrostatic pressure in front of the gas zone becomes lower than the pressure in this zone, the gas will invade the well. This work presents a comprehensive methodology to evaluate gas migration after cementing operations taking into account the critical static gel strength concept associated with time dependent viscosity behavior. A mechanistic model based on a force balance acting on gas bubble was proposed to predict the bubble displacement through the cement slurry while it gels and evaluate if the hydraulic isolation will be affected allowing project operation changes to ensure well construction safely. (author)

  12. Energy efficiency enhancement in cement factories using expert system

    International Nuclear Information System (INIS)

    Full text : In this paper, expert system for energy efficiency in cement industry is presented. Due to the fact that cement manufacturing project in these factories are similar, so in main parts knowing the consumption origins and save potential and existing approaches can be similar. In this method, via expert system software of prolog AH types of energy consumption and investment costs are listed in which method of best first search and innovative search have been used and by forming knowledge base, targeting to get best approaches is presented. The obtained results, regarding the executed limits, will be displayed in the output of program and this program can be given the best decision about energy management in cement factories

  13. Cement encapsulation of uranyl nitrate waste

    International Nuclear Information System (INIS)

    During decontamination of the former nuclear fuel reprocessing plant at West Valley, New York, low-level radioactive waste streams are being identified which require disposal in an environmentally acceptable manner. One such waste stream, consisting essentially of uranyl nitrate, has been located in one of the processing cells. A study was conducted on this waste stream to determine if it could be stably encapsulated in cement. First, a recipe was developed for cement-encapsulating this highly acidic waste. Samples were then made to perform waste qualification testing as described in the NRC Branch Technical Position-Waste Form to determine the stability of this waste form. The testing showed that the waste form had a compressive strength much greater than the 345 kPA (50 psi) minimum guideline after room-temperature cure, irradiation, thermal cycling, immersion, and biodegradation. In addition, the encapsulated waste had uranium and cerium leachability index values greater than six, which is the minimum recommended by the NRC position paper. The cement-encapsulated uranyl nitrate waste thus met the NRC stability guidelines for the disposal of Class B and Class C radioactive wastes

  14. A novel cement-based hybrid material

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are known to possess exceptional tensile strength, elastic modulus and electrical and thermal conductivity. They are promising candidates for the next-generation high-performance structural and multi-functional composite materials. However, one of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of purification and functionalization of the carbon nanomaterial are required. We propose a new approach to grow CNTs/CNFs directly on the surface of matrix particles. As the matrix we selected cement, the most important construction material. We synthesized in a simple one-step process a novel cement hybrid material (CHM), wherein CNTs and CNFs are attached to the cement particles. The CHM has been proven to increase 2 times the compressive strength and 40 times the electrical conductivity of the hardened paste, i.e. concrete without sand.

  15. Heuristic economic assessment of the Afghanistan construction materials sector: cement and dimension stone production

    Science.gov (United States)

    Mossotti, Victor G.

    2014-01-01

    supply side to mirror such attributes can be deal-breakers in a transaction. For qualitative interpretation of the findings in this report, the value chain was used to conceptualize the relation between supply and demand. Although quantitative data on the Afghan construction materials sector have been hard to come by, the premise herein was that qualitative aspects of supply and demand are revealed by following the flow of funding through projects of varying sizes. It was found that the spectrum of attributes on the demand side of large multimillion dollar reconstruction projects is generally high dimensional, distributed over a broad line of construction materials at diverse locations, and in varying quantities. As interpreted herein, project funds dispensed at the higher hierarchical levels of a project are often concentrated on procurement of construction materials and services at the upper end of the value chain. In contrast, project funds dispensed at the lower hierarchical levels are disseminated across a multiplicity of subprojects, thus restricting project acquisitions to the lower end of the value chain. Evidence suggests that under the current conditions in Afghanistan producers of construction materials at the lower end of the value chain (adobe brick, aggregate, low-end marble products) can successfully compete in local markets and turn a profit. In contrast, producers of energy-intensive products such as cement will continue to face intense competition from imports, at least in the near-term. In the long-term, as infrastructure issues are resolved, and as business conditions in Afghanistan improve, domestic producers will have a locational advantage in establishing a solid niche in their respective home markets. In the process of tendering properties for cement production, the pivotal issues of abundant, reliable, and cost-effective thermal and electrical energy sources for cement production have become prominent. Over the past 50 years, powdered coal and

  16. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    OpenAIRE

    Adriana Eštoková; Lenka Palaščáková

    2013-01-01

    The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices) of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in t...

