WorldWideScience

Sample records for cement based mortar

  1. Clay content of argillites: Influence on cement based mortars

    OpenAIRE

    Habert, Guillaume; CHOUPAY, Nathalie; Escadeillas, Gilles; MONTEL, Jean Marc; Guillaume, D

    2009-01-01

    The pozzolanic activity of four heated powders containing different clays has been tested. Mineral transformations during calcination from 20 to 900 °C have been followed by X-ray diffraction (XRD) and Differential Scanning Calorimetry (DSC). Compressive strength tests were performed at 1, 7 and 28 days on cement-clay mortars using 30% of pozzolanic material as a replacement by mass for cement. Calcination temperatures corresponded to the stages of potentially high reactivity identified by XR...

  2. Chemical composition influence of cement based mortars on algal biofouling

    Science.gov (United States)

    Estelle, Dalod; Alexandre, Govin; Philippe, Grosseau; Christine, Lors; René, Guyonnet; Denis, Damidot

    2013-04-01

    The main cause of building-facade biodegradation is the growth of microorganisms. This phenomenon depends on several parameters such as the geographical situation, the environmental conditions and the surface state of the substrate. Several researches have been devoted to the study of the effect of porosity and roughness on the biofouling of stones and mortars. However, none of them have addressed the influence of the mortar chemistry on the microorganism growth kinetic. The main objective of this study is to highlight the influence of the mortar chemistry in relationship with its physical properties on biological weathering. Earlier work showed a good resistance of Calcium Aluminate Cements to biodeterioration by acidogenic bacteria (Thiobacillus) and fungi (Alternaria alternata, Aspergillus Niger and Coniosporium uncinatum). In order to characterize the influence of the mortar chemistry on biofouling, two Portland cements and two alumina cements are used. Among micro-organisms able to grow, green algae are most involved in the aesthetic deterioration of facades. Indeed, they can colonize any type of media and can be a source of nutrients for other micro-organisms such as fungi. The green algae Klebsormidium flaccidum is chosen because of its representativeness. It is indeed the species the most frequently identified and isolated from samples taken on sites. The biofouling kinetic is followed on samples exposed outdoor and on samples tested in a laboratory bench which consists in spraying an algae culture on mortar specimens. The results obtained by in situ trials are compared with the results obtained on the laboratory bench. The microorganism growth kinetic is measured by image analysis. To improve the detection of algae on the surface of the cementitious samples, the raw image is converted in the YIQ color space. Y, I and Q correspond respectively to luminance, in-phase, and quadrature. On the Q channel, the areas covered by algae and the areas of clean mortar

  3. ALKALI-ACTIVATED CEMENT MORTARS CONTAINING RECYCLED CLAY-BASED CONSTRUCTION AND DEMOLITION WASTE

    Directory of Open Access Journals (Sweden)

    F. Puertas

    2015-09-01

    Full Text Available The use of clay-based waste as an aggregate for concrete production is an amply studied procedure. Nonetheless, research on the use of this recycled aggregate to prepare alkaline cement mortars and concretes has yet to be forthcoming. The present study aimed to determine: the behaviour of this waste as a pozzolan in OPC systems, the mechanical strength in OPC, alkali-activated slag (AAS and fly ash (AAFA mortars and the effect of partial replacement of the slag and ash themselves with ground fractions of the waste. The pozzolanic behaviour of clay-based waste was confirmed. Replacing up to 20 % of siliceous aggregate with waste aggregate in OPC mortars induced a decline in 7 day strength (around 23 wt. %. The behaviour of waste aggregate in AAMs mortars, in turn, was observed to depend on the nature of the aluminosilicate and the replacement ratio used. When 20 % of siliceous aggregate was replaced by waste aggregate in AAS mortars, the 7 day strength values remained the same (40 MPa. In AAFA mortars, waste was found to effectively replace both the fly ash and the aggregate. The highest strength for AAFA mortars was observed when they were prepared with both a 50 % replacement ratio for the ash and a 20 % ratio for the aggregate.

  4. [Burns caused by cement mortar (based on expert opinion)].

    Science.gov (United States)

    Kleinhans, D

    1984-01-01

    A 35-year-old farmer with scars on his right arm, following erosion obviously due to wet cement (case of an expert opinion), was examined. Cement water had continuously soaked his shirt while he was planing a freshly applied wet cement ceiling with his right arm upwards. The cement did not contain special additives, so the normal alkalinity of wet cement and occlusion effects caused the erosion. The farmer sued the manufacturer of the cement for damages because of missing warning notices. The court decided in his favor.

  5. Effects of Two Redispersible Polymer Powders on Efflorescence of Portland Cement-based Decorative Mortar

    Directory of Open Access Journals (Sweden)

    Huimei ZHU

    2014-09-01

    Full Text Available The effects of redispersible polymer powders of ethylene/Vinyl acetate copolymer (EVA and ethylene/vinyl laurate/vinyl chloride terpolymer (E/VL/VC on the efflorescence of Portland cement-based decorative mortar (PCBDM were studied. The results showed that EVA slightly prolongs the efflorescence duration of fresh PCBDM; and exacerbates efflorescence of hardened PCBDM, because it increases the content of soluble salts such as Ca2+, K+, Na+ ions in hardened PCBDM and promotes their migration. E/VL/VC exacerbates efflorescence of fresh PCBDM due to it easily dissolves in the surface water; but reduces efflorescence of hardened PCBDM, which is attributed to that it decreases the soluble salts content in hardened PCBDM and prohibits salts migration. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4053

  6. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  7. Early age monitoring of cement mortar using embedded piezoelectric sensors

    Science.gov (United States)

    Narayanan, Arun; Subramaniam, Kolluru V. L.

    2016-04-01

    A piezoceramic based sensor consisting of embedded Lead Zirconate Titanate (PZT) patch is developed for assessing the progression of hydration and evolution of properties of cement mortar. A method for continuous assessment of cement mortar with different water to cement ratios after casting is presented. The method relies on monitoring changes in the electromechanical (EM) conductance of a PZT patch embedded in mortar. Changes in conductance are shown to sensitively reflect the changes in the mechanical impedance of the cementitious material as it transforms from fluid to solid state.

  8. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  9. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  10. Influence of Pore Structure on Compressive Strength of Cement Mortar

    Directory of Open Access Journals (Sweden)

    Haitao Zhao

    2014-01-01

    Full Text Available This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  11. Considerations about the use of lime-cement mortars for render conservation purposes

    OpenAIRE

    Torgal, Fernando Pacheco; Faria, Joana; Shasavandi, Arman; Jalali, Said

    2011-01-01

    Some investigations about conservation renders points out that Portland cement based mortars should be avoided and should be replaced by lime-pozzolan mortars. However, this type of mortar is still under investigation and the majority of Portuguese construction enterprises operating in the field of building conservation do not possess enough know-how about them. Besides the absolute rejection of the use of Portland cement based mortars even with just a minimum amount appears to be a dogmat...

  12. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.;

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  13. The aggressiveness of pig slurry to cement mortars

    OpenAIRE

    Massana Guitart, Jordi; Guerrero Bustos, Ana; Antón Fuentes, Rebeca; Garcimartin Molina, Miguel Angel; Sanchez Espinosa, Elvira

    2013-01-01

    The aim was to measure the behaviour of various mortars employed in livestock media in central Spain and to analyse the aggressiveness of pig slurry to cement blended with fly ash mortars. To achieve this, mortar specimens were immersed in ponds storing pig slurry. Mortar specimens, of 40 ? 40 ? 160 mm, were made from four types of cement commonly used and recommended for rural areas. The types were a sulphate-resistant Portland cement and three cements blended in different proportions with ...

  14. EFFECT OF NANOMATERIALS IN CEMENT MORTAR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    WAIL N. AL-RIFAIE

    2016-09-01

    Full Text Available Concrete is considered as brittle materials and widely used due to high compressive strength but unfortunately having and has low tensile strength that has a numerous negative impacts on the lifespan of concrete made structures. Therefore, mechanical properties of cement mortar have been investigated experimentally using different types and ratios of nano material to improve the properties. Since the strength of the concrete is of high importance, different materials have been used to enhance the compressive and the tensile characteristics of the cement mortar compressive and tensile strength. Mainly, this objective has been implemented through using micro cement, micro sand, nano silica, and nano clay in developing a nano-cement mortar which can to improve the concrete for the constructional applications. The samples were prepared and tested under tensile and compressive mode according to ASTM-2011 regulations for concrete. The parameters that are taken consideration during the investigation were micro sand, micro cement, nano silica, developed nano clay, and naphthalene sulphonate as super- plasticizers. In general, it has been observed that the results showed a significant increase in both compressive and tensile strength of the mortar at early stages of hardening, where a maximum increase of 22% in the compressive strength was achieved , whereas 3.7 time increase in the compressive strength was recorded over the tradition levels of the concrete strength.

  15. Composite cement mortars based on marine sediments and oyster shell powder

    Directory of Open Access Journals (Sweden)

    Ez-zaki, H.

