WorldWideScience

Sample records for cementation diffusion coatings

  1. Caesium diffusion through cement paste cured at different temperatures

    International Nuclear Information System (INIS)

    Peterson, V.K.; Ray, A.

    1999-01-01

    Cs + diffusivity through ordinary Portland cement (OPC) samples was investigated using Inductively Coupled Plasma Mass-Spectrometry (ICP-MS) and Secondary Ion Mass-Spectrometry (SIMS). Intrinsic diffusivities were calculated using modified diffusion equations. The intrinsic diffusivities of Cs + through OPC and cemented clinoptilolite samples cured at 25 deg C, 60 deg C and 150 deg C were compared. As expected, Cs + diffusivity was found to increase with increasing cure temperature of OPC. Cs + diffusivity through cemented clinoptilolite also varied with cure temperature. The addition of clinoptilolite to OPC reduced Cs + diffusivity through the sample, and this effect was more pronounced at greater cure temperatures

  2. Analytical method to estimate resin cement diffusion into dentin

    Science.gov (United States)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C-O-C, 1113 cm-1) present in the cements, and the mineral content (P-O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  3. Enhancement of adhesion between resin coating materials and resin cements.

    Science.gov (United States)

    Udo, Tomoaki; Nikaido, Toru; Ikeda, Masaomi; Weerasinghe, Dinesh S; Harada, Naoko; Foxton, Richard M; Tagami, Junji

    2007-07-01

    Resin coating technique is a unique method that improves the dentin bond strength of resin cements in indirect restorations. However, the weak link of a specimen bonded using the resin coating technique was reported to be the bonded interface between the resin coating material and resin cement. The purpose of this study, therefore, was to enhance the bonding performance between a resin coating material and a resin cement. Two light-cured flowable composites, Protect Liner F and Clearfil Flow FX, were used as coating materials, and two dual-cure composite materials, Panavia F 2.0 and Clearfil DC Core Automix, were used as resin cements. The ultimate tensile strength of each material and the microtensile bond strengths of the bonded specimens of resin coating material and resin cement were measured using a crosshead speed of 1.0 mm/min. Three-way ANOVA (p=0.05) revealed that the highest microtensile bond strength was obtained using a combination of Clearfil Flow FX and Clearfil DC Core Automix, and when the surface of the coating material was treated with ED Primer II. It was strongly suggested that materials with a higher ultimate tensile strength, when used in both resin coating and cementation, could enhance the bond strength between the two.

  4. Cement matrix composite construction features for production of waterproofing coatings

    OpenAIRE

    Суханевич, Марина Володимирівна

    2014-01-01

    It is investigated the properties of the matrix based on Portland cement, slag-contain and fly-ash- slag-contain cements modified with the addition of natural zeolite and complex additives consisting of carbon nanotubes in C-3 solution plasticizer as the main component of composite waterproofing material that is applied to wet concrete in the form of thin-layer coatings.

  5. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...

  6. Porosity and ion diffusivity of latex-modified cement

    International Nuclear Information System (INIS)

    Nishi, Takashi; Kuriyama, Osamu; Matsuda, Masami; Chino, Koichi; Kikuchi, Makoto

    1990-01-01

    Latex-modified portland cement, which would be expected to have low permeability and ion diffusivity, was studied for possible application as a solidification agent for radioactive wastes generated from nuclear power plants. In order to predict the leaching ratio of radionuclides from the cementitious waste forms, the effect of water and latex content in the fresh cement paste on total porosity and ion diffusivity of hardened paste was quantitatively estimated. Total porosity of hardened cement paste decreased with the reduction of water content in the fresh paste and it was also reduced by latex addition. This latter effect could be attributed to the latex emulsion forming a water-proof film and filling the capillary pores. Also Cs ions diffusivity, which is the ratio of the diffusion coefficient in pore water to that in bulk water, showed an exponential correlation with total porosity for both cement materials. An empirical equation, expressing ion diffusivity as a function of total porosity, was derived from the consideration that the water constrictivity in this porous medium could cause an increase of the apparent viscosity of pore water. These results suggested a possibility that the transport behavior of radionuclides through the cementitious matrix could be estimated from the mixing parameters of the original cement pastes

  7. Determination of thermal diffusivity of cement-stabilized laterite by ...

    African Journals Online (AJOL)

    Knowledge of thermo-physical properties of local building materials are necessary for thermal comfort design and construction of residential accommodation. Thermal diffusivity of cement-stabilized laterites were measured under conditions of transient thermal field and induced surface stress, assuming constant temperature ...

  8. Experimental study of chloride diffusivity in unsaturated ordinary Portland cement mortar

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Santhanam, M.

    2017-01-01

    Experiments are carried out to investigate the chloride diffusivity in partially saturated ordinary Portland cement mortars with water-to-cement (w/c) ratios of 0.4, 0.5 and 0.6. Based on resistivity measurement and Nernst-Einstein equation, the chloride diffusivities of cement mortars at various

  9. Absorbing-and-diffusing coating

    OpenAIRE

    Tkalich, N. V.; Mokeev, Yu. G.; Onipko, A. F.; Vashchenko, V. F.; Topchev, M. D.; Glebov, V. V.; Ivanchenko, Dmitrij D.; Kolchigin, Nikolay N.; Yevdokimov, V. V.

    2003-01-01

    The paper presents the results of complex experimental research of the absorbing-and-diffusing material "Contrast". It is shown to be an efficient wideband-camouflage material in the radiolocation and the video bands. Ways for improving the material characteristics are outlined.

  10. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides

    Directory of Open Access Journals (Sweden)

    R. Polini

    2012-01-01

    Full Text Available Co-cemented tungsten carbides, namely, hard metals are largely used to manufacture high wear resistant components in several manufacturing segments. Coating hard metals with superhard materials like diamond is of utmost interest as it can further extend their useful lifespan. The deposition of diamond coatings onto WC-Co can be extremely complicated as a result of poor adhesion. This can be essentially ascribed to (i the mismatch in thermal expansion coefficients between diamond and WC-Co, at the typical high temperatures inside the chemical vapour deposition (CVD chamber, generates large residual stresses at the interface; (ii the role of surface Co inside the WC-Co matrix during diamond CVD, which promotes carbon dissolution and diffusion. The present investigation reviews the techniques by which Co-cemented tungsten carbides can be treated to make them prone to receive diamond coatings by CVD. Further, it proposes interesting ecofriendly and sustainable alternatives to further improve the diamond deposition process as well as the overall performance of the coated hard metals.

  11. Penetrating waterproofing coatings based on slag -containing cements, modified by natural zeolites

    OpenAIRE

    Пушкарева, Екатерина Константиновна; Суханевич, Марина Владимировна; Бондарь, Екатерина Владимировна

    2014-01-01

    The paper deals with obtaining penetrating waterproofing coatings for concrete surfaces based on the slag-cement systems, modified by natural zeolite additives. The composition was investigated and physico-mechanical properties of slag-containing cements with natural zeolite, which were subsequently modified by the salt-electrolyte complex to create penetrating coating, were optimized. Studying the properties of the developed coating has confirmed its competitiveness in the market of similar ...

  12. Diffusion of sulfuric acid in protective organic coatings

    DEFF Research Database (Denmark)

    Wang, Ting; Møller, Victor Buhl; Dam-Johansen, Kim

    Organic protective coatings and linings are widely used to prevent corrosion in industrial processes. However, the permeation of aggressive chemicals through coatings can induce failures. These are described in the literature, but rarely quantified. To measure the diffusion rates of aggressive...... chemicals through organic coatings, a diffusion cell was designed. The diffusion cell designed is simple, small and suitable for scaling up to a battery of cells. A concentration profile of H3O+ through epoxy coatings was achieved for sulfuric acid aqueous solutions, which can be used to estimate diffusion...

  13. Laser ablation microprobe inductively coupled plasma mass spectrometry study on diffusion of uranium into cement materials

    International Nuclear Information System (INIS)

    Sugiyama, D.; Chida, T.; Cowper, M.

    2008-01-01

    The diffusion of uranium (U(VI)) in solid cement monoliths of ordinary portland cement (OPC) and low-heat portland cement containing 30 wt.% fly ash (FAC) was measured by an in-diffusion technique. Detailed sharp depth profiles of uranium in the solid cement matrices were successively and quantitatively measured using laser ablation microprobe inductively coupled plasma mass spectrometry (LAMP-ICP-MS), and the apparent (D a ) and effective (D e ) diffusion coefficient of uranium in cement matrix were calculated as: D a =∝ 4 x 10 -16 m 2 s -1 and D e =∝ 3 x 10 -11 m 2 s -1 for OPC, and D a =∝ 2 x 10 -17 m 2 s -1 and D e =∝ 6 x 10 -13 m 2 s -1 for FAC. (orig.)

  14. Effect of salivary pH on diametral tensile strength of glass ionomer cement coated with coating agent

    Science.gov (United States)

    Farahdillah; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to analyze the effect of salivary pH to diametral tensile strength of glass ionomer cement (GIC) coated with a coating agent. GIC specimens coated with varnish and nano-filled coating agent were stored in artificial saliva at pH values of 4.5, 5.5, and 7 for 24 h at 37°C, then the diametral tensile strength was tested by universal testing machine. Results showed that there was no significant difference in the diametral tensile strength of the GIC coated with varnish and nano-filled coating agent with decreasing of salivary pH (p tensile strength of GIC coated by varnish or nano-filled coating agent

  15. Tetrachloroethylene contamination of drinking water by vinyl-coated asbestos-cement pipe

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, S.G.; Davis, A.C.; Witt, R.T.; Tripp, B.W.; Frew, N.M.

    1980-10-01

    Drinking water transported in vinyl-coated asbestos-cement pipes often contains elevated concentrations of tetrachloroethylene, which is used as solvent during application of the vinyl coating. Tetrachloroethylene contamination of drinking waters flowing in vinyl-coated asbestos-cement pipes in Falmouth, Mass., is assessed. Problems encountered in trying to reduce this potential health hazard are reviewed. Flushing of the pipe sometimes leads to a reduced tetrachloroethylene level in that pipe, but after flushing is terminated, the level of contamination will gradually increase. (1 diagram, 17 references, 2 tables)

  16. Acidity of conventional luting cements and their diffusion through bovine dentine.

    Science.gov (United States)

    Hiraishi, N; Kitasako, Y; Nikaido, T; Foxton, R M; Tagami, J; Nomura, S

    2003-09-01

    To examine the changes in pH of luting cements and acid diffusion of luting cements through bovine dentine using a pH-imaging microscope (SCHEM-100; Horiba Ltd, Kyoto, Japan). The pH of the surface of three conventional luting cements, glass-ionomer, zinc phosphate and zinc polycarboxylate was measured with SCHEM-100 for 1 month. The acid diffusion from the three luting cements through bovine dentine was investigated by measuring pH changes during the application of each luting cement on the bovine dentine surface. Coronal bovine dentine disks were prepared to thicknesses of 0.50 and 0.25 mm. Each luting cement was placed on the labial dentine surface, and the pH change of the pulpal surface was observed every 3 min for 30 min with SCHEM-100. Glass-ionomer showed the lowest pH values for longer times. Neutralization proceeded furthest in zinc polycarboxylate. The 0.5-mm-thick dentine disks showed no pH change on the pulpal side with all the three cements. The 0.25-mm-thick disks revealed evidence of acid diffusion on the pulpal side of the cemented dentine and significantly lower pH when cemented with glass-ionomer and zinc phosphate than with zinc polycarboxylates. This study demonstrated that glass-ionomer exhibited a lower setting pH than zinc phosphate and zinc polycarboxylate, and acid diffusions from glass-ionomer and zinc phosphate cements were observed when placed on 0.25-mm-thick dentine disks.

  17. Application of aluminum diffusion coatings to mitigate the KCl-induced high-temperature corrosion

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Lomholt, T. N.; Dahl, Kristian Vinter

    2017-01-01

    Pack cementation was used to produce Fe1−xAl and Fe2Al5 diffusion coatings on ferritic-martensitic steel P91 and a Ni2Al3 diffusion coating on pure nickel. The performance of diffusion coatings against high-temperature corrosion induced by potassium chloride (KCl) was evaluated by exposing...... the samples at 600 °C for 168 h in static lab air under KCl deposit. In addition, a salt-free experiment was performed for comparison. Microstructure, chemical and phase composition of the samples were analyzed with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X......-ray diffractometry (XRD) before and after the exposures. It was found that all the diffusion coatings formed protective oxides under salt-free exposure in air. Under the salt deposit, Fe1−xAl showed local failure while on large parts of the sample a protective layer had formed. Fe2Al5 was attacked over the entire...

  18. Calculation of calcium diffusion coefficient of cement hardenings using minute pore data

    International Nuclear Information System (INIS)

    Hitomi, Takashi; Takeda, Nobufumi; Iriya, Keishiro

    2009-01-01

    This report describes the calculations of the diffusion coefficient of the Ca ion of cement hardenings using minute pore data. The observed hardenings were ordinary Portland cement (OPC), low-heat Portland cement with fly ash (LPC+FA) and highly fly ash containing silica fume cement (HFSC). The samples were cured in the standard and artificially leached by accelerated test. Minute pore datas of the cement hardenings were acquired with image processing of internal structural information obtained from high resolution X-ray computed tomography observations. Upon analysis, several voxels are combined into one bigger voxel, the diffusion coefficient of the voxels were determined in proportion to the number of voxels which were included in. The results reveal that the change in the calcium diffusion coefficient of OPC due to leaching was large, but the LPC+FA and HFSC cements exhibited even greater changes than OPC. It is suggested that the diffusion coefficients are proportional to the Ca/Si ratio of the samples. (author)

  19. Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Swoo-Heon Lee

    2014-06-01

    Full Text Available This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C. However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete.

  20. Study of radon diffusion from RHA-modified ordinary Portland cement using SSNTD technique

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Chauhan, R.P.; Chakarvarti, S.K.

    2013-01-01

    The diffusion coefficient of radon is a very important factor in estimating the rate of indoor radon inflow. The aim of this work is to develop and assess the potential of radon resistant construction materials in residential buildings. Of late, rice husk ash (RHA) has been used as a component in cement. The X-ray diffraction of RHA indicates that the RHA contains mainly amorphous materials while the X-ray fluorescence analysis shows that the major percentage of it is composed of silica. The amorphous silica present in the RHA is responsible for the pozzolonic activity of the ash. The results of the present study indicate that the RHA when mixed with cement initially reduces radon diffusion coefficient, followed by enhancement when the percentage of RHA is increased above 30% by weight. - Highlights: ► Radon diffusion coefficient has been measured in Portland cement with different percentage of rice husk ash (RHA). ► The mixing of RHA to cement changes the radon diffusion coefficient. ► The mixture of cement and RHA can be used to make building materials more resistant to radon entry through diffusion

  1. Effect of resin coating on dentin bonding of resin cement in Class II cavities.

    Science.gov (United States)

    Sultana, Shamim; Nikaido, Toru; Matin, Khairul; Ogata, Miwako; Foxton, Richard M; Tagami, Junji

    2007-07-01

    This study was designed to evaluate the efficacy of resin coating on the regional microtensile bond strength (MTBS) of a resin cement to the dentin walls of Class II cavities. Twenty mesio-occlusal cavities were prepared in human molars. In 10 cavities, a resin coating consisting of a self-etching primer bonding system, Clearfil SE Bond, and a low-viscosity microfilled resin, Protect Liner F, was applied. The other 10 teeth served as a non-coating group. After impression taking and temporization, they were kept in water for one day. Composite inlays were then cemented with a dual-cure resin cement, Panavia F 2.0, and stored in water for one day. Thereafter, MTBSs were measured. Two-way ANOVA (p=0.05) revealed that the MTBS of resin cement to dentin was influenced by resin coating, but not by regional difference. In conclusion, application of a resin coating to the dentin surface significantly improved the MTBS in indirect restorations.

  2. MATHEMATICAL MODELING OF CEMENTATION PROCESS ON THE BASIS OF EQUATION OF HEAT CONDUCTION AND DIFFUSION

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2008-01-01

    Full Text Available The mathematical model of cementation process of the object , situated in three-dimensional temperature field for boundary condition, taking into account function of carbonic potential, is developed. Numerical modeling of carbon distribution in surface coatings of steel object is carried out   

  3. Open photoacoustic cell for thermal diffusivity measurements of a fast hardening cement used in dental restoring

    Science.gov (United States)

    Astrath, F. B. G.; Astrath, N. G. C.; Baesso, M. L.; Bento, A. C.; Moraes, J. C. S.; Santos, A. D.

    2012-01-01

    Thermal diffusivity and conductivity of dental cements have been studied using open photoacoustic cell (OPC). The samples consisted of fast hardening cement named CER, developed to be a root-end filling material. Thermal characterization was performed in samples with different gel/powder ratio and particle sizes and the results were compared to the ones from commercial cements. Complementary measurements of specific heat and mass density were also performed. The results showed that the thermal diffusivity of CER tends to increase smoothly with gel volume and rapidly against particle size. This behavior was linked to the pores size and their distribution in the samples. The OPC method was shown to be a valuable way in deriving thermal properties of porous material.

  4. Atom probe tomography of a Ti–Si–Al–C–N coating grown on a cemented carbide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Thuvander, M.; Östberg, G. [Department of Applied Physics, Chalmers University of Technology, SE 412 96 Göteborg (Sweden); Ahlgren, M. [Sandvik Coromant, SE 126 80 Stockholm (Sweden); Falk, L.K.L., E-mail: lklfalk@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE 412 96 Göteborg (Sweden)

    2015-12-15

    The elemental distribution within a Ti–Si–Al–C–N coating grown by physical vapour deposition on a Cr-doped WC–Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti–N adhesion layer. The composition of this layer, and the Ti–Al–N interlayer present between the adhesion layer and the main Ti–Si–Al–C–N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti–Al–Si–C–N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N{sup +} and Si{sup 2+} at 14 Da. - Highlights: • A Ti–Si–Al–C–N coating/WC–Co substrate interface has been analysed by APT. • The TiN adhesion layer and the Ti–Al–N interlayer appeared to be anion deficient. • Intermixing of Co and Cr from the substrate was observed in the Ti–N adhesion layer. • The Ti–Si–Al–C–N coating displayed an undulating composition in the growth direction.

  5. Industrial Wastes as Alternative Mineral Addition in Portland Cement and as Aggregate in Coating Mortars

    OpenAIRE

    Oliveira, Kamilla Almeida; Nazário, Bruna Inácio; Oliveira, Antonio Pedro Novaes de; Hotza, Dachamir; Raupp-Pereira, Fabiano

    2017-01-01

    This paper presents an evaluation study of wastes from pulp and paper as well as construction and demolition industries for application in cement-based materials. The alternative raw materials were used as a source of calcium carbonate (CaCO3) and as pozzolanic material (water-reactive SiO2) in partial replacement of Portland cement. In addition to the hydraulic binder, coating mortars were composed by combining the pulp and paper fluidized bed sand residue with construction and demolition wa...

  6. Final disposal of low and intermediate radioactive waste - aspects of diffusion through cement lattice modelling

    International Nuclear Information System (INIS)

    Mihai, C.

    1998-01-01

    The present work performed in our department is related to development of safety assessment programme for the National Repository for Radioactive Waste - Baita, Bihor. The rate of radionuclide release in the proximity of National Repository for Radioactive Waste - Baita, Bihor was minimized by taking into account the multibarrier principle. This implies the uses of a complex system of natural and engineered barriers which should neutralize the main processes of radionuclide migration. In the first component of the system mentioned above, cement lattice, the migration of incorporated radionuclides takes place mainly by diffusion process. The diffusion equation is given for the particular case of cylindrical shape of the container, from which the ratio between the released fraction and the initial quantity of radionuclides is obtained. We studied the process of diffusion in three different materials (the radionuclides used were 65 Zn, 51 Cr, 82 Br). The results obtained allowed a pertinent selection of the material for improvement of retardation factors of cement lattice. (author)

  7. Armouring of well cement in H2S–CO2 saturated brine by calcite coating – Experiments and numerical modelling

    International Nuclear Information System (INIS)

    Jacquemet, Nicolas; Pironon, Jacques; Lagneau, Vincent; Saint-Marc, Jérémie

    2012-01-01

    The active acid gas (H 2 S–CO 2 mixture) injection operations in North America provide practical experience for the operators in charge of industrial scale CO 2 geological storage sites. Potential leakage via wells and their environmental impacts make well construction durability an issue for efficiency/safety of gas geological storage. In such operations, the well cement is in contact with reservoir brines and the injected gas, meaning that gas–water–solid chemical reactions may change the physical properties of the cement and its ability to confine the gas downhole. The cement-forming Calcium silicate hydrates carbonation (by CO 2 ) and ferrite sulfidation (by H 2 S) reactions are expected. The main objective of this study is to determine their consequences on cement mineralogy and transfer ability. Fifteen and 60 days duration batch experiments were performed in which well cement bars were immersed in brine itself caped by a H 2 S–CO 2 phase at 500 bar–120 °C. Scanning electron microscopy including observations/analyses and elemental mapping, mineralogical mapping by micro-Raman spectroscopy, X-ray diffraction and water porosimetry were used to characterize the aged cement. Speciation by micro-Raman spectroscopy of brine trapped within synthetic fluid inclusions were also performed. The expected calcium silicate hydrates carbonation and ferrite sulfidation reactions were evidenced. Furthermore, armouring of the cement through the fast creation of a non-porous calcite coating, global porosity decrease of the cement (clogging) and mineral assemblage conservation were demonstrated. The low W/R ratio of the experimental system (allowing the cement to buffer the interstitial and external solution pH at basic values) and mixed species diffusion and chemical reactions are proposed to explain these features. This interpretation is confirmed by reactive transport modelling performed with the HYTEC code. The observed cement armouring, clogging and mineral

  8. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    International Nuclear Information System (INIS)

    Gallego, Daniel; Higuita, Natalia; Garcia, Felipe; Ferrell, Nicholas; Hansford, Derek J.

    2008-01-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO 2 atmosphere, allowing the formation of CaCO 3 . The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO 2 atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH) 2 on C-, and CaCO 3 on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications

  9. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  10. Hydrogen diffusion along grain boundaries in erbium oxide coatings

    International Nuclear Information System (INIS)

    Mao, Wei; Chikada, Takumi; Suzuki, Akihiro; Terai, Takayuki

    2014-01-01

    Diffusion of interstitial atomic hydrogen in erbium oxide (Er 2 O 3 ) was investigated using density functional theory (DFT) and molecular dynamics (MD) methods. Hydrogen diffusivity in bulk, on (0 0 1) surface, and along Σ13 (4–3–1)/[1 1 1] symmetric tilt grain boundaries (GBs) were evaluated in a temperature range of 673–1073 K, as well as hydrogen diffusion barriers. It was found that H diffusion shows the faster on (0 0 1) surface than along GBs and in bulk. Also, energy barrier of H diffusion in bulk estimated by DFT and MD methods is somewhat higher than that along GBs evaluated in the experiments. This suggests that H diffusion in Er 2 O 3 coatings depends on GBs rather than bulk. In addition, with a correction of GB density, the simulated diffusivity along GBs in MD simulations is in good agreement with the experimental data within one order of magnitude. The discrepancy of H diffusivity between the experiments and the simulations should be reduced by considering H concentration, H diffusion direction, deviations of the initial configuration, vacancy defects, etc

  11. Diffusion behavior of anion in hardened low-heat portland cement paste containing fly ash. Dependence of effective diffusion coefficient on pore structure

    International Nuclear Information System (INIS)

    Chida, Taiji; Yoshida, Takahiro

    2012-01-01

    In the sub-surface disposal system, the closely packed concrete layer is expected the low diffusivity to retard the migration of radionuclides. Low-heat portland cement containing 30 wt% fly ash (FAC) is a candidate cement material for the construction of sub-surface repository because of its high dense structure and its resistance to cracking. Previously, we reported that FAC has lower diffusivity than Ordinary Portland Cement (OPC) for acetic acid and iodine. However, the mechanism for low diffusivity of FAC was not clear. In this study, the diffusion of multiple trace ions (chlorine, bromine and iodine) in hardened cement pastes was examined by through-diffusion experiments. The effective diffusion coefficients, D e , of the trace ions for hardened OPC cement pastes were on the order of 10 -12 m 2 s -1 for trace ions, and D e for hardened FAC cement pastes were on the order of 10 -13 m 2 s -1 for chlorine, 10 -14 m 2 s -1 for bromine and 10 -15 m 2 s -1 for iodine. Additionally, the pore size distribution and porosity of FAC changed to more closely packed structure for 13 months by the pozzolanic reaction, and the pore size distribution of FAC (mainly 3-10 nm) were an order of magnitude smaller than that of OPC. These results suggest that the low diffusivity of FAC is based on the continuous change in the pore structure and the nano-scale pore size retarding the migration of trace ions. (author)

  12. Antibacterial Efficacy of a New Gentamicin-Coating for Cementless Prostheses Compared to Gentamicin-Loaded Bone Cement

    NARCIS (Netherlands)

    Neut, Danielle; Dijkstra, Rene J. B.; Thompson, Jonathan I.; van der Mei, Henny C.; Busscher, Henk J.

    2011-01-01

    Cementless prostheses are increasingly popular but require alternative prophylactic measures than the use of antibiotic-loaded bone cements. Here, we determine the 24-h growth inhibition of gentamicin-releasing coatings from grit-blasted and porous-coated titanium alloys, and compare their

  13. The effect of resin coating on the shear punch strength of restorative glass ionomer cements.

    Science.gov (United States)

    Pilo, Raphael; Ben-Amar, Ariel; Barnea, Anna; Blasbalg, Yaron; Levartovsky, Shifra

    2017-05-01

    The aim of the current study was to examine the shear punch strength (SPS) of high-strength glass ionomer cements (HSGICs) in relation to coating applications and duration of coating. I-Ninety specimens each of Fuji IX GP Fast (FIX Fast), Ionofil Molar AC (IM), Riva Self Cure (R) and Ketac Molar (KM) were prepared and divided into uncoated and coated groups, sub-divided into three sub-groups and incubated for 24 h, 1 week or 8 weeks (distilled water, 37 °C) before SPS. II-Ninety specimens each of uncoated and coated Fuji IX GP Extra were similarly prepared, divided into six sub-groups and incubated for 2 h, 24 h, 1 week, 1 month, 2 months or 3 months (artificial saliva, 37 °C) before SPS. Another 90 specimens were coated for 2 h, 24 h, 1 week, 1 month or 2 months, after which the coating was removed. Specimens were re-incubated in artificial saliva until the end of the 3-month period and then subjected to SPS. None of the materials gained extra strength when coated. Uncoated KM, IM (at all times) and FIX Fast (at 24 h) were stronger. Fuji IX GP Extra achieved 11.5 MPa after 2 h, which increased to 56.7 MPa after 24 h. The highest strength after 3 months was achieved when the coating was retained for 2 h (71.7 MPa). A resin coating will not positively affect the SPS of HSGICs. There is no need to protect HSGICs from water to gain extra strength unless the coating is retained for 2 h.

  14. Hard machining under dry conditions with hard PVD coatings on cemented carbide endmills

    International Nuclear Information System (INIS)

    Fleischer, W.; Baranski, N.; Kolk, G.J. van der; Stockmann, Y.; Kunen, H.; Hoppe, S.

    2001-01-01

    Machining of hardened steel needs cutting tools for extreme conditions. Not only the cemented carbide tool material, but also the hard or ultra hard coating determines the tool life and cutting performance on the work piece. For milling operation in hardened material 1.2379 with a hardness between 60 and 62 HRc, endmills coated with different TiAlN layers in single or multilayer design and also top coatings with friction performance are used. Cutting tests with investigations of the wear on the cutting edge and in situ infrared temperature measurements by video camera showed large differences in tool performance. According to these results the limitation of cutting time or cutting length is, in some cases, not only caused by the wear on the tool, but also by the surface temperature of the work piece material. (author)

  15. Electron beam-curing coating for pressed cement roof tiles with high-build and excellent durability

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Kiyata, Hiroaki

    1979-01-01

    Thick slate has expanded the demand steadily and spread to whole Japan except the northernmost part as a roof material, because it deals with rain water well, its strength, coldness resistance and endurance are excellent, and it can be worked easily. The ornamental finishing by urethane coating is not satisfactory in view of the improvement of productivity and the measures to pollution as well as the design and color. In order to meet this background, new coating has been sought, and electron beam-curing coating seems to be most suitable to cement roof tiles. The history and the present state of cement roof tiles are explained. About 700 tons/month of the coating for cement roof tiles is used at present, and acryl resin coating occupies about 75%, while urethane resin coating is used in Kyushu relatively more. The urethane coating is applied in shops by electrostatic coating, but the acryl coating is mostly applied in sites after tiling over. Electron beam curing used electron beam of 200 keV, and polymerization starts from the radicals formed through ionization, excitation and neutralization. The features of electron beam-curing coating are good adhesion to roof tiles, keeping luster and endurance to discoloration, strong film and feeling like porcelain, drying at normal temperature, productivity and economy. (J.P.N.)

  16. Diffusion mechanism in molten salt baths during the production of carbide coatings via thermal reactive diffusion

    Science.gov (United States)

    Ghadi, Aliakbar; Saghafian, Hassan; Soltanieh, Mansour; Yang, Zhi-gang

    2017-12-01

    The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investigated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ± 0.5, 5.2 ± 0.5, or 5.7 ± 0.5 μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the substrate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.

  17. The effect of Al and Cr additions on pack cementation zinc coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Papazoglou, M.; Tsipas, S.; Pavlidou, E.; Skolianos, S.; Stergioudis, G.; Vourlias, G.

    2010-01-01

    Zinc is widely used as a protective coating material due to its corrosion resistant properties. The structure and oxidation resistance of Al and Cr mixed zinc coatings, deposited by pack cementation process, is thoroughly examined in this work. The morphology and chemical composition of the as-deposited and oxidized samples was accomplished by electron microscopy while the phase identification was performed by XRD diffraction analysis. The experimental results showed that the addition of aluminum or chromium in the pack mixture forms only Al and Cr rich phases on the surface of the specimens without affecting significantly the phase composition of the rest zinc coatings. In the case of Zn-Al coatings, the overlying layer contains high concentrations of Al together with lower amounts of zinc and iron and in Zn-Cr coatings this layer contains Cr, Fe and Zn atoms and has much smaller thickness. The presence of these additional layers promotes significantly the oxidation resistance of the zinc pack coatings and they preserve most of their initial thickness and chemical content when exposed to an aggressive environment while their oxidation mass gain was measured at low levels during the oxidation tests.

  18. Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.

    Science.gov (United States)

    Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L

    2015-12-01

    The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Diffusion and sorption on hardened cement pastes - experiments and modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A.; Sarott, F.-A.; Spieler, P.

    1999-08-01

    Large parts of repositories for low and intermediate level radioactive waste consist of cementitious materials. Radionuclides are transported by diffusion in the cement matrix or, in case of fractured or highly permeable cement, by advection and dispersion. In this work we aim at a mechanistic understanding of diffusion processes of some reactive tracers. On the laboratory scale, ten through-diffusion experiments were performed to study these processes for Cl{sup -}, I{sup -}, Cs{sup +} and Ni{sup 2+} ions in a Sulphate Resisting Portland Cement (SRPC) equilibrated with an artificial pore water. Some of the experiments continued up to nearly three years with daily measurements. In all the experiments, a cement disk initially saturated with an artificial pore water was exposed on one side to a highly diluted solution containing the species of interest. On the second side, a near-zero concentration boundary was maintained to drive through-diffusion of the tracer. The changes of concentrations on both sides of the samples were monitored, allowing careful mass balances. From these data, values of the diffusive flux and the mass of tracer taken up by the cementitious material were determined as a function of time. In the subsequent modelling, the time histories of these tracer breakthroughs were fitted using five different models. The simplest model neglects all retarding mechanisms except pure diffusion. More complex models either account for instantaneous equilibrium sorption in form of linear or non-linear (Freundlich) sorption or for first-order sorption kinetics where the forward reaction may be linear or non-linear according to the Freundlich isotherm, while the back-reaction is linear. Hence, the analysis allows the extraction of the diffusion coefficient and parameter values for the sorption isotherm or rate-constants for sorption and desorption. The fits to the experimental data were carried out by an automated Marquardt-Levenberg procedure yielding error

  20. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    Science.gov (United States)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  1. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  2. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  3. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Science.gov (United States)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  4. Design and simulation of thermal residual stresses of coatings on WC-Co cemented carbide cutting tool substrate

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Zang, Jian; Zheng, Wei

    2016-01-01

    Large thermal residual stresses in coatings during the coating deposition process may easily lead to coating delamination of coated carbide tools in machining. In order to reduce the possibility of coating delamination during the tool failure process, a theoretical method was proposed and a numerical method was constructed for the coating design of WC-Co cemented carbide cutting tools. The thermal residual stresses of multi-layered coatings were analytically modeled based on equivalent parameters of coating properties, and the stress distribution of coatings are simulated by Finite element method (FEM). The theoretically calculated results and the FEM simulated results were verified and in good agreement with the experimental test results. The effects of coating thickness, tool substrate, coating type and interlayer were investigated by the proposed geometric and FEM model. Based on the evaluations of matchability of tool substrate and tool coatings, the basic principles of tool coating design were proposed. This provides theoretical basis for the selection and design of coatings of cutting tools in high-speed machining

  5. Design and simulation of thermal residual stresses of coatings on WC-Co cemented carbide cutting tool substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Anhai; Zhao, Jun; Zang, Jian; Zheng, Wei [Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical EngineeringShandong University, Jinan (China)

    2016-08-15

    Large thermal residual stresses in coatings during the coating deposition process may easily lead to coating delamination of coated carbide tools in machining. In order to reduce the possibility of coating delamination during the tool failure process, a theoretical method was proposed and a numerical method was constructed for the coating design of WC-Co cemented carbide cutting tools. The thermal residual stresses of multi-layered coatings were analytically modeled based on equivalent parameters of coating properties, and the stress distribution of coatings are simulated by Finite element method (FEM). The theoretically calculated results and the FEM simulated results were verified and in good agreement with the experimental test results. The effects of coating thickness, tool substrate, coating type and interlayer were investigated by the proposed geometric and FEM model. Based on the evaluations of matchability of tool substrate and tool coatings, the basic principles of tool coating design were proposed. This provides theoretical basis for the selection and design of coatings of cutting tools in high-speed machining.

  6. Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content

    OpenAIRE

    Zhaozhi Liu; Feng Xu; Junhua Xu; Xiaolong Tang; Ying Liu; Dunwen Zuo

    2015-01-01

    Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cu...

  7. Influence of substrate microstructure and surface finish on cracking and delamination response of TiN-coated cemented carbides

    OpenAIRE

    Yang, Jing; Odén, Magnus; Johansson-Joesaar, Mats P.; Llanes, L.

    2016-01-01

    The cracking and delamination of TiN-coated hardmetals (WC-Co cemented carbides) when subjected to Brale indentation were studied. Experimental variables were substrate microstructure related to low (6 wt% Co) and medium (13 wt% Co) binder content, and surface finishes associated with grinding and polishing stages before film deposition. Brale indentation tests were conducted on both coated and uncoated hardmetals. Emphasis has been placed on assessing substrate microstructure and subsurface ...

  8. The effect of salivary pH on diametral tensile strength of resin modified glass ionomer cement coated with coating agent

    Science.gov (United States)

    Ismayanti, D.; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to evaluate the effect of artificial saliva with different acidities on the diametral tensile strength of Resin Modified Glass Ionomer Cement (RMGIC) coated with varnish and nanofilled coating agent. The specimens coated with coating agents were immersed in artificial saliva with pH of 4.5, 5.5, and 7 for 24 hours in an incubatorat 37°C. The diametral tensile strength of the specimens was tested with Universal Testing Machine. There were no significant differences on the diametral tensile strength of all specimens that were put into groups based on the acidity of the saliva and the type of coating agent (p>0.05). Both varnish and nanofilled coating agent stayed on the RMGIC in the acidic condition that simulated the true condition of oral cavity in people with high caries risk for the 24 hours of maturation.

  9. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  10. Effect of CVD-diamond coatings on the tribological performance of cemented tungsten carbide substrates

    Directory of Open Access Journals (Sweden)

    Kaleem Ahmad Najar

    2016-06-01

    Full Text Available A comparison has been documented between nanocrystalline diamond (NCD and microcrystalline diamond (MCD coatings deposited on cemented tungsten carbide (WC-Co substrates with architectures of WC-Co/NCD & WC-Co/MCD, using hot filament chemical vapor deposition (HFCVD technique. In the present work, the frictional characteristics were studied using ball-on-disc type linear reciprocating micro-tribometer, under the application of 1–10N normal loads, when sliding against smooth alumina (Al2O3 ceramic ball for the total duration of 15min, under dry sliding conditions. Nanoindentation tests were also conducted using Berkovich nanoindenter for the purpose of measurement of hardness and elastic modulus values. The average coefficients of friction of MCD and NCD coatings decrease from 0.37 – 0.32 and 0.3 – 0.27 respectively, when the load is increased from 1–10N. However, for conventional WC-Co substrate the average coefficient of friction increases from 0.60–0.75, under the same input operating conditions. The wear tracks formed on the surfaces of CVD-diamond coatings and WC-Co substrate, after friction measurement were characterised using Raman spectroscopy and scanning electron microscopy (SEM techniques. However, the compositional analysis for the formation of tribo-layer observed on the wear tracks of CVD-diamond coatings was confirmed using energy dispersive spectroscopy (EDS technique. Therefore, maintaining an appropriate level of normal load and using appropriate type of diamond coating, friction may be kept to some lower value to improve mechanical processes.

  11. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  12. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    Science.gov (United States)

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (pzirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  13. Mechanical and Tribological Properties of PVD-Coated Cemented Carbide as Evaluated by a New Multipass Scratch-Testing Method

    Directory of Open Access Journals (Sweden)

    M. Fallqvist

    2012-01-01

    Full Text Available A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.32O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.

  14. Isotopic study of oxygen diffusion in oxide coatings

    Science.gov (United States)

    Gulino, Daniel A.; Kren, Lawrence A.; Dever, Therese M.

    1989-01-01

    Diffusion of oxygen in thin films of silicon dioxide was studied using oxygen isotopically enriched in oxygen of atomic mass 18 (O-18). This subject is of interest because thin films of dielectrics such as SiO2 are proposed for use as a protective coatings for solar mirrors in low Earth orbit, which is a strongly oxidizing environment. Films of this material were prepared with a direct current magnetron using reactive sputtering techniques. To produce (O-18)- enriched SiO2, a standard 3.5-in.-diameter silicon wafer was reactively sputtered using (O-18)-enriched (95 percent) oxygen as the plasma feed gas. The films were characterized using Rutherford backscattering and Secondary Ion Mass Spectrometer (SIMS) to establish stoichiometry and purity. Subsequently, the films were exposed to an air-derived oxygen plasma in a standard laboratory plasma reactor for durations of up to 10 hr. The concentration ratio of O-16 as a function of depth was determined using SIMS profiling and compared to a baseline, nonplasma exposed sample. A value for the diffusivity of oxygen near the surface of these films was obtained and found to be about 10(-15)sq cm/sec.

  15. A radiotracer and autoradiography aided study of chloride diffusion profiles in mortar and cement paste

    International Nuclear Information System (INIS)

    Perego, R.C.; Hollander, W. den; Kolar, Z.I.; Manera, M.

    2002-01-01

    One of the problems affecting the durability of concrete structures is the corrosion of the steel bars due to the penetration of chloride ions. In order to predict the durability of these materials it is helpful to evaluate the diffusion of chloride in such structures. This is normally done by sample destruction followed by chemical analysis of the portions of interest. In this study a radiotracer-based method is applied to follow the chloride transport in mortar and cement paste samples. The use of a radioactive chloride isotope offers the possibility of performing non-destructive measurements of the evolving chloride distribution within the samples locally exposed to aqueous sodium chloride solution (3.5 % NaCl). To this end NaCl labeled with radioactive 36 Cl is used. It is a long-lived radioisotope decaying by emitting β - radiation with a maximal energy of 0.7 MeV. Portland, blast furnace and limestone cements are used to cast prisms that, after curing, are sliced in 2.5 mm thick samples. Each sample is covered with wax to prevent contact with air moisture and with the NaCl solution. From one side of the sample the wax layer is removed and the sample is then put in contact with the 36 Cl-labeled NaCl solution. After a given time the samples are taken out of the solution and, after complete removal of the wax layer, placed on a beta particle sensitive film for the autoradiography. The beta radiation emitted by 36 Cl causes blackening of the film that becomes visible after film development. Darker parts of the image indicate higher 36 Cl, i.e. chloride concentration in the layer adjacent to the sample surface. Densitometry, i.e. measurement of the degree of blackening of the film provides quantitative data on the two-dimensional diffusion profile attained. Image processing and automatic data evaluation may speed up the whole measurement procedure. The present method has a number of advantages if compared with the current methods for chloride analysis, namely (i

  16. Anticorrosion performance of chromized coating prepared by pack cementation in simulated solution with H2S and CO2

    Science.gov (United States)

    Wang, Qin-Ying; Behnamian, Yashar; Luo, Hong; Wang, Xian-Zong; Leitch, Michael; Zeng, Hongbo; Luo, Jing-Li

    2017-10-01

    A hash service environment containing H2S and CO2 in oil industry usually causes corrosion of carbon steel. In this study, the chromized coatings with different deposited time were prepared on the surface of carbon steel by the method of pack cementation to enhance its corrosion resistance. Then the microstructure, hardness, corrosion resistance as well as the semiconductor behavior of coatings in the simulated solution with saturated H2S and CO2 were investigated. The results show that the content of Cr in coating was increased by prolonging deposited time, and both chromium carbides and chromium nitrides were formed. Furthermore, coatings display higher polarization resistance, Rp, than that of the substrate, indicating a higher resistance to charge transfer on coating surface. The corrosion rates of coatings with different deposited time were significantly lower than that of substrate. Chemical analysis showed the formation of heavy sulfides on the surface of substrates after corrosion, while the least corrosion products were detected on the surface of coating with deposited time of 12 h. Mott-Schottky results indicated that coating of 12 h displayed less defects than the other two coatings with deposited time of 4 h and 8 h, which will be beneficial to improve corrosion resistance. The investigation showed that chromized coatings exhibited high corrosion resistance and owned a potential application in oil industry for corrosion prevention.

  17. An in vitro evaluation of the zirconia surface treatment by mesoporous zirconia coating on its bonding to resin cement.

    Science.gov (United States)

    Zhang, Yanli; Sun, Ting; Liu, Ruoyu; Feng, Xiaoli; Chen, Aijie; Shao, Longquan

    2014-01-01

    The effect of zirconia surface treatment by mesoporous zirconia coating on the microtensile bond strength (MTBS) between zirconia and resin cement was investigated in this work. 160 zirconia specimens were prepared and divided into four groups according to surface treatments: (1) airborne-particle-abrasion treatment (APA); (2) glass infiltration and hydrofluoric acid treatment (GI+HF); (3) mesoporous zirconia coating (MZ); and (4) no treatment (C). The as-prepared zirconia specimens were bonded using Panavia F2.0 and RelyX Unicem. The MTBS values were tested using a universal testing machine, and data were analyzed using ANOVA and SNK methods (a=0.05). The MTBS values obtained after GI+HF and MZ treatments were significantly higher than those obtained after APA and C treatments (Psurface treatments using GI+HF and MZ yield higher bond strength than those using APA or C, regardless of the resin cements.

  18. Diffusion joint using silver layer of YBCO coated conductors for applications

    International Nuclear Information System (INIS)

    Kato, J.; Sakai, N.; Miyata, S.; Ibi, A.; Sutoh, Y.; Yamada, Y.; Chikumoto, N.; Nakao, K.; Izumi, T.; Shiohara, Y.

    2008-01-01

    We succeeded in repairing YBCO coated conductors with local damage using the diffusion joint technique of stabilizing silver layers. A short piece of YBCO coated conductor was put on the damaged part in a face to face manner and joined by the diffusion technique. We also succeed in joining two multi-filament YBCO coated conductors (MFCCs) using the diffusion joint process. After the joint process, I c was not reduced in any filament, resistance of the joint was low and practically constant in all the joined filaments, and resistance between two adjacent filaments was high enough

  19. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    Science.gov (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Long-term monitoring of microleakage of dental cements by radiochemical diffusion

    International Nuclear Information System (INIS)

    Powis, D.R.; Prosser, H.J.; Wilson, A.D.

    1988-01-01

    Radioactive 14 C sucrose was found to be an ideal marker for microleakage because it did not penetrate tooth tissue, dental cement, or mounting resin. The main finding is that the adhesive cements--the glass-ionomer and polycarboxylate--are significantly more effective at preventing microleakage than are the traditional phosphate cements--silicate and zinc phosphate. The differences can be as high as two orders of magnitude. The adhesive cements provide almost perfect and reliable seals. By contrast, the nonadhesive cements are erratic sealants with most of the restorations leaking

  1. Long-term monitoring of microleakage of dental cements by radiochemical diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Powis, D.R.; Prosser, H.J.; Wilson, A.D.

    1988-06-01

    Radioactive /sup 14/C sucrose was found to be an ideal marker for microleakage because it did not penetrate tooth tissue, dental cement, or mounting resin. The main finding is that the adhesive cements--the glass-ionomer and polycarboxylate--are significantly more effective at preventing microleakage than are the traditional phosphate cements--silicate and zinc phosphate. The differences can be as high as two orders of magnitude. The adhesive cements provide almost perfect and reliable seals. By contrast, the nonadhesive cements are erratic sealants with most of the restorations leaking.

  2. Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC)

    International Nuclear Information System (INIS)

    Kundu, Sanghamitra; Gupta, A.K.