  17. Assessment of the compatibility of wood and plastic with cement for their recycling in cement composites

    OpenAIRE

    Andrade, André De; Caldeira, Fernando

    2010-01-01

    The compatibility between maritime pine wood and cement, and between plastic (LDPE) and cement, was assessed for the recycling of wood and plastic in cement composites. Temperature vs. time profiles of cement setting were registered and compatibility indices were calculated. Results indicate that recycling of plastics in plastic-cement composites does not pose any questions regarding chemical compatibility. However, maritime pine hinders cement setting in some extent. So, in or...

  18. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per

  19. Harmonization and development of resources and tools for Italian natural language processing within the PARLI project

    CERN Document Server

    Bosco, Cristina; Delmonte, Rodolfo; Moschitti, Alessandro; Simi, Maria

    2015-01-01

    The papers collected in this volume are selected as a sample of the progress in Natural Language Processing (NLP) performed within the Italian NLP community and especially attested by the PARLI project. PARLI (Portale per l’Accesso alle Risorse in Lingua Italiana) is a project partially funded by the Ministero Italiano per l’Università e la Ricerca (PRIN 2008) from 2008 to 2012 for monitoring and fostering the harmonic growth and coordination of the activities of Italian NLP. It was proposed by various teams of researchers working in Italian universities and research institutions. According to the spirit of the PARLI project, most of the resources and tools created within the project and here described are freely distributed and they did not terminate their life at the end of the project itself, hoping they could be a key factor in future development of computational linguistics.

  20. Radionuclide and metal sorption on cement and concrete

    CERN Document Server

    Ochs, Michael; Wang, Lian

    2016-01-01

    Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a broad range of radioactive and industrial wastes. Effects of cement evolution or ageing on sorption/incorporation processes are explicitly evaluated and quantified. While the immobilisation of contaminants by mixing-in during hydration is not explicitly addressed, the underlying chemical processes are similar. A quantitativ...

  1. Evaluating Public Participation Process in Development Projects in Thailand: A Case Study of the Hin Krut Power Plant Project

    Directory of Open Access Journals (Sweden)

    Chutarat Chompunth

    2012-01-01

    Full Text Available Problem statement: Public participation has become a vital element of environmental decision-making. Although public participation has grown tremendously in Thailand due to a rising pressure from the public, this practice often fails to solve environmental problems and conflicts. There is a keen for a systematic evaluation of the public participation process to investigate whether the participation process is effective and what works or does not work in this respect. Approach: This study evaluates the effectiveness of the public participation process of the Hin Krut power plant project through an evaluation model developed from relevant literatures. Results: It was found that the public participation process of the case study was not completely effective when tested against the evaluation criteria. The affected people had no chance to present any comments at the very beginning. The public participation process started too late, after a decision had been made and conflicts among stakeholders already occurred. Conclusion: The public participation process is not yet properly established in the Thai context. There is an urgent need to find a working model and conditions of public participation which can assist in resolving environmental problems. Finally, a set of recommendations for improving public participation process are suggested.

  2. A Strategy for Autogeneration of Space Shuttle Ground Processing Simulation Models for Project Makespan Estimations

    Science.gov (United States)

    Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.

    2005-01-01

    Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.

  3. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

    Science.gov (United States)

    Moon, Deok Hyun; Grubb, Dennis G; Reilly, Trevor L

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration pozzolan doses up to 10 times less than the treatments that established the BDAT. Neither pozzolan was capable of reducing the TCLP-Se(VI) concentrations below 25mg/L. Se-soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.

  4. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Deok Hyun, E-mail: dmoon10@hotmail.com [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Department of Environmental Engineering, Chosun University, Gwangju 501-759 (Korea, Republic of); Grubb, Dennis G. [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Schnabel Engineering, LLC, 510 East Gay Street, West Chester, PA 19380 (United States); Reilly, Trevor L. [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO{sub 3}{sup 2-}) and selenate (SeO{sub 4}{sup 2-}). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10 mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration <10 mg/L. Several treatments satisfied the USEPA TCLP best demonstrated available technology (BDAT) limits (5.7 mg/L) for selenium at pozzolan doses up to 10 times less than the treatments that established the BDAT. Neither pozzolan was capable of reducing the TCLP-Se(VI) concentrations below 25 mg/L. Se-soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO{sub 3}.H{sub 2}O) and selenate substituted ettringite (Ca{sub 6}Al{sub 2}(SeO{sub 4}){sub 3}(OH){sub 12}.26H{sub 2}O), respectively.