    2016-03-01

    Full Text Available Additions of dredged marine sediments and oyster shell powder (OS as cement substitute materials in mortars are examined by several techniques. The sediments have high water and chloride contents and calcite, quartz, illite and kaolinite as principal minerals. The OS powders are entirely composed of calcium carbonate and traces of other impurities. Four mixtures of treated sediments and OS powders at 650 °C and 850 °C are added to Portland cement at 8%, 16% and 33% by weight. The hydration of composite pastes is followed by calorimetric tests, the porosity accessible to water, the bulk density, the permeability to gas, the compressive strength and the accelerated carbonation resistance are measured. In general, the increase of addition amounts reduced the performance of mortars. However, a reduction of gas permeability was observed when the addition was up to 33%. Around 16% of addition, the compressive strength and carbonation resistance were improved.En este trabajo se ha valorado la sustitución de cemento en morteros por sedimentos marinos dragados y polvo de concha de ostra (OS. Los sedimentos tienen altos contenidos de agua, cloruros, calcita, cuarzo, illita y caolinita como minerales principales. Los polvos OS están compuestos de carbonato cálcico y trazas de otras impurezas. Se añadieron a un cemento Portland, cuatro mezclas de los sedimentos y polvos de OS tratados a 650 °C y 850 °C en proporciones del 8%, 16% y 33% en peso. La hidratación de pastas se estudió a través de calorimetría. Se estudió además la porosidad accesible al agua, densidad aparente, permeabilidad al gas, resistencia a compresión y carbonatación acelerada. En general, un aumento en la adición produjo una reducción del rendimiento de los morteros. Se observó, sin embargo, una reducción de la permeabilidad a los gases con porcentajes de adición de hasta el 33%. Con valores del 16% de sustitución, mejoraron las resistencias mecánicas y la

  16. Influence of Pore Structure on Compressive Strength of Cement Mortar

    OpenAIRE

    Haitao Zhao; Qi Xiao; Donghui Huang; Shiping Zhang

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement r...

  17. EQUIVALENT MODEL OF EXPANSION OF CEMENT MORTAR UNDER SULPHATE EROSION

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Minqiang Jiaug; Jiankang Chen

    2008-01-01

    The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods.First,cement mortars are fabricated with the ratio of water to cement of 0.4,0.6,and 0.8.Secondly,the expansion of specimen immerged in sulphate solution is measured at different times.Thirdly,a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method.In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account.Finally,the numerical calculation is performed.The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.

  18. Superplasticized Portland cement: Production and compressive strength of mortars and concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bouzoubaa, N.; Zhang, M.H.; Malhotra, V.M. [Natural Resources Canada, Ottawa, Ontario (Canada)

    1998-12-01

    This paper deals with the effect of intergrinding different percentages of a naphthalene-based superplasticizer with Portland cement clinker and gypsum on the fineness of the product, and on the water requirement and the compressive strength of the mortars made with the superplasticized cement. The properties of the fresh and hardened concrete made with the superplasticized cements were also investigated. The results showed that the intergrinding of a given amount of a naphthalene-based superplasticizer with Portland clinker and gypsum reduced the grinding time required for obtaining the same Blaine fineness as that of the control Portland cement without the superplasticizer. The water requirement of the mortars made with the superplasticized cements was similar to that of the mortars made with the control Portland cements when the same amount of the superplasticizer was added at the mortar mixer; for a given grinding time and a Blaine fineness of {approximately}4500 cm{sup 2}/g, the mortars made with the superplasticized cement had higher compressive strength than those made with the control Portland cement. For a given grinding time or Blaine fineness of cement {ge}5000 cm{sup 2}/g, the slump loss, air content stability, bleeding, autogenous temperature rise, setting times, and compressive strength of the concrete made with the superplasticized cements were generally comparable to those of the concrete made with the control Portland cements when the superplasticizer was added at the concrete mixer.

  19. Characteristics of Bamboo Leaf Ash Blended Cement Paste and Mortar

    OpenAIRE

    Umoh A.A.; Odesola I.

    2015-01-01

    The use of bamboo leaf ash as cement supplement can contribute to reduction in cost and environmental hazard associated with cement production as well as waste pollution caused by the littered bamboo leaves. Therefore, the characteristics of cement paste and mortar incorporating bamboo leaf ash were investigated. The results of the physical properties of the pastes were within the requirements stipulated by relevant standards while that of the mortar cubes indicated that the compressive stren...

  20. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack

    OpenAIRE

    Puertas, F.; Gutiérrez, R.; Fernández-Jiménez, A.; Delvasto, S.; Maldonado, J.

    2002-01-01

    The durability and chemical resistance of alkali activated slag and fly ash/slag mortars in contact with sulfates and seawater media have been studied. Two methods were used in the evaluation of such durability: Kock-Steinegger and ASTM C1012. A mineralogical and a microstructural characterization of mortars were done at different ages of their conservation in aggressive media through XRD, SEM/ EDX and mercury porosimetry. Results showed a high durability of activated cement mortars in s...

  1. Compressive Strength Development and Microstrueture of Cement.asphalt Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; YAN Peiyu; KONG Xiangming; YANG Jinbo

    2011-01-01

    The compressive strength developing process and the microstructure of cement-asphalt mortar (CA mortar) were investigated.The fluidity of CA mortar has a great influence on its strength.The optimum value of spread diameter of slump flow test is in the range of 300 to 400 mm.The compressive strength of CA mortar keeps a relatively high growth rate in 56 days and grows slowly afterwards.The residual water of hydration in CA mortar freezes under minus environmental temperature which can lead to a significant reduction of the strength of CA mortar.Increasing A/C retards asphalt emulsion splitting and thus prolongs the setting process of CA mortar.The hydration products of cement form the major structural framework of hardened CA mortar and asphalt is a weak phase in the framework but improves the viscoelastic behavior of CA mortar.Therefore,asphalt emulsion should be used as much as possible on the condition that essential performance criterions of CA mortar are satisfied.

  2. Mechanism and Durability of Repair Systems in Polymer-Modified Cement Mortars

    Directory of Open Access Journals (Sweden)

    Ru Wang

    2015-01-01

    Full Text Available This paper investigated the mechanism and durability of repair systems made of ordinary cement-based repair mortar and three kinds of polymer-modified repair mortars with old concrete, SBR dispersion, SAE dispersion, and SAE powder. By comparing the bonding properties of mortars before and after erosion, it was found that polymers could effectively improve the durability of the repair system and SAE powder had the best improvement. Micromorphology study of the repair mortar and the interface of repair mortar with old concrete through SEM showed that the polymer film formed from SAE powder whatever in the mortar or at the interface was dense and tough, the film formed from SAE dispersion was loose and weak, while the film formed from SBR dispersion was in between them, which explained the difference in the tensile bond strength and the durability of the repair systems.

  3. Characteristics of Bamboo Leaf Ash Blended Cement Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Umoh A.A.

    2015-01-01

    Full Text Available The use of bamboo leaf ash as cement supplement can contribute to reduction in cost and environmental hazard associated with cement production as well as waste pollution caused by the littered bamboo leaves. Therefore, the characteristics of cement paste and mortar incorporating bamboo leaf ash were investigated. The results of the physical properties of the pastes were within the requirements stipulated by relevant standards while that of the mortar cubes indicated that the compressive strength generally increased with curing age, and that the mix containing 15% Bamboo Leaf Ash (BLA by mass competes favorably with that of the reference mix at 28days and above. The water absorption and apparent porosity were observed to increase with increase in BLA content, while the bulk density decreases as the percentage of BLA increases from 5% to 25% by mass. The study concluded that 15% BLA replacing cement is adequate for the production of masonry mortar.

  4. Comparing the Environmental Impacts of Alkali Activated Mortar and Traditional Portland Cement Mortar using Life Cycle Assessment

    Science.gov (United States)

    Matheu, P. S.; Ellis, K.; Varela, B.

    2015-11-01

    Since the year 1908 there has been research into the use alkali activated materials (AAM) in order to develop cementitious materials with similar properties to Ordinary Portland Cement. AAMs are considered green materials since their production and synthesis is not energy intensive. Even though AAMs have a high compressive strength, the average cost of production among other issues limits its feasibility. Previous research by the authors yielded a low cost AAM that uses mine tailings, wollastonite and ground granulated blast furnace slag (GGBFS). This mortar has an average compressive strength of 50MPa after 28 days of curing. In this paper the software SimaPro was used to create a product base cradle to gate Life Cycle Assessment (LCA). This compared the environmental impact of the AAM mortar to an Ordinary Portland Cement mortar (PCHM) with similar compressive strength. The main motivation for this research is the environmental impact of producing Ordinary Portland Cement as compared to alkali activated slag materials. The results of this LCA show that the Alkali Activated Material has a lower environmental impact than traditional Portland cement hydraulic mortar, in 10 out of 12 categories including Global Warming Potential, Ecotoxicity, and Smog. Areas of improvement and possible future work were also discovered with this analysis.