    2007-01-01

    Contamination of potable groundwater with arsenic is a serious health hazard, which calls for proper treatment before its use as drinking water. The objective of the present study is to assess the effectiveness of iron oxide coated cement (IOCC) for As(III) adsorption from aqueous solution. Batch studies were conducted to study As(III) adsorption onto IOCC at ambient temperature as a function of adsorbent dose, pH, contact time, initial arsenic concentration and temperature. Kinetics reveal that the uptake of As(III) ion is very rapid and most of fixation occurs within the first 20 min of contact. The pseudo-second order rate equation successfully described the adsorption kinetics. Langmuir, Freundlich, Redlich-Peterson (R-P), and Dubinin-Radushkevich (D-R) models were used to describe the adsorption isotherms at different initial As(III) concentrations and at 30 g l -1 fixed adsorbent dose. The maximum adsorption capacity of IOCC for As(III) determined from the Langmuir isotherm was 0.69 mg g -1 . The mean free energy of adsorption (E) calculated from the D-R isotherm was found to be 2.86 kJ mol -1 which suggests physisorption. Thermodynamic parameters indicate an exothermic nature of adsorption and a spontaneous and favourable process. The results suggest that IOCC can be suitably used for As(III) removal from aqueous solutions

  3. Influence of sulfates on chloride diffusion and chloride-induced reinforcement corrosion in limestone cement materials at low temperature

    Czech Academy of Sciences Publication Activity Database

    Sotiriadis, Konstantinos; Rakanta, E.; Mitzithra, M. E.; Batis, G.; Tsivilis, S.

    2017-01-01

    Roč. 29, č. 8 (2017), č. článku 04017060. ISSN 0899-1561 R&D Projects: GA MŠk(CZ) LO1219 Keywords : limestone cement * chloride diffusion * reinforcement corrosion * sulfate attack * low temperature Subject RIV: JN - Civil Engineering OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.644, year: 2016 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29MT.1943-5533.0001895

  4. Kinetic Monte Carlo Simulations of Diffusion in Environmental Barrier Coating Materials

    Science.gov (United States)

    Good, Brian

    2017-01-01

    Ceramic Matrix Components (CMC) components for use in turbine engines offer a number of advantages compared with current practice. However, such components are subject to degradation through a variety of mechanisms. In particular, in the hot environment inside a turbine in operation a considerable amount of water vapor is present, and this can lead to corrosion and recession. Environmental Barrier Coating (EBC) systems that limit the amount of oxygen and water reaching the component are required to reduce this degradation and extend component life. A number of silicate-based materials are under consideration for use in such coating systems, including Yttterbium and Yttrium di- and monosilicates. In this work, we present results of kinetic Monte Carlo computer simulations of oxygen diffusion in Yttrium disilicate, and compare with previous work on Yttterbium disilicate. Coatings may also exhibit cracking, and the cracks can provide a direct path for oxygen to reach the component. There is typically a bond coat between the coating and component surface, but the bond coat material is generally chosen for properties other than low oxygen diffusivity. Nevertheless, the degree to which the bond coat can inhibit oxygen diffusion is of interest, as it may form the final defense against oxygen impingement on the component. We have therefore performed similar simulations of oxygen diffusion through HfSiO4, a proposed bond coat material.

  5. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement.

    Science.gov (United States)

    Jammalamadaka, Uday; Tappa, Karthik; Weisman, Jeffery A; Nicholson, James Connor; Mills, David K

    2017-01-01

    Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons.

  6. Determination of the effective diffusion coefficient of water through cement-based materials when applying an electrical field

    International Nuclear Information System (INIS)

    Wattez, T.

    2013-01-01

    The safety and the reliability of a radioactive waste repository rely essentially on the confinement ability of the waste package and the storing structure. In the case of the low-level and intermediate level short-lived radioactive waste, the confinement property, relying on solid matrices made of cement-based materials, is assessed through a natural diffusion test, using a radioactive tracer, from which an effective diffusion coefficient is deduced. The evolution of the materials and more particularly the enhancement of the confinement properties of cement-based materials lead to test duration from a couple of months to a couple of years. The main objective of the present work involves the determination of the effective diffusion coefficient of reference chemical species, in our case the tritiated water, within a shorter time. The theoretical foundation is based on the description of ionic species mass transfer under the effects of an electrical field. With the definitions of a precise experimental protocol and of a formation factor, considered as an intrinsic topological feature of the porous network, it is possible to determine the effective diffusion coefficient of tritiated water for various types of concretes and mortars, and this within a few hours only. The comparison between the developed accelerated test, based on the application of a constant electrical field, and the normed natural diffusion test, using tritiated water, underlined two critical issues. First, omitting the impact of the radioactive decay of tritium during a natural diffusion test, leads to a non-negligible underestimation of the effective diffusion coefficient. Second, maintaining samples in high relative humidity conditions after casting is essential in order to avoid contrasted and unrelated results when performing the electrokinetic tests. Eventually, the validation of the electrokinetics technique, main objective of this work, rests on the assessment of the theoretical hypothesis

  7. Development of black scattering coatings for space application (etude de traitements noirs diffusants pour application spatiale)

    Science.gov (United States)

    Mestreau-Garreau, Agnes; Pezant, Christian; Cousin, Bernard; Etcheto, Pierre; Otrio, Georges

    2017-11-01

    In the context of Research and Technology (R&T), studies have been performed on the coatings of vane edge in the 0.4 to 1 μm spectral range. The main purposes of the study were to improve the diffusing black coatings available on the market and to look for other diffusing black coatings. At the same time, we have also improved the machining technologies of vane edges. The characterisation (thermal tests, radiometric measurements, adhesion tests) of the most promising technologies has been carried out. The results have pointed out the stainless steel vanes with the edge obtained by polishing or by advanced grinding.

  8. Spectral Control of Transmission of Diffuse Irradiation using Piled AR Coated Quartz Glass Filters

    Science.gov (United States)

    Kumano, Tomoyuki; Hanamura, Katsunori

    2004-11-01

    Spectral transmission characteristics of piled quartz glass filters with anti-reflection (AR) coating and without coating were investigated for diffuse irradiation through ray tracing numerical simulation. The spectral transmittance for diffuse irradiation is lower than that for normal irradiation because surface reflection becomes large with increasing incident zenith angle. By using the AR coating, the transmittance for diffuse irradiation becomes much higher than that without coating around a wavelength of 1.1 μm that is specified for the coating thickness design. On the other hand, for the long wavelength region, the transmittance reduced largely due to multiple-surface and absorption. The most striking feature is that difference between transmittances for the specified and the long wavelength region is enhanced using the piled AR coated quartz glass filters. If the refractive index of the coating material were 1.19, which was an ideal value for the design of the coating, the effect is the most remarkable. As a result, it is revealed that this spectral control method is useful for the energy recirculation TPV system using super-adiabatic combustion in porous media.

  9. A numerical-statistical approach to determining the representative elementary volume (REV of cement paste for measuring diffusivity

    Directory of Open Access Journals (Sweden)

    Zhang, M. Z.

    2010-12-01

    Full Text Available Concrete diffusivity is a function of its microstructure on many scales, ranging from nanometres to millimetres. Multi-scale techniques are therefore needed to model this parameter. Representative elementary volume (REV, in conjunction with the homogenization principle, is one of the most common multi-scale approaches. This study aimed to establish a procedure for establishing the REV required to determine cement paste diffusivity based on a three-step, numerical-statistical approach. First, several series of 3D cement paste microstructures were generated with HYMOSTRUC3D, a cement hydration and microstructure model, for different volumes of cement paste and w/c ratios ranging from 0.30 to 0.60. Second, the finite element method was used to simulate the diffusion of tritiated water through these microstructures. Effective cement paste diffusivity values for different REVs were obtained by applying Fick’s law. Finally, statistical analysis was used to find the fluctuation in effective diffusivity with cement paste volume, from which the REV was then determined. The conclusion drawn was that the REV for measuring diffusivity in cement paste is 100x100x100 μm3.

    La difusividad del hormigón depende de su microestructura a numerosas escalas, desde nanómetros hasta milímetros, por lo que se precisa de técnicas multiescala para representar este parámetro. Junto con el principio de homogeneización, uno de los métodos multiescala más habituales es el volumen elemental representativo (VER. El objeto de este estudio era establecer un procedimiento que permitiera determinar el VER necesario para calcular la difusividad de la pasta de cemento, basándose en un método numéricoestadístico que consta de tres etapas. Primero, se crearon varias series de microestructuras de pasta de cemento en 3D con HYMOSTRUC3D, un programa que permite crear un modelo de la hidratación y microestructura del cemento. Luego se empleó el método de

  10. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces...

  11. Chemical vapor deposition of highly adherent diamond coatings onto co-cemented tungsten carbides irradiated by high power diode laser.

    Science.gov (United States)

    Barletta, M; Rubino, G; Valle, R; Polini, R

    2012-02-01

    The present investigation deals with the definition of a new eco-friendly alternative to pretreat Co-cemented tungsten carbide (WC-Co) substrates before diamond deposition by hot filament chemical vapor deposition (HFCVD). In particular, WC-5.8 wt %Co substrates were submitted to a thermal treatment by a continuous wave-high power diode laser to reduce surface Co concentration and promote the reconstruction of the WC grains. Laser pretreatments were performed both in N(2) and Ar atmosphere to prevent substrate oxidation. Diamond coatings were deposited onto the laser pretreated substrates by HFCVD. For comparative purpose, diamond coatings were also deposited on WC-5.8 wt %Co substrates chemically etched by the well-known two-step pretreatment employing Murakami's reagent and Caro's acid. Surface morphology, microstructure, and chemical composition of the WC-5.8 wt %Co substrates after the different pretreatments and the deposition of diamond coatings were assessed by surface profiler, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Wear performance of the diamond coatings was checked by dry sliding linear reciprocating tribological tests. The worn volume of the diamond coatings deposited on the laser pretreated substrates was always found lower than the one measured on the chemically etched substrates, with the N(2) atmosphere being particularly promising.

  12. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate cement

    Directory of Open Access Journals (Sweden)

    Jammalamadaka U

    2017-06-01

    Full Text Available Uday Jammalamadaka,1 Karthik Tappa,1 Jeffery A Weisman,1 James Connor Nicholson,2 David K Mills1,3 1Center for Biomedical Engineering and Rehabilitation Science, 2Nanosystems Engineering, 3The School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA Abstract: Halloysite nanotubes (HNTs were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate (PMMA bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons. Keywords: barium, bone cement, halloysite, imaging, PMMA, sintering

  13. Study of Rb-vapor coated cells — Atomic diffusion and cell curing process

    Science.gov (United States)

    Atutov, S. N.; Benimetskiy, F. A.; Plekhanov, A. I.; Sorokin, V. A.

    2016-02-01

    We present the results of a study on an optical-resonant cell filled by a vapor of the Rb atoms and coated with a non-stick polydimethylsiloxane (PDMS) polymer. We show that it is possible to define correctly the diffusion coefficient of the atoms in the coating using the geometric parameters of the cell and the vapor density in the cell volume only. The dependence of the diffusion coefficient on the cell curing time is presented. It is shown that the mysterious cell curing process can be explained in terms of the polymerization of the polymer coating by alkali atoms. The anomalous long dwell time of the Rb atoms on the PDMS coating is discussed as well.

  14. Water Vapor Sorption and Diffusion in Secondary Dispersion Barrier Coatings: A Critical Comparison with Emulsion Polymers.

    Science.gov (United States)

    Liu, Yang; Soer, Willem-Jan; Scheerder, Jürgen; Satgurunathan, Guru; Keddie, Joseph L

    2015-06-10

    The conventional method for synthesizing waterborne polymer colloids is emulsion polymerization using surfactants. An emerging method is the use of secondary dispersions (SD) of polymers in water, which avoids the addition of any surfactant. Although there are numerous studies of the water barrier properties (sorption, diffusion, and permeability) of waterborne emulsion (Em) polymer coatings, the properties of SD coatings, in comparison, have not been thoroughly investigated. Here, dynamic water vapor sorption analysis is used to compare the equilibrium sorption isotherms of the two forms of styrene-acrylate copolymers (Em and SD) with the same monomer composition. From an analysis of the kinetics of vapor sorption, the diffusion coefficient of water in the polymer coatings is determined. The combined effects of particle boundaries and surfactant addition were investigated through a comparison of the properties of SD and Em coatings to those of (1) solvent-cast polymer coatings (of the same monomer composition), (2) Em polymers that underwent dialysis to partially remove the water-soluble species, and (3) SD polymers with added surfactants. The results reveal that both the particle boundaries and the surfactants increase vapor sorption. The diffusion coefficients of water are comparable in magnitude in all of the polymer systems but are inversely related to water activity because of molecular clustering. Compared to all of the other waterborne polymer systems, the SD barrier coatings show the lowest equilibrium vapor sorption and permeability coefficients at high relative humidities as well as the lowest water diffusion coefficient at low humidities. These barrier properties make SD coatings an attractive alternative to conventional emulsion polymer coatings.

  15. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  16. Diffusion of He in OPC paste and low-heat Portland cement paste containing fly-ash in contact with aqueous phase

    International Nuclear Information System (INIS)

    Sato, Fuminori; Miwata, Chikanori; Noda, Natsuko; Sato, Seichi; Kozaki, Tamotsu; Higashihara, Tomohiro; Hironaga, Michihiko; Kawanishi, Motoi

    2008-01-01

    As a part of gas migration studies in concrete package for nuclear waste surrounded by water-saturated rock, the helium diffusion in ordinary Portland cement paste (OPC) was studied using disk form specimen at various water-to-cement (w/c) ratios. The helium diffusion in low-heat Portland cement paste containing fly-ash (LPF) was also studied. Apparent diffusion coefficients of helium in OPC paste were ∼1 x 10 -10 m 2 s -1 at 0.4 w/c ratio, independent of increase of w/c ratio. It is likely that the materials formation such as C-S-H and CH in capillary pores in OPC plays an important role on the helium diffusion rather than porosity increase. Apparent diffusion coefficient of helium in LPF was two orders of magnitude smaller than that in OPC. It is quite possible that the addition of fly-ash contributes to the formation of hydration products which markedly enhance discontinuity of capillary pore. The results of the present study on the two kinds of cement pastes give us valuable information about alternatives to release gas from cement package. (author)

  17. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    Science.gov (United States)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means

  18. Influence of the mineralogical composition of cement in the diffusion of chemical species

    International Nuclear Information System (INIS)

    Galicia A, E.

    2015-01-01

    The disposal is the final stage of radioactive waste management. This is essentially placing them in a facility with a reasonable assurance of safety. In this last stage, the ultimate goal is the confinement and isolation of radioactive waste from the human environment for a time period and under conditions such that the release of radionuclides not put in radiation risk to people and the environment. In relation to the storage of radioactive waste of low and medium activity, the final repositories for radioactive waste, based in cement materials are already operating in many countries. The isolation is performed by applying natural or artificial barriers between radioactive waste and man so as to prevent the release of radionuclides to the environment, until they have decreased their toxicity. The cement-based materials are involved in the different stages of the radioactive waste management since they are used for immobilization of waste in the container, container manufacturing and filling the spaces between the containers and vaults container and also as a barrier engineering and construction material in civil engineering. The concrete (cement mix + water + sand + gravel) it is one of the materials used to produce the engineered barrier system and produce containers for radioactive waste. In addition to their mechanical properties (product processing into hydraulic binder after being hydrated), their composition and solubility allow cushion the contact groundwater to ph higher (12.0 - 13.5) during considerable time scales (10 14 - 10 15 years) and it has an active role with the radionuclides confinement present in the radiological inventory of radioactive waste. The study of the microstructures of cement is a constant challenge for specialists working in this area, mainly due to the complex and heterogeneous mineralogical composition. Cement consists of many different phases in order to achieve specific properties such as reactivity properties, setting time

  19. Study of the diffusion of the radioactivity of glasses and bitumen-coated materials

    International Nuclear Information System (INIS)

    Rodier, J.; Marichal, M.; Benoit, R.; Niezborala, F.; Le Bouhellec, J.

    1969-01-01

    Glass pellets obtained from concentrated fission product solutions are subjected to the action of water, in conditions which are as close as possible to those of natural surroundings: still water, renewed water, running water. The retention by a given type of soil of the contamination in waters used for lixiviation is also studied. A comparison is made between various coating processes (bitumen or cement) and vitrification from the point of view of the behaviour in the soil of residues thus treated. The overall results make it possible to choose between the different modes of storage as a function of the activity of the residues to be processed. (authors) [fr

  20. In vitro abrasion of resin-coated highly viscous glass ionomer cements: a confocal laser scanning microscopy study.

    Science.gov (United States)

    Kanik, Özgur; Turkun, L Sebnem; Dasch, Walter

    2017-04-01

    The aim of this study was to evaluate the effect of resin coating on the wear depth of highly viscous glass ionomer cements (HVGICs) after 40,000 cycles, corresponding to over 8 years of tooth brushing. A resin composite (Gradia Direct Posterior), two HVGICs (EQUIA Fil and Riva Self Cure), a resin coating (EQUIA Coat) and a conventional varnish (Fuji Varnish) were used in the study. The control groups were the resin composite group and the non-coated HVGICs groups. Samples (n = 8) were produced in flat plastic moulds at 23 ± 1 °C and stored in artificial saliva sodium acetate-acetic acid-glycerine formalin (SAGF medium) for 7 days at 37 ± 1 °C. The abrasion test was carried out in a toothbrush simulator (Willytec) with a load of 1 N using abrasive toothpaste slurry. Vertical loss was measured at different cycles under confocal laser scanning microscopy (CLSM). Data were analysed using one-way ANOVA, Tukey's HSD test, repeated measures ANOVA and Bonferroni tests (p resin composite group showed significantly lower vertical wear loss than the non-coated groups and the varnished groups of HVGICs (p resin coating had better wear resistance than the varnished and non-coated groups (p material-based wear, HVGICs with resin coatings abraded less than the resin composite group tested (Gradia Direct Posterior 5.06 ± 0.54 μm, EQUIA Fil 4.06 ± 1.68 μm, Riva Self Cure 4.73 ± 2.44 μm), but statistically, there were no significant differences between them after 40,000 cycles (p > 0.05). After 40,000 cycles, when the total wear loss of the materials including both coatings wear was compared, there were no differences between the non-coated and the resin-coated groups. The results of this study indicate that the resin coating protects the glass ionomer materials from excessive wear until 20,000 cycles making both HVGICs to abrade in a similar manner as the resin composite. If we include the wear of the coating to the general material wear loss at

  1. The Study of Microstructure and Properties of Al Diffusion Coating on Inconel 713LC

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, S.; Juliš, M.; Obrtlík, Karel; Kianicová, M.; Podrábský, T.; Dvořáček, O.

    2011-01-01

    Roč. 465, - (2011), s. 282-285 ISSN 1013-9826. [Materials Structure & Micromechanics of Fracture. Brno, 28.6.2010-30.6.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : diffusion aluminide coating * Inconel 713LC * high temperature fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics

  2. Effects of humidity and filter material on diffusive sampling of isocyanates using reagent-coated filters

    NARCIS (Netherlands)

    Henneken, H.; Vogel, M.; Karst, U.

    2006-01-01

    Diffusive sampling of methyl isocyanate (MIC) on 4-nitro-7-piperazinobenzo-2-oxa-1,3-diazole (NBDPZ)-coated glass fibre (GF) filters is strongly affected by high relative humidity (RH) conditions. It is shown that the humidity interference is a physical phenomenon, based on displacement of reagent

  3. Moisture diffusion coefficients determination of furan bonded sands and water based foundry coatings

    DEFF Research Database (Denmark)

    Di Muoio, Giovanni Luca; Tiedje, Niels Skat

    2016-01-01

    Moisture content in furan bonded sand and water based coatings can be one of the main causes for gas related defects in large cast iron parts. Moisture diffusion coefficients for these materials are needed to precisely predict the possible moisture levels in foundry moulds. In this study, we first...

  4. Study of radioactivity diffusion for bitumen-coated blocks produced by an industrial coating plant

    International Nuclear Information System (INIS)

    Rodier, J.; Lefillatre, G.

    1969-01-01

    The solidification by bitumen of chemical coprecipitation sludges from the Marcoule waste treatment station has been studied in the laboratory and has led to the construction of an industrial coating plant. The quality of the coated material obtained has been controlled by the lixiviation test carried out with ordinary water and with sea-water on 45 ml laboratory samples and on industrial coated blocks of 150 litres. Tests on blocks of such a size have necessitated the installation of three special tanks. Two, each of 2000 litres capacity, contain ordinary and sea-water which was continuously recycled at a rate of 2.5 cm/hr and renewed periodically. In the third tank having a capacity of 11000 litres, the coated block was buried in earth and sprinkled with ordinary water with a view to studying the migration of radioelements in soil. The results of these tests confirm those obtained during the laboratory experiments. (authors) [fr

  5. Complex fine-scale diffusion coating formed at low temperature on high-speed steel substrate

    Science.gov (United States)

    Chaus, A. S.; Pokorný, P.; Čaplovič, Ľ.; Sitkevich, M. V.; Peterka, J.

    2018-04-01

    A complex B-C-N diffusion coating was produced at 580 °C for 1 h on AISI M35 steel substrate and compared with a reference coating formed at 880 °C for 2.5 h. The surface and the cross-sections of the samples were subjected to detailed characterisation. The surface roughness, hardness, residual stresses and adhesion of the coatings were also evaluated together with cutting tests using drills on coated and uncoated samples while monitoring cutting force and torque. The surface of the steel treated at 580 °C revealed Fe2B, boron nitride and boron iron carbide, but FeB was noted to be absent. The 580 °C coating had the fine-scale microstructure, which resulted in the excellent adhesion and enhanced wear resistance, relative to reference samples that contained coarse borides. The results established that a complex fine-scale diffusion coating enhanced the wear resistance and reduces the cutting force and torque during drilling, thereby increasing the drill life by a factor of 2.2.

  6. Microtensile bond strength of a resin cement to silica-coated and silanized in-ceram zirconia before and after aging

    NARCIS (Netherlands)

    Valandro, Luiz Felipe; Ozcan, Mutlu; Amaral, Regina; Pereira Leite, Fabiola Pessoa; Bottino, Marco Antonio

    2007-01-01

    Purpose: This study compared the microtensile bond strength of resin-based cement (Panavia F) to silica-coated, silanized, glass-infiltrated high-alumina zirconia (In-Ceram Zirconia) ceramic in dry conditions and after various aging regimens. Materials and Methods: The specimens were placed in 1 of

  7. MUTUAL SOLUBILITY ОF CARBIDES WITHIN MULTICOMPONENT DIFFUSIVE COATINGS ОN HARD ALLOYS

    Directory of Open Access Journals (Sweden)

    A. A. Shmatov

    2008-01-01

    Full Text Available An optimization of powder mixtures has been performed with respect to wear resistance of  diffusive carbide coatings on hard alloy Т15К6 (79% WC, 15% TiC and 6% Co for four three-component systems, viz. Cr–Ti–V, Cr–V–Mo, Cr–Ti–Mo and Cr–V–Nb,. The «composition-properties» diagrams have been plotted using the obtained mathematical models. Optimum three-component diffusive saturation of a hard alloy using carbide-forming elements permits to increase its service life by the factor of 2.2–3.1 as compared with one-component saturation. This significant improvement of wear resistance of three-component diffusive carbide coatings is due to formation of heterogeneous microstructure containing complex alloyed carbides of IV-VI-group metals with 2–30% mutually soluble one- or two- saturating elements. 

  8. Influence of microstructure on the diffusive transport in pastes, mortars and concretes made with cement Portland and silica fume

    International Nuclear Information System (INIS)

    Bajja, Zineb

    2016-01-01

    Thanks to its high mechanical strength and its potential containment capacity conferred by a compact microstructure, concrete is considered as the most suitable material to compose the engineered barrier of some radioactive waste storage structure. Knowledge of diffusion properties and microstructure of these cementitious materials is then essential to study their long-term durability. In a more specific context of low and intermediate waste management, the use of formulations containing silica fume (SF) appears of great importance. The experimental approach consists in selecting many formulations of pastes and mortars to test by the HTO through-out diffusion test. Their initial compositions (water to binder ratio, SF content, sand content and particle size) were varied in order to browse different microstructures and diffusion properties, and to see the influence of each parameter (water, SF, content and grain size of sand) on the evolution of diffusivity within these materials. The microstructure was investigated to interpret the obtained values of diffusion coefficients. Different complementary techniques have been used to characterize the porous structure (water and mercury intrusion porosimetry, nitrogen adsorption), to verify SF reactivity (TGA, SEM associated to EDS) or to determine the profile porosity at ITZ (SEM combined with image analysis).The relationship between microstructure and diffusion coefficients (DeHTO) was then discussed. The ultimate goal was to find a link between microstructure properties and transport parameters to estimate from a simple characterization, the DeHTO of concrete, difficult to get from HTO diffusion cells test. Other attempts have also been made to try to assess the concrete diffusion coefficient, such as the multi-scale modeling approach (the scale of hydrates 3D model), or the diffusion of other elements ( like oxygen or nitrogen). This study shows that silica fume agglomerates (slurry) observed in cement paste and mortar

  9. Tibiotalocalcaneal fusion with a cemented coated retrograde nail as a salvage procedure for infected ORIF of the ankle.

    Science.gov (United States)

    Herrera-Pérez, M; Boluda-Mengod, J; Gutierrez-Morales, M J; Pais-Brito, J L

    Tibiotalocalcaneal arthrodesis is an effective salvage procedure in cases of combined ankle and subtalar osteoarthritis as well as severe multiplanar deformities and severe joint destruction of the hindfoot. Special mention should be made of this procedure in cases of bone loss, especially from the talus, secondary to failed previous surgeries or bone infection, often being the only way to achieve a stable and painless foot and ankle. We present a case of ankle fracture in a patient with associated morbidity and multiple complications following osteosynthesis, in which tibiotalocalcaneal arthrodesis with cemented with antibiotic coated retrograde nail has achieved a satisfactory final result. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Multilayered and composite PVD-CVD coatings in cemented carbides manufacture

    International Nuclear Information System (INIS)

    Glushkov, V.N.; Anikeev, A.I.; Anikin, V.N.; Vereshchaka, A.S.

    2001-01-01

    Carbide cutting tools with wear-resistant coatings deposited by CVD process are widely employed in mechanical engineering to ensure a substantially longer service life of tool systems. However, the relatively high temperature and long time of the process make the substrate decarburise and, as a result, the bend strength and performance characteristics of a tool decrease. The present study suggests the problem of deteriorated strength of CVD-coated carbide tools be solved by the development of a technology that combines arc-PVD and CVD processes to deposit multilayered coatings of titanium and aluminium compounds. (author)

  11. Inter-diffusion of carbon into niobium coatings deposited on graphite

    International Nuclear Information System (INIS)

    Barzilai, S.; Raveh, A.; Frage, N.

    2006-01-01

    The inter-diffusion of carbon (originating from a graphite substrate) into a niobium coating and the fabrication of its carbides by heat treatment in the temperature range of 1073-1773 K was studied. The thickness of the Nb 2 C and Nbc phases formed after heat treatment as well as the inter-diffusion coefficients for the formation of the carbide layers were also studied. It was found that the carbide layer growth displayed parabolic behavior patterns inherent in the growth rate constants (K) of Nb 2 C and NbC layers. By assuming that the inter-diffusion coefficients are independent of concentration, it was possible to determine the inter-diffusion coefficients of carbon D c into Nb 2 C and NbC layers as a function of temperature

  12. Drug diffusion and biological responses of arteries using a drug-eluting stent with nonuniform coating

    Directory of Open Access Journals (Sweden)

    Saito N

    2016-03-01

    Full Text Available Noboru Saito, Yuhei Mori, Sayaka Uchiyama Terumo Corporation R&D Center, Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, Japan Abstract: The purpose of this study was to determine the effect of a nonuniform coating, abluminal-gradient coating (AGC, which leaves the abluminal surface of the curves and links parts of the stent free from the drug coating, on the diffusion direction of the drug and the biological responses of the artery to drug-eluting stent (DES by comparing the AGC-sirolimus stent and the conventional full-surface coating (CFC sirolimus stent. The study aimed to verify whether the AGC approach was appropriate for the development of a safer DES, minimizing the risks of stent thrombosis due to delayed endothelialization by the drug and distal embolization due to cracking of the coating layer on the hinge parts of the DES on stent expansion. In the in vitro local drug diffusion study, we used rhodamine B as a model drug, and rhodamine B released from the AGC stent diffused predominantly into the abluminal side of the alginate artery model. Conversely, rhodamine B released from the CFC stent quickly spread to the luminal side of the artery model, where endothelial cell regeneration is required. In the biological responses study, the luminal surface of the iliac artery implanted with the AGC-sirolimus stent in a rabbit iliac artery for 2 weeks was completely covered with endothelial-like cells. On the other hand, the luminal surface of the iliac artery implanted with the CFC-sirolimus stent for 2 weeks only showed partial coverage with endothelial-like cells. While thrombosis was observed in two of the three CFC-sirolimus stents, it was observed in only one of the three AGC-sirolimus stents. Taken together, these findings indicate that the designed nonuniform coating (AGC is an appropriate approach to ensure a safer DES. However, the number of studies is limited and a larger study should be conducted to reach a statistically

  13. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  14. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-12-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  15. Chloride diffusivity in red mud-ordinary portland cement concrete determined by migration tests

    Directory of Open Access Journals (Sweden)

    Daniel Véras Ribeiro

    2011-01-01

    Full Text Available Red mud, which is a solid waste produced in the alumina production process, is classified as dangerous due to its high pH. In this work, the concentration of chlorides was monitored by measuring the conductivity of the anolyte, which initially was distilled water. The steady and nonsteady-state chloride diffusion coefficients were estimated from the "time lag"� and "equivalent time" between diffusion and migration experiments. The capillary water absorption, apparent porosity and pore size distribution of concretes were also analyzed. The addition of red mud apparently ensured lower chloride diffusion in the tested mixtures due to its superfine particle-size distribution and its "filler"� effect. Red mud lengthened the service life of the concrete to 35 years (double that of the reference concrete. This finding is very positive since it indicates a delay in the onset of the rebar corrosion process caused by the migration of chloride ions.

  16. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements.

    Science.gov (United States)

    Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia

    2016-02-01

    The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized.

  17. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  18. Linking Catalyst-Coated Isotropic Colloids into "Active" Flexible Chains Enhances Their Diffusivity.

    Science.gov (United States)

    Biswas, Bipul; Manna, Raj Kumar; Laskar, Abhrajit; Kumar, P B Sunil; Adhikari, Ronojoy; Kumaraswamy, Guruswamy

    2017-10-24

    Active colloids are not constrained by equilibrium: ballistic propulsion, superdiffusive behavior, or enhanced diffusivities have been reported for active Janus particles. At high concentrations, interactions between active colloids give rise to complex emergent behavior. Their collective dynamics result in the formation of several hundred particle-strong flocks or swarms. Here, we demonstrate significant diffusivity enhancement for colloidal objects that neither have a Janus architecture nor are at high concentrations. We employ uniformly catalyst-coated, viz. chemo-mechanically, isotropic colloids and link them into a chain to enforce proximity. Activity arises from hydrodynamic interactions between enchained colloidal beads due to reaction-induced phoretic flows catalyzed by platinum nanoparticles on the colloid surface. This results in diffusivity enhancements of up to 60% for individual chains in dilute solution. Chains with increasing flexibility exhibit higher diffusivities. Simulations accounting for hydrodynamic interactions between enchained colloids due to active phoretic flows accurately capture the experimental diffusivity. These simulations reveal that the enhancement in diffusivity can be attributed to the interplay between chain conformational fluctuations and activity. Our results show that activity can be used to systematically modulate the mobility of soft slender bodies.

  19. Experimental study and modeling of gas diffusion through partially water saturated porous media. Application to Vycor glasses, geo-polymers and CEM V cement pastes

    International Nuclear Information System (INIS)

    Boher, C.

    2012-01-01

    This work documents the relationship that exists between the transfer properties of a material (pore size distribution, total porosity accessible to water, water saturation degree), and its diffusion coefficient. For this sake, materials having a quasi mono modal porosity are used: Vycor glasses and geo-polymers. We also use materials having a complex porosity: CEM V cement pastes. The use of Vycor glasses and geo-polymers allows quantifying the gas diffusion coefficient through materials having known pores size, as a function of their water saturation degree. The use of cement pastes allows checking if it is possible to decompose the diffusion coefficient of a complex porosity material, in an assembling of diffusion coefficients of quasi mono modal porosity materials. For this sake, the impact of pore network arrangement on the diffusion coefficient is studied in great details. This study is divided into three parts:1)Measurement of the geometric characteristics of materials porous network by means of the mercury intrusion porosimetry, water porosimetry, isotherms of nitrogen sorption / desorption, and water desorption tests. 2) Measurement of the materials diffusion coefficient, as a function of their relative humidity storage, and their water saturation degree. 3) Modeling the diffusion coefficient of the materials, and study the impact of the pore network (tortuosity, pores connection). (author) [fr

  20. Durability predictions from rate of diffusion testing of normal portland cement, fly ash, and slag concrete

    International Nuclear Information System (INIS)

    Philipose, K.E.

    1991-09-01

    A waste repository for the belowground disposal of low-level radioactive waste, labelled IRUS (Intrusion Resistant Underground Structure), is planned at the Chalk River Laboratories. It relies greatly on the durability of concrete for a minimum of 500 years of service life. A research program based on laboratory testing to design a durable concrete and predict its useful engineered service life is in progress. The durability of concrete depends on its resistance to deterioration from both internal and external causes. Since the rate of degradation depends to a major extent on the rate of ingress of aggressive ions into concrete, laboratory testing is in progress to establish the diffusion rates of chlorides and sulphate ions. A total of 1000 concrete specimens and 500 paste specimens are being exposed at 22 degrees and 45 degrees C to twenty-five different combinations of corrosive agents, including CO 2 . Procedures to measure the ionic penetration profile and to determine the factors controlling diffusion of ions in the various concretes have been developed. The paper presents the initial results from the research program and the longevity predictions to qualify concretes for the IRUS waste repository, based on 16 months of diffusion testing on laboratory specimens

  1. Solid phase characterization and gas transfers through unsaturated porous media: experimental study and modeling applied diffusion of hydrogen through cement-based materials

    International Nuclear Information System (INIS)

    Vu, T.H.

    2009-10-01

    This thesis documents the relationship between the porous microstructure of cement based materials and theirs gaseous diffusivity properties relative to the aqueous phase location and the global saturation level of the material. The materials studied are cement pastes and mortars. To meet the thesis objective, the materials are characterized in detail by means of several experimental methods: mercury intrusion porosimetry, water porosimetry, thermo-poro-metry, nitrogen sorption and water desorption. In addition, diffusion tests realized on materials maintained in controlled humidity chambers allow obtaining the effective hydrogen diffusivity as function of the microstructure and the saturation state of material with a gas chromatography. The experimental results are then used as a data base that is compared to a modeling approach. The model developed consists of a combination of ordinary diffusion (Fick regime) and Knudsen diffusion of hydrogen. The model also accounts for the effects of the liquid curtains, the impact of tortuosity on gas diffusion, and the saturation level of the porous system. (author)

  2. Superficial Vancomycin Coating of Bone Cement in Orthopedic Revision Surgery: A Safe Technique to Enhance Local Antibiotic Concentrations.

    Science.gov (United States)

    Amerstorfer, Florian; Fischerauer, Stefan; Sadoghi, Patrick; Schwantzer, Gerold; Kuehn, Klaus Dieter; Leithner, Andreas; Glehr, Mathias

    2017-05-01

    The use of antibiotic-loaded cement has become a well-accepted method to develop high local antibiotic concentrations in revision surgery of infected arthroplasty. A new surgical technique has been established to further increase the local antibiotic concentration and thereby minimizes the risk of reinfection. Our study aim was to investigate the safety of additional superficial vancomycin coating (SVC) by analyzing postoperative joint and serum vancomycin concentrations, as well as the creatinine levels of patients with orthopedic revision surgery. A longitudinal case series was performed by reviewing collected data of patients who were treated by SVC during revision surgery (1- or 2-stage exchange) because of prosthetic joint infections. Vancomycin levels were obtained, local from drains and systemic from blood samples, on postoperative days 1 to 5. Furthermore, preoperative and postoperative serum creatinine levels were analyzed. Highest median local vancomycin levels were documented on postoperative day 1 with 546.8 μg/mL (range, 44.4-1485 μg/mL) in the reimplantation group and 408.7 μg/mL (range, 24.7-1650 μg/mL) in the spacer group. Median serum vancomycin level was 4.4 μg/mL (range, vancomycin without leading to systemic side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    Science.gov (United States)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  4. Diffusion of surface-active amphiphiles in silicone-based fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, S. M.; Hvilsted, Søren

    2017-01-01

    Amphiphiles (i.e. amphiphilic molecules such as surfactants, block copolymers and similar compounds) are used in small amounts to modify the surface properties of polymeric materials. In silicone fouling-release coatings, PEG-based amphiphiles are added to provide biofouling-resistance. The success...... of the amphiphiles shows a weak dependency on their molecular weight, although this dependency is much less pronounced than for other rubbery polymeric materials. The biofouling-resistance properties in fouling-release coatings were also studied for these amphiphiles. It was found that the diffusion coefficient does...... not have any influence on the biofouling-resistance results for the studied compounds. Instead, the chemistry of the hydrophobic block of the amphiphiles is much more significant, with PEG-PDMS block copolymers showing the best properties among the studied compounds....

  5. CrN-Ag nanocomposite coatings: Control of lubricant transport by diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-12-01

    1-{mu}m-thick self-lubricating CrN-Ag composite coatings containing 16 at.% Ag were deposited on Si substrates by reactive co-sputtering at T{sub s} = 400 Degree-Sign C, and were covered with CrN cap layers with a columnar microstructure and a thickness d = 0-1000 nm. Vacuum annealing at T{sub a} = 500 and 600 Degree-Sign C for 1 h causes Ag transport to the sample surface and the formation of Ag surface grains. Quantitative scanning electron microscopy and energy dispersive spectroscopy analyses show that increasing d from 0 to 10 to 100 nm for T{sub a} = 500 Degree-Sign C leads to a decrease in the areal density of Ag surface grains from 0.86 to 0.45 to 0.04 {mu}m{sup -2}, while their lateral size remains constant at 360 {+-} 60 nm. However, increasing T{sub a} to 600 Degree-Sign C causes a doubling of the Ag grain size, and a 4-30 times larger overall Ag transport. These results are explained by kinetic barriers for Ag diffusion through the porous cap layer with a porosity that decreases with increasing d, resulting in an effective activation barrier for Ag transport that increases from 0.78 eV in the absence of a cap layer to 0.89 eV for d = 10 nm and 1.07 eV for d = 30 nm. Auger electron spectroscopy depth profile analyses of annealed layers reveal no detectable Ag within the CrN cap layer and a uniform depletion of the Ag reservoir throughout the composite coating thickness, indicating unhindered Ag transport within the composite. The overall results show that a CrN diffusion barrier cap layer is an effective approach to control Ag lubricant transport to the surface of CrN-Ag composite coatings. - Highlights: Black-Right-Pointing-Pointer CrN-Ag composite coatings are capped with CrN diffusion barriers. Black-Right-Pointing-Pointer Ag diffuses to the surface during annealing at 500 or 600 Degree-Sign C. Black-Right-Pointing-Pointer The Ag transport is controlled by the cap thickness d = 0-1000 nm. Black-Right-Pointing-Pointer The activation energy for Ag

  6. Real time and non-destructive analysis of tablet coating thickness using acoustic microscopy and infrared diffuse reflectance spectroscopy.

    Science.gov (United States)

    Bikiaris, D; Koutri, I; Alexiadis, D; Damtsios, A; Karagiannis, G

    2012-11-15

    Tablet coating thicknesses were estimated using several techniques such as weight gain and scanning electron microscopy (SEM), in comparison with acoustic microscopy and diffuse reflectance spectroscopy. Acoustic microscopy, used for the first time in such an application, is based on the physical phenomenon of ultrasound propagation through the materials and the echoes generated by their interfaces. Based on the time of flights (TOFs) of the echoes from the coating surface and the tablet, it is possible to calculate the coating thickness. In order to evaluate the accuracy and robustness of these methods, drug tablets were coated with Kollicoat SR polymer for several times, so that to prepare tablets with different coating thicknesses. Tablets with 3, 6 and 9 wt% coating material have been prepared and based on SEM micrographs it was found that the tablet coating thickness is 71.99 ± 1.2 μm, 92.5 ± 1.7 μm and 132.3 ± 2.1 μm, respectively (SEM analysis). The tablet coating thicknesses measured with acoustic microscopy and infrared diffuse reflectance spectroscopy, were in agreement with those obtained using SEM. This verifies that both techniques can be successfully applied for real time and non-destructive thickness measurements of tablet coating. Furthermore, both techniques, compared with SEM and weight gained measurements, are fast and fully automated. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Hard coating of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films on cemented tungsten carbide by coaxial arc plasma deposition

    Science.gov (United States)

    Naragino, Hiroshi; Egiza, Mohamed; Tominaga, Aki; Murasawa, Koki; Gonda, Hidenobu; Sakurai, Masatoshi; Yoshitake, Tsuyoshi

    2016-08-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were deposited on cemented carbide containing Co by coaxial arc plasma deposition. With decreasing substrate temperature, the hardness was enhanced accompanied by an enhancement in the sp3/(sp2 + sp3). Energy-dispersive X-ray and secondary ion mass spectrometry spectroscopic measurements exhibited that the diffusion of Co atoms from the substrates into the films hardly occurs. The film deposited at room temperature exhibited the maximum hardness of 51.3 GPa and Young's modulus of 520.2 GPa, which evidently indicates that graphitization induced by Co in the WC substrates, and thermal deformation from sp3 to sp2 bonding are suppressed. The hard UNCD/a-C films can be deposited at a thickness of approximately 3 μm, which is an order larger than that of comparably hard a-C films. The internal compressive stress of the 51.3-GPa film is 4.5 GPa, which is evidently smaller than that of comparably hard a-C films. This is a reason for the thick deposition. The presence of a large number of grain boundaries in the film, which is a structural specific to UNCD/a-C films, might play a role in releasing the internal stress of the films.

  8. Investigation of the internal reflectance and prediction of infrared diffuse reflectance of the polymeric coating on aluminum substrate

    Science.gov (United States)

    Ho, Wen-Dar; Ma, Chen-Chi M.

    1998-02-01

    This study employs the ray tracing method to develop and analyze mathematical formulae for the IR diffuse reflectance of the polymeric coating on a metal substrate. The effects of the thickness and the absorption property of the polymer film on the internal reflectance are also investigated. In addition, the diffuse reflectance of the coating/substrate system which is irradiated with a perfect diffuse source is formulated as well. Analysis results indicate that the internal reflectance of the internal front surface (polymer/air interface) is not a constant which depends on the film thickness and absorption property. Closely examining the internal multiple reflections between the front and the substrate surface reveals that the diffuse reflectance of the coating/substrate system can be obtained by summing the fractions of rays emerging from the front surface. By knowing the refractive index and the extinction coefficient of the polymer, the diffuse reflectance of the coating/substrate system can be calculated by the formulae presented here. In addition an alkyd resin coating/aluminum substrate system is also implemented to compare the experimental reflectances with the calculated ones. According to the comparisons the analysis and developed formulae are quite effective.

  9. Surface Layer States of Worn Uncoated and TiN-Coated WC/Co-Cemented Carbide Cutting Tools after Dry Plain Turning of Carbon Steel

    Directory of Open Access Journals (Sweden)

    Johannes Kümmel

    2013-01-01

    Full Text Available Analyzing wear mechanisms and developments of surface layers in WC/Co-cemented carbide cutting inserts is of great importance for metal-cutting manufacturing. By knowing relevant processes within the surface layers of cutting tools during machining the choice of machining parameters can be influenced to get less wear and high tool life of the cutting tool. Tool wear obviously influences tool life and surface integrity of the workpiece (residual stresses, surface quality, work hardening, etc., so the choice of optimised process parameters is of great relevance. Vapour-deposited coatings on WC/Co-cemented carbide cutting inserts are known to improve machining performance and tool life, but the mechanisms behind these improvements are not fully understood. The interaction between commercial TiN-coated and uncoated WC/Co-cemented carbide cutting inserts and a normalised SAE 1045 steel workpiece was investigated during a dry plain turning operation with constant material removal under varied machining parameters. Tool wear was assessed by light-optical microscopy, scanning electron microscopy (SEM, and EDX analysis. The state of surface layer was investigated by metallographic sectioning. Microstructural changes and material transfer due to tribological processes in the cutting zone were examined by SEM and EDX analyses.

  10. Determination of diffusible and total hydrogen concentration in coated and uncoated steel

    Energy Technology Data Exchange (ETDEWEB)

    Mabho, Nonhlangabezo

    2010-09-23

    The new trend in the steel industry demands thin, flexible, high strength steels with low internal embrittlement. It is a well known fact that the atomic hydrogen which is picked up during production, fabrication and service embrittles the steel. This has led to an extensive research towards the improvement of the quality of metallic materials by focusing on total and diffusible hydrogen concentrations which are responsible for hydrogen embrittlement. Since the internal embrittlement cannot be foreseen, the concentrations of diffusible hydrogen work as indicators while the total hydrogen characterizes the absorbed quantities and quality of that particular product. To meet these requirements, the analytical chemistry methods which include the already existing carrier gas melt (fusion) extraction methods that use infrared and thermal conductivity for total hydrogen detection were applied. The newly constructed carrier gas thermal desorption mass spectroscopy was applied to monitor the diffusible concentration at specific temperatures and desorption rates of hydrogen which will contribute towards the quality of materials during service. The TDMS method also involved the characterization of the energy quantity (activation energy) required by hydrogen to be removed from traps of which irreversible traps are preferred because they enhance the stability of the product by inhibiting the mobility of hydrogen which is detrimental to the metallic structures. The instrumentation for TDMS is quite simple, compact, costs less and applicable to routine analysis. To determine total and diffusible hydrogen, the influence of the following processes: chemical and mechanical zinc coating removal, sample cleaning with organic solvents, conditions for hydrogen absorption by electrolytic hydrogen charging, conditions of hydrogen desorption by storing the sample at room temperature, solid CO{sub 2} and at temperatures of the drier was analysed. The contribution of steel alloys towards

  11. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry.

    LENUS (Irish Health Repository)

    2011-05-01

    The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination.

  12. Evaluation of the Luting Cement Space for Provisional Restoration by using Various Coats of Die Spacer Materials-An Invitro Study.

