WorldWideScience

Sample records for cement industry

  1. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  2. Global Cement Industry: Competitive and Institutional Dimensions

    OpenAIRE

    Selim, Tarek; Salem, Ahmed

    2010-01-01

    The cement industry is a capital intensive, energy consuming, and vital industry for sustaining infrastructure of nations. The international cement market –while constituting a small share of world industry output—has been growing at an increasing rate relative to local production in recent years. Attempts to protect the environment in developed countries –especially Europe—have caused cement production plants to shift to countries with less stringent environmental regulations. Along with con...

  3. A Pause for China's Cement Industry

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2009-01-01

    @@ Cement industry suffers excess productionWith the advent of global financial crisis,the Chinese government has laid out a stimulus package on infrastructure construction.Driven by the investment spree,China's cement makers are flocking to expand output capacity,which is now leading the industry into a much-higher-thanneeded state.

  4. Thoughts on the Current Cement Industry Development

    Institute of Scientific and Technical Information of China (English)

    Gan Zhihe

    2003-01-01

    According to the analysis of cement capacity andits relations with macro economy running index, the mainreasons for the present rapid development of cement capacityare the rapid development of economy and the shot up ofwhole society fixed asset investment. According to the presentspeed of economy development, cement still enjoys a po-tential increase, So here has not been an overall excessivepopularity of cement industry. The best way to prevent lowlevel repeated construction is to promote the development ofnew dry- process cement as well as try to get rid of blindness.

  5. Case Study of the California Cement Industry

    OpenAIRE

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-01-01

    California is the largest cement producing state in the U.S., accounting for between 10 percent and 15 percent of U.S. cement production and cement industry employment. The cement industry in California consists of 31 sites that consume large amounts of energy, annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3 million tons of coal, 0.25 tons of coke, and smaller amounts of waste materials, including tires. The case study summarized in this paper focused on providi...

  6. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  7. Case Study of the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  8. ANALYSIS OF UNCERTAINTIES IN CEMENT INDUSTRY IN TURKEY

    OpenAIRE

    Kemal Yildirim; Omer Arioz

    2013-01-01

    Cement industry having 4,5 billion Dollars revenue and 1 billion Dollar export volume plays very important role in Turkey’s economy. Turkish cement industry is very sensitive to economic crisis and involves many uncertainties. In this study, price uncertainties, technological uncertainties, and price-technological uncertainties in Turkish cement industry were analyzed. The cement demand is mostly affected by demand to ready mixed concrete. Demand to cement is also related to the picture of co...

  9. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Konstantin Sobolev

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  10. Copper Slag Blended Cement: An Environmental Sustainable Approach for Cement Industry in India

    Directory of Open Access Journals (Sweden)

    Jagmeet Singh

    2016-04-01

    Full Text Available Indian cement industry is facing environmental issue of emission of carbon dioxide (CO2, a greenhouse gas. Blended cements including supplementary cementitious materials are substitute of Portland cement to reduce CO2 emission. The present paper investigates theappropriateness of copper slag (CS as supplementary cementitious material. Strength properties and hydration of mixes were determined at different replacement levels of CS with cement. Compressive, flexural and tensile strength of each mix was found out at different curing periods. The hydration of cement was investigated through X-ray diffraction (XRD. The strength test results showed that substitution of up to 20% of CS can significantly replace Portland cement.XRD test results were corresponding to strength test results. The present study encourages the utilization of CS as supplementary cementitious material to make economical and environmentally sustainable blended cement

  11. Cancer Mortality and Incidence in Cement Industry Workers in Korea

    OpenAIRE

    Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seung Hee; Ryu, Hyang-Woo

    2011-01-01

    Objectives Cement contains hexavalent chromium, which is a human carcinogen. However, its effect on cancer seems inconclusive in epidemiologic studies. The aim of this retrospective cohort study was to elucidate the association between dust exposure in the cement industry and cancer occurrence. Methods The cohorts consisted of male workers in 6 Portland cement factories in Korea. Study subjects were classified into five groups by job: quarry, production, maintenance, laboratory, and office wo...

  12. Environmental health survey in asbestos cement sheets manufacturing industry

    OpenAIRE

    Ansari F; Bihari V; Rastogi S; Ashquin M; Ahmad I

    2007-01-01

    About 673 small-scale asbestos mining and milling facilities and 33 large - scale asbestos manufacturing plants, (17 asbestos-cement product manufacturing plants and 16 other than asbestos-cement product plants) are situated in India. The present study reveals the exposure of commercial asbestos (chrysotile) in the occupational as well as ambient air environment of the asbestos-cement (AC) sheets industry using membrane filter method of Bureau of Indian Standards (BIS). The fibre concentratio...

  13. Production of cement requiring low energy expenditure. An industrial test

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, S.; Blanco, M.T.; Palomo, A.; Puertas, F. (Instituto de Ciencias de la Construccion, Madrid (Spain))

    1991-01-01

    A new method for making cement is proposed. It is based on the use of CaF{sub 2} and CaSO{sub 4} for partial replacement of the usual raw materials in cement manufacturing. This paper shows the feasibility of the proposed method on an industrial scale. A test carried out in a Spanish cement factory (1500 t yield of the new cement) has revealed that the mehtod can not only be adapted to the current technology but also requires a much lower energy expenditure. The final product is shown to have excellent properties in comparison with OPC. (orig.).

  14. A review on emission analysis in cement industries

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.B.; Saidur, R.; Hossain, M.S. [University of Malaya, Kuala Lumpur (Malaysia). Faculty of Engineering

    2011-06-15

    The cement subsector consumes approximately 12-15% of the total industrial energy use. Therefore, this subsector releases CO{sub 2} emissions to the atmosphere as a result of burning fossil fuels to produce energy needed for the cement manufacturing process. The cement industry contributes about 7% of the total worldwide CO{sub 2} emissions. This study complied a comprehensive literature in terms of Thesis (MS and PhD), peer reviewed journals papers, conference proceedings, books, reports, websites for emission generation and mitigation technique. Emission released associated with the burning of fuels have been presented in this paper. Different sources of emissions in a cement industry has been identified and presented in this study. Different techniques to reduce CO{sub 2} emissions from the cement manufacturing industries are reviewed and presented in this paper. The major techniques are: capture and storage CO{sub 2} emissions, reducing clinker/cement ratio by replacing clinker with different of additives and using alternative fuels instead of fossil fuels. Apart from these techniques, various energy savings measures in cement industries expected to reduce indirect emissions released to the atmosphere. Based on review results it was found that sizeable amount of emission can be mitigated using different techniques and energy savings measures.

  15. Industrial trial to produce a low clinker, low carbon cement

    OpenAIRE

    Vizcaíno-Andrés, L. M.; Sánchez-Berriel, S.; Damas-Carrera, S.; A. Pérez-Hernández; Scrivener, K. L.; Martirena-Hernández, J. F.

    2015-01-01

    A preliminary assessment of conditions for the industrial manufacture of a new cementitious system based on clinker-calcined clay and limestone, developed by the authors, referred as “low carbon cement” is presented. The new cement enables the substitution of more than 50% of the mass of clinker without compromising performance. The paper presents the follow-up of an industrial trial carried out in Cuba to produce 130 tonnes of the new cement at a cement plant. The new material proved to fulf...

  16. Plant Test of Industrial Waste Disposal in a Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    刘阳生; 韩杰; 等

    2003-01-01

    Destruction of industrial waste in cement rotary kilins(CRKs) is an alternative technology for the treatment of certain types of industrial waste(IW).In this paper,three typical types of industrial wastes were co-incinerated in the CRK at Beijing Cement Plant to determine the effects of waste disposal(especially solid waste disposal )on the quality of clinker and the concentration of pollutants in air emission.Experimental results show that(1) waste disposal does not affect the quality of clinker and fly ash,and fly ash after the IW disposal can still be used in the cement production,(2) heavy metals from IW are immobilized and stabilized in the clinker and cement,and (3) concentration of pollutants in air emission is far below than the permitted values in the China National Standard-Air Pollutants Emission Standard(GB 16297-1996).

  17. Energy Efficiency Improvement Opportunities for the Cement Industry

    OpenAIRE

    Worrell, Ernst

    2008-01-01

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercial...

  18. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    Science.gov (United States)

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-01

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money. PMID:26630247

  19. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    Science.gov (United States)

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-01

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money.

  20. Alternative fuels in cement industry; Alternativa braenslen i cementindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, K.E.; Ek, R. [Finnsementti Oy, Parainen (Finland); Maekelae, K. [Finreci Oy (Finland)

    1997-10-01

    In this project the cement industry`s possibilities to replace half of the fossil fuels with waste derived fuels are investigated. Bench-scale experiments, pilot plant tests and full scale tests have been done with used tires and plastics wastes

  1. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  2. The survey of cement dermatitis among construction industry workers

    Directory of Open Access Journals (Sweden)

    Faride Sadeghian

    2007-01-01

    Full Text Available Introduction: Cement has long been known as a cause of both irritant and allergic contact dermatitis. However, there are little data relating to occupational skin diseases (OSD in the Iranian construction industry. The aim of this study is to evaluate the epidemiology of cement dermatitis among terrazzo and cement manufactory workers. Methods: This is cross-sectional descriptive study. In this study 50 cement manufact-ory workers in Shahroud and 150 terrazzo workers in Lordegan were interviewed through questionnaire. Questionnaire includes demographic characteristics and questions about present dermatitis, background eczema, daily work hours, exposed chemical agents, using of gloves. Patients examined and patch tested by dermatologist. Data analyzed with SPSS software and c2, Mann Whitney and logistic regression statistical test. Results: The findings of the study showed that 8 workers (16% in cement factories and 52 workers (34.7% in Lordegan terrazzo enterprises had reported dermatitis at the time of review. Of which 15.5% in terrazzo workers had allergic contact dermatitis. In this study the prevalence of cement dermatitis increased with increasing age and there was significantly differences between dermatitis and background of dermatitis in terrazzo workers (P<0.05. Conclusion: Cement should be treated as hazardous materials, wearing of suitable gloves, early diagnosis and treatment of contact dermatitis and health education to workers is suggested.

  3. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  4. Industrial trial to produce a low clinker, low carbon cement

    Directory of Open Access Journals (Sweden)

    Vizcaíno-Andrés, L. M.

    2015-03-01

    Full Text Available A preliminary assessment of conditions for the industrial manufacture of a new cementitious system based on clinker-calcined clay and limestone, developed by the authors, referred as “low carbon cement” is presented. The new cement enables the substitution of more than 50% of the mass of clinker without compromising performance. The paper presents the follow-up of an industrial trial carried out in Cuba to produce 130 tonnes of the new cement at a cement plant. The new material proved to fulfill national standards in applications such as the manufacture of hollow concrete blocks and precast concrete. No major differences either in the rheological or mechanical properties were found when compared with Portland cement. Environmental assessment of the ternary cement was made, which included comparison with other blended cements produced industrially in Cuba. The new cement has proven to contribute to the reduction of above 30% of carbon emissions on cement manufacture.Se presenta la evaluación preliminar de las condiciones de fabricación industrial de un nuevo sistema cementicio a partir del empleo de clínquer; arcillas calcinadas y piedra caliza; desarrollado por los autores; denominado “cemento de bajo carbono”. El nuevo cemento posibilita la reducción de más de un 50% de la masa de clínquer; sin comprometer el comportamiento del material. El presente trabajo presenta el monitoreo de la producción industrial en una planta en Cuba; de 130 t del nuevo cemento. El cemento obtenido cumple con las regulaciones nacionales de calidad y su empleo tiene similar rendimiento que el cemento Pórtland para la producción de bloques y hormigón de 25 MPa. Se realiza el análisis de impacto ambiental del cemento ternario mediante la comparación con otros cementos producidos industrialmente. El nuevo cemento puede contribuir a la reducción de más del 30% de las emisiones de CO2 asociadas a la manufactura de cemento.

  5. Energy economy and industrial ecology in the Brazilian cement sector; Economia de energia e ecologia industrial no setor cimenteiro brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Planejamento Energetico]. E-mail: marinatavares@openlink.com.br; roberto@ppe.ufrj.br

    1999-07-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector.

  6. Calcium Sulfoaluminate Eco-Cement from Industrial Waste

    OpenAIRE

    Ukrainczyk, N.; Frankoviæ Mihelj, N.; Šipušić, J.

    2013-01-01

    In this paper, the potential benefits offered by calcium sulfoaluminate cement (CSA) production from industrial wastes or by-products already present in Republic of Croatia have been addressed. A variety of industrial wastes, namely phosphogypsum (PG), coal bottom ash (BA) and electric arc furnace slag (EAFS) were used as raw materials to provide additional environmental advantages in production of CSA. Mass fraction of Ye’elimite, the principal hydraulic mineral in the prepared CSA was de...

  7. Polish cement industry cartel - preliminary examination of collusion existence

    Directory of Open Access Journals (Sweden)

    Sylwester Bejger

    2011-01-01

    Full Text Available The paper is devoted to a case of a cartel in Polish cement industry. Short description of the industry and characteristics of the cartel with its fundamental illegal practices, market sharing and price fixing, have been done. We focused on examination of possibility of detection of a cartel-like behavior of players in an industry on a basis of cartel markers' evaluation, using statistical data we can actually obtain. On a basis of examination of market shares of players and price/supply processes we found distinctive, theoretically motivated patterns characteristic for collusive equilibrium in an industry.

  8. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per

  9. Environmental health survey in asbestos cement sheets manufacturing industry.

    Science.gov (United States)

    Ansari, F A; Bihari, V; Rastogi, S K; Ashquin, M; Ahmad, I

    2007-01-01

    About 673 small-scale asbestos mining and milling facilities and 33 large - scale asbestos manufacturing plants, (17 asbestos-cement product manufacturing plants and 16 other than asbestos-cement product plants) are situated in India. The present study reveals the exposure of commercial asbestos (chrysotile) in the occupational as well as ambient air environment of the asbestos-cement (AC) sheets industry using membrane filter method of Bureau of Indian Standards (BIS). The fibre concentrations in 15 samples collected in the occupational environment at ingredient feeding site, sheet-producing site, fibre godown were 0.079, 0.057 and 0.078 f/cc, respectively and in five samples from surrounding ambient air at factory gate resulted fibre concentration of 0.071 f/cc. All the samples have shown fibre concentration lower than the threshold limit values (TLVs) prescribed by BIS. Morphological analysis of samples, further under phase contrast and polarized microscopy indicates the presence of chrysotile asbestos, which acts as carcinogen as well as co-carcinogen. A clinical examination of exposed subjects reveals that there was no case of clubbing, crepitation, ronchi and dyspnea on exertion; however, obstruction and restriction were 10.9 per cent and 25 per cent in exposed subjects, respectively while in control there were 12 per cent and 28 per cent, respectively. The study revealed that chrysotile asbestos is emitted in the occupational as well as ambient environment that may cause adverse health impact. PMID:21957367

  10. Environmental health survey in asbestos cement sheets manufacturing industry

    Directory of Open Access Journals (Sweden)

    Ansari F

    2007-01-01

    Full Text Available About 673 small-scale asbestos mining and milling facilities and 33 large - scale asbestos manufacturing plants, (17 asbestos-cement product manufacturing plants and 16 other than asbestos-cement product plants are situated in India. The present study reveals the exposure of commercial asbestos (chrysotile in the occupational as well as ambient air environment of the asbestos-cement (AC sheets industry using membrane filter method of Bureau of Indian Standards (BIS. The fibre concentrations in 15 samples collected in the occupational environment at ingredient feeding site, sheet-producing site, fibre godown were 0.079, 0.057 and 0.078 f/cc, respectively and in five samples from surrounding ambient air at factory gate resulted fibre concentration of 0.071 f/cc. All the samples have shown fibre concentration lower than the threshold limit values (TLVs prescribed by BIS. Morphological analysis of samples, further under phase contrast and polarized microscopy indicates the presence of chrysotile asbestos, which acts as carcinogen as well as co-carcinogen. A clinical examination of exposed subjects reveals that there was no case of clubbing, crepitation, ronchi and dyspnea on exertion; however, obstruction and restriction were 10.9 per cent and 25 per cent in exposed subjects, respectively while in control there were 12 per cent and 28 per cent, respectively. The study revealed that chrysotile asbestos is emitted in the occupational as well as ambient environment that may cause adverse health impact.

  11. Utilization of Industrial Borax Wastes (BW) for Portland Cement Production

    OpenAIRE

    ELBEYLİ, İffet YAKAR

    2004-01-01

    Industrial borax wastes (BWs) are formed as solid waste during the production of borax from tincal [Na2B4O5(OH)4.8H2O] in Bandırma, Turkey. These wastes cause different environmental problems and lead to economic losses because of high boron oxide (B2O3) content. The primary aim of this study is the removal of B2O3 from BWs and the second aim is the usage of BWs with low boron content in cement as an additive material. For this purpose, the BW was treated with water for removal of b...

  12. Sectoral Model of the Cement Industry Using Input-Output Analysis

    OpenAIRE

    Lasselle, Sarah

    2013-01-01

    This study assesses the effect CCS employment on the global warming impact of the European cement industry using Multi-Regional Input-Output Analysis.For the cement sectors of the 28 European countries studied, technology and cohort distributions were established, thermal efficiency fuel input data were collected, and the capacity turnover and evolution of CO2 emissions from cement production of each country were determined. An economic life cycle inventory of CCS implementation for cement wa...

  13. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  14. Present Situation and Perspective of Chinese Cement Industry

    Institute of Scientific and Technical Information of China (English)

    Gao Changming

    2003-01-01

    @@ Totally, there are 12 types of cement kiln pro-duction lines in China and running with a quite differenttechnical- economical levels. The cement productionof different types product lines in 1997 ~ 2002 is shownin Table 1.

  15. Screening for collusion: Evidences from the Indian cement industry

    Directory of Open Access Journals (Sweden)

    Sylwester Bejger

    2015-07-01

    Full Text Available The paper is devoted to evaluation of the econometric method applied as a part of a variance screen in collusion detection procedure. Validation is based on ex-post analysis of Indian cement industry in the 1994 - 2009 time period and comparative study of the obtained results with factual evidences of collusion at that market. The method in question is based on MS(MAR (p, q Markov switching model specification. As a result of the research we could identify variability regimes consistent with theoretical motivation of the marker and detect collusion and competition phases partly consistent with historical evidences. However promising, method had some drawbacks applied to high frequency data in the context of variance screen. We proposed some solutions for further research to overcome it.

  16. Carbon dioxide emission reduction by increased utilization of waste-derived fuels in the cement industry

    OpenAIRE

    Tokheim, Lars-André; Brevik, Per

    2007-01-01

    Considerable reductions in Norway's emissions of greenhouse gases like CO2 are required to meet the commitments of the Kyoto Protocol. CO2 emissions from cement clinker production originate from decarbonation of limestone as well as fuel combustion, and the cement plants in Norway have to comply with requirements given by the pollution control authorities via the national emissions trading system. There are several ways of reducing CO2 emissions from the cement industry. Utiliz...

  17. AIR POLLUTION AND LUNG CAPACITY OF PEOPLE LIVING AROUND THE CEMENT INDUSTRY, INDONESIA

    OpenAIRE

    Erwin Azizi Jayadipraja; Anwar Daud; Alimuddin Hamzah Assegaf; Maming

    2016-01-01

    Backgrounds: A cement industry is one of anthropogenic sources of air pollution. In polluting the air, the industry creates some dust particles, nitrogen oxide (NO2), sulfur oxide (SO2), and carbon monoxide (CO). Research Purpose: The research aimed at finding out the ambient air quality around a cement industry and relating it with the lung capacity of people living around the area. Methodology: This was a cross sectional studies by measuring the ambient air quality in the morning, noo...

  18. Toward a sustainable cement industry in 2020 : improvement of the environmental, health & safety performance

    NARCIS (Netherlands)

    2001-01-01

    This background document concentrates on technical and managerial aspects of Environmental, Health & Safety Performance (EHS) control in the cement industry. It gives an overview of options for improvement toward a sustainable cement production in 2020. Energy consumption and use of alternative fuel

  19. Toward a sustainable cement industry in 2020 : improvement of the environmental, health & safety performance

    OpenAIRE

    2001-01-01

    This background document concentrates on technical and managerial aspects of Environmental, Health & Safety Performance (EHS) control in the cement industry. It gives an overview of options for improvement toward a sustainable cement production in 2020. Energy consumption and use of alternative fuels and raw materials are included in this substudy.

  20. A critical review on energy use and savings in the cement industries

    Energy Technology Data Exchange (ETDEWEB)

    Madlool, N.A.; Saidur, R.; Hossain, M.S.; Rahim, N.A. [University of Malaya, Kuala Lumpur (Malaysia). Faculty of Engineering

    2011-05-15

    The cement sub-sector consumes approximately 12-15% of total industrial energy use. Therefore, a state of art review on the energy use and savings is necessary to identify energy wastage so that necessary measures could be implemented to reduce energy consumption in this sub-sector. In this paper energy use at different sections of cement industries, specific energy consumption, types of energy use, details of cement manufacturing processes, various energy savings measures were reviewed and presented. Various energy savings measures were critically analyzed considering amount of energy that can be saved along with the implementation cost. Amount of CO{sub 2} reduction has been presented along with the payback period for different energy savings measures as well. This study complied a comprehensive literature on the cement industries in terms of Thesis (MS and PhD), peer reviewed journals papers, conference proceedings, books, reports, websites. It has been observed that China producing major share of global cement production. Coal contribute major share of fuel used in cement industries. However, along with conventional fuels, industries are moving towards the use of alternative fuels to reduce environmental pollution. It was reported that cement industries are moving from wet process to dry process as it consume less energy compared to wet process.

  1. Technological, economic and financial prospects of carbon dioxide capture in the cement industry

    International Nuclear Information System (INIS)

    Cement is the second largest anthropogenic emission source, contributing approximately 7% of global CO2 emissions. Carbon dioxide capture and storage (CCS) technology is considered by the International Energy Agency (IEA) as an essential technology capable of reducing CO2 emissions in the cement sector by 56% by 2050. The study compares CO2 capture technologies for the cement manufacturing process and analyses the economic and financial issues in deploying CO2 capture in the cement industry. Post-combustion capture with chemical absorption is regarded as a proven technology to capture CO2 from the calcination process. Oxyfuel is less mature but Oxyfuel partial capture—which only recycles O2/CO2 gas in the precalciner—is estimated to be more economic than post-combustion capture. Carbonate looping technologies are not yet commercial, but they have theoretical advantages in terms of energy consumption. In contrast with coal-fired power plants, CO2 capture in the cement industry benefits from a higher concentration of CO2 in the flue gas, but the benefit is offset by higher SOx and NOx levels and the smaller scale of emissions from each plant. Concerning the prospects for financing cement plant CO2 capture, large cement manufacturers on average have a higher ROE (return on equity) and lower debt ratio, thus a higher discount rate should be considered for the cost analysis than in power plants. IEA estimates that the incremental cost for deploying CCS to decarbonise the global cement sector is in the range US$350–840 billion. The cost estimates for deploying state-of-the art post-combustion CO2 capture technologies in cement plants are above $60 to avoid each tonne of CO2 emissions. However, the expectation is that the current market can only provide a minority of financial support for CO2 capture in cement plants. Public financial support and/or CO2 utilisation will be essential to trigger large-scale CCS demonstration projects in the cement industry

  2. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  3. Obtaining a sulfoaluminate belite cement by industrial waste

    Directory of Open Access Journals (Sweden)

    Elkhadiri, L.

    2003-06-01

    Full Text Available Sulfoaluminate belite clinkers by burning raw at moderate temperatures near 1250 °C were synthesized. The used mixtures were made by calcium carbonate blended to two industrial wastes: low calcium fly ash and phosphogypsum. The clinkers were characterised by X-Ray Diffraction (XRD, Infrared Spectroscopy (FTIR and free lime. The hydraulic behaviour of the obtained cements, by adequate clinkers with 7% of added gypsum, was followed by XRD, scaning electronic microscopy (SEM, FTIR and NMR.

    Los clínkeres belíticos de sulfoaluminatos se obtienen por cocción de crudos a temperaturas moderadas, hacia 1.250 ºC. Esos crudos se componen de carbonato de calcio mezclados con dos subproductos industriales: cenizas volantes pobres en óxido de calcio y fosfoyeso. Los clínkeres obtenidos se caracterizaron a través de Difracción de Rayos X (DRX, Espectroscopia Infrarroja por Transformada de Fourier (FTIR y por la determinación de CaO libre. El comportamiento hidráulico de los cementos elaborados de los clínkeres con el 7% de yeso se estudió por DRX, Microscopía Electrónica de Barrido (SEM, FTIR y Resonancia Magnética Nuclear (RMN

  4. Linkage Analysis of Cement Industry in the Indonesian Economy: Input-Output Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Mirza

    2015-11-01

    Full Text Available This study aims to determine the relations of backward and forward linkages of cement industry on the various economic sectors in Indonesia. In analyzing the relations, Indonesia’s input-output table of year 2005 isusedwhich is based ontheIndonesian domestic transactions on the basis of the producer price of 175 sectors classification. The results showed that the cement industry has backward linkages to the 43 sectors (5 sectors that have the biggest backward linkage are: the coal sector, electricity and gas sector, natural gas and geothermal sectors,excavation goods and oil refining goods and has forward linkages to 15 sectors (5 sectors that have the biggest forward linkage, namely: agricultural infrastructure sector, roads, bridges and ports, goods from non-metallic materials, residential and non-residental buildings, the building sector and the installation of electricity, gas, water and communication, in the direct linkages, both backward and forward linkages of cement industry are still considered as low, and the total linkages of the cement industry has stronger association with upstream sector when compared to the downstream sector. The conditions of the backward linkages of cement industry in 2014 is assumed to be relatively the same as those in 2005, while the forward linkage in 2014 indicates a shift in the sectors that have the biggest linkage to the cement industry.

  5. Industrial transformation and green production to reduce environmental emissions:Taking cement industry as a case

    Institute of Scientific and Technical Information of China (English)

    LU¨ Yong-Long; GENG Jing; HE Gui-Zhen

    2015-01-01

    Industrial transformation and green production (ITGP) is a new 10-year international research initiative proposed by the Chinese National Committee for Future Earth. It is also an important theme for adapting and responding to global environmental change. Aiming at a thorough examination of the implementation of ITGP in China, this paper presents its objectives, its three major areas, and their progress so far. It also identifies the key elements of its management and proposes new perspectives on managing green transformation. For instance, we introduce a case study on cement industry that shows the positive policy effects of reducing backward production capacity on PCDD/Fs emissions. Finally, to develop different transformation scenarios for a green future, we propose four strategies:1) policy integration for promoting green industry, 2) system innovation and a multidisciplinary approach, 3) collaborative governance with all potential stakeholders, and 4) managing uncertainty, risks, and long-time horizons.

  6. Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Indian cement industry is one of the most efficient in the world. Its efforts to reduce its carbon footprint by adopting the best available technologies and environmental practices are reflected in the achievement of reducing total CO2 emissions to an industrial average of 0.719 tCO2/t cement in 2010 from a substantially higher level of 1.12 tCO2/t cement in 1996. However, because the manufacturing process relies on the burning of limestone, it still produced 137 MtCO2 in 2010 – approximately 7% of India’s total man-made CO2 emissions. Yet opportunity for improvement exists, particularly in relation to five key levers that can contribute to emissions reductions: alternative fuel and raw materials; energy efficiency; clinker substitution; waste heat recovery and newer technologies. This roadmap sets out one pathway by which the Indian cement industry can reach its targets to improve energy efficiency and reduce CO2 emissions by 2050, thereby laying the foundation for low-carbon growth in the years beyond. The Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry builds on the global IEA technology roadmap for the cement sector developed by the IEA and the World Business Council for Sustainable Development’s Cement Sustainability Initiative. It outlines a possible transition path for the Indian cement industry to reduce its direct CO2 emissions intensity to 0.35 tCO2/t cement and support the global goal of halving CO2 emissions by 2050.

  7. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total

  8. Applications of thermal energy storage in the cement industry

    Science.gov (United States)

    Jaeger, F. A.; Beshore, D. G.; Miller, F. M.; Gartner, E. M.

    1978-01-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development.

  9. Cement industry control system based on multi agent

    Institute of Scientific and Technical Information of China (English)

    王海东; 邱冠周; 黄圣生

    2004-01-01

    Cement production is characterized by its great capacity, long-time delay, multi variables, difficult measurement and muhi disturbances. According to the distributed intelligent control strategy based on the multi agent, the multi agent control system of cement production is built, which includes integrated optimal control and diagnosis control. The distributed and multiple level structure of multi agent system for the cement control is studied. The optimal agent is in the distributed state, which aims at the partial process of the cement production, and forms the optimal layer. The diagnosis agent located on the diagnosis layer is the diagnosis unit which aims at the whole process of the cement production, and the central management unit of the system. The system cooperation is realized by the communication among optimal agents and diagnosis agent. The architecture of the optimal agent and the diagnosis agent are designed. The detailed functions of the optimal agent and the diagnosis agent are analyzed.At last the realization methods of the agents are given, and the application of the multi agent control system is presented. The multi agent system has been successfully applied to the off-line control of one cement plant with capacity of 5 000 t/d. The results show that the average yield of the clinker increases 9.3% and the coal consumption decreases 7.5 kg/t.

  10. [Cancer risk in asbestos-cement industry workers in Poland].

    Science.gov (United States)

    Szeszenia-Dabrowska, N; Wilczyńska, U; Szymczak, W

    1997-01-01

    A cohort study was carried out in order to evaluate the cancer risk in the asbestos-cement industry workers. The cohort consisted of workers employed in four asbestos-cement plants. One of those plants was established in 1924, the other three in the 1960s and 1970s. Currently only two of these plants continue their production. The plants used mainly chrysotile asbestos as well as crocidolite and amosite. Amphibolite asbestos was used before the mid-nineteen eighties in production of pressure pipes utilising about 15% of the total quantity of asbestos used. The measurements of the asbestos fibre concentration at work-sites have been taken occasionally since the mid 1980s, thus, the determination of a cumulative dose for individual persons in the cohort and the evaluation of the dose-effect relationship were not feasible. It could only be supposed that the concentrations at the preparatory work-site during first years of the plants' operation accounted for several tens fibres/cm3 in the production that employed the dry method. The cohort consisted of workers employed in the plant for at least three months between beginning of the plant during the post-war period, and 1980, that is during the period when amphibolite asbestos was in use. The retrospective observation was completed on 31 December 1991. The analysis of the death risk by causes was based on a standardized mortality ratios (SMRs) calculated using the person-years method. Statistical significance of SMRs was assessed by means of Poisson distribution one-sided test. The general population of Poland was used as the reference population to estimate the death risk. The cohort comprised 4,712 persons (3,563 males and 1,149 females). Of this number 4,500 persons (3,405 males and 1,095 females) were followed. The cohort availability were 95.5%. Male mortality, both total (473 deaths; SMR = 83) and due to malignant neoplasms (108 deaths; SMR = 86) was lower than in the general population. An excess of deaths from

  11. CO2 REDUCTION OPTIONS IN CEMENT INDUSTRY - THE NOVI POPOVAC CASE

    Directory of Open Access Journals (Sweden)

    Gordana M Stefanović

    2010-01-01

    Full Text Available The cement industry contributes about 5% to global anthropogenic CO2 emissions, and is thus an important sector in CO2-emission mitigation strategies. Carbon dioxide is emitted from the calcination process of limestone, from combustion of fuels in the kiln, and from the coal combustion during power generation. Strategies to reduce these CO2 emissions include energy efficiency improvement, new processes, shift to low carbon fuels or waste fuels in cement production, increased use of additives in cement production, alternative cements, and CO2 removal from flue gases in clinker kilns. Increased use of fly ash as an additive to cement and concrete has a number of advantages, the primary being reduction of costs of fly ash disposal, resource conservation, and cost reduction of the product. Since the production of cement requires a large amount of energy (about 2.9-3.2 GJt-1, the substitution of cement by fly ash saves not only energy but also reduces the associated greenhouse gas emissions. The paper evaluates the reduction of CO2 emissions that can be achieved by these mitigation strategies, as well as by partial substitution of cement by fly ash. The latter is important because the quality of the produced concrete depends on the physical-chemical properties of the fly ash and thus partial substitution as well as the type of fly ash (e.g., the content of CaO has an effect not only on energy consumption and emissions, but also on the produced concrete quality.

  12. CEMENT. "A Concrete Experience." A Curriculum Developed for the Cement Industry.

    Science.gov (United States)

    Taylor, Mary Lou

    This instructor's guide contains 11 lesson plans for inplant classes on workplace skills for employees in a cement plant. The 11 units cover the following topics: goals; interpreting memoranda; applying a standard set of work procedures; qualities of a safe worker; accident prevention; insurance forms; vocabulary development; inventory control…

  13. Reduction of Multi-pollutant Emissions from Industrial Sectors: The U.S. Cement Industry – A Case Study

    Science.gov (United States)

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Carbon dioxide (CO2) accounts for more than 90% of worldwide CO2-eq green-house gas (GHG) emissions from industrial sectors other than power generation. Amongst these sectors, the cement industry is one ...

  14. Occupational dermatitis. An epidemiological study in the rubber and cement industries.

    Science.gov (United States)

    Varigos, G A; Dunt, D R

    1981-03-01

    An epidemiological study of occupational dermatitis in a tyre company and a cement company is reported. Ninety-seven percent of 999 tyre workers and 78% of 151 cement workers were screened by an occupational nurse and subsequently assessed by a specialist dermatologist. Prevalence rates of occupational contact dermatitis were 37 per 1000 and 68 per 1000 in the tyre and cement companies, respectively. Maintenance workers and tyre builders - particularly if they were Yugoslav and female - had high prevalence rates amongst tyre workers. Worker's compensation claim rates for the tyre company are similar to U.K. and U.S. rates for this industry. Prevalence rates of 37 per 1000 can be considered as a lower limit for this industry. The high prevalence rates in the cement company are noteworthy and require further study. PMID:6453682

  15. Analysis and Optimization of Carbon Dioxide Emission Mitigation Options in the Cement Industry

    Directory of Open Access Journals (Sweden)

    Mohammed B. Shammakh

    2008-01-01

    Full Text Available The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO2 for every 1000 kg of cement produced. Effective control strategies to mitigate these emissions are discussed and a mathematical programming model able to suggest the best cost effective strategy is outlined. Control costs consisting of operating and investment costs along with the efficiency of control options are taken into account in the model. A representative case study from the cement industry was considered in order to illustrate the use of the model in giving optimal control strategies. Efficiency improvement measures were found to be effective options for reduction targets up to 10 %. The model suggested that fuel switching and carbon capture must be considered at reduction targets higher than 10%. The cost of cement production was shown to increase dramatically with an increase in reduction target.

  16. An on-belt elemental analyser for the cement industry.

    Science.gov (United States)

    Lim, C S; Tickner, J R; Sowerby, B D; Abernethy, D A; McEwan, A J; Rainey, S; Stevens, R; Manias, C; Retallack, D

    2001-01-01

    On-line control of raw mill feed composition is a key factor in the improved control of cement plants. A new and improved on-conveyor belt elemental analyser for cement raw mill feed based on neutron inelastic scatter and capture techniques has been developed and tested successfully in Adelaide Brighton's Birkenhead cement plant on highly segregated material with a depth range of 100 to 180 mm. Dynamic tests in the plant have shown analyser RMS total errors of 0.49, 0.52, 0.38 and 0.23 wt% (on a loss free basis) for CaO, SiO2, Al2O3 and Fe2O3 respectively, when 10-minute counting periods are used. PMID:11144240

  17. Microwave processing of cement and concrete materials – towards an industrial reality?

    Energy Technology Data Exchange (ETDEWEB)

    Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  18. CO2 REDUCTION OPTIONS IN CEMENT INDUSTRY - THE NOVI POPOVAC CASE

    OpenAIRE

    Gordana M Stefanović; Goran Vučković; Mirko Stojiljković; Milan B Trifunović

    2010-01-01

    The cement industry contributes about 5% to global anthropogenic CO2 emissions, and is thus an important sector in CO2-emission mitigation strategies. Carbon dioxide is emitted from the calcination process of limestone, from combustion of fuels in the kiln, and from the coal combustion during power generation. Strategies to reduce these CO2 emissions include energy efficiency improvement, new processes, shift to low carbon fuels or waste fuels in cement production, increased use of additives ...

  19. Energy Efficiency Improvement Potentials for the Cement Industry in Ethiopia

    NARCIS (Netherlands)

    Tesema, G.; Worrell, E.

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under constru

  20. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  1. Blended Cements Produced With Synthetic Zeolite Made from Industrial By-Product

    Directory of Open Access Journals (Sweden)

    Vitoldas Vaitkevičius

    2015-03-01

    Full Text Available Zeolites are appropriate supplementary cementitious materials in cement and concrete industry. In the present work synthetic zeolites was used like supplementary material in hardened cement paste and some properties as well as its influence on Portland cement hydration was determinate. X-ray powder diffraction, scanning electronic microscopy and energy-dispersive X-ray spectroscopy, FTIR spectroscopy were used as investigation methods. The compressive strength of hardened cement paste was measured at day 3, 28 and 60. The instrumental analysis showed that zeolite A(Na dominates and unreacted Al(OH3 remains in investigated synthetics zeolites, made from thermal and mechanical treated AlF3 production waste. The Chapelle test showed that both zeolites have good pozzolanic properties. The samples compressive strength remained close to the control samples compressive strength, reducing the amount of Portland cement, i.e., changing it by zeolite. After 60 days, the compressive strength was the best in the samples where 5% of Portland cement was replaced by the 2-zeolite. The compressive strength of the samples increased by 9 % compared with control samples. This research provides a real opportunity to save cement thus disposing the waste.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5635

  2. Recent developments in the cement industry: a comparative study between Mexico and India

    Directory of Open Access Journals (Sweden)

    Ganesh Babu Kumaran

    2008-10-01

    Full Text Available Since early twentieth century, the use of cement has become a popular and strategic product for economic growth of every country. In India as in Mexico, the first factories began in the earlier twentieth century, India is nowadays the world’s second largest producer and Mexico is the third firm in cement production, despite being the tenth world producer. The eighties have significate for both countries major structural changes in its economy, which have radically altered the structure and functioning of the cement industry and even more during the decade of the nineties. This article discusses the recent performance of the cement industry in both countries, compares the dynamics and causes that gave rise to these changes. It examines changes in the structure of domestic market in both countries and the strategies employed by large companies that operate in both, including a brief analysis of the role of transnational corporations in their development at the stage of globalization and liberalization of markets that characterizes the last two decades. Finally, it explores the great changes that make possible the growth and expansion of the cement industry during the period, based on technological change, the determinants of competitiveness and the role of economic policies in the development of industry in both countries.

  3. Feasibility study of the Portland cement industry waste for the reduction of energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Ana Carla de Souza Masselli; Junqueira, Mateus Augusto F. Chaib; Jorge, Ariosto Bretanha; Silva, Rogerio Jose da [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Institute of Mechanical Engineering]. E-mails: anacarlasz@unifei.edu.br; mateus_afcj@yahoo.com.br; ariosto.b.jorge@unifei.edu.br; rogeriojs@unifei.edu.br

    2008-07-01

    The Portland cement industry demand a high specific consumption of energy for the production of the clinker. The energy consumption for clinker production varies between 3000 and 5300 kJ/kg of produced clinker. The clinker is produced by blending of different raw materials in order t o achieve precise chemical proportions of lime, silica, alumina and iron in the finished product and by burning them at high temperatures. The Portland cement is a mixture of clinker, gypsum and other materials. Due to need of high temperatures, tradition ally the fuels used in the cement industry are mineral coal, fuel oil, natural gas and petroleum coke. The fuel burning in high temperature leads to the formation of the pollutant thermal NOx. The level of emissions of this pollutant is controlled by environmental law, thus the formation of pollutants in process need be controlled. Moreover, industrial waste has been used by Portland cement industries as a secondary fuel through a technique called co -processing. Materials like waste oils, plastics, waste tyres and sewage sludge are often proposed as alternative fuels for the cement industry. The residues can be introduced as secondary fuel or secondary raw material. For energy conservation in the process, mineralizers are added during the process production of the clinker. The mineralizers promote certain reactions which decrease the temperature in the kiln and improve the quality of the clinker. The adequate quantity of constituents in production process is complex, for maintain in controlled level, the quality of final product, the operational conditions of kiln, and the pollutant emissions. The purpose of the present work is to provide an analysis of an optimal production point through of the optimization technique considering, the introduction of the fuels, industrial wastes as secondary fuels, and raw materials, for the reduction of energy in the process of Portland cement production. (author)

  4. HYDRATION AND PROPERTIES OF BLENDED CEMENT SYSTEMS INCORPORATING INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    Heikal M.

    2013-06-01

    Full Text Available This paper aims to study the characteristics of ternary blended system, namely granulated blast-furnace slag (WCS, from iron steel company and Homra (GCB from Misr Brick (Helwan, Egypt and silica fume (SF at 30 mass % pozzolanas and 70 mass % OPC. The required water of standard consistency and setting times were measured as well as physico-chemical and mechanical characteristics of the hardened cement pastes were investigated. Some selected cement pastes were tested by TGA, DTA and FT-IR techniques to investigate the variation of hydrated products of blended cements. The pozzolanic activity of SF is higher than GCB and WCS. The higher activity of SF is mainly due to its higher surface area than the other two pozzolanic materials. On the other side, GCB is more pozzolanic than WCS due to GCB containing crystalline silica quartz in addition to an amorphous phase. The silica quartz acts as nucleating agents which accelerate the rate of hydration in addition to its amorphous phase, which can react with liberating Ca(OH2 forming additional hydration products.

  5. Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, William H.; San, Juan A.; Rau, Greg H.; Caldeira, Ken

    2009-01-01

    Accelerated weathering of limestone appears to provide a low-tech, inexpensive, high-capacity, environmentally friendly CO2 mitigation method that could be applied to about 200 fossil fuel fired power plants and about eight cement plants located in coastal areas in the conterminous U.S. This approach could also help solve the problem of disposal of limestone waste fines in the crushed stone industry. Research and implementation of this technology will require new collaborative efforts among the crushed stone and cement industries, electric utilities, and the science and engineering communities.

  6. Effect of gaseous cement industry effluents on four species of microalgae.

    Science.gov (United States)

    Talec, Amélie; Philistin, Myrvline; Ferey, Frédérique; Walenta, Günther; Irisson, Jean-Olivier; Bernard, Olivier; Sciandra, Antoine

    2013-09-01

    Experiments were performed at lab scale in order to test the possibility to grow microalgae with CO2 from gaseous effluent of cement industry. Four microalgal species (Dunaliella tertiolecta, Chlorella vulgaris, Thalassiosira weissflogii, and Isochrysis galbana), representing four different phyla were grown with CO2 enriched air or with a mixture of gasses mimicking the composition of a typical cement flue gas (CFG). In a second stage, the culture submitted to the CFG received an increasing concentration of dust characteristic of cement industry. Results show that growth for the four species is not affected by the CFG. Dust added at realistic concentrations do not have any impact on growth. For dust concentrations in two ranges of magnitude higher, microalgae growth was inhibited. PMID:23811523

  7. Pleural mesothelioma incidence in the population resident close to an asbestos-cement industry located in an Italian polluted site

    OpenAIRE

    Lucia, Fazzo; Menegozzo, Simona; Soggiu, Maria Eleonora; De Santis, Marco; Santoro, Michele; Cozza, Valentina; Brangi, Amelia; Menegozzo, Massimo; Comba, Pietro

    2013-01-01

    BACKGROUND. The industrial area of "Bagnoli Coroglio" in Naples municipality was defined as a "polluted site of national concern for remediation" in 2000. A steel and a cement plants and an asbestos-cement (Eternit) and a chemical industries operated in the area. AIMS. To estimate pleural mesothelioma incidence in the districts of Naples around the industrial area. METHODS. The area potentially affected by the industrial emissions was identified by modelling; environmental asbestos exposure w...