  5. Effect of graphene on mechanical properties of cement mortars

    Institute of Scientific and Technical Information of China (English)

    曹明莉; 张会霞; 张聪

    2016-01-01

    Functionalized graphene nano-sheets (FGN) of 0.01%−0.05% (mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.

  6. Detrimental effects of cement mortar and fly ash mortar on asthma progression.

    Science.gov (United States)

    Cho, Ara; Jang, Hong-Seok; Roh, Yoon Seok; Park, Hee Jin; Talha, A F S M; So, Seung-Young; Lim, Chae Woong; Kim, Bumseok

    2013-11-01

    Currently, concrete additive materials are used worldwide to improve properties of concrete production and to reduce the total cost of the materials used in the concrete. However, the effects of exposure to various gases emitted from mortar mixed with additive materials are poorly understood. To evaluate the pattern of gas emission from cement mortar and additives, the emission levels of gas including ammonia (NH3) and volatile organic compounds (VOCs) were measured from two different mortar types, Ordinary Portland Cement (OPC), and OPC with fly ash on various time points after manufacture. On days 1, 3, 10 and 30 after manufacture, moderate concentrations of NH3 (4, 9, 12 and 5 ppm) were measured in OPC mortar (24h, 150 mm × 150 mm × 50 mm), whereas higher concentrations of NH3 (73, 55, 20 and 5 ppm) were measured in OPC mortar with fly ash (24h, 150 mm × 150 mm × 50 mm). Furthermore, the concentration of VOCs was more than 10 ppm on 1, 3, and 10 days of age in OPC and OPC with fly ash mortars. To examine the mortars' allergic effects on the respiratory system, mice were sensitized with ovalbumin (OVA) and divided into four groups: normal, asthma control, OPC mortar and OPC mortar with fly ash. The mice were housed in corresponding group cage for 10 days with OVA challenges to induce asthma. Histopathologically, increased infiltration of lymphocytes was observed in the lung perivascular area of mice housed in OPC mortar and OPC mortar with fly ash cages compared to lungs of asthma control mice. Moreover, severe bronchial lumen obstruction and increased hypertrophy of bronchial epithelial cells (pmortar with fly ash group compared to OPC mortar or asthma control groups. Lungs of the two mortar groups generally expressed higher levels of genes related with asthma, including IL-4, eotaxin and epidermal growth factor (EGF) compared to lungs of asthma control mice. Additionally, the OPC mortar with fly ash group showed higher expression of IL-5, 13 and monocyte

  7. Carbonatation Influence on Fly Ash and Portland Cement Mortars

    Directory of Open Access Journals (Sweden)

    P.L. Valdez–Tamez

    2009-01-01

    Full Text Available The influence of carbonation on mortars containing 25% of fly ash instead of the cementitious materials was studied. Mortar cylinder specimens were fabricated for 4 different W/C ratios: 0.35, 0.45, 0.55 and 0.65. Mortars with and without fly ash were subjected to an accelerated carbonation process. Volumetric weight, water absorption, compressive strength, water permeability, pH and mercury intrusion porosimetry of the mortar specimens were determined. Due to the fly ash pozzolanic potential, for all W/C ratios, results of the compressive strength tests at 28 days of the mortars with and without fly ash were similar. Mortars with fly ash presented similar water permeability as mortars without fly ash. PH results showed that alkalinity reduction is lower in mortars with fly ash compared to those containing cement only. In all the mortars, the porosimetric analysis indicated that porosity is reduced due to carbonation. Further more, it is showed the predominance of the macro and mesopores.

  8. Influence of relationship water/cement upon the processing of cements with pozzolana in standard mortar

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-03-01

    Full Text Available The processing of standard mortar is completed following different methods in accordance with the country, but they exist two fundamental tendecies, the ISO and the ASTM. The cuban norm for mechanic-physic tests is based in ISO, and so they use a constant relationship water/cement in the processing of standard mortar a great problem concerning the cement users when they tested those mixed with puzzolanes, because they don't take care of the bigger water needs of those materials. In this work we present an study of the behaviour of Pozzolanic Portland cements (PP-250 elaborates with a fix and changeable relationship water/cement, obtained starting from the fluidity of the pure Portland cement. (P-350 The results obtained shows that the mechanical resistance decreased in cement mortars PP-250 realised with changeable relationship water/cement. So we recommend the adoption of an optional procedure to elaborate a quality mortar with pozzolana cements.

    La elaboración del mortero normalizado se realiza internacionalmente por diferentes métodos, pero existen dos tendencias fundamentales, la enunciada por ISO y por ASTM. La norma cubana de ensayos físico-mecánicos de cemento se basa en la norma ISO, por lo que para la elaboración del mortero normalizado se utiliza una relación agua/cemento constante. Esto ha provocado discrepancias con los usuarios del cemento, especialmente cuando se ensayan los cementos que contienen puzolanas, ya que se plantea que no se tiene en cuenta la mayor demanda de agua de estos materiales. En el presente trabajo se presenta un estudio del comportamiento de cementos Portland Puzolánicos (PP-250 elaborados con una relación agua/ cemento fija y variable, lograda a partir de la fluidez de la pasta de cemento Portland puro (P-350. Los resultados obtenidos indican que se producen disminuciones en la resistencia mecánica en los morteros de cemento PP-250 elaborados con agua/ cemento variable y recomienda la

  9. Tangential adhesion strength of cement mortars in masonry

    Directory of Open Access Journals (Sweden)

    Derkach V.N.

    2012-05-01

    Full Text Available The initial shear strength (tangential adhesion and the angle of internal friction in the horizontal plane of mortar joints are among important characteristics, determining the masonry strength and stiffness qualities in case of share. These characteristics influence largely over the limit state approach of buildings and facilities during seismic activity and over wind, crane and other load, causing the panel frame distortion in frame buildings with masonry infill.In the paper the experimental studies results of tangential adhesion strength of cement mortars with solid and hollow ceramic bricks, porous stones, calcium silicate bricks and cellular concrete blocks are presented. This research gives experimental dependences of mortar adhesive strength with mentioned types of masonry units on compressive strength of cement mortar. There is also the comparison of the obtained results with Russian and foreign standards in this paper.

  10. POLYMER AND CEMENT MORTARS FOR THE CONSTRUCTION AND REPAIR OF BUILDINGS AND STRUCTURE

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2009-02-01

    Full Text Available In the article the analysis of polymer-cement mortars for their application in construction and repair of buildings and structures is presented. The main properties of known polymer-cement mortars used for this purpose are described. The advantages of application of polymer-cement mortars as repair materials are shown.

  11. Properties of Cement Mortar with Phosphogpysum under Steam Curing Condition

    Directory of Open Access Journals (Sweden)

    Kyoungju Mun

    2008-01-01

    Full Text Available The purpose of this study is to utilize waste PG as an admixture for concrete products cured by steam. For the study, waste PG was classified into 4 forms (dehydrate, β-hemihydrate, III-anhydrite, and II-anhydrite, which were calcined at various temperatures. Also, various admixtures were prepared with PG, fly-ash (FA, and granulated blast-furnace slag (BFS. The basic properties of cement mortars containing these admixtures were analyzed and examined through X-ray diffraction, scanning electron microscopy, compressive strength, and acid corrosion resistance. According to the results, cement mortars made with III-anhydrite of waste PG and BFS exhibited strength similar to that of cement mortars made with II-anhydrite. Therefore, III-anhydrite PG calcined at lower temperature can be used as a steam curing admixture for concrete second production.

  12. Effects of moisture on ultrasound propagation in cement mortar

    Science.gov (United States)

    Ju, Taeho; Li, Shuaili; Achenbach, Jan; Qu, Jianmin

    2015-03-01

    In concrete structures, moisture is often a major cause of chemically related degradations such as alkaline-silica reaction. To develop ultrasonic nondestructive evaluation techniques for monitoring such chemical degradations, it is necessary to understand how moisture affects the propagation of ultrasound in concrete. To this end, the objective of this paper is to experimentally determine the correlation between the moisture content in cement mortar and ultrasonic wave propagation. Specifically, effects of moisture on the ultrasonic phase velocity and attenuation are examined. It is found that, for the cement mortar samples considered in this study, moisture has negligible effect on the ultrasonic phase velocity. However, moisture can significantly increase the attenuation of ultrasound in cement mortar even in the sub-MHz frequency range.