  5. Kenya public weather processed by the Global Yield Gap Atlas project

    OpenAIRE

    De, Groot, N.; Adimo, A.O.; Claessens, L.F.G.; Wart, Van, Justin; Bussel, van, G.J.; Grassini, P.; Wolf, J.; Guilpart, Nicolas; Boogaard, H.L.; Oort, van, E.D.; Yang, H; Ittersum, van, M.; Cassman, K.G.

    2015-01-01

    The Global Yield Gap Atlas project (GYGA - http://yieldgap.org ) has undertaken a yield gap assessment following the protocol recommended by van Ittersum et. al. (van Ittersum et. al., 2013). One part of the activities consists of collecting and processing weather data as an input for crop simulation models in sub-Saharan African countries including Kenya. This publication covers weather data for 10 locations in Kenya. The project looked for good quality weather data in areas where crops are ...

  6. Radioactive Waste Treatment and Disposal——Application Process for Immobilization of Spent Organic Ion Exchanger

    Institute of Scientific and Technical Information of China (English)

    LINMei-qiong; GANXue-ying; BAOLiang-jin; CHENHui

    2003-01-01

    Cementation process used ASC matrix is developed by CIAE. The primary objective of the project is to provide 200 L drum scale process parameter and make an improved formulation of waste form.Scientific researchers of Tsinghua take the responsibility for improving on formulation in final waste form and ensuring quality can meet requirement of GB 14569.1-93.

  7. Utilization of gold tailings as an additive in Portland cement.

    Science.gov (United States)

    Celik, Ozlem; Elbeyli, Iffet Yakar; Piskin, Sabriye

    2006-06-01

    Mine tailings are formed as an industrial waste during coal and ore mining and processing. In the investigated process, following the extraction of gold from the ore, the remaining tailings are subjected to a two-stage chemical treatment in order to destroy the free cyanide and to stabilize and coagulate heavy metals prior to discharge into the tailings pond. The aim of this study was the investigation of the feasibility of utilization of the tailings as an additive material in Portland cement production. For this purpose, the effects of the tailings on the compressive strength properties of the ordinary Portland cement were investigated. Chemical and physical properties, mineralogical composition, particle size distribution and microstructure of the tailings were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (Mastersizer) and scanning electron microscope (SEM). Following the characterization of the tailings, cement mortars were prepared by intergrinding Portland cement with dried tailings. Composition of the cement clinkers were adjusted to contain 5, 15, 25% (wt/wt) dried tailings and also silica fume and fly ash samples (C and F type) were added to clinker in different ratios. The mortars produced with different amounts of tailings, silica fume, fly ashes and also mixtures of them were tested for compressive strength values after 2, 7, 28 and 56 days according to the European Standard (EN 196-1). The results indicated that gold tailings up to 25% in clinker could be beneficially used as an additive in Portland cement production. It is suggested that the gold tailings used in the cement are blended with silica fume and C-type fly ash to obtain higher compressive strength values. PMID:16784164

  8. Guidebook on the development of projects for uranium mining and ore processing

    International Nuclear Information System (INIS)

    Bringing a uranium operation into production involves a sequence of interrelated steps. These are outlined in the simplified diagram of Fig. 1. The challenge is to determine how the various steps of the development sequence should function and whether the costs are sufficiently low to return a positive benefit to the owner. This Guidebook has been prepared to aid in the planning, development and implementation of feasible uranium projects. It is one in a series of publications by the IAEA. This guidebook is essentially the executive summary of the other publications. It is an overview of the systematic approach to project development. It might be viewed as the ''road map'' of a project. A list of other publications in this series is provided in the Bibliography. Each chapter of the Guidebook addresses a critical aspect of project development. Chapters follow a general sequence, but none should be considered in isolation. Each Chapter presents an overview of the requirements for reaching decisions necessary to advance a project. References are provided to more definitive information and to documents which will be required by technical personnel on a project. Such detailed publications include IAEA books such as ''An Instruction Manual on Methods for Estimation of Uranium Ore Reserves'', and the ''Significance of Mineralogy in the Development of Flow Sheets for Processing Uranium Ores''. This Guidebook does not detail how to do project development but rather what must be done to insure that all critical elements of a project are considered. Refs, figs and tabs

  9. Mitigating the effects of system resolution on computer simulation of Portland cement hydration

    NARCIS (Netherlands)

    Chen, W.; Brouwers, H.J.H.