  8. On the Charges for Disposing Pollutants of Cement Industry%水泥工业排污收费

    Institute of Scientific and Technical Information of China (English)

    崔轶桢

    2015-01-01

    This paper described the governance of industry waste gas caused by cement production in cement calcinations and environment monitoring in cement production, and discussed the determination of charges for disposing pollutants of cement industry based on this.%叙述了对水泥煅烧产生水泥工业废气的治理和水泥生产的环境监测,并基于此对水泥工业排污收费的确定进行了论述。

  9. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sambeek, Emiel van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yowargana, Ping [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuang, Liu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kejun, Jiang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.

  10. Factor ten emission reductions : the key to sustainable development and economic prosperity for the cement and concrete industry

    Energy Technology Data Exchange (ETDEWEB)

    Horton, R. [Alchemix Corp., Pittsburgh, PA (United States)

    2001-07-01

    This paper proposes that the negative environmental effects of current cement/concrete production can be reduced by a factor of 10 by using cement blends with minimum portland cement and maximum pozzolanic loading. In addition to extending the longevity of concrete, such cement blends also avoid the huge cost of repairs and replacement cycles. Market forces will drive this transition toward sustainable development in the concrete and cement industry. The economic advantages of improving the quality of the concrete are great. Even if improving the concrete doubles the price of the highest quality cement, this would only add 2 per cent to the cost of the overall construction project, but the service life of the structure would give a many-fold return on this added investment. Also, regulations on carbon dioxide emissions in the near future will assume economic importance in the manufacturing of cement and concrete. While portland cements have dominated the construction industry for more than 150 years, new blended cements priced on a performance basis will become the standard in the twenty first century. Currently, the typical cement formulation in the United States, if it contains fly ash, contains 15 to 20 per cent fly ash by weight of the total cementitious material. This paper states that soon the number will be 50 to 60 per cent ash. Fly ash will be widely acknowledged for improving critical performance characteristics of concrete such as workability, impermeability and durability. Carbon dioxide credits will also be a major economic factor that will drive the cement industry toward a factor ten environmental improvement. The Kyoto Protocol calls for the trading of greenhouse gas credits which includes carbon dioxide credits. Under the new system, cement producers will be taxed on excess emissions, while those using pozzolans in their cements will earn credits to offset these penalties. 10 refs.

  11. A cohort study on mortality among wives of workers in the asbestos cement industry in Casale Monferrato, Italy.

    OpenAIRE

    Magnani, C; Terracini, B; Ivaldi, C; Botta, M; Budel, P; Mancini, A; Zanetti, R.

    1993-01-01

    The study investigates mortality from cancer and other diseases in a cohort of wives of asbestos cement workers in Casale Monferrato (northwest Italy). After the exclusion of women with an occupational record in the asbestos cement industry, the cohort comprised 1964 women. Their domestic exposure was estimated according to their husbands' periods of employment in the plant: 1740 had a period of domestic exposure whereas the remaining 224 married an asbestos cement worker only after he defini...

  12. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    Science.gov (United States)

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  13. QUANTIFICATION OF THE DECISIONS OF CONTROL AND AUDIT IN INVENTORY MANAGEMENT IN CEMENT INDUSTRY ENTERPRISES

    OpenAIRE

    Sylwia £êgowik-Œwi¹cik

    2011-01-01

    Inventory management in enterprises of cement industry necessitates the assessment of the level of risk which is generated by production inventory. The processes of control and auditing allow for planning, monitoring and organization of inventory management in the analysed business entities. This paper is aimed at presentation of the phase of preparation of audit activities in the area of inventory and verification of model solutions for the processes of control and audit in terms of inventor...

  14. Working Capital Management And Profitability: A Study Of Selected Cement Industry In India

    OpenAIRE

    M. John Jacob

    2013-01-01

    This study aims toexaminethe working capital management and profitability: a study of selected cement industry in India. Working capital is defined as a major issue in financial decision-making given that it is being a part of savings in asset which calls for appropriate financing investment. The source of financial and economic data of the selected companies is based on the NSE (national stock exchange). Five companies are randomly selected from all listed companies in the NSE, but financial...

  15. THE INTERNAL FACTORS AFFECTING LUNG CAPACITY OF PEOPLE LIVING IN AREAS AROUND THE CEMENT INDUSTRY, INDONESIA

    Directory of Open Access Journals (Sweden)

    Erwin Azizi Jayadipraja

    2016-05-01

    Full Text Available Background: Some internal factors have both positive and negative effects to people’s health, especially those who live in a polluted area. The area around the cement industry is an example of polluted area in which the lung capacity will be harmed. Aim: This research aimed at finding out internal factors affecting lung capacity of people living in the area around the cement industry. Methods: This research used a cross sectional study plan by measuring lung capacity (FEV1 and FVC of people living in four different locations. The locations were based on wind directions and within 3 km from the cement industry. The study plan was also done by connecting the measurement with other factors, such as age, physical activities, nutrition status and passive smoking or environmental tobacco smoke (ETS. Results: Based on the calculation of lung capacity 241 respondents obtained 123 respondents (51% had a normal lung capacity, 105 respondents (43.6% had a restricted lung capacity, 4 respondents (1.7% had an obstructed lung capacity and 9 respondents (3.7% had a combination of a restricted and obstructed lung capacity. The age (p=0.977 and physical activities (p=0.087 of respondents had no effect on the lung capacity. However, nutrition status (p=0.011 and passive smoking or ETS (p=0.003 do. Conclusion: The nutrition status and the presence of a passive smoker were the internal factors affecting people’s lung capacity, especially for those who live around the cement industry. Thus, in order to avoid the impairment of lung capacity, people need to improve their nutrition and to avoid people smoking around them.

  16. Incidence of cancer and mortality among employees in the asbestos cement industry in Denmark.

    OpenAIRE

    Raffn, E; Lynge, E; Juel, K.; Korsgaard, B

    1989-01-01

    In a cohort study of the incidence of cancer and mortality among 7996 men and 584 women employed in the Danish asbestos cement industry between 1928 and 1984 over 99% were traced. Chrysotile asbestos was the only fibre type used until 1946, when amosite and (in 1952) crocidolite were also introduced. Chrysotile constituted 89%, amosite 10%, and crocidolite 1% of the asbestos used. During the first 25 years of manufacture the exposure levels were high, especially in areas where the asbestos wa...

  17. Study of energy efficiency measures in cement industry; Estudo de medidas de eficiencia energetica na industria de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Roberta Ferreira Carrijo; Gorla, Filipe Debonzi [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2008-07-01

    Methods of energy conservation play an important role in the future energetic supply. The cement industry, being energetic intensive, is an important niche of performance of such methods. It is intended, in the present work, to estimate the impact of energy conservation through different scenarios. The projections have been realized considering both the technical (equipment efficiency) and economical (Industrial Transformation Worth - ITW) aspects of the cement sector. (author)

  18. Critical elements in implementations of just-in-time management: empirical study of cement industry in Pakistan.

    Science.gov (United States)

    Qureshi, Muhammad Imran; Iftikhar, Mehwish; Bhatti, Mansoor Nazir; Shams, Tauqeer; Zaman, Khalid

    2013-01-01

    In recent years, inventory management is continuous challenge for all organizations not only due to heavy cost associated with inventory holding, but also it has a great deal to do with the organizations production process. Cement industry is a growing sector of Pakistan's economy which is now facing problems in capacity utilization of their plants. This study attempts to identify the key strategies for successful implementation of just-in-time (JIT) management philosophy on the cement industry of Pakistan. The study uses survey responses from four hundred operations' managers of cement industry in order to know about the advantages and benefits that cement industry have experienced by Just in time (JIT) adoption. The results show that implementing the quality, product design, inventory management, supply chain and production plans embodied through the JIT philosophy which infect enhances cement industry competitiveness in Pakistan. JIT implementation increases performance by lower level of inventory, reduced operations & inventory costs was reduced eliminates wastage from the processes and reduced unnecessary production which is a big challenge for the manufacturer who are trying to maintain the continuous flow processes. JIT implementation is a vital manufacturing strategy that reaches capacity utilization and minimizes the rate of defect in continuous flow processes. The study emphasize the need for top management commitment in order to incorporate the necessary changes that need to take place in cement industry so that JIT implementation can take place in an effective manner. PMID:24340248

  19. Maintenance Free and Sustainable High-Level Control in Cement and Mining Industry

    DEFF Research Database (Denmark)

    Hansen, Ole Fink

    2009-01-01

    High-level control systems have been utilized in the process industry for decades, and also in cement production their use is well established. In comparison to manual control their ability to increase production and quality of end product, while reducing energy consumption and emission, is well...... chosen to focus on the remaining 90% of the algorithm which still require manual modifications to cope with a changed process. Although this issue has gained limited attention from academia so far it is well recognized by the industry. In the process of maintaining an algorithm it has turned out...

  20. Use of industrial byproducts as alumina sources for the synthesis of calcium sulfoaluminate cements.

    Science.gov (United States)

    Pace, Maria Lucia; Telesca, Antonio; Marroccoli, Milena; Valenti, Gian Lorenzo

    2011-07-15

    Calcium sulfoaluminate (CSA) cements show some desirable environmentally friendly features that include the possibility of using several industrial byproducts as raw materials in their manufacturing process. Alumina powder, from the secondary aluminum manufacture, and anodization mud, from the production process of anodized aluminum, have proved to be suitable as partial or total substitutes for an expensive natural material like bauxite. CSA clinker generating raw mixtures, containing limestone, natural gypsum, bauxite, and/or one of the alumina-rich byproducts, were heated 2 h in a laboratory electric oven at temperatures ranging from 1150 to 1300 °C. Conversion of reactants into 4CaO·3Al(2)O(3)·SO(3) (the key component of CSA cements), evaluated using X-ray diffraction (XRD) analysis, increased with an increase of both burning temperature and byproduct concentration. When examined through differential thermogravimetric and XRD analyses, a synthetic CSA clinker (made from the raw mixture incorporating alumina powder as a total replacement of bauxite) mixed with 20% gypsum showed a hydration behavior almost similar to that of an industrial CSA cement containing the same amount of gypsum. PMID:21707122

  1. Eco-efficiency of the world cement industry: A data envelopment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oggioni, G., E-mail: oggioni@eco.unibs.i [University of Brescia, Faculty of Economics, Department of Quantitative Methods, IT-25122 Brescia (Italy); Riccardi, R., E-mail: riccardi@ec.unipi.i [University of Brescia, Faculty of Economics, Department of Quantitative Methods, IT-25122 Brescia (Italy); Toninelli, R., E-mail: roberta.toninelli@unifi.i [University of Pisa, Faculty of Economics, Department of Statistics and Applied Mathematics, IT-56124 Pisa (Italy)

    2011-05-15

    Chemical reactions and the combustion of dirty fuels, such as coal and petroleum coke (petcoke), that are used in cement production processes generate a significant amount of CO{sub 2} emissions. In this paper, we provide an eco-efficiency measure for 21 prototypes of cement industries operating in many countries by applying both a data envelopment analysis (DEA) and a directional distance function approach, which are particularly suitable for models where several production inputs and desirable and undesirable outputs are taken into account. To understand whether this eco-efficiency is due to a rational utilization of inputs or to a real carbon dioxide reduction as a consequence of environmental regulation, we analyze the cases where CO{sub 2} emissions can either be considered as an input or as an undesirable output. Empirical results show that countries where cement industries invest in technologically advanced kilns and adopt alternative fuels and raw materials in their production processes are eco-efficient. This gives a comparative advantage to emerging countries, such as India and China, which are incentivized to modernize their production processes.

  2. AIR POLLUTION AND LUNG CAPACITY OF PEOPLE LIVING AROUND THE CEMENT INDUSTRY, INDONESIA

    Directory of Open Access Journals (Sweden)

    Erwin Azizi Jayadipraja

    2016-05-01

    Full Text Available Backgrounds: A cement industry is one of anthropogenic sources of air pollution. In polluting the air, the industry creates some dust particles, nitrogen oxide (NO2, sulfur oxide (SO2, and carbon monoxide (CO. Research Purpose: The research aimed at finding out the ambient air quality around a cement industry and relating it with the lung capacity of people living around the area. Methodology: This was a cross sectional studies by measuring the ambient air quality in the morning, noon, and evening in four different settlements within 3 km from the cement industry. The measurement is then correlated with the FEV1 and FVC of lung capacity of people living around the area. Result: Of all four locations, three have ambient air quality (PM2.5 = 109.47 µg/Nm3, TSP = 454.7 µg/Nm3 that surpass the quality standard (PM2.5 = 65 µg/Nm3, TSP = 230 µg/Nm3. Of 241 respondents, the average level of FVC and FEV1 is respectively 1.9352 liter (SD: 0.45578 and 1.7486 liter (SD: 0.43874. Furthermore, the level of PM2.5 in the morning and at noon is respectively p=0.009 and p=0.003; the level of TSP in the morning and at noon is respectively p=0.003 and p=0.01; the level of NO2 in the morning is p=0.006; the level of SO2 in the morning, at noon and in the evening is respectively p=0.000, p=0.022, and p=0.000; and the level of CO in the morning, at noon and in the evening is respectively p=0.003, p=0.015, and p=0.024. Those levels are associated with the level of respondents’ FEV1. Moreover, the level of TSP in the morning is p=0.024; the level of SO2 in the morning and in the evening is p=0.007. These levels relate to the level of respondents’ FVC. Conclusion: The ambient air quality around a cement industry is affected by dispersion of industrial emission and of other sources which can cause some impairment to lung capacity.

  3. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry

    International Nuclear Information System (INIS)

    The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation. - Biomonitoring Spatial and Temporal dust emissions in dry climates

  4. Assessment of environmental impact on air quality by cement industry and mitigating measures: a case study.

    Science.gov (United States)

    Kabir, G; Madugu, A I

    2010-01-01

    In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249-3,745 mg/m3 and 2,440-2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NOx, SOx and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062-0.093 mg/m3 NOx, 0.026 mg/m3 SOx and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker-roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant. PMID:19067202

  5. German Cement Industry's voluntary efforts on the issue of climate change : a success story

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, V.; Schneider, M. [German Cement Industry (Germany)

    2001-07-01

    In 1995, the cement industry in Germany stated that it would reduce energy consumption by 20 per cent between 1987 and 2005. In 2000, this commitment was adapted to international agreements such as the Kyoto Protocol. The voluntary agreement now includes a reduction of the specific energy-related carbon dioxide emissions from 1990 to 2008/12 by 28 per cent. Burning and grinding facilities have been optimized in recent years and the cement industry in Germany is planning to increase the use of fossil fuels by using waste products and by promoting the marketing of blended cements. The energy related carbon dioxide emissions were reduced by 3.6 million tonnes per year from 1987 to 1999 in the German cement industry as a result of these efforts. The use of waste products has also been increased from 4 to 23 per cent during this same time period and the clinker portion in cement has been decreased from 86 to 80.6 per cent. Granulated blast-furnace slag and unburned limestone has become the main constituent in cement. This paper also discussed the extent to which other instruments such as emissions trading, joint implementation and the clean development mechanism will have on the future of the cement industry. This paper was divided into several sections entitled: (1) voluntary agreement on climate change, (2) improvement in manufacturing processes, (3) optimization of existing kilns, (4) waste heat recovery, (5) reduction of electric power consumption, (6) remaining energy reduction potentials, (7) promotion of blended cement consumption, (8) market development, (9) use of secondary fuels, (10) greenhouse gas emissions, (11) energy related carbon dioxide emissions, (12) carbon dioxide emissions from the calcination of limestone, and (13) other greenhouse gas emissions. 3 tabs., 9 figs.

  6. Critical elements in implementations of just-in-time management: empirical study of cement industry in Pakistan

    OpenAIRE

    Qureshi, Muhammad Imran; Iftikhar, Mehwish; Bhatti, Mansoor Nazir; Shams, Tauqeer; Zaman, Khalid

    2013-01-01

    In recent years, inventory management is continuous challenge for all organizations not only due to heavy cost associated with inventory holding, but also it has a great deal to do with the organizations production process. Cement industry is a growing sector of Pakistan’s economy which is now facing problems in capacity utilization of their plants. This study attempts to identify the key strategies for successful implementation of just-in-time (JIT) management philosophy on the cement indust...

  7. Use of secondary fuels in rotary kilns of the cement industry; Einsatz von Sekundaerstoffen in Drehofenanlagen der Zementindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, V. [Forschungsinstitut der Zementindustrie, Duesseldorf (Germany)

    1998-09-01

    Most cement works in Germany use secondary materials for cement production or are planning to do so. Many of the materials in question, such as used tyres, have been recycled in an environmentally acceptable way for decades, and a large body of experience has accumulated on their use in the cement industry. In the cement industry secondary materials are understood to comprise secondary fuels as well as secondary raw materials. The latter have for some part replaced the natural raw materials used for burning cement clinker, the preliminary product of cement. By using used tyres, used oil and other waste materials as secondary fuels the cement industry has for decades contributed to an environmentally acceptable form of waste disposal. The use of secondary materials has also enabled the cement industry to improve its economic situation. In response to the enactment of the Materials Recycling Law the cement industry has during the past few years turned its attention to the utilisation of other waste materials. The criteria relevant to the cement industry`s choice of a waste material as secondary material lastly depends on the process-related side constraints attending the clinker burning process and the requirements on the burning process with regard to product quality and environmental acceptability. [Deutsch] Die meisten Zementwerke in Deutschland setzen bei der Zementherstellung Sekundaerstoffe ein oder planen ihren Einsatz. Fuer einige dieser Stoffe, wie z.B. Altreifen gilt, dass sie bereits seit Jahrzehnten umweltvertraeglich verwertet werden, so dass viele Erfahrungen ueber deren Einsatz in der Zementindustrie vorliegen. Unter Sekundaerstoffen werden in der Zementindustrie sowohl Sekundaerbrennstoffe wie auch Sekundaerrohstoffe verstanden. Letztere ersetzen teilweise die natuerlichen Rohstoffe, aus denen der Zementklinker, das Vorprodukt des Zements, gebrannt wird. Bezueglich der Sekundaerbrennstoffe traegt die Zementindustrie schon seit Jahrzehnten zu einer

  8. Investigating different factors influencing job satisfaction: A case study of cement industry

    Directory of Open Access Journals (Sweden)

    Mina Shirvani

    2013-10-01

    Full Text Available Job satisfaction plays an important role on increasing business productivity and efficiency. This paper presents an empirical investigation to study the relationship between job satisfaction and employees’ personal characteristics including gender, marital status, etc. The proposed study designs a questionnaire and distributes it among 244 out of 800 employees who worked for cement industry in Iran. The data are analyzed using different statistical tests such as t-student and analysis of variance. The results indicate that while there was not any meaningful relationship between gender and job satisfaction there was some meaningful relationship between marital status and job satisfaction.

  9. Incidence of cancer and mortality among employees in the asbestos cement industry in Denmark

    DEFF Research Database (Denmark)

    Raffn, E; Lynge, E; Juel, K;

    1989-01-01

    In a cohort study of the incidence of cancer and mortality among 7996 men and 584 women employed in the Danish asbestos cement industry between 1928 and 1984 over 99% were traced. Chrysotile asbestos was the only fibre type used until 1946, when amosite and (in 1952) crocidolite were also...... times over the present Danish threshold limit value of 0.5 fibre/ml. In 1973 more than 41% of personal samples were higher than 2 f/ml. About 76% of the workforce left the factory within five years of starting employment. A total of 1346 deaths and 612 cases of cancer were observed in the cohort between...

  10. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns - Graus, Wina

    2015-01-01

    China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of GHG

  11. Early Implementation of Large Scale Carbon Dioxide Removal Projects through the Cement Industry

    Science.gov (United States)

    Zeman, F. S.

    2014-12-01

    The development of large-scale carbon dioxide reduction projects requires high purity CO2and a reactive cation source. A project seeking to provide both of these requirements will likely face cost barriers with current carbon prices. The cement industry is a suitable early implementation site for such projects by virtue of the properties of its exhaust gases and those of waste concrete. Cement plants are the second largest source of industrial CO2 emissions, globally. It is also the second largest commodity after water, has no ready substitute and is literally the foundation of society. Finally, half of the CO2 emissions originate from process reactions rather than fossil fuel combustion resulting in higher flue gas CO2concentrations. These properties, with the co-benefits of oxygen combustion, create a favorable environment for spatially suitable projects. Oxygen combustion involves substituting produced oxygen for air in a combustion reaction. The absence of gaseous N2 necessitates the recirculation of exhaust gases to maintain kiln temperatures, which increase the CO2 concentrations from 28% to 80% or more. Gas exit temperatures are also elevated (>300oC) and can reach higher temperatures if the multi stage pre-heater towers, that recover heat, are re-designed in light of FGR. A ready source of cations can be found in waste concrete, a by-product of construction and demolition activities. These wastes can be processed to remove cations and then reacted with atmospheric CO2 to produce carbonate minerals. While not carbon negative, they represent a demonstration opportunity for binding atmospheric CO2while producing a saleable product (precipitated calcium carbonate). This paper will present experimental results on PCC production from waste concrete along with modeling results for oxygen combustion at cement facilities. The results will be presented with a view to mineral sequestration process design and implementation.

  12. Possible heavy metal residues in poultry and their products that are bred around cement industry

    Directory of Open Access Journals (Sweden)

    İsmail Erbil Ersoy

    2015-04-01

    Full Text Available Industry is an efficient tool for industrial development that is present in human lives and that mobilizes local and regional economies. When inspected from this aspect, industrial regions provide economic and social benefits for the societies. However on the other hand, they leave harmful effects to the environment and they may cause health and safety threats for communities. Mismanaged industrial regions may cause air and water pollution, noise problems and industrial accidents. One of the main purposes of this investigation is to determine the heavy metal (Pb, Cd, Cu, Cr, Co, Mo and Ni levels in the liver, thigh and chest tissues of the chickens bred around the cement factory in a residential area. It is determined that the heavy metal levels in the livers of poultries bred in these areas are quite high (P<0,01 and also in the heavy metal analyses performed, the values obtained from the samples taken from the egg, thigh and chest tissues of the poultries are specified as high (P<0,01.

  13. Accelerated weathering of limestone for CO2 mitigation opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, W.H.; Juan, C.A.S.; Rau, G.H.; Caldeira, K.

    2009-01-01

    Large amounts of limestone fines coproduced during the processing of crushed limestone may be useful in the sequestration of carbon dioxide (CO 2). Accelerated weathering of limestone (AWL) is proposed as a low-tech method to capture and sequester CO2 from fossil fuel-fired power plants and other point-sources such as cement manufacturing. AWL reactants are readily available, inexpensive, and environmentally benign. Waste CO 2 is hydrated with water to produce carbonic acid, which then reacts with and is neutralized by limestone fines, thus converting CO2 gas to dissolved calcium bicarbonate. AWL waste products can be disposed of in the ocean. Feasibility requires access to an inexpensive source of limestone and to seawater, thus limiting AWL facilities within about 10 km of the coastline. The majority of U.S. coastal power generating facilities are within economical transport distance of limestone resources. AWL presents opportunities for collaborative efforts among the crushed stone industry, electrical utilities, cement manufactures, and research scientists.

  14. Preparation and properties of CSA type expansive cement using industrial by-products

    Energy Technology Data Exchange (ETDEWEB)

    Sone, J.T.; Cho, J.S. [Dankook University, Cheonan (Korea); Jeun, J.Y. [Hyundai Cement Co, Ltd., Tanyang-gun (Korea)

    2001-02-01

    3CaO{center_dot}3Al{sub 2}O{sub 3}{center_dot}CaSO{sub 4}(C{sub 4}A{sub 3}S) clinker was synthesized by using industrial by-product. The raw materials were used fly ash and blast furnace slag(water and air cooling) for Al{sub 2}O{sub 3} material, by-product gypsum for SO{sub 3} material and natural calcite for CaO material, respectively. The CSA type expansive was made by mixing C{sub 4}A{sub 3}S clinker, CaO and CaSO{sub 4}. The hydration and physical properties of ordinary portland cement substituted with 10 wt% CSA additive were investigated. The main hydration products were ettringite and Ca(OH){sub 2}. The densification and the expansion due to the formation of ettringite during hydration increased strength of compressive, tensile and flexural. But they reduced the drying shrinkage of hardened cement. (author). 19 refs., 3 tabs., 11 figs.

  15. A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios

    International Nuclear Information System (INIS)

    Cement industry is one of the six energy intensive industries in Iran accounting for 15% of total energy consumption in the industrial sector. The sudden reform of energy prices in Iran is expected to have a great impact on production and energy consumption in this industry. In this paper, we present a system dynamics model to analyze energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios. We consider new energy prices to estimate possible energy demand by this industry over next 20 years. The model includes demand for cement, production, energy consumption and CO2 emission in an integrated framework with emphasis on direct natural gas consumption. Producing blended cement, production using waste materials as alternative fuel, and wasted heat recovery for electricity generation in cement industry are three main corrective policies simulated and discussed herein. Simulation result show that complete removal of energy subsidy and implementation of corrective policies in the cement industry could potentially lead to reductions of 29% and 21%, respectively in natural gas and electricity consumptions and 22% reduction in CO2 emission. - Highlights: ► We have developed a system dynamics model to analyze the demand, production, energy consumption and CO2 emission of cement industry in Iran. ► Various production and export scenarios have been simulated to project the energy demand of Iranian cement industry over next 20 years. ► A causal structure is used to show how subsidy reform would affect energy consumption in the cement industry over the long term. ► Producing blended cement, using waste materials as an alternative fuel and recycling wasted heat for electricity generation are the main corrective policies discussed herein

  16. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  17. Mapping and modeling multiple benefits of energy efficiency and emission mitigation in China's cement industry at the provincial level

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina

    2015-01-01

    China's cement industry is the second largest energy consumer and key emitter of CO2 and air pollutants. It accounts for 7% of total energy consumption in China and 15% of CO2, 21% of PM, 4% SO2 and 10% of NOx of total emissions, respectively. Provincial disparities

  18. FOREIGN ECONOMIC ACTIVITY OF THE ENTERPRISES OF CEMENT INDUSTRY: FINAL GOODS EXPORT

    OpenAIRE

    Senotova, A.

    2011-01-01

    This article contains the basic information about the external trade situation on the Russian cement enterprises, the influence of the economic crisis, and the statistic data about the export of Russian cement production for the years of 2005-2010, provided by the cement companies and the analytical editions.

  19. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  20. Reduction of soil pollution by usingwaste of the limestone in the cement industry

    Science.gov (United States)

    Muñoz, M. Cecilia Soto; Robles Castillo, Marcelo; Blanco Fernandez, David; Diaz Gonzalez, Marcos; Naranjo Lamilla, Pedro; Moore Undurraga, Fernando; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    In the cement manufacturing process (wet) a residue is generated in the flotation process. This builds up causing contamination of soil, groundwater and agricultural land unusable type. In this study to reduce soil and water pollution 10% of the dose of cement was replaced by waste of origin limestone. Concretes were produced with 3 doses of cement and mechanical strengths of each type of concrete to 7, 28 and 90 days were determined. the results indicate that the characteristics of calcareous residue can replace up to 10% of the dose of cement without significant decreases in strength occurs. It is noted that use of the residue reduces the initial resistance, so that the dose of cement should not be less than 200 kg of cement per m3. The results allow recommends the use of limestone waste since it has been observed decrease in soil and water contamination without prejudice construction material Keywords: Soil contamination; Limestone residue; Adding concrete

  1. Biomass use in the Dutch cement industry ENCI, Maastricht, The Netherlands

    OpenAIRE

    Junginger, H.M.

    2009-01-01

    Based in the Netherlands, ENCI is a division of HeidelbergCement active in the Benelux countries. It possesses three main production facilities in the Netherlands, of which the biggest is the integrated production plant in Maastricht. ENCI has been generating cement from Maastricht since 1926, and directly employs 212 people. There, the full cement production process is realised, as limestone is extracted from the 135-hectare quarry and burnt in a kiln to make clinker, which is then ground in...

  2. Biomass use in the Dutch cement industry ENCI, Maastricht, The Netherlands

    NARCIS (Netherlands)

    Junginger, H.M.

    2009-01-01

    Based in the Netherlands, ENCI is a division of HeidelbergCement active in the Benelux countries. It possesses three main production facilities in the Netherlands, of which the biggest is the integrated production plant in Maastricht. ENCI has been generating cement from Maastricht since 1926, and d

  3. The application of the AERMOD model in the environmental health to identify the dispersion area of total suspended particulate from cement industry stacks

    Directory of Open Access Journals (Sweden)

    Erwin Azizi Jayadipraja

    2016-06-01

    Conclusions: AERMOD model can show potential exposure area from cement industry. It needs serious efforts to prevent and minimize the impact to public health. [Int J Res Med Sci 2016; 4(6.000: 2044-2049

  4. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten;

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  5. Impact of Working Capital Management on Firm’s Profitability: A Case Study of Cement Industry of Pakistan

    Directory of Open Access Journals (Sweden)

    Farrukh Shahzad

    2015-02-01

    Full Text Available The fundamental purpose behind this study is to exactly test the effect of working capital management on profitability of cement industry of Pakistan. To explore this relationship between these two, the creator gathered auxiliary information from 12 listed firms in Karachi stock exchange (KSC for the time period of 2007-2013. For this reason, in this study we utilize variable of return on assets ratio to gauge the benefit of organization and variables of CR, QR, NCA/TA, WCT and ITR as living up to expectations working capital management criteria. The consequences of the research demonstrate that there is a huge effect of the working capital management on profitability of cement industry of Pakistan. Accordingly, manager may improve the Profitability of their organizations by minimizing the inventory turnover ratio, and by diminishing working capital turnover ratio but there is no impact of expanding or diminishing the current proportion on profitability. Along these lines, the results show that through fitting working capital management the organization can expand its benefit. This study shall be helping hand for the cement industry of Pakistan in the management of their working capital in such an effective way thus, to the point that they can increase their profitability.

  6. Incidence of cancer and mortality among employees in the asbestos cement industry in Denmark.

    Science.gov (United States)

    Raffn, E; Lynge, E; Juel, K; Korsgaard, B

    1989-01-01

    In a cohort study of the incidence of cancer and mortality among 7996 men and 584 women employed in the Danish asbestos cement industry between 1928 and 1984 over 99% were traced. Chrysotile asbestos was the only fibre type used until 1946, when amosite and (in 1952) crocidolite were also introduced. Chrysotile constituted 89%, amosite 10%, and crocidolite 1% of the asbestos used. During the first 25 years of manufacture the exposure levels were high, especially in areas where the asbestos was handled dry. Measurements from 1948 indicate that the fibre levels may have ranged from 100 to 1600 times over the present Danish threshold limit value of 0.5 fibre/ml. In 1973 more than 41% of personal samples were higher than 2 f/ml. About 76% of the workforce left the factory within five years of starting employment. A total of 1346 deaths and 612 cases of cancer were observed in the cohort between 1943 and 1984. Among employed men the overall mortality (O/E 1.18; 95% CI 1.12-1.25), cancer mortality (O/E 1.32; 95% CI 1.19-1.46), and overall incidence of cancer (O/E 1.22; 95% CI 1.12-1.32) were significantly increased compared with all Danish men. This was not so among employed women. For men, significant excess risks were found for cancer of the lung (O/E 1.80; 95% CI 1.54-2.10), pleura (O/E 5.46; 95% CI 2.62-10.05), mediastinum (O/E 5.00; 95% CI 1.01-14.61), stomach (O/E 1.43; 95% CI 1.03-1.93), and other male genital organs (O/E 3.03; 95% CI 1.11-6.60). The mortality was significantly increased for men for non-malignant pulmonary diseases (O/E 1.63; 95% CI 1.33-1.98). Among the group of asbestos cement workers with first employment 1928-40 an excess risk of laryngeal cancer was found (O/E 5.50;95% CI 1.77-12.82). A total of 12 cases of pleural and one of peritoneal mesotheliomas was observed when the original notification forms were reviewed for all patients with cancer in the cohort. PMID:2923830

  7. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    International Nuclear Information System (INIS)

    Highlights: • Implementation rates of 37 EEMs are quantified for China’s cement industry. • Energy Supply Cost Curves were implemented in the GAINS model. • The economic energy saving potential is 3.0 EJ and costs is $4.1 billion in 2030. • Energy efficiency would lead to large reductions in air pollution. • The co-benefits decrease average marginal costs of EEMs by 20%. - Abstract: China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of GHGs and air pollutants emission. In this study, the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) was used to estimate the co-benefits of energy savings on CO2 and air pollutants emission for implementing co-control options of energy efficiency measures and end-of-pipe options in the China’s cement industry for the period 2011–2030. Results show that there are large co-benefits of improving energy efficiency and reducing emissions of CO2 and air pollutants for the China’s cement industry during the study period. The cost-effective energy saving potential (EEP1 scenario) and its costs is estimated to be 3.0 EJ and 4.1 billion $ in 2030. The technical energy savings potential (EEP2 scenario) and its costs amount to 4.2 EJ and 8.4 billion $ at the same time. Compared to the baseline scenario, energy efficiency measures can help decrease 5% of CO2, 3% of PM, 15% of SO2, and 12% of NOx emissions by 2030 in EEP1 scenario. If we do not consider costs (EEP2 scenario), energy efficiency measures can further reduce 3% of CO2, 2% of PM, 10% of SO2, and 8% of NOx by 2030. Overall, the average marginal costs of energy efficiency measures will decrease by 20%, from 1.48 $/GJ to 1.19 $/GJ, when taking into

  8. Quantifying the co-benefits of energy-efficiency policies: a case study of the cement industry in Shandong Province, China.

    Science.gov (United States)

    Hasanbeigi, Ali; Lobscheid, Agnes; Lu, Hongyou; Price, Lynn; Dai, Yue

    2013-08-01

    In 2010, China's cement industry accounted for more than half of the world's total cement production. The cement industry is one of the most energy-intensive and highest carbon dioxide (CO2)-emitting industries, and thus a key industrial contributor to air pollution in China. For example, it is the largest source of particulate matter (PM) emissions in China, accounting for 40% of industrial PM emissions and 27% of total national PM emissions. In this study, we quantify the co-benefits of PM10 and sulfur dioxide (SO2) emission reductions that result from energy-saving measures in the cement industry in Shandong Province, China. We use a modified form of the cost of conserved energy (CCE) equation to incorporate the value of these co-benefits. The results show that more than 40% of the PM and SO2 emission reduction potential of the electricity-saving measures is cost effective even without taking into account the co-benefits for the electricity-saving measures. The results also show that including health benefits from PM10 and/or SO2 emission reductions reduces the CCE of the fuel-saving measures. Two measures that entail changing products (production of blended cement and limestone Portland cement) result in the largest reduction in CCE when co-benefits were included, since these measures can reduce both PM10 and SO2 emissions, whereas the other fuel-saving measures do not reduce PM10. PMID:23707868

  9. CONTRIBUTION TO THE STATISTICAL INTERPRETATION OF RAW MATERIALS FOR THE CEMENT INDUSTRY OF SPLIT

    OpenAIRE

    Miroslav Matijaca; Slavko Vujec

    1990-01-01

    Up to the last two decades cement was produced from mari called »tupina« (with about 76% CaCOj) which is an ideal mixture for cement production. Due to the quantity decrease of this raw material, cement production went on using the mixture of other members of the flysch series: limestones, marls, clay, loess, sandstones a.o. By the analysis of natural materials the CaCO^ content has mostly been proved. Therefore, knowing the correlation of oxides in mineral raw material is of special signific...

  10. 水泥窑处理工业废物的工厂实验研究%Plant Test of Industrial Waste Disposal in a Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    刘阳生; 韩杰; 白庆中

    2003-01-01

    Destruction of industrial waste in cement rotary kilns (CRKs) is an alternative technology for thetreatment of certain types of industrial waste (IW). In this paper, three typical types of industrial wastes wereco-incinerated in the CRK at Beijing Cement Plant to determine the effects of waste disposal (especially solid wastedisposal) on the quality of clinker and the concentration of pollutants in air emission. Experimental results showthat (1) waste disposal does not affect the quality of clinker and fly ash, and fly ash after the IW disposal can still beused in the cement production, (2) heavy metals from IW are immobilized and stabilized in the clinker and cement,and (3) concentration of pollutants in air emission is far below than the permitted values in the China NationalStandard-Air Pollutants Emission Standard (GB 16297-1996).

  11. Recent developments in the cement industry: a comparative study between Mexico and India

    OpenAIRE

    Ganesh Babu Kumaran; Saúl Martínez González

    2008-01-01

    Since early twentieth century, the use of cement has become a popular and strategic product for economic growth of every country. In India as in Mexico, the first factories began in the earlier twentieth century, India is nowadays the world’s second largest producer and Mexico is the third firm in cement production, despite being the tenth world producer. The eighties have significate for both countries major structural changes in its economy, which have radically altered the structure ...

  12. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    International Nuclear Information System (INIS)

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 oC. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca3Cr2(SiO4)3] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO5]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  13. Effects of Riyadh cement industry pollutions on some physiological and morphological factors of Datura innoxia Mill. plant.

    Science.gov (United States)

    Salama, Hediat M H; Al-Rumaih, M M; Al-Dosary, M A

    2011-07-01

    Cement factory emissions into air cause serious air pollution and affect the plant and animal life in the environment. Herein, we report the effects of cement industry emissions (O3, SO2 and NO2) in air, as pollutants, at Riyadh City on Datura innoxia Mill. plant. Morphological characters including plant height, leaves area and number, fresh and dry weight of shoot and root systems of D. innoxia showed a significant reduction from their normal control plants as a response to exposure to pollutant emissions. Chlorophyll and carotenoid contents recorded reductions in values compared to control plant, and the lowest values of chlorophyll A, B, total chlorophyll, carotenoids and total pigments were 0.431, 0.169, 0.60, 0.343 and 0.943 mg/g respectively at a distance of 1-5 m from the cement factory in fruiting stage. These changes in values may be attributed to a probable deceleration of the biosynthetic process rather than degradation of pigments. Further D. innoxia showed a significant (P plant. The root system recorded the lowest values of reducing sugars (0.350 mg/g f. wt.), non-reducing sugars (0.116 mg/g f. wt.), total sugars (0.466 mg/g f. wt.), protein content (0.931 mg/g f. wt.) and total lipids content (0.669 mg/g f. wt.) in fruiting stage at a distance of 1-5 m from the cement factory. The peroxidase activity of shoot and root systems of the studied plant was also significantly higher than those of control plant. Thus a highest value of (29.616 units/g f. wt.) peroxidase activity was recorded in vegetative stage of shoot system at a distance 1-5 m from the cement factory. Results of the study indicated that cement industry emission strongly influence the physiology and morphology of date palm D. innoxia which contribute date fruits, a staple food in the Arab world.

  14. CONTRIBUTION TO THE STATISTICAL INTERPRETATION OF RAW MATERIALS FOR THE CEMENT INDUSTRY OF SPLIT

    Directory of Open Access Journals (Sweden)

    Miroslav Matijaca

    1990-12-01

    Full Text Available Up to the last two decades cement was produced from mari called »tupina« (with about 76% CaCOj which is an ideal mixture for cement production. Due to the quantity decrease of this raw material, cement production went on using the mixture of other members of the flysch series: limestones, marls, clay, loess, sandstones a.o. By the analysis of natural materials the CaCO^ content has mostly been proved. Therefore, knowing the correlation of oxides in mineral raw material is of special significance. The article discusses investigation results of the correlation between CaCO-i and other oxides of the raw material (the paper is published in Croatian.

  15. Use of the “red gypsum” industrial waste as substitute of natural gypsum for commercial cements manufacturing

    Directory of Open Access Journals (Sweden)

    Gázquez, M. J.

    2012-06-01

    Full Text Available The main objective of this research has been the valorisation of a waste from the TiO2 production process (sulphate method, called red gypsum, in the production of cements. This waste is mainly formed by di-hydrate calcium sulphate and iron hydroxides. To cover this objective it has been necessary to perform the physico-chemical characterisation of the red gypsum as well as the main components in the production of cements and of the new cements generated. Moreover, for the red gypsum, has been analyzed its radioactive content because it is generated in a NORM (Naturally Occurring Radioactive Materials industry. Finally, the most important properties of the obtained cements with different proportions of red gypsum in their composition have been studied by comparing them with the standard ones obtained in a Portland cement. Lastly, we have demonstrated that the new cements fulfil all the quality tests imposed by the European legislation.

    El objetivo de esta investigación ha sido analizar la valorización de un residuo generado en el proceso de producción de dióxido de titanio (vía sulfato, denominado yeso rojo, en la producción de cementos. Dicho residuo está compuesto fundamentalmente por sulfato de calcio di-hidratado e hidróxidos de hierro. Para ello, ha sido necesaria la caracterización físico-química del yeso rojo, así como la de los otros componentes fundamentales en la fabricación de cementos y de los cementos generados con el mencionado residuo. Además, en el caso del yeso rojo, se ha analizado su contenido radiactivo al generarse éste en una industria NORM (Natural Occurring Radioactive Materials. Posteriormente, se han estudiado las propiedades más importantes de los cementos producidos con diferentes porcentajes de yeso rojo añadido, comparando estas mezclas con las propiedades de un cemento Portland comercial, comprobándose que se cumplen todas las normas Europeas de calidad exigibles.

  16. Long-term model-based projections of energy use and CO2emissions from the global steel and cement industries

    OpenAIRE

    van Ruijven, Bas J.; van Vuuren, Detlef P.; Boskaljon, Willem; Neelis, Maarten L.; Saygin, Deger; Martin K. Patel

    2016-01-01

    This paper presents a global simulation-model for the steel and cement industries. The model covers the full modelling chain from economic activity, to materials consumption, trade, technology choice, production capacity, energy use and CO2emissions. Without climate policy, the future projections based on the SSP2 scenario show a rapid increase in the consumption of steel and cement over the next few decades, after which demand levels are projected to stabilize. This implies that over the sce...