    Science.gov (United States)

    Chiramana, Sandeep; Siddineni, Krishna Chaitanya; Jyothula, Ravi Rakesh Dev; Gade, Phani Krishna; Bhupathi, Deepthi; Kondaka, Sudheer; Hussain, Zakir; Paluri, Geetha Bhavani

    2014-09-01

    The present study was to evaluate the space provided for the temporary luting cement, after the application of various coats of die spacers, during the fabrication of provisional crowns and bridges. A total of 50 specimens of dental stone with provisional crowns on all these samples were prepared and were divided into five groups based on the application of various coats of different die spacers. Later these specimens were sectioned buccolingually and were observed using a stereomicroscope under 100X magnification. The images thus obtained were evaluated and noted for the amount of space between the inner surface of the provisional crown and the specimens at five different locations using Image Pro 6.0 Express software and the values were subjected to one-way ANOVA test, and unpaired t-test. There was a significant increase of luting space thickness with various die spacer applications than the specimens of control group. Specimens of double coat applications of silver and gold die spacers showed higher luting cement space than the separating media application specimens.

  13. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement.

    Science.gov (United States)

    Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong

    2014-04-01

    The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P < 0.005). At 3 years, approximately 37 % of F IX GP Extra restorations showed wear slightly more than the adjacent enamel, compared to 28 % of F IX GP Extra+GCP restorations and 21 % of Solare restorations. Although this was not statistically significant, there was a trend that GCP can protect F IX GP Extra against wear. Although both Fuji IX GP Extra and Fuji IX GP Extra with G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.

  14. Effect of diffuse roof cover with anti-reflection coating for roses; Effect van diffuus kasdek met Anti Reflectie coating bij Roos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Victoria, N.; Kempkes, F.

    2012-10-15

    The rose Red Naomi was cultivated in two greenhouses at Wageningen UR Greenhouse Horticulture in Bleiswijk, Netherlands (August 2010 - September 2011). One greenhouse covered with normal float glass; the other with AR coated diffuse glass (70% haze). This Anti-Reflection coating on both glass sides compensated for the loss in light transmission caused by the diffusing structure in the glass. The diffuse AR glass lead to a 5.2% higher production (>6.1% fresh weight). Sunscreens were necessary in spring and summer to avoid high light levels on the flower buds, as they cause very high bud temperatures leading to quality problems (blue petal edges and burnt leaf tips). The diffuse greenhouse cover allowed a 100 W/m{sup 2} higher screening threshold than the reference glass. This caused a 2.7% higher daily light integral, able to explain part of the extra production obtained. Part of the extra production achieved can not be explained by the measured factors as no differences were found in the amount of light intercepted by the crop or in leaf photosynthesis under both cover types. The light under the diffuse AR cover was nevertheless much smoother, so the crop seemed to suffer less (lower bud temperatures and less burned leaf tips), and this should provide an explanation for the rest of the extra production. The cover properties did not influence disease development (powdery mildew). The obtained extra production makes the tempered, diffuse glass with Anti Reflection coating on both sides economically feasible [Dutch] Tussen augustus 2010 en september 2011 is bij Wageningen UR Glastuinbouw het effect van diffuus glas, met dubbelzijdige AR coating, op de productie en energiegebruik van roos 'Red Naomi' onderzocht. Onder het diffuse glas werden 5,2% meer bloemtakken geproduceerd, deze rozen waren ook iets langer en zwaarder (6,1% meer versgewicht). Dit verschil kan deels verklaard worden doordat er onder het diffuse glas pas bij hogere stralingsniveau

  15. Effect of diffusion coating of Nd on the corrosion resistance of biodegradable Mg implants in simulated physiological electrolyte.

    Science.gov (United States)

    Levy, Galit; Aghion, Eli

    2013-11-01

    The effect of diffusion coating of Nd on the corrosion performance of Mg-1.2%Nd-0.5%Y-0.5%Zr-0.4%Ca alloy (EW10X04) used as a new structural material for biodegradable implants was evaluated in a simulated physiological electrolyte. The initial Nd layer with a thickness of 1 μm was obtained by a physical vapor deposition process in an electron gun evaporator. This was followed by a diffusion coating process carried out at high temperature in a protective atmosphere. The microstructure of the diffusion coating system was examined using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. The corrosion resistance was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated physiological electrolyte in the form of 0.9% NaCl solution saturated with Mg(OH)2. The results of the corrosion tests clearly demonstrated that the corrosion resistance of the alloy with the diffusion coating layer was significantly improved compared to the base alloy. This was mainly due to the relatively continuous network of the secondary passive phase Mg41Nd5 that acts as an effective corrosion barrier and the beneficial effect of enriching the oxide film with Nd and Nd oxides such as Nd2O3 and Nd6O11. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Fatigue life of cast Inconel 713LC with/without protective diffusion coating under bending, torsion and their combination

    Czech Academy of Sciences Publication Activity Database

    Slámečka, K.; Pokluda, J.; Kianicová, M.; Horníková, J.; Obrtlík, Karel

    2013-01-01

    Roč. 110, SEP (2013), s. 459-467 ISSN 0013-7944 Institutional support: RVO:68081723 Keywords : nickel-based superalloys * diffusion coating * bending * torsion * multiaxial fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.662, year: 2013

  17. Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: Understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics

    International Nuclear Information System (INIS)

    Chen, Zhaoyong; Du, Binglin; Xu, Ming; Zhu, Huali; Li, Lingjun; Wang, Wenhua

    2013-01-01

    Graphical abstract: Schematic diagrams of the double coating process of PAS/carbon coated LiFePO 4 . -- Highlights: • The LiFePO 4 synthesized by hydrothermal route using starch as surfactant has smaller particle size compared with that synthesized by solid state method. • The starch acts as constrained nano-layer restricting the growth of the LiFePO 4 particles. • The polyacene/carbon double layers are coated on the surface of LiFePO 4 successfully. • The polyacene/carbon double coated LiFePO 4 exhibits better capacity retention with 99.7% at 1C after 50 cycles. -- Abstract: Polyacene (PAS)/carbon coated lithium iron phosphate composites were synthesized with starch as surfactant using hydrothermal route at 180 °C for 5 h followed by calcining phenolic resin surface coated LiFePO 4 at 750 °C for 6 h. X-ray powder diffraction (XRD) was performed to investigate the structure and phase purity of all samples. The results of Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM) characterization show that the polyacene (PAS) and carbon double layer are coated on the surface of LiFePO 4 successfully. The sample synthesized in hydrothermal route shows small particle size (100–150 nm) as demonstrated in scanning electron microscopy (SEM) images, which can be ascribed to the coated starch nano-layer restricting the growth of the LiFePO 4 particles. Electrochemical impedance spectroscopy as well as charge and discharge tests was carried out to investigate the electrochemical performance of all samples. High initial discharge capacity (161.7 mAh g −1 at 0.2C) and good cycling stability are observed in PAS/carbon double coated LiFePO 4 synthesized using the hydrothermal route. Compared with the S-PLFP, the lower charge transfer resistance (R ct ) and the higher lithium ion diffusion coefficient of the H-PCLFP can be ascribed to the double coating layer (PAS and carbon) on the surface of H-PCLFP and the small grain size

  18. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    Science.gov (United States)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-11-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  19. Effect of Al and Al-Si diffusion coating on the low cycle fatigue behavior of Inconel 713LC

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Pospíšilová, S.; Juliš, M.; Podrábský, T.; Polák, Jaroslav

    2011-01-01

    Roč. 10, - (2011), s. 1360-1365 E-ISSN 1877-7058. [ICM11 -International Conference on The Mechanical Behavior of Materials /11./. Lake Como, 05.06.2011-09.06.2011] R&D Projects: GA ČR(CZ) GAP107/11/2065 Institutional research plan: CEZ:AV0Z2041904 Keywords : Low cycle fatigue * Inconel 713LC * diffusion coating Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. Fiscal 1999 basic survey report for promotion of joint implementation. Survey of diffusion of fluidized bed cement kilns in Vietnam; 1999 nendo Vietnam koku ni okeru ryudosho cement kiln fukyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Possibility is assessed of energy saving and CO2 reduction through replacing shaft kilns with fluidized bed kilns at four cement plants in Vietnam. The effort will be associated with the clean development mechanism (CDM) ultimately. The fluidized bed kiln is one of the state-of-the-art technologies developed to meet social, economic, and technical demands involving global environments, enhancement of energy efficiency, effective use of resources, improvement in cost performance, increasingly diversified needs for cement, etc. Use of the technology will lead to an extensive reduction in greenhouse gas emissions, solution of the problem of dust flying from calcinating facilities, production of clinkers high in stability and quality, utilization of inexpensive fuels such as low-grade coal, and production cost reduced thanks to the new equipment occupying less installation space. The conclusion of the study is that the energy to be consumed by the four plants will decrease by 6101-9551 tons/year in terms of oil and that energy saving rate will be 37-44%. The decrease in fuel and electricity for calcinating furnaces in turn decreases CO2 emissions, with the amount of reduction estimated at 24,393-38,794 tons/year in terms of CO2 and the rate of reduction estimated at 36-44%. As for payout in case environmental special yen credit is granted, it will realize in the 10-12th year, which means such financing will achieve a sufficient investment effect. Effect is also tentatively calculated in case of fluidized bed kilns diffused across the country. (NEDO)

  1. Use of microhardness as a simple means of estimating relative wear resistance of carbide thermal spray coatings: Part 2. wear resistance of cemented carbide coatings

    Science.gov (United States)

    Factor, Michael; Roman, Itzhak

    2002-12-01

    A selection of WC-Co and Cr3C2-25%NiCr coatings produced by plasma spray and high velocity oxygen fuel (HVOF) deposition techniques were subjected to various wear tests designed to simulate abrasion, cavitation, sliding, and particle erosion type wear mechanisms. All of the coatings were at least 200 µm thick and were deposited onto stainless steel substrates. In Part 1 of this contribution, the microstructures of the coatings were characterized and their mechanical properties were assessed using microindentation procedures. In this second part of the article, the behavior of the coatings when subjected to the various wear tests is reported and the utility of microhardness testing as an indication of relative wear resistance is discussed. It is shown that correctly performed, appropriate microhardness measurements are a good indication of abrasion resistance and sliding wear resistance, and also correlate well with cavitation resistance in Cr3C2-NiCr. The measurements were less useful for predicting erosion resistance for both Cr3C2-NiCr and WC-Co, however, and for abrasion resistance when WC-Co was ground against SiC. Here the contribution of micromechanisms involving fracturing and brittle failure is greater than that indicated by the coating microhardness, which is essentially a measurement of resistance to plastic deformation under equilibrium conditions.

  2. Characterization of Secondary Mineral Grain Coatings and their Role as Diffusion-controlled Sinks and Sources for Metal Contaminants

    Science.gov (United States)

    Davis, J. A.; Guo, H.; Lai, B.; Kemner, K. M.; Ercius, P.; Fox, P. M.; Singer, D. M.; Minor, A.; Waychunas, G.

    2012-12-01

    Many important geochemical reactions occur at the mineral-water interface, including sorption and desorption reactions of contaminants. Fundamental knowledge of the kinetics of these processes is based primarily on experimental observations of reactions at faces of single crystals or macroscopic data from pure mineral powder suspensions. Sorption reactions at crystal faces are generally very fast, on the order of microseconds or less, with reaction times often limited only by film diffusion at the mineral-water interface. In well-stirred suspensions of aquifer sediments, however, sorptive equilibrium can take many hours or days to achieve steady-state concentrations. We have examined the potential reasons for sorption rate limitation using uranium(VI) sorption by sediments from a sandy aquifer in Savannah River, South Carolina (USA). U(VI) sorption by sand-sized grains from the aquifer is dominated by reaction with secondary mineral coatings on quartz and feldspar grains. The coatings studied were on the order of 15 microns in thickness (i.e., from quartz grain to aqueous solution) and composed primarily of clay minerals and hematite of varying particle size. Microfocused-XRF imaging of elemental concentrations (e.g., U, Fe) of polished cross-sections of the grain/coating contact showed strong spatial correlations of U and Fe within the coatings, regardless of the length of reaction time (30 minutes to 4 weeks). The spatial resolution of the μ-XRF technique is of the order of 2 microns in horizontal directions, but the uncertainty of the observed spatial gradients is high due to grain curvature away from the polished surface and fluorescence contributed from the entire 30 micron thickness of a typical grain/epoxy thin section. TEM characterization of focused-ion-beam (FIB), vertically-extracted samples of the grain-coating contact shows that complex pore networks exist within the coatings of variable dimensions and unknown connectivity. Using scanning TEM (STEM

  3. ELECTRICAL FURNACE FOR PRODUCING CARBIDE COATINGS USING THE THERMOREACTIVE DEPOSITION/DIFFUSION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    FABIO CASTILLEJO

    2011-01-01

    the presence of VC and NbC, and as MEB results clearly show, the formation of regular thickness coatings. The results obtained allow for assessing that the designed and built furnace fulfills the requirements of the TRD technique for obtaining different types of hard coatings.

  4. Functionally-graded shape memory alloy by diffusion annealing of palladium-coated NiTi plates

    Science.gov (United States)

    Khaleghi, Fatemeh; Tajally, Mohammad; Emadoddin, Esmaeil; Mohri, Maryam

    2017-09-01

    Diffusion annealing of palladium-coated Ti-Ni plates was performed at temperatures ranging from 900 °C to 1,000 °C, to accomplish a compositional gradient in Ti-rich, Ti-Ni shape memory alloys. The aim of this study was to increase the transformation temperatures and transformation temperature intervals. Palladium diffusion profiles were measured by energy dispersive spectroscopy, and the corresponding approximate diffusion coefficients of the annealed specimens were calculated. The Gaussian solution of Fick's second law for the one-dimensional lattice diffusion of a tracer was used. The transformation behavior studies were performed by differential scanning calorimetry. It was depicted that annealed specimens show longer transformation intervals compared to the bare alloy. In addition, annealed specimens showed improved shape memory properties that were attributed to the lower amount of Ti2Ni precipitates in the diffusion layer. The shape memory behaviour of the samples was detected using micro-indentation at room temperature, followed by heating them above the austenite formation temperature to calculate the shape recovery ratio.

  5. Chlorhexidine release and antibacterial properties of chlorhexidine-incorporated polymethyl methacrylate-based resin cement.

    Science.gov (United States)

    Hiraishi, N; Yiu, C K Y; King, N M; Tay, F R

    2010-07-01

    This study evaluated chlorhexidine release from experimental, chlorhexidine-incorporated polymethyl methacrylate (PMMA)-based resin cements prepared from Super-Bond C&B (Sun Medical) and examined the antimicrobial activity against Streptococcus mutans and Enterococcus faecalis. Chlorhexidine diacetate was added into PMMA polymer to obtain chlorhexidine concentration of 0.0, 1.0, 2.0, 3.0, and 4.0 wt %. Chlorhexidine-incorporated, cured resin disks were immersed in distilled water at 37 degrees C for 5 weeks, and the chlorhexidine release was analyzed by high-performance liquid chromatography. The antibacterial effect of freshly mixed resin cements was examined using the agar diffusion test. For the direct contact test, the wells (n = 6) of microtiter plates were coated with cements. The coated wells were aged up to 3 weeks prior to the placement of bacterial suspensions directly on cured cements. The 3.0 and 4.0% chlorhexidine-incorporated cement exhibited chlorhexidine release for 5 weeks; however, more than 98% of chlorhexidine was retained in resin matrix. No release was detected from the 1.0 and 2.0% incorporated cement at 1 week and 2 weeks, respectively. The agar diffusion test failed to detect antibacterial effects against Enterococcus faecalis, whereas the direct contact test revealed the antibacterial effect of 3.0 and 4.0% incorporated cements against each microbe for 2 weeks. The 3.0 and 4.0% chlorhexidine-incorporated resin cement possessed prolonged chlorhexidine release and antibacterial properties for 2 weeks. (c) 2010 Wiley Periodicals, Inc.

  6. Systematic review on highly viscous glass-ionomer cement/resin coating restorations (Part II): 
Do they merge Minamata Convention and minimum intervention dentistry?

    Science.gov (United States)

    Kielbassa, Andrej M; Glockner, Georg; Wolgin, Michael; Glockner, Karl

    2017-01-01

    With the Minamata Convention the use of mercury will be phased down, and this undoubtedly will have an effect on dental treatment regimens and economic resources. Composite resin restorations are considered viable alternatives to amalgam fillings; however, these will not be covered completely by health insurance systems in many countries. Recently, a high-viscosity glass-ionomer cement (hvGIC) processed with a resinous coating (RC) has been introduced, and has been marketed as a restorative material in load-bearing Class I cavities (and in Class II cavities with limited size), thus serving as a possible alternative to amalgam fillings. To discuss the outcome based on the evaluation presented in Part I of this paper, and to critically appraise the methodologies of the various studies. Two of the included studies were industry-funded, and status of the other clinical trials remained unclear. Quality of study reporting was considered perfectible. The use of a light-cured nanofilled resin coating material would seem advantageous, at least when regarding short- and medium term outcomes. Within the respective indications and cavity geometries, the hvGIC/RC approach would seem promising, could merge the phase-down of mercury and the objectives of minimally invasive treatment to some extent, and might be a restorative alternative for patients suffering from allergies or not willing to afford other sophisticated or expensive techniques. These recommendations are based on studies evaluating EQUIA Fil (GC), but are not transferable to clinical perspectives of the glass hybrid successor product (EQUIA Forte; GC).

  7. The analysis of initiation and growth of cracks in diffusion aluminium coatings on ZS6U alloy in conditions of thermal fatigue

    International Nuclear Information System (INIS)

    Ciesla, M.; Swadzba, L.; Supernak, W.

    2002-01-01

    The paper deals with the analysis of thermal fatigue of nickel based ZS6U super alloy with 'Si-Ai' and 'Cr-Al' aluminium diffusion coatings. The processes of initiation and growth of cracks in diffusion coating in the conditions of cyclic changing temperature (500 o C - 950 o C) and simultaneous F o constant axial force loading have been analysed. The results of numerical calculations of stress distribution in the specimen with aluminium coatings have been presented. They enabled to elaborate the models of mechanical behaviour of coatings, which in turn helped to explain different character of cracks in the assumed experimental conditions. Thermal fatigue tests performed at lower static component of F o loading spectrum proved that aluminium coatings obtained in course of 'Si-Al' process show the highest lifetime respectively of their thickness. Moreover, the lifetime of 'Si-Al' aluminium coatings decreases together with the increase of static component of load fatigue spectrum unlike in case of 'Cr-Al' coatings. (author)

  8. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  9. Effect of Al-Si diffusion coating on the fatigue behavior of cast Inconel 713LC at 800°C

    Czech Academy of Sciences Publication Activity Database

    Juliš, M.; Obrtlík, Karel; Pospíšilová, S.; Podrábský, T.; Polák, Jaroslav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1983-1989 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : Low cycle fatigue * Diffusion coating * Inconel 713LC * High temperature * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics

  10. Development of ion-plated aluminide diffusion coatings for thermal cyclic oxidation and hot corrosion protection of a nickel-based superalloy and a stainless steel

    Science.gov (United States)

    Elsawy, Abdel Raouf

    This project was carried out at the University of Toronto and Cametoid Ltd of Whitby, Ontario. Ohno continuous casting; a novel net shape casting technique, was used to generate, Al-Y, Al-Ce, Al-La, and Al-Si-Y, in form of 1.6 to 1.7 mm diameter alloy wires. These alloy wires exhibited suitable properties for use as feed materials to an Ion Vapor Deposition facility. The deposition parameters were optimized to provide coatings with a compact and cohesive columnar structure with reduced porosity and diffusion barriers that were essential to ensure the success of the diffusion process in the subsequent stage. Solid-state diffusion heat treatment processes were developed in order to form the stable aluminide phases, AlNi and FeAl, on IN738 and S310 substrates, respectively. Experiments simulating the coating service conditions and environments encountered during the prospective aerospace and fuel cell applications were conducted to evaluate the performance of each aluminide coating developed during this study. Thermal cyclic oxidation and molten sulfate corrosion studies were performed on coated IN738 pins at 1050°C and 900°C, respectively, simulating the service environment of turbine engine blades and other hot section components. Molten carbonate corrosion behavior was investigated for coated S310 coupons that were immersed in, or covered with a thin film of molten carbonate, at 650°C, in air plus 30%CO2, to simulate the operating conditions of the cathode-side separator plates of molten carbonate fuel cells. The behavior of the reactive elements, yttrium, cerium, lanthanum, and silicon in enhancing the adhesion of the protective aluminum oxide scale was determined by weight variation experiments, structural examination and compositional analysis. The influence of the base material elements, nickel, chromium, and iron, on the formation of protective oxides was investigated. All coatings were found to provide significant improvement for thermal cyclic oxidation

  11. Influence of microstructure on hardness of plasma sprayed Al2O3–TiO2–MgO coatings with interface diffusion by heat treatment

    Science.gov (United States)

    Chen, Kunlun; Song, Peng; Li, Chao; Lu, Jiansheng

    2017-12-01

    The effect of heat treatment on the microstructure and mechanical properties of Al2O3–TiO2 coatings doped with 5 wt% MgO was investigated in this paper. The composite coatings were prepared by atmospheric plasma spraying (APS) and heat treated at 1000 °C for 24 h in Ar. The coatings were analyzed using scanning electron microscopy with electron probe x-ray microanalysis and x-ray diffraction. The hardness was determined using a Vickers hardness test on the as-sprayed coatings and after heat treatment. The results showed that the interface diffusion between the Al-rich and Ti-rich layers resulted in mutual pinning within the coating during the heat treatment. The newly formed MgAl2O4 phase promoted cracking-healing behavior within the coating. We conclude that increase of the hardness of the coatings was mainly caused by the mutual pinning interface and crack healing.

  12. Heterogeneous photo-Fenton and photocatalytic degradation studies of 2-chloro-4-nitrophenol (2Cl4NP using foundry sand and TiO2 coated cement/clay beads

    Directory of Open Access Journals (Sweden)

    Kashish Aggarwal

    Full Text Available ABSTRACT Cement and clay beads coated with TiO2were used for the photo-degradation and mineralization of 2-chloro-4-nitrophenol (2Cl4NP along with a heterogeneous solar photo-Fenton process using foundry sand (FS as the iron source. The degradation process was optimized using slurry photocatalysis where 96% degradation of 2Cl4NP was achieved in 120 min at optimized conditions of C0=50 mgL-1, pH=4, 0.75 gL-1 TiO2 and H2O2= 0.1 mL/200 mL. Degradation of 2Cl4NP was analyzed through HPLC along with UV-Visible spectrophotometer at 266 nm. The degradation of 68% and 52% of 2Cl4NP was attained in fixed-bed photocatalysis using cement and clay beads, respectively. The durability studies of cement and clay beads were carried out in terms of number of recycles. 97.19% degradation was obtained in a solar photo-Fenton process after 105 min at pH=3. Complete mineralization of 2Cl4NP was confirmed through reduction in COD along with the disappearance of the parent compound peak in HPLC chromatograms.

  13. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Long [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xin, Li, E-mail: xli@imr.ac.cn [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xinyue; Wang, Xiaolan; Wei, Hua; Zhu, Shenglong; Wang, Fuhui [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-11-15

    Oxidation and interdiffusion behaviors of Ni-based single crystal superalloy DD98M with nominal compositions Ni–5.0Co–6.0Cr–6.3Al–6.0W–2.0Mo–6.0Ta–1.0Ti (in wt.%) and two types of MCrAlY coatings at 1000 °C and 1050 °C were investigated. Complex oxides formed on the surface of DD98M alloy when oxidized at 1000 °C and 1050 °C, which stratified, cracked and spalled. The faceted-like AlN and the particle-like and strip-like TiN formed in the alloy. The application of the NiCrAlY and NiCoCrAlYHfSi coatings greatly improved the oxidation resistance of DD98M alloy. After 500 h oxidation, α-Al{sub 2}O{sub 3} was still the dominate phase in the oxide scales formed on the coated specimens. The adhesion of the oxide scale on the NiCoCrAlYHfSi coating was much better than that on the NiCrAlY coating. Interdiffusion occurred between the coatings and the substrate, which led to the formation of the IDZ and SRZ. The IDZ of the NiCrAlY coated specimen was composed of γ phase and Al- and Ta-rich γ′ phase. The γ′ phase in the IDZ accommodated most of the inward diffusing aluminum, so the SRZ formation was suppressed when oxidized at 1050 °C. However the formation of SRZ with μ-TCP still occurred when oxidized at 1000 °C probably due to the low solubility and slow diffusion rate of the alloying elements at lower temperature. The IDZ of the NiCoCrAlYHfSi coated specimen was a single γ phase. A large amount of μ-TCP precipitated in the SRZ of the NiCoCrAlYHfSi coated specimen when oxidized at 1000 °C and 1050 °C. It can be concluded coating composition has a significant effect on the development of the IDZ and SRZ. Thermal exposure temperature also has influences on the formation of the SRZ. The mechanism of SRZ formation and TCP precipitation are discussed. - Graphical abstract: The TEM micrograph of the IDZ and SRZ of the NiCoCrAlYHfSi-coated specimen oxidized at 1050 °C for 100 h and the respective diffraction patterns of the needle-like and the

  14. Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion

    International Nuclear Information System (INIS)

    Castillejo Nieto, Fabio Enrique; Olaya Flores, Jhon Jairo; Alfonso Orjuela, Jose Edgar

    2016-01-01

    We deposited of niobium-vanadium carbide coatings on tool steel AISI H13 using the thermo-reactive substrates deposition/diffusion (TRD) technique. The carbides were obtained using salt baths composed of molten borax, ferroniobium, vanadium and aluminum, by heating this mixture at 1020°C for 4 hours. The coatings were characterized morphologically via electron microscopy scanning (SEM), the chemical surface composition was determined through X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX); the crystal structure was analyzed using x-ray diffraction (XRD), the mechanical properties of the coatings were evaluated using nano-indentation, The tribological properties of the coatings obtained were determined using a Pin-on-disk tribometer and the electrochemical behavior was studied through potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that the hardness of the coated steel increased four times with respect to uncoated steel, and the electrochemical test established that the corrosion current is lower by one order of magnitude for coated steel

  15. Influence of Al-Si diffusion coating on low cycle fatigue properties of cast superalloy Inconel 738LC at 800 °C

    Czech Academy of Sciences Publication Activity Database

    Juliš, M.; Obrtlík, Karel; Pospíšilová, S.; Podrábský, T.; Polák, Jaroslav

    488-489, č. 1 (2012), s. 307-310 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR(CZ) GAP107/11/2065 Institutional research plan: CEZ:AV0Z20410507 Institutional support: RVO:68081723 Keywords : Inconel 713LC * diffusion coating * High temperature low cycle fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics

  16. Influence of the mineralogical composition of cement in the diffusion of chemical species; Influencia de la composicion mineralogica del cemento en la difusion de especies quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, E.

    2015-07-01

    The disposal is the final stage of radioactive waste management. This is essentially placing them in a facility with a reasonable assurance of safety. In this last stage, the ultimate goal is the confinement and isolation of radioactive waste from the human environment for a time period and under conditions such that the release of radionuclides not put in radiation risk to people and the environment. In relation to the storage of radioactive waste of low and medium activity, the final repositories for radioactive waste, based in cement materials are already operating in many countries. The isolation is performed by applying natural or artificial barriers between radioactive waste and man so as to prevent the release of radionuclides to the environment, until they have decreased their toxicity. The cement-based materials are involved in the different stages of the radioactive waste management since they are used for immobilization of waste in the container, container manufacturing and filling the spaces between the containers and vaults container and also as a barrier engineering and construction material in civil engineering. The concrete (cement mix + water + sand + gravel) it is one of the materials used to produce the engineered barrier system and produce containers for radioactive waste. In addition to their mechanical properties (product processing into hydraulic binder after being hydrated), their composition and solubility allow cushion the contact groundwater to ph higher (12.0 - 13.5) during considerable time scales (10{sup 14} - 10{sup 15} years) and it has an active role with the radionuclides confinement present in the radiological inventory of radioactive waste. The study of the microstructures of cement is a constant challenge for specialists working in this area, mainly due to the complex and heterogeneous mineralogical composition. Cement consists of many different phases in order to achieve specific properties such as reactivity properties

  17. On the role of built-in electric fields on the ignition of oxide coated nanoaluminum: Ion mobility versus Fickian diffusion

    Science.gov (United States)

    Henz, Brian J.; Hawa, Takumi; Zachariah, Michael R.

    2010-01-01

    Using the classical molecular dynamics method we simulate the mechanochemical behavior of small (i.e., core diameter<10 nm) oxide coated aluminum nanoparticles. Aluminum nanoparticles with core diameters of approximately 5 and 8 nm are simulated with 1 and 2 nm thick oxide coatings or shells. In addition to thickness the shells are parametrized by varying degrees of crystallinity, density, and atomic ratios in order to study their effect on the ignition of nanoparticle oxidation. The oxide shells are parametrized to consider oxide coatings with the defects that commonly occur during the formation of an oxide layer and for comparison with a defect free crystalline oxide shell. Computed results include the diffusion coefficients of aluminum cations for each shell configuration and over a range of temperatures. The observed results are discussed and compared with the ignition mechanisms reported in the literature. From this effort we have found that the oxidation ignition mechanism for nanometer sized oxide coated aluminum particles is the result of an enhanced transport due to a built-in electric field induced by the oxide shell. This is in contrast to the currently assumed pressure driven diffusion process. This induced electric field accounts for approximately 90% of the mass flux of aluminum ions through the oxide shell. The computed electric fields show good agreement with published theoretical and experimental results.

  18. Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design.

    Science.gov (United States)

    Lavoine, Nathalie; Guillard, Valérie; Desloges, Isabelle; Gontard, Nathalie; Bras, Julien

    2016-09-20

    Cellulose nanofibers (CNFs) were recently investigated for the elaboration of new functional food-packaging materials. Their nanoporous network was especially of interest for controlling the release of active species. Qualitative release studies were conducted, but quantification of the diffusion phenomenon observed when the active species are released from and through CNF coating has not yet been studied. Therefore, this work aims to model CNF-coated paper substrates as controlled release system for food-packaging using release data obtained for two model molecules, namely caffeine and chlorhexidine digluconate. The applied mathematical model - derived from Fickian diffusion - was validated for caffeine only. When the active species chemically interacts with the release device, another model is required as a non-predominantly diffusion-controlled release was observed. From caffeine modeling data, a theoretical active food-packaging material was designed. The use of CNFs as barrier coating was proved to be the ideal material configuration that best meets specifications. Copyright © 2016. Published by Elsevier Ltd.

  19. Development of tungsten carbide-cobalt coatings

    Science.gov (United States)

    Fitzsimmons, Mark

    1999-09-01

    The discovery of WC, and the development of cemented carbides (WC-Co and WC-TiC-Co) have spawned advancements in higher speed machining of steel. The development of chemically vapor deposited (CVD) coatings has allowed even greater speeds to be realized. The production of titanium components, well known for their high specific strength, low density, corrosion resistance, and elevated temperature properties, would greatly benefit from a similar development allowing high speed machining processes. Currently, no known tool material exists that can effectively machine titanium at high speeds due to insufficient high temperature strength and/or chemical resistance. To address this problem an investigation into the development of a composite tool material combining toughness, high temperature strength and chemical resistance was pursued. Cemented carbide (WC-Co) is currently the most chemically resistant and commercially used tool material for machining Ti. The concept of applying a WC-Co coating on a high temperature deformation resistant substrate material was investigated. Two approaches, namely (i) laminated and (ii) co-deposited coatings, were chosen to chemically vapor deposit WC-Co. Thermodynamic and kinetic calculations were performed to aid in the development of CVD processes for deposition of WC and Co. The systems investigated were WF6-CH4-H2 and WCl6-CH4-H 2 for WC deposition and CoCl2-H2 for Co deposition. In the case of laminated structures the goal was to deposit nanometer scale alternating layers of WC and Co. However, development of a laminated structure led to the discovery that porosity always occurred in the Co layers at the WC/Co interface. Mass balance calculations, SEM, EDS, XRD, and metallographic analyses aided in determining that the porosity was due to the Kirkendall effect. It was observed that the diffusion of Co was enhanced by higher concentrations of soluble C in the Co layers. Effective diffusion barriers, such as TiC, were found to help

  20. Preparation and annealing study of TaN{sub x} coatings on WC-Co substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China); Lin, Bo-Lu; Kuo, Yu-Chu [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China); Huang, Jen-Ching [Institute of Mechatronic Engineering, Tungnan University, New Taipei, Taiwan (China); Research Center for Micro/Nanotechnology, Tungnan University, New Taipei, Taiwan (China); Department of Mechanical Engineering, Tungnan University, New Taipei, Taiwan (China); Chang, Li-Chun [Department of Materials Engineering, Mingchi University of Technology, New Taipei, Taiwan (China); Center for Thin Film Technologies and Applications, Mingchi University of Technology, New Taipei, Taiwan (China); Lin, Yu-Ting [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China)

    2011-05-15

    To prevent Co diffusion from cemented carbides at high temperatures, we fabricated TaN{sub x} coatings by reactive direct current (d.c.) magnetron sputtering onto 6 wt.% cobalt cemented carbide substrates, to form diffusion barrier layers. Varying the nitrogen flow ratio, N{sub 2}/(Ar + N{sub 2}), from 0.05 to 0.4 during the sputtering process had a significant effect on coating structure and content. Deposition rate reduced as the nitrogen flow ratio increased. The effects of nitrogen flow ratio on the crystalline characteristics of the TaN{sub x} coatings were examined by X-ray diffraction. The TaN{sub x} coatings annealing conditions were 500, 600, 700, and 800 deg. C for 4 h in air. We evaluated the performance of the diffusion barrier using both Auger electron spectroscopy depth-profiles and X-ray diffraction techniques. We also investigated oxidation resistance of the TaN{sub x} coatings annealed in air, and under a 50 ppm O{sub 2}-N{sub 2} atmosphere, to evaluate the fabricated layers effectiveness as a protective coating for glass molding dies.

  1. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells

    KAUST Repository

    Yang, Wulin

    2014-12-01

    A low cost poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) phase inversion coating was developed as a cathode diffusion layer to enhance the performance of microbial fuel cells (MFCs). A maximum power density of 1430 ± 90 mW m-2 was achieved at a PVDF-HFP loading of 4.4 mg cm-2 (4:1 polymer:carbon black), with activated carbon as the oxygen reduction cathode catalyst. This power density was 31% higher than that obtained with a more conventional platinum (Pt) catalyst on carbon cloth (Pt/C) cathode with a poly(tetrafluoroethylene) (PTFE) diffusion layer (1090 ± 30 mW m-2). The improved performance was due in part to a larger oxygen mass transfer coefficient of 3 × 10-3 cm s-1 for the PVDF-HFP coated cathode, compared to 1.7 × 10-3 cm s -1 for the carbon cloth/PTFE-based cathode. The diffusion layer was resistant to electrolyte leakage up to water column heights of 41 ± 0.5 cm (4.4 mg cm-2 loading of 4:1 polymer:carbon black) to 70 ± 5 cm (8.8 mg cm-2 loading of 4:1 polymer:carbon black). This new type of PVDF-HFP/carbon black diffusion layer could reduce the cost of manufacturing cathodes for MFCs. © 2014 Elsevier B.V. All rights reserved.

  2. Estimating the chloride transport in cement paste

    OpenAIRE

    Princigallo, A.

    2012-01-01

    A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method prov...

  3. Migration of ions in cement paste as studied by SIMS

    International Nuclear Information System (INIS)

    Prince, K.E.; Aldridge, L.P.; Rougeron, P.

    1998-01-01

    Cement is often used to condition and encapsulate low level radioactive waste before it is disposed of in a repository. Ground water can attack these waste-forms by transporting aggressive ions into the cement paste and by removing radioactive ions from the paste. The extent of the attack will be governed by the diffusion of the ions in the cement paste. In this study we examine the migration of aggressive carbonate ions and inactive Cs and Sr through cement pastes. The use of SIMS for establishing the penetration depths and diffusion profiles for Cs and Sr in cement will be explored. The penetration profiles of Cs and Sr in a non-zeolite cement paste were examined and compared to those of a paste made with zeolite. The effects of the non-homogeneous nature of the cement was most pronounced in the study of the zeolite rich cement; Cs being preferentially accumulated in the zeolite material. (authors)

  4. Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts. Final Technical Report

    International Nuclear Information System (INIS)

    Pigarov, Alexander

    2012-01-01

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  5. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement

    OpenAIRE

    Jammalamadaka U; Tappa K; Weisman JA; Nicholson JC; Mills DK

    2017-01-01

    Uday Jammalamadaka,1 Karthik Tappa,1 Jeffery A Weisman,1 James Connor Nicholson,2 David K Mills1,3 1Center for Biomedical Engineering and Rehabilitation Science, 2Nanosystems Engineering, 3The School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA Abstract: Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase ...

  6. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  7. Silver Diffusion and High-Temperature Lubrication Mechanisms of YSZ-Ag-Mo Based Nanocomposite Coatings (Preprint)

    National Research Council Canada - National Science Library

    Hu, J. J; Muratore, C; Voevodin, A. A

    2006-01-01

    Yttria-stabilized zirconia (YSZ) nanocomposite coatings consisting of silver and molybdenum were produced by a hybrid process of filtered vacuum arc, magnetron sputtering and pulsed laser depositions for tribological investigations...

  8. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  9. Antibacterial activity of selected glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Elżbieta Łuczaj-Cepowicz

    2014-01-01

    Full Text Available Introduction: The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus. Material and methods: Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC, Fuji IX (GC, Ketac Molar (3M Espe and Ketac Silver (3M Espe. Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Results: Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Discussion: Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  10. Antibacterial activity of selected glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Elżbieta Łuczaj-Cepowicz

    2014-01-01

    Full Text Available Introduction: The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus.Material and methods: Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC, Fuji IX (GC, Ketac Molar (3M Espe and Ketac Silver (3M Espe. Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Results: Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Discussion: Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  11. Modification of Wood Fiber for Use in Cement Board

    Science.gov (United States)

    Han, F. Q.; Tan, X.; Zhao, F. Q.

    2017-12-01

    When ordinary Portland cement is used for wood fiber cement (WFC) board, the setting time is too long, even hard to solidify. Three methods can be used for wood fiber modification, i.e., soaking in water, treated with alkali solution and coated with some substances on the fiber surface. The results show that the proper water-cement ratio of WFC paste is 1:1.3 in the case of wood cement ratio being 1:1. The WFC board from modified wood fiber and cement is better than the control samples, in which the combined treatment, i.e. soaking in hot water and then coating with alkali-BFS-EVA slurry, behaves best. It is proved that ordinary Portland cement can be used to produce WFC board, with the modified wood fiber, which can greatly reduce production costs.

  12. Transfer of tritium in concrete coated with hydrophobic paints

    International Nuclear Information System (INIS)

    Fukada, S.; Edao, Y.; Sato, K.; Takeishi, T.; Katayama, K.; Kobayashi, K.; Hayashi, T.; Yamanishi, T.; Hatano, Y.; Taguchi, A.; Akamaru, S.

    2012-01-01

    Highlights: ► Rates of tritium migration in porous concrete materials coated with or without hydrophobic paints for the safety of fusion reactor rooms are correlated in terms of diffusivity or linear sorption. - Abstract: An experimental study on tritium (T) transfer in porous concrete for the tertiary T safety containment is performed to investigate (i) how fast HTO penetrates through concrete walls, (ii) how well concrete walls contaminated with water-soluble T are decontaminated by a solution-in-water technique, and (iii) how well hydrophobic paint coating works as a protecting film against HTO migrating through concrete walls. The experiment is comparatively carried out using disks of cement paste which W(water)/C(cement) weight ratio is 0.6:1 with or without hydrophobic paints, and mortar disks which W/C/sand ratio is 0.6:1:2 with or without the paints. The hydrophobic paints tested in the present study are an epoxy polymer resin paint and an acrylic-silicon polymer resin one. After T exposure during specified time under a constant HTO vapor pressure in an acrylic box, the amount of water-soluble HTO on/in the disks is determined using a technique of H 2 O dissolution during specified time. The results obtained here are summarized as follows: (1) HTO penetration in porous concrete can be correlated in terms of the effective diffusivity. (2) Its value in porous cement without coating is 1.2 × 10 −11 m 2 /s at 25 °C. (3) HTO penetrates only through pores in cement, and there is no path for HTO transfer in non-porous sand. (4) Rates of sorption and dissolution of HTO in disks of cement and mortar coated with the epoxy resin paint are correlated in terms of the effective diffusivity through the paint film which value is D T = 1.0 × 10 −16 m 2 /s. The rate-determining step is diffusion through the paint. (5) The epoxy resin paint works more effectively as an anti-HTO diffusion coating. (6) Another acrylic-silicon resin paint does not work well as anti

  13. Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles

    KAUST Repository

    Ismail, Mohamed

    2016-01-19

    Titanium dioxide (TiO2) nanoparticles containing iron, silicon, and vanadium are synthesized using multiple diffusion flames. The growth of carbon-coated (C–TiO2), carbon-coated with iron oxide (Fe/C–TiO2), silica-coated (Si–TiO2), and vanadium-doped (V–TiO2) TiO2 nanoparticles is demonstrated using a single-step process. Hydrogen, oxygen, and argon are utilized to establish the flame, with titanium tetraisopropoxide (TTIP) as the precursor for TiO2. For the growth of Fe/C–TiO2 nanoparticles, TTIP is mixed with xylene and ferrocene. While for the growth of Si–TiO2 and V–TiO2, TTIP is mixed with hexamethyldisiloxane (HMDSO) and vanadium (V) oxytriisopropoxide, respectively. The synthesized nanoparticles are characterized using high-resolution transmission electron microscopy (HRTEM) with energy-filtered TEM for elemental mapping (of Si, C, O, and Ti), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption BET surface area analysis, and thermogravimetric analysis. Anatase is the dominant phase for the C–TiO2, Fe/C–TiO2, and Si–TiO2 nanoparticles, whereas rutile is the dominant phase for the V–TiO2 nanoparticles. For C–TiO2 and Fe/C–TiO2, the nanoparticles are coated with about 3-5-nm thickness of carbon. The iron-based TiO2 nanoparticles significantly improve the catalytic oxidation of carbon, where complete oxidation of carbon occurs at a temperature of 470 °C (with iron) compared to 610 °C (without iron). Enhanced catalytic oxidation properties are also observed for model soot particles, Printex-U, when mixed with Fe/C-TiO2. With regards to Si–TiO2 nanoparticles, a uniform coating of 3 to 8 nm of silicon dioxide is observed around the TiO2 particles. This coating mainly occurs due to variance in the chemical reaction rates of the precursors. Finally, with regards to V–TiO2, vanadium is doped within the TiO2 nanoparticles as visualized by HRTEM and XPS further confirms the formation of

  14. Hybrid strategy with a bioresorbable scaffold and a drug-coated balloon for diffuse coronary artery disease: the "no more metallic cages" multicentre pilot experience.

    Science.gov (United States)

    Ielasi, Alfonso; Miyazaki, Tadashi; Geraci, Salvatore; Testa, Luca; Abdel-Wahab, Mohamed; Kawamoto, Hiroyoshi; Ruparelia, Neil; Sato, Takao; Caramanno, Giuseppe; Bedogni, Francesco; Tespili, Maurizio; Colombo, Antonio; Latib, Azeem

    2016-04-08

    Our aim was to assess the feasibility and results of a hybrid approach with a bioresorbable scaffold (BRS) plus a drug-coated balloon (DCB) for the treatment of diffuse coronary artery disease (CAD). A retrospective analysis was performed on consecutive patients with diffuse de novo or in-stent restenosis treated with BRS implantation (larger proximal segment) and DCB inflation (smaller distal segment or bifurcation side branch). Endpoints were procedural success, then ischaemia-driven target lesion revascularisation (ID-TLR) and BRS/DCB segment thrombosis rates at follow-up. A total of 42 consecutive patients were treated with the hybrid strategy. Mean patient age was 62±1.02 years, while 12 (28.6%) patients were diabetics. Mean BRS and DCB length were 28.0±5.1 mm and 25.8±8.8 mm, respectively. Procedural success was obtained in all patients, but three (7.3%) patients required bail-out scaffolding for DCB-related dissection. At a median follow-up of 12 months (IQR: 6-18), there were no cases of cardiac death, target vessel myocardial infarction, or BRS/DCB segment thrombosis. ID-TLR occurred in two (4.7%) BRS-treated segments. Our data in consecutive patients with diffuse CAD suggest that a hybrid strategy using BRS and DCB in different segments of the diseased vessel is feasible and associated with encouraging clinical outcomes.

  15. Cemented or cementless total knee arthroplasty?

    Directory of Open Access Journals (Sweden)

    Prudhon Jean-Louis

    2017-01-01

    Full Text Available Introduction: Since 1996 we have been using cementless fixation with hydroxyapatite (HA coating. The purpose of this paper is to compare survivorship of a series of 100 cemented Total Knee Arthroplasty (TKA to a similar series of 100 cementless with a follow up of 11–16 years. Material methods: Both TKA are mobile bearing total knee postero-stabilized. They can be used with cement or without cement. Among 1030 New Wave TKATM implanted from 2002 to 2015 we have identified 100 cemented TKAs and 100 cementless TKAs. All these cases were primary replacement. Differences in survival probability were determined using log-rank test. Results: Survival probabilities at 11 years of follow-up were: Cemented group: 90.2% CI95% [81.9–94.8]; Cementless group: 95.4% CI95% [88.1–98.2]. Comparison between both group showed significant difference, p = 0.32. Discussion: The advantages of cementless TKA are bone stock preservation, cement debris protection and the potential to achieve biologic fixation. Cementless implants rely on a porous or roughened surface to facilitate bone formation. HA has been shown to accelerate bone integration and to decrease micro motion of the components and to increase fixation. With a survival probability of 90.2% (cemented version and 95.4% (cementless version, this total knee prosthesis performs as intended in primary total knee arthroplasty. No statistical differences could be found between cemented and cementless implants.