    2008-01-01

    CEMHYD3D is an advanced, three-dimensional computer model for simulating the hydration processes of cement, in which the microstructure of the hydrating cement paste is represented by digitized particles in a cubic domain. However, the system resolution (which is determined by the voxel size) has a

  10. Study of the relation between hydrated portland cement composition and leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1998-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly re

  11. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  12. Licensing documentation and licensing process for dismantling and decontamination projects in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Uspuras, Eugenijus; Rimkevicius, Sigitas; Babilas, Egidijus [Lithuanian Energy Institute (LEI), Kaunas (Lithuania)

    2013-07-01

    One of the main tasks of any decommissioning project is the licensing process which allows implementation of developed strategies in real NPP. The Lithuanian laws on nuclear energy and on radioactive waste management require that the dismantling and decontamination (D and D) projects shall be licensed by the Lithuanian State Nuclear Power Safety Inspectorate (VATESI) and other Authorities. Licensing is an inseparable part of the Lithuania regulatory and supervisory system for safety of nuclear facilities. The licensing process starts when NPP submits the first licensing document(s) to the Authorities. It is completed when all the licensing documents are approved by the Authorities and authorization to start D and D works is received by NPP. Current paper will discuss one of the main steps in D and D projects implementation process - Licensing and will provide information about D and D licensing approach used in Lithuania. (orig.)

  13. Licensing documentation and licensing process for dismantling and decontamination projects in Lithuania

    International Nuclear Information System (INIS)

    One of the main tasks of any decommissioning project is the licensing process which allows implementation of developed strategies in real NPP. The Lithuanian laws on nuclear energy and on radioactive waste management require that the dismantling and decontamination (D and D) projects shall be licensed by the Lithuanian State Nuclear Power Safety Inspectorate (VATESI) and other Authorities. Licensing is an inseparable part of the Lithuania regulatory and supervisory system for safety of nuclear facilities. The licensing process starts when NPP submits the first licensing document(s) to the Authorities. It is completed when all the licensing documents are approved by the Authorities and authorization to start D and D works is received by NPP. Current paper will discuss one of the main steps in D and D projects implementation process - Licensing and will provide information about D and D licensing approach used in Lithuania. (orig.)

  14. Possibilities of utilization of water hyacinth for making water hyacinth-cement boards

    International Nuclear Information System (INIS)

    Portland cement when casted in the form of thin sheets, alone is too brittle and rigid to develop enough serviceable value. An additional fibrous material reinforces such a cement product and improves its tensile strength. The fibrous material forms a continuos phase in a cement base. The use of fibres as a reinforcing material has been known to man from the days of ancient civilisation when he first started making sunbaked mud bricks. It was found that if the mix contained fibrous material, the bricks became stronger on drying. Asbestos fibre is predominantly used in various asbestos cement products as a reinforcing material since it is fibrous, non-combustible and has sufficient tensile strength. When mixed with 10-20% asbestos fibres, the cement gives a strong material which is commonly available as corrugated or plain sheets used for building and other purposes. As a part of the project on utilization of water hyacinth, RRL, Jorhat, undertook investigations on the possibilities of making water hyacinth-cement sheets similar to asbestos-cement sheets. Another objective of this investigation was to develop a technology for making boards from water hyacinth and cement for rural housing and other purposes in a scale appropriate to the rural sector. Water hyacinth fibre has certain similarities with asbestos fibre. For example, both are polymers as well as fibrous. However, asbestos fibre is non-combustible whilst water hyacinth fibre is combustible. This of course does not pose any difficulty since the fibres remain in a cement matrix in the form of a sheet which is almost completely impervious. For the same reason the decomposition due to weathering and microbial action is also arrested. Crysotile asbestos, which is primarily used for making asbestos-cement sheets, makes fibres very rapidly in water as does pulp from water hyacinth. This characteristic of water hyacinth pulp is definitely a disadvantage in paper making in modern high speed machines but may be of

  15. Mechanical Properties and Cytocompatibility Improvement of Vertebroplasty PMMA Bone Cements by Incorporating Mineralized Collagen

    Directory of Open Access Journals (Sweden)