  13. Use of red mud as addition for portland cement mortars

    International Nuclear Information System (INIS)

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste that is obtained from bauxite during the Bayer process for alumina production, in the raw meal of Portland cement mortars. The red mud is classified as dangerous, according to NBR 10004/2004, and world while generation reached over 117 million tons/year. This huge production requires high consuming products to be used as incorporation matrix and we studied the influence of red mud addition on the characteristics of cement mortars and concrete. In this paper the properties of Portland cement mortars incorporating high amounts of red mud was evaluated: pH variation, fresh (setting time, workability or normal consistency and water retention), and hardened state (mechanical strength, capillary water absorption, density and apparent porosity). Results seem promising for red mud additions up to 20 wt%. (author)

  14. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  15. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2014-01-01

    Full Text Available This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA as partial replacement of cement in presence of copolymer latexes. Portland cement (PC was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA and 2-hydroxymethylacrylate (2-HEMA. Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM. The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  16. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  17. Cola à base de PVA e argamassa de solo-cimento como alternativas para o assentamento de alvenaria de tijolos maciços de solo-cimento PVA glue and cement soil mortars as alternatives for laying cement soil blocks masonry

    Directory of Open Access Journals (Sweden)

    Gisleiva C. dos S. Ferreira

    2011-04-01

    Full Text Available Neste trabalho, foi analisada a viabilidade de emprego de cola à base de PVA e argamassa de solo-cimento no assentamento de paredes de alvenaria de tijolos maciços de solo-cimento, em substituição à argamassa usual (cimento, cal e areia. Pequenos prismas, executados com quatro tijolos maciços de solo-cimento e assentados com as argamassas e a cola de PVA, foram ensaiados à compressão e à flexão. Os resultados dos ensaios dos prismas executados com a argamassa de assentamento usual foram tomados como padrão esperado de comportamento para os outros prismas executados com argamassa de solo-cimento e com cola de PVA. Os resultados obtidos nos ensaios dos prismas indicaram que tanto cola à base de PVA quanto argamassa de solo-cimento podem ser empregadas, satisfatoriamente, no assentamento de painéis de alvenaria de tijolos maciços de solo-cimento.This study presents the results of an experimental investigation in characterizing the properties of cement soil block masonry using cement-soil mortars and PVA glue. The study deals with the scantily explored area of tensile bond strength of soil-cement block masonry using cement-soil mortars and PVA glue. Flexural bond strength of masonry has been determined by testing stack-bonded prisms using a bond wrench test set-up. The study clearly demonstrates the superiority of cement-soil mortar over other conventional mortar such as cement mortar. The results of this study can be conveniently used to select a proportion for cement-soil mortar or PVA glue proportion for cement soil block masonry structures.

  18. Recycled sand in lime-based mortars.

    Science.gov (United States)

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure.

  19. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  20. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.

    Science.gov (United States)

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-07-01

    Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.

  1. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    Science.gov (United States)

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-01-01

    Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062

  2. Inlfuence of Specimen Size on Compression Behavior of Cement Paste and Mortar under High Strain Rates

    Institute of Scientific and Technical Information of China (English)

    CHEN Xudong; CHEN Chen; QIAN Pingping; XU Lingyu

    2016-01-01

    Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes (f68 mm×32 mm,f59 mm×29.5 mm andf32 mm×16 mm) to study the inlfuence of specimen size on the compression behavior of cement-based materials under high strain rates. The static tests were applied using a universal servo-hydraulic system, and the dynamic tests were applied by a spilt Hopkinson pressure bar (SHPB) system. The experimental results show that for mortar and paste specimens, the dynamic compressive strength is greater than the quasi-static one, and the dynamic compressive strength for specimens of large size is lower than those of small size. However, the dynamic increase factors (DIF) has an opposite trend. Obviously, both strain rate and size effect exist in mortar and paste. The test results were then analyzed using Weibull, Carpinteri and Bažant’s size effect laws. A good agreement between these three laws and the test results was reached on the compressive strength. However, for the experimental results of paste and cement mortar, the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.

  3. Dynamic Properties of Fiber Reinforced Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    唐志平; 徐松林; 胡晓军; 廖香丽; 蔡建

    2004-01-01

    Based on the shear wave tracing(SWT) technique proposed by Tang Z P, particle velocity gauge and the dual internal measurement for pressure and shear waves (IMPS) system are applied to investigate the responses of fiber reinforced cement subjected to impact loading. Series of experiments are conducted. The results show that there exist four critical points, A, B, C, D, in p-V Hugoniot curves. They correspond to the Hugoniot elastic limit (HEL) of the material, the critical point for shear strength limit and transition from damage state to failure state, void collapse, and solid compression, respectively. The critical point B is difficult to be aware of and never reported. However, it can be clearly disclosed with SWT method. Based on the analyses of shear strength, it can be concluded that the transversal wave, especially the unloading transversal wave, is especially important for the dynamic damage investigation of brittle materials.

  4. Effect of Functional Chemical Admixtures on the Performance of Cement Asphalt Mortar Used in Ballastless Track

    Institute of Scientific and Technical Information of China (English)

    JIANG Jinyang; SHE Wei; LI Wei; PAN Li

    2015-01-01

    Chemical admixtures are of paramount importance to the performance of modern cement based composites. In this paper, we performed a series of tests to investigate the effects of chemical admixtures on the cement asphalt mortar (CA mortar), i e, compressive strength, frost resistance, permeability, fatigue resistance, pore structure and microstructure. In particular, two types of chemical admixtures were tested,i e, defoamer (tributyl phosphate (TBP)) and polycarboxylate superplasticizer (PS). The results indicate that the addition of TBP and PS eliminates big bubbles and promotes small non-connected pores forming in matrix. Besides, an optimum dosage of TBP and PS may be determined with respect to the frost resistance, permeability and fatigue resistance of CA mortar. Further elaborative discussions are presented as well as experimental evidences from mercury intrusion porosimetry, scanning electron microscopy and energy dispersive spectroscopy.

  5. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  6. Electrodialytically treated MSWI APC residue as substitute for cement in mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Geiker, Mette Rica; Jensen, Pernille Erland

    2014-01-01

    /or electrodialytic remediation, were used in Portland cement mortar. Mortar bars with 15 % weight replacement of cement by APC residues showed compressive strengths up to 40 MPa after 28/32 days. Heavy metal and salt leaching from both crushed and monolithic mortars with APC residues was generally similar...... and comparable to both the reference mortar and mortar with coal fly ash. These results indicate that electrodialytic remediation could be used a pre-treatment method for MSWI APC residues prior to reuse in mortar....

  7. Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions

    Institute of Scientific and Technical Information of China (English)

    熊良宵; 虞利军

    2015-01-01

    To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation, and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the 420th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.

  8. Recycling of copper tailings as an additive in cement mortars

    OpenAIRE

    Onuaguluchi, Obinna; EREN, Özgür

    2012-01-01

    Increasing demands for copper and copper allied products have made the processing of low grade ores with high volume waste output unavoidable. Presently, billions of tons of copper tailings can be found in major copper producing countries. The impact of copper tailings at 0%, 5% and 10% addition level by mass of cement on the fresh and hardened properties of mortars were determined. Results showed that dry copper tailings affect mixture consistency negatively. However, the use of pre-wetted t...

  9. Adsorption of cesium on cement mortar from aqueous solutions.

    Science.gov (United States)

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  10. 流变学的水泥砂浆螺旋输送机理%RESEARCH ON SCREW CONVEYING MECHANISM FOR CEMENT MORTAR BASED ON RHEOLOGY

    Institute of Scientific and Technical Information of China (English)

    张永顺; 丁凡

    2001-01-01

    简要介绍了油田水泥砂浆衬里注水管道补口作业机器人的系统结构及工作原理,以水泥砂浆流变学为基础,建立了螺旋输送物理模型,对机器人螺旋送料作业装置的输送机理进行了研究,通过引入螺旋输送效率的概念,解决了水泥砂浆螺旋输送的定量计算问题,进而实现了机器人自主喷涂补口作业的水泥砂浆输送量的准确控制,保证了补口作业质量。实验证明理论分析的正确性,目前该机器人已交付大庆油田在工程中推广应用。%The systematical structure and operation principle of a welding seam anti-corrosion applicator in-pipe robot for water injection pi peline with cement mortar liner in oilfield is introduced briefly,the physical m odel of cement mortar by screw conveying is set up on the basis of its rheology ,then screw conveying mechanism of cement mortar when being conveyed by operatio n unite of the in-pipe robot is analyzed,by introducing the concept of screw co nveying efficiency,the quantitative calculation of cement mortar being conveyed by screw conveyor is solved,as a result,that makes the accurate quantitative co ntrol for cement mortar through screw conveying feasible when robot mending the welding seem by harmonious operation,the quality of the mending operation is gua ranteed,the experiments show the rightness of the theoretical analysis,this robo t has already been found its application in Daqing Oil Field.

  11. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    Science.gov (United States)

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar.

  12. Effect of Cement Asphalt Mortar Debonding on Dynamic Properties of CRTS II Slab Ballastless Track

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2014-01-01

    Full Text Available The debonding of cement emulsified asphalt mortar (CA mortar is one of the main damage types in China railway track system II slab ballastless track. In order to analyze the influence of mortar debonding on the dynamic properties of CRTS II slab ballastless track, a vertical coupling vibration model for a vehicle-track-subgrade system was established on the base of wheel/rail coupling dynamics theory. The effects of different debonding lengths on dynamic response of vehicle and track system were analyzed by using the finite element software. The results show that the debonding of CA mortar layer will increase the dynamic response of track. If the length of debonding exceeds 1.95 m, the inflection point will appear on the vertical displacement curve of track. The vertical vibration acceleration of slab increases 4.95 times and the vertical dynamic compressive stress of CA mortar near the debonding region increases 15 times when the debonding length reaches 3.9 m. Considering the durability of ballastless track, once the length of debonding reaches 1.95 m, the mortar debonding should be repaired.