  16. Report of year 2000 version on feasibility study. Feasibility study on the diffusion of fluidized bed cement kiln system in Socialist Republic of Viet Nam

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Evaluations were given on the possibility of saving energies and reducing CO2 emission by renewing the shaft kilns operated in four factories in Viet Nam into fluidized bed kilns. The feasibility study is intended to be linked to the clean development mechanism (CDM) in the future. The fluidized bed kiln is a most advanced technology developed to deal with social, economic and technological demands such as global environment preservation, energy conservation, effective utilization of resources, enhancement of economic performance, and diversification of cement needs. The technology is capable of largely reducing greenhouse effect gases, eliminating the problem of dust scattering from sintering facilities, producing stabilized and high-quality clinker, making possible of using inexpensive fuels including low-order coal, using less installation space, and reducing the production cost. The amount of energy reduction in all of the four factories is calculated 8,101 to 9,551 toe/year at an energy saving effect rate of 37 to 44%. CO2 emission is reduced as a result of reduction in fuel for sintering furnaces and in electric power consumption. The reduction amount would be 24,393 to 38,794 tons/year (converted into CO2), and the reduction effect rate would be 36 to 44%. The investment effect looks sufficient as payout of 10 to 12 years if the environment special Yen loan is used. Trial calculation was also performed for the nation-wide proliferation effect. (NEDO)

  17. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  18. Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic.

    Science.gov (United States)

    Kundu, Sanghamitra; Gupta, A K

    2008-05-01

    Solidification/stabilization (S/S) of hazardous iron oxide coated cement (IOCC) spent adsorbent containing arsenic (As(III)) was investigated in the present study. Cement and lime-based S/S effectiveness was evaluated by performing semi-dynamic leach tests. The S/S effectiveness was evaluated by measuring effective diffusion coefficients (D(e)) and leachability indices (LX). It was found that though cement or lime alone were efficient in preventing arsenic leaching (D(e) being in range of 10(-10) to 10(-12) for all the matrices) from the solidified matrices, the best combination for arsenic containment in the matrix was obtained when a mixture of cement and lime was used. The LX values for all the matrices were higher than 10, suggesting that the S/S treated arsenic sludge are acceptable for "controlled utilization". Calcite formation along with precipitation and conversion into non-soluble forms (calcium arsenite, calcium hydrogen arsenate hydrates, calcium hydrogen arsenates, etc.) were found to be the responsible mechanism for low leaching of arsenic from the solidified/stabilized samples. A linear relationship between cumulative fraction (CFR) of arsenic leached and square root of leach time (R(2) ranging from 0.90 to 0.94) suggested that the diffusion is the responsible mechanism for arsenic leaching. Thus, cement and lime show effective containment of the As(III) within the matrix thus indicating S/S by cement and lime, which is also a low-cost option, as a suitable management option for the toxic As(III) sludge.

  19. Electrochemical characterization of V{sub x}Nb{sub y}C{sub z}/Bi{sub x}Ti{sub y}O{sub z} coatings produced through thermo-reactive diffusion and the sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Castro H, S. A.; Alfonso, J. E.; Olaya, J. J., E-mail: jealfonso@unal.edu.co [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Ciencia de Materiales y Superficies, AA-14490 Bogota (Colombia)

    2016-11-01

    We present and experimental study of the structural evolution of a bilayer V{sub x}Nb{sub y}C{sub z}/Bi{sub x}Ti{sub y}O{sub z} coating produced via thermo-reactive diffusion (TRD) and the RF sputtering process on D-2 steel substrate. The TRD treatments were carried out in a molten mixture consisting of borax, ferro-niobium, ferro-vanadium, and aluminum, at 1313 K for 3 hours, using a resistance-heating furnace. Bi{sub x}Ti{sub y}O{sub z} coatings were deposited using RF magnetron sputtering on TRD coatings, in order to carry out a study of the corrosion behavior of this compound. The crystallographic structure of the coatings was determined via X-ray diffraction, the corrosion resistance was analyzed through the potentiodynamic polarization test (Tafel Extrapolation) and electrochemical impedance spectroscopic analysis (EIS). X-ray diffraction patterns showed that the ternary coating (VNbC{sub 2}) was preferentially oriented along the [200] direction with a cubic-centered face structure, and the Bi{sub x}Ti{sub y}O{sub z} coatings were amorphous. The electrochemical studies showed that the resistance corrosion of the coatings increased with respect to the bare substrate, and that polarization resistance in the bilayer coatings increased with respect to the ternary coatings, suggesting that the titanate has anti corrosive barrier effects. (Author)

  20. Sorbent-coated diffusion denuders for direct measurement of gas/particle partitioning by semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, L.A. [Lawrence Berkeley National Lab., CA (United States); Lane, D.A. [Atmospheric Environment Service, North York, Ontario (Canada)

    1998-01-01

    Sorbent-coated annular denuder-based samplers have been developed for direct determination of both gaseous and particulate semi-volatile organic species. The first such sampler, the Integrated Organic Vapor/Particle Sampler, has been validated for sampling semi-volatile PAH in ambient air and environmental tobacco smoke. Multi-channel versions of the IOVPS have been used successfully for investigation of gas/particle partitioning of a variety of semi-volatile organic species in combustion source-enriched environmental chambers. Subsequent improvements have resulted in two new higher-capacity samplers, the IOGAPS and the jumbo-IOGAPS, that use the same sorbent for sampling trace organics in the ambient atmosphere for 24--48 hr periods over a wide temperature range. Construction of these new samplers began by incorporating the IOVPS coating technology onto the gas collection surfaces of the higher capacity GAP sampler. Substantial design effort aims to ensure that vapor phase components as volatile as naphthalene can be trapped efficiently and retained by the sorbent-coated surface while the particles pass through to the filter.

  1. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  2. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  3. Determination of diffusible and total hydrogen concentration in coated and uncoated steel using melt and solid extraction techniques: Part I.

    Science.gov (United States)

    Mabho, Nonhlangabezo; Bergers, Karin; Flock, Jörg; Telgheder, Ursula

    2010-09-15

    It is essentially to know the bulk hydrogen concentration in various types of steel because it indicates the amount of hydrogen that can be trapped by the different alloys of steel. This information leads to more knowledge about the interactions of steel alloys with hydrogen containing environment and stability of the steel material during usage. To get this information precise analytical methods are necessary. Although the analytical methods for the determination of hydrogen in steel samples are often discussed, there are no sufficient systematic studies as far as the influence of the sample preparation on the analytical value is concerned. The influence of different sample preparation methods on the hydrogen determination in steel at parts per million levels by melting extracting methods has been investigated in this work. The hydrogen was measured by thermal conductivity and infrared detection. The flat sheet samples were zinc coated and uncoated ferritic types of steel. The zinc coating was removed by chemical (acid etching) and physical (paper scraping) methods. Dichloromethane acetone/ethanol, tetrachloromethane and alkaline steel cleaner (Ridoline C72) have been used for cleaning the surface of uncoated samples. The results of the total hydrogen content obtained by applying the different methods were evaluated. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. A study on leaching behaviour of cement blocks used as matrix for ...

    Indian Academy of Sciences (India)

    Study on the cementation of the regenerated activity (from spent resin using ferric as regenerant) containing ferric in cement matrix showed that compressive strength and leaching behaviour are better when the ferric strength was < 5 N. The diffusion coefficient of Cs from the cement matrix was found to be in the range 2.4 ...

  5. Effect of hydrophobic paints coating for tritium reduction in concrete materials

    International Nuclear Information System (INIS)

    Edao, Y.; Fukada, S.; Nishimura, Y.; Katayama, K.; Takeishi, T.; Hatano, Y.; Taguchi, A.

    2012-01-01

    Highlights: ► Effects of hydrophobic paint coating in tritium transport are investigated. ► Two kinds of paints, acrylic-silicon resin and epoxy resin are used. ► The hydrophobic paints are effective to reduce tritium permeation. ► The effect of tritium reduction of epoxy paint is higher than that of silicon. - Abstract: The effects of hydrophobic paint coating on a concrete material of cement paste on the tritium transport are investigated. The cement paste is coated with two kinds of paints, acrylic-silicon resin paint and epoxy resin paint. We investigated the amount of tritium trapped in the samples exposed to tritiated water vapor by means of sorption and release. It was found that both the hydrophobic paints could reduce effectively tritium permeation during 50 days exposure of tritiated water vapor. The effect of tritium reduction of the epoxy paint was higher than that of silicon while the amount of tritium trapped in the epoxy paint was larger than that of silicon due to difference of the structure. Based on an analysis of a diffusion model, the rate-determining step of tritium migration through cement paste coated with the paints is diffusion through the paints respectively. It was found that tritium was easy to penetrate through silicon because there were many pores or voids in the silicon comparatively. In the case of tritium released from the epoxy paint, it is considered that tritium diffusion in epoxy is slow due to retardation by isotope exchange reaction to water included in epoxy paint.

  6. Tough-coated hard powders for hardmetals of novel properties

    International Nuclear Information System (INIS)

    Toth, R.E.; Smid, I.; Kladler, G.; Korb, G.; Sherman, A.; Ettmayer, P.

    2001-01-01

    The properties and performance of conventional materials and composites are constrained by solubility limits, diffusion coefficients, and compatibility of physical and chemical constituent properties in their phase equilibria. To escape these limits, ingenious ways of combining strength, toughness, and wear resistance by way of various coatings and laminations have been devised. These coated tools are systematically discarded after only about 10 % of their wear tolerance has been used. Tough-coated hard powders (TCHP), patented by EnDurAloy (USA), are hard refractory particles CVD coated with nanolayers of WC and Co. Consolidation of TCHP creates an engineered homogeneous cellular structure whose interconnected tough WC-Co 'shells' each contain a wear-resistant core (e.g., TiN). In TCHP's, the coating is throughout the tool, not only on the surface, combining the strength, heat resistance, and toughness of cemented carbides with the chemical and abrasion wear resistance of harder materials. As wear progresses, new wear-resistant material continuously replaces the working surfaces and edges of the tool until its geometry reaches its maximum limits. TCHP tools are then reusable many times. Specific coating and consolidation processes, characterization of compacts, and test comparisons with conventional materials are discussed. (author)

  7. Silica fume effect on retention characteristics of portland cement for uranium (VI)

    International Nuclear Information System (INIS)

    Tan Hongbin; Ma Xiaoling; Li Yuxiang

    2005-01-01

    With simulated groundwater as leachant, the retention capabilities of the portland cement, which contains different amount of silica fume, are investigated under 25 degree C and 42 days. The results indicate that silica fume can improve the retention capabilities of portland cement for uranium. When the cement contains 15% silica fume, the diffusion coefficient is 7 x 10 -3 cm 3 · -1 . It is only 5.5% of the cement without containing fume. (authors)

  8. Cements research progress. 1988

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book reviews a survey of the literature on the science of cements published during 1988. The book focuses on an aspect of cement utilization of increasing importance, the immobilization of nuclear wastes

  9. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  10. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  11. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Crawford, R.W.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Tobermorite and xonotlite, two synthetic calcium silicate hydrates, improve the Cs retention of cement matrices for Cs, when incorporated at the 6 to 10% level. A kinetic and mechanistic scheme is presented for the reaction of fine grained, Cs-loaded clinoptilolite with cement. The Magnox waste form reacts quickly with cement, leading to an exchange of carbonate between waste form and cement components. Carbonation of cements leads to a marked improvement in their physical properties of Cs retentivity. Diffusion models are presented for cement systems whose variable parameters can readily be derived from experimental measurements. Predictions about scaled-up behaviour of large immobilized masses are applied to extrapolation of laboratory scale results to full-size masses. (author)

  12. CHH Cement Composite

    Science.gov (United States)

    Cwirzen, A.; Habermehl-Cwirzen, K.; Nasibulina, L. I.; Shandakov, S. D.; Nasibulin, A. G.; Kauppinen, E. I.; Mudimela, P. R.; Penttala, V.

    The compressive strength and electrical resistivity for hardened pastes produced from nanomodified Portland SR cement (CHH- Carbon Hedge Hog cement) were studied. The nanomodification included growing of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) on the cement particles. Pastes having water to binder ratio of 0.5 were produced. The obtained hardened material was characterized by increased compressive strength in comparison with the reference specimens made from pristine SR cement, which was attributed to reinforcing action of the CNTs and CNFs. The electrical resistivity of CHH composite was lower by one order of magnitude in comparison with reference Portland cement paste.

  13. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  14. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  15. The study on diamond-coated insert by DC plasma jet CVD

    International Nuclear Information System (INIS)

    Zhou Kesong; Dai Mingjiang; Song Jinbing; Kuang Tongchun; Liu Zhengyi

    2001-01-01

    Diamond coating were deposited on cemented carbide inserts by DC plasma jet CVD. The cemented carbide inserts were pretreated by methods including chemical etching of Co, Ar/H 2 plasma etching. The characteristics of diamond film, interface structure, adhesion strength and film stress were analysized by different methods such as SEM, XRD, Raman spectrum etc. A comparing experiment of cutting Al - 22 % Si alloy was carried out with diamond-coated cemented carbide inserts and uncoated cemented carbide inserts. The results show that the diamond-coated cemented carbide insert has a great advantage for cutting abrasive high content Al - Si alloy. (author)

  16. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    LENUS (Irish Health Repository)

    Hooi, Paul

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating.

  17. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  18. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  19. Cement for Oil Well Cementing Operations in Ghana

    African Journals Online (AJOL)

    Michael

    performance of three locally manufactured cement samples and imported class G cement sample for oil and gas well ... cement. 2 Materials and Methods. 2.1 Materials. Three brands of cement available on the Ghanaian market and commonly used by Ghanaians for construction ..... Cement Slurry using Factorial Design”,.

  20. Alkalies and cement clinker reactions on basic refractories

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, K. [INR Analyse Physico-Chemical, Manzah (Tunisia); Palco, S.; Guo, Z.; Rigaud, M. [CIREP-Ecole Polytechnique, Montreal, PQ (Canada)

    2002-07-01

    In an effort to characterize the mechanisms, by which cement clinkers do react with doloma, magnesia, or spinel (magnesia-alumina spinel) to form stable coatings, new testing procedures are presented. In order to quantify the extend of the interactions between the brick and the cement raw-meal at the initial coating formation a test method was designed to measure the MOR on sandwiches prepared under specified procedures. The effects of the microstructure of refractory bricks, as well as of the properties of tested raw meal, are evaluated in terms of their effects on the mechanism of coating - formation by means of microscopy. Induction heating was used for fast heat-up in the specially designed experimental setup with the aim to simulate the thermal shock with the simultaneous attack of cement-raw meal enhanced by the presence of alkalies. The effects on structural changes of bricks are evaluated by using different methods of chemical and structural analyzes. (orig.)

  1. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  2. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  3. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    Science.gov (United States)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  4. Prediction of chloride ingress and binding in cement paste

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Nielsen, Erik Pram; Herforth, Duncan

    2007-01-01

    This paper summarizes recent work on an analytical model for predicting the ingress rate of chlorides in cement-based materials. An integral part of this is a thermodynamic model for predicting the phase equilibria in hydrated Portland cement. The model’s ability to predict chloride binding...... in Portland cement pastes at any content of chloride, alkalis, sulfates and carbonate was verified experimentally and found to be equally valid when applied to other data in the literature. The thermodynamic model for predicting the phase equilibria in hydrated Portland cement was introduced into an existing...... Finite Difference Model for the ingress of chlorides into concrete which takes into account its multi-component nature. The “composite theory” was then used to predict the diffusivity of each ion based on the phase assemblage present in the hydrated Portland cement paste. Agreement was found between...

  5. Adhesive Cementation Promotes Higher Fatigue Resistance to Zirconia Crowns.

    Science.gov (United States)

    Campos, F; Valandro, L F; Feitosa, S A; Kleverlaan, C J; Feilzer, A J; de Jager, N; Bottino, M A

    The aim of this study was to investigate the influence of the cementation strategy on the fatigue resistance of zirconia crowns. The null hypothesis was that the cementation strategy would not affect the fatigue resistance of the crowns. Seventy-five simplified molar tooth crown preparations were machined in glass fiber-filled epoxy resin. Zirconia crowns were designed (thickness=0.7 mm), milled by computer-aided design/computer-aided manufacturing, and sintered, as recommended. Crowns were cemented onto the resin preparations using five cementation strategies (n=15): ZP, luting with zinc phosphate cement; PN, luting with Panavia F resin cement; AL, air particle abrasion with alumina particles (125 μm) as the crown inner surface pretreatment + Panavia F; CJ, tribochemical silica coating as crown inner surface pretreatment + Panavia F; and GL, application of a thin layer of porcelain glaze followed by etching with hydrofluoric acid and silanization as crown inner surface pretreatment + Panavia F. Resin cement was activated for 30 seconds for each surface. Specimens were tested until fracture in a stepwise stress fatigue test (10,000 cycles in each step, 600 to 1400 N, frequency of 1.4 Hz). The mode of failure was analyzed by stereomicroscopy and scanning electron microscopy. Data were analyzed by Kaplan-Meier and Mantel-Cox (log rank) tests and a pairwise comparison (pzirconia layer. Finite element analysis showed the different stress distribution for the two models. Adhesive cementation of zirconia crowns improves fatigue resistance.

  6. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    OpenAIRE

    Ramírez-Arellanes, S.; Cano-Barrita, P. F. de J.; Julián-Caballero, F.; Gómez-Yañez, C.

    2012-01-01

    The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases ...

  7. Retention of crowns cemented on implant abutments with temporary cements.

    Science.gov (United States)

    Nagasawa, Yuko; Hibino, Yasushi; Nakajima, Hiroshi

    2014-01-01

    This study was to examine the retentive force of crowns to implant abutments with commercial temporary cements. Six different temporary cements were investigated. Cast crowns were cemented to the abutments using each cement and their retentive forces to abutments were determined 7 or 28 days after cementing (n=10). The retentive force of the cements to abutments varied widely among the products [27-109 N (7-day), 18-80 N (28-days)]. The retentive force of all the cements was not reduced as the time elapsed, except for two products tested. The polycarboxylate cements and paste-mixing type eugenol-free cements revealed comparable retentive force after 28 days of storage. The powder-liquid type cements showed a positive correlation (pcement between the retentive force and compressive strength. Mechanical strength of temporary cements could not be a prominent predicting factor for retention of the crowns on the abutments.

  8. Fluoride ion release and solubility of fluoride enriched interim cements.

    Science.gov (United States)

    Lewinstein, Israel; Block, Jonathan; Melamed, Guy; Dolev, Eran; Matalon, Shlomo; Ormianer, Zeev

    2014-08-01

    Interim and definitive restorations cemented with interim cements for a prolonged interval are susceptible to bacterial infiltration and caries formation. The purpose of this in vitro study was to evaluate the long-term fluoride release and solubility of aged ZnO-based interim cements enriched separately with 0.4% NaF and SnF2. Four different brands of cements (Tempbond, Tempbond NE, Procem, and Freegenol) were tested for fluoride release and solubility. For every test, 6 disk specimens of each cement with NaF and SnF2, and 6 with no fluoride enrichment (control) were fabricated, for a total of 72 specimens. The disks were incubated in deionized water. Fluoride ion release was recorded at 1, 7, 14, 21, 63, 91, and 182 days. Solubility was calculated as weight percent after 90 days of incubation. The data were analyzed by analysis of variance with repeated measures and the Tukey honestly significant difference post hoc test (Pfluorides released fluoride ions for at least 182 days. Cements mixed with NaF released more fluoride ions than those mixed with SnF2 (P.97), indicating a diffusion-controlled fluoride release. Cement and fluoride types were the main affecting factors in fluoride ion release. The addition of fluorides slightly increased the solubility of the cements. Given their long-term sustained and diffusive controlled release, these fluorides, particularly NaF when mixed with ZnO-based interim cements, may be useful for caries prevention under provisionally cemented restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Laboratory and field studies of photocatalytic NOx and O3 removal by coatings on concrete.

    Science.gov (United States)

    2017-03-01

    This project involved thorough testing of titanium dioxide (TiO2)-containing commercial photocatalytic coatings : applied to portland cement concrete for highway applications, focusing on the use of these coatings as an : abatement method for atmosph...

  10. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    are available all over the world. The cement is affected by excessive exposure to moisture, particularly at high temperatures. Use of various additives has been suggested to enhance the durability of this cement. (Bludnov et al 1974; Paul 1975; Mingfen and Wei 1989;. Misra and Mathur 1993; Chandrawat and Yadav 2000).

  11. Advanced cementation concepts

    International Nuclear Information System (INIS)

    Howard, C.G.

    1989-10-01

    The purpose of this programme of work was to investigate whether improvements could be made to existing formulations for cement suitable for the immobilization of intermediate level radioactive waste. Two additives were selected, microsilica and limestone flour. Improvements to the cement were only slight. (author)

  12. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  13. Cement selection for cement-retained crown technique with dental implants.

    Science.gov (United States)

    Sheets, James L; Wilcox, Charles; Wilwerding, Terry

    2008-02-01

    The purpose of this study was to assess and compare the retentive nature of common dental cements that have been adapted for use in the implant abutment cement-retained crown (CRC) technique with those specifically formulated for this purpose. Ten regular diameter implant analogs were embedded in stainless steel disks. Unmodified CRC abutments were attached and torqued to 30 Ncm. Test crowns were waxed and cast with base metal alloy. Castings were fitted, cleaned with aluminum oxide, and steam cleaned prior to application of the cement. The cements used were: (1) Temp Bond, (2) UltraTemp, regular, (3) UltraTemp firm, (4) ImProv with petroleum jelly coating of crown, (5) ImProv without petroleum jelly, (6) Premier Implant with KY Jelly coating of abutment, (7) Premier Implant without KY jelly, (8) TR-2, (9) Fleck's, (10) Ketac Cem Aplicap, and (11) Fuji Plus Capsule. After cementation, assemblies were stored for 24 hours. Each sample was subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 5.0 mm/min. Loads required to remove the crowns were recorded, and mean values for each group determined. A one-way ANOVA and a post hoc least square difference (LSD) test were done for pairwise comparison at a confidence interval of 95%. The mean values (+/-SD) of loads at failure (n = 10) for various cements were as follows (N): Ultratemp, regular 358.6 (+/-38.2) (Group A), ImProv without petroleum jelly 172.4 (+/-59.6) (Group B), Fleck's 171.8 (+/-62.2) (Group B), Ketac Cem 167.8 (+/-69.1) (Group B), UltraTemp firm 158.8 (+/-62.7) (Group BC), Fuji Plus 147.5 (+/-69.7) (Group BC), Premier without KY jelly 131.6 (+/-31.8) (Group BC), ImProv using petroleum jelly 130.8 (+/-42.5) (Group BC), Temp Bond 117.8 (+/-48.3) (Group C), TR-2 41.2 (+/-16.6) (Group D), and Premier with KY jelly 31.6 (+/-24.8) (Group D). Groups with the same letter were not significantly different. Within the limitations of this in vitro study, it is not suggested

  14. Characterization of novel silane coatings on titanium implant surfaces

    NARCIS (Netherlands)

    Matinlinna, Jukka P; Tsoi, James Kit‐Hon; de Vries, Jacob; Busscher, Hendrik

    Objectives This in vitro study describes and characterizes a developed novel method to produce coatings on Ti. Hydrophobic coatings on substrates are needed in prosthetic dentistry to promote durable adhesion between luting resin cements and coated Ti surfaces. In implant dentistry the hydrophobic

  15. Experimental study with domestic bone cement in the percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Ni Caifang; Liu Xisheng; Chen Long; Yang Huilin; Tang Tiansi; Ding Yi

    2004-01-01

    Objective: To study the feasibility of injecting domestic bone cement in the process of the percutaneous vertebroplasty. Methods: (1) Various types cement were disposed with domestic PMMA. The concretionary phases of cement were observed according to the stages and holding time. Then the most ideal ratio of the mixed cement was selected and ten cement columns were made with this ratio, which was taken as the trial group. The other ten referring to was taken as the contrast one. The biological mechanics was measured with a load and the data of the results were compared. (2) Twenty thoracic and lumbar adjacent bodies were removed intact from five human corpses. These bodies were divided into two groups, in one group PMMA were injected, the other was severed as the contrast one. Then in these twenty vertebral bodies the biological mechanics was measured and the treatment effect was evaluated. (3) In 12 healthy dogs PVP in lumber was tried so as to observe the operational difficulty during the process of injected this bone cement and CT was used to evaluate the result of PMMA, diffusion and the complications caused by it. Results: The most ideal ratio was 4:2.6:1 (g, ml, ml) between powder, monome and contrast. After injecting this kind of cement, the loading strength of these vertebral bodies was increased remarkably (P<0.01). Conclusion: Injecting domestic bone cement provides the theoretical foundations for the clinical application of PVP. (author)

  16. Chemical reactivity of PVD-coated WC-Co tools with steel

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, S. [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Huang, S.G. [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Van der Biest, O. [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Vleugels, J. [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium)]. E-mail: jozef.vleugels@mtm.kuleuven.be

    2007-01-30

    The chemical reactivity of CrN, ZrN, TiC {sub x}N{sub 1-x} and naCo (registered) PVD coatings on a WC-Co cemented carbide substrate with steel has been evaluated by means of the static interaction couples technique. Diffusion experiments with coated and uncoated tools were carried out at 900, 1100 and 1300 deg. C in order to establish the maximum temperature at which the substrate-coating-workpiece combinations are chemically stable. Computational equilibrium thermodynamics was used to identify the interaction products formed at elevated temperature and the chemical solubility of the different coating materials into iron. A metallic (Fe, Co) fcc solid solution was identified at the steel side of the interface from 1100 deg. C on for all the coated tools and from 900 deg. C for the uncoated carbide. In addition to this interaction product, the {eta}-carbide was identified at 1300 deg. C on the WC-Co side of the interface. Both of the experimental findings and thermodynamic equilibrium solubility calculations demonstrated that the PVD-coated WC-Co tools exhibit a lower chemical reactivity with respect to the uncoated tools.

  17. On the Use of Mo/Mo2C Gradient Interlayers in Diamond Deposition onto Cemented Carbide Substrates

    Science.gov (United States)

    Gao, Jie; Hei, Hongjun; Zheng, Ke; Gao, Xueyan; Liu, Xiaoping; Tang, Bin; He, Zhiyong; Yu, Shengwang

    2016-01-01

    Molybdenum/molybdenum carbide (Mo/Mo2C) gradient interlayers were prepared via double glow plasma surface alloying (DGPSA) technique onto cemented carbide (WC-Co) substrates for diamond deposition. The morphologies, phase composition and adhesion of the interlayers were investigated, as well as their effect on the subsequent diamond deposition. The results indicated that the Mo/Mo2C gradient interlayer deposited on WC-Co substrate was composed of 4.0-μm-thick diffusion layer and 2.7-μm-thick deposition layer. The Mo concentration decreased gradually with the depth direction whereas the Co and W concentrations increased. As a result, the Co binder phase was completely restricted within the substrate by the diffusion layer. The presence of gradient diffusion layer ensured excellent adhesion of the interlayer. Subsequently, nanocrystalline diamond coatings with excellent adhesion were deposited on the interlayered substrates. Thus, the Mo/Mo2C gradient interlayers deposited via DGPSA technique were demonstrated as a novel option for depositing adherent diamond coatings on WC-Co substrates.

  18. Anion Capture and Exchange by Functional Coatings: New Routes to Mitigate Steel Corrosion in Concrete Infrastructure.

    Science.gov (United States)

    Falzone, Gabriel; Balonis, Magdalena; Bentz, Dale; Jones, Scott; Sant, Gaurav

    2017-11-01

    Chloride-induced corrosion is a major cause of degradation of reinforced concrete infrastructure. While the binding of chloride ions (Cl - ) by cementitious phases is known to delay corrosion, this approach has not been systematically exploited as a mechanism to increase structural service life. Recently, Falzone et al. [ Cement and Concrete Research 72 , 54-68 (2015)] proposed calcium aluminate cement (CAC) formulations containing NO 3 -AFm to serve as anion exchange coating s that are capable of binding large quantities of Cl - ions, while simultaneously releasing corrosion-inhibiting NO 3 - species. To examine the viability of this concept, Cl - binding isotherms and ion-diffusion coefficients of a series of hydrated CAC formulations containing admixed Ca(NO 3 ) 2 (CN) are quantified. This data is input into a multi-species Nernst-Planck (NP) formulation, which is solved for a typical bridge-deck geometry using the finite element method (FEM). For exposure conditions corresponding to seawater, the results indicate that Cl - scavenging CAC coatings (i.e., top-layers) can significantly delay the time to corrosion (e.g., 5 ≤ d f ≤ 10, where d f is the steel corrosion initiation delay factor [unitless]) as compared to traditional OPC-based systems for the same cover thickness; as identified by thresholds of Cl - /OH - or Cl - /NO 3 - (molar) ratios in solution. The roles of hindered ionic diffusion, and the passivation of the reinforcing steel rendered by NO 3 - are also discussed.

  19. Cement composite delivery system.

    Science.gov (United States)

    Convery, F R; Devine, S D; Hollis, J M; Woo, S L

    1986-09-01

    Several new and innovative techniques have recently been introduced that purport to increase the strength of polymethyl methacrylate bone cement. One of these concepts is the use of carbon and polymer fibers to form a cement composite. Bone cement composites usually 1% fiber, are very difficult to use clinically. The composite is very sticky and viscous, which precludes effective hand packing or the use of conventional delivery systems. A new delivery system for very viscous materials is presented and examples of in vitro application are shown.

  20. Characterization of polymer-modified cement as a solidification agent for the radwaste

    International Nuclear Information System (INIS)

    Ji, Young-Yong; Kwak, Kyung-Kil; Hong, Dae-Seok; Ryu, Woo-Seog

    2012-01-01

    Highlights: ► Polymer-modified cement (PMC) by modification with water-based resins. ► Determination of the optimized polymer content. ► Evaluation of the improved chemical resistance of the PMC. ► Decrease of the amount of ions released into the demineralized water. ► Highly improved property for the nuclide diffusivity at the Co-60. - Abstract: Polymer-modified cement can be produced by partially replacing cement hydrate binders in ordinary Portland cement with polymeric compounds. It is known that the addition of the polymer to the cement paste leads to improved quality, which would be expected to have a high chemical resistance. In order to investigate the application as a solidification agent for the radwaste, polymer-modified cement specimens, by modification with water-based resins, were prepared according to the polymer content from 0% to 30%. The optimized polymer content in the cement pastes was then determined through the compressive strength and the porosity test. Finally, the improved chemical resistance of the polymer-modified cement with the optimized polymer content was evaluated by the thermal cycling, the immersion, and the leaching tests. From the test results, the amount of ions released into the water showed lower values of about 20% at the polymer-modified cement. Especially, a highly improved nuclide diffusivity of Co-60 was observed in the polymer-modified cement.

  1. The effect of modified hydrotalcites on mechanical properties and chloride penetration resistance in cement mortar

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.B.

    2015-01-01

    In this paper, two types of modified hydrotalcites (MHT) were incorporated into cement mortars with two dosage levels (replacing 5% and 10% cement by mass). Designated testing programme including strength test, porosity test, and rapid chloride migration and diffusion test were employed to

  2. Estimating the chloride transport in cement paste

    Directory of Open Access Journals (Sweden)

    Princigallo, A.

    2012-06-01

    Full Text Available A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method proved to be useful for exploring cement hydration-induced changes in the diffusion coefficient of cement paste.

    Se ha desarrollado un método para medir el coeficiente de difusión de los iones cloruro en la pasta de cemento, partiendo de una aplicación analítica de la segunda ley de Fick en un sistema de coordinadas cilíndrico. Este método, que es natural, demostró ser capaz de producir resultados de difusividad en tan solo un mes. Se consiguió reducir el tiempo de ensayo mediante el aprovechamiento de la tridimensionalidad del flujo desde el exterior al interior de la probeta. A fin de determinar la concentración de saturación, se sometieron las pastas de cemento Portland a una disolución de cloruros concentrada. Este método resultó ser útil en el estudio de los cambios del coeficiente de difusión de la pasta de cemento provocados por las reacciones de hidratación que tienen lugar en esta.

  3. Inter-diffusion between Co3O4 coatings and the oxide scale on Fe-22Cr

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Linderoth, Søren; Mogensen, Mogens Bjerg

    2007-01-01

    The oxidation behaviour of a commercially available Fe-22Cr alloy coated with a Co3O4 layer by spray-painting or plasma-spraying was investigated at 1173K in air with 1% H2O and compared to the oxidation behaviour of the non-coated alloy. The oxide morphology was examined with X-ray diffraction...... as the evolution in contact resistance with time between two Fe-22Cr plates sandwiched around a Pt-mesh. SiO2 developed as particles within the alloy during oxidation of the Co3O4 spray-painted samples, whereas SiO2 was identified as an interfacial layer between Cr2O3 and the alloy after oxidation of the Co3O4...... plasma-sprayed and the non-coated samples. The difference in morphology is suggested to be an effect of SiO2 nucleation assisted by Kirkendall void formation....

  4. Tack coat optimization for HMA overlays : accelerated pavement test report.

    Science.gov (United States)

    2009-02-01

    Interface bonding between hot-mix asphalt (HMA) overlays and Portland cement concrete (PCC) pavements is one : of the most significant factors affecting overlay service life. This study was performed to quantify the effects of HMA type, : tack coat t...

  5. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  6. Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements.

    Science.gov (United States)

    Ayre, Wayne Nishio; Denyer, Stephen P; Evans, Samuel L

    2014-04-01

    Bone cements are extensively employed in orthopaedics for joint arthroplasty, however implant failure in the form of aseptic loosening is known to occur after long-term use. The exact mechanism causing this is not well understood, however it is thought to arise from a combination of fatigue and chemical degradation resulting from the hostile in vivo environment. In this study, two commercial bone cements were aged in an isotonic fluid at physiological temperatures and changes in moisture uptake, microstructure and mechanical and fatigue properties were studied. Initial penetration of water into the cement followed Fickian diffusion and was thought to be caused by vacancies created by leaching monomer. An increase in weight of approximately 2% was experienced after 30 days ageing and was accompanied by hydrolysis of poly(methyl methacrylate) (PMMA) in the outermost layers of the cement. This molecular change and the plasticising effect of water resulted in reduced mechanical and fatigue properties over time. Cement ageing is therefore thought to be a key contributor in the long-term failure of cemented joint replacements. The results from this study have highlighted the need to develop cements capable of withstanding long-term degradation and for more accurate test methods, which fully account for physiological ageing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Further investigations of the properties of polymer modified cements

    International Nuclear Information System (INIS)

    Johnson, D.I.

    1988-05-01

    This report concludes the work done on behalf of the Department of the Environment on polymer modified cement composites. Topics covered include: the influence of cure schedule on flexural properties, observation of the onset and cracking during flexural testing, measurement of water permeability and caesium diffusion rates, and the use of Back Scattered Electron Imaging to identify the polymer phase. The properties of epoxide resin modified cements in the previous report were disappointing. Air entrainment of the mixing stage was a likely cause of the poor performance of these products and procedures to overcome this problem were devised. The range of polymer additives investigated was broadened by the inclusion of modified acrylic latexes and a polymensable acrylate resin additive. Properties for OPC and 9 BFS: 1 OPC cements are compared and the modification of properties achieved by polymer additions to both cement systems is discussed. (author)

  8. Nanostructured Ta{sub x}C interlayer synthesized via double glow plasma surface alloying process for diamond deposition on cemented carbide

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Wolong; Hei, Hongjun; Zhong, Qiang; Shen, Yanyan; Liu, Xiaoping; Wang, Xin; Zhou, Bing; He, Zhiyong, E-mail: hezhiyong@tyut.edu.cn; Yu, Shengwang, E-mail: yushengwang@tyut.edu.cn

    2015-12-30

    Graphical abstract: - Highlights: • Ta{sub x}C interlayer was creatively obtained on WC–Co by DG-PSA for diamond deposition. • The interlayer with a flower-shaped surface consisted of Ta{sub 2}C and TaC nanocrystal. • Ta{sub x}C interlayer had a superior adherence because of gradual element distributions. • The samples’ surface microhardness is increased caused by nanostructured interlayer. • Ta{sub x}C interlayer improved diamond adhesion on WC–Co by suppressing Co diffusion. - Abstract: The aim in this work was to improve the adhesion of diamond coating with pre-deposition of a Ta{sub x}C interlayer on cemented carbide (WC–Co) substrate by double glow plasma surface alloying technique. The following deposition of diamond coating on the interlayer was performed in a microwave plasma chemical vapor deposition (MPCVD) reactor. Ta{sub x}C interlayer with an inner diffusion layer and an outer deposition layer was composed of Ta{sub 2}C and TaC nanocrystalline, and it exhibited a special compact surface morphology formed of flower-shaped pits. As the gradual element distributions existed in the diffusion layer, the interlayer displayed a superior adherence to the substrate with significantly enhanced surface microhardness to the original substrate. After CVD process, the preferred orientation of TaC changed from (2 2 2) to (2 0 0) plane, and a uniform and tense diamond coating with adhesion referred to class HF 2 at least (Verein Deutscher Ingenieure 3198 norm) was obtained on the interlayered substrate. It indicated that the diffusion of Co was effectively inhibited by the formation of Ta{sub x}C diffusion–deposition interlayer. The Ta{sub x}C interlayer is most likely to improve the performance of diamond coatings used in cutting tools.

  9. Microleakage of porcelain and composite machined crowns cemented with self-adhesive or conventional resin cement.

    Science.gov (United States)

    Ghazy, Mohamed; El-Mowafy, Omar; Roperto, Renato

    2010-10-01

    Resistance of machined crowns to microleakage when cemented with new self-adhesive cements has not been fully investigated. This study evaluated microleakage of machined crowns milled from porcelain and composite blocks and bonded to teeth with self-adhesive and conventional resin cement. Thirty-two freshly extracted premolars of similar shape and size were sterilized and mounted in resin blocks. Teeth received standard crown preparations with 1-mm circumferential shoulder finish line, flat occlusal surface reduced by 2 mm, and ideal angle of convergence. Prepared teeth were divided into two equal groups and assigned to either porcelain (Vita Mark II, Vident) or composite (Paradigm MZ100, 3M ESPE) blocks for crown fabrication. Optical impressions were captured for each tooth with the intraoral camera of a CEREC 3D machine. Crowns were designed and milled from both materials. Each group was then subdivided into two subgroups (n = 8) according to cement used (self-adhesive resin cement, RelyX Unicem, 3M ESPE or resin cement with self-etching adhesive, Panavia F 2.0, Kuraray). Following seating, a 5-kg weight was applied on the occlusal surface of the crown for 5 minutes. Specimens were then stored in water at 37°C for 24 hours. Specimens were thermocycled for 3000 cycles between 5°C and 55°C, then coated with nail varnish and immersed in a 2.0% basic red fuchsine dye solution for 24 hours. Teeth were then rinsed and sectioned mesiodistally and assessed under magnification for microleakage. A five-point scale was used to score degree of microleakage. Data were statistically analyzed with 2-way ANOVA and Kruskal-Wallis nonparametric test. Crown material had no significant effect on microleakage (p= 0.67); however, cement type had a significant effect (p cement, the resin cement with separate primer/bonding agent resulted in significantly lower microleakage scores, irrespective of crown material. © 2010 by The American College of Prosthodontists.

  10. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  11. Development of Gradient Cemented Carbides Through ICME Strategy

    Science.gov (United States)

    Du, Yong; Peng, Yingbiao; Zhang, Weibin; Chen, Weimin; Zhou, Peng; Xie, Wen; Cheng, Kaiming; Zhang, Lijun; Wen, Guanghua; Wang, Shequan

    An integrated computational materials engineering (ICME) including CALPHAD method is a powerful tool for materials process optimization and alloy design. The quality of CALPHAD-type calculations is strongly dependent on the quality of the thermodynamic and diffusivity databases. The development of a thermodynamic database, CSUTDCC1, and a diffusivity database, CSUDDCC1, for cemented carbides is described. Several gradient cemented carbides sintered under vacuum and various partial pressures of N2 have been studied via experiment and simulation. The microstructure and concentration profile of the gradient zones have been investigated via SEM and EPMA. Examples of ICME applications in design and manufacture for different kinds of cemented carbides are shown using the databases and comparing where possible against experimental data, thereby validating its accuracy.

  12. Foamed Cement Interactions with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Montross, Scott [National Energy Technology Lab. (NETL), Albany, OR (United States). Oak Ridge Inst. for Science and Education (ORISE); Spaulding, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dalton, Laura [National Energy Technology Lab. (NETL), Albany, OR (United States). Oak Ridge Inst. for Science and Education (ORISE); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Crandall, Dustin [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Moore, Jonathan [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Huerta, Nicolas [National Energy Technology Lab. (NETL), Albany, OR (United States); Kutchko, Barbara [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-01-23

    ultimately impacting the structural integrity of the wellbore. In this study, atmospheric foamed cements were generated using a neat cement and three foam qualities (volume of entrained gas in the cement) - 10%, 20%, and 30 % gas volume. The samples were immersed in a 0.25 M NaCl brine followed by the injection of supercritical CO2 at 28.9 MPa and 50°C. Petrophysical properties were examined for representative samples using computed tomography (CT) and scanning electron microscopy (SEM). CT scanning of representative samples across the range of reacted cements revealed macroscopic changes in structure due to brine/CO2/cement interactions. The high foam quality samples resulted in more CO2-saturated brine infiltrating radially deeper into the cement and thus were more susceptible to alteration. After 56 days of exposure, the 30% foam quality sample had the most reaction resulting in an alteration depth of 8.35 ± 0.13 mm with a calculated 34.6 ± 0.2% reacted area and 5.76 ± 0.2% reacted pore space area. The neat sample on the other hand, had a reaction depth of 0.31 ± 0.13 mm with a calculated 0.15 ± 0.08% reacted area and 0.57 ± 0.05% reacted pore area. Physical measurements of the exposed samples were consistent with this degree of alteration having 47.02% porosity and the highest permeability of 0.041 mD. These results indicate that the greater surface area provided by the increase of pore space in the higher quality foam coupled with carbonate diffusion reactions enabled greater alteration.

  13. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  14. Zinc deposition with pack cementation on low carbon steel substrates

    International Nuclear Information System (INIS)

    Vourlias, G.; Pistofidis, N.; Chaliampalias, D.; Pavlidou, E.; Stergioudis, G.; Polychroniadis, E.K.; Tsipas, D.

    2006-01-01

    The structure of Zn coatings formed with pack cementation at 250, 350, 380, 400 and 450 deg. C have been studied with Scanning Electron Microscopy, X-ray diffraction and microhardness measurments. From this investigation it turned up that these coatings are composed of two layers referring to Γ-Fe 11 Zn 40 and δ-FeZn 10 phases of the Fe-Zn phase diagram, while inclusions were also detected, composed of Fe and Zn at almost equal concentrations. Furthermore it was deduced that the coating thickness at 400 and 450 deg. C is a function of t 1/2 , where t is the heating time. However, the microstructure is similar in every case. Finally, it was concluded that the microhardness of the pack coatings is higher than the microhardness of the hot-dip galvanized coatings

  15. Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: effect of the cement and Y-TZP surface conditioning.

    Science.gov (United States)

    Rippe, M P; Amaral, R; Oliveira, F S; Cesar, P F; Scotti, R; Valandro, L F; Bottino, M A

    2015-01-01

    This study evaluated the effect of the cement type (adhesive resin, self-adhesive, glass ionomer, and zinc phosphate) on the retention of crowns made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP). Therefore, 108 freshly extracted molars were embedded in acrylic resin, perpendicular to their long axis, and prepared for full crowns: the crown preparations were removed and reconstructed using composite resin plus fiber posts with dimensions identical to the prepared dentin. The preparations were impressed using addition silicone, and Y-TZP copings were produced, which presented a special setup for the tensile testing. Cementation was performed with two adhesive resin cements (Multilink Automix, Ivoclar-Vivadent; RelyX ARC, 3M ESPE, St Paul, MN, USA), one self-adhesive resin cement (RelyX U100, 3M ESPE), one glass ionomer based cement (RelyX Luting, 3M ESPE), and one zinc phosphate cement (Cimento de Zinco, SS White, Rio de Janeiro, Brazil). For the resin cement groups, the inner surfaces of the crowns were subjected to three surface treatments: cleaning with isopropyl alcohol, tribochemical silica coating, or application of a thin low-fusing glass porcelain layer plus silanization. After 24 hours, all groups were subjected to thermocycling (6000 cycles) and included in a special device for tensile testing in a universal testing machine to test the retention of the infrastructure. After testing, the failure modes of all samples were analyzed under a stereomicroscope. The Kruskal-Wallis test showed that the surface treatment and cement type (α=0.05) affected the tensile retention results. The Multilink cement presented the highest tensile retention values, but that result was not statistically different from RelyX ARC. The surface treatment was statistically relevant only for the Multilink cement. The cement choice was shown to be more important than the crown surface treatment for cementation of a Y-TZP crown to a composite resin substrate.

  16. Environmentally Resistant Mo-Si-B-Based Coatings

    Science.gov (United States)

    Perepezko, J. H.; Sossaman, T. A.; Taylor, M.

    2017-06-01

    High-temperature applications have demonstrated aluminide-coated nickel-base superalloys to be remarkably effective, but are reaching their service limit. Alternate materials such as refractory (e.g., W, Mo) silicide alloys and SiC composites are being considered to extend high temperature capability, but the silica surfaces on these materials require coatings for enhanced environmental resistance. This can be accomplished with a Mo-Si-B-based coating that is deposited by a spray deposition of Mo followed by a chemical vapor deposition of Si and B by pack cementation to develop an aluminoborosilica surface. Oxidation of the as-deposited (Si + B)-pack coatings proceeds with partial consumption of the initial MoSi2 forming amorphous silica. This Si depletion leads to formation of a B-saturated Mo5Si3 (T1) phase. Reactions between the Mo and the B rich phases develop an underlying Mo5SiB2 (T2) layer. The T1 phase saturated with B has robust oxidation resistance, and the Si depletion is prevented by the underlying diffusion barrier (T2). Further, due to the natural phase transformation characteristics of the Mo-Si-B system, cracks or scratches to the outer silica and T1 layers can be repaired from the Si and B reservoirs of T2 + MoB layer to yield a self-healing characteristic. Mo-Si-B-based coatings demonstrate robust performance up to at least 1700 °C not only to the rigors of elevated temperature oxidation, but also to CMAS attack, hot corrosion attack, water vapor and thermal cycling.