    Hong-Jiang Jiang

    2015-05-01

    Full Text Available Polymethyl methacrylate (PMMA bone cement is a commonly used bone adhesive and filling material in percutaneous vertebroplasty and percutaneous kyphoplasty surgeries. However, PMMA bone cements have been reported to cause some severe complications, such as secondary fracture of adjacent vertebral bodies, and loosening or even dislodgement of the set PMMA bone cement, due to the over-high elastic modulus and poor osteointegration ability of the PMMA. In this study, mineralized collagen (MC with biomimetic microstructure and good osteogenic activity was added to commercially available PMMA bone cement products, in order to improve both the mechanical properties and the cytocompatibility. As the compressive strength of the modified bone cements remained well, the compressive elastic modulus could be significantly down-regulated by the MC, so as to reduce the pressure on the adjacent vertebral bodies. Meanwhile, the adhesion and proliferation of pre-osteoblasts on the modified bone cements were improved compared with cells on those unmodified, such result is beneficial for a good osteointegration formation between the bone cement and the host bone tissue in clinical applications. Moreover, the modification of the PMMA bone cements by adding MC did not significantly influence the injectability and processing times of the cement.

  16. A Stream Processing Engine Approach to Earth Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Timely processing of raw Earth science data for calibration and validation in a highly distributed and networked environment, and its storage at Distributed Active...

  17. Cementation of Loose Sand Particles based on Bio-cement

    Institute of Scientific and Technical Information of China (English)

    RONG Hui; QIAN Chunxiang

    2014-01-01

    Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium carbonate were tested to characterize the cementation effectiveness. In addition, the formed mineral composition and the microstructure of bio-sandstone were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The experimental results show that the feasibility of binding loose sand particles using microbial induced magnesium carbonate precipitation is available and the acquired compressive strength of bio-sandstone can be excellent at certain ages. Moreover, the compressive strength and the porosity could be improved with the increase of microbial induced magnesium carbonate content. XRD results indicate that the morphology of magnesium carbonate induced by microbe appears as needles and SEM results show that the cementation of loose sand particles to sandstone mainly relies on the microbial induced formation of magnesium carbonate precipitation around individual particles and at particle-particle contacts.

  18. Dust extraction from gas in cement kilns, using bag filters; Depoussierage des gaz de four cimentier par les filtres a manches

    Energy Technology Data Exchange (ETDEWEB)

    Harmegnies, M. [CALCIA, 78 - Guerville (France). Direction Technique

    1996-12-31

    After a review of regulations concerning cement plant emissions, the two main cement production techniques (dry and semi-dry processes) are described and the electrostatic and bag filter de-dusting techniques are compared. Examples of pilot applications of these techniques in two French cement plants are presented and operating results (performances, transient procedures, costs) are discussed

  19. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  20. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  1. Dust exposure and respiratory health effects in cement production.

    Science.gov (United States)

    Kakooei, Hossein; Gholami, Abdollah; Ghasemkhani, Mehdi; Hosseini, Mostapha; Panahi, Davoud; Pouryaghoub, Golamreza

    2012-01-01

    Dust can be produced by almost all production processes in Portland cement factory. Dust exposure potentially can affect respiratory function. But evidence for respiratory effect of cement dust exposure has not been conclusive. In this study we assessed effect of cement dust exposure on respiratory function in a cement production factory. A respiratory symptoms questionnaire was completed and pulmonary function tests were carried out on 94 exposed and 54 non exposed workers at a cement factory in the east of Iran. Additionally, respirable dust level was determined by the gravimetric method. X-ray fluorescence (XRF) technique was performed to determine the silica phases and the SiO(2) contents of the bulk samples. The arithmetic means (AM) of personal respirable dust were 30.18 mg/m(3) in the crushing, 27 mg/m(3) in the packing, 5.4 mg/m(3) in the cement mill, 5.9 mg/m(3) in the kiln and 5.48 mg/m(3) in the maintenance that were higher than threshold limit value (TLV) of the American Conference of Governmental Industrial Hygienists (ACGIH) which is 5 mg/m(3). This value in the unexposed group was 0.93 mg/m(3). In this study cough, sputum, wheezing and dyspnea were more prevalent among exposed subjects. Exposed workers compared to the unexposed group showed significant reduction in Forced Expiratory Volume in one second (FEV(1)), Forced Vital Capacity (FVC), and Forced Expiratory Flow between 25% and 75% of the FVC (FEF(25-75%)) (Pexposure and functional impairment among the cement factory workers. PMID:22359082

  2. Cementation of biodegraded radioactive oils and organic waste

    International Nuclear Information System (INIS)