  17. Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China

    International Nuclear Information System (INIS)

    Highlights: • First study on the co-benefits of mitigation measures in the cement sector in China. • We evaluate the economic value of damage of various pollutants at local level. • We evaluate 18 energy-saving technologies for 31 provinces in cement sector. • The value for the co-benefits ranged from 3 $/t CO2 to 39 $/t CO2. • The large spatial variations may justify stringent targets for richer provinces. - Abstract: We analyzed the impacts of incorporating local air quality improvement and environmental co-benefits into the climate policy and mitigation technology assessment of the cement sector in China. Local air quality can benefit from reducing greenhouse gas emissions, which consequently lowers abatement costs and strengthens the cost-effectiveness of mitigation technologies. We used a simplified approach to estimate environmental damage factors due to air pollution at the sub-national level in China. The calculated economic costs of environmental damage due to PM10, NOx, and SO2 were 7,714 $/t, 1,006 $/t, and 902 $/t, respectively. These values vary among the provinces. We found that most energy-saving technologies in the cement industry will create significant co-benefits, ranging from 3 $/t CO2 to 39 $/t CO2 at the national level; however, a tradeoff for carbon capture and storage (CCS) and energy-saving technologies also resulted with increased electricity consumption. Large spatial variations of co-benefits can be gained at the sub-national level and justify the enactment of more stringent climate policies in the wealthier regions in China

  18. Explorations on Energy Management System Standardization in Cement Industry%水泥行业能源管理体系标准进展及实施探索

    Institute of Scientific and Technical Information of China (English)

    李燕; 王赓; 任香贵

    2014-01-01

    The energy-saving management of China’s cement industry has gradually improved in recent years;however, cement industry still faces big pressure of facilitating energy conservation and emission reduction. Based on the current development of cement industry, the paper summarizes and analyzes the application and promotion of energy management system (EnMS) standardization in cement industry, then gives a brief introduction to the implementation of related standards and at last explores the positive function of energy management system in enhancing enterprises’ energy management and improving energy performance.

  19. Application of thermal energy storage in the cement industry. Final report, September 1977--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jaegr, F.A.; Beshore, D.G.; Miller, F.M.; Gartner, E.M.

    1978-10-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, establishes use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10/sup 13/ Btu/year, or an equivalent of 4.0 x 10/sup 6/ barrels of oil per year, can be conserved. Attractive rates of return on investment of the proposed systems are an incentive for further development.

  20. India's cement industry: Productivity, energy efficiency and carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  1. Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis

    International Nuclear Information System (INIS)

    Much of China's cement industry still uses outdated kilns and other inefficient technologies, which are obstacles to improving energy efficiency. Huge improvements in energy consumption intensity can be made by improving this technology. To evaluate the potential for energy-saving and CO2 emissions reduction in China's cement industry between 2010 and 2020, a model was developed based on the Asian-Pacific Integrated Model (AIM). Three scenarios (S1, S2 and S3) were developed to describe future technology policy measures in relation to the development of the cement industry. Results show that scenario S3 would realize the potential for CO2 emissions mitigation of 361.0 million tons, accounting for 25.24% of the predicted emissions, with an additional energy saving potential of 39.0 million tons of coal equivalent by 2020. Technology promotion and industrial structure adjustment are the main measures that can lead to energy savings. Structural adjustment is the most important approach to reduce the CO2 emissions from the cement industry; the resulting potential for CO2 emissions reduction will be increasingly large, even exceeding 50% after 2016. - Highlights: • We evaluate the effectiveness of energy savings and emission reductions in China's cement industry via the AIM/end-use model. • Three scenarios are simulated to project the potential for energy savings and emission reductions over the next decade. • Structural adjustment and technology promotion are both key approaches for energy conservation. • Structural adjustment is the most important approach to reduce the CO2 emissions from the cement industry

  2. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    Energy Technology Data Exchange (ETDEWEB)

    Voglar, Grega E. [RDA - Regional Development Agency Celje, Kidriceva ulica 25, 3000 Celje (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.si [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2011-08-30

    Highlights: {yields} We assess the feasibility of using soil S/S for industrial land reclamation. {yields} Retarders, accelerators, plasticizers were used in S/S cementitious formulation. {yields} We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg{sup -1} of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm{sup -2} achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  3. Ranking of Companies based on TOPSIS-DEA Approach Methods (Case Study of Cement Industry in Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Ali Mansory

    2014-08-01

    Full Text Available Ranking options has always been the main issue for managers. There are a lot of qualitative and quantitative approaches for ranking. However most of the approaches for separating and ranking corporations in stock market are less reliable and the results obtained will be invalid. While the evaluation obtained merely through qualitative or quantitative approaches alone, the advantages of integration will be ignored. Thus logically the efficiency of result will be questionable. Thus in this paper the advantages of qualitative and quantitative approaches are integrated which in turn bring about more precision in values of input and output indices. Hence in this paper the approaches, TOPSIS & DEA, have been introduced to rate active companies in cement industry accepted in Tehran stock market. The approach adopted in this paper is applicable and carried out during 2006-2011 and the population of the research includes accepted companies in stock market in cement industry (28 companies and at the end a precise ranking of the companies is presented by integrattive techniques.

  4. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    Science.gov (United States)

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe.

  5. An Experimental Investigation of Partial Replacement of Cement by Industrial Waste (Hypo Sludge

    Directory of Open Access Journals (Sweden)

    Mr.R.Balamurugan

    2014-04-01

    Full Text Available Concrete is strength and tough material but it is porous material also which interacts with the surrounding environment. The durability of concrete depends largely on the movement of water and gas enters and moves through it. To produce low cost concrete by blending various ratios of cement with hypo sludge & to reduce disposal and pollution problems due to hypo sludge it is most essential to develop profitable building materials from hypo sludge. To make good quality paper limited number of times recycled Paper fibers can be used which produces a large amount of solid waste. The innovative use of hypo sludge in concrete formulations as a supplementary cementations material was tested as an alternative to traditional concrete.

  6. Case study: improvement of performance of cement industry rotary kilns by using a solid radiotracers

    International Nuclear Information System (INIS)

    In the present report, residence time distribution (RTD) of the cement blended raw meal has been determined by the use of 7,4x108 Bq (20 mCi) of La 40 as a dust radioactive tracer in the chemical form of La2O3. Five scintillation detector were installed alongside the kiln. Analysis and interpretation of response curves were made to draw conclusions about the improvement of the rotary kiln performance

  7. Individual asbestos exposure: smoking and mortality--a cohort study in the asbestos cement industry.

    OpenAIRE

    Neuberger, M.; Kundi, M

    1990-01-01

    A historical prospective cohort study comprised all persons employed from 1950 to 1981 for at least three years in the oldest asbestos cement factory in the world. From 2816 persons eligible for the study, record based estimates and measurements of dust and fibres and histories of smoking based on interviews were used to calculate individual exposures over time. After observation of 51,218 person-years and registration of 540 deaths, underlying causes of death for this cohort were compared wi...

  8. Measures for emission reduction in asbestos-cement industry and methods for emission and immission measurement

    Energy Technology Data Exchange (ETDEWEB)

    Teichert, U.

    Emissions of asbestos fine dust connected with asbestos cement are possible during: production, processing in plants, installing at the construction site and weathering of products. Main sources for possible emissions during production are: supply of asbestos, diffuse sources, exhaust air from filter units, and waste disposal. In former times the asbestos bags reached the plant rather damaged but today the asbestos is supplied in a pressed state, in dust-tight plastic bags piled up on palettes without damage.

  9. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2016-01-01

    Full Text Available 4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The results showed that the burnout rate was increased after adding the additives; meanwhile, the NOX and SO2 release concentration were reduced, but the degree of action varied for different additives and coals. The substitute of chemical reagents by industrial wastes was very effective; overall, the cold-rolled iron oxide worked better than others; the particles surface was tougher and the peaks of crystalline phase were lower than raw coal, which indicated that the additives played good roles in combustion process.

  10. POZZOLAN AND CEMENTS WITH POZZOLAN

    OpenAIRE

    Kaplan, Hasan; Hanifi BİNİCİ

    1995-01-01

    Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, ce...

  11. Macro economy regulation and control and cement industry development%宏观经济调控与水泥工业发展

    Institute of Scientific and Technical Information of China (English)

    蒋明麟

    2004-01-01

    Our national economy kept comparatively rapid increase last year with good development trend of benefit, aped and vigor. But there were also some new contradiction and unstable and unhealthy factors.Cement industry also showed strong development trend. Since 21st century, the average increase rate of cement output has been 10.86%. Our new type of dry process and equipment development, design and manufacture has made great progress and successfully developed set technical equipment of 5000t/d,8000t/d and lO000t/d that has been put into production. Their main technical and economic index has reached advanced level of that of same production line in the world. But there are also prominent problems to be solved in cement industry.The State Council made resolute decision to take a series of pertinent measures of regulation and control consecutively starting from second half of 2003 and the practice showed this decision making was timely,correct and valid.We should realize the task of macro regulation and control is till very heavy. As to how to promote industry structure regulation and industry technique progress of cement industry and further enforce enterprise competitive power through macro economy regulation and control, the author raised suggestion from several aspects as follows.

  12. Mining and geologic characterization of calcareous resources for the cement industry in Uruguay

    International Nuclear Information System (INIS)

    The main objective of this work was the study of geological and mining potential that Uruguay has on limestone rocks rich in calcium and poor in magnesium and silica, which are considered primary requirements suitable for the manufacture of cement. The results obtained allow defining four major regions of the country that although do not include all occurrences of calcareous rocks, they do not constitute the most important areas concerning: rock quality, higher volumes and improved extraction possibilities. The areas are: Queguay, Minas, Carape and Treinta y tres

  13. Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes

    Directory of Open Access Journals (Sweden)

    Gallardo, M.

    2014-09-01

    Full Text Available Environmentally-friendly calcium sulphoaluminate clinkers were obtained from a mixture of aluminium dross, fluorgypsum, fly ash and CaCO₃ at temperatures within the range of 1100 to 1400 °C. After the heat treatments Ca₄Al₆O₁₂SO₄ was the main phase. Three different cements were prepared using the clinkers synthesized at 1250, 1350 and 1400 °C; the clinker powders were mixed with 20 wt% of hemihydrate. Cement pastes were prepared using a water/cement ratio (w/c, 0.4 followed by curing at 20 or 40 °C for periods of time ranging from 1 to 28 days. Most of the samples showed high compression strengths 40–47 MPa after 28 days, which were comparable to the strength of Portland cement. Ettringite was the main hydration product and its morphology consisted of acicular and hexagonal plates, which is typical of this phase.Se fabricaron clinkers de bajo impacto ambiental a base de sulfoaluminato de calcio calcinando mezclas de escoria de aluminio, fluoryeso, ceniza volante y CaCO₃ a diferentes temperaturas dentro de un rango de 1100 a 1400 °C. Se observó la formación de Ca₄Al₆O₁₂SO₄ como fase principal. Para obtener los cementos, los clinkers obtenidos a 1250, 1350 y 1400 °C se mezclaron con 20% en peso de hemihidrato. Se prepararon pastas usando una relación agua/cemento, de 0.4 y se curaron a 20 y 40 °C por diferentes periodos de tiempo desde 1 hasta 28 días. Los valores de resistencia a la compresión a los 28 días de curado de la mayoría de las muestras estuvieron entre 40–47 MPa, equiparables a los de referencia de pastas de cemento Portland. La etringita fue el principal producto de hidratación y su morfología consistió de placas hexagonales y aciculares, típicas de esta fase.

  14. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: Effect of calcined alumina

    Directory of Open Access Journals (Sweden)

    Pattem Hemanth Kumar

    2014-12-01

    Full Text Available A new class of conventional and low-cement ferrochrome slag-based castables were prepared from 40 wt.% ferrochrome slag and 45 wt.% calcined bauxite. Rest fraction varied between high alumina cement (HAC acting as hydraulic binder and calcined alumina as pore filling additive. Standard ASTM size briquettes were prepared for crushing and bending strengths evaluation, and the samples were then subjected to firing at 800, 1100 and 1300 °C for a soaking period of 3 h. The microstructure and refractory properties of the prepared castables have been investigated using X-ray diffraction (XRD, scanning electron microscopy (SEM, cold crushing strength, modulus of rupture and permanent linear changes (PLCs test. Castables show good volume stability (linear change <0.7% at 1300 °C. The outcomes of these investigations were efficacious and in accordance with previously reported data of similar compositions. High thermo-mechanical and physico-chemical properties were attained pointing out an outstanding potential to increase the refractory lining working life of non-recovery coke oven and reheating furnaces.

  15. System of lower cogeneration in the cement industry; Sistema de cogeneracion inferior en la industria del cemento

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, H.; Vazquez, A; Ambriz, J. J.; Fosado, A.; Cedillo, D.; Sanchez, R. [Universidad Autonoma Metropolitana-Iztapalapa (Mexico)

    1999-07-01

    In this paper present work, the design of a cogeneration system was made, taking advantage of the waste thermal flows in a cement manufacturing industry. The costs by concept of energy sources in the cement industry represent between 30 and 60% of the production costs, reason why any diminution in its consumption, will be reflected considerably in the productivity of the company. In order to determine the available capacity of waste energy and to establish the dimension of the cogeneration system it was decided to initially conduct balances of matter and energy of a cement production train. For the evaluation and numerical simulation a case study of a national plant was taken. The analysis takes only into account the rotary kiln, the pre roaster, the gas cooler or conditioner, the cooler of clinker and the separators or dust recuperators. In this study the electrical mills nor the systems that operate all over the plant have been taken in consideration. The results show that in general a high potential of co-generation exists since in some cases the heat losses can reach up to a 50% of the calorific energy input. The capacity of electrical generation by means of a steam turbine when taking advantage of a fraction (in the order of 60%) the residual heat, can be between 200 and 300 watts per kilogram of clinker produced. In conclusion, when recovering by means of appropriate heat exchangers for each one of the mentioned equipment the wasted energy and a network of heat interchange optimized by means of modern technologies an important part of the electrical energy that a cement mill uses can be generated. The method used has been very attractive and with the possibility of applying it to any cement mill and thus evaluate the potentials of energy co-generation. [Spanish] En el presente trabajo, se realizo el diseno de un sistema de cogeneracion aprovechando las corrientes termicas de desecho en una industria de fabricacion de cemento. Los costos por concepto de

  16. Improving the CO2 performance of cement, part III : The relevance of industrial symbiosis and how to measure its impact

    OpenAIRE

    Ammenberg, Jonas; Baas, Leo; Eklund, Mats; Feiz, Roozbeh; Helgstrand, Anton; Marshall, Richard

    2015-01-01

    Cement production contributes to extensive CO2 emissions. However, the climate impact can vary significantly between different production systems and different types of cement products. The market is dominated by ordinary Portland cement, which is based on primary raw materials and commonly associated with combustion of vast amounts of fossil fuels. Therefore, the production of Portland cement can be described as a rather linear process. But there are alternative options, for example, involvi...

  17. Long-term model-based projections of energy use and CO2emissions from the global steel and cement industries

    NARCIS (Netherlands)

    Van Ruijven, Bas J.; Van Vuuren, Detlef P.; Boskaljon, Willem; Neelis, Maarten L.; Saygin, Deger; Patel, Martin K.

    2016-01-01

    This paper presents a global simulation-model for the steel and cement industries. The model covers the full modelling chain from economic activity, to materials consumption, trade, technology choice, production capacity, energy use and CO2emissions. Without climate policy, the future projections ba

  18. Lime mud from cellulose industry as raw material in cement mortars

    Directory of Open Access Journals (Sweden)

    Modolo, R. C.E.

    2014-12-01

    Full Text Available This study reports the use of lime mud (LM in cement-based-mortars. Lime mud is a waste generated in the production of cellulose by the kraft mill process. It is mainly composed of CaCO3, a small amount of magnesium carbonate and other trace minerals. Mortars were prepared by adding different amounts of LM (10, 20 and 30% by weight of cement in dry weight. The mortar compositions were evaluated through rheology and flow table measurements, assuring that all the samples exhibited adequate conditions for testing in both equipments. The hardened state properties were also evaluated through mechanical strengths at 7, 28 and 90 days of curing. Following a waste management solution perspective, this work intend to provide a general evaluation of LM application in cement based mortars, looking at both fresh and hardened properties in order to guarantee that the final application requirements are not hindered.Este estudio revela el uso de lodo de carbonato (LM en morteros de cemento. El LM es un residuo compuesto principalmente por CaCO3 generado en la producción de pasta de papel por el método Kraft. Los morteros se prepararon a partir de la adición de diferentes niveles de LM (10, 20 y 30% en peso de cemento en peso seco. Las composiciones de los morteros fueron caracterizadas através de mediciones de reología de mesa y de flujo, asegurando que las muestras exhibían condiciones adecuadas para su caracterización en ambos equipamientos. Las propiedades en estado endurecido también se evaluaron através de resistencias mecánicas a los 7, 28 y 90 días de cura. Con objeto de gestión de residuos, este trabajo tiene la intención de proporcionar una visión general de la aplicación de LM en los morteros, haciendo hincapié en las propiedades con el fin de garantizar que los requisitos para su aplicación final no se vean obstaculizados.

  19. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: Effect of microsilica addition

    Directory of Open Access Journals (Sweden)

    Pattem Hemanth Kumar

    2014-06-01

    Samples with decreasing cement content 15–05 wt.% were formulated in combination of both slag and calcined bauxite as matrix components. Effects of varying 0–10 wt.% microsilica as a micro-fine additive in these castables were investigated in this work. Pore filling properties of microsilica improved apparent porosity and bulk density. Phase analysis through X-ray diffraction techniques demonstrates successful formation of spinel and mullite crystalline phases. Mechanical behavior was evaluated through cold crushing strength and residual cold crushing strength after five consecutive water quenching cycles. Scanning electron microscopy measurements were carried out in order to better understand the packing density and reaction mechanisms of fired castables. Slag containing castables portrays good thermal properties such as thermal shock resistance, permanent linear change and pyrometric cone equivalent.

  20. Disposal of historically contaminated soil in the cement industry and the evaluation of environmental performance.

    Science.gov (United States)

    Li, Yeqing; Zhang, Jiang; Miao, Wenjuan; Wang, Huanzhong; Wei, Mao

    2015-09-01

    Approximately 400000t of DDTs/HCHs-contaminated soil (CS) needed to be co-processed in a cement kiln with a time limitation of 2y. A new pre-processing facility with a "drying, grinding and DDTs/HCHs vaporizing" ability was equipped to meet the technical requirements for processing cement raw meal and the environmental standards for stack emissions. And the bottom of the precalciner with high temperatures >1000°C was chosen as the CS feeding point for co-processing, which has rarely been reported. To assess the environmental performance of CS pre- and co-processing technologies, according to the local regulation, a test burn was performed by independent and accredited institutes systematically for determination of the clinker quality, kiln stack gas emissions and destruction efficiency of the pollutant. The results demonstrated that the clinker was of high quality and not adversely affected by CS co-processing. Stack emissions were all below the limits set by Chinese standards. Particularly, PCDD/PCDF emissions ranged from 0.0023 to 0.0085ngI-TEQNm(-3). The less toxic OCDD was the peak congener for CS co-processing procedure, while the most toxic congeners (i.e. 2,3,7,8-TeCDD, 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDD) remained in a minor proportion. Destruction and removal efficiency (DRE) and destruction efficiency (DE) of the kiln system were better than 99.9999% and 99.99%, respectively, at the highest CS feeding rate during normal production. To guarantee the environmental performance of the system the quarterly stack gas emission was also monitored during the whole period. And all of the results can meet the national standards requirements. PMID:25966458

  1. A study on the effect of working capital management on profitability on Cement and Petrochemical industries: Evidence from Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Fatemeh Khaksarian

    2014-07-01

    Full Text Available This paper presents an empirical investigation to study the effect of working capital management on profitability on Cement and Petrochemical industries. The study uses the information of 24 firms from Cement industry and 19 firms from Petrochemical industry listed on Tehran Stock Exchange. There are two independent variables including the ratio of current assets on total assets as well as the ratio of current liabilities on total assets in this survey. In addition, there are two dependent variables including return on assets (ROA and Tobin’s Q. The study also considers firm size, sales’ growth, financial leverage, gross domestic product growth as control variables. Using stepwise regression technique, the study confirms a positive and meaningful relationship between working capital criteria and profitability. In addition, the study confirms that as the ratio of current assets to total assets increases, ROA and Tobin’s Q will be reduced, which means lower profitability would be resulted. In addition, as financial leverage increases, ROA in both industries will reduce while Tobin’s Q will increase in Cement industry and will reduce in Petrochemical industry.

  2. Solid recovered fuels in the cement industry--semi-automated sample preparation unit as a means for facilitated practical application.

    Science.gov (United States)

    Aldrian, Alexia; Sarc, Renato; Pomberger, Roland; Lorber, Karl E; Sipple, Ernst-Michael

    2016-03-01

    One of the challenges for the cement industry is the quality assurance of alternative fuel (e.g., solid recovered fuel, SRF) in co-incineration plants--especially for inhomogeneous alternative fuels with large particle sizes (d95⩾100 mm), which will gain even more importance in the substitution of conventional fuels due to low production costs. Existing standards for sampling and sample preparation do not cover the challenges resulting from these kinds of materials. A possible approach to ensure quality monitoring is shown in the present contribution. For this, a specially manufactured, automated comminution and sample divider device was installed at a cement plant in Rohožnik. In order to prove its practical suitability with methods according to current standards, the sampling and sample preparation process were validated for alternative fuel with a grain size >30 mm (i.e., d95=approximately 100 mm), so-called 'Hotdisc SRF'. Therefore, series of samples were taken and analysed. A comparison of the analysis results with the yearly average values obtained through a reference investigation route showed good accordance. Further investigations during the validation process also showed that segregation or enrichment of material throughout the comminution plant does not occur. The results also demonstrate that compliance with legal standards regarding the minimum sample amount is not sufficient for inhomogeneous and coarse particle size alternative fuels. Instead, higher sample amounts after the first particle size reduction step are strongly recommended in order to gain a representative laboratory sample. PMID:26759433

  3. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  4. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  5. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  6. Discussion on the Technical of Total Nitrogen Removal in Cement Industry%水泥行业脱硝工艺技术的探讨

    Institute of Scientific and Technical Information of China (English)

    曾佳敏; 邓燕琳

    2012-01-01

    "十二五"期间,国家将氮氧化物列为大气污染物总量控制约束性指标。其中,水泥行业是氮氧化物减排的重点领域之一,新型干法水泥窑要进行低氮燃烧技术改造,新建水泥生产线要安装效率不低于60%的脱硝设施。文章根据目前水泥行业现状,探讨应相应匹配的脱硝工艺技术。%The "12th Five-Year Plan",the state will nitrogen oxide as the total control of air pollutant binding targets.Among them,the cement industry is one of the key fields of nitrogen oxide emission,cement kiln to low nitrogen combustion technology,a new cement production line to install the efficiency of not less than 60 % of the DeNOx facility.According to the current situation of cement industry,the corresponding matching denitration technology.

  7. NO{sub x} formation in cement industry clinker kilns; Formacao de NO{sub x} em fornos rotativos de producao de clinquer da industria do cimento

    Energy Technology Data Exchange (ETDEWEB)

    Signoretti, Valdir Tesche; Silva, Rogerio Jose da [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], e-mail: valdirsg@unifei.edu.br, e-mail: rogeriojs@unifei.edu.br

    2006-07-01

    This work estimates the concentration of pollutant Nox generated in the process of combustion of petroleum coke and tires in rotary kiln for clinker production in the cement industry. Using a mixture of petroleum coke and tires in the burning process, the No{sub x} and CO emissions will be evaluated in kilns with precalciner with tertiary air. The emissions will be analyzed in this installation type still considering the staging combustion as a form of reduction of the Nox emissions. The proposed model is based on the knowledge of the chemical species concentrations involved in the chemical equilibrium and also in the knowledge of the reaction kinetics of Nox and CO formation in the combustion process. It is also done in this work a revision on No{sub x}, So{sub x} and CO concerning issues related to their formation and presenting the main controlling technologies of these pollutants used in the cement industry. (author)

  8. The Materials and Energy Potential Method for the quantitative distincion between Valorization and Elimination in the Cement Industry

    NARCIS (Netherlands)

    Zeevalkink, J.A.; Alkemade, M.M.C.

    1996-01-01

    This report proposes a quantitative method to distinguish between valorization and elimination of waste in a cement kiln. Examples are calculated to illustrate the consequences of the developed approach. Valorization is defined as the processing of a waste in a cement kiln to substi-tute raw materia

  9. Preparation of Super Composite Cement with a Lower Clinker Content and a Larger Amount of Industrial Wastes

    Institute of Scientific and Technical Information of China (English)

    HE Zhen; LIANG Wen-quan; LI Bei-xing; LI Xiang-guo

    2002-01-01

    The effects of the grinding mode,fineness, gypsum kinds and dosage, mix proportions on properties of the composite cements consisting of slag,fly ash, limestone and a lower content clinker were investigated,respectively. The results show that when the proportions among slag, fly ash and limestone are appropriate, the grinding technology and system are reasonable, the optimized gypsums and additives are effective, the 52.5 R grade cement (52.5 R grade cement means a higher strength than 52.5 at early age ) can be prepared by clinker dosage of 50% in weight, the 42.5R or 42.5,32.5 grade composite cement containing 40% and 30% clinker also may be made, respectively. Moreover, the high performance concrete prepared from the above composite cements was studied experimentally.

  10. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry

    OpenAIRE

    López-Sabirón, Ana M.; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A.

    2015-01-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obta...

  11. Cement industry structure adjustment and macro regulation and control%水泥结构调整与宏观调控

    Institute of Scientific and Technical Information of China (English)

    牛建国

    2004-01-01

    This article recalled the background of our national economy development in 2003, namely our GDP increase, total amount of import and export,industrial increase scale all reached quite high level and at the same time showed such problems like excessive large fixed assets investment scale and coal, electricity, oil, transport and price in economic operation.The article further expounds on the principle, stress and measure of macro regulation and control as well as the good trend of our general national economy operation in the first half of this year.This article also made introduction about relative state policy concerning cement industry development.

  12. Process development for utilizing asbestos cement waste in rotary kilns for the cement industry. Final report; Erarbeitung eines Verfahrens zur stofflichen Verwertung von zementgebundenen Asbestprodukten in Drehrohroefen fuer die Zementindustrie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, R.; Kieser, J.; Kraehner, A.

    1999-11-01

    The law for recycling and waste demands the utilization also for waste of asbestos cement (ac). The procedure of thermal utilization of ac in the flame of a rotary cement kiln was developed and patented by the research institute IBU-tec Weimar, Germany. The ac-material has to be pre-pulverized and grinded to a degree of fineness of R{sub 90}<15%. Considerations of safety engineering lead to the idea of common fine grinding of old oil (oo) and ac. This new procedure was searched in FuE-project in 1998/99 (financial support by BMBF). A mash of ac and oo was generated as a utilization product ready for firing which was injected into the flame of the rotary cement kiln. This particles of ac smelt to spherical shaped particles at a temperature above 1500 C. They were utilized by clinker formation. The material and gas stream leaving the kiln does not contain fibres of asbestos. This was demonstrated in a small equipment burning test. The industrial realization concerning cement plant Ruedersdorf, near Berlin, was searched, technologically described and safety engineeringly and financially assessed by a project study. Process-technical and financial advantages were seen for the dry fine grinding. The wet fine grinding with old oil could be used in cement plants using old oil as fuel. (orig.) [German] Das Kreislaufwirtschafts- und Abfallgesetz (1994) fordert u.a. die stoffliche Verwertung auch fuer Asbestzementabfaelle (AZ). Das vom Institut fuer Baustoff- und Umweltschutz-Technologie Weimar 1995 entwickelte und patentierte Verfahren zur thermischen Verwertung von AZ in der Flamme eines Zementdrehrohrofens erfuellt diese Forderung. Das AZ-Material muss vorzerkleinert und bis zur Rohmehlfeinheit (R{sub 90}<15%) feingemahlen werden. Sicherheitstechnische Ueberlegungen fuehrten zu der Idee, die Feinmahlung zusammen mit Altoel (AOe) zu erproben. Diese Verfahrensvariante wurde im Rahmen eines FuE-Projektes 1998/99 untersucht (finanzielle Foerderung durch das BMBF). Als

  13. Fundamental properties of industrial hybrid cement: utilization in ready-mixed concretes and shrinkage-reducing applications

    Directory of Open Access Journals (Sweden)

    Martauz, P.

    2016-06-01

    Full Text Available Utility properties of novel hybrid cement (H-Cement are influenced by pozzolanic reaction of fly ash, latent hydraulic reaction of metallurgical slag together with the alkali activation of inorganic geopolymer based on precipitated waste water coming from bauxite residues. Content of Portland cement clinker is at maximum of 20 mass %, the remaining portion consists of inorganic geopolymer. Up to 80% of CO2 emissions are saved by H-Cement manufacture compared to ordinary Portland cement (OPC. No heat treatment or autoclaving is needed at H-Cement production. The field application of H-Cement is performed by the same way than that of common cements listed in EN 197-1, and is also connected with highly efficient recovery and safe disposal of red mud waste. H-Cement is suitable for ready-mixed concretes up to C30/37 strength class and is specified by beneficial shrinkage-reducing property of the concrete kept in long dry-air cure opposite to common cements.Las propiedades de un nuevo cemento híbrido (cemento-H vienen determinadas por la reaccion puzolánica de cenizas volantes, la hidráulica latente de las escorias metalúrgicas y la activación alcalina mediante las aguas residuales generadas por el tratamiento de la bauxita para dar un geopolímero inorgánico. La proporción máxima de clínker de cemento en este nuevo material es del 20%, y por ello, en su fabricación se emite hasta un 80% menos de CO2 que en la producción del cemento portland (OPC. El cemento-H se prepara sin necesidad de tratamiento térmico ni de estancia en autoclave y su aplicación es la misma que los cementos convencionales definidos en la norma EN 197-1. Por otra parte, su fabricación supone la recuperación y la valorización segura de los lodos rojos de bauxita. El cemento-H es apto para la preparación de hormigones premezclados hasta la categoría C30/37, presentando el nuevo material, además, una menor retracción que los cementos convencionales, por lo que su

  14. Lung function reduction and chronic respiratory symptoms among workers in the cement industry: a follow up study

    Directory of Open Access Journals (Sweden)

    Zeleke Zeyede K

    2011-11-01

    Full Text Available Abstract Background There are only a few follow-up studies of respiratory function among cement workers. The main aims of this study were to measure total dust exposure, to examine chronic respiratory symptoms and changes in lung function among cement factory workers and controls that were followed for one year. Methods The study was conducted in two cement factories in Ethiopia. Totally, 262 personal measurements of total dust among 105 randomly selected workers were performed. Samples of total dust were collected on 37-mm cellulose acetate filters placed in closed faced Millipore-cassettes. Totally 127 workers; 56 cleaners, 44 cement production workers and 27 controls were randomly selected from two factories and examined for lung function and interviewed for chronic respiratory symptoms in 2009. Of these, 91 workers; 38 cement cleaners (mean age 32 years, 33 cement production workers (36 years and 20 controls (38 years were examined with the same measurements in 2010. Results Total geometric mean dust exposure among cleaners was 432 mg/m3. The fraction of samples exceeding the Threshold Limit Value (TLV of 10 mg/m3 for the cleaners varied from 84-97% in the four departments. The levels were considerably lower among the production workers (GM = 8.2 mg/m3, but still 48% exceeded 10 mg/m3. The prevalence of all the chronic respiratory symptoms among both cleaners and production workers was significantly higher than among the controls. Forced Expiratory Volume in one second (FEV1 and FEV1/Forced Vital Capacity (FEV1/FVC were significantly reduced from 2009 to 2010 among the cleaners (p Conclusions The high prevalence of chronic respiratory symptoms and reduction in lung function is probably associated with high cement dust exposure. Preventive measures are needed to reduce the dust exposure.

  15. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  16. Case study: evaluation of continuos blending silos in the cement industry, by the aid of tracer techniques

    International Nuclear Information System (INIS)

    Besides the actual burning process in cement manufacture, particular importance is attached to raw material preparation and homogenization, not only because of the quality of the kiln fed and therefore of the produced cement, but also because of the economy of the kiln operation, which significantly depends on the uniformity of the chemical composition of the material. As a result, the blending process of the cement raw material, before burning, is a basic stage of cement technology production. In this case, the pneumatic homogenization process is studied in a silo with a great storing and processing capacity. The objective is to evaluate the parameters which influence in the continuos operation. The method allows us to determine the optimal blending parameters, through the observation of the movement and distribution of the different fractions of fine dust raw meal, labelled with La-140 as tracer. Changes in blending according to time are discussed as well as the influence of the silo design on the degree of homogenization. It was showed that the silo blending operation has a strong influence on the production of good-quality cement as well as the implications on energy saving

  17. Penetration of natural gas in industrial processes for direct burning: the case of ceramics, cement and glass industries; Penetracao do gas natural em processos industriais de queima direta: caso das industrias ceramica, cimento e vidro

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti; Leite, Alvaro A. Furtado [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Dorileo, Ivo Leandro [Universidade Federal do Mato Grosso (NIEPE/UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos em Planejamento Energetico; Bajay, Sergio Valdir [Universidade estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: bajay@fem.unicamp.com.br

    2008-07-01

    Industrial sector can use the natural gas (NG) as raw material, as fuel and in co-generation. The NG as fuel is used, predominantly, to produce heat in the Brazilian industries. That rate, both main forms of industrial use of the NG are its direct burning in kilns - when the direct contact is had with the product - and the supply of process heat through boilers, for instance. Direct burning is used in the ceramic, cement and glass industries. This work discuss the penetration opportunity of the NG in the direct burning regarding the fuel oil and other energy that it can substitute, the environmental effects and the co-generation possibilities in each one of the analyzed industrial blanches in this work. (author)

  18. Produktie van cement

    NARCIS (Netherlands)

    Smit JRK; Coenen PWHG; Matthijsen AJCM; LAE; TAUW

    1995-01-01

    This document on cement production has been published within the SPIN project. In this project information has been collected on industrial plants or industrial processes to afford support to governmental policy on emission reduction. This document contains information on the processes, emission sou

  19. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.

    Science.gov (United States)

    López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A

    2015-08-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach.

  20. Mapping and modeling multiple benefits of energy efficiency and emission mitigation in China’s cement industry at the provincial level

    International Nuclear Information System (INIS)

    Highlights: • Provincial disparities in energy use and emissions are quantified for China’s cement industry. • We describe emission mitigation impacts on EEMs with integrated assessment model. • We quantify the multiple benefits potential in China’s cement industry on provincial level. • Energy efficiency would lead to huge reductions in air pollution in all provinces. • We discuss uncertainty in relation to distribution of energy saving and emission reduction. - Abstract: China’s cement industry is the second largest energy consumer and key emitter of CO2 and air pollutants. It accounts for 7% of total energy consumption in China and 15% of CO2, 21% of PM, 4% SO2 and 10% of NOx of total emissions, respectively. Provincial disparities in energy consumption and emissions of CO2 and air pollutants in China’s cement industry are rarely quantified. In this study, an integrated assessment model including provincial energy conservation supply curves (ECSC) (which can shows the cost-effective and technical energy saving potential per province), the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model (which can be used to calculate air pollutant emissions), and ArcGIS (a geographical information system (GIS) with elaborated spatial functions) is developed and used to assess the potential of energy savings in terms of emission mitigation of CO2 and air pollutants and multiple benefits of energy efficiency measures at the provincial level during the period 2011–2030. The results show significant heterogeneity across provinces in terms of potential of energy saving as well as emission mitigation of CO2 and air pollutants (i.e. PM, SO2, and NOx) in the next two decades. Seven provinces (i.e. Shandong, Sichuan, Jiangsu, Guangdong, Zhejiang, Henan, Hebei), six of which are located in the central- and east-China, account for 47% of the total energy saving potential, equivalent to 26% of baseline energy use in 2030. The energy efficiency

  1. Economic Operating Status of Chinese Cement Industry in 2002 and Its Prospect for 2003%水泥工业2002年经济运行情况及2003年展望

    Institute of Scientific and Technical Information of China (English)

    曾学敏

    2003-01-01

    @@ 1 Economic Operating Status of Cement Industry in 2002 1.1 Firnal Status of Various Economic Indexes in 2002(according to monthly reports ) The statistical data of all state - owned industrial enterprises and non - state - owned ones with an annual sales income of more than 5 million yuan (including 5 million yuan) for each of them are as follows:

  2. Evaluation of a lime-mediated sewage sludge stabilisation process. Product characterisation and technological validation for its use in the cement industry.

    Science.gov (United States)

    Rodríguez, N Husillos; Granados, R J; Blanco-Varela, M T; Cortina, J L; Martínez-Ramírez, S; Marsal, M; Guillem, M; Puig, J; Fos, C; Larrotcha, E; Flores, J

    2012-03-01

    This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100°C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge. Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500°C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500°C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution.

  3. Waste Marble Utilization from Residue Marble Industry as a Substitution of Cement and Sand within Concrete Rooftile Production

    OpenAIRE

    Candra Aditya, Abdul Halim, Chauliah Fatma Putri

    2014-01-01

    Research on alternative materials primarily from waste have been additional material at area manufacture of building materials , especially concreteroof tile [ 1 ] - [ 17 ] . This research will expand utilization of marble waste vBulletin East Java region of Indonesia in the manufacture of concrete roof tiles by combining the use of sand and waste marble powder as a substitute for riversand and portland cement .. This research creates material innovation product of...

  4. Spatial analysis of cement production and consumption in Turkey

    OpenAIRE

    Beygo, Cem; Cakmak, Goksenin

    1998-01-01

    After 1950?s, the rapid urbanization of Turkey stimulated the production and consumption of cement and the number of cement factories increased since then. In addition, construction of highways, bridges, dams and industrialization also contribute to the consumption of cement. Construction industry became a locomotif of the economy of the country and cement industry is the most element of the construction industry. This study analyzes the growth of population and urbanization according to new ...

  5. POZZOLAN AND CEMENTS WITH POZZOLAN

    Directory of Open Access Journals (Sweden)

    Hasan KAPLAN

    1995-02-01

    Full Text Available Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, cement with pozzolan is produced by adding the pozzolan, which has a large reservoir in the country, in cement in sertain amount. However this type of cement is consumed in the construction sector, sortage of scientific investigation and speculative news on the subject.are worried the users and producers. In this paper, prior to an experimental study on the cements having pozzolan additive, historical development of pozzolan, reservoir of Turkiye, and comparison with portland cement is carried out. Advantages and disadvantages of pozzolan are also discussed in some points.

  6. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    OpenAIRE

    Nediljka Gaurina-Međimurec; Davorin Matanović; Gracijan Krklec

    1994-01-01

    During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures) and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production...

  7. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  8. The Green Design of the Belt Conveyor for Cement Industry%浅谈水泥工业用带式输送机的绿色设计

    Institute of Scientific and Technical Information of China (English)

    黄兰

    2015-01-01

    带式输送机广泛应用于水泥工业的多个环节,在转运和输送粉粒状物料的过程中,易产生扬尘和洒落,造成粉尘污染。为了有效降低粉尘污染,引入绿色设计理念,介绍相关粉尘控制的绿色设计方法、技术和措施,实现带式输送机的清洁运输。%Belt conveyor is widely used in cement industry .When transferring the powdery or particulate material ,dust pollution is caused by the fugitive dust .In order to reduce dust pollution ,introducing the concept of green design ,including green design methods ,techniques and measures for dust control .

  9. 浅谈水泥工业用带式输送机的绿色设计%The Green Design of the Belt Conveyor for Cement Industry

    Institute of Scientific and Technical Information of China (English)

    黄兰

    2015-01-01

    带式输送机广泛应用于水泥工业的多个环节,在转运和输送粉粒状物料的过程中,易产生扬尘和洒落,造成粉尘污染。为了有效降低粉尘污染,引入绿色设计理念,介绍相关粉尘控制的绿色设计方法、技术和措施,实现带式输送机的清洁运输。%Belt conveyor is widely used in cement industry .When transferring the powdery or particulate material ,dust pollution is caused by the fugitive dust .In order to reduce dust pollution ,introducing the concept of green design ,including green design methods ,techniques and measures for dust control .

  10. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: A way to reduce CO2 footprint from cement industry

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2016-01-01

    Use of properly calcined kaolinite rich clay (i.e., metakaolin) to offset part of CO2-intensive clinkers not only reduces CO2 footprint from cement industry but also improves the performance of concrete. However, calcination under inappropriately high temperatures or long retention times may...... deplete metakaolin into unwanted products (e.g., mullite), which limits the use of the calcines as a supplementary cementitious material. With this regard, a dynamic model of flash calcination of kaolinite rich clay particles is developed using gPROMS (general PROcess Modeling System) to predict...... the impacts of calcination temperature and residence time on the transformation of the clay particles and to derive a favorable production path that is able to achieve optimum amount of the desired product. Flash calcination tests of the kaolinite rich clay particles are also performed in a pilot-scale gas...

  11. The cement recycling of the earthquake disaster debris by Hachinohe Cement Co., Ltd

    International Nuclear Information System (INIS)

    A tremendous quantity of earthquake disaster debris and tsunami sediment was resulted by the Great East Japan Earthquake on March 11, 2011. Hachinohe Cement Co., Ltd., a Sumitomo Osaka Cement subsidiary, was the first cement industry company to receive and process such waste materials outside of their usual prefecture area, while the company is performing their treatment and recycling services locally in Hachinohe City and Aomori Prefecture. This report provides an explanation about the recycling mechanism of waste materials and by-products in cement manufacturing process, and introduces an example of actual achievements for the disaster debris treatment by utilizing the cement recycling technologies at the Hachinohe Cement Plant. (author)

  12. Physicochemical study of bagasse and bagasse ash from the sugar industries of NWFP, pakistan and its recycling in cement manufacturing

    International Nuclear Information System (INIS)

    Bagasse and bagasse ash, obtained from the local sugar mills of North West Frontier Province (NWFP), Pakistan, were analyzed for both physical and chemical parameters. Among the physical parameters, the moisture, ash contents, volatile matter, loss on ignition, and calorific value have been determined while the chemical constituents such as SiO/sub 2/, AI/sub 2/O/sub 3/ Fe/sub 2/O/sub 3/ CaO, MgO, Na/sub 2/O, K/sub 2/O, carbon and sulfur were also determined in both baggase and baggase ash. The physicochemical characterization of baggase ash suggests that it can be used as a part of the cement admixture, which could be cost effective and environmentally sustainable. (author)

  13. Research on the Differences of Evaluative Bases About Air Pollutants Emission From Cement Industry in Yunnan Province

    Science.gov (United States)

    Yu, Y.; Jiang, Y. X.; Wu, J. L.; Yan, L.; Wang, K. D.; Du, Y.

    Environment impact assessment (EIA) and the check and accepts of completed project (CACP) are two evaluative bases usually used to estimate pollutant emission. In order to find out the differences between them, this study collected the EIA approval documents and CACP reports from 50 key cement plants in Yunnan province, by statistical methods to analyze the data. Results as follows: Emission factors (EF) from EIA are much greater than CACP, data distribution difference: SO2 is significant, dust and NOx are insignificant. The EF of EIA and CACP has no relationship with linear regression analysis. Reasons: Original data used in EIA are not fit the actual pollution status completely, CACP operational difficulties and regional variation still exist. This study first found out the statistical differences between EIA and CACP in Yunnan. For increasing the accuracy of EIA, we should reference the local actual emission status in the process of EIA.