  13. Influence of various acids on the physico–mechanical properties of pozzolanic cement mortars

    Indian Academy of Sciences (India)

    S Türkel; B Felekoǧlu; S Dulluç

    2007-12-01

    Acidic attack represents a topic of increasing significance, owing to the spread of damages of concrete structures in both urban and industrial areas. Cement type is an important factor affecting performance of cement based materials in an aggressive environment. The goal of this study was to compare the acid resistance of a pozzolanic cement (CEM IV-A/32·5) with Portland cement (CEM I 32·5) that was made from the same clinker. For this purpose, 50 mm mortar cubes were prepared with two different kinds of cement according to TS EN 196-1. After 28 days of hardening, the samples were immersed into four different concentrations of hydrochloric, nitric and sulfuric acid solutions for a period of 120 days. The changes in weight loss and compressive strength values for each acid solution within the test period were recorded. The acid resistance of mortars made from Portland cement was better than the pozzolanic cement incorporated samples after 120 days of acid attack.

  14. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    Science.gov (United States)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  15. Evaluation of electric properties of cement mortars containing pozzolans

    Directory of Open Access Journals (Sweden)

    Cruz, J. M.

    2011-03-01

    Full Text Available In this paper the evolution of the microstructure of Portland cement mortar is analyzed, by using electrical impedance measurements. Cement mortars are compared without and with two pozzolanic substitutions: spent fluid catalytic cracking catalyst (FCC and metakaolin (MK. The measurement method is described and the model for analyzing the electrical impedance spectra is developed. Three electrical parameters are defined: electrical resistivity, capacitance exponent, and capacitive factor. The results show a significant increase in resistivity of the mortars with pozzolans after 7 days of curing, especially in mortars with MK. This increase is correlated with lime-fixing by the pozzolans. The capacitive properties evolve differently at early age, but reach the same values after 148 days. The electrical and mineralogical data show that the evolution of the microstructure in the mortar with MK starts before it does in the mortars with FCC and that the final microstructure becomes different.

    En este trabajo se analiza la microestructura de morteros de cemento Portland, mediante medidas de impedancia eléctrica. Se comparan morteros de cemento sin y con dos sustituciones puzolánicas: residuo de catalizador de craqueo catalítico (FCC y metacaolín (MK. Se describe el método de medida y se desarrolla el modelo de análisis de los espectros de impedancia eléctrica. Se definen tres parámetros eléctricos: resistividad eléctrica, exponente capacitivo, y factor capacitivo. Se observa un aumento importante de la resistividad de los morteros con puzolana a partir de los 7 días de curado, sobre todo en morteros con MK. Este aumento está correlacionado con la fijación de cal de las puzolanas. Las propiedades capacitivas son diferentes a edad temprana, pero se igualan a los 148 días. Los resultados eléctricos y mineralógicos muestran que la evolución microestructural comienza antes en los morteros con MK que con FCC y que la microestructura

  16. Inhibition of Cracks on the Surface of Cement Mortar Using Estabragh Fibers

    Directory of Open Access Journals (Sweden)

    Tahereh Soleimani

    2013-01-01

    Full Text Available The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.

  17. Effect of surfactants on pressure-sensitivity of CNT filled cement mortar composites

    Science.gov (United States)

    Han, Baoguo; Yu, Xun

    2014-11-01

    Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as surfactants to disperse multi-walled carbon nanotubes (MWNT) in cement mortar and fabricate pressure-sensitive carbon nanotubes filled cement mortar composites. The pressure-sensitivity of cement mortar composites with different concentrations of MWNT and different surfactants was explored under repeated loading and impulsive loading, respectively. Experimental results indicate that the response of the electrical resistance of composites with NaDDBS to external force is more stable and sensitive than that of composites with SDS. Therefore, NaDDBS has higher efficiency than SDS for the dispersion of MWNT in cement mortar, and it is an effective surfactant for fabricating MWNT filled cement mortar composites with superior pressure-sensitivity.

  18. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Biqin Dong

    2014-01-01

    Full Text Available A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

  19. Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars.

    Science.gov (United States)

    Monzó, J; Payá, J; Borrachero, M V; Girbés, I

    2003-01-01

    The influence of sewage sludge ash (SSA) on workability of cement mortars has been studied. The irregular morphology of SSA particles produced a decrease of mortar workability. A nonlinear reduction of workability in mortars containing SSA was observed, but when SSA content in mortars was increased the workability reduction was less significant. A superplasticizer is used in order to compensate the decrease of workability produced by SSA. When SSA sized fractions were used, only significant differences in workability for mortars prepared with high water volumes or with the presence of superplasticizer were observed.

  20. Short-Term Creep Experiment of Cement Asphalt Mortar and Its Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2016-01-01

    Full Text Available In order to investigate the creep performance of cement asphalt mortar (CA mortar, the field sampling of CA mortar cylinder samples was produced, and all samples were tested on WDW series electric universal testing machine by using uniaxial static creep test at 25°C, and the load stress levels were 0.05 MPa, 0.1 MPa, 0.3 MPa, and 0.5 MPa. The greater the load is, the bigger the creep deformation is. The creep performance was simulated by using Burgers model, and the correlation coefficients between fitting results of Burgers model and experimental results are all greater than 0.9. Based on the requirements of finite element software, the Prony series of Burgers model was obtained, and the short-term creep process of CA mortar was simulated by the finite element software ANSYS. The relative error between simulation results and experimental data is not more than 2.5%, which indicates that the short-creep process of CA mortar can be simulated by ANSYS software. The study results can improve the structural design theory of slab track.

  1. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    Science.gov (United States)

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  2. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2002-09-01

    Full Text Available The durability and chemical resistance of alkali activated slag and fly ash/slag mortars in contact with sulfates and seawater media have been studied. Two methods were used in the evaluation of such durability: Kock-Steinegger and ASTM C1012. A mineralogical and a microstructural characterization of mortars were done at different ages of their conservation in aggressive media through XRD, SEM/ EDX and mercury porosimetry. Results showed a high durability of activated cement mortars in sulfates and seawater media. NaOH activated mortars are the most sensitive to environment attack with formation of expansive products as gypsum and ettringite, although in very low proportion.

    Se ha estudiado la estabilidad química en medios sulfáticos y de agua de mar de morteros de escorias activadas alcalinamente y morteros de mezclas de escoria y cenizas volantes activadas alcalinamente. Se han empleado dos métodos para evaluar dicha estabilidad: Kock-Steinegger y la norma ASTM C1012. Se ha realizado una caracterización mineralógica y micro estructural de los morteros (a diferentes edades de permanencia en los medios agresivos a través de DRX, SEM/EDX y porosimetría de mercurio. Los resultados obtenidos han demostrado la elevada durabilidad de todos los morteros de cementos activados estudiados frente a la agresividad de los sulfatos y del agua de mar Los morteros de escoria activada con NaOH son los más susceptibles al ataque por esos medios, conformación de productos expansivos como el yeso y la etringita, aunque en proporciones muy bajas.

  3. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    Science.gov (United States)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  4. Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars

    OpenAIRE

    Izaguirre, A.; Lanas, J.; Alvarez, J I

    2009-01-01

    Two different anionic surfactants, sodium oleate and calcium stearate, commercialized as water repellents for cement-based mortars, were added to lime-based mortars in order to check whether they were improved by these admixtures. Different properties of lime-based mortars were evaluated: fresh state behaviour through water retention, air content and setting time, hardened state properties such as density, water absorption through capillarity, water vapour permeability, long-term compressive ...

  5. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 2. Mechanical strength of mortars and environmental impact.

    Science.gov (United States)

    Aubert, J E; Husson, B; Sarramone, N

    2007-07-19

    This second of two articles dealing with the utilization of MSWI fly ash in blended cement studies the effects of two variants of the stabilization process on the behavior of the treated fly ash (TFA) introduced into cement-based mortars. From a technological point of view, the modifications of the process are very efficient and eliminate the swelling produced by the introduction of MSWI fly ash in cement-based mortars. TFA has a significant activity in cement-based mortars and can also advantageously replace a part of the cement in cement-based material. From an environmental point of view, the results of traditional leaching tests on monolithic and crushed mortars highlight a poor stabilization of some harmful elements such as antimony and chromium. The use of a cement rich in ground granulated blast furnace slag (GGBFS) with a view to stabilizing the chromium is not efficient. Since neither adequate tests nor quality criteria exist to evaluate the pollutant potential of a waste with a view to reusing it, it is difficult to conclude on the environmental soundness of such a practice. Further experiments are necessary to investigate the environmental impact of TFA introduced in cement-based mortars depending on the reuse scenario.