    The possibility of the microbiological pre-treatment of the oil-containing organic liquid radioactive waste (LRW) before solidification in the cement matrix has been studied. It is experimentally proved that the oil containing cement compounds during long-term storage are subject to microbiological degradation due to the reaction of biogenic organic acids with the minerals of the cement matrix. We recommend to biodegrade the LRW components before their solidification, which reduces the volume of LRW and prevent the destruction of the inorganic cement matrix during the long term storage. The biodegradation of the oil containing LRW is possible by using the radioresistant microflora which oxidize the organic components of the oil to carbon dioxide and water. Simultaneously there is the bio-sorption of the radionuclides by bacteria and emulsification of oil in cement slurry due to biogenic surface-active substances of glycolipid nature. It was experimentally established that after 7 days of biodegradation of oil-containing liquid radioactive waste the volume of LRW is reduced by the factor from 2 to 10 due to the biodegradation of the organic phase to the non-radioactive gases (CH4, H2O, CO2, N2), which are excluded from the volume of the liquid radioactive waste. At the same time, the microorganisms are able to extract from the LRW up to 80-90% of alpha-radionuclides, up to 50% of 90Sr, up to 20% of 137Cs due to sorption processes at the cellular structures. The radioactive biomass is subject to dehydration and solidification in the matrix. The report presents the following experimental data: type of bacterial flora, the parameters of biodegradation, the cementing parameters, the properties of the final cement compound with oil-containing liquid radioactive waste

  3. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  4. Successful field implementation of novel cementing solution for ISC wells : case histories

    Energy Technology Data Exchange (ETDEWEB)

    Meher, R.K.; Suyan, K.M.; Dasgupta, D. [Society of Petroleum Engineers, Dubai (United Arab Emirates)]|[Oil and Natural Gas Corp. Ltd., Tel Bhavan, Dehradun (India); Deodhar, S.; Sharma, V.; Jain, V.K. [Oil and Natural Gas Corp. Ltd., Tel Bhavan, Dehradun (India)

    2008-10-15

    Cementation of in-situ combustion (ISC) wells is challenging since wells are frequently associated with weak and unconsolidated formation. However, cement rise up to surface is desired to prevent casing failure. Moreover, the cement sheath is also required to withstand extreme stresses due to high temperature cycling experienced during in-situ combustion process. In response to the problem of inadequate placement time and flash setting, Portland cement-silica blends were used for cementation of ISC wells in India instead of alumina cement blends. However, the use of the cement-silica blends has resulted in insufficient cement rise because of losses during cementation. The cured cement failed to contain the strength and permeability in course of ISC process causing charge of sub-surface shallower layers. This paper discussed the development and implementation of a non-alumina based thermally stable lightweight lead slurry and a ductile high temperature resistance tail slurry for mitigating these problems. The paper provided details of the study as well as four successful case histories. The cementing practice for ISC wells around the world was first described and illustrated. Next, the paper outlined the formulation of thermally stable tail slurry through laboratory studies. Slurry parameters of the tail slurry were presented, including slurry weight; thickening time; fluid loss; free fluid; and rheology. The paper also reviewed a study of compressive strength and permeability of thermal slurry; slurry parameters of the lightweight lead slurry; and study of compressive strength and permeability of lightweight thermal slurry. 8 refs., 4 tabs., 12 figs.

  5. Effects of Static Magnetic Fields on the Physical, Mechanical, and Microstructural Properties of Cement Pastes

    Directory of Open Access Journals (Sweden)

    Juan J. Soto-Bernal

    2015-01-01

    Full Text Available This paper presents the results of an experimental study carried out to comprehend the physical, mechanical, and microstructural behavior of cement pastes subjected to static magnetic fields while hydrating and setting. The experimental methodology consisted in exposing fresh cement pastes to static magnetic fields at three different magnetic induction strengths: 19.07, 22.22, and 25.37 Gauss. The microstructural characterization makes evident that there are differences in relation to amount and morphology of CSH gel; the amount of CSH is larger and its morphology becomes denser and less porous with higher magnetostatic induction strengths; it also shows the evidence of changes in the mineralogical composition of the hydrated cement pastes. The temperature increasing has no negative effects over the cement paste compressive strength since the magnetostatic field affects the process of hydration through a molecular restructuring process, which makes cement pastes improve microstructurally, with a reduced porosity and a higher mechanical strength.