  17. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  18. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    Science.gov (United States)

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material.

  19. Cementation of liquid radioactive waste

    International Nuclear Information System (INIS)

    Efremenkov, V.

    2004-01-01

    The cementation methods for immobilisation of radioactive wastes are discussed in terms of methodology, chemistry and properties of the different types of cements as well as the worldwide experience in this field. Two facilities for cementation - DEWA and MOWA - are described in details

  20. Center for Cement Composite Materials

    Science.gov (United States)

    1990-01-31

    DSP cement pastes were prepared using white Portland cement (PC), amorphous silica fume, and a superplasticizer . The fume/cement ratios varied from... superplasticized PC pastes without silica fume. This is due to a reduction in the amount and size of porosity formed in DSP. Specific: surface areas measured

  1. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  2. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  3. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  4. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  5. Retention, marginal leakage, and cement solubility of provisional crowns cemented with temporary cement containing stannous fluoride.

    Science.gov (United States)

    Lewinstein, Israel; Fuhrer, Nitzan; Gelfand, Katerina; Cardash, Harold; Pilo, Raphael

    2003-01-01

    This in vitro study investigated the (1) retention and microleakage of provisional crowns cemented with temporary cements to which stannous fluoride (SnF2) was added, and (2) solubility of these cements. Provisional crowns were constructed of acrylic resin with shoulder preparations for 12 molars. The crowns were luted with Tempbond, Tempbond NE, and Freegenol temporary cements, and also with SnF2 added to these cements. Specimens were thermocycled 100 times, stored for 6 days, and immersed in 0.5% basic fuschin. Seven days after cementation, crown removal (retention) tests were conducted. Marginal leakage was assessed using a five-level scale to score dye penetration. Solubility in water of the cements with and without SnF2 was assessed using cement disks. Freegenol was more retentive than the other cements. The incorporation of SnF2 significantly increased the retention capacity of Freegenol and Tempbond NE but had no effect on Tempbond. Tempbond showed significantly higher dye penetration than Freegenol. The addition of SnF2 did not alter the dye penetration of the cements. There were no significant differences in the solubility of the cements. However, the incorporation of SnF2 increased the solubility of Freegenol and Tempbond NE (P crowns cemented with Tempbond NE and Freegenol but did not affect the retention of those cemented with Tempbond. The marginal leakage of crowns cemented with the tested temporary cements with and without the incorporation of SnF2 was similar. However, the addition of SnF2 increased the solubility of the cements.

  6. A Novel Low-Temperature Fiffusion Aluminide Coating for Ultrasupercritical Coal-Fried Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying

    2009-12-31

    An ultrasupercritical (USC) boiler with higher steam temperature and pressure is expected to increase the efficiency of the coal-fired power plant and also decrease emissions of air pollutants. Ferritic/martensitic alloys have been developed with good creep strength for the key components in coal-fired USC plants. However, they typically suffer excessive steam-side oxidation, which contributes to one of main degradation mechanisms along with the fire-side corrosion in coal-fired boilers. As the steam temperature further increases in USC boilers, oxidation of the tube internals becomes an increasing concern, and protective coatings such as aluminide-based diffusion coatings need to be considered. However, conventional aluminizing processes via pack cementation or chemical vapor deposition are typically carried out at elevated temperatures (1000-1150 C). Thermochemical treatment of ferritic/martensitic alloys at such high temperatures could severely degrade their mechanical properties, particularly the alloy's creep resistance. The research focus of this project was to develop an aluminide coating with good oxidation resistance at temperatures {le} 700 C so that the coating processing would not detrimentally alter the creep performance of the ferritic/martensitic alloys. Nevertheless, when the aluminizing temperature is lowered, brittle Al-rich intermetallic phases, such as Fe{sub 2}Al{sub 5} and FeAl{sub 3}, tend to form in the coating, which may reduce the resistance to fatigue cracking. Al-containing binary masteralloys were selected based on thermodynamic calculations to reduce the Al activity in the pack cementation process and thus to prevent the formation of brittle Al-rich intermetallic phases. Thermodynamic computations were carried out using commercial software HSC 5.0 for a series of packs containing various Cr-Al binary masteralloys. The calculation results indicate that the equilibrium partial pressures of Al halides at 700 C were a function of Al

  7. Random ionic mobility on blended cements exposed to aggressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rosario, E-mail: rosario.garcia@uam.es [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma, 28049 Madrid (Spain); Rubio, Virginia [Departamento de Geografia, Facultad de Filosofia y Letras, Universidad Autonoma, 28049 Madrid (Spain); Vegas, Inigo [Labein-Tecnalia, 48160 Derio, Vizcaya (Spain); Frias, Moises [Instituto Eduardo Torroja, CSIC, c/ Serrano Galvache, 4, 28033 Madrid (Spain)

    2009-09-15

    It is known that the partial replacement of cement by pozzolanic admixtures generally leads to modifications in the diffusion rates of harmful ions. Recent research has centred on obtaining new pozzolanic materials from industrial waste and industrial by-products and on the way that such products can influence the performance of blended cements. This paper reports the behaviour of cements blended with calcined paper sludge (CPS) admixtures under exposure to two different field conditions: sea water and cyclic changes in temperature and humidity. Cement mortars were prepared with 0% and 10% paper sludge calcined at 700 deg. C. The penetration of ions within the microstructure of cement matrices was studied using X-ray diffraction (XRD) and scanning electron microscopy equipped with an energy dispersive X-ray analyser (SEM/EDX) analytical techniques. The results show that ionic mobility varies substantially according to the type of exposure and the presence of the calcined paper sludge. The incorporation of 10% CPS is shown to assist the retention and diffusion of the ions.

  8. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    International Nuclear Information System (INIS)

    Beyth, N.; Weiss, E.I.; Pilo, R.

    2012-01-01

    Glass ionomer cements (GICs) are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial micro leakage may occur, resulting in secondary caries. As micro leakage cannot be completely prevented, GCS possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (Qp) nanoparticles incorporated at 1% w/w in two clinically available GCS were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (Dct) and the agar diffusion test (Ad). Using the direct contact test, antibacterial activity (P<0.05) was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  9. Multi-scale simulation for homogenization of cement media

    International Nuclear Information System (INIS)

    Abballe, T.

    2011-01-01

    To solve diffusion problems on cement media, two scales must be taken into account: a fine scale, which describes the micrometers wide microstructures present in the media, and a work scale, which is usually a few meters long. Direct numerical simulations are almost impossible because of the huge computational resources (memory, CPU time) required to assess both scales at the same time. To overcome this problem, we present in this thesis multi-scale resolution methods using both Finite Volumes and Finite Elements, along with their efficient implementations. More precisely, we developed a multi-scale simulation tool which uses the SALOME platform to mesh domains and post-process data, and the parallel calculation code MPCube to solve problems. This SALOME/MPCube tool can solve automatically and efficiently multi-scale simulations. Parallel structure of computer clusters can be use to dispatch the more time-consuming tasks. We optimized most functions to account for cement media specificities. We presents numerical experiments on various cement media samples, e.g. mortar and cement paste. From these results, we manage to compute a numerical effective diffusivity of our cement media and to reconstruct a fine scale solution. (author) [fr

  10. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2012-01-01

    Full Text Available Glass ionomer cements (GICs are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial microleakage may occur, resulting in secondary caries. As microleakage cannot be completely prevented, GICs possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (QPEI nanoparticles incorporated at 1% w/w in two clinically available GICs were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (DCT and the agar diffusion test (ADT. Using the direct contact test, antibacterial activity (<0.05 was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  11. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    ting. It is used in industrial floorings, ship decks, railway passenger coach floorings, hospital floors, ammunition factory floors, missile silos and underground armament factories and bunkers. Recently, concrete of high compres- sive and tensile strength prepared with magnesium oxy- chloride cement and recycled rubber ...

  12. Radon diffusion coefficients in 360 waterproof materials of different chemical composition.

    Science.gov (United States)

    Jiránek, M; Kotrbatá, M

    2011-05-01

    This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.

  13. In vitro study investigating the mechanical properties of acrylic bone cement containing calcium carbonate nanoparticles.

    Science.gov (United States)

    Hill, Janet; Orr, John; Dunne, Nicholas

    2008-11-01

    A successful total hip replacement has an expected service life of 10-20 years with over 75% of failures due to aseptic loosening which is directly related to cement mantle failure. The aim of the present study was to investigate the addition of nanoparticles of calcium carbonate to acrylic bone cement. It was anticipated that an improvement in mechanical performance of the resultant nanocomposite bone cement would be achieved. A design of experiment approach was adopted to maximise the mechanical properties of the bone cement containing nanoparticles of calcium carbonate and to determine the constituents and preparation methods for which these occur. The selected conditions provided improvements of 21% in energy to maximum load, 10% in elastic modulus, 7% in bending strength and 8% in bending modulus when compared with bone cement without nanoparticles. Although cement containing nanoCaCO(3) coated in sodium citrate also enhanced the energy to maximum load by 28% and the elastic modulus by 14% when compared with control cement, it is not recommended as a factor in the production of nanocomposite bone cement due to reduction in the bending properties of the final bone cement.

  14. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  15. Leachability of chelated ion-exchange resins solidified in cement or cement and fly ash

    International Nuclear Information System (INIS)

    McIsaac, C.V.

    1993-01-01

    Leach tests were conducted at the Idaho National Engineering Laboratory on six small-scale specimens of cement-solidified ion-exchange resin wastes. The ion-exchange resins had been used to process reagent solutions following chemical decontaminations of primary coolant systems at five commercial light water reactors. The decontaminations were performed using the AP/Citrox, Can-Decon, Dow NS-1, and Low Oxidation-State Transition-Metal ION (LOMI) processes. The ion-exchange resin wastes were loaded with radionuclides, transition metals, and organic chelating agents, and were solidified in either unmodified Portland Type 1 cement or in a mixture of Portland Type 1 cement and fly ash. Waste-form specimens were leach-tested in deionized water at 23C using the American National Standards Institute/American Nuclear Society (ANSI/ANS) Standard 16.1 procedure. Release rates, effective diffusivities, and leachability indexes of radionuclides, chelating agents, and stable metals were determined using ANS-16.1 diffusion release models. Releases of radionuclides, chelating agents, and metals from waste forms that degraded during leaching were similar to releases from waste forms that maintained their physical integrity during leaching. The presence of chelating agents in the waste forms did not adversely affect the leachability of the waste forms

  16. Biomimetic calcium phosphate coatings: : Physicochemistry and biological activity

    NARCIS (Netherlands)

    Barrère, F.

    2002-01-01

    Plasma-sprayed hydroxylapatite coatings on metallic prosthesis significantly increased the success rate of hip arthroplasty, namely from about 90% after 10 years for cemented hip stems to 98% for HA coated ones. Nowadays, the biomimetic approach has received increased interest because of the

  17. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States)

    2017-11-29

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperature of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and

  18. Cementing of low pressure formations

    Energy Technology Data Exchange (ETDEWEB)

    Brownlie, D. [Trican Well Service Ltd., Calgary, AB (Canada); Coupland, M. [Baytex Energy Ltd., Calgary, AB (Canada)

    2001-07-01

    This paper proposed a solution to the notorious problem of squeeze cementing low pressure formations. It is a well known fact within the petroleum industry that it is difficult to squeeze cement low pressure formations in certain areas. Short of fracturing, most geological formations will not allow cement to penetrate the actual rock. In standard cement squeezing, cement slurries are placed across perforations and then pressure is applied to force the cement into perforation tunnels against the formation causing partial dehydration of the slurry. The cement left in the perforation tunnels makes a seal between the formation and the wellbore that has high compressive strength and low permeability. However, experience has shown that some wells are not capable of holding the hydrostatic pressure of a water column. This paper presented case studies that examined formations with modified geology, a highly unconsolidated sandstone where large volumes of sand were extracted during the production process. In particular, the paper refers to a low pressure field in Western Canada, the remedial cementing in Lloydminster. Within a 3 year period 18 zones were cement squeezed and drilled out. Nine of the zones were cement squeezed using a retainer with thixotropic cement followed by a 0:1:0 Class G cement. Only 11 per cent of the 9 zones was successful on the first attempt. The other 9 zones were cement squeezed using the bullhead technique in which a fluid is shot into the well casing before the downhole equipment. This latter technique proved to be more successful on the first attempt. 2 refs.

  19. INORGANIC CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Alisson Clay Rios Silva

    2014-07-01

    Full Text Available In this work, a Geopolymeric Cement Concrete (GCC was developed through adequate portions of geopolymer components. Its characteristics were compared with Portland Cement Concrete (PCC, through of the establishment of some parameters of design, as consumption of binders, water/aggregates ratio and mortar content. The concrete mechanical performance was evaluated with emphasis to the fatigue behavior. Were tested the effects of different tensile strength maximum (increasing and decreasing. The results of fatigue tests had shown that GCC presents a better performance when compared to PCC. Its fatigue strength was 15% higher than that of PCC, when 70% of rupture tension of the concrete in static bending (SR, was applied. Tensions of about 80% SR resulted in 96% of increase, when compared to GCC. The SEM microstructural analysis showed that the GCC has a matrix/aggregate bonding very strong, when compared to PCC, probably due to the massive nature of the geopolymeric matrix.

  20. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  1. Rheology of acrylic bone cements.

    Science.gov (United States)

    Ferracane, J L; Greener, E H

    1981-01-01

    The rheological properties of setting acrylic bone cements were examined with a rotational cone and plate viscometer. The cements were tested over two orders of magnitude of shear rate to determine the nature of any non-Newtonian flow behavior. All three cements behaved with moderate pseudoplasticity (i.e., shear thinning) during setting, suggesting the use of higher pressures during administration for better flow and penetration. The low viscosity brand was found to be nearly one-half as viscous as the conventional cements during the working time (i.e., 2-5 minutes). A series of sieving experiments were performed to determine the particle size distributions of the powder components. Statistical analysis (chi square) showed the cements to have different distributions, with the low viscosity brand containing a larger proportion of smaller polymer particles. This difference is thought to contribute to the lower viscosity of this cement.

  2. Effects of cementation surface modifications on fracture resistance of zirconia

    Science.gov (United States)

    Srikanth, Ramanathan; Kosmac, Tomaz; Bona, Alvaro Della; Yin, Ling; Zhang, Yu

    2015-01-01

    Objectives To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Methods Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 mm or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2 mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Results Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. Significance While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. PMID:25687628

  3. Effects of cementation surface modifications on fracture resistance of zirconia.

    Science.gov (United States)

    Srikanth, Ramanathan; Kosmac, Tomaz; Della Bona, Alvaro; Yin, Ling; Zhang, Yu

    2015-04-01

    To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Effect of calcium/silicon ratio on retention of uranium (VI) in portland cement materials

    International Nuclear Information System (INIS)

    Tan Hongbin; Li Yuxiang

    2005-01-01

    Calcium silicate hydrate (CSH) materials of varied calcium to silicon (Ca/Si) ratios were prepared by hydrothermal synthesis at 80 degree C, with calcium oxide and micro-silicon employed. These products were determined to be of gel phase by XRD. Leaching tests with 1% hydrochloric acid indicated that more Uranium (VI) was detained by CSH with lower Ca/Si ratios. Alkali-activated slag cement (with a lower Ca/Si ratio) was found to have a stronger retention capacity than Portland cement (with a higher Ca/Si ratio), at 25 degree C in 102-days leaching tests with simulated solidified forms containing Uranium (VI). The accumulative leaching fraction of Uranium (VI) for Alkali-activated slag cement solidified forms is 17.6% lower than that for Portland cement. The corresponding difference of diffusion coefficients is 40.6%. This could be correlated with the difference of Ca/Si ratios between cements of two kinds. (authors)

  5. Protective coatings for columbium applied in the field.

    Science.gov (United States)

    Carter, J.; Culp, J.

    1971-01-01

    The various aspects of field repair of columbium alloy panels with protective coatings designed as part of the Space Shuttle thermal protection system are examined. The field repair of the coatings is accomplished by employing ceramic cement repairs, and reapplying the fused slurry silicide coating. Techniques are described which improve the practicality of these repairs by employing torch heating. The repair coating quality is demonstrated by testing which simulates flight temperature, pressure, stress and acoustic vibration conditions as a function of time. Conclusions on the present status of field repair coatings are presented and recommendations are given for appropriate future activities relative to the use on an operational Space Shuttle system.

  6. Custom-made antibiotic cement nails: a comparative study of different fabrication techniques.

    Science.gov (United States)

    Kim, Ji Wan; Cuellar, Derly O; Hao, Jiandong; Seligson, David; Mauffrey, Cyril

    2014-08-01

    The management of intramedullary long bone infections remains a challenge. Placement of antibiotic cement nails is a useful adjuvant to the antibiotic treatment of osteomyelitis. However, fabrication of antibiotic cement nails can be arduous. The purpose of this article is to introduce an easy and reproducible technique for the fabrication of antibiotics cement nails. We compared the time required to peel the chest tube off the 6 antibiotic cement nail using 2 different cement-cooling techniques and the addition of mineral oil in the chest tube. Additionally, we evaluated the optimal time to cut the chest tube (before and after cement hardening), consistency of nail's diameter, and the roughness of its surface. Cooling and peeling times were measured and failure was defined as a working time (from cement mixing to have a usable antibiotic cement nail) that exceeded 1 h. When the antibiotic cement nail was left to cool by convection (i.e. air-cooling), we failed to peel the plastic off the cement nail. When the chest tube was cut after conductive cooling (i.e. cold water-cooled), the cooling time was 10 min and the peeling time was 30 min without the use of mineral oil; the addition of mineral oil reduced peeling time to 7.5 min. Following peeling, residual adherent plastic pieces were found along the entire surface of the nail when no mineral oil was used. This was rarely seen when mineral oil was utilized to coat the inner layer of the chest tube. Conductively cooling of the cement nail (in cold water) and pre-lubricating the chest tube with mineral oil are 2 tricks that render fabrication of antibiotic nail more efficient, reliable, and practical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  8. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  9. Comparative evaluation of antimicrobial activity of three cements: new endodontic cement (NEC), mineral trioxide aggregate (MTA) and Portland.

    Science.gov (United States)

    Hasan Zarrabi, Mohammad; Javidi, Maryam; Naderinasab, Mahboube; Gharechahi, Maryam

    2009-09-01

    Using the agar diffusion method, we conducted an in vitro study to evaluate the antimicrobial activity of mineral trioxide aggregate (MTA), new endodontic cement (NEC) and Portland cement at different concentrations against five different microorganisms. A base layer was made using Muller-Hinton agar for Escherichia coli (ATCC 10538) and Candida (ATCC 10231). For Actinomyces viscosus (ATCC 15987), Enterococcus faecalis (ATCC 10541) and Streptococcus mutans (ATCC 25175) blood agar medium was used. Wells were formed by removing the agar, and the materials were placed in the well immediately after manipulation. The plates were kept at room temperature for 2 h for prediffusion, and then incubated at 37 degrees C for 72 h. The inhibition zones were then measured. The data were analyzed using ANOVA and the Tukey test to compare the differences among the three cements at different concentrations. The positive controls showed bacterial growth, while the negative controls showed no bacterial growth. All materials showed antimicrobial activity against the tested strains except for Enterococcus faecalis. NEC created larger inhibition zones than MTA and Portland cement. This difference was significant for Portland cement (P 0.05). Among the examined microorganisms, the largest inhibition zone was observed for Actinomyces group (P < 0.05). The antimicrobial activity of the materials increased with time and concentration (P < 0.05). It was concluded that NEC is a potent inhibitor of microorganism growth.

  10. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  11. Phosphorus collectors from filter paper and synthetic cloth coated with iron or aluminium oxide to provide phosphorus by diffusion in soils

    Directory of Open Access Journals (Sweden)

    Eduardo Bernardi Luchese

    2000-01-01

    Full Text Available Phosphorus collectors made from filter paper and synthetic cloth, were tested to evaluate their feasibility of determining the need for phosphate application. The collectors were coated with two types of oxides, iron oxide and aluminium oxide. The capacity of the collectors was tested by placing them in a 2 mL of solution containing phosphorus (PO4(3- in the concentration of 0.0, 1.00, 3.00, 5.00, 7.00, 9.00 and 11.00 µ g.mL-1, respectively, after which they were placed in contact with four types of soil (LBa, LRd, LEd and Ca and incubed for 0.0 and 24 h. In this test the soils were kept at a humidity equivalent to 150 mmHg suction. The amount of phosphorus extracted from the solutions was tested at intervals between 0,0 and 11.0 µ g of phosphorus/mL. Results indicated that collectors were most efficient in Dystrophic Dark-Red Latosol (LEd and less efficient in "Bruno álico" Latosol (LBa and Cambisol (Ca. Synthetic cloth was the support yielding the best performance, whereas iron oxide lining was the most adequate lining material. Phosphorus collection increased with time of incubation.Coletores de fósforo feitos de papel filtro e pano sintético (perfex foram usados no estudo da determinação da necessidade de adubação fosfatada. Foram preparados coletores impregnados com óxido de ferro e outros com óxido de alumínio. A capacidade foi testada colocando-os em 2 mL de uma solução padrão de fósforo (na forma de fosfato com 0,0; 1,00; 3,00; 5,00; 7,00; 9,00 e 11;00 µg.mL-1 , depois foram colocados em contato com 4 tipos de solos (Lba, LRd, Led e Ca e incubados por 0,0 e 24 horas. No teste, os solos foram mantidos com uma umidade equivalente a 150 mmHg de sucção. Os resultados mostraram que os coletores foram mais eficientes, na extração de fósforo, no solo LED e menos eficiente no LBa e Ca (Cambissolo. O pano sintético foi a matriz (material suporte que proporcionou melhores resultados. O óxido de ferro foi o substrato foi o

  12. Releasability of asbestos fibers from weathered roof cement.

    Science.gov (United States)

    Oberta, Andrew F; Poye, Lee; Compton, Steven P

    2018-03-26

    Chrysotile asbestos fibers were added to roofing products, including roof cement, for several decades. The fibers were described as "encapsulated" and therefore incapable of being released, an assertion that is disproved by the study reported herein. Three test panels of roof cement from the original container were exposed to ambient weathering in 2015 and 2016. Two panels were then sampled using the ASTM D5755 microvacuum method. Sampling revealed a light brown sub-layer under the dark brown surface layer, both of which crumbled and became friable during sampling. Analysis of the microvacuum samples with transmission electron microscopy showed that the material on the two panels contained 4,432,000 and 3,320,000 asbestos structures per cm² with nearly all of the structures consisting of fibers less than 5 µm long. Energy dispersive spectrometry determined that none of the fibers reported were coated with asphalt. The presence of free fibers were confirmed by direct examination of the surfaces of the panels and of dust released from handling the panels via scanning electron microscopy. This study confirmed the releasability of uncoated asbestos fibers from dried roof cement that was indicated in two previous studies published in 2007 and 2010. These results suggest that the finding of the 5th Circuit Court in 1997 that uncoated airborne asbestos fibers cannot be released from roof cement, and therefore do not present a potential exposure by inhalation, was erroneous in retrospect. Theexemption of roof cement from regulation under the Occupational Safety and Health Administration Construction Industry Standard for asbestos by the Court should not be relied on by employers of workers who remove weathered asbestos-containing roof cement, and precautions should be taken against exposure to airborne asbestos fibers during this work.

  13. Mechanical properties and antibiotic release characteristics of poly(methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles.

    Science.gov (United States)

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Kingshuk, Poddar; Shi, Zhilong; Wang, Wilson; Tan, Reginald B H

    2017-08-01

    The influence of mesoporous silica nanoparticles (MSNs) loaded with antibiotics on the mechanical properties of functional poly(methyl methacrylate)-(PMMA) based bone cements is investigated. The incorporation of MSNs to the bone cements (8.15wt%) shows no detrimental effects on the biomechanical properties of the freshly solidified bone cements. Importantly, there are no significant changes in the compression strength and bending modulus up to 6 months of aging in PBS buffer solution. The preserved mechanical properties of MSN-functionalized bone cements is attributed to the unchanged microstructures of the cements, as more than 96% of MSNs remains in the bone cement matrix to support the cement structures after 6 months of aging. In addition, the MSN-functionalized bone cements are able to increase the drug release of gentamicin (GTMC) significantly as compared with commercially available antibiotic-loaded bone cements. It can be attributed to the loaded nano-sized MSNs with uniform pore channels which build up an effective nano-network path enable the diffusion and extended release of GTMC. The combination of excellent mechanical properties and sustainable drug delivery efficiency demonstrates the potential applicability of MSN-functionalized PMMA bone cements for orthopedic surgery to prevent post-surgery infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cementssynthesis. Summarizing (1) non-aged cements showed higher cell proliferation than aged cements, probably favoured by the presence of Si-OH gel and the early formation of apatite nano-spherulites; (2) the alpha-TCP doped cement aged for 28 days displayed the highest bioactivity and cell proliferation; (3) the deleterious effect of bismuth on cell proliferation was reduced by

  15. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027) into...

  16. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    Science.gov (United States)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  17. Degradation of gas turbine coatings and life assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cheruvu, N.S. [Southwest Research Institute, San Antonio, TX (United States)

    1998-12-31

    MCrAlY coatings are widely used on hot section components of gas turbines to provide hot corrosion and/or oxidation protection by formation of an oxide layer on the surface. As the protective oxide scale exfoliates during service, aluminum from the coating diffuses outward for reformation of the protective scale. Aluminum may also diffuse inward due to the differences in composition between the coating and the substrate. Thus, the coatings degrade due to oxidation, oxide scale spallation, and inward and outward diffusion of aluminum. Service life of these coatings is controlled by the aluminum content in the coating, operating temperature and start- shutdown cycles. In-service degradation of CoCrAlY and CoNiCrAlY coatings is presented. A procedure to predict the remaining service life of coatings under oxidizing conditions is discussed. (orig.) 12 refs.

  18. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  19. Interaction of ordinary Portland cement and Opalinus Clay: Dual porosity modelling compared to experimental data

    Science.gov (United States)

    Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.

    2017-06-01

    Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.

  20. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Glasser, F.P.

    2013-01-01

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  1. Cement/slag chemistry studies

    International Nuclear Information System (INIS)

    Glasser, F.P.; Macphee, D.; Atkins, M.; Beckley, N.; Carson, S.O.; Wilding, C.R.; McHugh, G.

    1988-01-01

    The performance of cement-based matrices intended for radwaste immobilization is assessed. The long-term performance of the matrix is characterized by thermodynamic evaluation of experimental data. The results are presented in a general form, amenable to a range of specific formulations. The interaction of specific radwaste components with cements has been studied, using Iodine as an example. It occurs as both I - and IO 3 - species, but these differ sharply in sorption characteristics. The effect of ionizing radiation of the pH and E h of cement matrices is reported. (author)

  2. Functional Plasma-Deposited Coatings

    Directory of Open Access Journals (Sweden)

    Mykhaylo Pashechko

    2017-12-01

    Full Text Available The paper focuses on the problem of low adhesion of plasma sprayed coatings to the substrate. The subsequent laser treatment modes and their influence on the coating-substrate interface were studied. This allows to decrease the level of metstability of the coating, thus decreasing its hardness down to 11-12 GPa on the surface and to about 9 GPa on depth of 400 µm. The redistribution of alloying elements through solid and liquid diffusion improves mechanical properties and rises the adhesion up to 450 MPa after remelting and up to 90-110 MPa after laser-aided thermal cycling. At he same time, remelting of coating helps to decrease its porosity down to 1%. Obtained complex of properties also allows to improve wear resistance of coatings and to decrease friction factor.

  3. Radiation induced diffusion as a method to protect surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1980-01-01

    Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt

  4. Sliding wear of cemented carbides

    International Nuclear Information System (INIS)

    Engqvist, H.; Ederyd, S.; Uhrenius, B.; Hogmark, S.

    2001-01-01

    Cemented carbides are known to be very hard and wear resistant and are therefor often used in applications involving surface damage and wear. The wear rate of cemented carbides is often measured in abrasion. In such tests it has been shown that the wear rate is inversely dependent on the material hardness. The sliding wear is even more of a surface phenomenon than a abrasion, making it difficult to predict friction and wear from bulk properties. This paper concentrates on the sliding wear of cemented carbides and elucidates some wear mechanisms. It is especially shown that a fragmenting wear mechanism of WC is very important for the description of wear of cemented carbides. (author)

  5. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  6. Rheological measurements on cement grouts

    International Nuclear Information System (INIS)

    Dalton, M.J.

    1986-06-01

    This report describes the techniques which have been developed at Winfrith for assessing the rheological properties of cement grouts. A discussion of the theory of rheology and its application to cement is given and the methodology for calibrating a special paddle measuring system for a commercial viscometer is described. The use of the system for determining flow curves, equilibrium viscosity, viscosity as a function of shearing time and structure changes is also discussed. (author)

  7. Zirconium influence on microstructure of aluminide coatings ...

    Indian Academy of Sciences (India)

    Abstract. Influence of Zr on the microstructure and phase characteristics of aluminide diffusion coatings deposited on the nickel substrate has been investigated in this study. The coatings with and without zirconium were deposited by CVD method. The cross-section chemical composition investigations revealed that during ...

  8. Deformation of a dental ceramic following adhesive cementation.

    LENUS (Irish Health Repository)

    2010-01-01

    Stress-induced changes imparted in a \\'dentin-bonded-crown\\' material during sintering, annealing, pre-cementation surface modification, and resin coating have been visualized by profilometry. The hypothesis tested was that operative techniques modify the stressing pattern throughout the material thickness. We polished the upper surfaces of 10 ceramic discs to remove surface imperfections before using a contact profilometer (40-nm resolution) to measure the \\'flatness\\'. Discs were re-profiled after annealing and after alumina particle air-abrasion and resin-coating of the \\'fit\\' surface. Polished surfaces were convex, with a mean deflection of 8.4 + or - 1.5 microm. Mean deflection was significantly reduced (P = 0.029) following alumina particle air-abrasion and increased (P < 0.001) on resin-coating. Polishing induced a tensile stress state, resulting in surface convexity. Alumina particle air-abrasion reduced the relative tensile stress state of the contralateral polished surface. Resin-polymerization generated compression within the resin-ceramic \\'hybrid layer\\' and tension in the polished surface and is likely to contribute to the strengthening of ceramics by resin-based cements.

  9. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  10. Determination of hydrogen permeability in uncoated and coated superalloys

    Science.gov (United States)

    Bhattacharyya, S.; Vesely, E. J., Jr.; Hill, V. L.

    1981-01-01

    Hydrogen permeability, diffusivity, and solubility data were obtained for eight wrought and cast high temperature alloys over the range 650 to 815 C. Data were obtained for both uncoated alloys and wrought alloys coated with four commercially available coatings. Activation energies for permeability, diffusivity and solubility were calculated.

  11. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-15

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T{sub 1} increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T{sub 1} in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T{sub 1} in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used. {copyright} 2001 American Institute of Physics.

  12. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    International Nuclear Information System (INIS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-01-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T 1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T 1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T 1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used. [copyright] 2001 American Institute of Physics

  13. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference.

    Science.gov (United States)

    Yang, Yan; Shen, Lian; Yuan, Feng; Fu, Hui; Shan, Weiguang

    2018-03-27

    Lately, a great deal of attention is being paid to capsule coating, since the coat protects active pharmaceutical ingredients (APIs) from damage, as is in the case of tablet and pellet. However, moisture and heat sensitivity of gelatin shells make it challenging to coat capsules using the conventional aqueous coating techniques. In an effort to overcome this challenge, the present study aims to coat capsules using two different coating techniques: electrostatic dry powder coating (EDPC) and dip coating (DC). Both capsule coatings and free films were prepared by these two coating techniques, and the effects of coating formulations and processing conditions on the film quality were investigated. The corresponding drug in vitro release and mechanisms were characterized and compared. The results of dissolution tests demonstrated that the drug release behavior of both EDPC and DC coated capsules could be optimized to a sustained release of 24 hours, following the Fick's diffusion law. The results of this study suggest that EDPC method is better than DC method for coating capsules, with respect to the higher production efficiency and better stability, indicating that this dry coating technology has promised in gelatin capsule coating applications. Copyright © 2018. Published by Elsevier B.V.

  14. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate.

    Science.gov (United States)

    Yadiki, Josna Vinutha; Jampanapalli, Sharada Reddy; Konda, Suhasini; Inguva, Hema Chandrika; Chimata, Vamsi Krishna

    2016-01-01

    Chlorhexidine gluconate is a widely used antimicrobial agent. Adding chlorhexidine and quaternary ammonium compounds to filling materials, such as composite resins, acrylic resins, and glass ionomer cements increases the antibacterial property of restorative materials. This study includes antibacterial property of glass ionomer restorative cements with chlorhexidine gluconate. The primary objective of our study was to compare the antimicrobial properties of two commercially available glass ionomer cements with and without chlorhexidine gluconate on strains of mutans streptococci. Two glass ionomers (Fuji II Conventional and Fuji IX) were used. Chlorhexidine gluconate was mixed with glass ionomer cements, and antimicrobial properties against mutans streptococci were assessed by agar diffusion. The tested bacterial strain was inhibited and the antimicrobial properties decreased with time. The highest amount of antimicrobial activity with mean inhibitory zone was found in Fuji II with chlorhexidine gluconate followed by Fuji IX with chlorhexidine gluconate, Fuji II without chlorhexidine gluconate, and Fuji IX without chlorhexidine gluconate. The results of the study confirmed that the addition of 5% chlorhexidine gluconate to Fuji II and Fuji IX glass ionomer cements resulted in a restorative material that had increased antimicrobial properties over the conventional glass ionomer cements alone for Streptococcus mutans. How to cite this article: Yadiki JV, Jampanapalli SR , Konda S, Inguva HC, Chimata VK. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate. Int J Clin Pediatr Dent 2016;9(2):99-103.

  15. Can introduction of an uncemented, hydroxyapatite coated hemiarthroplasty for displaced femoral neck fractures be recommended?

    DEFF Research Database (Denmark)

    Hansen, Søren Kring; Brix, Michael; Birkelund, Lasse

    2010-01-01

    The role of uncemented fully hydroxyapatite coated hemiarthroplasties for the treatment of displaced femoral neck fractures remains unclear. We investigated if complications, reoperations and mortality differed from that of cemented hemiarthroplasties. The study groups consisted of 78 cemented...... and 97 uncemented, hydroxyapatite coated hemiarthroplasties with minimum 1 year follow-up. The dislocation rate was 3% in both groups (p=0.84). Proximal femoral fracturing occurred in 1% in the cemented group and in 4% in the uncemented group (p=0.26). Reoperations were performed following 4......% of procedures in the cemented group and following 2% of procedures in the uncemented group (p=0.48). Mortality rates did not differ statistically significant between groups. Outcomes were comparable. Introduction of an uncemented hydroxyapatite coated hemiarthroplasty for treatment of displaced femoral neck...

  16. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    SiC/Al composites are in large-scale production with Al-Si alloy matrices. The same composites with pure Al or low Si matrices need diffusion barriers on the SiC reinforcement to control the interfacial reaction. The present paper describes various approaches taken to obtain protective coatings o...

  17. Polymer-cement interactions towards improved wellbore cement fracture sealants

    Science.gov (United States)

    Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.

    2017-12-01

    Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.

  18. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-Wceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  19. Leachability of bentonite/cement for medium-level waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamlat, M.S.; Rabia, N. [Centre de Radioprotection et de Surete, Alger-Gare (Algeria)

    1998-12-31

    The release of radionuclides from Algerian bentonite/cement matrix has been measured experimentally using static and dynamic testing procedures. The waste forms were cement/sand and bentonite/cement matrices contaminated with Cs-137. To characterise radionuclide/waste form combination, two parameters, diffusion (D) and distribution coefficients ({alpha}) were used. (D) is an effective diffusion coefficient that describes the kinetic behaviour and is most easily determined using Soxhlet test, whereas, ({alpha}) describes the distribution of radionuclide between aqueous and solid phases at equilibrium and is best measured in static test. Leach rates obtained being very low. Distribution coefficient values have showed that the bentonite has relatively a high degree of fixation. It was concluded that the matrix under study seems play a role for the immobilisation. (orig.)

  20. Leachability of bentonite/cement for medium-level waste immobilisation

    International Nuclear Information System (INIS)

    Hamlat, M.S.; Rabia, N.

    1998-01-01

    The release of radionuclides from Algerian bentonite/cement matrix has been measured experimentally using static and dynamic testing procedures. The waste forms were cement/sand and bentonite/cement matrices contaminated with Cs-137. To characterise radionuclide/waste form combination, two parameters, diffusion (D) and distribution coefficients (α) were used. (D) is an effective diffusion coefficient that describes the kinetic behaviour and is most easily determined using Soxhlet test, whereas, (α) describes the distribution of radionuclide between aqueous and solid phases at equilibrium and is best measured in static test. Leach rates obtained being very low. Distribution coefficient values have showed that the bentonite has relatively a high degree of fixation. It was concluded that the matrix under study seems play a role for the immobilisation. (orig.)

  1. [Effect of different bone cement dispersion types in the treatment of osteoporotic vertebral compression fracture].

    Science.gov (United States)

    Zhao, Yong-Sheng; Li, Qiang; Li, Qiang; Zheng, Yan-Ping

    2017-05-25

    To observe different bone cement dispersion types of PVP, PKP and manipulative reduction PVP and their effects in the treatment of senile osteoporotic vertebral compression fractures and the bone cement leakage rate. The clinical data of patients with osteoporotic vertebral compression fractures who underwent unilateral vertebroplasty from January 2012 to January 2015 was retrospectively analyzed. Of them, 56 cases including 22 males and 34 females aged from 60 to 78 years old were treated by PVP operation; Fouty-eight cases including 17 males and 31 females aged from 61 to 79 years old were treated by PKP operation; Forty-three cases including 15 males and 28 females aged from 60 to 76 years old were treated by manipulative reduction PVP operation. AP and lateral DR films were taken after the operation; the vertebral bone cement diffusion district area and mass district area were calculated with AutoCAD graphics processing software by AP and lateral DR picture, then ratio(K) of average diffusion area and mass area were calculated, defining K100% as diffusion type. Different bone cement dispersion types of PVP, PKP and manipulative reduction PVP operation were analyzed. According to bone cement dispersion types, patients were divided into diffusion type, mixed type and mass type groups.Visual analogue scale (VAS), vertebral body compression rate, JOA score and bone cement leakage rate were observed. All patients were followed up for 12-24 months with an average of 17.2 months. There was significant difference in bone cement dispersion type among three groups ( P <0.05). The constituent ratio of diffusion type, mixed type and mass type in PVP operation was 46.43%, 35.71%, 17.86%, in PKP was 16.67%, 37.50% , 45.83%, and in manipulative reduction PVP was 37.21%, 44.19% and 18.60%, respectively. PVP operation and manipulative reduction PVP were mainly composed of diffusion type and mixed type, while PKP was mainly composed of mass type and mixed type. There was no

  2. The influence of silanized nano-SiO{sub 2} on the hydration of cement paste: NMR investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bede, A., E-mail: Andrea.Bede@phys.utcluj.ro; Pop, A.; Ardelean, I. [Technical University of Cluj-Napoca, Department of Physics and Chemistry, 400114 Cluj-Napoca (Romania); Moldovan, M. [“Babes-Bolyai” University, “Raluca Ripan” Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania)

    2015-12-23

    It is known that by adding a small amount of nanoparticles to the cement-based materials a strong influence on the workability, strength and durability is obtained. These characteristics of the material are fundamentally determined by the hydration process taking place after mixing the cement grains with water. In the present study the influence introduced by the addition of nano-silica with silanized surfaces on the hydration process was investigated using low-field nuclear magnetic resonance (NMR) relaxometry. The cement samples were prepared using gray cement at a water-to-cement ratio of 0.4 and a 5% addition of nanosilica. The surface of the nanoparticles was modified using a coating of Silane A174. The cement pastes were monitored during their standard curing time of 28 days. It was established that, by using unmodified nanosilica particles, an acceleration of the hydration process takes place as compared with the pure cement paste. On the other side, by adding silanized nanoparticles, the dormancy stage significantly extends and the hydration process is slower. This slowing down process could enhance the mechanical strength of cement based materials as a result of a better compaction of the hydrated samples.

  3. Recent Trends in Surface Treatment Methods for Bonding Composite Cement to Zirconia: A Reveiw.

    Science.gov (United States)

    Khan, Aftab Ahmed; Al Kheraif, Abdul Aziz A; Jamaluddin, Syed; Elsharawy, Mohamad; Divakar, Darshan Devang

    To evaluate the in vitro studies conducted in the last six years on new zirconia materials to discover and explore current trends in bonding composite cement to zirconia substrate. An in-depth review of the in vitro studies performed between 2010 and 2016 was conducted, focusing on the current trends in surface conditioning methods for zirconia ceramic. PubMed was used for searching the literature. Resin composite bonding to zirconia, zirconia surface coating, and zirconia surface treatment method were the keywords used. Complete scientific articles were reviewed and evaluated for appropriateness. The literature survey showed a variety of surface treatment techniques comprising grit blasting (laboratory or chairside) with or without silica-coated alumina particles, the use of materials containing phosphate monomers, different silanes and primers, laser irradiation, Si vapor-phase deposition, and selective infiltration etching. The problem of composite cement bonding to zirconia has yet to be definitively solved. Nevertheless, the application of phosphate monomer on tribochemically silica-coated zirconia surfaces is currently the least complicated and most efficaceous means of bonding composite cement to zirconia. Selective infiltration etching seems to be a promising technique for establishing a durable bond between composite cement and zirconia, and should be studied further.

  4. Internal Stresses in PVD Coated Tool Composites

    Directory of Open Access Journals (Sweden)

    Śliwa A.

    2016-09-01

    Full Text Available The aim of work is the investigation of the internal stresses in PVD coated metal matrix composites (MMC. Sintered MMC substrate is composed of the matrix with the chemical composition corresponding to the high-speed steel, reinforced with the TiC type hard carbide phase. Functionally graded composition of MMC providing of high ductility characteristic of steel in the core zone as well as high hardness characteristic of cemented carbides in the surface zone. Internal stresses were determined with use of finite element method in ANSYS environment. The reason of undertaking the work is necessity of develop the research of internal stresses, occurring in the coating, as well as in the adhesion zone of coating and substrate, which makes it possible to draw valuable conclusions concerning engineering process of the advisable structure and chemical composition of coatings. The investigations were carried out on cutting tool’s models containing defined zones differing in chemical composition.

  5. Degradable borate glass polyalkenoate cements.

    Science.gov (United States)

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time.

  6. Radwaste solidification system (cement)

    International Nuclear Information System (INIS)

    1977-04-01

    The radwaste solidification system described herein is designed to package and solidify radioactive waste material produced at nuclear power plants using cement solidification agents, and is referred to as RSS(C). This integrated system consists of all the equipment necessary to store and transfer solidification agents and additives, collect and transfer process waste in the form of solids, liquids, slurries, and sludges, and continuously mix these materials under controlled conditions prior to letdown into a disposable container. As an integrated system, the RSS(C) also includes the process instrumentation necessary to monitor all process conditions throughout the radwaste packaging cycle and provides the operator with the controls necessary to operate the system in a variety of packaging modes. A single process train which is considered adequate for PWR's is described. A dual process train with crossover capability and two separate filling stations is recommended for most BWR applications. A general description of the solidification process by system configuration and subsystem and detailed equipment descriptions including process equipment data sheets are presented. Equipment listings are also presented. A narrative discussion of the operating procedures for processing a variety of radwaste types normally produced in BWR's and PWR's is presented. A safety analysis is presented, and a detailed discussion of system maintenance requirements and the estimated radiation exposure incident to maintenance is presented. The results of laboratory and prototype testing conducted by Hitman Nuclear and Development Corp. (HNDC) to establish the process parameters required to achieve a satisfactory solidified product are given. A summary of the engineering and quality verification requirements implemented through the HNDC Quality Assurance Program is presented

  7. Study of a hydraulic calcium phosphate cement for dental applications.

    Science.gov (United States)

    Serraj, Siham; Michaïlesco, Pierre; Margerit, Jacques; Bernard, Bruce; Boudeville, Philippe

    2002-01-01

    Calcium phosphate-based cements (CPCs) have attracted much interest because of their good osteoconductivity for bone reconstruction. We obtained CPCs by mixing calcium bis-dihydrogenophosphate monohydrate (MCPM) and calcium oxide with water or sodium phosphate buffers (NaP) as liquid phase. Cement samples with different calcium-to-phosphate ratios (Ca/P), liquid-to-powder ratios (L/P) and liquid phases were analyzed by X-rays diffraction (XRD), pH-metry, extensometry and calorimetry. Antibacterial activity on two bacterial strains (Streptococcus mutans, Lactobacillus acidophilus) and a polycontaminated bacterial inoculum was also studied using the agar diffusion method. The best mechanical properties (approximately 25 MPa) corresponded to Ca/P ratios between 1.67 and 2.5, a 1 M sodium phosphate buffer pH 7, as liquid phase and a L/P ratio of 0.6ml g(-1). The final setting time increased with the Ca/P ratio. The setting expansion, around 1-2%, depended on the Ca/P and L/P ratios. The inner temperature of the cements rose to 45 degrees during setting then decreased rapidly. The injectability was 100% up to 3.5 min and then decreased. It increased with increasing the L/P ratio but to the detriment of the compressive strength and setting time. XRD analysis indicated that the setting reaction led to a mixture of calcium hydroxide and calcium-deficient hydroxyapatite even for a Ca/P ratio of 1.67. Consequently, the pH of the surrounding fluids rose to 11.5-12 during their dissolution. Bacterial growth inhibition was only clearly observed for Ca/P>or=2. This bioactive calcium phosphate cement can potentially be employed for pulp capping and cavity lining as classical calcium hydroxide-based cements, but it is not usable, in the present formulation, for root canal filling because of its short setting time.