  14. The effects of BaSO4 loading on OPC cementing system for encapsulation of BaSO4 scale from oil and gas industry

    International Nuclear Information System (INIS)

    Highlights: • Fine BaSO4 powder can promote the formation of CaCO3 in the wasteform. • w/c = 0.53 is better than w/s = 0.53 to maintain the low porosity and low carbonation. • Water has little impact on the formation of CaCO3 when coarse BaSO4 was introduced. • It is possible to load 60 wt% of BaSO4 with a sufficient integrity of wasteform. -- Abstract: The BaSO4 scales obtained from piping decontamination from oil and gas industries are most often classified as low level radioactive waste. These wastes could be immobilised by stable cement matrix to provide higher safety of handling, transportation, storage and disposal. However, the information available for the effects of the basic formulation such as waste loading on the fundamental properties is still limited. The present study investigated the effect of BaSO4 loading and water content on the properties of OPC–BaSO4 systems containing fine BaSO4 powder and coarse granules. The BaSO4 with different particle size had a marked effect on the compressive strength due to their different effects on hydration products formed. Introduction of fine BaSO4 powder resulted in an increased formation of CaCO3 in the system, which significantly contributed to the compressive strength of the products. Amount of water was important to control the CaCO3 formation, and water to cement ratio of 0.53 was found to be a good level to maintain a low porosity of the products both for fine BaSO4 powder and coarse BaSO4 granule. BaSO4 loading of up to 60 wt% has been achieved satisfying the minimum compressive strength of 5 MPa required for the radioactive wasteforms

  15. Application of Factor Analysis on the Financial Ratios of Indian Cement Industry and Validation of the Results by Cluster Analysis

    Science.gov (United States)

    De, Anupam; Bandyopadhyay, Gautam; Chakraborty, B. N.

    2010-10-01

    Financial ratio analysis is an important and commonly used tool in analyzing financial health of a firm. Quite a large number of financial ratios, which can be categorized in different groups, are used for this analysis. However, to reduce number of ratios to be used for financial analysis and regrouping them into different groups on basis of empirical evidence, Factor Analysis technique is being used successfully by different researches during the last three decades. In this study Factor Analysis has been applied over audited financial data of Indian cement companies for a period of 10 years. The sample companies are listed on the Stock Exchange India (BSE and NSE). Factor Analysis, conducted over 44 variables (financial ratios) grouped in 7 categories, resulted in 11 underlying categories (factors). Each factor is named in an appropriate manner considering the factor loads and constituent variables (ratios). Representative ratios are identified for each such factor. To validate the results of Factor Analysis and to reach final conclusion regarding the representative ratios, Cluster Analysis had been performed.

  16. Effect of the activation of a clay-base paper industry by-product on cement matrix behaviour

    Directory of Open Access Journals (Sweden)

    García, R.

    2008-12-01

    Full Text Available The present study addresses variations in the calcination temperature (600-750 ºC and kiln time (two to five hours applied to activate coated paper waste and their effect on the rheological, physical and mechanical behaviour of cement matrices containing these active additions.The results obtained showed that the conditions under which kaolinite was activated had a direct effect on the subsequent behaviour of the calcined products. At activating temperatures of over 700 ºC, pozzolanic activity and mechanical strength were observed to be lower, setting time shorter and the mortar less workable.El presente trabajo de investigación aborda la influencia de las condiciones de activación (600-750 ºC y 2-5 horas de permanencia en el horno de los lodos de papel procedente de la fabricación de papel estucado en el comportamiento reológico, físico y mecánico de las matrices de cementos elaboradas con este tipo de adiciones activas.Los resultados obtenidos muestran una influencia directa entre las condiciones de activación de la caolinita y el comportamiento posterior de los productos calcinados. Así, en condiciones de activación superiores a 700 ºC se observa una menor actividad puzolánica, tiempo de fraguado más corto, disminución de la trabajabilidad de los morteros mezcla y resistencia mecánica más baja.

  17. Waste Marble Utilization from Residue Marble Industry as a Substitution of Cement and Sand within Concrete Rooftile Production

    Directory of Open Access Journals (Sweden)

    Candra Aditya, Abdul Halim, Chauliah Fatma Putri

    2014-01-01

    Full Text Available Research on alternative materials primarily from waste have been additional material at area manufacture of building materials , especially concreteroof tile [ 1 ] - [ 17 ] . This research will expand utilization of marble waste vBulletin East Java region of Indonesia in the manufacture of concrete roof tiles by combining the use of sand and waste marble powder as a substitute for riversand and portland cement .. This research creates material innovation product of environmentally friendly with relatively low prices without compromising quality. The purpose of research is to find the composition of the mixed-use waste marble tile that produces the most optimal strength . Experimental method used in this study to test the basic material and test physical and mechanical properties of concrete roof tiles ( bending loads , water absorption and resistance to water seepage in accordance with ISO 0096 : 2007 with eight variations in material composition . Concrete tile with marble waste produces a lighter weight 3.6 % - 12.3 % . Replacement PC with marble powder by 20 % qualify flexural strength , water absorption ( no more than 10 % and there is no seepage within 20 hours ± 5 minutes . Composition tile marble concrete using waste as a substitute for river sand PC and a decent and qualified SNI 0096:2007 is a composition of 0.8 PC : 0.2 SL : 1 Ps : 2 PSL and composition 0.8 PC : 0.2 SL : 3 PSL . While most optimum is 0.8 composition PC : 0.2 SL : 1 Ps : 2 PSL . which produces Flexture1141 N

  18. 水泥工业CO2减排及利用技术进展%Technical Progress of Emission-reduction and Utilization of Carbon Dioxide in Cement Industry

    Institute of Scientific and Technical Information of China (English)

    马忠诚; 汪澜

    2011-01-01

    Emission-reduction exists potentially in cement industry, which is the key industry for carbon dioxide emission. Carbonate decomposition, fuel combustion and electric power consumption, etc. Which discharge carbon dioxide in cement industry, are introduced. A series of methods for decreasing carbon dioxide emission in cement industry, such as improving energy utilization, using alternative raw materials and fuels, developing new low carbone-mission binding materials, etc. Are expounded. Finally, several technologies for recycling of carbon dioxide, such as separation, capture, storage, fixation, etc. Are suggested.%水泥工业是CO2排放的重点行业,减排潜力巨大.全面介绍了水泥生产中碳酸盐分解、燃料燃烧和电力消耗等方面CO2的排放情况;详细阐述了水泥生产中通过提高能源利用率、使用替代原燃料、开发新型低碳排放的胶凝材料等措施实现CO2减排的方法,提出了对水泥工业CO2排放实施的分离、捕集、封存、固定等回收利用技术.

  19. Understanding cement mechanical behavior in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zahacy, T. A. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but it can cause cracks in the cement sheath. These cracks are the result of high steam temperatures and thermal expansion. In order to mitigate this risk, improved well designs are required. The aim of this paper is to present the mechanical behavior of the cement sheath during the heating phase. An analysis of the impact of design and operating parameters was conducted through thermal hydraulic and thermal mechanical analyses to assess cement integrity. These analyses were then performed on an example of an SAGD project in the southern part of the Athabasca oilsands region to assess the performance of the cement sheath. Results showed that potential damage to the cement can be reduced by slow heating and a lower Young's modulus cement blend. This paper makes recommendations for optimizing cement design in thermal recovery wells.

  20. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  1. Cement replacement materials. Properties, durability, sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanianpour, Ali Akbar [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Concrete Technology Center

    2014-04-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  2. Development of the Portland cement slurries with diatomaceous earth to the oil industry; Desenvolvimento de pastas de cimento Portland com adicao de diatomita para a industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Roseane A; Melo, Dulce M.A.; Martinelli, Antonio E.; Simao, Cristina A.; Paiva, Maria D.M. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Melo, Marcus A.F. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The class-G Portland cement has been used with success in oil well cementing. The material is usually shipped to the Northeast Brazil, because the only plant that manufactures class-G is located in Cantagalo/RJ. The present work investigates the influence of the partial substitution of Portland cement by diatomaceous earth, aiming at reducing the costs in oil well cementing, improving the slurry properties and using local raw material. The diatomaceous earth has pozzolanic properties and can be used as extenders of cement slurries. This properties added to the lower cost and availability of this material in Northeast Brazil, make the diatomaceous earth a candidate material to produce light cements, to well conditions in advanced phases of production. It were evaluated the rheological properties of the slurries (at 25 and 52 deg C), volume of free water, compressive strength after curing for 8, 24 and 48 h at 38 deg C, and consistometry tests. The results show that the diatomaceous earth maintain the viscosity values and gel force suitable for use in oil well cementing. No free water was observed in the formulations. It was also verified that the compressive strength of slurries hardened with diatomaceous earth is similar to those with only Portland cement and that the minimum compressive strength of 300 psi, after curing for 8 h was reached. The thickening time was longer than the average value and the application value. (author)

  3. Analysis on Impacts and Co-Abatement Effects of Implementing the Low Carb on Cement Standard

    Institute of Scientific and Technical Information of China (English)

    PANG Jun; SHI Yuan-Chang; FENG Xiang-Zhao; WU Shi-Yu; SUN Wen-Long

    2014-01-01

    Based on the MAP-CGE model, this paper simulated the impacts on the output, energy consumption and pollutant emissions of different cement production processes when implementing a low carbon cement standard in China. It also calculated the impacts on the marginal abatement cost and equilibrium price of the cement industry, and analyzed the co-abatement effects of different pollutants. The results showed that implementing the low carbon cement standard will be beneficial in promoting an upgrading of cement production processes, and strengthening the energy conservation and emission reduction in the cement industry. If there is no change in the existing technology, the cement industry will reduce SO2 emissions by 1.17 kg and NOx emissions by 4.44 kg per ton of CO2 emission reduction. Implementing low carbon cement standard can also promote NOx abatement in the cement industry. However, the cement industry will bear the abatement costs, and their equilibrium price will increase slightly.

  4. Characterization of cement composites with mineral additives

    OpenAIRE

    Korat, Lidija

    2015-01-01

    Doctoral dissertation is aimed at characterizing cement composites with mineral additives representing the industrial waste material (fly ash, granulated blast furnace slag and biomass fly ash). Their usage can replace high cement shares in individual cases and is, however, favourable due to the production costs reduction and environment burden decrease, including the decreased emission of greenhouse gases as well as lower energy use. Cement composites (in fresh or hardened state)...

  5. 2020年我国水泥行业CO2排放趋势与减排路径分析%Analysis on CO2 Emission Trend and Emission Reduction Path of China's Cement Industry in 2020

    Institute of Scientific and Technical Information of China (English)

    蒋小谦; 康艳兵; 刘强; 赵盟

    2012-01-01

    我国水泥行业的CO2排放仅次于电力行业,约占全国排放总量的15%.分析水泥行业的CO2排放趋势和减排路径对实现我国温室气体排放控制目标有着重要的现实意义.本文从影响水泥行业排放的主要影响因素着手,分析了水泥产量和单耗的现状及未来发展趋势,计算了水泥行业的历史排放、发展趋势以及减排潜力,指出了实现减排潜力面临的挑战和障碍,以及相应的措施建议.%CO2 emission from China's cement industry is only second to power industry, accounted for 15% of total national emissions. Analysis on CO2 emission trend and emission reduction path of cement industry is significant to the realization of GHG emissions control target in China. From the perspective of major influencing factors, this paper analyzes the status and future trend of cement production and energy consumption per unit of product, calculates history and future emissions as well as emission reduction potentials, also analyzes challenges and obstacles, and proposes appropriate measures recommendations.

  6. 中国水泥工业CO2产生机理及减排途径研究%CO2 emissions from the Chinese cement industry and methods to reduce them

    Institute of Scientific and Technical Information of China (English)

    李新; 石建屏; 吕淑珍; 王海滨

    2011-01-01

    根据水泥生产的基本原理和工艺特点,推导出煤燃烧和石灰质原料煅烧时CO2排放因子分别为2.38 t·t-1和0.527 t·t-1;采用水泥工业CO2排放数学模型计算2001-2008年中国水泥工业CO2排放量,并分析了不同的生产技术水平和产品品种结构对CO2,排放量的影响.结果表明:中国水泥工业CO2排放量与单位产品的能源和资源消耗量呈线性关系,在CO2排放量构成中,燃料燃烧和加工过程CO2排放量分别占46%和50%,间接电力消耗CO2排放量仅占4%;采用新型干法生产技术比传统方法减少CO2排放量34%,生产掺加混合材料的水泥比硅酸盐水泥减少CO2排放量35%.2008年中国水泥产量比2007年增长2%,而CO2排放量仅增长0.23%,说明水泥工业实施节能降耗、资源循环利用等技术措施对于减少CO2排放具有显著效果.%According to the principles and characteristics of cement production, the emission factors of car1oon dioxide were calculated to be 2.38 t·t -1 for burning coal and and 0.527 t·t-1 for burning lime materials. A mathematical model of CO2 emission in the cement industry was used to deduce the CO2 emissions load of the Chinese cement industry from 2001 to 2008. The results indicated that there is a linear relationship between the Chinese industrial emission of CO2 and the energy and resource consumption per unit product. CO2 emitted in the fuel burning and cement producing process were respectively responsible for 46% and 50% of total CO2 emissions by the cement industry. Indirect power loss occupied only 4% of total CO2 emissions.When the new suspension preheater(NSP) cement technique was used, CO2 emission decreased by 34% compared with that produced by the traditional technique. The CO2 emission of cement and admixture production decreased by 35% compared with Portland cement production. Compared with 2007,total Chinese cement outputs increased 2% in 2008, but there was only a 0.23% increase in CO

  7. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll;

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  8. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  9. The Effects of the Asian Crisis To Turkish Manufacturing Industry : The Case of Textile, Food and Cement Industries = Asya Krizinin Türk İmalat Sanayisine Etkileri: Tekstil, Gıda ve Çimento Sanayileri Örneği

    Directory of Open Access Journals (Sweden)

    Abdülmecit KARATAŞ

    2001-06-01

    Full Text Available This paper hypothesizes that Asian crisis has severely affected the financial dimensions of the Turkish industries. The analysis of the financial data for 70 companies from textile, food and cement industries provides evidence to partially support this hypothesis. By principal components analysis we identified five statistical factors that is meaningful and economically significant to represent main financial dimensions contained in twenty-one financial variables of the sample firms. The discriminant analyses based on the identification of the discrimination between financial dimensions of the sample firms for pre- and post-crisis years identified that profitability margins of the export-oriented Turkish textile industry significantly decreased in post-crisis years. No statistically significant changes in financial dimensions are detected for food and cement industries in post-crisis years.

  10. Consumption reduction and emission reductionof cement production made by steel industrial solid waste%钢铁工业固废应用于水泥生产的降耗与减排

    Institute of Scientific and Technical Information of China (English)

    邓琪; 陈吉宁

    2012-01-01

    运用物质流分析法定量比较原生水泥与再生水泥生产过程中的物能代谢和环境负荷,并采用生命周期分析进行环境影响评价.结果表明:生产1t原生水泥需要的直接物质投入是1.637 t;消耗原煤0.086t/标准煤,消耗电力0.067t/标准煤.利用钢铁工业固废生产功能单位再生水泥,可减少资源投入0.16 t;减少能源消耗0.036 t;环境排放SO2减排0.0002 t;粉尘减排0.001 t;烟尘减排0.000 12 t;NOx减排0.000 34 t;CO2减排0.231 t.水泥生产潜在的各类环境影响中以废气排放引起的温室效应最大;其次依次是酸化效应和不可再生资源消耗;光化学烟雾和人体健康损害在水泥生产过程中的影响都相对较小.与原生水泥相比,再生水泥各环境负荷均呈下降趋势,两者总体环境负荷差值为6.93E-15.研究结果充分说明钢铁工业固废资源化可以明显的降低水泥生产的总体环境负荷,是促进水泥行业循环经济发展的有效手段.%Material-energy metabolism and environment load in the production of primary cement and regeneration cement were compared quantitatively using Material Flow Analysis (MFA) and were evaluated of the environmental impact using Life Cycle Assessment (LCA). It was shown from the results: direct material input to produce one ton of primary cement was 1.637 tons, raw coal consumption was 0.086t/standard coal, and electricity consumption was 0.067 t/standard coal. Resource input to produce one ton of regeneration cement using steel industry solid waste could be reduced by 0.16 t, energy consumption by 0.036 t, SO2 emission by 0.000 2 t, dust emission by 0.001 t, smoke emission by 0.000 12 t, Nox emission by 0.000 34 t, CO2 emission by 0.231 t. Among various environment impact in the production of cement, waste gas emission contributed the most to Global Wanning Potential (GWP), Acidification Potential (AP), the second, Abiotic Depletion Potential (ADP), the third

  11. Tendencies in the energy consumption and in the carbon dioxide emissions in the Mexican cement industry; Tendencias del consumo de energia y emisiones de bioxido de carbono de la industria cementera mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa M, Leticia; Sheinbaum P, Claudia [Instituto de Ingenieria UNAM, Mexico, D. F. (Mexico)

    1996-12-31

    This paper analyzes the changes occurred in the energy consumption and carbon dioxide in the Mexican cement industry. For this purpose, the energy consumption and the emissions are broken up into three types of changes that affect the energy demand of an industry: activity, structure and energy intensity. According to this analysis it is found that the Mexican cement industry has suffered an important reduction in the energy intensity as a result of the disappearance, almost complete, of the wet production process, of the increment in the production of pozzolanic cement and in the opening of new high technology industries. With respect to the intensity of carbon dioxide emissions it does not decrease at the same rate than the energy intensity due to the increased consumption of the fuel oil over the natural gas. At the end of this paper an international comparison is presented of the energy specific consumption and of its emissions. [Espanol] En este articulo se analizan los cambios ocurridos en el consumo de energia y emisiones de bioxido de carbono de la industria cementera mexicana. Para ello, se desagrega el consumo de energia y las emisiones en tres tipos de cambios que influyen en la demanda energetica de una industria: actividad, estructura, e intensidad energetica. De acuerdo con este analisis se encuentra que la industria cementera mexicana ha sufrido un importante decremento en la intensidad energetica producto de la desaparicion, casi por completo, del proceso de produccion por via humeda, del incremento en la produccion del cemento puzolanico y de la apertura de nuevas industrias con alta tecnologia. Por su parte, la intensidad en las emisiones de bioxido de carbono no disminuye a la misma tasa que la intensidad energetica debido al incremento en el uso del combustoleo sobre el gas natural. Al final del articulo se presenta una comparacion internacional del consumo especifico de energia y de las emisiones.

  12. Stabilization effects of surplus soft clay with cement and GBF slag

    Institute of Scientific and Technical Information of China (English)

    LU Jiang; Chirdchanin MODMOLTIN; Katsutada ONITSUKA

    2004-01-01

    Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.

  13. False set in aireated cements

    Directory of Open Access Journals (Sweden)

    Vázquez, T.

    1986-06-01

    Full Text Available The influence of aireation on the appearance or elimination of the false setting in industrial portland cements is studied by means of infrared spectroscopy.

    Se estudia por medio de la espectroscopia infrarroja la influencia de la aireación sobre la aparición o eliminación del fraguado, en cemento portland industriales.

  14. Physico-Chemical and Radioactive Characterization of Co-Products from the Titanium Dioxide NORM Industry for their Use in Cement Manufacturing

    International Nuclear Information System (INIS)

    This paper presents the results of a study to characterize the raw materials (ilmenite and slag), residue (red gypsum) and co-products (ferrous sulphate monohydrate and heptahydrate) associated with titanium dioxide production, in particular their elemental composition (major, minor and trace elements), mineralogy and radioactive content, with the objective of applying this knowledge to facilitate the use of some of these materials in applications such as construction and civil engineering. Obviously, the environmental and health impact of the co-products should comply with existing regulations. In particular, the main properties of cement produced with different proportions of red gypsum and the improvements obtained in relation to ordinary Portland cement have been studied. It is demonstrated that the levels of pollutants in the red gypsum cement remain within safety limits. (author)

  15. in the Portland cement industry

    Directory of Open Access Journals (Sweden)

    José Pablo Paredes-Sánchez

    2015-01-01

    Full Text Available Este artículo describe una herra mienta de simulación bajo el en torno de Matlab®, que puede ser utilizada para estimar la auton omía de un vehículo con baterías o híbrido con pila de combustible y bater ías. El modelo es función de variables mecánicas y físicas que dependerán no solo del propio vehículo sino también del terreno. Su uso es extendido para recorridos obtenidos mediante dispositivos GPS y para ciclos estándar. Pueden obtenerse diferentes variables de salid a tales como: el consumo de hidrógeno y batería, el nivel hidró geno, el estado de carga de la batería, la potencia consumida, la producción de energía por parte de la pila, el máximo alcance del vehículo y el máximo número de ciclos finalizados. La simulación de rutas reales pro porciona una buena aproximación de la velocidad del vehículo pa ra usos, en lugar de utilizar ciclos de c onducción estándar, obteniendo así aproximaciones bas tante arbitrarias para una ruta real.

  16. Status quo of energy recovery from waste in special industrial facilities and evaluation of the environmental impacts of using refuse derived fuel (RDF) in cement kilns in Germany; Untersuchung der Umweltauswirkungen des Einsatzes von Abfaellen ausserhalb thermischer Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Alwast, H.; Marton, C.; Koepp, M.

    2001-10-01

    Within the study presented here the use of energy recovery from waste was analysed for several industrial facilities, focussing on cement plants, kilns in the lime and gypsum industry, steel works and plants for the production of non ferrous metals. 44 German cement plants dispose of an own clinker production. Presently 31 plants have a permit for recovering energy from waste. The total permitted capacity for energy recovery in German cement kilns amounts to nearly 2,6 Mio. t/a. Mainly waste oil, old tyres, fuel derived from processed production-specific and municipal waste, plastics, scrap wood and waste paper are co-incinerated. In 1998/99 a total amount of roughly 945.000 t refuse was processed in 30 units of the studied facilities. In five furnaces at three steel works waste can be used for energy or material recovery. The approved total capacity of high calorific waste for energy recovery comes to nearly 350,000 t/a. Especially industrial plastics and packaging waste from DSD, plastics processed in scrap mills and shreddered waste and granulated paint sludge are used. In 1998 the facilities processed only old plastic, representing a total amount of nearly 109.000 t. At present seven facilities in the non ferrous metal industry have a permit for energy recovery from waste. The maximum capacity amounts on national level to nearly 140.000 t/a. Especially waste oil, packaging waste, plastics and scrap wood can be processed. The analysis of respective applications of the 17th BImSchV shows an inconsistency within the amending permitting procedures. For the time to come a conformity between the respective regional permitting authorities would be recommendable. Moreover, the effects on air emission caused by using waste for energy recovery were analysed for cement kilns with own clinker production. Due to the amendment of the 17th BImSchV more stringent requirements regarding waste composition must be established. This is especially valid for the highly volatile

  17. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  18. Analysis of Waste Gas Volume and Pollutants Reduction Potential for Cement Industry in China%我国水泥工业废气量减排与污染物减排潜力分析

    Institute of Scientific and Technical Information of China (English)

    王红梅; 刘宇; 王凡; 都基峻; 张凡; 石应杰

    2015-01-01

    水泥工业是颗粒物等大气污染物排放量较大的行业,因排放标准中颗粒物等污染物浓度限值已非常严格,依靠加严标准减排污染物的空间已经越来越小,标准减排难以使水泥工业实现更高的减排目标。水泥生产多个工序会排放废气,在排放标准限值不变的条件下,各类废气的排放总量决定了颗粒物等污染物的排放总量。通过实例分析得出利用窑头余风再循环、减少窑头喂煤一次风比例和分解炉喂煤风机的风量可实现高温废气量的减排,利用窑头窑尾低温废热进行烘干物料可实现低温烘干废气量的减排,将常温废气作为水泥窑窑头和分解炉煤粉的助燃空气可实现常温废气量的减排,进一步分析了通过废气量减排可实现颗粒物等污染物的减排量。%Cement industry yields a large air pollution emission including particulate matters.As the particulate concentration limits in the industrial emission standard has been very strict, it leaves smaller and smaller space to further reduce the pollutant emission by setting stricter standard limits.Therefore, the emission reduction by standard has been difficult to make cement industry to achieve a higher reduction target.There are several processes in cement production that emit waste gases.Under the same emission standard limits, the total emissions of various pollutants will be determined by the total waste gas volumes of various kinds.Through case studies, it was shown that the kiln end afterwinds could be recycled to reduce the primary air ratio in kiln end coal feeding and the coal-feeding fan air volume in calcining combustors, so as to realize reduction of high-temperature waste gas volume. The cement kiln end low-temperature waste heat could be used to dry materials and thus realize reduction of waste gas volume in low-temperature drying.The room-temperature exhaust gas could be used as pulverized coal combustion air

  19. Cross-shift study of acute respiratory effects in cement production workers.

    OpenAIRE

    Omid Aminian; Maryam Aslani; Khosro Sadeghniiat Haghighi

    2014-01-01

    Cement dust exposure is associated with increased respiratory impairment. As the major occupational hazard in the cement production industry is cement particles, our aim was to more thoroughly examine the acute effects of occupational exposure to cement dust on the respiratory system. A cross-shift study was conducted in a cement factory in Iran. 100 high exposed workers from production and packing sections and 100 low exposed from office workers were included. Environmental total dust was me...

  20. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  1. 中国水泥工业CO_2排放现状及减排对策%Emissions of carbon dioxide from cement industry and its reduction strategy in China

    Institute of Scientific and Technical Information of China (English)

    石建屏; 李新; 吕淑珍; 王海滨

    2012-01-01

    水泥工业是中国制造业中温室气体CO2的主要排放源,因此,根据水泥生产的基本原理和工艺特点,建立了CO2排放的数学模型并确定排放强度,计算了2001—2010年中国水泥工业CO2的排放量,分析了影响CO2排放量的主要因素及其发展趋势,并提出水泥工业CO2减排对策.结果表明,中国水泥工业CO2排放总量逐年增长,与水泥产量和单位产品原料、燃料消耗定额呈线性关系;在CO2排放总量中,原料煅烧和燃料燃烧阶段的排放量分别占49%和51%;"十一五"期间单位水泥产品CO2排放强度由0.69t.t-1下降到0.65t.t-1.万元GDPCO2排放量呈下降趋势,2008年达到最低值为0.3054t,平均每年万元GDPCO2排放量下降10.69%,说明水泥工业10年间实施节能降耗、资源循环利用、提高经济效益等措施对于减少CO2排放具有明显效果.%The cement industry is a major source of greenhouse gas-carbon dioxide(CO2) emission.According to the principles and characteristics of cement production technique,the mathematical model is established for calculating CO2 emission in cement industry from 2001 to 2010 with the emission factors of production processes and energy consumption.The results indicated that the CO2 emissions increase rapidly every year in China,with a linear relationship between the CO2 emissions and the cement outputs,the comprehensive energy and resource consumption per unit cement product.The raw processing and fuel burning accounts for about 49% and 51% in total CO2 emission of cement industry,respectively.The CO2 emission decreases from 0.69 t·t-1 in the "10th Five-year" plan to 0.65 t·t-1 in the "11th Five-year" plan.The CO2 emissions per ten thousand Yuan GDP decreases to minimum 0.3054 t in 2008,corresponding to 10.69% reduction.The result shows clearly that the saving energy,resource recycling and increase economic efficiency can greatly reduce CO2 emissions.

  2. Globally Oriented Chinese Plastics Industry

    Institute of Scientific and Technical Information of China (English)

    Liao Zhengpin

    2004-01-01

    @@ Through continued endeavor and persistent opening to the whole world the Chinese plastics industry has been developed into a comprehensive industrial system that forms the basic material industries side by side with the steel, cement and the timber industry.

  3. First industrial scale pre combustion chamber at the Wildegg cement plant; Premiere chambre de precombustion industrielle pour pneux usages a la cimenterie de Wildegg

    Energy Technology Data Exchange (ETDEWEB)

    Bertschinger, P. [Jura-Cement-Fabriken, Wildegg (Switzerland)

    2001-10-01

    This article presents the main components of the Wildegg cement plant of Jura-Cement-Fabriken company (Switzerland): a roller mill for the production of raw meal, a four-stage cyclone preheater, a staggered combustion calciner, a rotary kiln, and a reciprocating grate cooler. The article stresses on the design and test-phase of the pre-calciner and of the pre-combustion chamber for the use of used tyres as fuel substitutes with the goals of reaching up to 60-80% of tyres in the total pre-calciner fuel and without residues. The use of tyres has had no negative effect on the pollutant emissions with unchanged CO and VOC emissions and NO{sub x} emissions actually reduced by up to 40%. (J.S.)

  4. Characteristics of Carbon Dioxide Emission from China's Cement Industry and Its Dynamic Development%我国水泥工业碳排放特征及动态变化分析

    Institute of Scientific and Technical Information of China (English)

    李新; 吕淑珍; 王海滨; 石建屏

    2013-01-01

    水泥工业是温室气体二氧化碳(CO2)的主要排放源,利用碳排放数学模型计算2001-2010年我国水泥工业碳的排放量,分析碳排放量的变化特点和发展趋势.结果表明:水泥工业碳排放总量逐年增长,与水泥产量和排放强度呈线性关系.“十一五”期间单位产品碳排放强度由0.69t/t下降到0.65t/t.万元GDP碳排放量2008年达到最低值为0.295 1 t,平均每年万元GDP碳排放量下降2.85%.水泥工业十年间实施节能降耗、资源循环利用、提高经济效益等措施,对于减少碳排放具有明显效果.%Cement industry is a major source of greenhouse gas- carbon dioxide (CO2) emission. Mathematical model was used to calculate carbon emission quantities for China's cement industry during 2001 to 2010, and change characteristics and trend for carbon emission with cement outputs and emission factors were analyzed. Results indicated that carbon emissions quantities increased rapidly every year, and there is a linear relationship between carbon emission quantities and cement output, emission factors. Carbon emission factors decreased from 0.69 t/t to 0.65 t/t during the 11 th Five- Year- Plan period. Carbon emission quantities of ten thousand Yuan GDP decreased to minimum 0.295 1 t in 2008, decreased by 2.85%. Results showed that the energy saving and resource recycling and increase of economic efficiency are appearing in the reduction of carbon emissions.

  5. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  6. The suitability of a supersulfated cement for nuclear waste immobilisation

    Science.gov (United States)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  7. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  8. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.

  9. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  10. Colorectal cancer and non-malignant respiratory disease in asbestos cement and cement workers

    International Nuclear Information System (INIS)

    Radiologically visible parenchymal changes (small opacities >= 1/0;ILO 1980 classification) were present in 20% of a sample of workers (N=174), employed for 20 years (median) in an asbestos cement plant. Exposure-response relationships were found, after controlling for age and smoking habits. In a sample of asbestos cement workers with symptoms and signs suggestive of pulmonary disease (N=33), increased lung density measured by x-ray computed tomography, and reduced static lung volumes and lung compliance was found. In a cohort of asbestos cement workers (N=1.929) with an estimated median exposure of 1.2 fibres/ml, the mortality from non-malignant respiratory disease was increased in comparison to a regional reference cohort (N=1.233). A two-to three-fold increase of non-malignant respiratory mortality was noted among workers employed for more than a decade in the asbestos cement plant, compared to cement workers (N=1.526), who in their turn did not experience and increased risk compared to the general population. In the cohorts of asbestos cement and cement workers, there was a tow-to three-fold increased incidence of cancer in the right part of the colon, compared to the general population as well as to external reference cohorts of other industrial workers (N=3.965) and fishermen (N=8.092). A causal relation with the exposure to mineral dust and fibres was supported by the findings of higher risk estimated in subgroups with high cumulated asbestos doses or longer duration of cement work. The incidence of cancer in the left part of the colon was not increased. Morbidity data, but not mortality data, disclosed the subsite-specific risk pattern. Both asbestos cement workers and cement workers has an increased incidence of rectal cancer, compared with the general population, and with the fishermen. The risk was, however, of the same magnitude among the other industrial workers. 181 refs

  11. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  12. Utilization from Cement Kiln Dust in Removal of Acid Dyes

    OpenAIRE

    Mohamed E.S.I. Saraya; Mahmoud E.S. Aboul-Fetouh

    2012-01-01

    Problem statement: The growth of industries and day to day changes in human activities has resulted in an increase in the volume and complexity of wastewater to the environment. Textile industry is one of the most water consumers industries of Egypt, thus discharges large amounts of wastewater effluents during processing, especially, in the coloring and washing steps. Cement kiln dust is a solid waste in cement manufacturing. Approximately 2.5-3.0 (6-9%) million tons of cement kiln dust is pr...

  13. Soft X-ray Microscopy of Green Cements

    Science.gov (United States)

    Monteiro, P. J. M.; Mancio, M.; Kirchheim, A. P.; Chae, R.; Ha, J.; Fischer, P.; Tyliszczak, T.

    2011-09-01

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO2 emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  14. 76 FR 28318 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-05-17

    ... emission limits applicable to the Portland cement industry. See 75 FR 54970 (Sept. 9, 2010). The rule... that ``some Portland cement kilns combust secondary materials as alternative fuels''. 74 FR at 21138... as solid wastes or not) does not appreciably affect cement kilns' HAP emissions. 74 FR at...

  15. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project

  16. Reuse of a residue from petrochemical industry with portland cement Reutilización de un residuo de la industria petroquímica como adición al cemento portland

    Directory of Open Access Journals (Sweden)

    Janneth Torres Agredo

    2012-06-01

    Full Text Available In this article the possibility of using waste from the petrochemical industry,as partial replacement of Portland cement is studied, evaluating the presenceof contaminants in the waste and the encapsulation, once it is confined on the cement. This has been done, in order to find a use to this residue without cause damage to the environment. This residue, called spent fluid catalytic cracking catalyst (FCC, is mainly formed by a type Y zeolite, which is dispersing in an inorganic oxides matrix. The toxicity characteristic leaching proceeding was applied, in mortars adding with 20% of FCC as Portland cement replacement. The results showed that the residue does not represent a problem from the point of view of the leaching of elements, such as As, Pb, Zn, Cr, and La, which were below to the permissible limits. Additionally, the pozzolanic activity of FCC was evaluated according to ASTM C311, where the efficiency of the residue as pozzolanic addition is demonstrated. With the results the importance of reusing a residue of the petrochemical industry is emphasized, that decreases the amount of cement to be used and improves the mechanical resistance of the materials containing it.En el presente artículo se estudia la posibilidad de utilizar un residuo de la industria petroquímica, como sustitución parcial del cemento Portland, evaluando la presencia de elementos contaminantes en el residuo y su encapsulación, una vez se haya confinado con el cemento. Lo anterior, con el fin de determinar si su uso como material de construcción, puede o no causar un efecto negativo al medio ambiente. El residuo, denominado catalizador usado de craqueo catalítico (FCC, es un material que está compuesto por una zeolita tipo Y, dispersa en una matriz de óxidos inorgánicos. Se aplicó la técnica de TCLP (del inglés Toxicity Characteristic Leaching Procedure, en morteros adicionados con un 20%, de FCC con respecto a la cantidad de cemento. Los resultados

  17. Industry

    International Nuclear Information System (INIS)

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO2, NOx, CO2, CO, CH4, N2O, NH3, Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  18. Industrialization

    International Nuclear Information System (INIS)

    This chapter discusses the role-plays by nuclear technology to enhance productivity in industry. Some of the techniques, Non-Destructive Testing (NDT) - x, gamma, electron and neutron radiography, nuclear gauges, materials characterization are discussed thoroughly

  19. Tympanoplasty with ionomeric cement

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy...

  20. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  1. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  2. Development of nanosilica bonded monetite cement from egg shells

    International Nuclear Information System (INIS)

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement

  3. In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells

    Science.gov (United States)

    Kupresan, D.; Radonjic, M.; Heathman, J.

    2013-12-01

    mechanical manipulation (shear stress). The main advantage of this methodology is that mechanical manipulation of cement can induce healing of existing fractures, channels and microannulus seal in a wellbore without introducing new materials (e.g. cement squeeze jobs). Furthermore, this methodology is less sensitive to the influence of downhole conditions such as pressure, temperature and formation fluids, since it uses cement pore water as a medium to alter cement sheath. Based on lab experiments observation, it is possible to perceive that once tested at the industrial scale and if successful, the implementation of this method in the field can potentially mitigate leaky wells in CO2 sequestration projects, wellbores completed for hydraulic-fracturing and other conventional oil and gas producing wells. Key words: Wellbore cement integrity; Leaky wells; Cement microstructures; Casing expansion effect on cement mineralogy alterations.

  4. Factors affecting bond cement across casing leak zones in oil and gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Mohamed; Edbeib, Said [Al-Fateh University, Tripoli (Libyan Arab Jamahiriya). Dept. of Petroleum Engineering

    2004-07-01

    Casing leaks have been a major concern to the oil industry because of their effect on lowering the production rate in many oil and gas wells. The leaks are the result of deterioration of the casing in the well, which is caused by severe corrosion due to the contact of the casing with high salinity foreign fluid. The objective of this study is to determine the factors influencing the mechanical properties of the hardened cement opposite the casing leak zones. This study is conducted by laboratory measurements of the compressive strength of the hardened cement when the cement slurry was mixed with different percentages of formation water and different concentrations of different cement additives. The results of this study indicate that the compressive strength readings obtained from the cement bond log and the cement evaluation tool against the casing leak zones are lower than those readings recorded in adjacent formations. The low cement compressive strength values observed across casing leak zones are due to the contamination of the cement with saline water present in these formations which, in turn, effects the hardening properties of the cement. The experimental results indicated that the salinity of the formation water when mixed with the cement slurry in the presence of cement additives, decreased the compressive strength of the bond cement and also decreased the thickening time of the cement slurry. It is concluded that casing leaks found in many wells observed in oil fields in Libya were due to the mixing of the cement with high salinity formation water present in the lost circulation zones. The high water salinity in these zones effects the setting time of the cement slurry which, therefore, decreased the hardening properties of the bond cement and caused cracks and channels in the hardened cement across lost circulation zones. (author)

  5. Modified-sulfur cements for use in concretes, flexible pavings, coatings, and grouts

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1981-05-01

    A family of modified-sulfur cements was developed for the preparation of construction materials with improved properties. Various types of sulfur cements were prepared by reacting sulfur with mixtures of dicyclopentadiene and oligomers of cyclopentadiene. Durable cements were prepared with structural characteristics ranging from rigid to flexible. These cements were used to prepare corrosion-resistant materials for use in a wide variety of industrial applications where resistance to acidic and salt conditions is needed. These materials were prepared as rigid concretes, flexible pavings, spray coatings, and grouts. Production of modified-sulfur cements in a commercial-size plant was demonstrated.

  6. Destruction of meat and bone meals in cement plants; Destruction des farines animales dans les cimenteries

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-10-01

    Following the crisis of the bovine spongiform encephalopathy disease ('mad cow' disease), the French cement industrialists have been requested by the government since 1996 to eliminate the forbidden meat and bone meals in cement kilns where they are used as fuel substitutes. This article presents the advantages of the cement industry file in the destruction of such wastes, the validation and the safety aspects of this process. Meat and bone meal represents a high-grade fuel that lowers the environmental impact of cement production and does not affect the quality of cement. (J.S.)

  7. Utilization from Cement Kiln Dust in Removal of Acid Dyes

    Directory of Open Access Journals (Sweden)

    Mohamed E.S.I. Saraya

    2012-01-01

    Full Text Available Problem statement: The growth of industries and day to day changes in human activities has resulted in an increase in the volume and complexity of wastewater to the environment. Textile industry is one of the most water consumers industries of Egypt, thus discharges large amounts of wastewater effluents during processing, especially, in the coloring and washing steps. Cement kiln dust is a solid waste in cement manufacturing. Approximately 2.5-3.0 (6-9% million tons of cement kiln dust is produced annually in Egypt and that cause significant environmental problems. Approach: This study aims to investigate removal of some acid dyes from aqueous solution using cement kiln dust and monitoring the dye in colored cement kiln dust. Solution with 0.4 g L-1 concentration was treated with cement kiln dust until the color of dye disappears. The colored cement kiln residue was separate by filtration and dried. The concentration of dye was measured before and after treatment by UV-Vis spectroscopy as well as after washing of colored residue. Also, the colored residue was investigated with, XRD, IR and DSC techniques as well as the loss on ignition at 450°C. Results: The results found that the cement kiln dust has the power to remove all existing acid dyes and the residue has the same color of dye. When colored residue was washed with water, there was no back diffusion of dye in to water. This may be mainly due to chemical reaction that took place between cement kiln dust and dye. Thus analysis such as IR, XRD and DSC are in agreement with these results. Conclusion: CKD is efficient in the processes of dye removal from aqueous solutions. The interaction between acid dye and CKD is fast (just minutes. So, we suggest using spent CKD for dye removal of waste water.

  8. Analysis of cement superplasticizers and grinding aids a literature survey

    International Nuclear Information System (INIS)

    This literature survey reviews the methods for analysis of cement plasticizers and organic grounding aids in cement solutions in preparation of grouts/concrete and methods for determination of plasticizers and grinding aids in groundwater conditions. The survey focuses on three different types of superplasticizers: sulphonated naphthalene condensates, sulphonated melamine condensates and polycarboxylates. There are various organic grinding aids, such as alkanolamines, glycols or phenolic compounds, used in the cement industry. This review is concerned with the following compounds: triethylenetetramine, tetraethylenepentamine, diethanolamine, triethanolamine, triisopropanolamine, ethyleneglycol, diethyleneglycol, aminoethylethanolamine, hydroxyethyl diethylenetriamine and phenol. (orig.)

  9. Energy optimization and reduction of carbon footprint in cement manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Gallestey, Eduardo; Crosley, Gabriela; Wilson, Andrew; Maier, Urs; Hoppler, Rolf; Boerrnert, Thomas

    2010-09-15

    Cement producers are large consumers of thermal and electrical energy, which are only available at steadily increasing costs. Efforts to reduce demands by using higher efficiency equipment and substituting -fuels and raw materials to lower production costs have been addressed in recent years. Under the Kyoto Protocol industrialised countries agreed to reduce their collective greenhouse gas emissions. Cement producers as some of the largest emitters of CO2 have been especially challenged to find new and innovative ways to reduce greenhouse gas emissions. This paper summarise some ABB technologies developed to assist the cement industry to meet these goals.

  10. Use of Oscillatory Shear to Study the Effect of Limestone Filler on the Rheology of Early-Age Portland Cement

    OpenAIRE

    Barney, Christopher W; Erk, Kendra

    2013-01-01

    Cement is a material that has been in use since the ancient times and is the most widely manufactured material in industry today. During the production of cement, limestone undergoes a process called calcination which releases CO2. In order to reduce the environmental impact and cost of cement production it has become standard practice to replace a portion of the cement mixture with ground limestone, but this causes a change in the rheological profile of the mixture. This change in rheology a...