  6. THE INFLUENCE OF JOINT GRINDING OF CEMENT AND COOPER SLAG ON MORTAR PROPERTIES

    Directory of Open Access Journals (Sweden)

    Kravtsov Aleksey Vladimirovich

    2016-08-01

    Full Text Available The problem of applying copper manufacturing waste locating in the Chelyabinsk region as a component of mixed is considered in this article. Application of mixed binder with superplasticizers, based on esters with carboxyl groups, have not sufficiently been studied by the present time due to the diversity of species and complexity of the chemical structure. This trend is current for today’s science because of the growing rates and scales of building production, in particular, of concrete works. Copper slag dumps located in the Ural Federal district haven’t been widely used in building production or in other industrial production by the present time. Efficient utilization of copper production waste materials will help to solve ecological problems in many regions of Russia. Structure formation period of cement stone based on mixed binder made of Portland cement and granulated cooper slag with application of superplasticizer is studied in the article. The authors present a thermal variation diagram of mortar based on mixed binder made of Portland cement and granulated cooper slag in the process of 21 hours of hardening under normal conditions and the results of ultrasound investigation of concrete structure formation period during 5 hours of hardening. The strength development process diagram of mortar based on mixed binder made of Portland cement and granulated cooper slag for 28 days of hardening under normal conditions and the research results of the compressive strength of concrete samples are shown in this article. The obtained characteristics don’t confirm the prospects of applying joint grinding for mortar with the observed kind of non-ferrous metallurgy waste. Also, the obtained results allow us to make a conclusion about little advantages of using this method of binder production. Copper slag can be more effectively used as a component of complex organic and mineral admixture for building production with different purposes and fields

  7. Corrosion sensor for monitoring the service condition of chloride-contaminated cement mortar.

    Science.gov (United States)

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.

  8. Dry and wet "deposition" studies of the degradation of cement mortars

    OpenAIRE

    Martínez-Ramírez, S.; Thompson, G.E.

    1998-01-01

    The reaction of portland cement mortars with SO2 gaseous pollutant and artificial 'acid rain' solution has been examined using laboratory exposure chambers, with realistic presentation rates of pollutants. The mortar were previously carbonated to produce superficial carbonation. Two mortars with different w/c ratio and hence specific surface were prepared and exposed into the chambers. For dry deposition of SO2 pollutant gas, the important ro...

  9. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    OpenAIRE

    López-Zaldívar, O.; Mayor-Lobo, P. L.; Fernández-Martínez, F.; Hernández-Olivares, F.

    2015-01-01

    This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA) stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates ...

  10. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  11. Thermal and electrical behavior of nano-modified cement mortar

    Science.gov (United States)

    Exarchos, D. A.; Dalla, P. T.; Tragazikis, I. K.; Alafogianni, P.; Barkoula, N.-M.; Paipetis, A. S.; Dassios, K. G.; Matikas, T. E.

    2014-04-01

    This research aims in characterizing modified cement mortar with carbon nanotubes (CNTs) that act as nanoreinforcements leading to the development of innovative materials possessing multi-functionality and smartness. Such multifunctional properties include enhanced mechanical behavior, electrical and thermal conductivity, and piezo-electric characteristics. The effective thermal properties of the modified nano-composites were evaluated using IR Thermography. The electrical resistivity was measured with a contact test method using a custom made apparatus and applying a known D.C. voltage. To eliminate any polarization effects the specimens were dried in an oven before testing. In this work, the thermal and electrical properties of the nano-modified materials were studied by nondestructively monitoring their structural integrity in real time using the intrinsic multi-functional properties of the material as damage sensors.

  12. Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Xiongzhou Yuan

    2015-06-01

    Full Text Available This paper presents an experimental study on use of hot-melt polyamide (HMP to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD and Fourier transform infrared spectra (FTIR technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ of HMP mortar was conducted through environmental scanning electron microscopy (ESEM. Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.

  13. Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.

    Science.gov (United States)

    Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J

    2009-02-01

    The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.

  14. Permeability and mechanical properties of cement mortars colored by nano-mineral additives

    Directory of Open Access Journals (Sweden)

    Kamali Bernard S.

    2012-09-01

    Full Text Available This work concerns a preliminary study on issues that relate primarily to the permeability of cementitious materials under the influence of some specific inexpensive additions that can play an important role in preserving the environment. We studied the addition of dyes in the presence of TiO2 on the Portland cement mortar. The used dyes are a yellow powder containing iron oxyhydroxide (FeO (OH, a blue-based powder tellurate manganese (MnTe2O5 and red powder containing iron oxide (Fe2O3. We measure the setting time, permeability and mechanical properties of Portland cement mortars colored with nano-mineral oxides mentioned previously. Test results indicate that the addition of nano-particles has a little influence on the setting time, improves penetration resistance that is due the affinity of the pore structure of mortar and slightly improves the resistance to compression for low levels of nanoparticles of TiO2.

  15. Influence of Superplasticizers on Strength and Shrinkage Cracking of Cement Mortar under Drying Conditions

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; WANG Xin'gang; LI Xiangguo; YANG Lei

    2007-01-01

    The effects of polynaphthalene series superplasticizers(PNS) with a low content of sodium sulfate (H-UNF),with a high content of sodium sulfate(C-UNF) and polycarboxylate type superplasticizer (PC) on strength and shrinkage cracking of cement mortar under drying conditions were investigated by means of multi-channel ellipse ring shrinkage cracking test, free shrinkage and strength test. The general effect of PNS and PC is to increase the initial cracking time of mortars, and decrease the cracking sensitivity of mortars. As for decreasing the cracking sensitivity of mortars, PC>H-UNF>C-UNF. To incorporate superplasticizers is apparently to increase the free shrinkage of mortars when keeping the constant w/b ratio and the content of cement pastes. As for the effect of controlling the volume stability of mortars, PC>C-UNF>H-UNF. Maximum crack width of mortars containing PC is lower, but the development rate of maximum crack width of mortars containing H-UNF is faster in comparison with control mortars. The flexural and compressive strengths of mortars at 28-day increase with increasing superplasticizer dosages under drying conditions. PC was superior to PNS in the aspect of increasing strength.

  16. Studies on the reuse of waste printed circuit board as an additive for cement mortar.

    Science.gov (United States)

    Ban, Bong-Chan; Song, Jong-Yoon; Lim, Joong-Yeon; Wang, Soo-Kyoon; An, Kwang-Guk; Kim, Dong-Su

    2005-01-01

    The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08 to approximately 0.15 and 0.15 to approximately 0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.

  17. Determination of Chlorinated Solvent Sorption by Porous Material—Application to Trichloroethene Vapor on Cement Mortar

    OpenAIRE

    Musielak, Marion; Brusseau, Mark L.; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-01-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L−1) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnit...

  18. Use of waste brick as a partial replacement of cement in mortar.

    Science.gov (United States)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  19. The Properties of Cement Mortars Modified by Emulsified Epoxy and Micro-fine Slag

    Institute of Scientific and Technical Information of China (English)

    CHEN You-zhi; WANG Hong-xi; MA Zhi-yong; LI Qing-hua

    2003-01-01

    The epoxy resin polymer cement mortars with excellent performances were made up through modifying ordinary Portland cement with emulsified epoxy and micro-fine slag.The microstructure of the epoxy resin polymer cement materials was studied and their hydration and hardening characteristics were discussed by means of modern analysis measures such as SEM,XRD and Hg-intrusion micromeritics.The experimental results indicate that the series effects of water-reducing,density,pozzolanicity,filling and solidification crosslinking through the action together with epoxy organism and micro-fine slag endowed cement-based materials with perfect performances.The main hydration products in the system are C-S-H gel and hydrated calcium aluminate.At later age,AFt can be in existence,and no Ca(OH)2 is found.When epoxy resin is solidified,the organism is in a network structure.In the micro-pore structure of hydrated cement with modified epoxy and fine slag,big harmful pores were fewer,more harmless abundant micro pores were and the possible pore radius was smaller than that of ordinary Portland cement.

  20. Reuse of de-inking sludge from wastepaper recycling in cement mortar products.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi; Shapiro, Gretta

    2011-08-01

    This paper presents results of an investigation into the use of de-inking sludge from a paper recycling mill as feedstock material in the manufacture of cement mortar products, including masonry blocks and mortar renders. Both physical and mechanical properties of mortar specimens containing various amounts of de-inking sludge were investigated. It was observed that the addition of de-inking sludge to cement mortar at a fixed water-to-cement ratio significantly reduced flow properties and increased setting time. Water absorption and volume of permeable voids of cement mortar increased with increased dosage of de-inking sludge, with a corresponding reduction of bulk density. The 91-day compressive strength of mortar samples with 2.5 wt% and 20 wt% de-inking sludge loadings retained 83% and 62% respectively of the reference mortar strength. The corresponding drying shrinkage increased by up to 160% compared to reference samples. However, a de-inking sludge loading of up to 2.5 wt% did not significantly alter measured physical and mechanical properties. The results demonstrate that despite the high moisture absorbance of de-inking sludge due to its organic matter and residual cellulose fibre content, it serves as a potential supplementary additive and its cellulosic content proving to be an active set retardant to cementitious masonry products.

  1. Behavior of limestone filler cement mortars exposed to magnesium sulfate attack

    Directory of Open Access Journals (Sweden)

    Senhadji Y.