  6. The encapsulation of Mg(OH){sub 2} sludge in composite cement

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C.; Milestone, N.B. [University of Sheffield, Sheffield (United Kingdom). Dept. of Material Engineering

    2010-03-15

    A range of magnesium hydroxide waste sludges arising from the re-processing of nuclear fuel exist in the UK and require safe long-term disposal. Similar wastes undergo a cementation process in order to immobilise radioactive material prior to disposal. Simulant magnesium hydroxide sludges have been prepared and their subsequent interactions with composite cement systems based on the partial replacement of ordinary Portland cement with blast furnace slag and pulverised fuel ash have been studied. This work has concluded that there was little reaction between the sludge and any of the composite cements during hydration. Apart from a small quantity of a hydrotalcite-type phase containing magnesium from the sludge, the main phases detected were C-S-H and unreacted brucite. This indicates that the magnesium in the sludges is encapsulated by the cement, rather than being immobilised or chemically bound within the hardened matrix.

  7. A consistent thermodynamic database for cement materials

    International Nuclear Information System (INIS)

    In the context of waste confinement and, more specifically, waste from the nuclear industry, concrete is used both as a confinement and as a building material. Alteration processes in contact with clayey formations are also of interest in the context of deep disposal. The present work aims to propose a collection of thermodynamic properties for geochemical calculation in cementitious media. This selection is extended to zeolites and clay minerals in the context of cement/clay interactions. Finally, because temperature is of importance in such contexts, the temperature dependency of the thermodynamic functions is also considered here. Uncertainties remain concerning especially katoite, and some low temperature zeolites like phillipsite, chabazite or gismondine

  8. Liquid-Oxygen-Compatible Cement for Gaskets

    Science.gov (United States)

    Elmore, N. L.; Neale, B. C.

    1984-01-01

    Fluorelastomer and metal bonded reliably by new procedure. To cure fluoroelastomer cement, metal plate/gasket assembly placed in vacuum bag evacuated to minimum vacuum of 27 inches (69 cm) of mercury. Vacuum maintained throughout heating process and until assembly returns to ambient room temperature. Used to seal gaskets and O-rings or used to splice layers of elastomer to form non-standard sized O-rings. Another possible use is to apply protective, liquid-oxygen-compatible coating to metal parts.

  9. Factor ten emission reductions : the key to sustainable development and economic prosperity for the cement and concrete industry

    Energy Technology Data Exchange (ETDEWEB)

    Horton, R. [Alchemix Corp., Pittsburgh, PA (United States)

    2001-07-01

    This paper proposes that the negative environmental effects of current cement/concrete production can be reduced by a factor of 10 by using cement blends with minimum portland cement and maximum pozzolanic loading. In addition to extending the longevity of concrete, such cement blends also avoid the huge cost of repairs and replacement cycles. Market forces will drive this transition toward sustainable development in the concrete and cement industry. The economic advantages of improving the quality of the concrete are great. Even if improving the concrete doubles the price of the highest quality cement, this would only add 2 per cent to the cost of the overall construction project, but the service life of the structure would give a many-fold return on this added investment. Also, regulations on carbon dioxide emissions in the near future will assume economic importance in the manufacturing of cement and concrete. While portland cements have dominated the construction industry for more than 150 years, new blended cements priced on a performance basis will become the standard in the twenty first century. Currently, the typical cement formulation in the United States, if it contains fly ash, contains 15 to 20 per cent fly ash by weight of the total cementitious material. This paper states that soon the number will be 50 to 60 per cent ash. Fly ash will be widely acknowledged for improving critical performance characteristics of concrete such as workability, impermeability and durability. Carbon dioxide credits will also be a major economic factor that will drive the cement industry toward a factor ten environmental improvement. The Kyoto Protocol calls for the trading of greenhouse gas credits which includes carbon dioxide credits. Under the new system, cement producers will be taxed on excess emissions, while those using pozzolans in their cements will earn credits to offset these penalties. 10 refs.

  10. MEASUREMENT PROCESS OF SOFTWARE DEVELOPMENT PROJECTS FOR SUPPORTING STRATEGIC BUSINESS OBJECTIVES IN SOFTWARE DEVELOPING COMPANIES

    OpenAIRE

    Sandra Lais Pedroso; Leonardo Rocha de Oliveira

    2013-01-01

    Software developing companies work in a competitive market and are often challenged to make business decisions with impact on competitiveness. Models accessing maturity for software development processes quality, such as CMMI and MPS-BR, comprise process measurements systems (PMS). However, these models are not necessarily suitable to support business decisions, neither to achieve strategic goals. The objective of this work is to analyze how the PMS of software development projects could supp...