  11. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  12. Effect of Duration of Exposure to Cement Dust on Respiratory Function of Non-Smoking Cement Mill Workers

    Science.gov (United States)

    Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Al Masri, Abeer A.; Al Rouq, Fawzia; Azeem, Muhammad Abdul

    2013-01-01

    This study aimed to determine the effect of long term exposure to cement dust on lung function in non-smoking cement mill workers. This is a cross-sectional study of respiratory functions. Spirometry was performed in 100 apparently healthy volunteers; 50 non-smoking cement mill workers and 50 non-smoking un-exposed subjects. Based on the duration of exposure, cement mill workers were divided into three groups, less than 5, 5–10 and greater than 10 years. All subjects were individually matched for age, height, weight, and socioeconomic status. Pulmonary function test was performed by using an electronic spirometer. Significant reduction was observed in the mean values of Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Peak Expiratory Flow (PEF) and Maximal Voluntary Ventilation in cement mill workers who had been working in the cement industry for more than 10 years compared to their matched un-exposed group. Lung functions in cement mill workers were significantly impaired and results show a long term duration response effect of years of exposure to cement dust on lung functions. PMID:23325026

  13. Effect of Duration of Exposure to Cement Dust on Respiratory Function of Non-Smoking Cement Mill Workers

    Directory of Open Access Journals (Sweden)

    Fawzia Al Rouq

    2013-01-01

    Full Text Available This study aimed to determine the effect of long term exposure to cement dust on lung function in non-smoking cement mill workers. This is a cross-sectional study of respiratory functions. Spirometry was performed in 100 apparently healthy volunteers; 50 non-smoking cement mill workers and 50 non-smoking un-exposed subjects. Based on the duration of exposure, cement mill workers were divided into three groups, less than 5, 5–10 and greater than 10 years. All subjects were individually matched for age, height, weight, and socioeconomic status. Pulmonary function test was performed by using an electronic spirometer. Significant reduction was observed in the mean values of Forced Vital Capacity (FVC, Forced Expiratory Volume in one second (FEV1, Peak Expiratory Flow (PEF and Maximal Voluntary Ventilation in cement mill workers who had been working in the cement industry for more than 10 years compared to their matched un-exposed group. Lung functions in cement mill workers were significantly impaired and results show a long term duration response effect of years of exposure to cement dust on lung functions.

  14. SOFT SOIL CONSOLIDATION BY THE MIXTURE OF INDUSTRIAL WASTE GYPSUM AND CEMENT%工业废石膏与水泥配合加固软土地基

    Institute of Scientific and Technical Information of China (English)

    黄新; 胡同安

    2001-01-01

    Improved soil strength by the mixture of waste gypsum and cement may be double that by mere cement. Optimal waste gypsum mixed is roughly 20% of cement by weight. When the method is adopted, in the hydrates of waste gypsum-cement, not only calcium silicate hydrate cementing loose soil particles together, but ettringite is produced by the reaction of cement with gypsum. It can expanse and fill up pores in the soil and then improve soil strength further.%利用工业废石膏与水泥配合加固软土地基,与单用水泥加固相比,加固土强度可成倍提高。废石膏的最佳掺量一般为水泥用量的20%左右。用废石膏-水泥加固时,其水化物中不仅有水化硅酸钙将松散的土粒胶结成整体,而且还产生大量钙矾石,其晶体膨胀填充孔隙,使加固土强度进一步提高。

  15. Bleeding and Filtration of Cement-Based Grout

    OpenAIRE

    Draganovic, Almir

    2009-01-01

    Grouting is a common method of sealing rock around tunnels to reduce or stop water inflow. Successful grouting significantly minimizes the maintenance cost and safety of the tunnel. Some questions about bleeding and penetrability of the grouts have to be examined more closely to carry out a successful grouting. Bleeding of cement-based grout is a complex problem. Measuring methods used today originate from the measuring of the bleeding of cement pastes used in ordinary building industry. Whet...

  16. The asbestos cement container and its characterization program

    International Nuclear Information System (INIS)

    A new type of packing container is designed in France, by SGN, for the reprocessing wastes conditioning: the asbestos cement container (CAC) made by the industrial process for pipes fabrication. Two types of CAC are studied, differing from each other by their wall thickness. The technology of which SGN is in charge is presented. A characterization program is operated by CEA in view of satisfying to regulatory requirements. Emphasis is placed upon the radionuclides migration study, through different asbestos cement samples

  17. Design of Digital Control System for Cement Raw Material Preparation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ying; LI Hongsheng

    2006-01-01

    This paper describes the design of cement raw material prepared digital control system by PROFIBUS. It uses the digital technology to implement the digital control system for raw material prepared of the cement factory. This system improves the communication between the industrial system and locale instrument devices. It applies digital communication to replace the 4-20 mA or 24VDC signal between locale lever device and controller.

  18. Development of Production Technologies for Universal Hydraulic Cement (UHC)

    OpenAIRE

    Syal, Dr. S K

    2013-01-01

    It is based on our recent approaches of Modern construction materials utilizing existing wastes such as fly ashes slags and to save energies by technological developments.The article is essential in the direction of new materials called Durable Integral polymer-pigmented cement concretes. UHC is calcium aluminate cements with natural properties of durable earth materials. It is a step towards Research for Innovation in Indian Industries

  19. Clean Development Mechanism: Laterite as Supplementary Cementing Material (SCM)

    OpenAIRE

    Syed Zaighum Abbass; Syed Shahid Ali; Jabar Zaman Khan Khattak; Zubair Anwar

    2013-01-01

    Carbon dioxide (CO2) a major Green House Gas (GHG) in the atmosphere, is believed to be largely responsible for global climate change through industrial emissions. The level of CO2 concentration has exponentially increased from about 280 ppm at the start of the industrial revolution to about 380 ppm to date. Although Kyoto protocol has bound industrialized nations to reduce green house gas emissions by 5.2% below 1990 levels around year 2008-2012, but violation continues. The cement industry ...

  20. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  1. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin CnH2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Clean Development Mechanism: Laterite as Supplementary Cementing Material (SCM

    Directory of Open Access Journals (Sweden)

    Syed Zaighum Abbass

    2013-02-01

    Full Text Available Carbon dioxide (CO2 a major Green House Gas (GHG in the atmosphere, is believed to be largely responsible for global climate change through industrial emissions. The level of CO2 concentration has exponentially increased from about 280 ppm at the start of the industrial revolution to about 380 ppm to date. Although Kyoto protocol has bound industrialized nations to reduce green house gas emissions by 5.2% below 1990 levels around year 2008-2012, but violation continues. The cement industry is one of the major emitter of green house gases, particularly CO2 due to its energy intensive production process. It is estimated that approximately 1 tone of CO2 is released during the manufacturing of each tone of Portland cement. Most of CO2 emissions originate from burning fossil fuels and de-carbonization of limestone in a cement plant. During past several decades, the use of by-product materials in concrete, either as components of blended cements or as admixtures, has increased significantly. In this study, another alternate Supplementary Cementing Material (SCM, Laterite has been used with the objectives: to evaluate the performance of cement containing different percentages of laterite (5, 10, 15, 20, 25, and 30 %; to identify the optimum replacement percentage; and to investigate the effects of different concentrations of laterite on various properties of cement. For that purpose, laterite was tested: before blending (for elemental and mineralogical composition by using XRF, SEM and XRD: after blending (Elemental analysis using XRF, fineness test by using Blaine’s air permeability test and for particle size % on 45, 90 and 200 µ sieve, respectively; and after hydration (for mineralogical analysis using SEM. Furthermore, physical tests of manufactured cement, i.e., water consistency, setting time, Le-Chatlier-expansion and compressive strength were also evaluated and compared with limestone and fly-ash cement blends. The results show that with the

  3. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  4. Halliburton Shale Gas Well Cementing Technology and Its Enlightenment to Domestic Gas Industry%哈里伯顿页岩气固井技术及对国内的启示

    Institute of Scientific and Technical Information of China (English)

    齐奉忠; 杜建平

    2015-01-01

    针对国内页岩气水平井固井套管安全下入难度大,高密度油基钻井液条件下提高顶替效率及改变界面润湿性困难,对水泥石力学性能要求高等问题,本文对哈里伯顿公司页岩气固井相关技术进行了深入调研及分析,重点介绍了提高顶替效率的模拟软件,保证长期密封的水泥浆体系及配套技术,低伤害和防漏失固井技术,保证套管安全下入的工具等,并对Haynesville页岩气藏应用的固井技术进行了总结,期望据此对提高国内页岩气固井质量及技术攻关起到一定的借鉴指导作用.%It is difficult for casings to run safely into a horizontal shale gas well during cementing operations, and by taking into account of difficulties in improving the displacement efficiency and changing the interface wettability under conditions where the oil-based drilling fluids are of high density, high-level requirements on mechanical properties of cement slurry, etc. According to current characteristics and difficulties of shale gas well cementing in China, so as to further improve the shale gas well cementing quality, the in-depth research and analysis of shale gas well cementing-related technologies of Hal-liburton have been conducted, focusing on the description of the simulation software that improves displacement efficiency, the cement slurry system and supporting technology that ensure a long-term sealing ability, the cementing technology charac-terized by low damage and leakage control, the tools that ensure safe casing running, etc. , and the cementing techniques ap-plied for Haynesville shale gas reservoir have been summarized. The analysis shows that shale gas well cementing technologies overseas move toward the technology with characteristics of bundle, serialization, customization, integration, and the assur-ance of wellbore sealing and long-term sealing&isolation. By combining with development trends of shale gas well cementing technologies overseas

  5. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  6. Cement og politik

    DEFF Research Database (Denmark)

    Lund, Joachim

    2012-01-01

    as well as in the public sphere. Most of the extensive job creating measures he carried out as a minister for public works necessarily involved the use of great amounts of cement – the primary produce of F.L. Smidth & Co. Gunnar Larsen thus became an easy target for Communist propaganda, picturing him...... of the Soviet Union (including an F.L. Smidth & Co. cement plant in former Estonia). He spent the last 15 months of the occupation in Sweden and was arrested after having returned to Copenhagen in May, 1945. Although a Copenhagen city court prison sentence for economic collaboration was reversed, he had...

  7. Modelling for integrated energy optimisation in cement production plants / J.A. Swanepoel.

    OpenAIRE

    Swanepoel, Jan Adriaan

    2013-01-01

    Cement production is an energy intensive process. In South Africa the cost of energy increased since 2006, while cement sales have dropped dramatically. It has become important to focus on methods to optimise energy consumption to achieve cost savings in the cement industry. Various methods of reducing production cost by improving energy efficiency are available, but require extended installation periods and high initial capital expenditure. Other methods such as operational optimisation can ...

  8. Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker Production

    OpenAIRE

    Li Luo; Yimin Zhang; Shenxu Bao; Tiejun Chen

    2016-01-01

    The cement industry has for some time been seeking alternative raw material for the Portland cement clinker production. The aim of this research was to investigate the possibility of utilizing iron ore tailings (IOT) to replace clay as alumina-silicate raw material for the production of Portland cement clinker. For this purpose, two kinds of clinkers were prepared: one was prepared by IOT; the other was prepared by clay as a reference. The reactivity and burnability of raw meal, mineralogical...

  9. Comparative Study of Clinker's Transformation at Different Temperature Zone During Cement Production

    OpenAIRE

    Mohd S. Idris; Khairul N. Ismail; Shamsul B. Jamaludin; Che M.R. Ghazali; Kamarudin Hussin

    2007-01-01

    Chemical composition analysis using x-ray fluorescence is one of the important quality analysis for examining of cement and widely used in cement industries for a long time as a tool to estimate phase composition. X-ray diffraction is one of the established techniques as a qualitative tool to identify phase existing in the sample. This study will discuss about the correlation between quantitative and qualitative analyses in order to understand phase transformation in production of cement. Qua...

  10. Cementing a wellbore using cementing material encapsulated in a shell

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  11. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  12. An unusual case of extensive self-inflicted cement burn.

    Science.gov (United States)

    Catalano, F; Mariano, F; Maina, G; Bianco, C; Nuzzo, J; Stella, M

    2013-03-31

    Cement is a fine powder used to bind sand and stones into a matrix of concrete, making up the world's most frequently used building material in the construction industry. First described by Ramazzini in his book "De Morbis Artificia Diatriba" in 1700, the effect of cement on the skin was presumed to be due to contact dermatitis. The first cement burns case was published by Rowe and Williams in 1963. Cement handling has been found to be responsible for many cases of occupational burns (generally full-thickness) usually affecting a limited TBSA, rarely greater than 5%, with localization especially in the lower limbs. We describe an unusual case of a self-inflicted cement burn involving 75% TBSA. A 28-yr-old building worker attempted suicide by jumping into a cement mixer in a truck. Upon arrival at our burn centre, clinical examination revealed extensive burn (75% TBSA - 40% full-thickness) involving face, back, abdomen, upper limbs and circumferentially lower limbs, sparing the hands and feet. The patient was sedated, mechanically ventilated, and subjected to escharotomy of the lower limbs in the emergency room. The following day, the deep burns in the lower limbs were excised down to the fascia and covered with meshed allografts. Owing to probable intestinal and skin absorption of cement, metal toxicity was suspected and dialysis and forced diuresis were therefore initiated on day 3. The patient's clinical conditions gradually worsened and he died on day 13 from the multi-organ failure syndrome. PMID:23966898

  13. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  14. Utilization of Palm Oil Clinker as Cement Replacement Material

    Directory of Open Access Journals (Sweden)

    Jegathish Kanadasan

    2015-12-01

    Full Text Available The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  15. Application of Carbonate Looping to Cement Industry

    DEFF Research Database (Denmark)

    Lin, Weigang; Illerup, Jytte Boll; Dam-Johansen, Kim;

    2012-01-01

    of sorbents in carbonate looping processes. The results show that the CO2 carrying capacity of limestone is much lower at realistic conditions than at mild conditions, which are often used in laboratory experiments. BET and SEM analyses show that the surface area of calcined limestone decreases significantly...

  16. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  17. 水泥行业主要气态污染物(SO2、 NOx和氟化物)排放特征研究%Research on Emission Characteristics of Primary Gaseous Pollutants (Sulfur Dioxide, Nitric Oxide and Fluoride) from the Cement Industry

    Institute of Scientific and Technical Information of China (English)

    刘祥凯

    2016-01-01

    The emission concentration and emission factor of sulfur dioxide, nitric oxide and fluoride from rotary kilns of cement industry have been researched in this study, and the emission concentration and factor associated with nitric oxide were maximal, and the both associated with fluoride were minimal.%本文分析了4个水泥厂回转窑SO2、 NOx和氟化物的排放浓度和排放因子,其中NOx的排放浓度和排放因子最大,氟化物的排放浓度和排放因子最小。

  18. Preterm delivery among people living around Portland cement plants

    International Nuclear Information System (INIS)

    The Portland cement industry is the main source of particulate air pollution in Kaohsiung city. Data in this study concern outdoor air pollution and the health of individuals living in communities in close proximity to Portland cement plants. The prevalence of delivery of preterm birth infants as significantly higher in mothers living within 0-2 km of a Portland cement plant than in mothers living within 2-4 km. After controlling for several possible confounders (including maternal age, season, marital status, maternal education, and infant sex), the adjusted odds ratio was 1.30 (95% I=1.09-1.54) for the delivery of preterm infants for mothers living close to he Portland cement plants, chosen at the start to be from 0 to 2 km. These data provide further support for the hypothesis that air pollution can affect he outcome of pregnancy

  19. The development and industrial tests of vibratory cement stable macadam mixer%水泥稳定碎石振动搅拌装置的研制及工业试验

    Institute of Scientific and Technical Information of China (English)

    张良奇; 孔鲜宁; 冯忠绪

    2015-01-01

    Aiming at the common problems that exist in highways and municipal roads of our coun-try, such as low intensity, poor homogeneity, poor stability, and easy to cracking and so on, a 600 t/h vibration mixer of the cement stable macadam is developed. It can use the vibrating mixing technology to produce stable cement macadam. The strengthening mechanism of vibration is to make cement powder and fine material are quickly dispersed, water and cement hydration reaction speed is expedited evenly, so that the microscopic structure of the cement stabilized macadam is improved, and the dosage of cement is effectively reduced. At the same time, it can ensure the strength of ce-ment stabilized gravel base by reducing the cracks of semi-rigid base. Taking samples and testing the samples’ 7 d unconfined compressive strength, under the same condition, the average compressive strength of samples which the dosage of cement with 5% is 5. 27 MPa, compared to common mixing samples the strength is increased by 12. 8%;the average compressive strength of samples which the cement dosage is reduced to 4%, and under the condition, the vibratory mixing is 4. 25 MPa, it is still meeting the requirements of the design strength; With the same dosage proportion, maintaining and extracting the core in scene, and measuring 7 d unconfined compressive strength, the results show that the average strength of the vibration mixing is increased by 84. 3% . The results show that the vibratory mixing can improve the performance of cement stable results show that the vibratory mixing can improve the performance of cement stable macadam signi-ficantly.%针对目前我国公路和市政道路水泥稳定碎石基层普遍存在的强度不高、均匀性与稳定性差、易产生裂纹等问题,运用振动搅拌技术对水泥稳定碎石进行搅拌加工,研制了600 t/h水泥稳定碎石振动搅拌装置。振动搅拌能对水泥稳定碎石进行改性的机理主要是通过振动使水泥等粉

  20. Advanced cement solidification technique for spent resins

    International Nuclear Information System (INIS)

    In the past 40 years, the nuclear facilities of China Institute of Atomic Energy (CIAE) produced an amount of radioactive organic resins, a kind of problematic stream in nuclear industry. As these facilities were stepping into decommissioning, the treatment of the spent organic resins was put on the agenda. The various routes for spent resin treatment such as incineration, advanced oxidation, cement immobilization, etc, were considered. Each method has its advantages and disadvantages when applied in the treatment of spent resins. Since the quantities of the spent organic resins were relatively small and an experience with variety of cementation processes existed in CIAE, predominately for immobilization of the evaporated concentrates, the option of direct encapsulation of the spent organic resins into cementitious materials was adopted in 2003, as a preferred method from the point of view of saving the on the cost of the disposal. In order to realize the end goal, the main work consisted of: the survey of the source terms; cementitious material formula investigation; and the process development. This work, which was undertaken in the following years, is addressed as follows. Source terms of the spent resins in CIAE were to be made clear firstly. The results showed that a total of 24-29 m3 of spent resins was generated and accumulated in the past 40 years. Spent resin arose from two research reactors (heavy water reactor and light water reactor), and from the waste management plant. The amount of the spent resins from the heavy water reactor was 1m3 or so, but its radioactive concentration was high to ∼108-∼109Bq/m3. Two kinds of cements, ASC and OPC cement were selected next, as the solidifying matrix to be investigated. A mixture surface response approach was employed to design experiment and interpret data. In comparison, ASC was superior to OPC cement and it displayed preferable performances to encapsulate spent resins. The optimum formulation is:1) resin

  1. Utilization of Palm Oil Clinker as Cement Replacement Material

    OpenAIRE

    Jegathish Kanadasan; Hashim Abdul Razak

    2015-01-01

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with pa...

  2. 77 FR 46371 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Science.gov (United States)

    2012-08-03

    ... rule (77 FR 42368, July 18, 2012) should be addressed to Ms. Sharon Nizich, Office of Air Quality... Register on July 18, 2012, and is available at: http://www.gpo.gov/fdsys/pkg/FR-2012-07-18/pdf/2012-16166... the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement...

  3. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect th

  4. Mergers and acquisitions : the case of Cimpor and InterCement

    OpenAIRE

    Andrade, Miguel Luís

    2014-01-01

    In June of 2012 Camargo Corrêa, the Brazilian Family Group that controlled the Brazilian cement producer InterCement, acquired 61% of the Portuguese cement production leader, Cimpor, with an offer price of 5.5 Euros, allowing Camargo Corrêa to take full control of Cimpor by owning 94% of the company. Cement is an industry characterized by huge production scales and high initial investments, with an enduring trend of consolidation among cement’s biggest international producers, and this dea...

  5. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  6. Effect of Heavy Metal Present in Cement Dust on Soil and Plants of Nokha (Bikaner

    Directory of Open Access Journals (Sweden)

    Dr.(Mrs.Suruchi Gupta

    2013-08-01

    Full Text Available In Nokha(Bikaner cement industries emittes cement dust in nearby farmers fields. In these industries cement dust emitted contains traces of hexavalent chromium and lead well above permissible limit in area under investigation. However, cadmium and nickel were found below limits prescribed. To analyse heavy metals viz, Cr+6, lead, Cadmium and nickel one hundred and twenty samples were collected from four directions on surface and 20 cm depth, and analyzed on atomic absorption spectrophotometer. From the above study it is clear that in case of Sarvottam cement works only lead content was higher in all directions and depths than other two plants. At tiger and Nokha cement works contamination of lead was more over limited in the first 1 km except in east direction. Mobility of lead was relatively more on top soil than 20cm depth. Hexavalent chromium content in south western direction was more for Nokha cement. Whereas, it was more in east direction in case of tiger cement. This indicated influence of prevailing direction of wind on distribution of heavy metals present in cement dust.Heavy metal toxicity results in reduction in plant height, burning of leaf margins and tip, slow leaf growth and over all wilting of Prosopis cineraria, Pearlmillet and clusterbean plants, when this metal deposits in Human body results in genetic disorders. Electrostatic precipitator can be installed to reduce the cement dust emission.

  7. Carbonate Looping for De-Carbonization of Cement Plants

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Andersen, Maria Friberg; Lin, Weigang;

    2011-01-01

    feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of CO2. Integration of carbonate looping process into cement pyroprocess has two advantages: 1......) to capture emitted CO2 and 2) to generate power for internal use, because high quality energy can be recovered from carbonate looping which is operated at high temperature unlike amine process. A simple carbonate looping process model was developed based on average conversion of calcined limestone defined...... on the calciner capacity is also investigated. The results from this simple model show the importance of cement industry to the carbon capture technology for its application to power plants....

  8. Tympanoplasty with ionomeric cement.

    Science.gov (United States)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  9. [Haemotoxicity of dental luting cements].

    Science.gov (United States)

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality. PMID:2626769

  10. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  11. Influence of CG With High Content of Metallic Particles as a Cement Admixture on Cement Strength

    Institute of Scientific and Technical Information of China (English)

    WAN Hui-wen; LIN Zong-shou; ZHAO Qian; HUANG Yun

    2003-01-01

    Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the influence of the presence of finely dispersed metallic particles in CG on the microstructure and compressive strength of cement paste has been studied.The results show that the higher the replacement of CG is,the lower the compressive strength of cement mortar is.However,the long-term strength of the specimens with 10% CG,especially after being cured for 3 months,approached to that of the plain mortar.Its mechanism was studied by an electron probe X-ray microanalyzer (EPXMA).The results indicate that a small quantity of Fe(OH)3·nH2O slowly formed from Fe2O3 in the presence of Ca(OH)2, free CaO and MgO of the clinker also slowly hydrated and formed Ca(OH)2 and Mg(OH)2 respectively,so the hardened cement paste became more compact.

  12. Study of technical and financial pre-feasibility for the handling and sale, as fuel in cement industries, of petroleum coke produced at a petroleum refinery located in Moin, Limon

    International Nuclear Information System (INIS)

    A study of the technical and financial pre-feasibility is realized for the handling, conditioning and sale as fuel in cement industries of petroleum coke, that is produced in the project of extension and modernization of the refinery of RECOPE in Moin, Limon. Daily production has been of 570 metric tons. The market study has determined a demand of approximately 120 000 metric tons in the country and in the region. The total production of coke has been possible place it at national and regional level, due to lack of another producer. The coke is recommended to crush it to decrease the size of the particles for the conditioning, handling and to facilitate their manipulation. Conveyor belts are used for handling on the inside of the refinery. The coke is transported in trucks type tanker on the exterior of the refinery. The moisture content is reduced by dryer vibratory of fluidized bed to 5% of moisture to guarantee a product better quality. The product is stored under roof in ventilated facilities and with appropriate systems of security to minimize the risk of an accident. The fixed capital investment to develop the project has been of USD 3,1 millions and working capital of USD 14,4 millions. The financial evaluation is realized considering two financing models of 70% and without financing. The net present value (NPV) has been of USD -13,0 millions and the desirability index of -6,6 for the model with financing. The model without financing has obtained a NPV of USD -1,9 millions and a desirability index of -1,2. The financial profitability of the project has been very sensitive to the sales price of the coke, to the coke volume of production, to the growth percentage of the sale price and the cost of the raw material for the two models considered. The financial risk analysis is realized by the Monte Carlo method, whereupon is obtained a probability of approximately 34% in that the internal rate of return (IRR) has been higher than the cut rate and of 36% in that

  13. Effect of cement sand ratio on industrial waste residue dry-mixed mortar properties%灰砂比对工业废渣干混砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘秀伟; 杨林; 秦贤顺

    2015-01-01

    研究了高掺量磷渣粉、粉煤灰干混砂浆的灰砂比对砂浆性能的影响及激发剂对砂浆的作用机理。结果表明,在砂浆稠度基本不变的前提下,随着灰砂比减小,砂浆和易性变差,凝结时间延长,抗压强度降低,拉伸黏结强度逐渐减小,28 d干缩逐渐增大,但在灰砂比为1:1~1:6的范围内其性能均能满足GB/T 25181—2010《预拌砂浆》中对应等级标准要求,调整灰砂比可以配制出M5.0~M30不同强度等级的普通干混砂浆。%Study on the mechanism of effect of high content of phosphorus slag powder,fly ash dry mixed mortar cement sand ratio on the properties of mortar and activator on the mortar. The results show that,on the premise of mortar consistency basically unchanged, with the cement sand ratio decreases,mortar workability variation,extended the setting time,compressive strength decreases,the tensile bond strength decreases,28 d shrinking gradually increased,but in the cement sand ratio is in the range of 1:1~1:6 and its performance can meet the GB/T 25181—2010 ready mixed mortar in the corresponding grade standards,adjust the cement sand ratio can be prepared M5.0~M30 of different strength grade of ordinary dry mixed mortar.

  14. Dust Exposure and Respiratory Health Effects in Cement Production

    Directory of Open Access Journals (Sweden)

    Golamreza Pouryaghoub

    2012-02-01

    Full Text Available Dust can be produced by almost all production processes in Portland cement factory. Dust exposure potentially can affect respiratory function. But evidence for respiratory effect of cement dust exposure has not been conclusive. In this study we assessed effect of cement dust exposure on respiratory function in a cement production factory. A respiratory symptoms questionnaire was completed and pulmonary function tests were carried out on 94 exposed and 54 non exposed workers at a cement factory in the east of Iran. Additionally, respirable dust level was determined by the gravimetric method. X-ray fluorescence (XRF technique was performed to determine the silica phases and the SiO2 contents of the bulk samples. The arithmetic means (AM of personal respirable dust were 30.18 mg/m3 in the crushing, 27 mg/m3 in the packing, 5.4 mg/m3 in the cement mill, 5.9 mg/m3 in the kiln and 5.48 mg/m3 in the maintenance that were higher than threshold limit value (TLV of the American Conference of Governmental Industrial Hygienists (ACGIH which is 5 mg/m3. This value in the unexposed group was 0.93 mg/m3. In this study cough, sputum, wheezing and dyspnea were more prevalent among exposed subjects. Exposed workers compared to the unexposed group showed significant reduction in Forced Expiratory Volume in one second (FEV1, Forced Vital Capacity (FVC, and Forced Expiratory Flow between 25% and 75% of the FVC (FEF25-75% (P<0.05. It can be concluded that in our study there was close and direct association between cement dust exposure and functional impairment among the cement factory workers.

  15. Respiratory Health among Cement Workers in Ethiopia

    OpenAIRE

    Zeleke, Zeyede K.

    2011-01-01

    Background: Little is known on dust exposure and respiratory health among cement cleaners. There are only a few follow-up studies on respiratory health among cement factory workers and also studies on acute effects of cement dust exposure are limited in numbers. Objective: This study aimed at assessing cement dust exposure and adverse respiratory health effects among Ethiopian cement production workers, with particular focus on cement cleaners. Method: The first paper was...

  16. Random ionic mobility on blended cements exposed to aggressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rosario, E-mail: rosario.garcia@uam.es [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma, 28049 Madrid (Spain); Rubio, Virginia [Departamento de Geografia, Facultad de Filosofia y Letras, Universidad Autonoma, 28049 Madrid (Spain); Vegas, Inigo [Labein-Tecnalia, 48160 Derio, Vizcaya (Spain); Frias, Moises [Instituto Eduardo Torroja, CSIC, c/ Serrano Galvache, 4, 28033 Madrid (Spain)

    2009-09-15

    It is known that the partial replacement of cement by pozzolanic admixtures generally leads to modifications in the diffusion rates of harmful ions. Recent research has centred on obtaining new pozzolanic materials from industrial waste and industrial by-products and on the way that such products can influence the performance of blended cements. This paper reports the behaviour of cements blended with calcined paper sludge (CPS) admixtures under exposure to two different field conditions: sea water and cyclic changes in temperature and humidity. Cement mortars were prepared with 0% and 10% paper sludge calcined at 700 deg. C. The penetration of ions within the microstructure of cement matrices was studied using X-ray diffraction (XRD) and scanning electron microscopy equipped with an energy dispersive X-ray analyser (SEM/EDX) analytical techniques. The results show that ionic mobility varies substantially according to the type of exposure and the presence of the calcined paper sludge. The incorporation of 10% CPS is shown to assist the retention and diffusion of the ions.

  17. Biological effects: asbestos-cement manufacturing.

    Science.gov (United States)

    Weill, H

    1994-08-01

    Fourteen cohorts of asbestos-cement workers have been studied. These studies have demonstrated exposure-response relationships for lung cancer, mesothelioma and asbestosis. For lung cancer, relatively consistent results have been observed, with risk two-fold or less in 13 of the 14 cohorts. Among New Orleans workers, excess risk was restricted to those with X-ray evidence of asbestosis. Workers employed at least 21 years but without X-ray abnormalities, experienced no elevated risk, while those with small opacities (1/0 or higher) had substantially elevated risk (SMR > 400). Exposures in these two groups had been similar. These results suggest that asbestosis may be a necessary precursor for asbestos-induced lung cancer; if so, then the no-threshold model for lung cancer risk is inappropriate since there is general agreement that very low exposures will not result in radiologically detectable lung fibrosis. Further data on this potential link are needed. As in other industries, mesothelioma risk was strongly related to amphibole exposure, especially to crocidolite in asbestos-cement pipe manufacture. A cluster of cases has recently been reported in a family amosite-cement business. Among New Orleans workers, risk of asbestosis was related to cumulative exposure but there was little evidence of risk below 30 f ml-1-years. Progression of asbestosis in these workers was slow, related to past cumulative exposure and not related to lung function decline. Asbestosis risk is therefore not likely to develop in workers under current controlled exposure conditions. PMID:7978975

  18. Leaching tests of cemented organic radioactive waste

    International Nuclear Information System (INIS)

    The use of radioisotopes in research, medical and industrial activities generates organic liquid radioactive wastes. At Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) are produced organic liquid wastes from different sources, one of these are the solvent extraction activities, whose the waste volume is the largest one. Therefore a research was carried out to treat them. Several techniques to treat organic liquid radioactive wastes have been evaluated, among them incineration, oxidation processes, alkaline hydrolysis, distillation, absorption and cementation. Laboratory experiments were accomplished to establish the most adequate process in order to obtain qualified products for storage and disposal. Absorption followed by cementation was the procedure used in this study, i.e. absorbent substances were added to the organic liquid wastes before mixing with the cement. Initially were defined the absorbers, and evaluated the formulation in relation to the compressive strength of its products. Bentonite from different suppliers (B and G) and vermiculite in two granulometries (M - medium and F - small) were tested. In order to assess the product quality the specimens were submitted to the leaching test according the Standard ISO 6961 and its results were evaluated. Then they were compared with the values established by Standard CNEN NN 6.09 Acceptance criteria for waste products to be disposed, to verify if they meet the requirements for safely storage and disposal. Through this study the best formulations to treat the organic wastes were established. (author)

  19. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  20. Cement plant gaseous pollutant emission reduction technologies

    Directory of Open Access Journals (Sweden)

    Andrés Emilio Hoyos Barreto

    2010-10-01

    Full Text Available A brief description of SOX, NOX and CO2 formation is presented, these being the main pollutants emitted in the cement industry gas stream Several technologies for reducing NOX, SOX and CO2 emissions in long wet kilns are introduced: primary measures preventing contaminant formation and secondary/tube end emission reduction measures. Strategies for preventing CO2 (green-house effect gas formation are also addressed, such as fuel and raw material substitution and CO2 capture technologies which are still being developed.

  1. A consistent thermodynamic database for cement materials

    International Nuclear Information System (INIS)

    In the context of waste confinement and, more specifically, waste from the nuclear industry, concrete is used both as a confinement and as a building material. Alteration processes in contact with clayey formations are also of interest in the context of deep disposal. The present work aims to propose a collection of thermodynamic properties for geochemical calculation in cementitious media. This selection is extended to zeolites and clay minerals in the context of cement/clay interactions. Finally, because temperature is of importance in such contexts, the temperature dependency of the thermodynamic functions is also considered here. Uncertainties remain concerning especially katoite, and some low temperature zeolites like phillipsite, chabazite or gismondine

  2. Colorectal cancer and non-malignant respiratory disease in asbestos cement and cement workers. Studies on mortality, cancer morbidity, and radiographical changes in lung parenchyma and pleura

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson, K.

    1993-09-01

    Radiologically visible parenchymal changes (small opacities >= 1/0;ILO 1980 classification) were present in 20% of a sample of workers (N=174), employed for 20 years (median) in an asbestos cement plant. Exposure-response relationships were found, after controlling for age and smoking habits. In a sample of asbestos cement workers with symptoms and signs suggestive of pulmonary disease (N=33), increased lung density measured by x-ray computed tomography, and reduced static lung volumes and lung compliance was found. In a cohort of asbestos cement workers (N=1.929) with an estimated median exposure of 1.2 fibres/ml, the mortality from non-malignant respiratory disease was increased in comparison to a regional reference cohort (N=1.233). A two-to three-fold increase of non-malignant respiratory mortality was noted among workers employed for more than a decade in the asbestos cement plant, compared to cement workers (N=1.526), who in their turn did not experience and increased risk compared to the general population. In the cohorts of asbestos cement and cement workers, there was a tow-to three-fold increased incidence of cancer in the right part of the colon, compared to the general population as well as to external reference cohorts of other industrial workers (N=3.965) and fishermen (N=8.092). A causal relation with the exposure to mineral dust and fibres was supported by the findings of higher risk estimated in subgroups with high cumulated asbestos doses or longer duration of cement work. The incidence of cancer in the left part of the colon was not increased. Morbidity data, but not mortality data, disclosed the subsite-specific risk pattern. Both asbestos cement workers and cement workers has an increased incidence of rectal cancer, compared with the general population, and with the fishermen. The risk was, however, of the same magnitude among the other industrial workers. 181 refs.

  3. Enhancement of cemented waste forms by supercritical CO{sub 2} carbonation of standard portland cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Carey, J.; Taylor, C.M.V.

    1997-08-01

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented.

  4. Enhancement of cemented waste forms by supercritical CO2 carbonation of standard portland cements

    International Nuclear Information System (INIS)

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented

  5. The Effect of Cement Dust on the Lung Function in a Cement Factory, Iran

    Directory of Open Access Journals (Sweden)

    Farhad Ferasati

    2010-07-01

    Full Text Available The present study aimed at assessing cement dust exposure and its relationship to lung function at a Portland cement factory in Ilam, Iran. Lung function tests were carried out on 112 workers at the cement factory in 2008-09. Simultaneously 85 non exposed workers were used as control. Lung function tests were performed for all subjects. Additionally, total dust level was determined by the gravimetric method. Moreover, X-ray diffraction (XRD technique was performed to determine the SiO2 contents of the bulk samples. The arithmetic means (AM of personal total dust were higher in the crusher (27.49 mg/m3, packing (16.90 mg/m3, kiln (15.60 mg/m3, cement mill (13.07 mg/m3, raw mill (10.31 mg /m3 than in the maintenance (3.14 mg /m3, and administration (1.55 mg/m3. The geometrical mean (GM concentration was 12.12 mg/m3, which were considerably higher than occupational exposure limit (OEL of the American Conference of Governmental Industrial Hygienists (ACGIH, which is 10 mg/m3. Based on the results, the probability of the long-term mean exposure exceeding to the OEL of 10 mg/m3 for total dust were higher in the kiln (100%, packing (100%, cement mill (90%, crusher (73%, raw mill (60% than in the maintenance (0%, and administration (2.3%. Ventiliatory function evaluation, as measured by the function parameters, showed that 35.7% of the exposed workers had abnormality in lung function compared with 5.7% of those unexposed. Statistical analysis of the data indicated that exposed workers compared to the unexposed groups showed significant reductions in Forced Expiratory Volume in one second percent (FEV1, Forced Vital Capacity (FVC, and FEV1/FVC (p< 0.05.

  6. Sustainable Nanopozzolan Modified Cement: Characterizations and Morphology of Calcium Silicate Hydrate during Hydration

    Directory of Open Access Journals (Sweden)

    N. Mohamed Sutan

    2015-01-01

    Full Text Available There are environmental and sustainable benefits of partially replacing cement with industrial by-products or synthetic materials in cement based products. Since microstructural behaviours of cement based products are the crucial parameters that govern their sustainability and durability, this study investigates the microstructural comparison between two different types of cement replacements as nanopozzolan modified cement (NPMC in cement based product by focusing on the evidence of pozzolanic reactivity in corroboration with physical and mechanical properties. Characterization and morphology techniques using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, energy-dispersive X-ray spectroscopy (EDS, and scanning electron microscopy (SEM were carried out to assess the pozzolanic reactivity of cement paste modified with the combination of nano- and micro silica as NPMC in comparison to unmodified cement paste (UCP of 0.5 water to cement ratio (w/c. Results were then substantiated with compressive strength (CS results as mechanical property. Results of this study showed clear evidence of pozzolanicity for all samples with varying reactivity with NPMC being the most reactive.

  7. Manipulating cement-steel interface by means of electric field: Experiment and potential applications

    Directory of Open Access Journals (Sweden)

    Kamila Gawel

    2016-08-01

    Full Text Available Good shear bonding and hydraulic bonding between cement and steel play a crucial role in well integrity of oil and gas wells. In this experimental study, we investigate the effect that constant electric field may have on the bonding at cement-steel interfaces. Constant voltage (18 V was applied between two stainless-steel electrodes immersed into a cement slurry. It was found that bonding was significantly improved at the positive electrode, while it was significantly worse at the negative electrode. The effect was due to the negatively-charged cement particles being attracted to the positive electrode. The effect may potentially be used for manipulation and control of casing-cement and reinforcement-concrete bonding strengths in oil & gas and construction industries, respectively. Side-effects that might reduce the applicability of this technology, are gas production at both electrodes (and especially at the negative one and significant corrosion at the positive electrode due to electrochemical reactions at metal surfaces. Poor bonding at the negative electrode may potentially be used for cleaning of cement equipment, such as cement pumps, pipes, tanks, and mixers used on the rigs to perform well cementing jobs in oil & gas industry.

  8. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    Science.gov (United States)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  9. Evaluation of oxidative stress and DNA damage in cement and tannery workers in Egypt.

    Science.gov (United States)

    Elhosary, Naema; Maklad, Aisha; Soliman, Eman; El-Ashmawy, Nahla; Oreby, Merfat

    2014-04-01

    In Egypt, workers have potentially high exposure levels to chromium (VI) in the cement production and construction industry and to chromium (III) in the leather tanning industry. This study aimed to evaluate the effect of chromium exposure on lipoperoxidation, thiol antioxidants and DNA in cement and tannery workers. This study was conducted on 65 adult male volunteers. These subjects were divided into three groups: Group I (control group); 23 normal healthy volunteers, Group II; 22 cement workers and Group III; 20 tannery workers. All participants were subjected to thorough history, clinical examination and laboratory determination of total blood and urinary chromium, plasma malondialdehyde and total thiol in plasma and assessment of oxidative DNA damage through p53 overexpression. About one third of cement and tannery workers had severe skin and chest manifestations and severe nasal manifestations were observed in 22.7% and 20% of cement and tannery workers, respectively. The blood and urinary Cr and plasma malondialdehyde levels of cement and tannery were significantly higher than control group. Additionally, there was a significant increase of total thiol in control group compared to exposed groups. About half of cement and one third of tannery groups expressed high grade of p53 expression. The blood chromium revealed significant negative correlation with thiol, but, positive correlation with malondialdehyde and p53 expression. Cement and tannery workers should be subjected to frequent clinical examination and blood or urine chromium analysis level to keep guard against its toxic consequences. PMID:24617565

  10. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  11. Composite Control of Precalciner Exit Temperature in Cement Rotary Kiln

    Institute of Scientific and Technical Information of China (English)

    赵晨; 诸静

    2003-01-01

    A composite control strategy for the precalciner exit temperature in cement kiln is introduced based on a mathematical model. In this model, the raw meal flow, coal powder flow and wind flow are taken as three input variables, the clinker fow and exit teperature of cement kiln are output variables, and other influencing factors are considered as disturbance. A composite control system is synthesied by integrating self-learning PID, fuzzy and feedforward function into a combined controller, and the arithmetics for the self-learning PID controller, fuzzy controller and feedforward controller are elaborated respectively. The control strategy has been realized by software in real practice at cement factory. Application results show that the composite control technology is superior to the general PID control in control effect, and is suitable to the industrial process control with slow parameter variation, nonlinearity and uncertainty.

  12. Radionuclide and metal sorption on cement and concrete

    CERN Document Server

    Ochs, Michael; Wang, Lian

    2016-01-01

    Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a broad range of radioactive and industrial wastes. Effects of cement evolution or ageing on sorption/incorporation processes are explicitly evaluated and quantified. While the immobilisation of contaminants by mixing-in during hydration is not explicitly addressed, the underlying chemical processes are similar. A quantitativ...

  13. Energy efficiency enhancement in cement factories using expert system

    International Nuclear Information System (INIS)

    Full text : In this paper, expert system for energy efficiency in cement industry is presented. Due to the fact that cement manufacturing project in these factories are similar, so in main parts knowing the consumption origins and save potential and existing approaches can be similar. In this method, via expert system software of prolog AH types of energy consumption and investment costs are listed in which method of best first search and innovative search have been used and by forming knowledge base, targeting to get best approaches is presented. The obtained results, regarding the executed limits, will be displayed in the output of program and this program can be given the best decision about energy management in cement factories

  14. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  15. Dust exposure and respiratory health effects in cement production.