    2014-04-01

    Full Text Available In the cement production industry, looking for a less expensive binder using industrial waste and natural resources has become a major concern for the deficit level in the manufacture of Portland cement. However, despite the technical, economic and environmental benefits brought by the use of blended cements, they are associated with disadvantages. The objective of this paper is to study the effects of the incorporation of limestone fillers on the mechanical properties and durability of mortars prepared in different combinations based on this admixture material. The durability was evaluated after immersing the specimens in a 5% solution of magnesium sulfate for periods up to 360 days, and the penetration of chloride ions. The test results demonstrated that mortar and paste samples incorporating higher replacement levels of limestone filler were more susceptible to sulfate attack. According to microstructural analysis, such as DRX, the deterioration was significantly associated with formation of thaumasite, gypsum, and the brucite in the deteriorated parts of the specimens.

  2. Properties and structure of cement mortar modified with epoxy emulsion%环氧树脂乳液改性水泥砂浆性能与结构

    Institute of Scientific and Technical Information of China (English)

    章凯

    2012-01-01

    The mechanical and adhesive properties, shrinkage and durability of cement mortar modified with water borne epoxy emulsion were experimentally studied, and the microstructures of the mortars were analyzed by SEM and MIP. The results showed that, adding 6%~10% (solid content) epoxy emulsion based on the mass of the cement in mortar will remarkably improve the mechanical properties of the mortar, and the adhesive strength of the mortar with aged cement mortar. The drying shrinkage of the modified mortar decreased, and the chloride permeability,carbonation and frost resistance increased with the increase of the polymer amount added. Compared with ordinary cement mortar, the polymer modified cement mortar is more compacted in structure,lower in porosity and small in mean pore size.%研究了水性环氧树脂乳液改性水泥砂浆的力学性能、粘结性能、收缩性能和耐久性能,用SEM和MIP分析了砂浆的结构.结果表明,掺加6%~10%水性环氧树脂乳液可有效提高水泥基修补砂浆的力学性能和与老砂浆的粘结强度,降低水泥砂浆的收缩值;水泥砂浆的抗渗性、抗碳化性以及抗冻性能均随水性环氧树脂掺量的增加而显著提高;较之未经改性的普通砂浆,水性环氧树脂乳液改性水泥砂浆的结构更为致密,连通孔的孔隙率和平均孔径小.

  3. Effects of Carbon Nanotubes on Mechanical and 2D-3D Microstructure Properties of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    LIU Qiaoling; SUN Wei; JIANG Hao; WANG Caihui

    2014-01-01

    To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were added into cement mortar, in which the cement-sand ratio was 1:1.5. The flexural and compressive strengths of cement mortar at the age of 3, 7, 28 and 90 d and the fracture performance at the age of 28 d were determined, its 2D micrograph was tested by means of SEM, and the 3D defects distribution was firstly determined with or without CNTs by means of XCT (X-ray computerized tomography). The results showed that 0.08 wt% of CNTs improved the compressive strength and flexural strength by 18% and 19%, respectively, and a significant improvement of its fracture property was observed. Moreover lower addition of carbon nanotubes to cement mortars can improve its microstructure and decrease the defects significantly compared to the cement mortar without CNTs. With the increase of the content of CNTs, the mechanical properties of cement mortars presented to be declined largely due to the agglomeration of CNTs.

  4. The effect of modified hydrotalcites on mechanical properties and chloride penetration resistance in cement mortar

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.B.

    2015-01-01

    In this paper, two types of modified hydrotalcites (MHT) were incorporated into cement mortars with two dosage levels (replacing 5% and 10% cement by mass). Designated testing programme including strength test, porosity test, and rapid chloride migration and diffusion test were employed to investiga

  5. Cement content influence in rebar corrosion in carbonated mortars

    Directory of Open Access Journals (Sweden)

    Américo, P. O.

    2003-12-01

    Full Text Available The cement hydration products protect the concrete rebars of the reinforced concrete due to the production of Ca(OH2, NaOH, and KOH that, upon dissolving in the concrete s aqueous phase, generate a pH above 12.5. However, reinforced concrete structures are exposed to pollutant gases, such as, CO2 which upon penetrating the concrete, reacts with the alkaline components, consequently reducing the pH of the aqueous phase causing the loss of passivity by the rebar and as a consequence its corrosion when there is the presence of humidity and oxygen. The objective of the current paper is the analysis of the alkaline reserve influence, measured by the cement content, in the corrosion of rebars employing the polarization resistance technique for determining the corrosion intensity. Results for corrosion intensity of rebars embedded in prismatic mortar test specimens are produced with three cement content levels, with equal water/cement ratio. Cylindrical test specimens were also used for verification of the capillary absorption and the porosity by means of mercury porosymetry The results show that the initiation period is shorter and the corrosion intensity of the rebars is higher when the cement content is lower However, there is also an alteration in the microstructure upon altering the cement content, and far this reason one cannot conclude that the alkaline reserve alone is responsible for these results.

    Los productos de hidratación del cemento protegen las armaduras embebidas en el hormigón debido a la gran cantidad de Ca(OH2, NaOH y KOH disueltos en la fase acuosa del hormigón que proporcionan un pH mayor que 12,5. Sin embargo, las estructuras de hormigón armado están expuestas a los gases contaminantes como el CO2, que al penetrar en el hormigón reacciona con los compuestos alcalinos, se reduce el pH de la fase acuosa y provocan la despasivación de la armadura. Posteriormente, si hay

  6. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    Science.gov (United States)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  7. Lime mud from cellulose industry as raw material in cement mortars

    Directory of Open Access Journals (Sweden)

    Modolo, R. C.E.

    2014-12-01

    Full Text Available This study reports the use of lime mud (LM in cement-based-mortars. Lime mud is a waste generated in the production of cellulose by the kraft mill process. It is mainly composed of CaCO3, a small amount of magnesium carbonate and other trace minerals. Mortars were prepared by adding different amounts of LM (10, 20 and 30% by weight of cement in dry weight. The mortar compositions were evaluated through rheology and flow table measurements, assuring that all the samples exhibited adequate conditions for testing in both equipments. The hardened state properties were also evaluated through mechanical strengths at 7, 28 and 90 days of curing. Following a waste management solution perspective, this work intend to provide a general evaluation of LM application in cement based mortars, looking at both fresh and hardened properties in order to guarantee that the final application requirements are not hindered.Este estudio revela el uso de lodo de carbonato (LM en morteros de cemento. El LM es un residuo compuesto principalmente por CaCO3 generado en la producción de pasta de papel por el método Kraft. Los morteros se prepararon a partir de la adición de diferentes niveles de LM (10, 20 y 30% en peso de cemento en peso seco. Las composiciones de los morteros fueron caracterizadas através de mediciones de reología de mesa y de flujo, asegurando que las muestras exhibían condiciones adecuadas para su caracterización en ambos equipamientos. Las propiedades en estado endurecido también se evaluaron através de resistencias mecánicas a los 7, 28 y 90 días de cura. Con objeto de gestión de residuos, este trabajo tiene la intención de proporcionar una visión general de la aplicación de LM en los morteros, haciendo hincapié en las propiedades con el fin de garantizar que los requisitos para su aplicación final no se vean obstaculizados.

  8. Chemo-physical modeling of cement mortar hydration: Role of aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jena, E-mail: jeong@profs.estp.fr [Université Paris-Est, Institut de Recherche en Constructibilité, ESTP, 28 Avenue Président Wilson, 94234 Cachan (France); Ramézani, Hamidréza, E-mail: hamidreza.ramezani@univ-orleans.fr [CRMD, CNRS FRE 3520-Research Center on Divided Materials, École Polytechnique de l’Université d’Orléans, 8 rue Léonrad de Vinci, 45072 Orléans Cedex 2 (France); Leklou, Nordine, E-mail: nordine.leklou@univ-nantes.fr [LUNAM Université, Université de Nantes-IUT Saint-Nazaire, GeM, CNRS UMR 6183, Research Institute in Civil Engineering and Mechanics, 58 rue Michel Ange BP 420 44606 Saint Nazaire Cedex (France); Mounanga, Pierre, E-mail: pierre.mounanga@univ-nantes.fr [LUNAM Université, Université de Nantes-IUT Saint-Nazaire, GeM, CNRS UMR 6183, Research Institute in Civil Engineering and Mechanics, 58 rue Michel Ange BP 420 44606 Saint Nazaire Cedex (France)

    2013-07-20

    Graphical abstract: - Abstract: After mixing of the cement with water, most of the anhydride products sustain the hydration process and this leads to the hydrate products, e.g. CSH, Ca(OH){sub 2}, Afm and Aft. The mentioned hydration process is a highly complex phenomenon involving the chemically based thermo-activation inside the cement mortars during the early age hydration process. The chemo-thermal hydration reactions drasticaly increase at the early age of hydration after the mixing action and then it becomes less important and turns to be nearly asymptotic. The progress of the hydration phenomenon drives the material properties change during the very early age of cement hydration. Regarding the mortar and concrete, such hydration process would not be homogeneous through the cement matrix due to the aggregates presence. These inclusions will affect the temperature distribution as well as degree of hydration. In the current contribution, the chemical and thermal hydration have been firstly investigated by means of SEM observations using replica method and secondly by the 3D-FEM numerical experiments including two different case studies using glass beads as aggregates. The numerical experiments match fairly good the experimental measurements obtained using a pseudo-adiabatic testing setup for the case studies herein. The scanning electron microscopy (SEM) images observation demonstrates the gap spaces around the glass beads next to the external surfaces. These gaps can be essentially seen for the multi-glass beads case study. The role of the temperature and degree of hydration gradients are clearly obtained using the numerical samples. Some fresh routes and outlooks have been afterwards discussed.