  11. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  12. Prioritizing the countries for BOT nuclear power project using Analytic Hierarchy Process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Woo; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This paper proposes factors influencing the success of BOT nuclear power projects and their weighting method using Analytic Hierarchy Process (AHP) to find the optimal country which developer intends to develop. To summarize, this analytic method enable the developer to select and focus on the country which has preferable circumstance so that it enhances the efficiency of the project promotion by minimizing the opportunity cost. Also, it enables the developer to quantify the qualitative factors so that it diversifies the project success strategy and policy for the targeted country. Although the performance of this study is insufficient due to the limitation of time, small sampling and security of materials, it still has the possibility to improve the analytic model more systematically through further study with more data. Developing Build-Own(or Operate)-Transfer (BOT) nuclear power project carrying large capital in the long term requires initially well-made multi-decision which it prevents sorts of risks from unexpected situation of targeted countries. Moreover, the nuclear power project in most case is practically implemented by Government to Government cooperation, so the key concern for such nuclear power project would be naturally focused on the country situation rather than project viability at planning stage. In this regard, it requires the evaluation of targeted countries before involving the project, comprehensive and proper decision making for complex judgment factors, and efficient integration of expert's opinions, etc. Therefore, prioritizing and evaluating the feasibility of country for identification of optimal project region is very meaningful study.

  13. The Aluminum Deep Processing Project of North United Aluminum Landed in Qijiang

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.

  14. Environmental Scanning Project: A Dimensional Aspect of Needs Assessment in the Strategic Planning Process, Fall 1987.

    Science.gov (United States)

    Lomax, Lynn A.

    The environmental scanning project described in this report was undertaken at Lane Community College (LCC) in Eugene, Oregon, to enhance the college's strategic planning process by anticipating events that might differ from the economic, social, and political conditions of the present. First, an overview is provided of the purpose and intent of…

  15. 75 FR 41875 - Technical Processing Requirements for Multifamily Project Mortgage Insurance

    Science.gov (United States)

    2010-07-19

    ... the ability to manage the development, construction, completion, and successful lease-up of the... information collected is used to determine if key principals are acceptable and have the ability to manage the... URBAN DEVELOPMENT Technical Processing Requirements for Multifamily Project Mortgage Insurance...

  16. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  17. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-12-10

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

  18. Participation, Roles and Processes in a Collaborative Action Research Project: A Reflexive Account of the Facilitator

    Science.gov (United States)

    Avgitidou, Sofia

    2009-01-01

    This paper analyses and discusses the roles and participation of those involved in a collaborative action research project to highlight the factors that influenced their content, quality and intensity. Emphasis is given to the reflections of the facilitator (author) on the processes employed to achieve equal participation and roles in the action…

  19. Corpora Processing and Computational Scaffolding for a Web-Based English Learning Environment: The CANDLE Project

    Science.gov (United States)

    Liou, Hsien-Chin; Chang, Jason S; Chen, Hao-Jan; Lin, Chih-Cheng; Liaw, Meei-Ling; Gao, Zhao-Ming; Jang, Jyh-Shing Roger; Yeh, Yuli; Chuang, Thomas C.; You, Geeng-Neng

    2006-01-01

    This paper describes the development of an innovative web-based environment for English language learning with advanced data-driven and statistical approaches. The project uses various corpora, including a Chinese-English parallel corpus ("Sinorama") and various natural language processing (NLP) tools to construct effective English learning tasks…

  20. A formal risk management process for instrumentation projects at the Anglo-Australian Observatory

    Science.gov (United States)

    Orr, David R.; Heng, Anthony

    2010-07-01

    Risk management is a dynamic activity that takes place throughout the development process from the concept phase to the retirement phase of the project. The successful management of risk is a critical part of the instrumentation development process at the AAO. The AAO has a risk management process based on the AS/ISO standard for risk management. Brainstorming sessions are conducted with the project team. Potential project risks are identified by the team and grouped into the categories of technical, political, operational, logistical, environmental, and safety. A risk matrix is populated with details of each risk. The risk is then ranked based on the consequence and likelihood according to the scale of Low, Moderate, Significant, and High. The level of risk is evaluated; mitigation control mechanisms are identified, and assigned to a specific team member for resolution. Risk management is used as a management tool for the HERMES project. The top 5 risks are identified, and management efforts are then concentrating on reducing these risks. Risk management is also used during the development process as a trade study tool to evaluate different design options and assist senior management to make informed decisions.