    Science.gov (United States)

    Kakooei, Hossein; Gholami, Abdollah; Ghasemkhani, Mehdi; Hosseini, Mostapha; Panahi, Davoud; Pouryaghoub, Golamreza

    2012-01-01

    Dust can be produced by almost all production processes in Portland cement factory. Dust exposure potentially can affect respiratory function. But evidence for respiratory effect of cement dust exposure has not been conclusive. In this study we assessed effect of cement dust exposure on respiratory function in a cement production factory. A respiratory symptoms questionnaire was completed and pulmonary function tests were carried out on 94 exposed and 54 non exposed workers at a cement factory in the east of Iran. Additionally, respirable dust level was determined by the gravimetric method. X-ray fluorescence (XRF) technique was performed to determine the silica phases and the SiO(2) contents of the bulk samples. The arithmetic means (AM) of personal respirable dust were 30.18 mg/m(3) in the crushing, 27 mg/m(3) in the packing, 5.4 mg/m(3) in the cement mill, 5.9 mg/m(3) in the kiln and 5.48 mg/m(3) in the maintenance that were higher than threshold limit value (TLV) of the American Conference of Governmental Industrial Hygienists (ACGIH) which is 5 mg/m(3). This value in the unexposed group was 0.93 mg/m(3). In this study cough, sputum, wheezing and dyspnea were more prevalent among exposed subjects. Exposed workers compared to the unexposed group showed significant reduction in Forced Expiratory Volume in one second (FEV(1)), Forced Vital Capacity (FVC), and Forced Expiratory Flow between 25% and 75% of the FVC (FEF(25-75%)) (Pexposure and functional impairment among the cement factory workers. PMID:22359082

  16. Utilization of gold tailings as an additive in Portland cement.

    Science.gov (United States)

    Celik, Ozlem; Elbeyli, Iffet Yakar; Piskin, Sabriye

    2006-06-01

    Mine tailings are formed as an industrial waste during coal and ore mining and processing. In the investigated process, following the extraction of gold from the ore, the remaining tailings are subjected to a two-stage chemical treatment in order to destroy the free cyanide and to stabilize and coagulate heavy metals prior to discharge into the tailings pond. The aim of this study was the investigation of the feasibility of utilization of the tailings as an additive material in Portland cement production. For this purpose, the effects of the tailings on the compressive strength properties of the ordinary Portland cement were investigated. Chemical and physical properties, mineralogical composition, particle size distribution and microstructure of the tailings were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (Mastersizer) and scanning electron microscope (SEM). Following the characterization of the tailings, cement mortars were prepared by intergrinding Portland cement with dried tailings. Composition of the cement clinkers were adjusted to contain 5, 15, 25% (wt/wt) dried tailings and also silica fume and fly ash samples (C and F type) were added to clinker in different ratios. The mortars produced with different amounts of tailings, silica fume, fly ashes and also mixtures of them were tested for compressive strength values after 2, 7, 28 and 56 days according to the European Standard (EN 196-1). The results indicated that gold tailings up to 25% in clinker could be beneficially used as an additive in Portland cement production. It is suggested that the gold tailings used in the cement are blended with silica fume and C-type fly ash to obtain higher compressive strength values. PMID:16784164

  17. The polymer cement of sulfur as an alternative for the recycling of phosphogypsum. Corrosion testing of cements enriched with phosphogypsum; El cemento polimerico de azufre como alternative para el reciclado de fosfoyesos. Pruebas de corrosion de cementos enriquecidos con fosfoyesos

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Lopez, F. A.; Navarro, N.; Sanchez, M.; Sanz, B.; Ballesteros, O.; Higueras, E.; Roman, C. P.

    2011-07-01

    The possibility of the use of cement for the recycling of materials is seen today as sustainable solution of the fertilizer industry for production of matches (NORM). In this paper presents some results of corrosion tests performed on these cements modified using buffer solutions of different pH. The analytical determinations in these matrices are new challenges. (Author)

  18. Novorossiysk agglomeration landscapes and cement production: geochemical impact assessment

    Science.gov (United States)

    Alekseenko, A. V.; Pashkevich, M. A.

    2016-09-01

    The article deals with assessing the environmental impact of marl mining and cement production in Novorossiysk city (Krasnodar krai, Russia). The existing methods of studying the environmental effects caused by the cement industry have been reviewed. Soil and aquatic vegetation sampling has been carried out and the gross concentration of metals in the samples has been defined. The research has been conducted in the certified and accredited laboratory using emission spectral analysis. The external control has been carried out via X-ray fluorescence analysis. Based on the collected data, main chemical pollutants in soil cover and water area near the cement plant have been identified. The contaminants released by urban enterprises and motor vehicle emissions, as well as fugitive dust from dumps and the cement factory, lead to multi-element lithogeochemical anomaly at geochemical barriers in soils. Accumulation of pollutants in soil depends on the type of land use and the area relief. The most contaminated aquatic landscapes have been identified in the inner bay. According to this information, the technical proposals can be prepared for environmental safety management in strongly polluted city areas, as well as for the reclamation design in the areas currently experiencing the negative impact of cement production.

  19. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  20. Cement/slag chemistry studies

    International Nuclear Information System (INIS)

    The performance of cement-based matrices intended for radwaste immobilization is assessed. The long-term performance of the matrix is characterized by thermodynamic evaluation of experimental data. The results are presented in a general form, amenable to a range of specific formulations. The interaction of specific radwaste components with cements has been studied, using Iodine as an example. It occurs as both I- and IO3- species, but these differ sharply in sorption characteristics. The effect of ionizing radiation of the pH and Eh of cement matrices is reported. (author)

  1. The interaction of pH, pore solution composition and solid phase composition of carbonated blast furnace slag cement paste activated with aqueous sodium monofluorophosphate

    NARCIS (Netherlands)

    Kempl, J.; Copuroglu, O.

    2015-01-01

    Blast Furnace Slag (BFS) is a waste product of industrial steel production and a common additive in the cement industry in Northern European countries. However, cementitious materials made from slag-rich cement, particularly CEM III /B, are very susceptible to carbonation. Recent investigations have

  2. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  3. Leaching Study in Immobilization of Cesium and Cobalt Radionuclides In Fly Ash- Zeolite Cement

    International Nuclear Information System (INIS)

    Fly ash-zeolite cement was synthesized from industrial by-product fly ash obtained from the thermal electric power station. The synthesis process is based on the hydrothermal-calcination-route of the fly ash. The microstructure of fly ash-zeolite cement was characterized by X-ray diffraction, FT infrared spectroscopy and surface area (F-N2). The efficiency of innovative matrices for immobilizing cesium and cobalt radionuclides is presented in this work. The aim of the present study is to investigate the possibility of solidifying 137Cs and 60Co radionuclides in synthetic fly ash zeolite cement. Leaching behavior of the radionuclides have been studied. The leachability index measured indicated that fly ash zeolite cement matrix can be utilized as an efficient material for immobilizing cesium and cobalt radionuclides than portland cement.

  4. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  5. Assessment of non-destructive testing of well casing,, cement and cement bond in high temperature wells

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, C K; Boardman, C R

    1979-01-01

    Because of the difficulty in bringing geothermal well blowouts under control, any indication of a casing/cement problem should be expeditiously evaluated and solved. There are currently no high temperature cement bond and casing integrity logging systems for geothermal wells with maximum temperatures in excess of 500/sup 0/F. The market is currently insufficient to warrannt the private investment necessary to develop tools and cables capable of withstanding high temperatures. It is concluded that a DOE-funded development program is required to assure that diagnostic tools are available in the interim until geothermal resource development activities are of sufficient magnitude to support developmental work on high temperature casing/cement logging capabilities by industry. This program should be similar to and complement the current DOE program for development of reservoir evaluation logging capabilities for hot wells. The appendices contain annotated bibliographies on the following: high temperature logging in general, cement integrity testing, cosing integrity testing, casing and cement failures, and special and protective treatment techniques. Also included are composite listing of references in alphabetical order by senior author.

  6. Cementing porcelain-fused-to-metal crowns.

    Science.gov (United States)

    Vadachkoria, D

    2009-12-01

    The clinical success of fixed prosthodontic restorations can be complex and involve multifaceted procedures. Preparation design, oral hygiene/micro flora, mechanical forces, and restorative materials are only a few of the factors which contribute to overall success. One key factor to success is choosing the proper cement. Popular use of cements for PFM crowns has shifted from zinc phosphate and glass ionomer cements to resin-reinforced glass ionomer, or RRGI, cements. This change has been rapid and profound. Dental cements have always been less than ideal materials, but this is shift to the relatively new RRGI category justified. Resin-reinforced glass ionomer (RRGI) cements appear to be better than zinc phosphate and glass ionomer cements when placing porcelain-to-metal crowns. RRGI cements, such as RelyX Luting, Fuji Plus and Vitremer Luting Cement, satisfy more of the ideal characteristics of PFM cementation than any other previous cement. Expansion of all three cements has not caused any apparent problems with the cements when used with PFM or metal crowns, but these cements, however, should be avoided when cementing all-ceramic crowns. PMID:20090144

  7. Addressing Industrial Overcapacity

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China vows to exert tougher restrictions on excess capacity and redundant construction Enterprises looking to invest in the steel, cement or plate glass sectors will find it difficult to establish operations. The government is saying "no" to any expansion into these industries.

  8. Propriedades mecânicas de compósitos cimentícios produzidos com lodo de estação de tratamento de efluentes da indústria de batata pré-fritas Mechanical properties of cement composites produced with sludge from the pre-fried potato industry's effluent treatment station

    Directory of Open Access Journals (Sweden)

    Domingos Sávio de Resende

    2012-06-01

    Full Text Available O grande volume de resíduos sólidos industriais gerados pela indústria de batatas pré-fritas e o alto custo do seu manejo estimulam pesquisas em busca de soluções mais adequadas para a sua destinação final. Esse trabalho caracterizou o resíduo sólido (lodo de Estação de Tratamento de Efluentes (ETE de indústria de batatas. O lodo foi processado através de secagem, desidratação, moagem e peneiramento. Para a caracterização do lodo foram utilizadas técnicas de granulometria a laser, microscopia eletrônica de varredura (MEV com espectrômetro de raios X dispersivo em energia (EDS, difração de raio X, análise térmica diferencial (DTA, termogravimétrica (TGA e perda ao fogo. Após a caracterização, o lodo foi utilizado para a confecção de compósitos cimentícios, em substituição parcial do cimento, em massa equivalente para substituição do mesmo volume, determinado pelas massas específicas de ambos materiais, nas porcentagens de 3, 5, 7 e 10%. Os compósitos foram ensaiados para a obtenção da resistência à compressão e do módulo de elasticidade dinâmico. A utilização do lodo de ETE como pozolana foi descartada, tendo-se como base o resultado do ensaio de perda ao fogo. Nos ensaios mecânicos realizados, nota-se que a adição de lodo, em substituição parcial ao cimento, impactou, negativamente, de forma mais relevante a resistência à compressão. Tais ensaios foram considerados satisfatórios para os compósitos com substituição do cimento por 3% e 5% de lodo.The large volume of industrial solid waste generated by the pre-fried potato industry and the high cost of its management encouraged researchers to find solutions best suited to its final destination. This study characterized the solid residue (sludge from the effluents pre-fried potatoes industry's treatment station. The sludge was processed by drying, grinding and sieving. Laser particle size, scanning electron microscopy (SEM with X

  9. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    OpenAIRE

    Adriana Eštoková; Lenka Palaščáková

    2013-01-01

    The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices) of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in t...

  10. Assessment of the compatibility of wood and plastic with cement for their recycling in cement composites

    OpenAIRE

    Andrade, André De; Caldeira, Fernando

    2010-01-01

    The compatibility between maritime pine wood and cement, and between plastic (LDPE) and cement, was assessed for the recycling of wood and plastic in cement composites. Temperature vs. time profiles of cement setting were registered and compatibility indices were calculated. Results indicate that recycling of plastics in plastic-cement composites does not pose any questions regarding chemical compatibility. However, maritime pine hinders cement setting in some extent. So, in or...

  11. Assessment of radioactivity and radon exhalation rate in Egyptian cement.

    Science.gov (United States)

    El-Bahi, S M

    2004-05-01

    The cement industry is considered as one of the basic industries that plays an important role in the national economy of developing countries. Activity concentration of 238U, 232Th, and 40K in local cement types from different Egyptian factories has been measured using a shielded HPGe detector. The average values obtained for 238U, 232Th, and 40K activity concentrations in different types of cement are lower than the corresponding global values reported in UNSCEAR publications. On the basis of the hazard index and the radium equivalent concentration, it can be shown that the natural radioactivity of cement samples is not greater than the values permitted in the established standards in other countries. A solid-state nuclear track detector SSNTD (Cr-39) was used to measure the radon concentration as well as exhalation rate for these samples. The effective radium content and the exhalation rate are found to vary from 12.75 to 38.52 Bq kg(-1) and 61.19 to 181.39 Bq m(-2) d(-1), respectively.

  12. Defining criteria for cemented waste produced from legacy liquids

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) has several hundred cubic metres of legacy radioactive waste stored in underground tanks at the Chalk River Laboratories (CRL) site in Chalk River, Ontario. As part of a larger campaign to reduce its legacy liabilities, AECL intends to remove and immobilize this waste using a cementation system. AECL plans to hire an external contractor to design and operate a cementation skid to remove and condition the liquid wastes. Clear and measurable waste form criteria must be determined and provided to the contractor in order for the contractor to demonstrate that a safe and stable waste form has been produced. AECL has reviewed industry-standard test methods and best practices related to cementation of liquid nuclear wastes. Where suitable, these test methods and practices have been incorporated into Product Performance Criteria. An extensive test program has been performed to obtain cement formulations for the legacy wastes; the resulting sample cemented wastes have been tested and the results compared to the Product Performance Criteria. Modifications to the criteria have been made as required based on knowledge gained during this process. In addition, since no industry standards had previously been identified to measure homogeneity, 3 potential test methods have been identified. Regardless of the amount of testing performed and the stringency of the performance criteria, some risk remains that the waste will deteriorate over time. However, by performing a rigorous review of industry practice and an extensive series of tests under various conditions, AECL believes that it has addressed the risks in a reasonable and prudent manner and has selected the appropriate Product Performance Criteria to achieve a safe and stable waste product

  13. Hydration of blended cement pastes containing waste ceramic powder as a function of age

    Science.gov (United States)

    Scheinherrová, Lenka; Trník, Anton; Kulovaná, Tereza; Pavlík, Zbyšek; Rahhal, Viviana; Irassar, Edgardo F.; Černý, Robert

    2016-07-01

    The production of a cement binder generates a high amount of CO2 and has high energy consumption, resulting in a very adverse impact on the environment. Therefore, use of pozzolana active materials in the concrete production leads to a decrease of the consumption of cement binder and costs, especially when some type of industrial waste is used. In this paper, the hydration of blended cement pastes containing waste ceramic powder from the Czech Republic and Portland cement produced in Argentina is studied. A cement binder is partially replaced by 8 and 40 mass% of a ceramic powder. These materials are compared with an ordinary cement paste. All mixtures are prepared with a water/cement ratio of 0.5. Thermal characterization of the hydrated blended pastes is carried out in the time period from 2 to 360 days. Simultaneous DSC/TG analysis is performed in the temperature range from 25 °C to 1000 °C in an argon atmosphere. Using this thermal analysis, we identify the temperature, enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates gels dehydration, portlandite, vaterite and calcite decomposition and their changes during the curing time. Based on thermogravimetry results, we found out that the portlandite content slightly decreases with time for all blended cement pastes.

  14. Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker Production

    Directory of Open Access Journals (Sweden)

    Li Luo

    2016-01-01

    Full Text Available The cement industry has for some time been seeking alternative raw material for the Portland cement clinker production. The aim of this research was to investigate the possibility of utilizing iron ore tailings (IOT to replace clay as alumina-silicate raw material for the production of Portland cement clinker. For this purpose, two kinds of clinkers were prepared: one was prepared by IOT; the other was prepared by clay as a reference. The reactivity and burnability of raw meal, mineralogical composition and physical properties of clinker, and hydration characteristic of cement were studied by burnability analysis, differential thermal analysis, X-ray diffraction, and hydration analysis. The results showed that the raw meal containing IOT had higher reactivity and burnability than the raw meal containing clay, and the use of IOT did not affect the formation of characteristic mineralogical phases of Portland cement clinker. Furthermore, the physical and mechanical performance of two cement clinkers were similar. In addition, the use of IOT was found to improve the grindability of clinker and lower the hydration heat of Portland cement. These findings suggest that IOT can replace the clay as alumina-silicate raw material for the preparation of Portland cement clinker.

  15. Substitution of the clayey mineral component by lignite fly ash in portland cement clinker synthesis

    Directory of Open Access Journals (Sweden)

    Jovanović Nataša

    2006-01-01

    Full Text Available Fly ash from four power plants in Serbia (PP "Morava" - Svilajnac, PP "Kolubara" - Veliki Grijani, PP "Kostolac" - units B1 and B2 - Kostolac and PP "Nikola Tesla" - units A and B - Obrenovac was utilized as the starting raw component for Portland cement clinker synthesis. Limestone and quartz sand from the "Holcim - Serbia, a.d." cement factory were the other two starting raw components. Based on the chemical composition of the raw components and from the projected cement moduli, the amounts of raw components in the raw mixtures were calculated. Six different raw mixtures were prepared - each one consisted of limestone, sand and different fly ash. A raw mixture from the industrial production of the "Holcim - Serbia, a.d." cement factory was used as the reference material. The prepared raw mixtures were sintered in a laboratory furnace at 1400°C. The chemical and mineralogical compositions of the synthesized clinkers were determined. The characteristics of clinkers, based on fly ash, were compared to the characteristics of the industrial Portland cement clinker from the "Holcim - Serbia, a.d." cement factory. The results of the investigation showed that fly ash from power plants in Serbia can be suitable for Portland cement clinker synthesis.

  16. Developing an optimization model for CO2 reduction in cement production process

    Directory of Open Access Journals (Sweden)

    S. O. Ogbeide

    2010-01-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC has predicted global rise in temperature and carbon dioxide is amajor greenhouse gas responsible for global warming. The cement industry contributes approximately five per cent of thetotal CO2 emitted worldwide.Ewekoro cement Plant, located in Ewekoro, Ogun State was used as a case study to evaluate the results of various modificationson cement plants operation that can impact on the plant CO2 emissions. An economic model which objective is tohighlight the best selection strategy to reduce CO2 emissions with the least cost was developed using the industry data aspart of this paper. The cement Plant achieved a significant result of 23.6 per cent reduction in CO2 emissions per tonne ofcement produced. The results were achieved mainly by applying a progressive approach prioritizing project implementationeffort and feasibility.

  17. Manufacture and properties of fluoride cement

    Science.gov (United States)

    Malata-Chirwa, Charles David

    This research work aimed at characterising composition, hydration and physical properties of fluoride cement, by studying samples of the cement obtained from Malawi, and comparing them to ordinary Portland cement. By confirming the suitable characteristics of fluoride cement through this work, the results of the research work provide a good basis for the wider adoption of fluoride cement as an alternative to ordinary Portland cement, especially in developing economies. Numerous accounts have been cited regarding the production and use of fluoride cement. Since there have not been conclusive agreement as to its properties, this study was limited to the theories of successful incorporation of fluoride compounds in the manufacture of fluoride cement. Hence, the properties and characteristics reported in this study relate to the cement currently manufactured in Malawi, and, on a comparative basis only, to that manufactured in other parts of the world. Samples of the fluoride cement used in the study were obtained by synthetic manufacture of the cement using common raw materials for the manufacture of fluoride cement that is limestone, silica sand, and fluorspar. These samples were subjected to several comparative tests used to characterise cements including examination under x-ray diffractometer, scanning electron microscopy and tests for setting time and compressive strength. Under similar laboratory conditions, it was possible to prove that fluoride cement hardens more rapidly than ordinary Portland cement. Also observed during the experimental work is that fluoride cement develops higher compressive strengths than ordinary Portland cement. The hardening and setting times are significantly different between the two cements. Also the nature of the hydration products, that is the microstructural development is significantly different in the two cements. The differences brought about between the two cements are because of the presence of fluorine during the clinkering

  18. Energy End-Use : Industry

    NARCIS (Netherlands)

    Banerjee, R.; Gong, Y; Gielen, D.J.; Januzzi, G.; Marechal, F.; McKane, A.T.; Rosen, M.A.; Es, D. van; Worrell, E.

    2012-01-01

    The industrial sector accounts for about 30% of the global final energy use and accounts for about 115 EJ of final energy use in 2005. 1Cement, iron and steel, chemicals, pulp and paper and aluminum are key energy intensive materials that account for more than half the global industrial use. There i

  19. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  20. Comparative Study of Clinker's Transformation at Different Temperature Zone During Cement Production

    Directory of Open Access Journals (Sweden)

    Mohd S. Idris

    2007-01-01

    Full Text Available Chemical composition analysis using x-ray fluorescence is one of the important quality analysis for examining of cement and widely used in cement industries for a long time as a tool to estimate phase composition. X-ray diffraction is one of the established techniques as a qualitative tool to identify phase existing in the sample. This study will discuss about the correlation between quantitative and qualitative analyses in order to understand phase transformation in production of cement. Qualitative analysis had revealed a lot of information which could not be identified by using x-ray fluorescence especially polymorphisms existed in the clinker samples.

  1. Sulfate attack and reinforcement corrosion in concrete with recycled concrete aggregates and supplementary cementing materials

    OpenAIRE

    Corral Higuera, Ramón; Arredondo Rea, Susana Paola; Neri Flores, M.A.; Gómez Soberón, José Manuel Vicente; Almeraya Calderón, F.; Castorena González, J.H.; Almaral Sánchez, Jorge Luis

    2011-01-01

    As strategies to contribute to the concrete industry sustainability, reinforced concrete was fabricated using recycled concrete coarse aggregate and replacing partially portland cement with supplementary cementing materials as fly ash and silica fume. On test specimens, partially immersed in 3.5% Na2SO4 aqueous solution, the effect of the recycled and supplementary materials against sulfate attack and reinforcement corrosion was evaluated. For such aim, weight loss of concrete and corrosion p...

  2. Integrated Environmental Quality Assessments of Surface Water around Obajana Cement Production Area

    OpenAIRE

    E.G. Ameh; M. Onimisi; M.O. Lekdukun

    2014-01-01

    Due to industrialization, there is enormous amount of heavy metals been released from anthropogenic sources into the environment. Heavy metals are considered as one of the main sources of environmental pollution since they have significant effect on the ecological quality and water in particular. These pollutants are hazardous to consumers of water that have significant quantity of these heavy metals. The population most exposed to cement polluted water includes workers in cement factories, f...

  3. Asbestos, cement, and cancer in the right part of the colon.

    OpenAIRE

    Jakobsson, K; Albin, M; Hagmar, L

    1994-01-01

    OBJECTIVE--The aim was to investigate associations between exposure to mineral fibres and dust, and cancer in subsites within the large bowel. DESIGN--Pooled retrospective cohort studies. SUBJECTS AND SETTINGS--Blue collar workers, employed for at least one year in different trades; asbestos cement or cement workers (n = 2507), other industrial workers (n = 3965), and fishermen (n = 8092). MAIN OUTCOME MEASURES--Standardised incidence ratios (SIRs, national reference rates) were calculated fo...

  4. Relation between lung function, exercise capacity, and exposure to asbestos cement.

    OpenAIRE

    Wollmer, P.; Eriksson, L.; Jonson, B.; Jakobsson, K; Albin, M; Skerfving, S; Welinder, H

    1987-01-01

    A group of 137 male workers with known exposure (mean 20 fibre years per millilitre) to asbestos cement who had symptoms or signs of pulmonary disease was studied together with a reference group of 49 healthy industrial workers with no exposure to asbestos. Lung function measurements were made at rest and during exercise. Evidence of lung fibrosis was found as well as of obstructive airways disease in the exposed group compared with the reference group. Asbestos cement exposure was related to...

  5. Utilization of “Marble Slurry” In Cement Concrete Replacing Fine Agreegate

    Directory of Open Access Journals (Sweden)

    Er: Raj.p.singh kushwah

    2015-01-01

    Full Text Available The wastage of marble industry are responsible for many environmental problems because 70% wastes and only 30% recovery of main product contribute to the maximum wastes which are indestructible. Dumping sites give dirty look. Contaminate top fertile soil cover, along with rivers/water bodies affecting irrigation and drinking water resources and air as well as loss to flora and fauna. The most efficient Solution of marble slurry pollution is utilization in Bulk. The only industry which can consume marble slurry at so large level is only the construction industry. Different properties of marble slurry determined in the laboratory. Sp. gravity 2.61, Fineness modulus was found to be 0.91 and Utilization of marble slurry in Cement Concrete replacing Sand is 30% which shows equal strength as of Control i,e. 1:2:4 Cement Concrete 0% Marble slurry. Marble slurry can be easily utilized in construction industry in preparing Cement Concrete.

  6. Cementation of Loose Sand Particles based on Bio-cement

    Institute of Scientific and Technical Information of China (English)

    RONG Hui; QIAN Chunxiang

    2014-01-01

    Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium carbonate were tested to characterize the cementation effectiveness. In addition, the formed mineral composition and the microstructure of bio-sandstone were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The experimental results show that the feasibility of binding loose sand particles using microbial induced magnesium carbonate precipitation is available and the acquired compressive strength of bio-sandstone can be excellent at certain ages. Moreover, the compressive strength and the porosity could be improved with the increase of microbial induced magnesium carbonate content. XRD results indicate that the morphology of magnesium carbonate induced by microbe appears as needles and SEM results show that the cementation of loose sand particles to sandstone mainly relies on the microbial induced formation of magnesium carbonate precipitation around individual particles and at particle-particle contacts.

  7. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  8. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied. PMID:24649699

  9. Spent FCC catalyst for improving early strength Portland cement

    OpenAIRE

    Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan; Vunda, Christian; VELÁZQUEZ RODRÍGUEZ, SERGIO; Soriano Martinez, Lourdes

    2014-01-01

    Spent fluid catalytic cracking (FCC) catalyst from the petrol industry has proven to be a very active pozzolanic material. This behavior leads to an additional increase in the strength of the mortar that contains this catalyst. Pozzolanic effects tend to be considered for periods above three days, whereas in shorter times, the influence of pozzolan is usually negligible. The reactivity of FCC is so high, however, that both pozzolanic effects and acceleration of cement hydration are evident in...

  10. THE INFLUENCE OF THE COMPLEX CHEMICAL ADDITIVE CONTAINING THE STRUCTURED CARBON NANOMATERIAL ON PROPERTIES OF CEMENT

    Directory of Open Access Journals (Sweden)

    O. Yu. Sheyda

    2015-01-01

    Full Text Available The paper presents results of investigations on influence of domestic complex chemical additive containing structured carbon nanomaterial and characterized by a combination effect (curing acceleration and plasticizing on cement and cement stone properties. The purpose of the investigations, on the one hand, has been to confirm efficacy of УКД-1additive from the perspective for increasing the rate of gain, strength growth of cement concrete and additive influence on setting time with the purpose to preserve molding properties of concrete mixes in time, and on the other hand, that is to assess “mechanism” of the УКД-1 additive action in the cement concrete. The research results have revealed regularities in changes due to the additive of water requirements and time period of the cement setting. The reqularities are considered as a pre-requisite for relevant changes in molding properties of the concrete mixes. The paper also experimentally substantiates the possibility to decrease temperature of cement concrete heating with the УДК-1 additive. It has been done with the purpose to save energy resources under production conditions. In addition to this the paper proves the efficiency of the additive which is expressed in strength increase of cement stone up to 20–40 % in the rated age (28 days that is considered as a basis for strength growth of cement concrete. The paper confirms a hypothesis on physical nature of this phenomenon because the X-ray phase analysis method has shown that there are no changes in morphology of portland cement hydration products under the action of the additive agent containing a structured carbon nanomaterial. Results of theoretical and experimental investigations on УКД-1 additive efficiency have been proved by industrial approbation while fabricating precast concrete products and construction of monolithic structures under plant industrial conditions (Minsk, SS “Stroyprogress” JSC MAPID and on

  11. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Science.gov (United States)

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  12. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  13. Micro Mechanics and Microstructures of Major Subsurface Hydraulic Barriers: Shale Caprock vs Wellbore Cement

    Science.gov (United States)

    Radonjic, M.; Du, H.

    2015-12-01

    Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to

  14. Cement radwaste solidification studies third annual report

    International Nuclear Information System (INIS)

    This report summarises cement radwaste studies carried out at AEE Winfrith during 1981 on the encapsulation of medium and low active waste in cement. During the year more emphasis has been placed on the work which is directly related to the solidification of SGHWR active sludge. Information has been obtained on the properties of 220 dm3 drums of cemented waste. The use of cement grouts for the encapsulation of solid items has also been investigated during 1981. (U.K.)

  15. Neutron Scattering Studies of Cement

    Science.gov (United States)

    Allen, Andrew

    2010-03-01

    Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

  16. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  17. 21 CFR 872.3275 - Dental cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  18. Effectiveness of the Top-Down Nanotechnology in the Production of Ultrafine Cement (~220 nm

    Directory of Open Access Journals (Sweden)

    Byung-Wan Jo

    2014-01-01

    Full Text Available The present investigation is dealing with the communition of the cement particle to the ultrafine level (~220 nm utilizing the bead milling process, which is considered as a top-down nanotechnology. During the grinding of the cement particle, the effect of various parameters such as grinding time (1–6 h and grinding agent (methanol and ethanol on the production of the ultrafine cement has also been investigated. Performance of newly produced ultrafine cement is elucidated by the chemical composition, particle size distribution, and SEM and XRD analyses. Based on the particle size distribution of the newly produced ultrafine cement, it was assessed that the size of the cement particle decreases efficiently with increase in grinding time. Additionally, it is optimized that the bead milling process is able to produce 90% of the cement particle <350 nm and 50% of the cement particle < 220 nm, respectively, after 6.3 h milling without affecting the chemical phases. Production of the ultrafine cement utilizing this method will promote the construction industries towards the development of smart and sustainable construction materials.

  19. Microscale Investigation of Arsenic Distribution and Species in Cement Product from Cement Kiln Coprocessing Wastes

    OpenAIRE

    Yufei Yang; Jingchuan Xue; Qifei Huang

    2013-01-01

    To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O) were mixed with cement production raw materials and calcined to produce cement clinker. Then, ...

  20. The comparison between sulfate salt weathering of portland cement paste and calcium sulfoaluminate cement paste

    OpenAIRE

    Liu, Zanqun; Deng, Dehua; De Schutter, Geert

    2015-01-01

    In this paper, the damage performances of sulfate salt weathering of Portland cement paste and calcium sulfoaluminate (CSA) cement paste were compared according to authors' previous studies. It was found that the evaporation zone of speciments partially immersed in 10% Na2SO4 solution were both severely deteriorated for Portland cement and CSA cement. However, the differences were more significant: (1) the CSA cement paste were damaged just after 7 days exposure compared to the 5 months expos...

  1. Strategic Management of Human Capital Development on Employees Performance in Nigeria Cements Sector

    Directory of Open Access Journals (Sweden)

    Ehis Omoluabi

    2013-12-01

    Full Text Available The synopsis of strategic management of human capital development on employees performance in Nigeria cement sector, emphasize the relative roles of strategic management of human capital development in the Nigerian cement sector. The paper discuss number of factors that contributes to the success of Nigerian cement sector; these factors are skills, experiences, qualification of individual employees, ideas etc. The paper further examine that strategic management has helped the development of employees performance in the Nigerian cement sector. The researcher divided the cement sector into zones e.g. Lagos, Ibadan, and Ekiti. This resulted to total population of 750 employees in the cement industry as at the time the research was conducted. The Taro Yamae statistical formula was used to determine the sample size of 511. The researcher made use of primary and secondary source of data collection for the findings. The paper find out that constant training and development of employees has helped the cement sector to do well in their business operation which will help improved quality and innovation with the goal of gaining completive advantage through human resource. That the contribution of HCD can lead to organizational performance and effectively linked to changes in different business environment including micro and macro context.

  2. Characterization of modified calcium-silicate cements exposed to acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, Josette, E-mail: josette.camilleri@um.edu.mt

    2011-01-15

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  3. Characterization of modified calcium-silicate cements exposed to acidic environment

    International Nuclear Information System (INIS)

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: → An acidic environment affects modified fast setting calcium silicate-based cements. → No surface changes are observed in acidic environment. → An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. → A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  4. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.

    2004-02-01

    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  5. INVESTIGATING EFFECTS OF INTRODUCTION OF CORNCOB ASH INTO PORTLAND CEMENTS CONCRETE: MECHANICAL AND THERMAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Antonio Price

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the benefits of replacing Ordinary Portland Cement (OPC with Corncob Ash (CCA blended cements. The cement industry contributes considerable amount of Carbon Dioxide (CO2 emissions into the atmosphere. The main contribution of CO2 emissions from cement production results from the process of creating Calcium Oxide (CaO from limestone (CaCO3 commonly known as the calcination process. Blending OPC with a pozzolanic material will assist in the reduction of CO2 emissions due to calcination as well as enhance the quality of OPC. There are various pozzolanic materials such as fly ash, rice husk, silica fume and CCA that could be promising partial replacement for OPC. In this study, CCA will serve as the primary blending agent with OPC. An experiment was performed to designate an appropriate percentage replacement of CCA that would comply with specific standards of cement production. The experimental plan was designed to analyze compressive strength, workability and thermal performance of various CCA blended cements. The data from the experiment indicates that up to 10% CCA replacement could be used in cement production without compromising the structural integrity of OPC. In addition, it was found that the compressive strength and workability of the resulting concrete could be improved when CCA is added to the mixtures. Furthermore, it was shown that the introduction of 10% CCA can lead to significant reduction in thermal conductivity of the mixture.

  6. Influence of various acids on the physico–mechanical properties of pozzolanic cement mortars

    Indian Academy of Sciences (India)

    S Türkel; B Felekoǧlu; S Dulluç

    2007-12-01

    Acidic attack represents a topic of increasing significance, owing to the spread of damages of concrete structures in both urban and industrial areas. Cement type is an important factor affecting performance of cement based materials in an aggressive environment. The goal of this study was to compare the acid resistance of a pozzolanic cement (CEM IV-A/32·5) with Portland cement (CEM I 32·5) that was made from the same clinker. For this purpose, 50 mm mortar cubes were prepared with two different kinds of cement according to TS EN 196-1. After 28 days of hardening, the samples were immersed into four different concentrations of hydrochloric, nitric and sulfuric acid solutions for a period of 120 days. The changes in weight loss and compressive strength values for each acid solution within the test period were recorded. The acid resistance of mortars made from Portland cement was better than the pozzolanic cement incorporated samples after 120 days of acid attack.

  7. Evaluation of Portland cement from X-ray diffraction associated with cluster analysis

    International Nuclear Information System (INIS)

    The Brazilian cement industry produced 64 million tons of cement in 2012, with noteworthy contribution of CP-II (slag), CP-III (blast furnace) and CP-IV (pozzolanic) cements. The industrial pole comprises about 80 factories that utilize raw materials of different origins and chemical compositions that require enhanced analytical technologies to optimize production in order to gain space in the growing consumer market in Brazil. This paper assesses the sensitivity of mineralogical analysis by X-ray diffraction associated with cluster analysis to distinguish different kinds of cements with different additions. This technique can be applied, for example, in the prospection of different types of limestone (calcitic, dolomitic and siliceous) as well as in the qualification of different clinkers. The cluster analysis does not require any specific knowledge of the mineralogical composition of the diffractograms to be clustered; rather, it is based on their similarity. The materials tested for addition have different origins: fly ashes from different power stations from South Brazil and slag from different steel plants in the Southeast. Cement with different additions of limestone and white Portland cement were also used. The Rietveld method of qualitative and quantitative analysis was used for measuring the results generated by the cluster analysis technique. (author)

  8. Effect of temporary cements on the shear bond strength of luting cements

    Directory of Open Access Journals (Sweden)

    Marco Fiori-Júnior

    2010-02-01

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate, by shear bond strength (SBS testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods: Forty human teeth divided in two halves were assigned to 8 groups (n=10: I and V (no temporary cementation; II and VI: Ca(OH2-based cement; III and VII: zinc oxide (ZO-based cement; IV and VIII: ZO-eugenol (ZOE-based cement. Final cementation was done with RelyX ARC cement (groups I to IV and RelyX Unicem cement (groups V to VIII. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. RESULTS: Means were (MPa: I - 3.80 (±1.481; II - 5.24 (±2.297; III - 6.98 (±1.885; IV - 6.54 (±1.459; V - 5.22 (±2.465; VI - 4.48 (±1.705; VII - 6.29 (±2.280; VIII - 2.47 (±2.076. Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII showed statistically significant difference (p0.05 for the different luting cements (RelyX TM ARC and RelyX TM Unicem. The groups that had no temporary cementation (Groups I and V did not differ significantly from each other either (p>0.05. CONCLUSION: When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation.

  9. Mercury enrichment and its effects on atmospheric emissions in cement plants of China

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2014-08-01

    The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.

  10. Analysis by X-Ray images of EVA waste incorporated in Portland Cement

    International Nuclear Information System (INIS)

    The EVA is a copolymer used by Brazilian shoes industries. This material is cut for the manufacture of insoles. This operation generates about 18% of waste. The EVA waste can be reused in incorporation in Portland cement to construction without structural purposes. The aim of this work is to show X-rays images to assessment the space distribution of the wastes in the cement and to evaluate the use of this methodology. Cylindrical specimens were produced according to ABNT - NBR 5738 standards. The volume relation of sand and cement was 3:1, 10% and 30% of waste was incorporated in cement specimens. X-Rays images were obtained of cylindrical specimens in front projection. The images showed that the distribution of the waste is homogeneous, consistent with what was intended in this type of incorporation, which can provide uniformity in test results of compressive strength. (author)

  11. Characterization and utilization of cement kiln dusts (CKDs) as partial replacements of Portland cement

    Science.gov (United States)

    Khanna, Om Shervan

    The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The cement industry is currently under pressure to reduce greenhouse gas (GHG) emissions and solid by-products in the form of CKDs. The use of CKDs in concrete has the potential to substantially reduce the environmental impact of their disposal and create significant cost and energy savings to the cement industry. Studies have shown that CKDs can be used as a partial substitute of PC in a range of 5--15%, by mass. Although the use of CKDs is promising, there is very little understanding of their effects in CKD-PC blends. Previous studies provide variable and often conflicting results. The reasons for the inconsistent results are not obvious due to a lack of material characterization data. The characteristics of a CKD must be well-defined in order to understand its potential impact in concrete. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. The CKDs have a wide range of chemical and physical composition based on different raw material sources and technologies. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. The first objective of this study was to conduct a comprehensive composition analysis of CKDs and compare their characteristics to PC. CKDs are unique materials that must be analyzed differently from PC for accurate chemical and physical analysis. The present study identifies the chemical and physical analytical methods that should be used for CKDs. The study also introduced a method to quantify the relative abundance of the different

  12. Pressurization of bioactive bone cement in vitro.

    Science.gov (United States)

    Fujita, H; Iida, H; Kawanabe, K; Okada, Y; Oka, M; Masuda, T; Kitamura, Y; Nakamura, T

    1999-01-01

    We have developed a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 glass-ceramic powder (AW glass-ceramic powder), silica glass powder as an inorganic filler, and bisphenol-a-glycidyl methacrylate (bis-GMA) based resin as an organic matrix. The efficacy of this bioactive bone cement was investigated by evaluating its pressurization in a 5-mm hole and small pores using a simulated acetabular cavity. Two types of acetabular components were used (flanged and unflanged sockets) and a commercially available polymethylmethacrylate (PMMA) bone cement (CMW 1 Radiopaque Bone Cement) was selected as a comparative control. Bioactive bone cement exerted greater intrusion volume in 5-mm holes than PMMA bone cement in both the flanged and unflanged sockets 10 minutes after pressurization (p anchor holes than PMMA bone cement.

  13. Leaching of tritium from a cement composite

    International Nuclear Information System (INIS)

    Leaching of tritium from cement composites into an aqueous phase has been studied to evaluate the safety of incorporation of the tritiated liquid waste into cement. Leaching tests were performed by the method recommended by the International Atomic Energy Agency. The Leaching fraction was measured as functions of waste-cement ratio (Wa/C), temperature of leachant and curing time. The tritium leachability of cement in the long term test follows the order: alumina cement portland cement slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than synthetic sea water. The amount leached of tritium from a 200 l drum size specimen was estimated on the basis of the above results. (author)

  14. Mesoscale texture of cement hydrates.

    Science.gov (United States)

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  15. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    Science.gov (United States)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested

  16. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, State University of New York at Stony Brook, New York 11794 (United States); Bae, Sungchul [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Duan, Xiaonan [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Giannelis, Emmanuel P. [Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 (United States); Center for Refining and Petrochemicals, The Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Monteiro, Paulo M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g{sup −1} and 257 mg g{sup −1}, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol{sup −1} or 121 mg g{sup −1}), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix.

  17. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    International Nuclear Information System (INIS)

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g−1 and 257 mg g−1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol−1 or 121 mg g−1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix

  18. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    Science.gov (United States)

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  19. Use of alternative fuels in cement manufacture. Effect on clinker and cement characteristics and properties

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2004-06-01

    Full Text Available This paper compares industrial clinker and cement produced using conventional and alternative fuels (animal meal, tyres or a mixture of the two. The results show no relevant differences in terms of mineralogical composition between the clinker manufactured with alternative fuels and the product obtained using conventional fuel. Clinker produced with alternative fuels at any one factory have a very similar or even lower content in heavy metals than the product manufactured with conventional fuel in the same plant (with the sole exception of Zn when the alternative fuel used is shredded tyres. Mineralogical and morphological analyses reveal no significant differences between the two types of products that can be attributed to the type of fuel used in their manufacture. All six types of cement studied are compliant with the existing legislation as regards both physical and chemical properties. Cement compressive strength is found to be to legal standards regardless of the type of fuel used. Finally, the rheological properties of the cement paste are observed to be unaffected by the type of fuel.

    Se han estudiado clínkeres y cementos obtenidos en procesos industriales que han utilizado combustibles convencionales y combustibles alternativos (harinas cárnicas, neumáticos usados y mezclas de ambos. Los resultados obtenidos han demostrado que los clínkeres fabricados con los combustibles alternativos no presentan diferencias significativas en la composición mineralógica respecto a los obtenidos con combustibles convencionales. Los contenidos de metales pesados en los clínkeres procedentes de la misma fábrica (a excepción de los contenidos en Zn en aquéllos que utilizan neumáticos son muy similares o incluso inferiores a los fabricados con combustibles convencionales. Los análisis mineralógico y morfológico de los clínkeres no evidencian diferencias asignables al tipo de combustible utilizado. Todos los cementos estudiados cumplen

  20. Factors Influencing Energy Intensity in Four Chinese Industries

    OpenAIRE

    Fisher-Vanden, Karen; Hu, Yong; Jefferson, Gary; Rock, Michael; Toman, Michael

    2013-01-01

    Energy intensity has declined significantly in four Chinese industries -- pulp and paper; cement; iron and steel; and aluminum. While previous studies have identified technological change within an industry to be an important influence on energy intensity, few have examined how industry-specific policies and market factors also affect industry-level intensity. This paper employs unique fi...