  8. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-461 (Third Review)] Gray Portland Cement... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... the Commission are contained in USITC Publication 4281 (December 2011), entitled Gray Portland Cement...

  9. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  10. Electrochemical corrosion of cermet coatings in artificial marine water

    International Nuclear Information System (INIS)

    Cabot, P.L.; Fernandez, J.; Guilemany, J.M.

    1998-01-01

    The electrochemical corrosion of different WC+12Co coatings sprayed on 34CrMo4 (UNS-G41350) steel by the high velocity oxygen fuel technique has been studied by corrosion potential and impedance measurements considering previous SEM observations and EDX microanalysis. The experiments were conducted in artificial marine water at 20 C and the impedance spectra were obtained at the corresponding corrosion potentials for the substrate, coating and substrate-coating systems. The impedance diagrams indicated that the electrochemical corrosion of the steel-coating systems is controlled by oxygen diffusion through a porous film of corrosion products, as in the case of the shot-blasted steel. In contrast, the corrosion of the coating appeared to be controlled by diffusion of oxygen through the electrolyte. The impedance diagrams obtained for the steel-coating systems depended on the porosities of the cermet coatings, thus being an useful procedure to characterize metals coated by cermets. (orig.)

  11. Traction test of temporary dental cements

    OpenAIRE

    Román Rodríguez, Juan Luis; Millan Martínez, Diego; Fons Font, Antonio; Agustín Panadero, Rubén; Fernández Estevan, Lucía

    2017-01-01

    Background Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Material and Methods Ten molars were prepared and ten provisional resin restorations were fabricated u...

  12. Effect of silica coating on flexural strength of fiber posts

    NARCIS (Netherlands)

    Valandro, LF; Ozcan, M; de Melo, RM; Galhano, GAP; Baldissara, P; Scotti, R; Bottino, MA

    2006-01-01

    Purpose: Fiber-reinforced composite (FRC) posts can be air-abraded to obtain good attachment to the resin cement. This study tested the effect of silica coating on the flexural strength of carbon, opaque, and translucent quartz FRC posts. Materials and Methods: Six experimental groups of FRC posts

  13. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  14. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  15. 21 CFR 872.3275 - Dental cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns or...

  16. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  17. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    International Nuclear Information System (INIS)

    Perez, F.J.; Hierro, M.P.; Trilleros, J.A.; Carpintero, M.C.; Sanchez, L.; Bolivar, F.J.

    2006-01-01

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe 2 Al 5 intermetallic compound, and in the co-deposition the Si was incorporated to the Fe 2 Al 5 structure in small amounts

  18. Rice Husk Ash Cement – An alternative pozzolana cement for ...

    African Journals Online (AJOL)

    The engineering properties of the cement resulting from a mixture of OPC plus RHA and lime plus RHA were satisfactory with addition of up to 50% RHA. The RHA improved greatly the compressive strength of lime. The cost of producing RHA was considered in pricing the resulting binder and it showed that the use of RHA ...

  19. Physically vapor deposited coatings on tools: performance and wear phenomena

    International Nuclear Information System (INIS)

    Koenig, W.; Fritsch, R.; Kammermeier, D.

    1991-01-01

    Coatings produced by physical vapor deposition (PVD) enhance the performance of tools for a broad variety of production processes. In addition to TiN, nowadays (Ti,Al)N and Ti(C,N) coated tools are available. This gives the opportunity to compare the performance of different coatings under identical machining conditions and to evaluate causes and phenomena of wear. TiN, (Ti,Al)N and Ti(C,N) coatings on high speed steel (HSS) show different performances in milling and turning of heat treated steel. The thermal and frictional properties of the coating materials affect the structure, the thickness and the flow of the chips, the contact area on the rake face and the tool life. Model tests show the influence of internal cooling and the thermal conductivity of coated HSS inserts. TiN and (Ti,Zr)N PVD coatings on cemented carbides were examined in interrupted turning and in milling of heat treated steel. Experimental results show a significant influence of typical time-temperature cycles of PVD and chemical vapor deposition (CVD) coating processes on the physical data and on the performance of the substrates. PVD coatings increase tool life, especially towards lower cutting speeds into ranges which cannot be applied with CVD coatings. The reason for this is the superior toughness of the PVD coated carbide. The combination of tough, micrograin carbide and PVD coating even enables broaching of case hardened sliding gears at a cutting speed of 66 m min -1 . (orig.)

  20. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    Science.gov (United States)

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  1. Temperature dependence of W metallic coatings synthesized by double glow plasma surface alloying technology on CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie; Hei, Hongjun; Shen, Yanyan; Liu, Xiaoping; Tang, Bin; He, Zhiyong, E-mail: hezhiyong@tyut.edu.cn; Yu, Shengwang, E-mail: yushengwang@tyut.edu.cn

    2015-11-30

    Highlights: • DGPSA was firstly adopted to deposit W coatings on free-standing diamond films. • Temperature dependence of W coatings on free-standing diamond films was discussed. • W{sub 2}C and WC were formed at W/diamond interface during the DGPSA treatment. • The coatings possess continuous and compact surface structure except that made at 900 °C. • The coating obtained at 800 °C has the best adhesion and the maximum shear strength. - Abstract: W metallic coatings were synthesized on free-standing chemical vapor deposition (CVD) diamond films using double glow plasma surface alloying (DGPSA) technology. The influence of varying metalizing temperatures on the microstructures, phase composition and adhesion of the W metallic coatings were investigated. Likewise, the effectiveness of the W metallic coatings was preliminary evaluated via examining the shear strength of the brazing joints between W-metalized diamond films and commercial cemented carbide (WC–Co) inserts. The results showed that continuous and compact W metallic coatings were formed on the diamond films in the temperature range of 750–800 °C, while cracks or cavities presented at the W/diamond interface at 700 °C, 850 °C and 900 °C. Inter-diffusion of W and C atoms preformed, and WC and W{sub 2}C were formed at the W/diamond interfaces at all temperatures except 700 °C, at which only W{sub 2}C was formed. Moreover, etched cavities appeared at the W/diamond interface when the temperature exceeded 850 °C. The critical loads for coating delamination, as measured with the scratch test, increased as the temperature rose from 700 °C to 800 °C, while decreased with further increasing temperature. The maximum load was obtained at 800 °C with a value of 17.1 N. Besides, the shear strength of the brazing joints depicted the similar trend with the critical load. The highest shear strength (249 MPa) was also obtained at 800 °C.

  2. False set in aireated cements

    Directory of Open Access Journals (Sweden)

    Vázquez, T.

    1986-06-01

    Full Text Available The influence of aireation on the appearance or elimination of the false setting in industrial portland cements is studied by means of infrared spectroscopy.

    Se estudia por medio de la espectroscopia infrarroja la influencia de la aireación sobre la aparición o eliminación del fraguado, en cemento portland industriales.

  3. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  4. Electrically conductive Portland cement concrete.

    Science.gov (United States)

    1986-01-01

    There is a need for an effective, simple-to-install secondary anode system for use in the cathodic protection of reinforced concrete bridge decks. In pursuit of such a system, carbon fibers and carbon black were incorporated in portland cement concre...

  5. MODELING OF GENERIC AIR POLLUTION DISPERSION ANALYSIS FROM CEMENT FACTORY

    Directory of Open Access Journals (Sweden)

    Moses E EMETERE

    2013-06-01

    Full Text Available Air pollution from cement factory is classified as one of the sources of air pollution. The control of the air pollution by addressing the wind field dynamics was the main objective of the paper. The dynamics of dispersion showed a three way flow which was calculated and explained accordingly. The 3D model showed good level of accuracy by determining field values of air deposited pollutants. Mean concentration of diffusing pollutants was shown to be directly proportional to the plume angular displacement. The 2D model explained the details of the wind field dynamics and proffers a solution which may be relevant in controlling air pollution from anthropogenic sources.

  6. Effect of the cross-linking silane concentration in a novel silane system on bonding resin-composite cement

    NARCIS (Netherlands)

    Matinlinna, Jukka; Ozcan, Mutlu; Lassila, Lippo; Kalk, Warner; Vallittu, Pekka

    2008-01-01

    Objective. Four experimental blends of an organo-functional silane monomer with a non-functional cross-linking silane monomer (a novel silane system) were evaluated as adhesion promoters in an experiment in which a resin-composite cement was bonded to silica-coated titanium. Material and Methods.

  7. Cermet coatings for solar Stirling space power

    International Nuclear Information System (INIS)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of a solar Stirling space power convertor. The role of the cermet coating is to absorb as much of the incident solar energy as possible. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition and the solar absorptance of these coatings. Several candidate cermet coatings were created and their solar absorptance was characterized as-manufactured and after exposure to elevated temperatures. Coating composition was purposely varied through the thickness of the coating. As a consequence of changing composition, islands of metal are thought to form in the ceramic matrix. Computer modeling indicated that diffusion of the metal atoms played an important role in island formation while the ceramic was important in locking the islands in place. Much of the solar spectrum is absorbed as it passes through this labyrinth

  8. In vitro shear bond strength of two self-adhesive resin cements to zirconia.

    Science.gov (United States)

    Qeblawi, Dana M; Campillo-Funollet, Marc; Muñoz, Carlos A

    2015-02-01

    Although the use of anatomic-contour zirconia restorations has expanded in the recent past, disagreement still exists as to reliable cementation techniques and materials. The purpose of this in vitro study was to compare the immediate and artificially aged shear bond strength of 2 commercially available self-adhesive resin cements to zirconia: one with silica coating and silanation as a zirconia surface treatment and the other contained a phosphate monomer, which eliminated the need for a separate primer. Sixty composite resin rods (2.5 mm in diameter and 3 mm in length) were fabricated from a nano-optimized composite resin by using a polypropylene mold, then light polymerized with a light-emitting diode. zirconia plates (10×10×4mm) were sectioned from an yttrium-stabilized zirconia puck, sintered, and then mounted in autopolymerizing acrylic resin custom tray material. Composite resin rods were cemented to the zirconia plates with 2 different cements. The surface treatment of zirconia followed the manufacturers' instructions for each cement. The specimens were tested for shear bond strength at 3 aging conditions: immediate, after 24 hours of moist storage, and after 30 days of moist storage with 10000 thermocycles. Specimens were loaded to failure in a universal testing machine, and the data were analyzed with 2-way ANOVA (α=.05). Weibull parameters (modulus and characteristic strength) also were calculated for each group. Two-way ANOVA revealed that only the aging condition significantly affected the bond strength to zirconia. The cement and the interaction of the cement and aging did not significantly affect the shear bond strength to zirconia. The highest bond strength for both cements was achieved at 24 hours, whereas the lowest bond strength values were recorded in the immediate groups. No significant differences in bond strength to zirconia were observed between a cement with a silane priming step and an methacryloxydecyl dihydrogen phosphate

  9. Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products

    Directory of Open Access Journals (Sweden)

    Krolo Petar

    2012-01-01

    Full Text Available This study has examined leaching behavior of monolithic stabilized/solidified products contaminated with zinc by performing modified dynamic leaching test. The effectiveness of cement-based stabilization/solidification treatment was evaluated by determining the cumulative release of Zn and diffusion coefficients, De. The experimental results indicated that the cumulative release of Zn decreases as the addition of binder increases. The values of the Zn diffusion coefficients for all samples ranged from 1.210-8 to 1.1610-12 cm2 s-1. The samples with higher amounts of binder had lower De values. The test results showed that cement-based stabilization/solidification treatment was effective in immobilization of electroplating sludge and waste zeolite. A model developed by de Groot and van der Sloot was used to clarify the controlling mechanisms. The controlling leaching mechanism was found to be diffusion for samples with small amounts of waste material, and dissolution for higher waste contents.

  10. Effects of Different Surface Treatment Methods and MDP Monomer on Resin Cementation of Zirconia Ceramics an In Vitro Study.

    Science.gov (United States)

    Tanış, Merve Çakırbay; Akçaboy, Cihan

    2015-01-01

    Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group III surface microcracks

  11. Study on performance of waterborne anticorrosive coatings on steel rebars

    Science.gov (United States)

    Ramaswamy, S. N.; Varalakshmi, R.; Selvaraj, R.

    2017-12-01

    Durability of reinforced cement concrete structures is mainly affected by corrosion of steel reinforcements. In order to protect the reinforcing bars from corrosion and to enhance the lifetime of reinforced cement concrete structural members, anticorrosive treatment to steel is of prime importance. Conventional coatings are solvent based. In this study, water based Latex was used to formulate anticorrosive coating. Latex is applied to steel specimen substrates such as plates and rods and their mechanical properties such as flexibility, abrasion, bendability, adhesive strength, impact resistance, etc. were studied. It was inferred that coating containing latex, micro silica, zinc phosphate, ferric oxide, aluminum oxide, titanium oxide and silica fume was found to possess more corrosion resistance under marine exposure conditions.

  12. Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA).

    Science.gov (United States)

    Norman, T L; Shultz, T; Noble, G; Gruen, T A; Blaha, J D

    2013-03-15

    Stem-cement and cement-bone interfacial failures as well as cement fractures have been noted in cemented total hip arthroplasty (THA) as the cause of aseptic loosening. Attempts to reduce the risk of femoral component loosening include improving the stem-cement interface by various coatings, using a textured or porous coated stem surfaces or by using a tapered stem having a highly-polished surface. The latter approach, often referred to as "force-closed" femoral stem design, would theoretically result in stem stabilization subsequent to debonding and 'taper-lock'. Previous work using three-dimensional finite element analysis has shown a state of stress at the stem-cement interface indicative of 'taper-lock' for the debonded stem and indicated that stem-cement interface friction and bone cement creep played a significant role in the magnitudes of stresses and subsidence of the stem. However, the previous analysis did not include the viscoelastic properties of bone, which has been hypothesized to permit additional expansion of the bone canal and allow additional stem subsidence (Lu and McKellop, 1997). The goal of this study was to investigate the effect of bone viscoelastic behavior on stem subsidence using a 3D finite element analysis. It was hypothesized that the viscoelastic behavior of bone in the hoop direction would allow expansion of the bone reducing the constraint on bone over time and permit additional stem subsidence, which may account for the discrepancies between predicted and clinical subsidence measurements. Analyses were conducted using physiological loads, 'average peak loads' and 'high peak loads' for 'normal patient' and 'active patient' (Bergmann et al., 2010) from which short and long term subsidence was predicted. Results indicated that bone creep does contribute to higher stem subsidence initially and after 10 years of simulated loading. However, it was concluded that the "constraint" upon the cement mantle is not mitigated enough to result in

  13. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    Science.gov (United States)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  14. Research of magnesium phosphosilicate cement

    Science.gov (United States)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  15. Leaching of radioactive nuclides from cement grouts. Part II

    International Nuclear Information System (INIS)

    Stanley, W.T.; Avgerinos, G.F.; Gonzalez, B.; Hemley, P.J.

    1974-01-01

    The determination of the leaching rate of radioactive 137 Cs from a cement grout should the grout be contacted by water is necessary for environmental protection. The effect of the leachant turnover rate on 137 Cs leaching rates was evaluated with batch and continuous (modified Soxhlet extractor) modes of experimentation. Three additives (Grundite, potter's clay, and Conasauga shale) were compared in terms of capability of radioactive isotope retention, while two leachants (tap and distilled water) were investigated. The Soxhlet extractor experiment resulted in the highest rate of leaching, and Conasauga shale was found the best additive for 137 Cs immobilization. Tap water used as leachant was more effective than distilled water. Data were analyzed using models involving isotopic diffusion in the grout and involving diffusion plus a time dependent boundary condition at the interface of grout specimen and leachant

  16. Predictors of excess cement and tissue response to fixed implant-supported dentures after cementation.

    Science.gov (United States)

    Korsch, Michael; Robra, Bernt-Peter; Walther, Winfried

    2015-01-01

    The cementation of fixed implant-supported restorations involves the risk of excess cement remaining in the peri-implant tissue that may cause a peri-implant tissue response with attachment loss. The aim was to study the peri-implant tissue response after cementation and to detect potential predictors of excess cement. Clinical complications after cementation in several index cases led to a recall of all patients treated with a special methacrylate cement (one hundred five patients with one hundred eighty-eight implants) and systematic reevaluation of 71 patients (68%) with one hundred twenty-six implants (67%). In all cases, suprastructures including abutments were removed, and findings were documented. Implant diameter was significantly associated with the frequency of excess cement. Implant location or system had no significant effect. Excess cement in turn was associated with bleeding on probing, suppuration, and peri-implant attachment loss. In the absence of excess cement 58.8% of implants had no peri-implant attachment loss versus 37.3% when excess cement was present. With increasing retention time of the methacrylate cement, more peri-implant attachment loss was detected. However, the latter association was not significant. Larger diameters are significantly associated with excess cement in peri-implant tissue. Consequences of excess cement may be increased bleeding on probing, suppuration, and possibly peri-implant attachment loss. © 2013 Wiley Periodicals, Inc.

  17. Retention of gold alloy crowns cemented with traditional and resin cements.

    Science.gov (United States)

    Pinzón, Lilliam M; Frey, Gary N; Winkler, Mark M; Tate, William H; Burgess, John O; Powers, John M

    2009-01-01

    The aim of this study was to measure in vitro retention of cast gold crowns cemented with traditional and resin cements. Forty-eight human molars were prepared on a lathe to produce complete crown preparations with a consistent taper and split into six groups, eight crowns in each group. Crowns were cast in a high-gold alloy and then cemented. After 24 hours, the retention force (N) was recorded and mean values were analyzed by one-way analysis of variance and the Fisher post-hoc least significant difference (PLSD) multiple comparisons test (a = .05). Failure sites were examined under 3100 magnification and recorded. Mean values (SD) for each group in increasing order of retention force were: Harvard Cement: 43 N (27), TempoCem: 59 N (16), PermaCem Dual: 130 N (42), RelyX Luting Cement: 279 N (26), Contax and PermaCem Dual: 286 N (38), and TempoCem with Contax and PermaCem Dual: 340 N (14). The Fisher PLSD interval (P = .05) for comparing cements was 29 N. Zinc-phosphate cement and provisional resin cements had the lowest retention forces. Resin cement with a bonding agent and the hybrid-ionomer cement had similar retention forces. Resin cement with a bonding agent applied after use of a provisional resin cement had a significantly higher retention force than the other cements tested.

  18. Retention of provisional crowns cemented with eight temporary cements: comparative study.

    Science.gov (United States)

    Rego, Mariana Ribeiro de Moraes; Santiago, Luiz Carlos

    2004-09-01

    Many temporary cements are commercially available; therefore, it is necessary to indicate them for each clinical requirement with regard to the tensile strength of prosthetic retainers. Thus, the purpose of this study was to compare the retention of provisional crowns cemented with eight temporary cements, over full crown preparations with standardized mechanical principles as height, taper, and length. For that purpose, eighty human first premolars received full crown preparation with standardized height and taper. Provisional crowns were fabricated and luted with eight brands of temporary cements. Twenty four hours after cementation, the restorations were submitted to tensile strength test in a universal testing machine and the data submitted to ANOVA and Bonferroni tests. Mean tensile strength values ranged from 20.1N for Nogenol cement to 67.5N for Hydro C cement. Statistically significant difference (pcrowns cemented with Hydro C cement were more retentive that than those cemented with the other cements, except for Rely X Temp and Temp Bond. The less retentive crowns were those cemented with Nogenol and Freegenol temporary cements.

  19. Package characterization by laboratory leaching and diffusion experiments using radionuclides

    International Nuclear Information System (INIS)

    Das, H.A.

    1989-01-01

    The leaching of solid inorganic waste from loaded concrete or cement by incoming water can be described in terms of a steady-state outward diffusion of the saturated solution, formed inside the pores. In this paper, the derived equations permit the prediction of long-term leaching behavior. Radiotracer experiments enable the determination of the parameters involved

  20. Calcium diffusion: A new dating method for archeological materials

    Science.gov (United States)

    Waddell, Carol; Fountain, John C.

    1984-01-01

    Investigation of calcium migration across clay-cement interfaces in building bricks and other similar artifacts ranging in age from about 68 to 3,800 yr shows that calcium diffusion coefficients in the samples' clay layers are equivalent in all of the artifacts studied to date. Consequently, the age of the samples may be estimated from the distance that calcium migrated from the cement into the clay. To investigate the stability of clay barriers proposed for nuclear-waste containment systems, the rate of calcium diffusion from calcium-based materials (e.g., cement, plaster, and mortar) into adjacent clay-based materials (e.g., riverbed clay, mud brick, and fired clay brick) was determined from electron-microprobe analyses of Ca distribution in samples of known age. In seven samples with well-preserved clay-cement interfaces, an apparent Ca diffusion coefficient on the order of 10-20 m2/s was calculated from Ca distribution in the clay layer. The resulting calcium-concentration front migrates about 9 μm in 100 yr, and can be located to ±2 μm, corresponding to about ±25 yr error. Thus, although only preliminary, these results indicate that Ca diffusion may provide the basis for a rapid and relatively inexpensive method of dating building bricks and other similar materials that have hitherto defied conventional dating techniques.

  1. Experimental study of the diffusion of 137Cs in mortars used in nuclear waste repositories medium and low activity

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Morejon, J.

    2013-01-01

    Cement is a largely used material in radioactive waste repository for conditioning and isolating the waste. In this study, the adequacy of different type of cement to act as barrier to the 1 37Cs migration has been analyzed. 1 37Cs is a very important fission product in low and medium radioactive waste repository. As diffusion is the main transport process in cementitious materials, in this study the diffusion behavior of the radionuclide was especially evaluated.

  2. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  3. Nonlinearity and isotope effect in temporal evolution of mesoscopic structure during hydration of cement

    International Nuclear Information System (INIS)

    Mazumder, S.

    2011-01-01

    Investigations of cement is still in its infancy despite the fact that cement is ubiquitous material which is indispensable in the construction industry, in nuclear energy programs for immobilization of non heat-generating low-level radioactive waste, and in the petroleum industry to line oil wells by pumping cement slurry to isolate productive zones and with global production exceeding that of any other material of technological importance. The total world consumption of cement in 2008 was about 2.5 billion metric tons almost double of that of steel. Manufacturing of cement contributes about 4% of global and 5-7% of the total man-made CO 2 emissions. The understanding of the mechanism of its hydration and evolution of cement-water mixtures into a material of high compressive strength is paramount to improve its life time and other macroscopic properties such as compressive strength, permeability, elastic modulus etc. The mechanism of hydration of cement and evolution of cement-water mixtures into gels of high compressive strength is poorly understood, despite extensive research over the past century. Recent investigations, based on neutron scattering measurements, aims at unraveling this enigma and outlines, for the first time, the evolution of the mesoscopic structure of the cement paste which exhibits temporal oscillations, strongly dependent on the scale of observation and on the medium of hydration (light or heavy water). While the formation of hydration products is synchronous for hydration with H 2 O, the process is non-synchronous for hydration with D 2 O. The reason why morphological patterns of domains at different times look dissimilar, as seen before, for different hydration media emerges as a natural consequence of this finding. Mesoscopic structure of cement paste exhibits isotope effect. The structures arise from well- characterised chemical reactions as water diffuses through the porous material to bring about the water-surface interactions within

  4. Evaluation of the Performance of Local Cements with Imported Class

    African Journals Online (AJOL)

    Portland cement is the most commonly used cement in the oil and gas industry and it accounts for about 99% of all primary cementing operations throughout the world. For Portland cement to qualify as oil well cement, the chemical and physical properties must meet the required standards of the American Petroleum Institute ...

  5. Use sulfoferritic cements in construction

    Science.gov (United States)

    Samchenko, Svetlana V.; Zorin, Dmitriy A.

    2018-03-01

    Currently, high-rise construction has received increasing attention around the world. In the big cities under construction is less space and one solution is the high-rise construction. However, high-rise buildings use special requirements, such as strength, thermal insulation, wind load and others. When concrete is exposed to continuous loads by wind or to mechanical loads, it undergoes abrasion. Resistance to this process depends on the characteristics of materials that the concrete and finishing seams are made of. Research on increasing impact and abrasion resistance of calcium sulfoferrite-based cement stone from the perspective of formation of cement stone structure will be instrumental in developing durable materials for application in high-rise construction.

  6. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    Taratuta V. D.; Belokur K. A.; Serga G. V.

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  7. Initial acidity of dental cements.

    Science.gov (United States)

    Brune, D; Evje, D M

    1984-04-01

    The acidity in aqueous solutions following release of acid components from glass ionomer, silicate, zinc phosphate and zinc polycarboxylate cements has been registered by pH measurements. One brand of each type was studied. Initial setting was accomplished at two different temperatures; 23 degrees C and in the interval from 23 degrees C to about 60 degrees C. In the latter case external heat was transferred to the samples by infrared radiation for a period of 2 min. The highest acidity was associated with the silicate specimen, while the lowest acidity was recorded for the zinc polycarboxylate specimen. Exposure to infrared radiation resulted in a reduced acidity for all types of cements. The effect of infrared exposure was most pronounced for the silicate specimens, resulting in a reduction of acid release by a factor of about 10 compared to the nontreated samples. The resistance to acid release was found to be improved by a factor of about 5 for the glass ionomer and about 3 for the zinc phosphate cement treated in a similar way. Clinically, it seems possible considerably to reduce the risk of pulpal injuries associated with the insertion of silicate restorations by using a moderate infrared radiation treatment. Furthermore, the susceptibility of glass ionomer cements to a high initial erosion should be reduced by the use of such a technique. After exposure of the glass ionomer and silicate specimens to infrared radiation at the temperature interval applied, the samples had a more glossy, tooth-like appearance compared to the nonexposed samples, improving the aesthetic properties.

  8. Natural cement as the precursor of Portland cement: Methodology for its identification

    International Nuclear Information System (INIS)

    Varas, M.J.; Alvarez de Buergo, M.; Fort, R.

    2005-01-01

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements

  9. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    Science.gov (United States)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  10. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  11. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.

    1987-01-01

    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  12. Deposition, microstructure, and properties of nanocrystalline Ti(C,O,N) coatings

    Science.gov (United States)

    Ruppi, S.; Larsson, A.

    2003-01-01

    Chemical vapor deposition of Ti(C,N) coatings from the TiCl4- CH3CN- N2-H2 system on cemented carbide substrates was studied. The morphology and grain size of the coatings were modified using carbon monoxide (CO). Transmission electron microscopy confirmed that grain refinement of the Ti(C,N) coatings could be obtained by means of CO doping and nanocrystalline coatings were obtained at CO levels exceeding 6%. CO doping resulted in the incorporation of oxygen in the structure, but no segregation of oxygen to grain boundaries was observed. The coatings appeared to be of homogeneous composition even at the highest CO levels. Both improved coating hardness and surface quality were obtained with decreasing grain size. However, the coatings exhibited clearly lower crater wear resistance in the nanograined region. This was explained by an increased tendency for grain-boundary sliding in the nanocrystalline coatings leading to more pronounced plastic deformation.

  13. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Science.gov (United States)

    2011-08-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-461 (Third Review)] Gray Portland Cement... Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States International... Act) to determine whether revocation of the antidumping duty order on gray portland cement and cement...

  14. Dynamic crossover in hydration water of curing cement paste: the effect of superplasticizer

    Science.gov (United States)

    Li, Hua; Chiang, Wei-Shan; Fratini, Emiliano; Ridi, Francesca; Bausi, Francesco; Baglioni, Piero; Tyagi, Madhu; Chen, Sow-Hsin

    2012-02-01

    The influence of a new comb-shaped polycarboxylate-based superplasticizer (CSSP) on the hydration kinetics and transport properties of aged cement pastes has been investigated by high-resolution quasi-elastic neutron scattering (QENS) and low temperature differential scanning calorimetry (LT-DSC). A new method of analysis of QENS spectra is proposed. By applying the refined method we were able to access to four independent physical parameters including the self-diffusion coefficient of the hydration water confined in the cement paste. Mean squared displacement (MSD) of the hydrogen atom for mobile water molecules displays a dynamic crossover temperature in agreement with DSC data. The experimental results indicate that CSSP polymer added into cement paste moderates the hydration process and decreases the dynamic crossover temperature of the hydration water.

  15. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  16. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  17. Effect of SiNx diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol–gel dip coating and reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Mohamed Nawfal Ghazzal

    2015-10-01

    Full Text Available We investigate the effect of the thickness of the silicon nitride (SiNx diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol–gel and physical methods (reactive sputtering are affected differentially by the intercalating SiNx diffusion barrier. Increasing the thickness of the SiNx diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol–gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiNx barrier diffusion. The SiNx barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.

  18. The influence of ultrasound on removal of prefabricated metal post cemented with different resin cements

    Directory of Open Access Journals (Sweden)

    Atiyeh Feiz

    2013-01-01

    Conclusion: Ultrasonic energy did not decrease the retention of posts cemented with Panavia or Maxcem Elite cements. Furthermore, it seems that there is no significant difference between removal force of self-etch (Panavia and the self-etch self-adhesive (Maxcem Elite resin cements.

  19. Evaluation of cement thixotropy for the cement of oil wells in areas ...

    African Journals Online (AJOL)

    ... economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster. Keywords: cementing; lost circulation; ...

  20. Sorption and diffusion of Cs and I in concrete

    International Nuclear Information System (INIS)

    Andersson, K.; Torstenfelt, B.; Allard, B.

    1983-01-01

    Concrete has been suggested as a possible encapsulation material for long-term storage of low and medium level radioactive waste. At an underground storage of concrete encapsulated waste, a slow release of radioactive elements into the groundwater by diffusion through the concrete must be considered in the safety analysis. The diffusion may be delayed by sorption reactions on the solid. A wide range of long-lived radionuclides may be present in the low and medium level radioactive waste. Here, the sorption and diffusion of iodide and cesium on slag cement paste and concrete has been studied. The influence of four different water phases (pore water, groundwater, Baltic Sea water and sea water) as well as the influence of some added species (carbonate, sulphate and magnesium) has been investigated. A significant sorption of iodide on cement paste in contact with pore water was observed, indicating that the diffusion may be expected to be retarded in this medium. For cesium the highest sorption was found for concrete and groundwater. This means that the sorption increases as the concrete is weathered. Low or insignificant sorption was found for the cement paste, indicating that the ballast is responsible for the Cs-sorption. Carbonatization enhances the Cs-sorption by about a factor of 3. The diffusivity of Cs in concrete and cement paste was determined to between 2x10 - 14 and 8x10 - 14 m 2 /s in pore water (where an insignificant sorption was observed). The choice of ballast as well as addition of suitable getters with high sorption of the long-lived radionuclides might decrease the mass transfer rate through the cement. (Authors)

  1. Properties of paving units incorporating slag cement

    Directory of Open Access Journals (Sweden)

    Hanan A. El Nouhy

    2013-04-01

    Full Text Available The aim of this study is to investigate the effect and possibility of using Portland slag cement in the production of interlocking paving units. Paving units consist of two layers. Four mixes were cast. The first mix was the control mix, in which Portland cement was used in the two layers. In the second mix, Portland slag cement was used in the upper layer, Portland cement was used in the backing layer. In the third mix, Portland cement was placed in the upper layer, while Portland slag cement was used in the backing layer. Finally, in the fourth mix, Portland cement was fully replaced by Portland slag cement in both layers. Tests were carried out in order to investigate the properties of the manufactured specimens at ages 28 and 180 days, respectively. Compressive strength and abrasion resistance were conducted according to the American Society for Testing and Materials (ASTM C 140 and ASTM C418. Water absorption, split tensile strength, abrasion resistance, as well as, skid resistance were performed according to both Egyptian Standard Specifications (ESS 4382 and European Standard (EN 1338. The Egyptian standard is identical with the European standard. The results indicate that it is feasible to use Portland slag cement in the manufacture of paving blocks as the conditions of the conducted tests were satisfied at age180 days except for the minimum splitting tensile strength test.

  2. Integer programming of cement distribution by train

    Science.gov (United States)

    Indarsih

    2018-01-01

    Cement industry in Central Java distributes cement by train to meet daily demand in Yogyakarta and Central Java area. There are five destination stations. For each destination station, there is a warehouse to load cements. Decision maker of cement industry have a plan to redesign the infrastructure and transportation system. The aim is to determine how many locomotives, train wagons, and containers and how to arrange train schedules with subject to the delivery time. For this purposes, we consider an integer programming to minimize the total of operational cost. Further, we will discuss a case study and the solution the problem can be calculated by LINGO software.

  3. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  4. Immobilisation of radwaste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Macphee, D.; Atkins, M.; Pointer, C.; Cowie, J.; Wilding, C.R.; Mattingley, N.J.; Evans, P.A.

    1989-01-01

    The solubilities and influence on cement pH are reported for calcium aluminate and aluminosulphate hydrates. The solubility of Ca(OH) 2 is reported to 700 bars. Polymerization of C-S-H is investigated by NMR. Specific interactions of U 6+ and iodine (I - , IO 3 - ) with cement components are described. The impact of radiation on cements and the influence of higher temperature are documented. The role of dissolved Ca and CO 2 in groundwaters as dissolution media for cements are reported. (author)

  5. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  6. Factors affecting on bond strength of glass fiber post cemented with different resin cements to root canal

    Science.gov (United States)

    Clavijo, V. R. G.; Bandéca, M. C.; Calixto, L. R.; Nadalin, M. R.; Saade, E. G.; Oliveira-Junior, O. B.; Andrade, M. F.

    2009-09-01

    Luting materials provides the retention of endodontic post. However, the failures of endodontic posts predominantly occurred are the losses of retention. Thus, the alternating use to remove the smear layer, open the dentine tubules, and/or etch the inter-tubular dentine can be provided by EDTA. This study was performed to evaluate effect of EDTA on bond strength of glass fiber post cemented with different resin cements to root canal. Fifty bovine incisors were selected and the crowns were removed to obtain a remaining 14-mm-height root. The roots were randomly distributed into five groups: GI: RelyX™ ARC/LED; GII: RelyX™ U100/LED; GIII EDTA/RelyX™ U100/LED; GIV: Multilink™; and GV: EDTA/Multlink™. After endodontic treatment, the post space was prepared with the drills designated for the quartz-coated-carbon-fiber post Aestheti-Post®. Before application of resin cements, root canals were irrigated with 17% EDTA (GIII and GV) during 1 min, rinsed with distilled water and dried using paper points. The light-cured materials were light-activated with UltraLume LED 5 (Ultradent, South Jordan, Utah) with power density of 1315 mW/cm2. Specimens were perpendicularly sectioned into approximately 1 mm thick sections and the stubs were performed on Universal Testing Machine. The analysis of variance (ANOVA) and Tukey’s post-hoc tests showed significant statistical different between RelyX™ ARC (GI) and RelyX™ U100 independent of the pre-treatment (GII to GIII) ( P 0.05) to all resin cements between the Cervical to Apical regions (GI to GV). The use of 17% EDTA showed no difference significant between the resin cements evaluated (GII to GIII; GIV to GV). Within the limitations of the current study, it can be concluded that the use of EDTA did not provide efficiency on bond strength. The RelyX™ ARC showed higher bond strength values than RelyX™ U100.

  7. A study on provisional cements, cementation techniques, and their effects on bonding of porcelain laminate veneers.

    Science.gov (United States)

    Vinod Kumar, G; Soorya Poduval, T; Bipin Reddy; Shesha Reddy, P

    2014-03-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restoration. Determine the presence of cement debris on prepared tooth surface subsequent to the removal of provisional restoration. Determine the cement with the least residue following the cleansing procedures. Determine the effect of smear layer on the amount of residual luting cement. Eighty-four extracted natural anterior teeth were prepared for porcelain laminate veneers. For half of the teeth, the smear layer was removed before luting provisional restorations. Veneer provisional restorations were fabricated and luted to teeth with six bonding methods: varnish combined with glass ionomer cement (GIC), varnish combined with resin modified GIC, varnish, spot etching combined with dual-cure luting cement, adhesive combined with GIC, adhesive combined with resin modified GIC, and adhesive, spot etching combined with dual-cure luting cement. After removal of provisional restorations 1 week later, the tooth surface was examined for residual luting material with SEM. Traces of cement debris were found on all the prepared teeth surfaces for all six groups which were cemented with different methods. Cement debris was seen on teeth subsequent to the removal of provisional's. Dual-cure cement had the least residue following the cleansing procedures. Presence of smear layer had no statistical significance in comparison with cement residue. With the use of adhesive the cement debris was always found to be more than with the use of varnish. GIC showed maximum residual cement followed by dual-cure.

  8. Ion release, fluoride charge of and adhesion of an orthodontic cement paste containing microcapsules.

    Science.gov (United States)

    Burbank, Brant D; Slater, Michael; Kava, Alyssa; Doyle, James; McHale, William A; Latta, Mark A; Gross, Stephen M

    2016-02-01

    Dental materials capable of releasing calcium, phosphate and fluoride are of great interest for remineralization. Microencapsulated aqueous solutions of these ions in orthodontic cement demonstrate slow, sustained release by passive diffusion through a permeable membrane without the need for dissolution or etching of fillers. The potential to charge a dental material formulated with microencapsulated water with fluoride by toothbrushing with over the counter toothpaste and the effect of microcapsules on cement adhesion to enamel was determined. Orthodontic cements that contained microcapsules with water and controls without microcapsules were brushed with over-the-counter toothpaste and fluoride release was measured. Adhesion measurements were performed loading orthodontic brackets to failure. Cements that contained microencapsulated solutions of 5.0M Ca(NO3)2, 0.8M NaF, 6.0MK2HPO4 or a mixture of all three were prepared. Ion release profiles were measured as a function of time. A greater fluoride charge and re-release from toothbrushing was demonstrated compared to a control with no microcapsules. Adhesion of an orthodontic cement that contained microencapsulated remineralizing agents was 8.5±2.5MPa compared to the control without microcapsules which was of 8.3±1.7MPa. Sustained release of fluoride, calcium and phosphate ions from cement formulated with microencapsulated remineralizing agents was demonstrated. Orthodontic cements with microcapsules show a release of bioavailable fluoride, calcium, and phosphate ions near the tooth surface while having the ability to charge with fluoride and not effect the adhesion of the material to enamel. Incorporation of microcapsules in dental materials is promising for promoting remineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Analytical Modeling of Unsteady Aluminum Depletion in Thermal Barrier Coatings

    OpenAIRE

    YEŞİLATA, Bülent

    2014-01-01

    The oxidation behavior of thermal barrier coatings (TBCs) in aircraft turbines is studied. A simple, unsteady and one-dimensional, diffusion model based on aluminum depletion from a bond-coat to form an oxide layer of Al2O3 is introduced. The model is employed for a case study with currently available experimental data. The diffusion coefficient of the depleted aluminum in the alloy, the concentration profiles at different oxidation times, and the thickness of Al-depleted region are...

  10. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  11. Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification.

    Science.gov (United States)

    Li, Jiang-Shan; Wang, Lei; Tsang, Daniel C W; Beiyuan, Jingzi; Poon, Chi Sun

    2017-12-01

    Cement-based stabilization/solidification (S/S) is a practical treatment approach for hazardous waste with anthropogenic As sources; however, its applicability for geogenic As-containing soil and the long-term leaching potential remain uncertain. In this study, semi-dynamic leaching test was performed to investigate the influence of S/S binders (cement blended with fuel ash (FA), furnace bottom ash (FBA), or ground granulated blast furnace slag (GGBS)) on the long-term leaching characteristics of geogenic As. The results showed that mineral admixtures with higher Ca content and pozzolanic activity were more effective in reducing the leached As concentrations. Thus, cement blended with FBA was inferior to other binders in suppressing the As leaching, while 20% replacement of ordinary Portland cement by GGBS was considered most feasible for the S/S treatment of As-containing soils. The leachability of geogenic As was suppressed by the encapsulation effect of solidified matrix and interlocking network of hydration products that were supported by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results. The long-term leaching of geogenic As from the monolithic samples was diffusion-controlled. Increasing the Ca content in the samples led to a decrease in diffusion coefficient and an increase in feasibility for "controlled utilization" of the S/S-treated soils.

  12. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    OpenAIRE

    Bediako, Mark; Amankwah, Eric Opoku

    2015-01-01

    The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, a...

  13. Revision Total Hip Arthroplasty Using the Cement-in-Cement Technique.

    Science.gov (United States)

    Amanatullah, Derek F; Pallante, Graham D; Floccari, Lorena V; Vasileiadis, George I; Trousdale, Robert T

    2017-03-01

    The cement-in-cement technique is useful in the setting of revision total hip arthroplasty (THA), especially to gain acetabular exposure, change a damaged or loose femoral component, or change the version, offset, or length of a fixed femoral component. The goal of this retrospective study was to assess the clinical and radiographic characteristics of revision THA using the cement-in- cement technique. Between 1971 and 2013, a total of 63 revision THAs used an Omnifit (Osteonics, Mahwah, New Jersey) or Exeter (Howmedica, Mahwah, New Jersey) stem and the cement-in-cement technique at the senior author's institution. Aseptic loosening (74%) was the predominant preoperative diagnosis followed by periprosthetic fracture (14%), instability (8%), and implant fracture (6%). Mean clinical follow-up was 5.5±3.8 years. The Harris Hip Score had a statistically significant increase of 18.5 points (Prevision THA using the cement-in-cement technique. There were 13 returns to the operating room, resulting in an overall failure rate of 21%. Eleven (18%) cases required revision THA, but only 1 (2%) revision THA was for aseptic removal of the femoral component. All other femoral implants had no evidence of component migration, cement mantel fracture, or circumferential lucent lines at final follow-up. The patients who underwent cement-in-cement revision THA at the senior author's institution had good restoration of function but a high complication rate. [Orthopedics. 2017; 40(2):e348-e351.]. Copyright 2016, SLACK Incorporated.

  14. Feasibility of producing nano cement in a traditional cement factory in Iraq

    Directory of Open Access Journals (Sweden)

    Sada Abdalkhaliq Hasan Alyasri

    2017-12-01

    Full Text Available This study investigates the economic feasibility of producing nano cement through the establishment of a production line within an existing cement factory. Creating a nano cement production line within the Alkufa Cement factory in Iraq is selected as a case study. Evaluation measures including internal rate of return (IRR, net present value (NPV and breakeven point (BEP are used to evaluate the possible gain that can be achieved from this option. The results demonstrated a positive NPV. The IRR is found to be 26.8% and BEP is reached within 3 years after the establishment of the line. This indicates that producing nano cement in the existing cement factory is economically feasible and can be more advantageous than the ordinary cement.

  15. Cements in radioactive waste management. Characterization requirements of cement products for acceptance and quality assurance purposes

    International Nuclear Information System (INIS)

    Rahman, A.A.; Glasser, F.P.

    1987-01-01

    Cementitious materials are used as immobilizing matrices for low (LLW) and medium-level wastes (MLW) and are also components of the construction materials in the secondary barriers and the repositories. This report has concerned itself with a critical assessment of the quality assurance aspects of the immobilization and disposal of MLW and LLW cemented wastes. This report has collated the existing knowledge of the use and potential of cementitious materials in radioactive waste immobilization and highlighted the physico-chemical parameters. Subject areas include an assessment of immobilization objectives and cement as a durable material, waste stream and matrix characterization, quality assurance concepts, nature of cement-based systems, chemistry and modelling of cement hydration, role and effect of blending agents, radwaste-cement interaction, assessment of durability, degradative and radiolytic processes in cements and the behaviour of cement-based matrices and their near-field interactions with the environment and the repository conditions

  16. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  17. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    Science.gov (United States)

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  18. Pre-portland cements and geopolymers

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Perná, Ivana; Ertl, Z.; Miller, S.M.

    2012-01-01

    Roč. 9, č. 1 (2012), s. 57-62 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : caementum * cement itious * calcareous cement Subject RIV: JN - Civil Engineering Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/5_Hanzlicek.pdf

  19. Elaborating the History of Our Cementing Societies

    DEFF Research Database (Denmark)

    Cao, Zhi; Shen, Lei; Løvik, Amund N.

    2017-01-01

    development of cement in-use stocks in residential, nonresidential, and civil engineering sectors of all world countries. We found that global cement production spreads unevenly among 184 countries, with China dominating the global production and consumption after the 1990s. Nearly all countries have shown...

  20. Dangote cement : an African success story?

    NARCIS (Netherlands)

    Akinyoade, A.; Uche, C.U.

    2016-01-01

    This paper critiques the rise of Dangote Cement plc to become the dominant player in the Nigerian cement industry. Although the close relationship between the company's founder, Aliko Dangote, and subsequent Nigerian governments has been an important factor in this success story, we argue that it is

  1. Multipassage diffuser

    International Nuclear Information System (INIS)

    Lalis, A.; Rouviere, R.; Simon, G.

    1976-01-01

    A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture

  2. Thermal conductivity of zirconia thermal barrier coatings

    Science.gov (United States)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C

  3. Bond behaviour of GFRP reinforced geopolymer cement concrete

    Directory of Open Access Journals (Sweden)

    Hailu Tekle Biruk

    2017-01-01

    Full Text Available Bond plays a key role in the performance of reinforced concrete structures. Glass fibre reinforced polymer (GFRP reinforcing bar and Geopolymer cement (GPC concrete are promising alternative construction materials for steel bars and Ordinary Portland Cement (OPC concrete respectively. In this study, the bond behaviour between these two materials is investigated by using beam-end specimen tests. The bond behaviour of 15.9 mm diameter sand-coated GFRP bar was investigated. An embedment length of six and nine times the bar diameter were used. The free end and the loaded end bond-slip-relationships, the bond failure mode and the average bond stress were used to analyse each of the specimens. Additionally, the distribution of tensile and bond stress along the embedment length was investigated by installing strain gauges along the embedment length in some of the specimens. Test results indicate that a significant difference exists between the free end and loaded end bond-slip curves, which is due to the lower elastic modulus of the GFRP bars. Furthermore, it was found that the tensile and bond stress distribution along the embedment length is nonlinear and the nonlinearity changes with the load.