  1. The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures

    International Nuclear Information System (INIS)

    This paper mainly compares total factor productivity and eco-efficiency in China's cement manufactures from 2005 to 2010. First, we evaluate total factor productivity and eco-efficiency of China's cement manufactures through distance function and directional slack-based measure (DSBM) respectively. Furthermore, we also explore the difference of total factor productivity and eco-efficiency. Last, we investigate the determinants of Malmquist, Mamlquist–Luenberger of China's cement manufactures through random-effect Tobit and bootstrap truncated econometric methods. We find that there are some gaps between Malmquist and Mamlquist–Luenberger of China's cement manufactures. Per labor cement industry value has U-shape relationship with both Malmquist and Malmquist–Luenberger. It is necessary to adopt advanced technology to reduce pollutant emissions. -- Highlights: •Eco-efficiency of cement manufactures is evaluated through slack-based measure. •Eco-efficiency of China's cement manufactures has biases with total factor productivity. •Environmental Kuznets curve is existed for China's cement manufactures

  2. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    OpenAIRE

    Y.C.P RAMANA BABU; B.SAI DOONDI; N. M .V .VAMSI KRISHNA; K.Prasanthi

    2013-01-01

    India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO) and carbon dioxide (CO2) are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green hous...

  3. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    Taratuta V. D.; Belokur K. A.; Serga G. V.

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  4. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.

    Science.gov (United States)

    Mikulčić, Hrvoje; von Berg, Eberhard; Vujanović, Milan; Duić, Neven

    2014-07-01

    The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner.

  5. Experimental study on improving cement quality with oxygen- enriched combustion technology

    Science.gov (United States)

    Liu, Y. Q.; Zhang, A. M.; Qing, S.; Li, F. S.; Yang, S. P.; Yang, Z. F.

    2015-12-01

    With the intensification of the global energy crisis, the production cost of enterprises is continuously increasing because of the rising fuel prices and high requirements for environmental protection. As result, energy savings and environmental protection are vital considerations for a variety of enterprises. As a practical energy-saving technology, oxygen- enriched combustion has played a major role in energy saving and emissions reduction as its application in industrial furnaces has been popularized in recent years. This experiment was conducted in a cement rotary kiln with a capacity of 4000 t/d in a factory in China. Based on measured data in the oxygen-enriched combustion experiment, we determined the patterns of variation in the main parameters of the cement rotary kiln under oxygen-enriched production conditions. The results provide important theoretical and practical base for the cement building materials industry in energy saving and emissions reduction.

  6. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Y.C.P RAMANA BABU

    2013-04-01

    Full Text Available India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO and carbon dioxide (CO2 are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green house gases (i.e., CO and CO2 and also saves lot of money in the long run process. A small amount of these gases in environment can cause major problems over time. Use of white cement in composite pavement design where there is heavy traffic loads are acting as well as number of vehicles are more such as junctions, bus stops, check posts etc., can perform better and acts asenvironment friendly. Its light colour reflects more than bituminous pavement so that it can be easily identified and avoid accidents to some extent. White cement helps to lower the average bus stop, junction temperature providing comfort to the people because it has high solar reflectance there by reducing “urban heat island” effect. In addition to this it has some more advantages which increase the sustainability, durability and workability of the pavements.

  7. Influence of calcium sulfoaluminate cement on the pullout performance of reinforcing fibers: An evaluation of the micro-mechanical behavior

    Science.gov (United States)

    Jewell, Robert Benjamin

    The objective of this research was to determine the influence of calcium sulfoaluminate (CSA) cement on reinforcing fibers by evaluating the fiber pullout behavior, and bonding characteristics, of a single fiber embedded in a cementitious paste matrix. Four types of fibers commonly used in industry were evaluated: 1) Polyvinyl alcohol; 2) Polypropylene; 3) Coated Steel; and 4) Plain Steel. Upward trends in energy costs and potential greenhouse gas regulations favor an increased use of construction materials that require lower energy and lower CO2 emissions to fabricate, such as CSA cement, as opposed to the production of ordinary portland cement (OPC), which is more energy intensive and produces more CO2 emissions. However, widespread use of CSA cement requires a more in-depth understanding of the engineering characteristics that govern its performance, including interaction with reinforcing fibers. The overarching objective of this research was to provide the engineering base needed for the utilization of reinforcing fibers in CSA cement-based construction materials. The aims of the research were (1) to develop an ettringite-rich calcium sulfoaluminate cement, and (2) evaluate the pullout characteristics of reinforcing fibers embedded in a CSA-cement matrix. Key elements of the strategy included (1) Compare the performance of a laboratory-fabricated CSA cement to a commercial CSA cement and OPC, (2) Evaluate the peak load, and toughness of reinforcing fibers in CSA cement and OPC, (3) Evaluate the debonding-energy density and multiple-cracking behavior of fibers in CSA cement and OPC, and (4) Evaluate the shear bond strength of reinforcing fibers in CSA cement and OPC. Based on the findings of this PhD dissertation, calcium sulfoaluminate cement has a significant influence on the characteristics and behavior of embedded reinforcing fibers. An important factor contributing to the bond strength between fiber and matrix was the ability to transfer interfacial

  8. Scanning electron microscopy analysis of dental cements

    Directory of Open Access Journals (Sweden)

    Radosavljević Radivoje D.

    2009-01-01

    Full Text Available The aim of this study was to compare in vitro the characteristics of different types of luting cements (zinc phosphate, glass-ionomer and resin based composite cement using scanning electron microscopy (SEM analysis and microleakage for the quality range of materials. Dental cements were mixed in accordance with the manufacturer's instructions and formed with posts in dental root canals of extracted teeth. The quality of cement was determined by SEM observation on horizontal sectioned roots with fixed posts according to specific pore and marginal gap diameter. The microleakage was measured on specimens immersed in Lofler (methylene blue solution. The mean values of the maximal diameter of pores, marginal gaps and microleakage of conventional cements are remarkably larger in comparison with composite luting agents. In conclusion, the quality and efficiency of composite luting agents in comparison with conventional cements are more successful in protecting the interior of tooth from penetration of oral fluids, bacteria and bacterial toxins into unprotected dentine.

  9. Premixed calcium silicate cement for endodontic applications

    OpenAIRE

    Persson, Cecilia; Engqvist, Håkan

    2011-01-01

    Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and am...

  10. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  11. Integrated Environmental Quality Assessments of Surface Water around Obajana Cement Production Area

    Directory of Open Access Journals (Sweden)

    E.G. Ameh

    2014-04-01

    Full Text Available Due to industrialization, there is enormous amount of heavy metals been released from anthropogenic sources into the environment. Heavy metals are considered as one of the main sources of environmental pollution since they have significant effect on the ecological quality and water in particular. These pollutants are hazardous to consumers of water that have significant quantity of these heavy metals. The population most exposed to cement polluted water includes workers in cement factories, families of workers living in Staff houses of factories like in Obajana and other neighborhood habitations. The Obajana cement factory consists of cement kilns/coolers with clinkers. The kilns are equipped with pre-heaters and Electro-Static Precipitators (ESP. The facility has raw mills, crushing operations, cement mills that are potential source of pollutants into the water bodies. Storage silos, conveyors, vehicular travel, and other unquantified fugitive source of water contamination exist in the factory. Monitoring the contamination of water with respect to heavy metals is of interest due to their influence on humans, animals and to some extent plants. A good approach to estimate how much of the water is impacted is by using the heavy metal pollution index and metal index for metal concentrations above the control points in water bodies around Obajana cement.

  12. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement

    Science.gov (United States)

    Pavlík, Zbyšek; Trník, Anton; Kulovaná, Tereza; Scheinherrová, Lenka; Rahhal, Viviana; Irassar, Edgardo; Černý, Robert

    2016-03-01

    Cement industry belongs to the business sectors characteristic by high energy consumption and high {CO}2 generation. Therefore, any replacement of cement in concrete by waste materials can lead to immediate environmental benefits. In this paper, a possible use of waste ceramic powder in blended binders is studied. At first, the chemical composition of Portland cement and ceramic powder is analyzed using the X-ray fluorescence method. Then, thermal and mechanical characterization of hydrated blended binders containing up to 24 % ceramic is carried out within the time period of 2 days to 28 days. The differential scanning calorimetry and thermogravimetry measurements are performed in the temperature range of 25°C to 1000°C in an argon atmosphere. The measurement of compressive strength is done according to the European standards for cement mortars. The thermal analysis results in the identification of temperature and quantification of enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates dehydration and portlandite, vaterite and calcite decomposition. The portlandite content is found to decrease with time for all blends which provides the evidence of the pozzolanic activity of ceramic powder even within the limited monitoring time of 28 days. Taking into account the favorable results obtained in the measurement of compressive strength, it can be concluded that the applied waste ceramic powder can be successfully used as a supplementary cementing material to Portland cement in an amount of up to 24 mass%.

  13. Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Curing Method

    Directory of Open Access Journals (Sweden)

    K. Shyamala

    2016-10-01

    Full Text Available Ground granulated blast-furnace slag ( GGBS is the granular material formed iron ore is molted. blast furnace slag is by-product of steel manufacture which is sometimes used as a substitute for Portland cement. In steel industry when iron ore is molted, then in the molted state all the impurities come at its surface which are removed called slag. It consists mainly of the silicates and alumino silicates of calcium, which are formed in the blast furnace in molten form simultaneously with the metallic iron. Blast furnace slag is blended with Portland cement clinker to form portland blast furnace slag cement. GGBS is used to make durable concrete structures in combination with ordinary Portland cement and/or other pozzolanic materials. GGBFS has been widely used in Europe, and increasingly in the United States and in Asia (particularly in Japan and Singapore for its superiority in concrete durability, extending the lifespan of buildings from fifty years to a hundred years. This project presents the feasibility of the usage of GGBS as hundred percent substitutes for Ordinary portland cement in concrete. Design mix for M20 and M30 has been calculated using IS 10262-2009 for both accelrated curing in warm water and accelrated curing in boiling water method. Tests were conducted on cubes to study the strength of concrete by using GGBS and Ordinary portland cement

  14. AIR POLLUTION CONTROL THROUGH KILN RECYCLING BY-PASS DUST IN A CEMENT FACTORY

    Directory of Open Access Journals (Sweden)

    F. Mohsenzadeh, J. Nouri, A. Ranjbar, M. Mohammadian Fazli, A. A. Babaie

    2006-01-01

    Full Text Available Air pollution is a major problem in the industrial areas. Cement dust is one of the important environmental pollutants. In this study the possibility of dust recycling especially kiln dust which has significant importance regarding air pollution in the cement plant, was examined. Tehran cement factory is one of the most important Iranian factories which is located in Tehran. This factory produces high volume of pollutants that are released to in environment. The possibility of reusing of kiln by pass returned dust has been examined in this factory. Different percentages of kiln by-pass dust of this factory were added to products and outcomes of its presence in parameters such as chemical compound, granulation, primary and final catch time, volume expansion, consumed water and resistance of mortar were surveyed. The result indicated that by adding the amounts of 3-8 dust the mortar resistance increase, but adding more than 15%, the mortar resistance has been decreased. Survey in consumed water proved that adding dust to cement, the trend for consuming water is decreased. After dust addition dust, primary and final catch time were compared in different samples and data which showed decrease in dust added samples. Cements with dust added showed increase in auto clave expansion. Overally, results proved that, the best percentage rate of dust addition to the cement was 15%.

  15. Applied technique of the cemented fill with fly ash and fine-sands

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Traditional stabilization of backfilling material is done by using Portland cement. However, the high price of cement forced mining engineers to seek cheaper binding materials. Fly ash, which is the industrial waste from thermal power plant, possess the potential activity of jellification, and can be used in cemented fill as a partial substitute for cement to reduce the fill cost. Tests were done during the past few years in Xinqiao Pyrite Mine and Phoenix Copper Mine to determine the technology parameters and the suitable content of fly ash. Specimens with different cement/fly/ash tailings (sands) ratios were tested to obtain the strength values of the fill mass based on the analyses of both the chemical composition and physical and mechanical properties of fly ash. The compressive strength of specimens with a ratio of 1: 2: 8 (cement to fly ash to tailings)can reach 2 MPa after 90 d curing, totally meeting the requirement of artificial pillar and reducing the fill cost by 20%-30%.

  16. Influence of activated drinking-water treatment waste on binary cement-based composite behavior: Characterization and properties

    OpenAIRE

    Frías Rojas, Moisés; Vigil de la Villa, R.; I. Soto; García, R; Baloa, T.A.

    2014-01-01

    Drinking water treatment plants regularly dispose of large volumes of industrial sludge in landfill sites, which often has negative environmental consequences. The calcination products of these kaolinite-based sludges have properties that could make them appropriate supplementary cementing materials in the production of blended binary cements. This research analyses the pozzolanic and thermodynamic properties of a Venezuelan drinking water sludge activated at 600 C for 2 h and...

  17. Cement As a Waste Form for Nuclear Fission Products: The Case of 90Sr and Its Daughters

    OpenAIRE

    Dezerald, Lucile; Kohanoff, Jorge J.; Correa, Alfredo A.; Caro, Alfredo; Pellenq, Roland J.-M.; Ulm, Franz J.; Saúl, Andrés

    2015-01-01

    One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DF...

  18. Retention of Root Canal Posts: Effect of Cement Film Thickness, Luting Cement, and Post Pretreatment.

    Science.gov (United States)

    Sahafi, A; Benetti, A R; Flury, S; Peutzfeldt, A

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment. PMID:25764045

  19. The mechanical effects of different levels of cement penetration at the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the p

  20. The influence of ultrasound on removal of prefabricated metal post cemented with different resin cements

    Directory of Open Access Journals (Sweden)

    Atiyeh Feiz

    2013-01-01

    Conclusion: Ultrasonic energy did not decrease the retention of posts cemented with Panavia or Maxcem Elite cements. Furthermore, it seems that there is no significant difference between removal force of self-etch (Panavia and the self-etch self-adhesive (Maxcem Elite resin cements.

  1. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa......-per the shrinkage properties of cement stabilized gravel have been documented under various temperature and relative humidity conditions. Two cement contents corresponding to a 28-days compressive strength of 6.2 MPa and 12.3 MPa have been tested and compared. It is found that the coefficient of linear expansion...

  2. Immobilisation of radwaste in cement based matrices

    International Nuclear Information System (INIS)

    The solubilities and influence on cement pH are reported for calcium aluminate and aluminosulphate hydrates. The solubility of Ca(OH)2 is reported to 700 bars. Polymerization of C-S-H is investigated by NMR. Specific interactions of U6+ and iodine (I-, IO3-) with cement components are described. The impact of radiation on cements and the influence of higher temperature are documented. The role of dissolved Ca and CO2 in groundwaters as dissolution media for cements are reported. (author)

  3. Acoustic evaluation of cementing quality using obliquely incident ultrasonic signals

    Institute of Scientific and Technical Information of China (English)

    Duan Wen-Xing; Qiao Wen-Xiao; Che Xiao-Hua; Xie Hui

    2014-01-01

    Ultrasonic cement bond logging is a widely used method for evaluating cementing quality. Conventional ultrasonic cement bond logging uses vertical incidence and cannot accurately evaluate lightweight cement bonding. Oblique incidence is a new technology for evaluating cement quality with improved accuracy for lightweight cements. In this study, we simulated models of acoustic impedance of cement and cementing quality using ultrasonic oblique incidence, and we obtained the relation between cementing quality, acoustic impedance of cement, and the acoustic attenuation coeffi cient of the A0-mode and S0-mode Lamb waves. Then, we simulated models of different cement thickness and we obtained the relation between cement thickness and the time difference of the arrival between the A0 and A0′ modes.

  4. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  5. Leaf structural traits of tropical woody species resistant to cement dust.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa

    2016-08-01

    Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities. PMID:27146683

  6. Design and manufacture of Portland cement Application of statistical analysis

    OpenAIRE

    Svinning, Ketil

    2011-01-01

    The purpose of the work is to enable design and manufacture of cement with emphasis on the quality and the properties of cement. Data used in the design and manufacture were collected from predictions of properties and characteristics of cement. The properties of cement were predicted from its characteristics and from the production conditions in cement kiln and mill. The cement characteristics were in some investigations predicted from the production conditions. The design was based on sensi...

  7. STEP cement: Solar Thermal Electrochemical Production of CaO without CO2 emission.

    Science.gov (United States)

    Licht, Stuart; Wu, Hongjun; Hettige, Chaminda; Wang, Baohui; Asercion, Joseph; Lau, Jason; Stuart, Jessica

    2012-06-18

    New molten salt chemistry allows solar thermal energy to drive calcium oxide production without any carbon dioxide emission. This is accomplished in a one pot synthesis, and at lower projected cost than the existing cement industry process, which after power production, is the largest contributor to anthropogenic greenhouse gas emissions. PMID:22540130

  8. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    Science.gov (United States)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  9. Partial Replacement of Cement with Marble Dust Powder

    Directory of Open Access Journals (Sweden)

    Mr. Ranjan Kumar

    2015-08-01

    Full Text Available The waste generated from the industries cause environmental problems. Hence the reuse of this waste material can be emphasized. MarbleDust Powder (MDP is a developing composite materialthatwillallow the concrèteindustry to optimisemateriel use, generateeconomicbenefits and build structures thatwillstrong, durable and sensitive to environnement. MDP is by-product obtained during the quarrying process from the parent marble rock; which contains high calcium oxide content of more than 50%. The potential use of MDP can be an ideal choice for substituting in a cementitious binder as the reactivity efficiency increases due to the presence of lime. In this research work, the waste MDP passing through 90 microns,has used for investigating of hardened concrete properties. Furthermore, the effect of different percentage replacement of MDP on the compressive strength, splitting tensile strength (indirect tensile strength&flexural strength has been observed. Inthis experimental study, the effect of MDP in concrete on strength ispresented. Five concrete mixtures containing 0%, 5%, 10%, and 20% MDP as cement replacement by weightbasis has been prepared. Water/cement ratio (0.43 was kept constant, in all the concretemixes. Compressive strength, split tensile strength & flexural strength of the concrete mixtures has been obtainedat 7 and 28 days. The results of the laboratory work showed thatreplacement of cement with MDP increase, upto 10% for compressive strength,&upto 15% for split tensilestrength &flexural strength of concrete.

  10. Antibacterial activity of selected glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Elżbieta Łuczaj-Cepowicz

    2014-01-01

    Full Text Available Introduction: The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus. Material and methods: Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC, Fuji IX (GC, Ketac Molar (3M Espe and Ketac Silver (3M Espe. Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Results: Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Discussion: Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  11. Microscopic evaluation regarding time behavior of orthodontic cements used for disjunctor cementing

    Directory of Open Access Journals (Sweden)

    Ruxandra Bartok

    2015-11-01

    Full Text Available In order to fulfill their function, orthodontic devices must be cemented on teeth using orthodontic rings. The retention of the orthodontic ring is influenced mainly by the type of dental-ring adhesion. This study was initiated to determine possible microleakage events while using zinc phosphate cement Adhesor (Spofa Dental, conventional glass ionomer Ketac Cem (3M ESPE and Fuji Ortho (GC and a compomer Transbond Plus (3M Unitek. The results of the study are consistent with those reported in the literature reference, the compomer is the preferred adhesive material for cementing the orthodontic rings, compared to conventional glass ionomer cements and zinc-phosphate cement.

  12. Consolidation behavior of cement-and lime/cement-mixed column foundations

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 徐长节

    2002-01-01

    The consolidation behavior of mixed in place cement- and lime/cement-mixed column was studied. Consolidation of the composite foundation was modeled as a three-dimensional axi-symmetric problem. The authors used the finite difference method to obtain the pore pressure variation with time at any location below the surface. A computer program developed by the authors was used to draw some interesting conclusions about the consolidation behaviors of cement- and lime/cement-mixed pile foundation. Finally, a combined model including the permeability coefficients of cement-mixed piles and soil, was studied and its feasibility was evaluated.

  13. Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis.

    Science.gov (United States)

    Korsch, Michael; Walther, Winfried; Marten, Silke-Mareike; Obst, Ursula

    2014-09-05

    The cementation of implant-supported restorations always poses the risk of excess cement retained in the peri-implant sulcus despite careful clinical control. Excess cement can become the basis of colonization by oral microorganisms. As a result of the biofilm formation peri-mucositis or peri-implantitis may develop. Complications were observed in the routine prosthetic restoration of implants when a methacrylate-based cement was used. These developed a few weeks after cementation of the suprastructure and caused bleeding on probing as well as suppuration from the peri-implant tissue. In the revision therapy, excess cement in the peri-implant sulcus was found in many cases. This excess cement was sampled from ten patients and investigated for biofilm formation. For this purpose, the cement samples were collected and analyzed for bacterial in situ colonization by 16S rDNA-based methods. In laboratory experiments, the methacrylate-based cement and two other dental cements were then investigated for their proneness to form biofilm. The results of the in situ and in vitro investigations revealed a strong tendency towards bacterial invasion of the methacrylate-based cement by opportunistic species and pathogens.

  14. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear......This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  15. Cements in radioactive waste management. Characterization requirements of cement products for acceptance and quality assurance purposes

    International Nuclear Information System (INIS)

    Cementitious materials are used as immobilizing matrices for low (LLW) and medium-level wastes (MLW) and are also components of the construction materials in the secondary barriers and the repositories. This report has concerned itself with a critical assessment of the quality assurance aspects of the immobilization and disposal of MLW and LLW cemented wastes. This report has collated the existing knowledge of the use and potential of cementitious materials in radioactive waste immobilization and highlighted the physico-chemical parameters. Subject areas include an assessment of immobilization objectives and cement as a durable material, waste stream and matrix characterization, quality assurance concepts, nature of cement-based systems, chemistry and modelling of cement hydration, role and effect of blending agents, radwaste-cement interaction, assessment of durability, degradative and radiolytic processes in cements and the behaviour of cement-based matrices and their near-field interactions with the environment and the repository conditions

  16. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    in particular is influenced by insufficient carbon burnout in the calciner system, which results in reducing conditions in the material inlet of the rotary kiln and consequently an increased tendency to form deposits induced by sticky eutectic melts. Clinker quality is mainly affected by minor components from...... a decisive influence on the fuel carbon burnout in cement kiln systems. The oxidation kinetics of a char from TDF was investigated experimentally and by mathematical modelling. Experiments were performed in a fixed bed reactor under well - iii - defined conditions, where small particles (102-212μm) of TDF...

  17. Resistência mecânica de compósitos cimentícios leves utilizando resíduos industriais e fibras de sisal Mechanical resistence of lightweight cement composites utilizing industrial residues and fibers of sisal

    Directory of Open Access Journals (Sweden)

    Nivaldo T. de Arruda Filho

    2012-08-01

    Full Text Available A valorização de materiais alternativos incorporados com resíduos como opção ao convencional deve possibilitar a geração de um produto com qualidade, estética, produtividade e com potencial de reduzir impactos da poluição ambiental. Este trabalho foi realizado com o objetivo de desenvolver elementos construtivos para forro e divisórias, a partir de matrizes cimentícias com incorporação de resíduos industriais (resíduo cerâmico, etil vinil acetato - EVA e fibras de sisal. Desenvolveram-se técnicas de moldagem em matrizes cimentícias autoadensáveis e se avaliou a resistência mecânica dos novos compósitos. Uma placa com resíduos de EVA foi produzida e, através de trabalhos de reologia, encontrou-se a pasta matriz de revestimento desta placa, com teor adequado de adições pozolânicas e aditivo superplastificante. Avaliaram-se as resistências mecânicas das placas, da pasta matriz de revestimento encontrada, com e sem adição de fibras, e do novo compósito formado pela união desses dois elementos. Utilizou-se a técnica de alinhamento de fibras com o intuito de incrementar resistência ao novo compósito leve. A adição da matriz com fibras alinhadas melhorou a resistência a flexão do novo compósito.The appreciation of alternative materials incorporated in waste as an option to conventional material should enable to generate a product with quality, aesthetics, productivity and reduce the potential impacts of environmental pollution. This study aims to develop constructive elements for ceilings and walls from cementitious matrix incorporating industrial waste (ceramic waste, ethyl vinyl acetate - EVA and sisal fibers. Moulding techniques to produce self-compacting cementitious matrices were developed and the strength of the new composites were evaluated. A plate with EVA waste was produced and through rheology studies, a matrix plaster for coating of plate surface was found, with appropriate content of pozzolanic and

  18. Implications of WTO Accession for Selected Domestic Industries of Laos

    OpenAIRE

    Lord, Montague J.

    2010-01-01

    The study examines the implications of Lao PDR’s WTO accessions on the domestic cement, steel bar and brewery industries with a view to developing recommendations on how to concurrently manage the Government’s domestic strategic objectives with the country’s effective involvement in the global economy. Calculations of total protection (TE) to the industries shows that beer receives the highest level of protection (110%), followed by steel bars (17%) and cement (16%). The actual level of effec...

  19. Immobilization of Radioactive Waste in Different Fly Ash Zeolite Cement Blends

    International Nuclear Information System (INIS)

    The problem of radioactive waste management has been raised from the beginning use of nuclear energy for different purposes. The rad waste streams produced were sufficient to cause dangerous effects to man and its environment. The ordinary portland cement is the material more extensively used in the technologies of solidification and immobilization of the toxic wastes, low and medium level radioactive wastes. The production of portland cement is one of the most energy-intensive and polluting. The use of high energy in the production causes high emission due to the nature and processes of raw materials. The cement industry is responsible for 7% of the total CO2 emission. Thus, the cement industry has a crucial role in the global warming. The formation of alite (Ca3SiO5), which is the main component of the Portland cement clinker, produces a greater amount of CO2 emission than the formation of belite (Ca2SiO4). The proportion of alite to belite is about 3 in ordinary Portland clinker. Therefore, by decreasing this proportion less CO2 would be emitted. Furthermore, if industrial byproducts such as fly ash from thermal power station or from incineration of municipal solid wastes have the potential to reduce CO2 used as raw materials and alternative hydrothermal calcination routes are employed for belite clinker production, CO2 emission can be strongly reduced or even totally avoided. The availability of fly ash will help in reducing the CO2 emissions and will also help in resolving, to a great extent, the fly ash disposal problem. This thesis is based on focusing on the possibility of using fly ash as raw materials to prepare low cost innovation matrices for immobilization of radioactive wastes by synthesizing new kind of cement of low consuming energy. The synthesis process is based on the hydrothermal-calcination route of the fly ash without extra additions.

  20. A note on cement in asteroids

    Science.gov (United States)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  1. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  2. A note on cement in asteroids

    CERN Document Server

    Bilalbegovic, G

    2016-01-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 microns were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 microns.

  3. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.;

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  4. Application of Neutron imaging in pore structure of hydrated wellbore cement: comparison of hydration of H20 with D2O based Portland cements

    Science.gov (United States)

    Dussenova, D.; Bilheux, H.; Radonjic, M.

    2012-12-01

    Wellbore Cement studies have been ongoing for decades. The studies vary from efforts to reduce permeability and resistance to corrosive environment to issues with gas migration also known as Sustained Casing Pressure (SCP). These practical issues often lead to health and safety problems as well as huge economic loss in oil and gas industry. Several techniques have been employed to reduce the impact of gas leakage. In this study we purely focus on expandable liners, which are introduced as part of oil well reconstruction and work-overs and as well abandonment procedures that help in prevention of SCP. Expandable liner is a tube that after application of a certain tool can increase its diameter. The increase in diameter creates extra force on hydrated cement that results in reducing width of interface fractures and cement-tube de-bonding. Moreover, this also causes cement to change its microstructure and other porous medium properties, primarily hydraulic conductivity. In order to examine changes before and after operations, cement pore structure must be well characterized and correlated to cement slurry design as well as chemical and physical environmental conditions. As modern oil well pipes and tubes contain iron, it is difficult to perform X-ray tomography of a bulk measurement of the cement in its wellbore conditions, which are tube wall-cement-tube wall. Neutron imaging is a complementary technique to x-ray imaging and is well suited for detection of light elements imbedded in metallic containers. Thus, Neutron Imaging (NI) is investigated as a tool for the detection of pore structure of hydrated wellbore cement. Recent measurements were conducted at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) neutron imaging facility. NI is is highly sensitive to light elements such as Hydrogen (H). Oil well cements that have undergone a full hydration contain on average 30%-40% of free water in its pore structure. The unreacted water is the main

  5. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  6. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG)

  7. Design of ceramic-based cements and putties for bone graft substitution

    OpenAIRE

    M Bohner

    2010-01-01

    In the last 15 years, a large number of commercial ceramic-based cements and putties have been introduced as bone graft substitutes. As a result, large efforts have been made to improve our understanding of the specific properties of these materials, such as injectability, cohesion, setting time (for cements), and in vivo properties. The aim of this manuscript is to summarize our present knowledge in the field. Instead of just looking at scientific aspects, industrial needs are also considere...

  8. Design of ceramic-based cements and putties for bone graft substitution

    Directory of Open Access Journals (Sweden)

    M Bohner

    2010-07-01

    Full Text Available In the last 15 years, a large number of commercial ceramic-based cements and putties have been introduced as bone graft substitutes. As a result, large efforts have been made to improve our understanding of the specific properties of these materials, such as injectability, cohesion, setting time (for cements, and in vivo properties. The aim of this manuscript is to summarize our present knowledge in the field. Instead of just looking at scientific aspects, industrial needs are also considered, including mixing and delivery, sterilization, and shelf-life.

  9. Design of ceramic-based cements and putties for bone graft substitution.

    Science.gov (United States)

    Bohner, M

    2010-01-01

    In the last 15 years, a large number of commercial ceramic-based cements and putties have been introduced as bone graft substitutes. As a result, large efforts have been made to improve our understanding of the specific properties of these materials, such as injectability, cohesion, setting time (for cements), and in vivo properties. The aim of this manuscript is to summarize our present knowledge in the field. Instead of just looking at scientific aspects, industrial needs are also considered, including mixing and delivery, sterilization, and shelf-life. PMID:20574942

  10. Uniaxial tensile test on a new cement composite having a hardening behaviour

    OpenAIRE

    BOULAY, C; Rossi, P; TAILHAN, JL

    2004-01-01

    The LCPC patented a new cement composite (CEMTEC multiscale), which have been developed to be stress hardening in tension and to have an ultra-high tensile strength. It is a multi-scale cement composite. One of the industrial applications aimed is related to thin slabs. Consequently, the research objective is to characterize the tensile behaviour of this material used is a thin bended slab. To achieve that, this tensile behaviour is measured from a bending test (easier to perform than an unia...

  11. Cements with low Clinker Content

    Science.gov (United States)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  12. ROTARY SCREW SYSTEMS IN CEMENT

    Directory of Open Access Journals (Sweden)

    Taratuta V. D.

    2016-01-01

    Full Text Available The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometrical shapes with form inside the screw breaks or smooth edges, screw surfaces and screw grooves. It is shown that the housing of the rotary kiln is expedient to produce helical surfaces whose centers of curvature are located within the housing. Using the proposed constructions rotary kiln during the firing when preparing cement wedge can increase the speed of rotation of the housing, furnaces 5-10 times due to changes in the rotary-screw systems increase efficiency and reduce the size of furnaces

  13. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  14. Use of MRF residue as alternative fuel in cement production.

    Science.gov (United States)

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  15. Combustion of large solid fuels in cement rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Rooma

    2012-03-15

    The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO{sub 2} emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal (MBM), waste wood, sewage sludge, paper and plastics. This thesis provides an insight into the utilization of solid alternative fuels in the material inlet end of rotary kilns. This position is interesting because it allows utilization of large fuel particles, thereby eliminating the need for an expensive shredding of the fuels. The challenge, however, is that the solid fuels will be mixed into the cement raw materials, which is likely to affect process stability and clinker quality, as described above. The mixing of fuels and raw materials was studied experimentally in a pilot-scale rotary drum and was found to be a fast process, reaching steady state within few drum revolutions. Thus, heat transfer by conduction from the cement raw materials to the fuel particles is a major heat transfer mechanism rather than convection or radiation from the freeboard gas above the material bed. Consequently, the temperature of the cement raw materials becomes a factor of great importance for heating the fuel particles. Combustion of different alternative fuels has been investigated experimentally in a pilot-scale rotary furnace under conditions similar to those in the material inlet end of cement rotary kilns. The main focus was on tire rubber and pine wood which are relevant fuels in this context. Heating, drying and devolatilization of alternative fuels are fast processes that primarily depend on heat transfer and fuel particle size. Devolatilization of a large wood or tire particle with a thickness of 20 mm at 900 deg. C is for example around 2 minutes. By contrast, char oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the

  16. Use of MRF residue as alternative fuel in cement production.

    Science.gov (United States)

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  17. Extraoral Cementation Technique to Minimize Cement-Associated Peri-implant Marginal Bone Loss: Can a Thin Layer of Zinc Oxide Cement Provide Sufficient Retention?

    Science.gov (United States)

    Frisch, Eberhard; Ratka-Krüger, Petra; Weigl, Paul; Woelber, Johan

    2016-01-01

    This report describes the use of laboratory-fabricated crown intaglio replicas for extraorally prepared cementation of fixed restorations to implants. This technique minimizes excess cement and may therefore reduce the risk of cement-related marginal peri-implant bone loss. It is unclear whether the remaining thin layer of luting agent provides sufficient retention if low-adhesive zinc oxide (ZnO) cement is used. In 85 consecutive patients, 113 single crowns were cemented to implants using extraoral cementation technique (ECT) and ZnO cement. All patients were followed for 6 months and investigated for decementation. Seven events of decementation (incidence: 6.19%) were found in 7 patients (8.24%). ECT may represent a viable cementation technique for implant-supported single crowns, even using low-adhesion cements. PMID:27479343

  18. Proceedings of the Third CANMET/ACI International Symposium on Sustainable Development of Cement and Concrete : volume 1 and supplementary papers

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, V.M. (ed.) [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2001-07-01

    This conference brought together representatives from industry, universities, and government agencies from around the world to discuss the recent trend of sustainable development in the cement and concrete industry. The presentations focused on all aspects of concrete technology and sustainability with most of them dealing with the issue of supplementing cementing materials with admixtures such as fly ash in an effort to reduce carbon dioxide emissions. In addition to the referenced proceedings, a book of supplementary papers was also published. The papers focused mainly on the use of fly ash from coal-based power generation, slags from blast-furnaces and silica fumes. It was emphasized that the negative environmental effects of current cement/concrete production can be reduced substantially by using cement blends with minimum portland cement and maximum pozzolanic loading. In addition to extending the longevity of concrete, such cement blends also avoid the huge cost of repairs and replacement cycles. Market forces will drive this transition toward sustainable development in the concrete and cement industry. The economic and environmental advantages of improving the quality of the concrete are great. A total of 63 papers were presented at this conference, of which 31 have been processed separately for inclusion in the database. refs., tabs., figs.

  19. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.

    Science.gov (United States)

    Lewis, Gladius; Janna, Si; Bhattaram, Anuradha

    2005-07-01

    Two variants of antibiotic powder-loaded acrylic bone cements (APLBCs) are widely used in primary total joint replacements. In the United States, the antibiotic is manually blended with the powder of the cement at the start of the procedure, while, in Europe, pre-packaged commercially-available APLBCs (in which the blending is carried out using an industrial mixer) are used. Our objective was to investigate the influence of the method of blending gentamicin sulphate with the powder of the Cemex XL formulation on a wide collection of properties of the cured cement. The blending methods used were manual mixing (the MANUAL Set), use of a small-scale, easy-to-use, commercially-available mechanical powder mixer, OmoMix 1 (the MECHANICAL Set), and use of a large-scale industrial mixer (Cemex Genta) [the INDUSTRIAL Set]. In the MECHANICAL and MANUAL Sets, the blending time was 3 min. In preparing the test specimens for each set, the blended powder used contained 4.22 wt% of the gentamicin powder. The properties determined were the strength, modulus, and work-to-fracture (all obtained under four-point bending), plane-strain fracture toughness, Weibull mean fatigue life (fatigue conditions: +/-15 MPa; 2 Hz), activation energy and frequency factor for the cement polymerization process (both determined using differential scanning calorimetry, at heating rates of 5, 10, 15, and 20 Kmin(-1)), the diffusion coefficient for the absorption of phosphate buffered saline, PBS, at 37 degrees C, and the rate of elution of the gentamicin into PBS, at 37 degrees C (E). Also determined were the particle size, particle size distribution, and morphology of the blended powders and of the gentamicin. For each of the cured cement properties (except for E), there is no statistically significant difference between the means for the 3 cements, a finding that parallels the observation that there are no significant differences in either the mean particle size or the morphology of the blended cement

  20. Development of construction specifications and quality assurance criteria for compacted fly ash-cement feedlot pads

    Energy Technology Data Exchange (ETDEWEB)

    Kalinski, M.E.; Bicudo, J.R.; Hippley, B.; Nanduri, S.R. [University of Kentucky, Lexington, KY (United States). Dept. of Civil Engineering

    2005-05-01

    Numerous industrial uses have been identified for fly ash that economically benefits both the fly ash producer and the fly ash user. One such use is the construction of compacted fly ash-cement pads for hay storage and for livestock heavy traffic areas, including traffic lanes, feeding areas, watering sites, loafing lots, and feedlots. The use of a variety of pads (e.g. soil-cement, fly ash, geotextile-gravel) in feedlots has been shown to improve daily gain and reduce hoof disease in cattle. However quality assurance methods for construction of such pads are lacking. Therefore, a laboratory study was performed to develop a quantitative approach to construction quality assurance (CQA) testing of compacted fly ash-cement pads.

  1. On the Fresh/Hardened Properties of Cement Composites Incorporating Rubber Particles from Recycled Tires

    Directory of Open Access Journals (Sweden)

    Alessandra Fiore

    2014-01-01

    Full Text Available This study investigates the ameliorative effects on some properties of cement-based materials which can be obtained by incorporating rubber particles as part of the fine aggregates. The aim is to find out optimal cement composite/mortar mixtures, containing recycled-tyre rubber particles, suitable for specific engineering applications. Different percentages of rubber particles, from 0% to 75%, were used and, for each percentage, the suitable amount of sand was investigated in order to achieve the best fresh/hardened performances. In particular the following characteristics were examined: density, compressive strength, modulus of elasticity, shrinkage, weight loss, flexural behaviour, thermal conductivity, rapid freezing and thawing durability, and chloride permeability. The experimental results were compared with the ones of cement composite specimens without rubber aggregates. Test results show that the proposed rubberized mortar mixes are particularly suitable for some industrial and architectural applications, such as under-rail bearings, road constructions, paving slabs, false facades, and stone backing.

  2. An ongoing investigation on modeling the strength properties of water-entrained cement-based materials

    DEFF Research Database (Denmark)

    Esteves, L.P.

    2012-01-01

    Water-entrained cement based materials by superabsorbent polymers is a concept that was introduced in the research agenda about a decade ago. However, a recent application in the production of high performance concrete revealed potential weaknesses when the proportioning of this intelligent...... material is not well performed, raising doubts among both academic and industrial society about the usability of superabsorbent polymers in cement-based materials. This work constitutes the baseline tentatively to be used on modeling the compressive strength of SF-modified water-entrained cement......-based materials. Beyond the discussion of whether or not the introduction of superabsorbent polymers leads to a strength reduction, this paper uses both experimental and theoretical background to separate the effect of SAP in both pore structure and internal relative humidity and the effect from the active...

  3. Energy auditing and recovery for dry type cement rotary kiln systems - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Engin, T.; Ari, V. [University of Sakarya (Turkey). Dept. of Mechanical Engineering

    2005-03-01

    Cement production has been one of the most energy intensive industries in the world. In order to produce clinker, rotary kilns are widely used in cement plants. This paper deals with the energy audit analysis of a dry type rotary kiln system working in a cement plant in Turkey. The kiln has a capacity of 600 ton-clinker per day. It was found that about 40% of the total input energy was being lost through hot flue gas (19.15%), cooler stack (5.61%) and kiln shell (15.11% convection plus radiation). Some possible ways to recover the heat losses are also introduced and discussed. Findings showed that approximately 15.6% of the total input energy (4 MW) could be recovered. (author)

  4. Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C. [Institute of Gas Technology, Chicago, IL (United States); Bhatty, J.I.; Mishulovich, A. [Construction Technology Labs., Inc., Washington, DC (United States)

    1995-12-31

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

  5. Thermal analysis of borogypsum and its effects on the physical properties of Portland cement

    International Nuclear Information System (INIS)

    Borogypsum, which consists mainly of gypsum crystals, B2O3 and some impurities, is formed during the production of boric acid from colemanite, which is an important borate ore. In this study, the effect of borogypsum and calcined borogypsum on the physical properties of ordinary Portland cement (OPC) has been investigated. The calcination temperature and transformations in the structures of borogypsum and natural gypsum were determined by differential thermal analysis (DTA), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) techniques. Thermal experiments were carried out between ambient temperature and 500 deg. C in an air atmosphere at a heating rate of 10 deg. C min-1. After calculation of enthalpy and determination of conversion temperatures, borogypsum (5% and 7%), hemihydrate borogypsum (5%) and natural gypsum (5%) were added separately to Portland cement clinker and cements were ground in the laboratory. The final products were tested for chemical analysis, compressive strength, setting time, Le Chatelier expansion and fineness properties according to the European Standard (EN 196). The results show that increasing the borogypsum level in Portland cement from 5% to 7% caused an increase in setting time and a decrease in soundness expansion and compressive strength. The cement prepared with borogypsum (5%) was found to have similar strength properties to those obtained with natural gypsum, whereas a mixture containing 5% of hemihydrate borogypsum was found to develop 25% higher compressive strength than the OPC control mixtures at 28 days. For this reason, utilization of calcined borogypsum in cement applications is expected to give better results than untreated borogypsum. It is concluded that hemihydrate borogypsum could be used as a retarder for Portland cement as an industrial side. This would play an important role in reducing environmental pollution

  6. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Directory of Open Access Journals (Sweden)

    Strigáč Július

    2015-11-01

    Full Text Available The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I –SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  7. Dermatoses in cement workers in southern Taiwan.

    Science.gov (United States)

    Guo, Y L; Wang, B J; Yeh, K C; Wang, J C; Kao, H H; Wang, M T; Shih, H C; Chen, C J

    1999-01-01

    Construction workers are known to have occupational dermatoses. The prevalence of such dermatoses was unknown in Taiwanese construction workers. The objective of this study was to determine the work exposure, prevalence of skin manifestations, and sensitivity to common contact allergens in cement workers of southern Taiwan. A total of 1147 current regular cement workers were telephone-interviewed about skin problems during the past 12 months, work exposure, and personal protection. Among those interviewed, 166 were examined and patch tested with common contact allergens. A high % of cement workers reported skin problems in the past 12 months. More men (13.9%) reported skin problems possibly related to work than women (5.4%). Prevalence was associated with lower use of gloves, duration of work as cement worker, and more time in jobs involving direct manual handling of cement, especially tiling. A high % of dermatitis was noted in the 166 workers examined, which correlated with reported skin problems. On patch testing, construction workers had a high frequency of sensitivity to chromate. Sensitivity to chromate or cobalt was associated with reported skin problems, or dorsal hand dermatitis on examination. These workers' dermatitis was under-diagnosed and inadequately managed. It is concluded that cement workers in southern Taiwan had a high prevalence of skin problems related to cement use. Protective measures, work practice, and physician education should be improved to prevent or manage such problems.

  8. Pack cementation diffusion coatings for iron-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1995-02-01

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels. The Cr-Si ferrite layers have proven to be very resistant to high temperature cyclic oxidation and to pitting in aqueous solutions. The process has been patented, and is being transferred for industrial application, e.g. for water walls of utility boilers, etc. In the proposed extension of this project, the use of mixed pure metal powders in the pack will be extended to achieve similar ferrite Fe-Cr-Al coatings with excellent oxidation resistance, with the eventual transfer of the technology to industry. In other recent studies, Ni-base alloy rods were aluminized by the halide-activated pack cementation process to bring their average composition to that for the ORNL-developed Ni{sub 3}Al, for use as a welding rod. A similar effort to develop a welding rod for the ORNL Fe{sub 3}Al alloy did not yield reproducible coating compositions or growth kinetics. The continued effort to produce Duriron-type (Fe-18Si-5Cr) coatings on steels was not successful. Literature for the intrinsic diffusion coefficients suggests that this task cannot be achieved.

  9. Performance Comparison between EAFD and Conventional Supplementary Cementing Materials

    Directory of Open Access Journals (Sweden)

    Amir Fauzi Hasbi

    2016-02-01

    Full Text Available Sustainability of concrete construction necessitates exploring potential renewable resource, especially from industrial waste products.  Electric arc furnace dust (EAFD, a by-product of the modern electric arc furnace (EAF process from the steel manufacturing industry has an adverse impact on the environment. Utilizing EAFD in concrete production as a cement replacement material together with silica fume (SF and fly ash (FA has raised the interest of many researchers.  This study investigates the use optimum 5% EAFD content refers to both 15% SF and 20% FA in water binder ratio of 0.5 and sand to cement ratio of 2. The aim of this study is to obtain the percentage replacement levels of EAFD that are equivalent to the SF and FA regarding workability, setting time, compressive strength and resistance to rapid chloride permeability. The compressive strength results showed that replacement of 5% SF and 15% FA are the equivalent replacement levels to 3% EAFD. Similarly, results from resistance to rapid chloride permeability showed that the optimum EAFD content performed better than the replacement levels of FA.  However, SF replacement levels showed the best resistance to rapid chloride permeability. Therefore, 3% replacement of EAFD provided an intermediate performance between the optimum SF and FA contents and exceeded that of the control.

  10. Effect of cements on fracture resistance of monolithic zirconia crowns

    OpenAIRE

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a...

  11. Laboratory studies on the longevity of cement grouts

    International Nuclear Information System (INIS)

    This paper describes laboratory studies of the longevity of cement-based grouts being carried out as part of the International Stripa Project Phase III. The longevity properties determined for a reference grout (90% Sulphate Resistant Portland Cement, 10% silica fume, 0.4< water/cement<0.6 and superplasticizer) are compared with those of a slag cement grout. Laboratory tests have been carried out to determine the following: the mechanistic function of superplasticizer in fresh cement pastes; the leachability of the sorbed superplasticizer and its location in the structure of hardened cement paste; and the general leaching properties of selected cement-based grouts

  12. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    Science.gov (United States)

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. PMID:20493626

  13. Through Lean Manufacturing Techniques Improvement InProduction of Cement Plant

    Directory of Open Access Journals (Sweden)

    Udai Singh Chouhan

    2016-07-01

    Full Text Available The production of cement is a process industry which is distinct from manufacturing and the main objective here is to apply lean manufacturing technique to the eradicate waste to the processes and parameters which are common between process and discrete manufacturing. Lean signifies a major advance over traditional mass production methods. Value stream mapping is used first to identify different waste present in the current state. This paper will describe work undertaken investigating the application of lean thinking to a continuous production environment, in this instance exemplified by the cement industry. Implementation of lean helps many organizations to improve their productivity and efficiency Cement plays a vital role in economic development of any country. Having more than a hundred and fifty years history, it has been used extensively in construction of anything, from a small building to a mammoth multi-purpose project. The need for improving the efficiency of the cement production line is widely acknowledged in order to reduce the downtime rates, and satisfy high levels of market demand where the demand for cement is mostly second substance behind water. This paper articulates a methodology for data collection, knowledge extraction, model creation and experimentation that combines the use of process mapping, computational simulation. A detailed description of each step of the process is given and is illustrated by results from a case study undertaken during the research. This paper describes work undertaken to implement lean practices in the continuous process sector as represented by cement production. One of the major barriers to lean implementation is providing evidence of its potential benefit to end-users. This work aims to overcome this obstacle by producing a tool which can be used to easily visualize the benefits of adopting lean practices without requiring disruption to the production environment

  14. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  15. Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia).

    Science.gov (United States)

    Paoli, Luca; Guttová, Anna; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Sorbo, Sergio; Basile, Adriana; Loppi, Stefano

    2015-10-01

    The study investigated the ecophysiological and ultrastructural effects of dust pollution from a cement industry in the lichen species Evernia prunastri and Xanthoria parietina, which were exposed for 30, 90 and 180 days around a cement mill, two quarries, and inhabited and agricultural sites in SW Slovakia. The results showed that dust deposition from quarrying activities and cement works at the cement mill (mainly enriched in Ca, Fe and Ti) significantly affected the photosynthetic apparatus of E. prunastri (sensitive to dust and habitat eutrophication), while X. parietina (tolerant to dust and habitat eutrophication) adapted to the new environment. The length of the exposure strongly affected the vitality of the mycobiont (measured as dehydrogenase activity) in transplanted lichens. Dust deposition led to ultrastructural alterations, including lipid droplets increase, swelling of cellular components, thylakoid degeneration and sometimes plasmolysis, which, on the whole, gave the cells an aged appearance. Photosynthetic parameters deserve further attention as potential indicators for monitoring early biological symptoms of the air pollution caused during cement production. PMID:26044142

  16. Studies on the reuse of waste printed circuit board as an additive for cement mortar.

    Science.gov (United States)

    Ban, Bong-Chan; Song, Jong-Yoon; Lim, Joong-Yeon; Wang, Soo-Kyoon; An, Kwang-Guk; Kim, Dong-Su

    2005-01-01

    The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08 to approximately 0.15 and 0.15 to approximately 0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.

  17. Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia).

    Science.gov (United States)

    Paoli, Luca; Guttová, Anna; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Sorbo, Sergio; Basile, Adriana; Loppi, Stefano

    2015-10-01

    The study investigated the ecophysiological and ultrastructural effects of dust pollution from a cement industry in the lichen species Evernia prunastri and Xanthoria parietina, which were exposed for 30, 90 and 180 days around a cement mill, two quarries, and inhabited and agricultural sites in SW Slovakia. The results showed that dust deposition from quarrying activities and cement works at the cement mill (mainly enriched in Ca, Fe and Ti) significantly affected the photosynthetic apparatus of E. prunastri (sensitive to dust and habitat eutrophication), while X. parietina (tolerant to dust and habitat eutrophication) adapted to the new environment. The length of the exposure strongly affected the vitality of the mycobiont (measured as dehydrogenase activity) in transplanted lichens. Dust deposition led to ultrastructural alterations, including lipid droplets increase, swelling of cellular components, thylakoid degeneration and sometimes plasmolysis, which, on the whole, gave the cells an aged appearance. Photosynthetic parameters deserve further attention as potential indicators for monitoring early biological symptoms of the air pollution caused during cement production.

  18. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  19. Chemical and dimensional evolution of cationic ions exchange resins in cement pastes

    International Nuclear Information System (INIS)

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. After use they are usually encapsulated in cementitious materials. However, the solidified waste forms can exhibit a strong expansion, possibly leading to cracking. Its origin is not well understood as well as the conditions when it occurs.In this work, the interactions between cationic resins in the Na+ or Ca2+ form and tricalcium silicate (C3S), Portland cement (CEM I) or Blast furnace slag cement (CEM III/C) are investigated at an early age in order to gain a better understanding of the expansion process.The results show that during the hydration of a paste of C3S or CEM I containing IERs in the Na+ form, the resins exhibit a transient expansion of small magnitude due to the decrease in the osmotic pressure of the interstitial solution. This expansion, which occurs just after cement setting, is sufficient to damage the material which is poorly consolidated for several reasons: small hydration degree, precipitation of less cohesive sodium bearing C-S-H, heterogeneous microstructure with highly porous zones and lastly cleavable crystals of portlandite at the interface between resins and paste. This expansion can be prevented by performing a calcium pretreatment of the resins or by using a CEM III/C cement with a slower rate of hydration than that of Portland cement. (author)

  20. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  1. Silica Transport and Cementation in Quartz Aggregates

    Science.gov (United States)

    Pebble, C.; Farver, J.; Onasch, C.; Winslow, D.

    2008-12-01

    Silica transport and cementation in quartz aggregates have been experimentally investigated. Starting materials include a natural quartz arenite (Pocono sandstone), sized clasts of synthetic quartz, and sized grains of disaggregated natural sandstones. Experimental charges consisted of amorphous silica powder (~25 mg), AlCl3 powder (~3 mg), 25 wt% NaCl brine solution (~20 mg), and the starting material (~150 mg). The charges were weld-sealed in gold capsules and run in cold-seal pressure vessels at 300°C to 600°C at 150 MPa confining pressure for up to 4 weeks. Detailed calibrations of the furnaces indicate the maximum temperature variation across the length of the sample charges (3-7mm) was vacuum impregnated with epoxy containing a blue dye and sawn in half along the long axis of the sample charge. The nature and amount of silica transport and cementation in the samples was determined by a combination of Cathodoluminescence (CL), Light Microscopy (LM), and Scanning Electron Microscopy (SEM). Photomosaics of the samples were collected and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement was easily recognized from the quartz grains by the difference in luminescence. The experiments indicate that the presence of amorphous silica results in rapid silica cementation in quartz aggregates (e.g., up to 12% cement by volume in 4 weeks at 450°C). The amount of cementation is a function of substrate type, time, temperature, and ionic strength of the brine. The rate of silica transport through the length of the experimental charge appears to be limited by the silica solubility and its rapid depletion by cementation. Although most of the cement was derived from the amorphous silica, evidence for local dissolution-precipitation was observed. The experiments demonstrate that the mobility of silica, and consequent precipitation of cement, does not require a temperature or pressure gradient as is commonly assumed. Rather

  2. INFLUENCE OF GLASS CULLET IN CEMENT PASTES

    Institute of Scientific and Technical Information of China (English)

    A.Karamberi; E.Chaniotakis; D.Papageorgiou; A.Moutsatsou

    2006-01-01

    The present study investigates glass and cement compatibility with a view to use glass as a cement replacement. Amber, flint and green glasses were chosen due to their prevalence in the Greek market as packaging materials. The factors under investigation were the pozzolanicity of the glass cullet, the hydration rate and the mechanical strength development of the cement pastes, as well as the expansion of the specimens due to alkali-silica reaction.Moreover, the potential enhancement of glass pozzolanic activity was examined. The results of the study were encouraging to show the potentiality of utilising glass cullet in cementitious products.

  3. Reinforcement of osteosynthesis screws with brushite cement.

    Science.gov (United States)

    Van Landuyt, P; Peter, B; Beluze, L; Lemaître, J

    1999-08-01

    The fixation of osteosynthesis screws remains a severe problem for fracture repair among osteoporotic patients. Polymethyl-methacrylate (PMMA) is routinely used to improve screw fixation, but this material has well-known drawbacks such as monomer toxicity, exothermic polymerization, and nonresorbability. Calcium phosphate cements have been developed for several years. Among these new bone substitution materials, brushite cements have the advantage of being injectable and resorbable. The aim of this study is to assess the reinforcement of osteosynthesis screws with brushite cement. Polyurethane foams, whose density is close to that of cancellous bone, were used as bone model. A hole was tapped in a foam sample, then brushite cement was injected. Trabecular osteosynthesis screws were inserted. After 24 h of aging in water, the stripping force was measured by a pull-out test. Screws (4.0 and 6.5 mm diameter) and two foam densities (0.14 and 0.28 g/cm3) were compared. Cements with varying solid/liquid ratios and xanthan contents were used in order to obtain the best screw reinforcement. During the pull-out test, the stripping force first increases to a maximum, then drops to a steady-state value until complete screw extraction. Both maximum force and plateau value increase drastically in the presence of cement. The highest stripping force is observed for 6.5-mm screws reinforced with cement in low-density foams. In this case, the stripping force is multiplied by 3.3 in the presence of cement. In a second experiment, cements with solid/liquid ratio ranging from 2.0 to 3.5 g/mL were used with 6.5-mm diameter screws. In some compositions, xanthan was added to improve injectability. The best results were obtained with 2.5 g/mL cement containing xanthan and with 3.0 g/mL cements without xanthan. A 0.9-kN maximal stripping force was observed with nonreinforced screws, while 1.9 kN was reached with reinforced screws. These first results are very promising regarding screw

  4. Operating experience with KRAFTWERK UNION cementation line

    International Nuclear Information System (INIS)

    A facility is described designed for fixation in a cement matrix of the radioactive concentrate produced by thickening waste water from the Bohunice nuclear power plant. The cementation line output is 0.6 m3 concentrate/h. The concentrate is put in 200 l drums. The individual operating units, cement management, air conditioning, dosimetric monitoring and the building part are described. The requirements for the operators and the assessment of the quality of raw materials and the product are discussed. (M.D.). 3 figs., 4 refs

  5. Effect of cementing technique and cement type on thermal necrosis in hip resurfacing arthroplasty - a numerical study

    NARCIS (Netherlands)

    Janssen, D.; Srinivasan, P.; Scheerlinck, T.; Verdonschot, N.J.J.

    2012-01-01

    Femoral fractures within resurfacing implants have been associated with bone necrosis, possibly resulting from heat generated by cement polymerization. The amount of heat generated depends on cement mantle volume and type of cement. Using finite element analysis, the effect of cement type and volume

  6. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2011-01-01

    In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically im

  7. THE CONTRIBUTION OF THE NIGERIAN CEMENT INDUSTRY TO GLOBAL WARMING.

    OpenAIRE

    DR. NDEFO OKIGBO

    2012-01-01

    The issues of global warming have taken the centre stage all over the world and its effects are manifesting every where especially in the sub-Saharan Africa. Industrialisation is the main cause of global warming. The highly developed countries that are highly industrialised are regarded as the main culprits in this menace. Thedeveloped countries have been at the receiving end of the negative effects of the global warming. With the modest development in industrialisation in the developing coun...

  8. Oxygen transport membranes for biomass gasification and cement industry

    DEFF Research Database (Denmark)

    Cheng, Shiyang

    by a microelectrode assisted Hebb-Wagner polarization. The electronic conductivity of PrxGd0.1Ce0.9-xO1.95-δ (x=0-0.4) was found to be significantly enhanced relative to that of GCO at high pO2 (1×10-8- 0.21 bar), by as much as three orders of magnitude in Pr0.4Gd0.1Ce0.5O1.95-δ. The electronic conductivity of PrxGd0...... of structural supports. An asymmetric (thin dense layer on a porous support) dual phase composite membrane of 70 vol.% Gd0.1Ce0.9O1.95-δ-30 vol.% La0.6Sr0.4FeO3-δ (GCO-LSF) was fabricated by a “one step” phase-inversion tape casting. Oxygen flux measurement as well as electrical conductivity relaxation...... indicates that the oxygen permeation flux of the membrane without catalyst is rate limited by oxygen surface exchange. Mass polarization through the porous support is insignificant over a wide range of oxygen partial pressure gradients. A stable high flux of ca. 7.00 (STP) ml cm-2 min-1 was observed for 200...

  9. Preliminary study using pulsating water jet for bone cement demolition

    OpenAIRE

    S. Hloch; Kloc, J.; Foldyna, J.; Pude, F.; Smolko, I.; M. Zeleňák; Sitek, L. (Libor); Hvizdoš, P.; Monka, P.; Monková, K.; Kozak, D.; A. Stoić; A. Sedmak; Milosevic, M; Lehocká, D.

    2015-01-01

    The paper deals with the study of using the selective property of ultrasonic pulsating water jet for the disintegration of bone cement which creates the interface between femoral stem and trabecular bone tissue. For investigation, commercial bone cements were used. Bone cements were tested by nanoindentation in order to review their mechanical properties. A representative sample Palacos R+G was selected for disintegration of bone cement. Bone cements samples fixed between two plexiglass...

  10. Composite cements containing natural pozzolan and granulated blast furnace slag

    OpenAIRE

    Irassar, E. F.; Rahhal, V. F.; Donza, H. A.; Menéndez, G.; Bonavetti, V. L.

    2006-01-01

    For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as p...

  11. Effect of Abutment Modification and Cement Type on Retention of Cement-Retained Implant Supported Crowns

    OpenAIRE

    Mitra Farzin; Kianoosh Torabi; Ahmad Hasan Ahangari; Reza Derafshi

    2014-01-01

    Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an ac...

  12. Factors influencing energy intensity in four Chinese industries

    OpenAIRE

    Fisher-Vanden, Karen; Hu, Yong; Jefferson, Gary; Rock, Michael; Toman, Michael

    2013-01-01

    Energy intensity has declined significantly in four Chinese industries -- pulp and paper; cement; iron and steel; and aluminum. While previous studies have identified technological change within an industry to be an important influence on energy intensity, few have examined how industry-specific policies and market factors also affect industry-level intensity. This paper employs unique firm-level data from China's most energy-intensive large and medium-size industrial enterprises in each of t...

  13. Slagment Cement Improve the Cement Resistance Toward Acids Attack During Acidizing Treatment

    Directory of Open Access Journals (Sweden)

    Nik Khairul Irfan Bin Nik Ab. Lah.

    2013-05-01

    Full Text Available Acidizing treatment in past experience shows several zonal isolation problems after the treatment. This study presents the effect of the acid treatment toward class G cement and slagment cement as the improvement method to improve the cement resistance toward the acid. Lab experiments were conducted by immerge the respective cement cubes into 12% HCl/3% HF solution for 40 min before several analysis were conducted. Based on the result, the mass loss and compressive strength loss of the cement cubes decrease as the curing temperature and pressure increase due to more evenly distributed cement chemical composition crystal in high curing condition as shown in Scanning Electron Microscopy (SEM analysis. From X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF analysis, only the first layer of the cement cubes shows chemical component change due to the reaction between the acid. This study found that, replacing class G cement to slagment cement can reduce the mass loss and compressive strength loss up to 72% and 82%, respectively.

  14. Exposure to cement dust at a Portland cement factory and the risk of cancer.

    OpenAIRE

    Vestbo, J; Knudsen, K.M.; Raffn, E; Korsgaard, B; Rasmussen, F V

    1991-01-01

    The relation between exposure to cement dust and cancer was examined in a population of 546 cement workers and a reference population of 858 randomly sampled men of similar age and area of residence. In 1974 all men gave lifelong occupational and smoking histories; information on incidence of cancer in the period 1974-85 was obtained from the Danish Cancer Registry. No increased risk of overall cancer was found among cement workers. Among men with more than 20 years exposure to cement dust, 1...

  15. Radiographic appearance of commonly used cements in implant dentistry.

    Science.gov (United States)

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  16. STUDIES OF CHANGES OF SOME BLOOD PARAMETERS AMONG WORKERS OF CEMENT OF EL MA EL ABIOD TEBESSA ALGERIA

    Directory of Open Access Journals (Sweden)

    M. Aouimeur

    2015-08-01

    Full Text Available In Algeria, the industrial development engenders the appearance of the sanitary and environmental problems resulting from the pollution due to these certain industries such as the industry cimentière. With the aim of estimating the sanitary state of the workers of the cement works; a study was made for 30 workers of the cement works. This study is based on the determination of the values of 07 parameters hématologiques (red blood cells, haemoglobin, hématocrite, average spherical volume, The corpuscular concentration averages in haemoglobin, The corpuscular content averages in haemoglobin and the number of white blood cells and two parameters considered as markers premature of the inflammation (sedimentation speed and protein-C-reactive. These results are compared with two other populations, one of the inhabitants of the region and other one of the inhabitants far from the cement works avec 60 km. The statistical analyses are based on the comparison of the variances and the analysis in main constituent (ACP. The comparison of the variance of the various variable of the individuals show a resemblance between the workers and the inhabitants close to the cement works but significant differences appeared between both populations and those of the cement works for some parameters. The global analysis of these results with the ACP showed a general coherence. The observation of the groups allowed removing some peculiarities.This distribution shows the relation between the functional state and the variation of the parameters.

  17. Influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles

    OpenAIRE

    Ortega Álvarez, José Marcos; Albaladejo Ruiz, Arturo; Pastor Navarro, José Luis; Sánchez Martín, Isidro; Climent, Miguel-Ángel

    2013-01-01

    Today, the use of micropiles for different applications has become very common. In Spain, the cement grouts for micropiles are prepared using ordinary Portland cement and w:c ratio 0.5, although the micropiles standards do not restrict the cement type to use, provided that it reaches a certain compressive strength. In this study, the influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles have been studied until 90 hardening days,...

  18. The Setting Chemistry of Glass Ionomer Cement

    Institute of Scientific and Technical Information of China (English)

    CHENG Hanting; LIU Hanxing; ZHANG Guoqing

    2005-01-01

    The setting chemistry of glass ionomer cement was investigated by using mechanical determination of compressive strength at predetermined intervals, and measurement of structure changes of corresponding fracture sample by means of IR spectra and differential scanning calorimetry ( DSC). Zinc polycarboxylate cement was used as a comparison sample. The compressive strength of glass ionomer cement (GIC) increases with aging. IR spectra and DSC of corresponding fracture sample show the structure changes of the matrix and interface layer comprising of silica gel during the predetermined intervals studied, however, no significant changes occur in the zinc polycarxyolate cement. Hence the structure changes of the matrix and/or interface layer are responsible for compressive strength increasing with aging. The structure changes include the crosslink density, the ratio of complex form to ionic form, the content ratio of Al-PAA to Ca-PAA, the forming and mauring process of the interface layer comprising of silica gel.

  19. Calcium phosphate cements properties with polymers addition

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers

  20. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  1. Low-cycle fatigue of surgical cements

    Directory of Open Access Journals (Sweden)

    A. Balin

    2007-01-01

    Full Text Available Purpose: In case when surgical cement is used to fix endoprostheses of joints the fatigue character of mechanicalinterraction in the cement seems to be a significant importance. The paper suggests to adapt the research methodof low cycle fatigue for modelling the loads on surgical cements in an artificial hip joint. Surgical cements havealso been modified in order to improve their functional properties.Design/methodology/approach: Low cycle fatigue tests were conducted on samples made from Palamedcement without an addition and on samples modified with glassy carbon and titanium. The tests were conductedon a servohydraulic fatigue testing machine, MTS-810, with displacement control.Findings: Fatigue tests proved viscoelastic character of all the tested materials. During the fatigue tests, thephenomenon of stress cyclic relaxation was observed.Research limitations/implications: Modelling the loadings of cement in endoprostheses of joints with the lowcycle fatigue method takes into account all high value stresses, while cement is being used for endoprosthesesfor many years in the conditions of random stress and deformation courses. Therefore the obtained stress anddeformation values are bigger than those which would have been obtained in real conditions in the same time.Practical implications: The low cycle fatigue tests carried out showed how important is the factor of timefor the behavior of surgical cement in the conditions of changeable loadings. This fact is essential to assessits usability for endoprosthesoplasty of joints, specially of a hip joint. Post deformation return which is acharacteristic feature for material viscoelasticity enables its regeneration conditioning expected durability ofendoprosthesis of joints.Originality/value: Low cycle fatigue testing method for modelling of loads on surgical cement in artificial hipjoint enables to carry out the tests in a shorter period of time.

  2. Acrylic Bone Cements Modified with Starch

    OpenAIRE

    Krilova, V; Vītiņš, V

    2010-01-01

    The successful result of restorative and replacement surgical operation depends significantly on properties of used bone cement. Acrylic bone cements are usually based on methylmethacrylate polymer, while monomer polymerization begins after mixing of components in mixing device and terminates in living tissue. Polymerization of methylmethacrylate is exothermic process, and temperature increase might cause tissue necrosis with concomitant implant aseptic loosening. Developed non-ionogenic and ...

  3. Radiological changes in asbestos cement workers.

    OpenAIRE

    Jakobsson, K; Strömberg, U; Albin, M; Welinder, H; Hagmar, L

    1995-01-01

    OBJECTIVE--To explore associations between exposure to asbestos cement dust and radiographic findings in lung parenchyma and pleura. METHODS--Radiographs from 174 blue collar workers and 29 white collar workers from an asbestos cement plant formed one part of the study. Progression of small opacities was further studied in those 124 blue collar workers, for whom two radiographs taken after the end of employment were available. The median readings from five readers who used the full ILO 1980 c...

  4. Microstructure Analysis of Heated Portland Cement Paste

    OpenAIRE

    Q. Zhang; Ye, G.

    2011-01-01

    When a concrete structure is exposed to high temperature, the mechanical damage and chemical transformation take place simultaneously, which will change the microstructure of material. On the other hand, the mechanical properties and transport properties depend on the development of microstructure of cement paste. In order to study the microstructure changes at high temperature, in this contribution the cement paste samples were firstly heated to varied temperatures from 100 °C to 1000 °C wit...

  5. Dynamic properties of composite cemented clay

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 梁旭

    2004-01-01

    In this work,the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.

  6. Topics in Cement and Concrete Research

    OpenAIRE

    Brouwers, H. J. H.

    2006-01-01

    The present paper addresses several topics in regard to the sustainable design and use of concrete. First, major features concerning the sustainable aspects of the material concrete are summarised. Then the major constituent, from an environmental point of view, cement is discussed in detail, particularly the hydration and application of slag cement. The intelligent combining of mineral oxides, which are found in clinker, slag, fly ashes etc., is designated as mineral oxide engineering. It re...

  7. Improvement of Cement Strength by Induction Method

    Institute of Scientific and Technical Information of China (English)

    YANG Li-yuan; LIN Zong-shou

    2004-01-01

    The induction method of improving the strength of Portland cement by adding fine slag powder,high aluminate component and hydrated paste was investigated through determining the physical properties,hydration heat and pore size distribution,and its mechanism was discussed.The experimental results reveal that a certain content of high aluminate component,fine slag powder and hydrated paste can improve remarkably the strength of Portland cement.

  8. Estimating the chloride transport in cement paste

    OpenAIRE

    Princigallo, A.

    2012-01-01

    A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method prov...

  9. Competitiveness and carbon leakages in industry under asymmetric climate policy

    International Nuclear Information System (INIS)

    This research aims at studying how to predict competitiveness loss for an industry submitted to an asymmetric carbon constraint, and carbon leakages, whether high losses and important leakages might be feared, and which policies can be used to mitigate these losses and escapes. The author analyses and comments the content of four articles dealing with: the impact on competitiveness, revenue distribution and economic efficiency of a change in the allocation rules for EU greenhouse gas allowances; the relationship between allocation of CO2 allowances and competitiveness in the case of the European iron and steel industry; CO2 abatement, competitiveness and leakage in the European cement industry under EU ETS; and leakage from climate policies and border tax adjustment (lessons from a geographic model of the cement industry). Then, the author combines several approaches to study the cement and steel industries

  10. RE-USE OF SPENT CATALYST FROM OIL-CRACKING REFINERIES AS SUPPLEMENTARY CEMENTING MATERIAL

    Institute of Scientific and Technical Information of China (English)

    S. K. Antiohos; E. Chouliara; S. Tsimas

    2006-01-01

    Advanced technological achievements and the continuous growth of economy have made the disposal,recycle and reuse of industrial by-products a severe challenge. The cement industry is considered one of the key sectors in this effort in successfully (in terms of not extenuating but improving some of the properties of the final product) absorbing large quantities of solid wastes, either as aggregates or as secondary cementitious materials. This not only contributes to the creation of an energy and CO2-emission depository (as commonly used raw materials are spared), but also simultaneously alleviates the acute environmental burden caused by the irresponsible disposal of such by-products. In this study, the possibility of reusing spent fluid catalytic-cracking catalyst (FCC) as a supplementary cementing material(SCM) was examined. A series of tests were conducted, initially aiming at characterizing the material and thereafter evaluating its pozzolanic activity and its effect on the mechanical properties of blended cements. Major findings in this investigation revealed that the use of FCC as a mineral admixture in cement is feasible, strengthening the belief that siliceous glassy residues should represent a steady supply for the construction sector.

  11. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  12. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  13. Treatment and recycling of asbestos-cement containing waste

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, F. [Department of Technology, University Parthenope, Naples (Italy); Cioffi, R., E-mail: raffaele.cioffi@uniparthenope.it [Department of Technology, University Parthenope, Naples (Italy); Lavorgna, M.; Verdolotti, L. [Institute for Biomedical and Composite Materials - CNR, Naples (Italy); De Stefano, L. [Institute for Microelectronics and Microsystems - CNR, Naples (Italy)

    2011-11-15

    Highlights: {yields} Asbestos-cement wastes are hazardous. {yields} High energy milling treatment at room temperature allows mineralogical and morphological transformation of asbestos phases. {yields} The obtained milled powders are not-hazardous. {yields} The inert powders can be recycled as pozzolanic materials. {yields} The hydraulic mortars containing the milled inert powders are good building materials. - Abstract: The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in building materials. In this work, asbestos-cement waste is milled by means of a high energy ring mill for up to 4 h. The very fine powders obtained at all milling times are characterized to check the mineralogical and morphological transformation of the asbestos phases. Specifically, after 120 min of milling, the disappearance of the chrysotile OH stretching modes at 3690 cm{sup -1}, of the main crystalline chrysotile peaks and of the fibrous phase are detected by means of infrared spectroscopy and X-ray diffraction and scanning electron microscopy analyses, respectively. The hydraulic behavior of the milled powders in presence of lime is also tested at different times. The results of thermal analyses show that the endothermic effects associated to the neo-formed binding phases significantly increase with curing time. Furthermore, the technological efficacy of the recycling process is evaluated by preparing and testing hydraulic lime and milled powder-based mortars. The complete test set gives good results in terms of the hydration kinetics and mechanical properties of the building materials studied. In fact, values of reacted lime around 40% and values of compressive

  14. Treatment and recycling of asbestos-cement containing waste

    International Nuclear Information System (INIS)

    Highlights: → Asbestos-cement wastes are hazardous. → High energy milling treatment at room temperature allows mineralogical and morphological transformation of asbestos phases. → The obtained milled powders are not-hazardous. → The inert powders can be recycled as pozzolanic materials. → The hydraulic mortars containing the milled inert powders are good building materials. - Abstract: The remediation of industrial buildings covered with asbestos-cement roofs is one of the most important issues in asbestos risk management. The relevant Italian Directives call for the above waste to be treated prior to disposal on landfill. Processes able to eliminate the hazard of these wastes are very attractive because the treated products can be recycled as mineral components in building materials. In this work, asbestos-cement waste is milled by means of a high energy ring mill for up to 4 h. The very fine powders obtained at all milling times are characterized to check the mineralogical and morphological transformation of the asbestos phases. Specifically, after 120 min of milling, the disappearance of the chrysotile OH stretching modes at 3690 cm-1, of the main crystalline chrysotile peaks and of the fibrous phase are detected by means of infrared spectroscopy and X-ray diffraction and scanning electron microscopy analyses, respectively. The hydraulic behavior of the milled powders in presence of lime is also tested at different times. The results of thermal analyses show that the endothermic effects associated to the neo-formed binding phases significantly increase with curing time. Furthermore, the technological efficacy of the recycling process is evaluated by preparing and testing hydraulic lime and milled powder-based mortars. The complete test set gives good results in terms of the hydration kinetics and mechanical properties of the building materials studied. In fact, values of reacted lime around 40% and values of compressive strength in the range of 2

  15. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... review. Background The Commission instituted this review on May 2, 2011 (76 FR 24519) and determined on August 5, 2011 that it would conduct an expedited review (76 FR 50252, August 12, 2011). The Commission... COMMISSION Gray Portland Cement and Cement Clinker From Japan Determination On the basis of the record...

  16. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  17. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C;

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  18. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  19. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anton K. Schindler; Steve R. Duke; Thomas E. Burch; Edward W. Davis; Ralph H. Zee; David I. Bransby; Carla Hopkins; Rutherford L. Thompson; Jingran Duan; Vignesh Venkatasubramanian; Stephen Giles.

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  20. Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Decheng; XU Dongyu; CHENG Xin; CHEN Wen

    2009-01-01

    The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete(HPC)were investigated.The experimental results show that with the decreasing water/cement ratio,the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably,and the carbonation resistance capability is also improved with the adding admixtures.The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD.The analysis results reveal that the main hydration product of sulphoaluminate cement,that is ettringite(AFt),de-composes after carbonation.

  1. [Burns caused by cement mortar (based on expert opinion)].

    Science.gov (United States)

    Kleinhans, D

    1984-01-01

    A 35-year-old farmer with scars on his right arm, following erosion obviously due to wet cement (case of an expert opinion), was examined. Cement water had continuously soaked his shirt while he was planing a freshly applied wet cement ceiling with his right arm upwards. The cement did not contain special additives, so the normal alkalinity of wet cement and occlusion effects caused the erosion. The farmer sued the manufacturer of the cement for damages because of missing warning notices. The court decided in his favor.

  2. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Experimental and theoretical studies of hydrated cement systems are described. The behaviour of slag-based cement is described with a view to predicting their long term pH, Esub(n) and mineralogical balance. Modelling studies which enable the prediction at long ages of cement composites are advanced and a base model of the CaO-SiO2-H2O system presented. The behaviour of U and I in cements is explored. The tolerance of cement systems for a wide range of miscellaneous waste stream components and environmental hazards is described. The redox potential in cements is effectively lowered by irradiation. (author)

  3. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  4. Quality control of cemented waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Slate, L.J.

    1994-12-31

    To insure that cemented radwaste remains immobilized after disposal, certain standards have been set in Europe by the Commission of the European Communities. One such standard is compressive strength. If the compressive strength can be predicted during the early curing stages, time and money can be saved and the quality of the final waste form guaranteed. It was determined that the 7- and 28-day compressive strength from radwaste cementation can be predicted during the mixing and early curing stages by at least three methods. The three that were studied were maturity, rheology, and impedance. Maturity is a temperature-to-time measurement, rheology is a shear stress-to-shear rate measurement, and impedance is the opposition offered to the flow of alternating current. These three methods were employed on five different cemented radwaste concentrations with three different water-to-cement ratios; thus, a total of 15 different mix designs were considered. The results showed that the impedance was the easiest to employ for an on-line process. The results of the impedance method showed a very good relationship between impedance and water-to-cement ratio; therefore, an accurate prediction of compressive strength of cemented radwaste can be drawn from this method. The results of the theology method were very good. The method showed that concrete conforms to the Bingham plastic rheologic model, and the theology method can be used to predict the compressive strength of cemented radwaste, but may be too cumbersome. The results of the maturity method were shown to be limited in accuracy for determining compressive strength.

  5. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents

    Directory of Open Access Journals (Sweden)

    Dongliang Li

    2015-07-01

    Full Text Available Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08 under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa were obtained. Based on the test results, the effect of the cementing agent content (Cv on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using Cv. The research reveals that when Cv is high (e.g., Cv = 0.03, 0.05 or 0.08, the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as Cv increases, both the peak strength and residual strength of the samples show a significant increase. When Cv is low (e.g., Cv = 0.01, the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of Cv (the cementing agent content with c′ (the cohesion force of the sample and Δϕ′ (the increment of the angle of shearing resistance is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  6. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Adriana Eštoková

    2013-12-01

    Full Text Available The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg−1, 9.78–26.3 Bq·kg−1 and 156.5–489.4 Bq·kg−1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg−1, gamma index Iγ = 0.256, alpha index Iα = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h−1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg−1 for 226Ra, 13.1–20.5 Bq·kg−1 for 232Th and 250.4–494.4 Bq·kg−1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites.

  7. Health promoting behaviors in industrial workers

    Directory of Open Access Journals (Sweden)

    Gulay Yilmazel

    2015-04-01

    CONCLUSIONS: Health promoting behaviors were found to be in moderate level among cement factory workers. In our country, health protection and development programs at the national level would be useful to standardize for employees in the industrial sector. [TAF Prev Med Bull 2015; 14(2.000: 153-162

  8. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    2013-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity see

  9. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    Energy Technology Data Exchange (ETDEWEB)

    2005-11-01

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  10. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  11. Alkali-silica reaction resistant concrete using pumice blended cement

    Science.gov (United States)

    Ramasamy, Uma

    Durability of structures is a major challenge for the building industry. One of the many types of concrete deterioration that can affect durability is alkali-silica reaction (ASR). ASR has been found in most types of concrete structures, including dams, bridges, pavements, and other structures that are 20 to 50 years old. The degradation mechanism of ASR produces a gel that significantly expands in the presence of water as supplied from the surrounding environment. This expansion gel product can create high stresses and cracking of the concrete, which can lead to other forms of degradation and expensive structural replacement costs. The four essential factors that produce an expansive ASR gel in concrete are the presence of alkalis, siliceous aggregate, moisture, and free calcium hydroxide (CH). If concrete is starved of any one of these essential components, the expansion can be prevented. Reducing CH through the use of a supplementary cementitious material (SCM) such as natural pozzolan pumice is the focus of this research. By using a pozzolan, the amount of CH is reduced with time based on the effectiveness of the pozzolan. Many pozzolans exist, but one such naturally occurring pozzolanic material is pumice. This research focuses on determining the effect of a finely ground pumice as a SCM in terms of its resistance to ASR expansion, as well as improving resistance to other potential concrete durability mechanisms. In spite of having high alkali contents in the pumice, mixtures containing the SCM pumice more effectively mitigated the ASR expansion reaction than other degradation mechanisms. Depending on the reactivity of the aggregates and fineness of the pumice, 10-15% replacement of cement with the pumice was found to reduce the ASR expansion to the acceptable limits. The amount of CH remaining in the concrete was compared to the ASR expansion in order to improve understanding of the role of CH in the ASR reaction. Thermo-gravimetric analysis (TGA) and X

  12. Analysis of system and methods for improved cementing of oil- and gas wells

    OpenAIRE

    Stensrud, Magnus

    2011-01-01

    Cement is a crucial part of well construction. If a good cement bond between the casing and well bore wall cannot be achieved in the primary cementing, expensive remedial cementing jobs or possible loss of the well bore can occur.When cementing casings and liners in deep waters or pressure depleted reservoirs there is often a small pressure margin between pore pressure and fracture pressure, this makes cement operations more complex. New cementing techniques and cements are being developed to...

  13. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    Science.gov (United States)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  14. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material

    OpenAIRE

    Tanvir Manzur; Nur Yazdani; Md. Abul Bashar Emon

    2016-01-01

    Carbon nanotubes (CNTs) are a virtually ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. It is evident from contemporary research that utilization of CNT in producing new cement-based composite materials has a great potential. Consequently, possible practical application of CNT reinforced cementitious composites has immense prospect in the field of applied nanotechnology within construction industry. Several repair, retrofit, and strengthening techniques a...

  15. Processing and characterisation of calcium sulphoaluminate (CSA) eco-cements with tailored performances

    OpenAIRE

    García-Maté, Marta

    2014-01-01

    Climate change mitigation usually involves the reduction of greenhouse gases emissions, such as carbon dioxide (CO2). Every tonne of Ordinary Portland Cement (OPC) produces about one tonne of CO2. Consequently, OPC accounts for 5-6% of anthropogenic CO2 emissions and for 4% of total global warming. Due to these environmental problems the industry of building materials is under increasing pressure to reduce the energy used in the production of OPC and the greenhouse gas emissions. Hence, t...

  16. Incidence of lung cancer by histological type among asbestos cement workers in Denmark.

    OpenAIRE

    Raffn, E; Lynge, E; Korsgaard, B

    1993-01-01

    OBJECTIVE--A significant twofold increased risk of lung cancer was found among 8000 men employed in the Danish asbestos cement industry between 1928 and 1984. The histological pattern of 104 lung cancer cases was studied with the aim of evaluating a relation between specific morphological types, duration of employment, and time since first employment. METHODS--Age, sex, and calendar time specific incidence of morphological subtypes of lung cancer (adenocarcinoma, squamous cell carcinoma, anap...

  17. Social and environmental accounting: a case study on a Portuguese cement company

    OpenAIRE

    Eugénio, Teresa Cristina Pereira

    2009-01-01

    PhD in Management. Specialization in Accounting The aim of this thesis is to study Social and Environmental Accounting (SEA) in the light of the results of an intensive case study of a Portuguese cement company (Secil), that although operating in an environmental sensitive industry, has been recognised for being socially responsible. The evidence collected through an in-depth qualitative case study is treated in four studies, which compose this thesis, and each is developed as an independe...

  18. EFFECT OF NANOMATERIALS IN CEMENT MORTAR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    WAIL N. AL-RIFAIE

    2016-09-01

    Full Text Available Concrete is considered as brittle materials and widely used due to high compressive strength but unfortunately having and has low tensile strength that has a numerous negative impacts on the lifespan of concrete made structures. Therefore, mechanical properties of cement mortar have been investigated experimentally using different types and ratios of nano material to improve the properties. Since the strength of the concrete is of high importance, different materials have been used to enhance the compressive and the tensile characteristics of the cement mortar compressive and tensile strength. Mainly, this objective has been implemented through using micro cement, micro sand, nano silica, and nano clay in developing a nano-cement mortar which can to improve the concrete for the constructional applications. The samples were prepared and tested under tensile and compressive mode according to ASTM-2011 regulations for concrete. The parameters that are taken consideration during the investigation were micro sand, micro cement, nano silica, developed nano clay, and naphthalene sulphonate as super- plasticizers. In general, it has been observed that the results showed a significant increase in both compressive and tensile strength of the mortar at early stages of hardening, where a maximum increase of 22% in the compressive strength was achieved , whereas 3.7 time increase in the compressive strength was recorded over the tradition levels of the concrete strength.

  19. Pulmonary Artery Cement Embolism after a Vertebroplasty

    Directory of Open Access Journals (Sweden)

    Anas Nooh

    2015-01-01

    Full Text Available Background Context. Vertebroplasty is a minimally invasive procedure most commonly used for the treatment of vertebral compression fractures. Although it is relatively safe, complications have been reported over time. Among those complications, massive cement pulmonary embolism is considered a rare complication. Here we report a case of massive diffuse cement pulmonary embolism following percutaneous vertebroplasty for a vertebral compression fracture. Study Design. Case report. Methods. This is a 70-year-old female who underwent vertebroplasty for T11 and T12 vertebral compression fracture. Results. CT-scan revealed an incidental finding of cement embolism in the pulmonary trunk and both pulmonary arteries. Since the patient was asymptomatic, she was monitored closely and she did not need any intervention. Conclusion. Vertebroplasty is a minimally invasive procedure used for treatment of vertebral compression fracture. Despite the low rate of complications, a pulmonary cement embolism can occur. The consequences of cement embolism range widely from being asymptomatic to embolism that can cause paralysis, radiculopathy, or a fatal pulmonary embolism.

  20. Microbial-influenced cement degradation: Literature review

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews literature which addresses the effect of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are identified, which are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with concrete and can ultimately lead to structural failure. Mechanisms inherent in microbial-influenced degradation of cement-based material are the focus of this report. This report provides sufficient evidence of the potential for microbial-influenced deterioration of cement-solidified LLW to justify the enumeration of the conditions necessary to support the microbiological growth and population expansion, as well as the development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbiological-induced degradation that could impact the stability of the waste form