  4. Protection and Reinforcement of Tooth Structures by Dental Coating Materials

    Directory of Open Access Journals (Sweden)

    Toru Nikaido

    2012-10-01

    Full Text Available It has been proposed that a resin coating can serve as a means to protect dental structure after preparation of the tooth for indirect restorations, sealing the exposed dentin. The resin coating is applied on the cut surfaces immediately after tooth preparation and before making an impression by assembling a dentin bonding system and a flowable composite. Resin coatings minimize pulp irritation and improve the bond strength between a resin cement and tooth when bonding the restoration to tooth. Recently, thin-film coating dental materials based on all-in-one adhesive technology were introduced for resin coating of indirect restorations. The thin coating materials are applied in a single clinical step and create a barrier-like film layer on the prepared dentin. The thin coatings play an important role in protecting the dentin from physical, chemical, and biological irritation. In addition, these thin-film coating materials reportedly prevent marginal leakage beneath inlays or crown restorations. In light of the many benefits provided by such a protective layer, these all-in-one adhesive materials may therefore also have the potential to cover exposed root dentin surfaces and prevent caries formation. In this paper, recent progress of the dental coating materials and their clinical applications are reviewed.

  5. Physical, chemical and antimicrobial evaluation of a composite material containing quaternary ammonium salt for braces cementation

    International Nuclear Information System (INIS)

    Sugii, Mari Miura; Ferreira, Fábio Augusto de Souza; Müller, Karina Cogo; Lima, Debora Alves Nunes Leite; Groppo, Francisco Carlos; Imasato, Hidetake; Rodrigues-Filho, Ubirajara Pereira

    2017-01-01

    The antibiofilm effect of iodide quaternary ammonium methacryloxy silicate (IQAMS) in Transbond XT Light Cure Adhesive resin used for braces cementation was evaluated. Fourier Transform Infrared (FTIR) spectroscopy confirmed IQAMS formation and Scanning Electron Microscopy coupled to Energy-Dispersive X-ray Spectroscopy (SEM-EDS) revealed that as coating, the quaternary ammonium groups from IQAMS were homogeneously dispersed throughout the surface. When incorporated, the composite material presented homogeneous dispersion throughout the resin. Assays with Streptococcus mutans demonstrated enhanced antibiofilm effect for the IQAMS coated resin, with much lower colony-forming units (CFU), in comparison to incorporated IQAMS. Such a difference was assigned to low availability of quaternary ammonium groups at the surface of resin when IQAMS was incorporated, hindering its antibiofilm effect. Additionally, the incorporation of IQAMS led to slight decrease in ultimate bond strength (UBS) and shear bond strength (SBS), in comparison to the neat commercial resin. Thus, the synthesized IQAMS displays great potential as antibiofilm coating or sealant to prevent oral infections in brackets during orthodontic treatment. - Highlights: • Synthesis of ORMOSIL-based material with antibiofilm activity is performed. • Antibiofilm activity of the ORMOSIL-based material on commercial available resin for braces cementation is evaluated. • Antibiofilm ORMOSIL-based coating with potential application as varnish or sealant in orthodontic appliances is presented.

  6. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  7. THE GLASS IONOMER CEMENT IN DENTISTRY

    Directory of Open Access Journals (Sweden)

    Ian Matos Vieira

    2006-08-01

    Full Text Available The glass ionomer cement was developed in the past century 70s, after continuous researches about silicate cement. Over the years, glass ionomers have been playing an important role on restorative dentistry. Initially, the material was used for restoration of small cavities, however, its usage has been increased. The main indications at present are: as core buildup restorative, luting cement, liner and base and as a sealant. Recently, glass ionomer cement has been used for ART restorations and in some medicine fields because of the positive biointeraction with bone cells. Although glass ionomer cements exhibit an initial critical solubility and poor aesthetics, great biological properties like fluoride release to oral environment, chemical bonding to tooth tissues and biocompatibility leads this material elective for many purposes. Finally, their inherent antimicrobial properties contributes to the treatment of many situations in dentistry.

  8. Cement analysis using d + D neutrons

    International Nuclear Information System (INIS)

    Womble, Phillip C.; Paschal, Jon; Moore, Ryan

    2005-01-01

    In the cement industry, the primary concern is quality control. The earlier the cement industry can institute quality control upon their product, the more significant their savings in labor, energy and material. We are developing a prototype cement analyzer using pulsed neutrons from a d-D electronic neutron generator with the goal of ensuring quality control of cement in an on-line manner. By utilizing a low intensity d-D neutron source and a specially-designed moderator assembly, we are able to produce one of the safest neutron-based systems in the market. Also, this design includes some exciting new methods of data acquisition which may substantially reduce the final installation costs. In our proof-of-principle measurements, we were able to measure the primary components of cement (Al, Si, Ca and Fe) to limits required for the raw materials, the derived mixes and the clinkers utilizing this neutron generator

  9. Thermal monitoring at E-Sheng cement in China; Waermeueberwachung bei E-Sheng Cement in China

    Energy Technology Data Exchange (ETDEWEB)

    Idoux, Maurice [HGH Infrared Systems, Igny (France)

    2011-07-01

    The E-Sheng cement plant is situated 130 km South East of Chengdu, capital city of Sichuan Province. It is in an environmentally protected area and as such, it is subject to stringent regulations as far as pollution is concerned. The quarry is situated 5 km away on a hillside, 500 m above plant level. Transport of limestone is by one single conveyor. The plant has 5 identical kilns, each 5500 tpd, i.e. 27 500 tpd total output, making it the largest single plant in the southwest of China. The plant was designed by the Nanjing Cement Institute (NCDRI). Its specific heat consumption is 730 kcal/kg of clinker, 65% at the precalciner and 35% at the kiln. Each kiln is 4.8 m dia x 74 m long. Start-up fuel is oil, main fuel is coal, 5500 kcal/kg LHV. The coal mine is 25 km away; coal delivery to the plant is by road. The plant is checked regularly for emissions, management of the plant is particularly advanced and the staff is well trained, thus achieving at high quality product. The total number of employees is 3000. 15% of the production is sold in bags, the rest in bulk. Delivery to clients is by road or rail. The first line was commissioned in 2008, the last in 2010. Due to the 2008 earthquake 300 km away, local demand for cement remains high. Each kiln is equipped with a hig resolution scanner which warns the operator of any refractory lining/coating problems and possible malfunction of the kiln. (orig.)

  10. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  11. Dentin-cement Interfacial Interaction

    Science.gov (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  12. Molecular weight dependence of exciton diffusion in poly(3-hexylthiophene)

    DEFF Research Database (Denmark)

    Masri, Zarifi; Ruseckas, Arvydas; Emelianova, Evguenia V.

    2013-01-01

    A joint experimental and theoretical study of singlet exciton diffusion in spin-coated poly(3-hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co-facial π–π aggregates of polymer chromophores and about 100...

  13. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    to the gas diffusion electrodes. A dispersion with PTFE particles of a particle size of about 1 µm in combination with electro-catalysts, such as silver nanotubes, was used to coat the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry measurements were performed to determine...... to increase the cell size from lab scale (1 cm2) to areas like 25 cm2....

  14. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    to the gas diffusion electrodes. A dispersion with PTFE particles of a particle size of about 1 µm in combination with electro-catalysts, such as silver nanotubes, was used to coat the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry measurements were performed to determine...

  15. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  16. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    Science.gov (United States)

    Hooi, Paul; Addison, Owen; Fleming, Garry J P

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating. The flexural modulus of a transparent soda-lime glass was determined by longitudinally sectioning into rectangular bar-shaped specimens and the flexural moduli of three resin-based materials (Venus Flow, Rely-X Veneer and Clearfil Majesty Posterior) was also determined. Disc shaped soda-lime glass specimens (n=240) were divided into ten groups and were alumina particle air abraded, hydrofluoric (HF) acid-etched and resin-cement coated prior to biaxial flexure strength testing. Sample sets were profilometrically evaluated to determine the surface texture. One-way analyses of variance (ANOVA) and post hoc all paired Tukey tests were performed at a significance level of Plime glass was 40.0 (1.0)GPa and the Venus Flow, Rely-X Veneer and Clearfil Majesty Posterior were 3.0 (0.2)GPa, 6.0 (0.2)GPa and 14.8 (1.6)GPa, respectively. At a theoretical 'zero' resin-coating thickness an increase in biaxial flexure strength of 20.1% (63.2MPa), 30.8% (68.8MPa) and 36.3% (71.7MPa), respectively was evident compared with the control (52.6 (5.5)MPa). Disc-shaped specimens cut from round stock facilitated rapid fabrication of discs with uniform surface condition and demonstrated strength dependence was influenced by precementation parameters and resin-cementation variables. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Parameters of Alumina Cement and Portland Cement with Addition of Chalcedonite Meal

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Aluminous cement is a quick binder with special properties. It is used primarily to make non-standard monolithic components exposed to high temperatures, + 1300°C. It is also a component of adhesives and mortars. It has a very short setting time. It is characterized by rapid increase in mechanical strength and resistance to aggressive sulphates. It can be used in reinforced concrete structures. Laying of concrete, construction mortar made of alumina cement can be carried out even at temperatures of -10°C. This article discusses a comparison of the parameters of hardened mortar made of alumina cement GÓRKAL 40 and Portland cement CEM I 42.5R. The mortars contain an addition of chalcedonite meal with pozzolanic properties, with particle size of less than 0.063μm. The meal was added in amounts of 5% and 20% of cement weight. Chalcedonite meal used in the laboratory research is waste material, resulting from chalcedonite aggregate mining. It has the same properties as the rock from which it originates. We have compared the parameters of hardened mortar i.e. compressive strength, water absorption and capillarity. The addition of 20% chalcedonite meal to mortars made from aluminous cement will decrease durability by 6.1% relative to aluminous cement mortar without addition of meal. Considering the results obtained during the absorbency tests, it can be stated that the addition of chalcedonite meal reduces weight gains in mortars made with cement CEM I 42.5 R and alumina cement. Use of alumina cement without addition of meal in mortars causes an increase of mass by 248% compared to Portland cement mortars without additions, in the absorption tests. The addition of chalcedonite meal did not cause increased weight gain in the capillary action tests. For the alumina cement mortars, a lesser weight gains of 24.7% was reported, compared to the Portland cement mortar after 28 days of maturing.

  18. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation.

    Directory of Open Access Journals (Sweden)

    Michael Pujari-Palmer

    Full Text Available Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2 or prostaglandin E2 (PGE2, are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2, BMP-2 and vascular endothelial growth factor (VEGF, in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage. Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM, and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.

  19. Degradation of Alumina and Magnesia Chrome refractory bricks in Portland cement kiln – Corrected version*

    Directory of Open Access Journals (Sweden)

    Ben Addi K.

    2014-05-01

    Full Text Available In cement plants, the refractory products are particularly confronted to partially liquid oxide phases at temperature ranging between 900°C and 1700°C. All constituents of these products have to resist not only to thermal constraints, but also to the thermochemical solicitations which result from contact material/coating. In order to study the phenomenon of degradation of refractory bricks in cement kilns and to identify the causes of their degradation, we proceed to the examination of industrial cases in cement kiln. Many chemical tests of the degraded refractory bricks have been done and the results acquired were compared to the ones not used. The analysis of the results is doing using different techniques (Loss of ignition, X-ray Fluorescence, X-ray Diffraction. The results show that the degradation of the used bricks in the clinkering and cooling zone is due to the infiltration of aggressive elements such us sulphur, alkali (Na2O, K2O .... The chemical interaction between the Portland clinker phases and refractory material has also an importance on the stability of the coating and consequently on the life of the refractories.

  20. Dehydration kinetics of Portland cement paste at high temperature

    NARCIS (Netherlands)

    Zhang, Q.; Ye, G.

    2012-01-01

    Portland cement paste is a multiphase compound mainly consisting of calcium-silicate-hydrate (CSH) gel, calcium hydroxide (CH) crystal, and unhydrated cement core. When cement paste is exposed to high temperature, the dehydration of cement paste leads to not only the decline in strength, but also

  1. Effect of Cement Grades on some properties of Sandcrete ...

    African Journals Online (AJOL)

    The purpose of this study is to investigate the effects of cement grade on some properties of sandcrete. The cement used for this work was Ordinary Portland cement (Dangote brand) of grade 42.5 and 32.5 meeting the requirement of ASTM C150 type 1 cement. Three types of fine aggregate was also used to produce ...

  2. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  3. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  4. Coating for the fixation of superficial contamination of materials

    International Nuclear Information System (INIS)

    Brambilla, G.; Monari, D.; Pellicano, G.

    1984-01-01

    Low cost, commercially available and easy to apply coatings are examined to prevent metal corrosion and to limit cement dust formation during power reactor dismantling. Epoxy compounds are selected because of anticorrosive properties, ease of application on any support, even without preparation and they are efficient for 1 to 5 years. Containment and radiation resistance up to 600 Mrads are studied on samples coated with one or two layers. For application the airless system is the more appropriate. An equipment is concerned and for highly radioactive environment automation and remote operation with a modified commercial robot is studied

  5. Surface dispersive energy determined with IGC-ID in anti-graffiti-coated building materials

    OpenAIRE

    Carmona-Quiroga, Paula María; Rubio, J.; Sánchez, M. Jesús; Martínez-Ramírez, S.; Blanco-Varela, María Teresa

    2011-01-01

    Coating building materials with anti-graffiti treatments hinders or prevents spray paint adherence by generating low energy surfaces. This paper describes the effect of coating cement paste, lime mortar, granite, limestone and brick with two anti-graffiti agents (a water-base fluoroalkylsiloxane, “Protectosil Antigraffiti®”, and a Zr ormosil) on the dispersive component of the surface energy of these five construction materials. The agents were rediluted in their respective solvents at concen...

  6. Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia

    Science.gov (United States)

    Good, Brian

    2011-01-01

    Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.

  7. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition having properties as good as thermosetting acrylic or amino alkid resins is provided by employing active energy irradiation, particularly electron beams, using a radically polymerizable low molecular compound (A) (hereafter called an oligomer) containing at least two vinyl radicals in one molecule. This oligomer is produced by reacting an epoxy-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The composition (I) contains 10% - 100% of this oligomer. In embodiments, an oligomer having a fiberous trivinyl construction is produced by reacting 180 parts by weight of glycidyl methacrylate ester with 130 parts of itaconic acid in the presence of a polymerization-inhibitor and an addition reaction catalyst at 90 0 C for 6 hours. In practice, the coating material compositions (1), consist of the whole oligomer [I-1]; (2), consist of 10-90% of (A) component and 90%-10% of vinyl monomers containing at least 30% (meth) acrylic monomer [I-2]; (3), 10%-90% of component (A) and 90%-10% of other monomers containing at least two vinyl radicals [I-3]; (4), a mixture of (I-2) and (I-3), [I-4]; and (5), consist of 50% or less unsaturated polyester of 500-5,000 molecular weight range or drying oil, or alkyd resin of 500-5,000 molecular weight range modified by drying oil, [I-5]. As a catalyst a tertiary amino vinyl compound is preferred. Five examples are given. (Iwakiri, K.)

  8. Tooth surface treatment strategies for adhesive cementation.

    Science.gov (United States)

    Rohr, Nadja; Fischer, Jens

    2017-04-01

    The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. The highest bond strength values for all cements were achieved with etching and primer on enamel (25.6 ± 5.3 - 32.3 ± 10.4 MPa). On dentin, etching and priming produced the highest bond strength values for all cements (8.6 ± 2.9 - 11.7 ± 3.5 MPa) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only (15.3 ± 4.1 MPa). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied.

  9. The physics of water sorption by resin-modified glass-ionomer dental cements.

    Science.gov (United States)

    Nicholson, J W

    1997-11-01

    The water-sorption characteristics of two commercial resin-modified glass-ionomer dental cements (Baseline VLC, ex. Detrey Dentsply, and Vitremer lining cement, ex. 3M Dental Products) have been studied in more detail than previously. Water sorption in both cements proved to be rapid, reaching equilibrium at approximately 48 h for Baseline VLC and at approximately 10 d for Vitremer. Over the first 8 h or so, absorption was shown to follow Fick's law, with a diffusion coefficient of 1.56x10(-7) cm2 s(-1) for Baseline VLC (cured for 20 s) and 5.09x10(-7) cm2 s(-1) for Vitremer (also cured for 20 s). As expected, sorption of water was found to be faster in specimens cured for shorter cure times and slower for those cured for longer times. In the presence of sodium chloride, both at 0.9% and at 1 M, diffusion coefficients were significantly greater than in pure water, but did not vary significantly with sodium chloride concentration, being approximately 3.3x10(-7) cm2 s(-)1 for Baseline VLC and 8.0x10(-7) cm2 s(-1) for Vitremer. This is attributed to conformational changes in hydrophilic segments of the polymer on absorption of aqueous sodium chloride in which the molecules form more compact coils than in the presence of pure water. They thus create a microstructure that is more permeable to water. Sorption in salt solutions became non-Fickian much sooner than in pure water, i.e. at 3-4 h for both cements. This is probably due to concentration changes of salt within the cement, suggesting that these materials possess a degree of permselectivity. Finally, equilibrium water uptakes varied with salt concentration, being least in 1 M NaCl, which reflects the different chemical potentials of water in the various storage media.

  10. Durability of ultra-high performance concretes: role of the cement matrix

    International Nuclear Information System (INIS)

    Matte, Veronique

    1999-01-01

    The Reactive Powder Concretes (RPC), composed of Portland cement, silica fume, crushed quartz, fine sand and steel fibers, exhibit a very dense microstructure which limits the penetration of aggressive agents. They appear suitable for the storage of nuclear waste. This study aimed to determine experimentally the evolution of the RPC microstructure during a leaching attack by pure water, and to supply data required for the RPC long-term prediction of durability under these severe conditions. The steel fibers and mineral inclusions (sand and quartz) were considered as inert materials in the degradation process. Thus RPC matrices, and also a pure cement paste, and a cement and silica fume paste, were studied. The materials were characterised before and after a leaching test: microstructure by means of scanning electron microscopy, porosity, chemical and mineralogical composition, and diffusivity. A superficial degradation proceeds along a straight leaching front related to the dissolution of the remaining anhydrous cement silicates (C 3 S and C 2 S). The leaching of mineral species is controlled by the ionic diffusions from the material towards the aggressive solution. The degradation kinetics is proportional to the square root of time. As long as a sound core remains, the global behaviour of the partly degraded material is determined by the properties of the sound core. Two models related to the matrix transformation were used: DIFFU-Ca which characterised the leaching of calcium, and the 3D computer simulation of Portland cement hydration and microstructure development, from BENTZ and GARBOCZI. The digital results show a good agreement with the experimental values. This validates the hydration rates predicted with BENTZ and GARBOCZI and the phenomenology implemented in DIFFU-Ca. At the end of the study, it could be said that RPC appears as a suitable candidate for nuclear waste storage. The foreseen degradation depth after a 300 years leaching is about 1.4 cm in our

  11. Cemented materials in the LLW and MLW Spanish disposal

    Directory of Open Access Journals (Sweden)

    Guerrero, A.

    1999-09-01

    Full Text Available BWR and PWR cemented matrices to confine low and medium simulated liquid radioactive wastes have been submitted to the leaching process in de-ionized water at 20ºC and 40ºC, to obtain the medium leachability index (L and the effective diffusion coefficient (De of different ions. Otherwise, it has been studied the associated expansion of the backfilling mortar of the concrete containers of the Spanish repository of these wastes, due to a possible attack of the sulfate ions coming from the cemented matrices.

    Matrices cementicias confinantes tipo BWR y PWR de residuos simulados de baja y media radiactividad se han sometido a procesos de lixiviación en agua desionizada a 20ºC y 40ºC, obteniéndose los índices medios de lixiviación (L y el coeficiente de difusión efectiva (De de algunos iones. Por otra parte, se ha estudiado la expansión asociada a un mortero de relleno constitutivo del depósito de almacenamiento de los residuos, por posible ataque de los iones SO4-2 procedentes de las matrices.

  12. Diffusion coefficient in photon diffusion theory

    NARCIS (Netherlands)

    Graaff, R; Ten Bosch, JJ

    2000-01-01

    The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to

  13. Cementation of silver ions on metallic copper

    International Nuclear Information System (INIS)

    Jaskula, M.

    2009-01-01

    The silver cementation on metallic copper was investigated in the presence or absence of oxygen. The influence of sulphuric acid and copper sulphate concentration on the silver cement morphology was studied in details, and results were linked with the previously determined kinetics data of the process. The morpgology of silver depopsit was found to be independent of the prosence of oxygen in the system in as well as the sulphuric acide concentration. Contrary, the concentration of copper sulphate strongly influenced the morphology of silver deposite. Two-stage mechanism of cementation was proposed. (authors).

  14. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  15. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Claudy, P.M.; Letoffe, J.M.; Martin, D.; Planche, J.P.

    1998-01-01

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin C n H 2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20 g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-09-01

    To evaluate the chemical activity of Portland cement and two other cement types with similar chemical composition to mineral trioxide aggregate with the aim of developing these cements for further applications in dentistry. The chemical composition of the three cement types namely Portland cement, calcium sulpho-aluminate cement and calcium fluoro-aluminate cement was evaluated by elemental analysis using energy dispersive analysis with X-ray under the scanning electron microscope and by X-ray diffraction analysis (XRD) to determine the phases. The constituents of the hydration reaction by-products were evaluated by XRD analysis of the set cements at 1, 7, 28 and 56 days and by analysis of the leachate by ion chromatography. The pH of both cements and leachate was determined at different time intervals. Cements admixed with micro-silica were also tested to determine the effect of micro-silica on the reaction by-products. All three cement types were composed of tricalcium silicate as the main constituent phase. The hydration reaction of Portland cement produced calcium hydroxide. However, this was not present in the other cements tested at all ages. Admixed micro-silica had little or no effect on the cements with regard to reaction by-products. The pH of all cements tested was alkaline. Both the experimental calcium sulpho-aluminate cement and calcium fluoro-aluminate cement had different hydration reactions to that of Portland cement even though calcium silicate was the major constituent element of both cement types. No calcium hydroxide was produced as a by-product to cement hydration. Micro-silica addition to the cement had no effect on the hydration reaction.

  17. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede; Hansen, Kurt Kielsgaard

    2001-01-01

    The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal r...

  18. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes

    DEFF Research Database (Denmark)

    Loftager, Simon; García Lastra, Juan Maria; Vegge, Tejs

    2017-01-01

    a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO3 and LiFeBO3...... coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating–electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present...... electrode surfaces, large structural defects in the graphene coating are required for fast Li-ion diffusion. However, such defects are expected to exist only in small concentrations due to their high formation energies. Alternative coating geometries were therefore investigated, and the configuration...

  19. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  20. Geotechnical characterization of a triassic clay-cement mixes

    OpenAIRE

    Zokaitė, Kamilė

    2016-01-01

    Geotechnical Characterization of a Triassic Clay-Cement Mix. This thesis deals with modification of Triassic clay with cement, using soil-cement mixing method. For tracking of the changes in geotechnical parameters between clay-cement mix and natural Triassic clay, data from earlier researches were used. During the preparation of the clay-cement mix, 40 % of water was added to the dry natural clay. Also there were made three different groups of specimens were they had different amount of ceme...

  1. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives

    Directory of Open Access Journals (Sweden)

    Riaz Gillani

    2009-12-01

    Full Text Available Riaz Gillani1, Batur Ercan1, Alex Qiao3, Thomas J Webster1,21Division of Engineering, 2Department of Orthopaedics, Brown University, Providence, RI, USA; 3G3 Technology Innovations, LLC, Pittsford, NY, USAAbstract: Zirconia (ZrO2 and barium sulfate (BaSO4 particles were introduced into a methyl methacrylate monomer (MMA solution with polymethyl methacrylate (PMMA beads during polymerization to develop the following novel bone cements: bone cements with unfunctionalized ZrO2 micron particles, bone cements with unfunctionalized ZrO2 nanoparticles, bone cements with ZrO2 nanoparticles functionalized with 3-(trimethoxysilylpropyl methacrylate (TMS, bone cements with unfunctionalized BaSO4 micron particles, bone cements with unfunctionalized BaSO4 nanoparticles, and bone cements with BaSO4 nanoparticles functionalized with TMS. Results demonstrated that in vitro osteoblast (bone-forming cell densities were greater on bone cements containing BaSO4 ceramic particles after four hours compared to control unmodified bone cements. Osteoblast densities were also greater on bone cements containing all of the ceramic particles after 24 hours compared to unmodified bone cements, particularly those bone cements containing nanofunctionalized ceramic particles. Bone cements containing ceramic particles demonstrated significantly altered mechanical properties; specifically, under tensile loading, plain bone cements and bone cements containing unfunctionalized ceramic particles exhibited brittle failure modes whereas bone cements containing nanofunctionalized ceramic particles exhibited plastic failure modes. Finally, all bone cements containing ceramic particles possessed greater radio-opacity than unmodified bone cements. In summary, the results of this study demonstrated a positive impact on the properties of traditional bone cements for orthopedic applications with the addition of unfunctionalized and TMS functionalized ceramic nanoparticles

  2. Nano clay-enhanced calcium phosphate cements and hydrogels for biomedical applications

    Science.gov (United States)

    Jammalamadaka, Udayabhanu

    Biomaterials are used as templates for drug delivery, scaffolds in tissue engineering, grafts in surgeries, and support for tissue regeneration. Novel biomaterial composites are needed to meet multifaceted requirements of compatibility, ease of fabrication and controlled drug delivery. Currently used biomaterials in orthopedics surgeries suffer limitations in toxicity and preventing infections. Polymethyl methacrylate (PMMA) used as bone cement suffers from limitations of thermal necrosis and monomer toxicity calls for development of better cementing biomaterials. A biodegradable/bioresorbable cement with good mechanical properties is needed to address this short coming. Metal implants used in fixing fractures or total joint replacement needs improvements in preventing biofilm formation and better tissue integration. This research addressed the above mentioned research gaps by formulating novel biomaterial composites. Calcium phosphate cements are the alternative bone cements that are bioresorbable and promote tissue integration. These cements lack sufficient mechanical strengths to be used in load bearing sites. The addition of nanoparticles is hypothesized to improve the mechanical properties without inducing toxicity to the tissue. This hypothesis was tested by evaluating compression and flexural strengths in addition to cytocompatibility tests. Results indicate that addition of nano-clay particles (halloysites nanotubes) improved the compressive strength and osteoinductive properties of calcium phosphate cements. To address the research need of preventing implant failure due to infection and aseptic loosening, novel coatings are needed. Hydrogels are well establish for their ability to mimic in vivo environment, promote cell viability and as drug delivery vehicles. Use of composites of hydrogels and drug-loaded nanoparticles to prevent infection was evaluated. Cytocompatibility results indicate good cell viability. Antibacterial results show sustained release

  3. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability

    International Nuclear Information System (INIS)

    Gomes, Filipa O.; Pires, Ricardo A.; Reis, Rui L.

    2013-01-01

    Al-free glasses of general composition 0.340SiO 2 :0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na 2 O:0.060P 2 O 5 (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment. Highlights: ► We developed partially degradable, bioactive, Al-free glass-ionomer cements (GICs). ► Enhanced mechanical behavior was achieved using 63–125 μm glass particle size range. ► The highest mechanical resistance was obtained using poly(acrylic acid) of 50 kDa. ► Biodegradation was successfully tuned to start 8 weeks after GIC preparation. ► Zn release should be

  4. Influence of cementation and cement type on the fracture load testing methodology of anterior crowns made of different materials.

    Science.gov (United States)

    Stawarczyk, Bogna; Beuer, Florian; Ender, Andreas; Roos, Malgorzata; Edelhoff, Daniel; Wimmer, Timea

    2013-01-01

    To evaluate the influence of cementation on fracture load of anterior crowns made of CAD/CAM-resin-blocks (ART), leucite-reinforced glass-ceramics (LRG), lithium disilicate ceramics (LIT), veneered zirconia (ZRO) and veneered alloy (DEG). Each crown group (n=15/subgroup) was cemented on the metal abutment as follows: i. using glass ionomer, ii. using self-adhesive resin cement, and iii. not cemented. Crowns were tested and analyzed with 2-way and 1-way ANOVA (Scheffé test), and Weibull statistics (pcompared to other groups (pcrowns than for cemented (pmetal ceramic crowns should be generally cemented. Glass-ceramic crowns should be cemented using adhesive cement. Cementation and cement type did not have an influence on the fracture load results for resin, zirconia or lithium disilicate crowns.

  5. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (presin cement and differently sintered zirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  6. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  7. A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Chang, Yi-Lin; Fleiter, Tobias

    2016-01-01

    The cement industry is the second most energy-intensive sector in Taiwan, which underlines the need to understand its potential for energy efficiency improvement. A bottom-up model-based assessment is utilized to conduct a scenario analysis of energy saving opportunities up to the year 2035. The analysis is supported by detailed expert interviews in all cement plants of Taiwan. The simulation results reveal that by 2035, eighteen energy efficient technologies could result in 25% savings for electricity and 9% savings for fuels under the technical diffusion scenario. This potential totally amounts to about 5000 TJ/year, of which 91% can be implemented cost-effectively assuming a discount rate of 10%. Policy makers should support a fast diffusion of these technologies. Additionally, policy makers can tap further saving potentials. First, by decreasing the clinker share, which is currently regulated to a minimum of 95%. Second, by extending the prohibition to build new cement plants by allowing for replacement of existing capacity with new innovative plants in the coming years. Third, by supporting the use of alternative fuels, which is currently still a niche in Taiwan. - Highlights: •We analyze energy efficiency improvement potentials in Taiwan's cement industry. •Eighteen process-specific technologies are analyzed using a bottom-up model. •Our model systematically reflects the diffusion of technologies over time. •We find energy-saving potentials of 25% for electricity and 9% for fuels in 2035. •91% of the energy-saving potentials can be realized cost-effectively.

  8. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition is provided which can be hardened by irradiation with active energy, particularly electron beams, using a composition which contains 10%-100% of a radically polymerizable low molecular compound (A), (hereafter called an oligomer), having at least two vinyl radicals in one molecule. These compositions have a high degree of polymerization and characteristics equivalent to thermosetting acrylic or amino alkyd resin. The oligomer (A) is produced by reacting an epoxy-containing vinyl monomer with saturated polycarboxylic acids or anhydrides. In one embodiment, 146 parts by weight of adipic acid and 280 parts of glycidyl methacrylate ester undergo addition reaction in the presence of a polymerization-inhibitor and a catalyst at 90 0 C for 6 hours to produce an oligomer having a fiberous divinyl construction. The coating composition utilizes this oligomer in the forms of (I-1), a whole oligomer; (I-2), 0%-90% of this oligomer and 90%-10% of a vinyl monomer containing at least 30% of (meth) acrylic monomer; (I-3), 10%-90% of such oligomer and 90%-10% of other monomers containing at least two vinyl radicals in one molecule; (I-4), a mixture of (I-2) and (I-3) in proportion of 1/9 to 9/1, and (I-5), above four compositions each containing 50% or less unsaturated polyester or drying oil having 500-5,000 molecules or a drying oil-modified alkyd resin having 500-5,000 molecules. Four examples are given. (Iwakiri, K.)

  9. Wear and corrosion performance of metallurgical coatings in sodium

    International Nuclear Information System (INIS)

    Johnson, R.N.; Farwick, D.G.

    1980-01-01

    The friction, wear, and corrosion performance of several metallurgical coatings in 200 to 650 0 C sodium are reviewed. Emphasis is placed on those coatings which have successfully passed the qualification tests necessary for acceptance in breeder reactor environments. Tests include friction, wear, corrosion, thermal cycling, self-welding, and irradiation exposure under as-prototypic-as-possible service conditions. Materials tested were coatings of various refractory metal carbides in metallic binders, nickel-base and cobalt-base alloys and intermetallic compounds such as the aluminides and borides. Coating processes evaluated included plasma spray, detonation gun, sputtering, spark-deposition, and solid-state diffusion

  10. Finite Element Prediction for the Internal Stresses of (Ti,AlN Coatings

    Directory of Open Access Journals (Sweden)

    Żukowska L.W.

    2016-03-01

    Full Text Available The general topic of this paper is the computer simulation with use of finite element method (FEM for determining the internal stresses of selected gradient and single-layer PVD coatings deposited on the sintered tool materials, including cemented carbides, cermets and Al2O3+TiC type oxide tool ceramics by cathodic arc evaporation CAE-PVD method.

  11. Precipitation Static Electricity and Swept-Stroke Lightning Effects on Aircraft Transparency Coatings.

    Science.gov (United States)

    1977-12-01

    production type gold-based coating , Sierracote 303. SPECIMEN MOUNTING Electrica l Requirements The static electric tests of Reference 1, showed that...airframe and the silicone cement provided the necessary electrica l insulation around the edge of the specimen. Optical Regui rements Since the

  12. Shielding properties of fibre cement wallboard.

    Science.gov (United States)

    Thiele, D L; Godwin, G A; Coakley, K S

    1998-09-01

    Transmission data for a fibre cement wallboard (villaboard) are determined for use in diagnostic shielding designs. Villaboard is found to be more attenuating than plasterboard e.g. 9 mm of villaboard is equivalent to 16 mm of plasterboard.

  13. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  14. High performance concrete with blended cement

    International Nuclear Information System (INIS)

    Biswas, P.P.; Saraswati, S.; Basu, P.C.

    2012-01-01

    Principal objectives of the proposed project are two folds. Firstly, to develop the HPC mix suitable to NPP structures with blended cement, and secondly to study its durability necessary for desired long-term performance. Three grades of concrete to b considered in the proposed projects are M35, M50 and M60 with two types of blended cements, i.e. Portland slag cement (PSC) and Portland pozzolana cement (PPC). Three types of mineral admixtures - silica fume, fly ash and ground granulated blast furnace slag will be used. Concrete mixes with OPc and without any mineral admixture will be considered as reference case. Durability study of these mixes will be carried out

  15. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  16. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  17. Subgrade stabilization alternatives to lime and cement.

    Science.gov (United States)

    2010-04-15

    This project involved four distinct research activities, (1) the influence of temperature on lime-stabilized soils, (2) the influence of temperature on cement-stabilized soils (3) temperature modeling of stabilized subgrade and (4) use of calcium chl...

  18. Cementation of radioactive liquid scintillator waste simulate

    International Nuclear Information System (INIS)

    Bayoumi, T.A.

    2010-01-01

    Liquid scintillation counting is an important analytical tool with extensive applications in medicine and basic applied research and used in quantification of □ -particles, weak □ and x-rays. The generated spent liquid scintillator radioactive waste should be limited and controlled to protect man and his environment. In this study, the radioactive spent liquid scintillator waste simulate (SLS) was immobilized in cement matrix using a surfactant in order to facilitate and increase the amount of SLS incorporated into the cementitious materials. Mechanical properties of the final cement waste form were acceptable for blocks containing up to 20% SLS in presence of surfactant. X-ray diffraction, IR analysis and scanning electron microscope proved that the hydration of cement materials is not significantly affected by organic scintillator waste. Therefore, the cement matrix could be recommended for solidification of SLS for the acceptable mechanical, physical and chemical characterizations reached.

  19. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    Directory of Open Access Journals (Sweden)

    M.I. Abdou

    2016-06-01

    Full Text Available Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement in concrete. Properties of hardened concrete such as compressive strength, flexural strength, and permeability have been assessed and analyzed. Cubic specimens and beams were produced and cured in a curing tank for 7 and 28 days. Testing results have shown that additions of silica fume to cement between 5% and 7%, which acts as a filler and cementations material, developed high flexural and compressive strength with reduction of permeability.

  20. Mathematical modelling of transport phenomena in radioactive waste-cement-bentonite matrix

    International Nuclear Information System (INIS)

    Plecas, Ilija; Dimovic, Slavko

    2010-01-01

    Document available in extended abstract form only. The leaching rate of 137 Cs from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source an equation for diffusion coupled to a first-order equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center. Radioactive waste is waste material containing radioactive chemical elements which does not have a practical purpose. It is often the product of a nuclear process, such as nuclear fission. Waste can also be generated from the processing of fuel for nuclear reactors or nuclear weapons. The main objective in managing and disposing of radioactive (or other) waste is to protect people and the environment. This means isolating or diluting the waste so that the rate or concentration of any radionuclides returned to the biosphere is harmless. Storage as the placement of waste in a nuclear facility where isolation, environmental protection and human control are provided with the intent that the waste will be retrieved at a later time. Disposal as the emplacement of waste in an approved, specified facility (e.g. near surface or geological repository) without the intention of retrieval. The processing of radioactive wastes may be done for economic reasons (e.g. to reduce the volume for storage or disposal, or to recover a 'resource' from the waste), or safety reasons (e.g. converting the waste to a more 'stable' form, such as one that will contain the radionuclide inventory for a long time). Typically processing involves reducing

  1. Topics in cement and concrete research

    OpenAIRE

    Brouwers, Jos; Russel, M.I.; Basheer, P.A.M.

    2007-01-01

    The present paper addresses several topics in regard to the sustainable design and use of concrete. First, major features concerning the sustainable aspects of the material concrete are summarised. Then the major constituent, from an environmental point of view, cement is discussed in detail, particularly the hydration and application of slag cement. The intelligent combining of mineral oxides, which are found in clinker, slag, fly ashes etc., is designated as mineral oxide engineering. It re...

  2. Alternative Fuels in Cement Clinker Production Process

    OpenAIRE

    , E Zaka; , R Pinguli; , J Gabili; , E Arapi

    2016-01-01

    Cement industry in Albania is experiencing a rapid development, but this industry is distinguished for high consumption of resources. Cement manufacturing companies do constantly researches on reducing the production cost by optimizing the equipments, replacing raw materials and fuel. However, alternative fuels should be alternative according to the process requirements, easily obtainable in quantity, and with a lower cost. Since the combustible fuels are becoming increasingly important, this...

  3. Tooth surface treatment strategies for adhesive cementation

    OpenAIRE

    Rohr, Nadja; Fischer, Jens

    2017-01-01

    PURPOSE The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one sel...

  4. Study on properties and testing methods of thermo-responsive cementing system for well cementing in heavy oil thermal recovery

    Science.gov (United States)

    Li, Lianjiang

    2017-08-01

    In this paper, thermo-responsive cement slurry system were being developed, the properties of conventional cement slurry, compressive strength high temperature of cement sheath, mechanical properties of cement sheath and thermal properties of cement sheath were being tested. Results were being used and simulated by Well-Life Software, Thermo-responsive cement slurry system can meet the requirements of heavy oil thermal recovery production. Mechanical and thermal properties of thermo-responsive cement sheath were being tested. Tensile fracture energy of the thermo-responsive cement sheath is larger than conventional cement. The heat absorption capacity of conventional cement sheath is larger than that of thermo-responsive cement sheath, this means more heat is needed for the unit mass once increasing 1.0 °C, which also indicates that thermo-responsive cement own good heat insulating and preservation effects. The heat conductivity coefficient and thermal expansion coefficient of thermo-responsive cement is less than and conventional cement, this means that thermo-responsive cement have good heat preservation and insulation effects with good thermal expansion stabilities.

  5. Evaluation of the amount of excess cement around the margins of cement-retained dental implant restorations: the effect of the cement application method.

    Science.gov (United States)

    Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza

    2013-04-01

    Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the

  6. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  7. Case Study of the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  8. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  9. Improving the connection between wood and cement using LBL nanocoating to create a lightweight, eco-friendly structural material

    Science.gov (United States)

    Bejo, L.; Major, B.; Csoka, L.; Hantos, Z.; Karacsonyi, Zs

    2016-04-01

    Structural elements made out of cement bonded wood may be an excellent alternative to flammable organic bonded composite beams, and CO2 intensive, heavy and nonrenewable reinforced concrete. Unfortunately, preliminary studies showed that a sufficient load-bearing performance is difficult to achieve. Improving the compatibility of cement and wood by LbL nanocoating may be a significant step towards creating viable cement bonded wood load bearing elements. The study involved creating multi layer nanocoating on the surface of poplar veneer using various polyelectrolyte combinations and numbers of treatment cycles, and testing the withdrawal resistance of the samples from a cement matrix. PDDA-PSS treatment was found to form increasingly uniform coating on the surface of wood, while the results were less straightforward for PAH-PSS. Both types and all levels of treatment caused dramatic improvement in load withdrawal resistance. The best result - a more than tenfold improvement - was achieved by at least 10 cycles of PDDA-PSS treatment. PAH-PSS treatment yielded a somewhat more modest improvement, which was already evident after five treatment cycles. The results point to the excellent potential of LbL nanocoating for creating cement bonded structural wood based composite materials.

  10. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics.

    Science.gov (United States)

    Osorio, Raquel; Castillo-de Oyagüe, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-07-01

    To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al₂O₃-particles); and Group 3: Silica-coating (50 µm silica-modified Al₂O₃-particles). Composite samples were randomly bonded to the pretreated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm² sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups.

  11. Microstructural investigations of Ni and Ni2Al3 coatings exposed in biomass power plants

    DEFF Research Database (Denmark)

    Wu, D. L.; Dahl, K. V.; Christiansen, T. L.

    2018-01-01

    temperature pack cementation. After exposure, microstructural investigations were performed by light optical and electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in straw firing power plants and exhibited similar corrosion morphology as uncoated tubes. For Ni2Al3 coatings......The present work investigates the corrosion resistance of Ni and Ni2Al3 coated austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired boiler with an outlet steam temperature of 540 °C for 6757 h. The Ni2Al3 coating was produced by electroplating Ni followed by low......, the nickel aluminide layer was no longer adherent to the tube and was only found within the deposit. However, Ni2Al3 coatings had provided some protection compared to uncoated and Ni coated tubes. The formation of nickel chloride binds aggressive chlorine and slows down the active oxidation mechanism...

  12. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental?

    Science.gov (United States)

    Takahashi, E; Kaneuji, A; Tsuda, R; Numata, Y; Ichiseki, T; Fukui, K; Kawahara, N

    2017-05-01

    Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep. We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem. A strong positive correlation was observed between mean cement thickness and stem subsidence in the CT slices on the balls. In the small stems, the balls moved downward to almost the same extent as the stem. There was a significant negative correlation between cement thickness and the horizontal:downward ratio of ball movement. Collarless polished tapered stems with thicker cement mantles resulted in greater subsidence of both stem and cement. This suggests that excessive thickness of the cement mantle may interfere with effective radial cement creep. Cite this article: E. Takahashi, A. Kaneuji, R. Tsuda, Y. Numata, T. Ichiseki, K. Fukui, N. Kawahara. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental? Bone Joint Res 2017;6:-357. DOI: 10.1302/2046-3758.65.BJR-2017-0028.R1. © 2017 Kaneuji et al.

  13. In vitro tensile strength of luting cements on metallic substrate.

    Science.gov (United States)

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  14. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  15. Recobrimento da liga Ti-6Al-4V com hidroxiapatita pelo método sol-gel e sua aplicação a hastes femorais não-cimentadas Coating of Ti-6Al-4V alloy with hydroxyapatite by using sol-gel method and its application to non-cemented femoral stem

    Directory of Open Access Journals (Sweden)

    E. P. Avés

    2008-12-01

    Full Text Available O recobrimento de ligas metálicas com cerâmicas bioativas visa acelerar a formação óssea ao redor do implante, contribuindo para a sua estabilização. Neste trabalho estudou-se a fase cerâmica de hidroxiapatita depositada pelo processo sol-gel em chapas da liga metálica Ti-6Al-4V. A camada de recobrimento foi caracterizada por microscopia eletrônica de varredura, por difração de raios X e sua adesão ao substrato foi avaliada pelo teste de cisalhamento O teste de citocompatibilidade mostrou que o processo de recobrimento por sol-gel não promoveu morte celular significativamente maior que o controle (p > 0,05. Além disso, hastes femorais removidas de pacientes (explantes foram adequadamente recobertas utilizando-se o processo sol-gel.The coating of metallic alloys with bioactive ceramics aims to accelerate bone formation around the implant, contributing to its fixation. In this paper, the deposition of hydroxyapatite ceramic on Ti-6Al-4V alloy sheets by the sol-gel method was studied. The coating layer was characterized by scanning electron microscopy, X-ray diffraction and its adhesion to substrate was evaluated by shear testing. The citocompatibility test shows that the sol-gel coating did not provoke the cell death significantly higher than the control (p > 0.05. Moreover, femoral stems removed from patient (explants were adequately coated using the sol-gel process.

  16. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  17. Modified Glass Ionomer Cement with “Remove on Demand” Properties: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Shaza Bishti

    2017-01-01

    Full Text Available Objectives: To investigate the influence of different temperatures on the compressive strength of glass ionomer cement (GIC modified by the addition of silica-coated wax capsules; Material and Methods: Commercially-available GIC was modified by adding 10% silica-coated wax capsules. Test blocks were fabricated from pure cement (control and modified cement (test, and stored in distilled water (37 °C/23 h. The compressive strength was determined using a universal testing machine under different temperatures (37 °C, 50 °C, and 60 °C. The maximum load to failure was recorded for each group. Fractured surfaces of selected test blocks were observed by scanning electron microscopy (SEM; Results: For the control group, the average compressive strength was 96.8 ± 11.8, 94.3 ± 5.7 and 72.5 ± 5.7 MPa for the temperatures 37 °C, 50 °C and 60 °C respectively. The test group reported compressive strength of 64.8 ± 5.4, 47.1 ± 5.4 and 33.4 ± 3.6 MPa at 37 °C, 50 °C and 60 °C, respectively. This represented a decrease of 28% in compressive strength with the increase in temperature from 37 °C to 50 °C and 45% from the 37 °C to the 60 °C group; Conclusion: GIC modified with 10% silica-coated wax capsules and temperature application show a distinct effect on the compressive strength of GIC. Considerable compressive strength reduction was detected if the temperature was above the melting temperature of the wax core.

  18. Ceramic residue for producing cements, method for the production thereof, and cements containing same

    OpenAIRE

    Sánchez de Rojas, María Isabel; Frías, Moisés; Asensio, Eloy; Medina Martínez, César

    2014-01-01

    [EN] The invention relates to a ceramic residue produced from construction and demolition residues, as a puzzolanic component of cements. The invention also relates to a method for producing said ceramic residues and to another method of producing cements using said residues. This type of residue is collected in recycling plants, where it is managed. This invention facilitates a potential commercial launch.

  19. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  20. Machinability and scratch wear resistance of carbon-coated WC inserts

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivel, B., E-mail: palcecri@yahoo.co.in; Kumar, T. Prem; Sozhan, G.

    2015-03-15

    Highlights: • Cemented WC inserts were coated with carbon by CVD. • The deposits were either loosely held MWCNTs or adherent carbides. • Co-efficient of friction (ramp load; 1–13 N); 0.2 and 0.1 μ, respectively, for the uncoated and carbide-coated inserts. • The carbide-coated insert exhibited better machinability and surface finish than a commercial TiCN-coated insert. - Abstract: In this work, cemented tungsten carbide (WC) inserts were coated with nanocarbons/carbides by chemical vapor deposition (CVD) and their machinability and scratch wear resistance were investigated. The hardness and surface conditions of the WC substrate were studied before and after coating. The CVD-generated nanocarbons on the insert surfaces were examined by SEM, FE-SEM and TEM. The electron microscopic images revealed that the carbons generated were multi-walled carbon nanotubes (MWCNTs) or carbides depending on the experimental conditions. In both the cases, the cutting edges of the inserts had dense deposits. Scratch wear test with the coated inserts showed that the co-efficient of friction was 0.1 μ as against 0.2 μ for the uncoated inserts under a ramp load of 1–13 N. The machinability characteristics of commercially available TiCN-coated inserts and the carbon-coated WC inserts were compared by using a CNC machine and a Rapid I vision inspection system. It was found that the carbide-coated inserts exhibited machinability with better surface finish comparable to that of the TiCN-coated inserts while the MWCNT-coated inserts showed inferior adhesion properties.

  1. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    Directory of Open Access Journals (Sweden)

    Ramírez-Arellanes, S.

    2012-09-01

    Full Text Available The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases setting times, reduces flow, slows cement hydration, and inhibits the formation of calcium hydroxide crystals in comparison with the control. Capillary absorption was significantly reduced in concrete containing mucilage, and chloride diffusion coefficients dropped up to 20% in the mixture with a mucilage/cement ratio = 0.30. The mixture with a mucilage/cement ratio = 0.45 displayed marginal reduction, and the mixture with mucilage/cement ratio = 0.60 exhibited a diffusion coefficient that was greater than the control for the specimens without moist curing.En esta investigación se evaluó el efecto de una solución de mucílago de nopal al 3% en los tiempos de fraguado, fluidez, hidratación y microestructura de pastas de cemento, y absorción capilar de agua y difusión de cloruros en concreto. La hidratación fue caracterizada por XRD y la microestructura por medio de SEM. Las relaciones solución de mucílago/cemento y agua/cemento fueron 0,30; 0,45 y 0,60. Los resultados en las pastas de cemento indican que el mucílago retarda los tiempos de fraguado, reduce la fluidez, retarda la hidratación del cemento, e inhibe la formación de cristales de hidróxido de calcio, comparados con los controles. La absorción capilar en concreto conteniendo mucílago se redujo significativamente y los coeficientes de difusión de cloruros disminuyeron hasta 20% en la mezcla mucílago/cemento = 0.30. En la relación mucílago/cemento = 0.45 la reducción fue marginal y

  2. Cement for oil well developed from ordinary cement: characterization physical, chemical and mineralogical

    International Nuclear Information System (INIS)

    Oliveira, D.N.S.; Neves, G. de A.; Chaves, A.C.; Mendonca, A.M.G.D.; Lima, M.S. de; Bezerra, U.T.

    2012-01-01

    This work aims to characterize a new type of cement produced from the mixture of ordinary Portland cement, which can be used as an option in the cementing of oil wells. To enable this work we used the method of lineal programming for the new cement composition, then conducted tests to characterize through particle size analysis by laser diffraction, chemical analysis by EDX, TGA, X-ray diffraction, time grip, resistance to compression. The overall result showed that the new cement had made low-C3A, takes more time to the CPP, thermal stability up to 500 ° C, the kinetics of hydration and low levels of major components consistent with the specifications of ABNT. (author)

  3. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag...... (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  4. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  5. Verification of the integrity of barriers using gas diffusion

    International Nuclear Information System (INIS)

    Ward, D.B.; Williams, C.V.

    1997-06-01

    In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier's integrity after emplacement, and monitoring of the barrier's performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF 6 ) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF 6 diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF 6 through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days

  6. Verification of the integrity of barriers using gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Ward, D.B. [SPECTRA Research Inst., Albuquerque, NM (United States); Williams, C.V. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies Dept.

    1997-06-01

    In-situ barrier materials and designs are being developed for containment of high risk contamination as an alternative to immediate removal or remediation. The intent of these designs is to prevent the movement of contaminants in either the liquid or vapor phase by long-term containment, essentially buying time until the contaminant depletes naturally or a remediation can be implemented. The integrity of the resultant soil-binder mixture is typically assessed by a number of destructive laboratory tests (leaching, compressive strength, mechanical stability with respect to wetting and freeze-thaw cycles) which as a group are used to infer the likelihood of favorable long-term performance of the barrier. The need exists for a minimally intrusive yet quantifiable methods for assessment of a barrier`s integrity after emplacement, and monitoring of the barrier`s performance over its lifetime. Here, the authors evaluate non-destructive measurements of inert-gas diffusion (specifically, SF{sub 6}) as an indicator of waste-form integrity. The goals of this project are to show that diffusivity can be measured in core samples of soil jet-grouted with Portland cement, validate the experimental method through measurements on samples, and to calculate aqueous diffusivities from a series of diffusion measurements. This study shows that it is practical to measure SF{sub 6} diffusion rates in the laboratory on samples of grout (Portland cement and soil) typical of what might be used in a barrier. Diffusion of SF{sub 6} through grout (Portland cement and soil) is at least an order of magnitude slower than through air. The use of this tracer should be sensitive to the presence of fractures, voids, or other discontinuities in the grout/soil structure. Field-scale measurements should be practical on time-scales of a few days.

  7. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, S.; Atkins, M.; Beckley, N.; Carson, S.

    1986-11-01

    Experimental and theoretical studies of hydrated cement systems are described. The behaviour of slag-based cement is described with a view to predicting their long term pH, Esub(n) and mineralogical balance. Modelling studies which enable the prediction at long ages of cement composites are advanced and a base model of the CaO-SiO 2 -H 2 O system presented. The behaviour of U and I in cements is explored. The tolerance of cement systems for a wide range of miscellaneous waste stream components and environmental hazards is described. The redox potential in cements is effectively lowered by irradiation. (author)

  8. Quality control of cemented waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Slate, L.J.

    1994-12-31

    To insure that cemented radwaste remains immobilized after disposal, certain standards have been set in Europe by the Commission of the European Communities. One such standard is compressive strength. If the compressive strength can be predicted during the early curing stages, time and money can be saved and the quality of the final waste form guaranteed. It was determined that the 7- and 28-day compressive strength from radwaste cementation can be predicted during the mixing and early curing stages by at least three methods. The three that were studied were maturity, rheology, and impedance. Maturity is a temperature-to-time measurement, rheology is a shear stress-to-shear rate measurement, and impedance is the opposition offered to the flow of alternating current. These three methods were employed on five different cemented radwaste concentrations with three different water-to-cement ratios; thus, a total of 15 different mix designs were considered. The results showed that the impedance was the easiest to employ for an on-line process. The results of the impedance method showed a very good relationship between impedance and water-to-cement ratio; therefore, an accurate prediction of compressive strength of cemented radwaste can be drawn from this method. The results of the theology method were very good. The method showed that concrete conforms to the Bingham plastic rheologic model, and the theology method can be used to predict the compressive strength of cemented radwaste, but may be too cumbersome. The results of the maturity method were shown to be limited in accuracy for determining compressive strength.

  9. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  10. Effect of wet curing duration on durability parameters of hydraulic cement concretes.

    Science.gov (United States)

    2010-01-01

    Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...

  11. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents.

    Science.gov (United States)

    Li, Dongliang; Liu, Xinrong; Liu, Xianshan

    2015-07-02

    Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  12. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents

    Directory of Open Access Journals (Sweden)

    Dongliang Li

    2015-07-01

    Full Text Available Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08 under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa were obtained. Based on the test results, the effect of the cementing agent content (Cv on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using Cv. The research reveals that when Cv is high (e.g., Cv = 0.03, 0.05 or 0.08, the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as Cv increases, both the peak strength and residual strength of the samples show a significant increase. When Cv is low (e.g., Cv = 0.01, the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of Cv (the cementing agent content with c′ (the cohesion force of the sample and Δϕ′ (the increment of the angle of shearing resistance is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  13. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Adriana Eštoková

    2013-12-01

    Full Text Available The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg−1, 9.78–26.3 Bq·kg−1 and 156.5–489.4 Bq·kg−1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg−1, gamma index Iγ = 0.256, alpha index Iα = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h−1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg−1 for 226Ra, 13.1–20.5 Bq·kg−1 for 232Th and 250.4–494.4 Bq·kg−1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites.

  14. Colorectal cancer and non-malignant respiratory disease in asbestos cement and cement workers

    International Nuclear Information System (INIS)

    Jacobsson, K.

    1993-09-01

    Radiologically visible parenchymal changes (small opacities >= 1/0;ILO 1980 classification) were present in 20% of a sample of workers (N=174), employed for 20 years (median) in an asbestos cement plant. Exposure-response relationships were found, after controlling for age and smoking habits. In a sample of asbestos cement workers with symptoms and signs suggestive of pulmonary disease (N=33), increased lung density measured by x-ray computed tomography, and reduced static lung volumes and lung compliance was found. In a cohort of asbestos cement workers (N=1.929) with an estimated median exposure of 1.2 fibres/ml, the mortality from non-malignant respiratory disease was increased in comparison to a regional reference cohort (N=1.233). A two-to three-fold increase of non-malignant respiratory mortality was noted among workers employed for more than a decade in the asbestos cement plant, compared to cement workers (N=1.526), who in their turn did not experience and increased risk compared to the general population. In the cohorts of asbestos cement and cement workers, there was a tow-to three-fold increased incidence of cancer in the right part of the colon, compared to the general population as well as to external reference cohorts of other industrial workers (N=3.965) and fishermen (N=8.092). A causal relation with the exposure to mineral dust and fibres was supported by the findings of higher risk estimated in subgroups with high cumulated asbestos doses or longer duration of cement work. The incidence of cancer in the left part of the colon was not increased. Morbidity data, but not mortality data, disclosed the subsite-specific risk pattern. Both asbestos cement workers and cement workers has an increased incidence of rectal cancer, compared with the general population, and with the fishermen. The risk was, however, of the same magnitude among the other industrial workers. 181 refs

  15. Investigation of the interfacial condition between bioceramic coatings and metallic substrates using guided waves

    Science.gov (United States)

    Saffari, Nader; Ong, Chuon-Szen

    2001-04-01

    The work reported here is on the characterization of the interfacial properties between plasma-sprayed Hydroxyapatite coatings on titanium substrates as used in cement-less hip orthopaedic implants. The phase velocity dispersion for the first Rayleigh-type mode for the coating-substrate system has been shown to be sensitive to the interfacial stiffness. Different interfacial conditions between the coating and substrate have been obtained by cyclic loading of the specimens in a four-point bend fatigue machine. The measured interfacial stiffness is then correlated with the interfacial fracture strength obtained by standard destructive shear tests.

  16. Calcium silicate bioactive cements: Biological perspectives and clinical applications.

    Science.gov (United States)

    Prati, Carlo; Gandolfi, Maria Giovanna

    2015-04-01

    To introduce and to examine the research progress and the investigation on hydraulic calcium silicate cements (HCSCs), well-known as MTA (mineral trioxide aggregate). This review paper introduces the most important investigations of the last 20 years and analyze their impact on HCSCs use in clinical application. HCSCs were developed more than 20 years ago. Their composition is largely based on Portland cement components (di- and tri-calcium silicate, Al- and Fe-silicate). They have important properties such as the ability to set and to seal in moist and blood-contaminated environments, biocompatibility, adequate mechanical properties, etc. Their principal limitations are long setting time, low radiopacity and difficult handling. New HCSCs-based materials containing additional components (setting modulators, radiopacifying agents, drugs, etc.) have since been introduced and have received a considerable attention from laboratory researchers for their biological and translational characteristics and from clinicians for their innovative properties. HCSCs upregulate the differentiation of osteoblast, fibroblasts, cementoblasts, odontoblasts, pulp cells and many stem cells. They can induce the chemical formation of a calcium phosphate/apatite coating when immersed in biological fluids. These properties have led to a growing series of innovative clinical applications such as root-end filling, pulp capping and scaffolds for pulp regeneration, root canal sealer, etc. The capacity of HCSCs to promote calcium-phosphate deposit suggests their use for dentin remineralization and tissue regeneration. Several in vitro studies, animal tests and clinical studies confirmed their ability to nucleate apatite and remineralize and to induce the formation of (new) mineralized tissues. HCSCs play a critical role in developing a new approach for pulp and bone regeneration, dentin remineralization, and bone/cementum tissue healing. Investigations of the next generation HCSCs for

  17. Diffusion zinc plating of structural steels

    International Nuclear Information System (INIS)

    Kazakovskaya, Tatiana; Goncharov, Ivan; Tukmakov, Victor; Shapovalov, Vyacheslav

    2004-01-01

    The report deals with the research on diffusion zinc plating of structural steels when replacing their cyanide cadmium plating. The results of the experiments in the open air, in vacuum, in the inert atmosphere, under various temperatures (300 - 500 deg.C) for different steel brands are presented. It is shown that diffusion zinc plating in argon or nitrogen atmosphere ensures obtaining the qualitative anticorrosion coating with insignificant change of mechanical properties of steels. The process is simple, reliable, ecology pure and cost-effective. (authors)

  18. The Ni-Al-Hf Multiphase Diffusion

    Directory of Open Access Journals (Sweden)

    Romanowska J.

    2016-06-01

    Full Text Available The generalized Darken method was applied to simulate the diffusion between γ-Ni| γ’-Ni3Al and γ’-Ni3Al|β-NiAl interfaces. The results of calculations were compared with the experimental concentration’s profiles of nickel, aluminum and hafnium in aluminide and hafnium doped aluminide coatings deposited by the CVD and PVD methods on pure nickel. The method deals with the Wagner’s integral diffusion coefficients and thermodynamic data - activities of components. The experimental results agree with the simulated ones.

  19. Transition Metal Coatings for Energy Conversion and Storage; Electrochemical and High Temperature Applications

    Science.gov (United States)

    Falola, Bamidele Daniel

    sequestration easier. One complication of oxyfuel coal combustion is that corrosion problems can be exacerbated due to flue gas recycling, which is employed to dilute the pure O2 feed and reduce the flame temperature. Refractory metal diffusion coatings of Ti and Zr atop P91 steel were created and tested for their ability to prevent corrosion in an oxidizing atmosphere at elevated temperature. Using pack cementation, diffusion coatings of thickness approximately 12 and 20 microm are obtained for Ti and Zr, respectively. The effects of heating to 950°C for 24 hr in 5% O2 in He are studied in situ by thermogravimetric analyses (TGA), and ex situ by SEM analyses and depth profiling by EDX. For Ti-coated, Zr-coated and uncoated P91 samples, extended heating in an oxidizing environment causes relatively thick oxide growth, but extensive oxygen penetration greater than 2.7 mm below the sample surface, and eventual oxide exfoliation, are observed only for the uncoated P91 sample. For the Ti- and Zr-coated samples, oxygen penetrates approximately 16 and 56 microm, respectively, below the surface. in situ TGA verifies that Ti-and Zr-coated P91 samples undergo far smaller mass changes during corrosion than uncoated samples, reaching close to steady state mass after approximately four hours.

  20. Investigation of Expanding Cements. Report 1. Summary of Information Available as of 1 July 1963

    Science.gov (United States)

    1965-09-01

    research) be tamed and utiliz -a. Today, expectations of such kind may with some right be stamped as banalities, and one might prefer the more limited...the following tabulation: Cementing Material,% by weight Grout Portland Expansive Aluminium Mi_z Type of Grout Cement Fly Ash Component Powder A 8o 20...tures, as a function of the behaviour of cements. Cold cements-- workable cements--ductile cements--non-shrinking cements and cements with controlled

  1. Excess Entropy and Diffusivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.

  2. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  3. Alpha radioactivity in Indian cement samples

    International Nuclear Information System (INIS)

    Nain, M.; Chauhan, R. P.; Chakarvarti, S. K.

    2006-01-01

    The essential constituents of radioactive and each of cements like lime, silica and alumina are derived from earth's crust in which radioactive elements like uranium, thorium etc are also present in varying amounts almost everywhere. These two elements are considered as the parent elements of uranium and thorium radioactive decay series in which radon and thoron are produced respectively as decay products. In the present study the samples of ordinary Portland cement , Portland pozzolana cement and some other cementious finishing materials like white cement, Plaster of Paris , cement putty etc were collected and analysed for radium and radon concentrations along with radon exhalation rates. Materials and Methods: Alpha sensitive LR-115 Type II plastic track detectors commonly known as S olid State Nuclear Track Detectors w ere used to measure the radium and radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The Chemical etching in NaOH at 60 C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon and radium concentrations along with exhalation rate of radon, were determined using required formulae. Results: The radon and radium concentration in various brands of cements found to vary from 333±9.9 to 506±13.3 Bq m-3 and from 3.7±0.1 to 5.6±0.2 Bq k g-1 while in various cementious finishing materials used in the construction, these were found to vary from 378±19.7 to 550±9.8 Bq m-3 and from 4.2±0.2 to 6.1±0.1 Bq Kg-1, respectively. Based on the data the mass and surface exhalation rates were also calculated Conclusion: The measurements indicate that there is marginal variation of the concentration of radium and radon in various brands of cements in India with lower levels in the cement samples having red oxide and higher levels in fly ash based cement

  4. Diffusion under water-saturated conditions in PFA/OPC-based structural concrete

    International Nuclear Information System (INIS)

    Harris, A.W.; Nickerson, A.K.

    1990-05-01

    A substantial proportion of the volume of the UK radioactive waste repository is likely to be composed of materials based on hydraulic cements. This includes the structural components, which are likely to be manufactured from concrete. The mass transport characteristics of dissolved species for a typical structural concrete, based on a mixture of pulverised fuel ash and ordinary Portland cement, have been measured in a water-saturated condition. Both the water permeability and the diffusion parameters (for caesium, strontium and iodide ion and tritiated water diffusion) are low compared to values obtained for other structural concretes. The intrinsic diffusion coefficients for iodide and caesium ions are in the range 2-5x10 -14 m 2 s -1 . There is no evidence of significant sorption of any of the diffusants studied. (author)

  5. The influence of temporary cements on dental adhesive systems for luting cementation.

    Science.gov (United States)

    Ribeiro, José C V; Coelho, Paulo G; Janal, Malvin N; Silva, Nelson R F A; Monteiro, André J; Fernandes, Carlos A O

    2011-03-01

    This study tested the hypothesis that bond strength of total- and self-etching adhesive systems to dentine is not affected by the presence of remnants from either eugenol-containing (EC) or eugenol-free (EF) temporary cements after standardized cleaning procedures. Thirty non-carious human third molars were polished flat to expose dentine surfaces. Provisional acrylic plates were fabricated and cemented either with EC, EF or no temporary cements. All specimens were incubated for 7 days in water at 37°C. The restorations were then taken out and the remnants of temporary cements were mechanically removed with a dental instrument. The dentine surfaces were cleaned with pumice and treated with either total-etching (TE) or self-etching (SE) dental adhesive systems. Atomic force microscopy was used to examine the presence of remnants of temporary cements before and after dentine cleaning procedures. Composite resin build-ups were fabricated and cemented to the bonded dentine surfaces with a resin luting cement. The specimens were then sectioned to obtain 0.9mm(2) beams for microtensile bond strength testing. Fractographic analysis was performed by optical and scanning electron microscopy. ANOVA showed lower mean microtensile bond strength in groups of specimens treated with EC temporary cement than in groups treated with either no cement or an EF cement (p<0.05). Mean microtensile bond strength was lower in groups employing the SE rather than the TE adhesive system (p<0.001). SE samples were also more likely to fail during initial processing of the samples. There was no evidence of interaction between cement and adhesive system effects on tensile strength. Fractographic analysis indicated different primary failure modes for SE and TE bonding systems, at the dentine-adhesive interface and at the resin cement-resin composite interface, respectively. The use of eugenol-containing temporary cements prior to indirect bonding restorations reduce, to a statistically similar

  6. Hybrid Alkaline Cements: Bentonite-Opc Binders

    Directory of Open Access Journals (Sweden)

    Ines Garcia-Lodeiro

    2018-03-01

    Full Text Available Moderately alkaline activators can be used to formulate cementitious binders with a high Supplemetary Cementitious Materials (SCMs and a low portland cement content (hybrid alkaline cements. This study aimed to prepare hybrid alkaline cements containing large percentages of dehydroxylated bentonite (BT and small Portland cement (OPC fractions, with 5% Na2SO4 as a solid alkaline activator. The hydration kinetics of the pastes hydrated in water in the presence and absence of the solid activator were assessed by isothermal conduction calorimetry, whilst the reaction products were characterised with X-Ray Powder Diffraction (XRD and Fourier-transform Infrared Spectroscopy (FTIR. The presence of the alkaline activator hastened OPC and BT/OPC hydration: more heat of hydration was released, favouring greater initial bentonite reactivity. The portlandite forming during cement hydration reacted readily with the Na2SO4, raising medium alkalinity and enhancing bentonite dissolution and with it reaction product precipitation (primarily (N,C-A-S-H-like gels that co-exist with C-S-H- or C-A-S-H-like gels. The presence of sulfate ions favoured the formation of AFm-like phases. Preceding aspects accelerated the hydration reactions, with the formation of more reaction product and matrix densification. As a result, the 28 days Na2SO4 activated systems developed greater mechanical strength than the water-hydrated systems, with the 60% BT/40% OPC blends exhibiting higher compressive strength than the 100% OPC pastes.

  7. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  8. Microbial-influenced cement degradation: Literature review

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; McConnell, J.W. Jr.

    1993-03-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews literature which addresses the effect of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are identified, which are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with concrete and can ultimately lead to structural failure. Mechanisms inherent in microbial-influenced degradation of cement-based material are the focus of this report. This report provides sufficient evidence of the potential for microbial-influenced deterioration of cement-solidified LLW to justify the enumeration of the conditions necessary to support the microbiological growth and population expansion, as well as the development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbiological-induced degradation that could impact the stability of the waste form

  9. EFFECT OF NANOMATERIALS IN CEMENT MORTAR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    WAIL N. AL-RIFAIE

    2016-09-01

    Full Text Available Concrete is considered as brittle materials and widely used due to high compressive strength but unfortunately having and has low tensile strength that has a numerous negative impacts on the lifespan of concrete made structures. Therefore, mechanical properties of cement mortar have been investigated experimentally using different types and ratios of nano material to improve the properties. Since the strength of the concrete is of high importance, different materials have been used to enhance the compressive and the tensile characteristics of the cement mortar compressive and tensile strength. Mainly, this objective has been implemented through using micro cement, micro sand, nano silica, and nano clay in developing a nano-cement mortar which can to improve the concrete for the constructional applications. The samples were prepared and tested under tensile and compressive mode according to ASTM-2011 regulations for concrete. The parameters that are taken consideration during the investigation were micro sand, micro cement, nano silica, developed nano clay, and naphthalene sulphonate as super- plasticizers. In general, it has been observed that the results showed a significant increase in both compressive and tensile strength of the mortar at early stages of hardening, where a maximum increase of 22% in the compressive strength was achieved , whereas 3.7 time increase in the compressive strength was recorded over the tradition levels of the concrete strength.

  10. Properties of pellet cement-glass package

    International Nuclear Information System (INIS)

    Chino, K.; Izumida, T.

    1989-01-01

    A new solidification technique using cement-glass, which is a mixture of sodium silicate, silicon phosphate and cement is presented. It was developed to solidify sodium sulfate or sodium borate pellets generated from nuclear power plants. The optimum composition of Na 2 O, SiO 2 and P 2 O 5 · 2SiO 2 , main components of cement-glass, was defined to be 1:2:1 by studying the solidification mechanism. Polymer impregnated concrete was selected as material of the container to increase the stability. Since the package consists of inorganic materials, it shows good fire resistance and radiation stability. Added cement absorbs free water which is generated by the solidification reaction of Na 2 O, SiO 2 and P 2 O 5 · 2SiO 2 . Then, soluble pellets can be solidified without dissolving some part of them. Since polymer impregnated concrete has little porosity, the pellet cement-glass package which uses a polymer impregnated concrete container shows very low leachability

  11. Plug cementing: Horizontal to vertical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Calvert, D.G.; Heathman, J.F.; Griffith, J.E.

    1995-12-31

    This paper presents an in-depth study of cement plug placement that was conducted with large-scale models for the improvement of plug cementing practices and plug integrity. Common hole and workstring geometries were examined with various rheology and density ratios between the drilling fluid and cement. The critical conditions dictating the difference between success and failure for various wellbore angles and conditions were explored, and the mechanisms controlling slurry movement before and after placement are now better understood. An understanding of these mechanisms allows the engineer to better tailor a design to specific hole conditions. Controversial concepts regarding plug-setting practices have been examined and resolved. The cumulative effects of density, rheology, and hole angle are major factors affecting plug success. While the Boycott effect and an extrusion effect were observed to be predominant in inclined wellbores, a spiraling or {open_quotes}roping{close_quotes} effect controls slurry movement in vertical wellbores. Ultimate success of a cement plug can be obtained if allowances are made for these effects in the job design, provided all other previously published recommended placement practices are followed. Results of this work can be applied to many sidetracking and plug-to-abandon operations. Additionally, the understanding of the fluid movement (creep) mechanisms holds potential for use in primary and remedial cementing work, and in controlling the placement of noncementitious fluids in the wellbore.

  12. Niobium pentoxide coating replacing zinc phosphate coating

    OpenAIRE

    RODRIGUES, P.R.P.; TERADA, M.; JUNIOR, O.R.A.; LOPES, A.C.; COSTA, I.; BANCZEK, E.P.

    2015-01-01

    A new coating made of niobium pentoxide, obtained through the sol-gel process, was developed for the carbon steel (SAE 1010). The corrosion protection provided by this coating was evaluated through electrochemical tests such as: open circuit potential, electrochemical impedance spectroscopy and anodic potentiodynamic polarization in NaCl 0,5 mol L-1 solution. The morphology and composition of the coatings were analyzed using scanning electronic microscopy, energy dispersive spectroscopy and X...

  13. Modified sulphur cement: A low porosity encapsulation material for low, medium and alpha waste

    International Nuclear Information System (INIS)

    Dalen, A. van; Rijpkema, J.E.

    1989-01-01

    Modified sulphur cement, available under the trade name Chement 2000, is a thermoplastic candidate material for the matrix of low, intermediate and alpha radioactive waste. The main source of sulphur is the desulphurization of fossil fuels. In view of the future increase of this product a modified compound of sulphur has been developed at the US Bureau of Mines. Modified sulphur cement as matrix material has properties in common with Portland or blast furnace cement and bitumen. The mechanical strength is comparable to hydraulic cement products. The process to incorporate waste materials is identical to bitumization. The leachability and the resistance to attack by chemicals is nearly the same as for bituminized products. This study showed also that the radiation resistance is high without radiolytic gas production and without change in dimensions (swelling). The rigidity of the matrix is a disadvantage when internal pressures are built up. The thermal conductivity and the heat of combustion of sulphur is low resulting in slow damage to the waste form under fire conditions, even when the temperature of self ignition in air is 220 0 C. The low leachability, the very slow effective diffusion of H 2 O and HTO, and the low permeability is due to the small pore diameters in the modified sulphur matrix. The loading capacity of modified sulphur cement depends on grain size and distribution and is for ungraded ashes, precipitates, dried sludges, etc., in the order of 40-50% of weight. The price of Chement 2000 per tonne is equal to those of blown bitumen

  14. Experimental and modeling study of Portland cement paste degradation in boric acid

    International Nuclear Information System (INIS)

    Benakli, A.; Chomat, L.; Le Bescop, P.; Wall, J.

    2015-01-01

    In the framework of Spent Fuel Pools (SFP) lifetime studies, an investigation of the Portland cement degradation in boric acid has been requested by the Electric Power Research Institute. The main goal of this study is to identify the physico-chemical degradation mechanisms involved in boric acid media. Both experimental and modeling approaches are considered. Concerning degradation experiments, sample of cement paste are immersed during three and nine months in a boric acid solution at 2400 ppm that is periodically renewed. Boric acid concentration has been chosen to be representative of SFP solution. Results will be confronted with reactive transport numerical calculations performed by the reactive transport code HYTEC associated with a dedicated extended database called Thermoddem. The analysis of degradation solution revealed a main ions release mechanism driven by diffusion especially for calcium, nitrate, sodium and sulfate. Leaching behavior of magnesium seems to be more complex. Decalcification is the major degradation process involved, even if a non-negligible contribution of further cations (Mg 2+ , Na + ) and anions (SO 4 2- ) has been noticed. Analysis of degradation soution also revealed that kinetic of Portland cement paste degradation in boric acid is higher than in pure water, regarding the degraded depths measured and calcium leaching rate. This observation has been confirmed by solid characterization. Microstructure analysis of degraded Portland cement paste showed a global porosity increase in the degraded zone that might be mainly attributed to Portlandite dissolution. An Ettringite reprecipitation in the degraded zone has been suspected but could also be Ettringite-like phases containing boron. The analysis techniques used did not allow us to differentiate it, and no others specific mineral phases containing boron has been identified. Profile pattern by XRD analysis allowed us to identify four zones composing the degraded Portland cement paste

  15. Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water.

    Science.gov (United States)

    da Silva, Eduardo M; Miragaya, Luciana; Sabrosa, Carlos Eduardo; Maia, Lucianne C

    2014-09-01

    The behavior of the luting cement and the cementation protocol are essential in the clinical success of ceramic restorations. The purpose of this study was to evaluate the bond stability of 2 resin cements and a yttria-stabilized tetragonal polycrystalline zirconia (Y-TZP) ceramic submitted to 2 surface treatments. Sixty plates of a Y-TZP ceramic were assigned to 3 groups according to the surface treatments: control, as sintered surface; methacryloxydecyl dihydrogen phosphate (MDP), coated with an MDP-based primer, and tribochemical silica-coating (TSC), coated with tribochemical silica. The plates of each group were further divided into 2 subgroups according to the resin cement as follows: RelyX adhesive resin cement (conventional) and RelyX Unicem (self-adhesive). Cylinders of resin cements (∅=0.75 mm × 0.5 mm in height) were built up on the ceramic surfaces, and the plates stored in distilled water at 37°C for either 24 hours or 6 months before being submitted to a microshear bond strength test. The data were submitted to 3-way ANOVA and the Tukey honestly significant difference test (α=.05). Three-way ANOVA showed statistical significance for the 3 independent factors: resin cement, surface treatment, and period of water immersion (Presin cement applied on ceramic surfaces treated with TSC, the microshear bond strength of all the other groups decreased after 6 months of aging in water. The microshear bond strength decreased most in the control groups (-81.5% for ARC and -93.1% for Unicem). In the group treated with TSC, the microshear bond strength for Unicem decreased by 54.8% and in that treated with MDP-based primer by -42.5%. In the group treated with MDP-based primer, the microshear bond strength for RelyX ARC decreased by -52.8%. Irrespective of surface treatments, self-adhesive resin cement was not able to maintain the bond to Y-TZP ceramic after 6 months of aging in water. Copyright © 2014 Editorial Council for the Journal of Prosthetic

  16. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...... and durability of anticorrosive coatings have been included. The different types of anticorrosive coatings are presented, and the most widely applied generic types of binders and pigments in anticorrosive coatings are listed and described. Furthermore, the protective mechanisms of barrier, sacrificial...

  17. Assessment of limestone blended cements for transportation applications : final report.

    Science.gov (United States)

    2017-09-01

    This research assessed the applicability of Type IL cements satisfying AASHTO M 240 specifications for use in transportation applications in place of Type I/II cements which satisfy AASHTO M 85 specifications for construction of transportation struct...

  18. Reducing cement content in concrete mixtures : [research brief].

    Science.gov (United States)

    2011-12-01

    Concrete mixtures contain crushed rock or gravel, and sand, bound together by Portland cement in combination with supplemental cementitious materials (SCMs), which harden through a chemical reaction with water. Portland cement is the most costly comp...

  19. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    Abstract. The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  20. Heat of hydration measurements on cemented radioactive wastes. Part 1: cement-water pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1983-12-01

    This report describes the hydration of cement pastes in terms of chemical and kinetic models. A calorimetric technique was used to measure the heat of hydration to develop these models. The effects of temperature, water/cement ratio and cement replacements, ground granulated blast furnace slag (BFS) and pulverised fuel ash (PFA) on the hydration of ordinary Portland cement (OPC) is reported. The incorporation of BFS or PFA has a marked effect on the hydration reaction. The effect of temperature is also important but changing the water/cement ratio has little effect. Results from cement pastes containing only water and cement yield total heats of reaction of 400, 200 and 100 kJ/kg for OPC, BFS and PFA respectively. Using the results from the models which have been developed, the effect of major salts present in radioactive waste streams can be assessed. Values of the total heat of reaction, the time to complete 50 percent reaction, and the energy of activation, can be compared for different waste systems. (U.K.)

  1. Characteristics of Portland blast-furnace slag cement containing cement kiln dust and active silica

    Directory of Open Access Journals (Sweden)

    A. Abdel Rahman

    2016-09-01

    Full Text Available This investigation dealt with the effect of active silica, silica fume (SF or rice husk ash (RHA, on the mechanical and physico-chemical characteristics of the hardened blended cement pastes made of Portland blast-furnace slag cement (PSC containing cement kiln dust (CKD cured under normal conditions. Two blends made of PSC and CKD, improved by SF and two blends made of PSC and CKD improved by RHA were investigated. Hardened blended cement pastes were prepared from each cement blend by using water/cement ratio (W/C of 0.30 by weight and hydrated for various curing ages of 1, 3, 7, 28 and 90 days at the normal curing conditions under tap water at room temperature. Each cement paste was tested for its physico-chemical and mechanical characteristics; these characteristics include: compressive strength and kinetics of hydration. The phase composition of the formed hydration products was identified using X-ray diffraction (XRD and differential thermal analysis (DTA. It was found that the partial substitution of PSC by 10% and 15% of CKD is associated with an increase in the rate of hydration and a subsequent improvement of compressive strength of hardened PSC–CKD pastes. In addition, the replacement of PSC, in PSC–CKD blends, by 5% active silica was accompanied by further improvement of the physico-mechanical characteristics of the hardened PSC–CKD pastes.

  2. Transport and antifouling properties of papain-based antifouling coatings

    Science.gov (United States)

    Peres, Rafael S.; Armelin, Elaine; Moreno-Martínez, Juan A.; Alemán, Carlos; Ferreira, Carlos A.

    2015-06-01

    The aim of this work is to study the antifouling performance and water uptake behaviour of coatings formulated with papain (an environmentally friendly pigment). Antifouling coatings have been formulated using rosin (natural resin) as matrix and papain adsorbed in activated carbon as pigment. Electrochemical impedance spectroscopy (EIS) measurements were used to evaluate the behaviour of the formulated coatings in the marine environment and to calculate the apparent water coefficient of diffusion (D). FTIR and XPS analyses confirm the presence of papain adsorbed inside the activated carbon pores and the release of papain in water. Immersion tests in the Mediterranean Sea were carried out for 7 months to verify the degree of biofouling of the tested coatings. These field assays clearly indicate the excellent behaviour of papain-based antifouling coatings; the results being similar to those achieved using a commercial coating. Additionally, the EIS technique is shown to be a great tool to predict the coating diffusivity of antifouling coatings before immersion tests. Furthermore, the use of biodegradable papain as a nature-friendly antifouling agent can eliminate the negative environmental impact caused by metals and chemical biocides typically used in current commercial formulations.

  3. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  4. Cementation of wastes with boric acid

    International Nuclear Information System (INIS)

    Tello, Cledola C.O.; Haucz, Maria Judite A.; Alves, Lilian J.L.; Oliveira, Arno H.

    2000-01-01

    In nuclear power plants (PWR) are generated wastes, such as concentrate, which comes from the evaporation of liquid radioactive wastes, and spent resins. Both have boron in their composition. The cementation process is one of the options to solidify these wastes, but the boron has a negative effect on the setting of the cement mixture. In this paper are presented the experiments that are being carried out in order to overcome this problem and also to improve the efficiency of the process. Simulated wastes were cemented using additives (clays, admixtures etc.). In the process and product is being evaluated the effect of the amount, type and addition order of the materials. The mixtures were selected in accordance with their workability and incorporated waste. The solidified products are monolithic without free water with a good mechanical resistance. (author)

  5. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    ppmvin 1960 to 390 ppmv in 2012, probably due to human activity. A lot of research is being carried out forreducing CO2emissions from large stationary sources. Ofwhich, the carbonate looping process is anew process and has the potential to reduce CO2emissions with lower energy penalties. Most of thework...... and the main parameter that controls the performance of the carbonator, a process model integrating the carbonate looping process with the cement pyro-process was simulated. The process simulation results indicate that the CO2 emission was only 0.07 kg/ kg cl, with an energy penalty of 2 MJ/kg CO2 captured......Production of cement is an energy intensive process and is the source of considerable CO2emissions. Itis estimated that the cement industry contributes around 8% of total global CO2emissions. CO2is oneof the major greenhouse gases. In the atmosphere, the CO2concentration has increased from 310...

  6. Mechanical characterization of sisal reinforced cement mortar

    Directory of Open Access Journals (Sweden)

    R. Fujiyama

    2014-01-01

    Full Text Available This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the effect of the fibers on the fracture toughness of the material. The results obtained indicate that, while fiber reinforcement leads to a decrease in compressive strength, J-integral calculations at maximum load for the different notch root radii have indicated, particularly for the case of long fibers, a significant superiority of the reinforced material in comparison with the plain cement mortar, in consistence with the impact test data.

  7. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  8. A Novel Type of Environmentally Friendly Slurry Coatings

    Science.gov (United States)

    Montero, Xabier; Galetz, Mathias C.; Schütze, Michael

    2015-01-01

    A variety of commercial slurries are available to aluminize the surfaces of nickel-based superalloys; however, they have three main disadvantages. First, the phosphates and chromates or halides used as binders or to activate the diffusion species are environmentally harmful and toxic; second, the slurry coatings can only produce high-aluminum-activity coatings which form precipitate-rich coatings that are detrimental to adherence. Finally, these coatings are limited to the incorporation of aluminum and silicon, whereas the co-deposition of other elements such as chromium or cobalt has not been achieved so far. In this work, the limitations of slurry coatings have been overcome by carefully designing the powder composition and controlling the process to produce co-deposition coatings with chromium, cobalt, or nickel by using nontoxic water-based slurries. This also opens an effective way to control Al activity and to produce low-activity aluminized coatings for the first time when using the slurry technique. These results expand the application range of slurry coatings so they can also be applied under ambient atmosphere, making it possible to fully coat aero engine pieces or large-scale industrial components, providing all properties that are usually only achieved by using more complex and expensive methods such as chemical vapor deposition. Furthermore, these new coatings offer unique advantages that can be very favorable especially as a repairing technique.

  9. Revision of hemiarthroplasty to total hip arthroplasty using the cement-in-cement technique.

    Science.gov (United States)

    Mounsey, E J; Williams, D H; Howell, J R; Hubble, M J

    2015-12-01

    Revision of a cemented hemiarthroplasty of the hip may be a hazardous procedure with high rates of intra-operative complications. Removing well-fixed cement is time consuming and risks damaging already weak bone or perforating the femoral shaft. The cement-in-cement method avoids removal of intact cement and has shown good results when used for revision total hip arthroplasty (THA). The use of this technique for the revision of a hemiarthroplasty to THA has not been previously reported. A total of 28 consecutive hemiarthroplasties (in 28 patients) were revised to a THA using an Exeter stem and the cement-in-cement technique. There were four men and 24 women; their mean age was 80 years (35 to 93). Clinical and radiographic data, as well as operative notes, were collected prospectively and no patient was lost to follow-up. Four patients died within two years of surgery. The mean follow up of the remainder was 70 months (25 to 124). Intra-operatively there was one proximal perforation, one crack of the femoral calcar and one acetabular fracture. No femoral components have required subsequent revision for aseptic loosening or are radiologically loose. Four patients with late complications (14%) have since undergone surgery (two for a peri-prosthetic fracture, and one each for deep infection and recurrent dislocation) resulting in an overall major rate of complication of 35.7%. The cement-in-cement technique provides reliable femoral fixation in this elderly population and may reduce operating time and rates of complication. ©2015 The British Editorial Society of Bone & Joint Surgery.

  10. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  11. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. Because hydraulic cement requires a chemical hydration reaction for setting and hardening, it is subject to potential interactions between elements in the waste and binder that can retard or prevent solidification. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above its melting point, combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991

  12. Application of glass ionomer cements in restorative dentistry.

    OpenAIRE

    Rajesh P; Kamath M

    1999-01-01

    Dentistry was marked with radical changes in clinical restorative procedures. If the inherent characteristic of the ionomer cement was examined, it becomes very clear to the researcher as well as the dentist, that no other material has had an impact as comparable to glass ionomer cements on restorative dentistry. This scientific paper highlights the clinical applications of the cement in restorative dentistry. Glass ionomer cements are bioactive, by forming permanent adhesive bonds to dentin ...

  13. Retention of cast crown copings cemented to implant abutments.

    Science.gov (United States)

    Dudley, J E; Richards, L C; Abbott, J R

    2008-12-01

    The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.

  14. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  15. Fabrication of Phosphate Cement with High Integrity

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Cheol Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    As the development of industrial society has accelerated, hazardous wastes are generated as well. According to the 1986 statistics of U.S.A, each person made 40 tons of waste in America that year. Treatment of radioactive waste is one of the most important and serious problems related to waste treatments, because its radioactivity and decaying heat have harmful effects to human and environment for a long time. Nuclear developed countries have used conventional method of treatment such as vitrification or cementation in order to stabilize and solidify radioactive waste. Although the former guarantees the formation of high leaching resistant and durable waste form, it requires several hundred (or even more than one thousand) temperature to melt glass frit. This process generates secondary waste volatilized, as well as being non-economical. Cement technology played a role of immobilizing low and middle class wastes. It has advantages of low temperature setting, low cost, easy process, etc. The alkalinity of ordinary cement, however, constrains the utility of cement to the solidification of alkaline waste. In addition, leachability and mechanical strength of cements are not quite appropriate for the stabilization of high level waste. In this regard, chemically bonded phosphate cement(CBPC), which sets by an acid-base reaction, is a potentially expectable material for immobilization of radioactive waste. CBPC not only sets at room temperature, but also encapsulates various isotopes chemically. The performance of CBPC can be enhanced by the addition of fly ash, sand, wollastonite, etc. This study aims at fabricating the CBPC containing fly ash with high integrity. Morphology, microstructure, and compressive strength are evaluated using SEM, and digital compressing machine

  16. Coatings for directional eutectics. [for corrosion and oxidation resistance

    Science.gov (United States)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  17. Optimization and design of pigments for heat-insulating coatings

    International Nuclear Information System (INIS)

    Wang Guang-Hai; Zhang Yue

    2010-01-01

    This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ∼ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100–300 nm. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Crowns cemented on crown preparations lacking geometric resistance form. Part II: effect of cement.

    Science.gov (United States)

    Proussaefs, Periklis

    2004-03-01

    This study evaluated the effect of different cements on resistance to dislodgment of crowns cemented on preparations lacking geometric resistance form. A preparation that offered no geometric resistance form, with 20 degrees total occlusal convergence (TOC), 0.9 mm wide shoulder finish line, and a 2.5 mm axial wall height was created on an ivorine tooth using a milling machine. Ten metal test specimen die replicas and 10 standardized metal crowns with recipient sites for the application of external forces through a universal testing machine were fabricated. The crowns were cemented on the dies under 5 and 10 kg external loads, the marginal openings measured, loaded to dislodgment, and cleaned of cement. The process was repeated using zinc oxide and eugenol (ZOE), zinc phosphate (ZPh), resin modified glass ionomer (RMGI), and composite resin (CR) cements. Marginal openings under 5 kg cementation loads were 74.63 (+/-15.04) for ZOE, 75.98 (+/-18.20) microm for ZPh, 98.58 (+/-22.62) microm for RMGI, and 105.82 (+/-20.07) microm for CR cements respectively; under 10 kg cementation loads they were 57.62 (+/-15.86) microm, 59.55 (+/-15.41) microm, 95.00 (+/-19.52) microm, 101.30 (+/-12.52) microm respectively. Oblique dislodgment forces, measured with a Universal testing machine, were 40.18 (+/- 6.76) N for ZOE, 215.65 (+/-45.79) N for ZPh, 165.43 (+/-19.53) N for RMGI, and 181.54 (+/-30.75) N for CR respectively when crowns were cemented under 5 kg loads. The corresponding values for 10 kg loads were 38.62 (+/-4.19), 274.86 (+/-54.22), 139.70 (+/-21.71), and 160.40 (+/-21.21) respectively. Only zinc phosphate cement produced statistically enhanced resistance when crowns were cemented under 10 kg force (p value = 0.035). Under the conditions of the present study only crowns cemented with zinc phosphate displayed increased resistance to dislodgment on preparations lacking resistance form.

  19. Quality control of cemented waste forms

    International Nuclear Information System (INIS)

    Slate, L.J.; Wacks, M.E.; Cornellissen, H.A.W.

    1994-01-01

    Seven day and 28 day compressive strength from radwaste cementation can be predicted during the mixing and early curing stages by at least three methods: maturity, rheology, and impedance. Best results were obtained via the impedance method, where the water-to-cement ratio was seen to be the primary factor. The rheology method produced physically consistent results, but may be to cumbersome to be practical. The results of the maturity method were shown to be limited in its accuracy for determining compressive strength

  20. Controls on Cementation in a Chalk Reservoir

    DEFF Research Database (Denmark)

    Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.

    In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... to the water saturation of the Kraka reservoir and is partly controlled by its stratigraphic sub-units. While the direct causal relationship between Biot’s coefficient and water saturation cannot be extended for Biot’s coefficient and porosity, a correlation is also identified between the two, implying...