  9. Carbonatation Influence on Fly Ash and Portland Cement Mortars

    OpenAIRE

    P.L. Valdez–Tamez; A. Durán–Herrera; G. Fajardo–San Miguel; C.A. Juárez–Alvarado

    2009-01-01

    The influence of carbonation on mortars containing 25% of fly ash instead of the cementitious materials was studied. Mortar cylinder specimens were fabricated for 4 different W/C ratios: 0.35, 0.45, 0.55 and 0.65. Mortars with and without fly ash were subjected to an accelerated carbonation process. Volumetric weight, water absorption, compressive strength, water permeability, pH and mercury intrusion porosimetry of the mortar specimens were determined. Due to the fly ash pozzolanic potential...

  10. Swine deep bedding ashes as a mineral additive for cement based mortar Cinzas de cama sobreposta de suínos como adição mineral em argamassas de cimento

    Directory of Open Access Journals (Sweden)

    Melissa Selaysim Di Campos

    2008-04-01

    Full Text Available The sustainability of intensive swine production demands alternative destinations for the generated residues. Ashes from swine rice husk-based deep bedding were tested as a mineral addition for cement mortars. The ashes were obtained at 400 to 600ºC, ground and sieved through a 325 mesh sieve (# 0.045 mm. The characterization of the ashes included the determination of the index of pozzolanic activity with lime. The ashes were also tested as partial substitutes of Portland cement. The mortars were prepared using a cement:sand proportion of 1:1.5, and with water/cement ratio of 0.4. Three percentages of mass substitution of the cement were tested: 10, 20 and 30%. Mortar performances were assessed at 7 and 28 days determining their compressive strength. The chosen condition for calcinations at the laboratory scale was related to the maximum temperature of 600ºC since the resulting ashes contained vitreous materials and presented satisfactory values for the pozzolanic index under analysis. The pozzolanic activity indicated promising results for ashes produced at 600ºC as a replacement of up to 30% in cement masses.A sustentabilidade das regiões de produção intensiva de suínos requer destinos alternativos para os resíduos gerados. Cinzas de cama sobreposta de suínos à base casca de arroz, foram testadas como adição mineral em substituição ao cimento. As cinzas foram obtidas nas temperaturas de 400 a 600ºC, moídas e passadas por peneira ABNT 325 (# 0,045 mm. A caracterização de cinzas incluiu a determinação do índice de atividade pozolânica com a cal. As cinzas também foram testadas como substitutos parciais de cimento Portland. As argamassas foram preparadas na proporção cimento:areia de 1:1,5 e com fator água-cimento de 0,4. Três porcentagens de substituição do cimento comercial foram usadas: 10, 20 e 30% em massa. O desempenho das argamassas foi avaliado aos 7 e aos 28 dias com a determinação da resistência

  11. Influence of Temperature on Sulfate Attack of Limestone Filler Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5 ℃, 20 ℃ and alternate temperature between 5 ℃ and 20 ℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5 ℃ and 20 ℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15 ℃).

  12. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  13. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production. PMID:21705136

  14. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars

    Directory of Open Access Journals (Sweden)

    Vanissorn Vimonsatit

    2015-12-01

    Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.

  15. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne;

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates......), surface charge, and size (micron and nano). The structure of the resulting cement pastes and mortars has been investigated by atomic force microscopy (AFM), helium porosimetry, nitrogen adsorption (specific surface area and porosity), low-temperature calorimetry (LTC) and thermal analysis. The main result...

  16. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: physico-mechanical and leaching characteristics.

    Science.gov (United States)

    Cinquepalmi, Maria Anna; Mangialardi, Teresa; Panei, Liliana; Paolini, Antonio Evangelista; Piga, Luigi

    2008-03-01

    The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.

  17. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  18. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  19. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    Science.gov (United States)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  20. Effects of Specimen Height on the Acoustic Emission Rate Value ‘a’ for Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; HU Hongxiang; LU Guijuan; CHEN Shijie; LIU Shaojun; WANG Yao

    2016-01-01

    In order to study the size effect on the AE rate ‘a’ value, three kinds of mix ratios were set up by different particle sizes and water cement ratios, 45 cement mortar specimens with ifve different heights were tested under axial compression. And the whole damage processes were monitored by full-digital acoustic emission acquisition system, followed by an analysis of mechanical behavior and AE activity. The experimental results show that the height of the cement specimen has signiifcant effects on the compressive strength and the acoustic emission rate ‘a’ value, but a slight effect on the accumulated AE hits number, which is analyzed from aspects of failure process of cement mortar specimens.

  1. PERFORMANCE OF CEMENT MORTARS REPLACED BY GROUND WASTE BRICK IN DIFFERENT AGGRESSIVE CONDITIONS

    Directory of Open Access Journals (Sweden)

    ILHAMI DEMIR

    2011-09-01

    Full Text Available This article investigates the sulphate resistance of cement mortars when subjected to different exposure conditions. Cement mortars were prepared using ground waste brick (GWB as a pozzolanic partial replacement for cement at replacement levels of 0%, 2.5%, 5%, 7.5, 10%, 12.5 and 15%. Mortar specimens were stored under three different conditions: continuous curing in lime-saturated tab water (TW, continuous exposure to 5% sodium sulphate solution (SS, and continuous exposure to 5% ammonium nitrate solution (AN, at a temperature of 20 ± 3 ºC, for 7, 28, 90, and 180 days. Prisms with dimensions of 25×25×285 mm, to determine the expansions of the mortar samples; and another set of prisms with dimensions of 40×40×160 mm, were prepared to calculate the compressive strength of the samples. It was determined that the GWB replacement ratios between 2.5% and 10% decreased the 180 days expansion values. The highest compressive strength values were found for the samples with 10% replacement ratio in the TW, SS, and AN conditions for 180 days. The microstructure of the mortars were investigated using scanning electron microscopy (SEM and the Energy dispersive X-ray (EDX.

  2. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  3. Application of antifungal CFB to increase the durability of cement mortar.

    Science.gov (United States)

    Park, Jong-Myong; Park, Sung-Jin; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-07-01

    Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calciteforming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed CaCO3 precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at 18 degrees C for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the CaCO3 precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.

  4. Standard Test Method for Autogenous Strain of Cement Paste and Mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro; Goodwin, Fred;

    This test method measures the bulk strain of a sealed cement paste or mortar specimen, including those containing admixtures, various supplementary cementitious materials (SCM), and other fine materials, at constant temperature and not subjected to external forces, from the time of final setting...

  5. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette Rica; Krøyer, Hanne;

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates...

  6. The application of modified hydrotalcites as chloride scavengers and inhibitor release agents in cement mortars

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.B.

    2014-01-01

    Owing to the unique molecular structure and high ion exchange capacity, hydrotalcites are believed to have a potential to be modified and tailor-made as an active component of concrete. In this paper, two types of modified hydrotalcites (MHT-pAB and MHT-NO2) were incorporated into cement mortars wit

  7. Properties and Acceleration Mechanism of Cement Mortar Added with Low Alkaline Liquid State Setting Accelerator

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; WANG Xuebing; LIU Weiqing

    2014-01-01

    Low alkaline liquid state setting accelerator(LSA) for Portland cement was prepared in laboratory from aqueous solution of several inorganic sulfate salts and some organic chemical substances. Properties of cement with addition of LSA relating to its setting time and strength development as well as its resistance to sulfate attack for short and long term exposure were experimentally examined. The experimental results showed that 5%-7%addition of LSA significantly accelerated the initial and final setting of Portland cement in the presence or absence of the blending of mineral admixtures, the initial and final setting time being less than 3 min and 6 min respectively. Meanwhile, the early 1 day curing age compressive strength increased remarkably by 20%, while the late 28th day curing age compressive strength remained almost unchanged as compared with that of the reference accelerator free cement mortar specimen. Furthermore, mortar specimens of cement added with LSA and exposed to 5%Na2SO4 solution showed their excellent resistance to sulfate attack, with their short and long term curing age resistance coefficient to sulfate attack being around 1.04 to 1.17, all larger than 1.0. XRD analysis on hardened cement paste specimens at very early curing ages of several minutes disclosed the existence of more ettringite in specimens added with LSA than that of the reference specimens, meanwhile SEM observation also revealed the existence of well crystallized ettringite at very early hydration stage, suggesting that the accelerated setting of Portland cement can be attributed to the early and rapid formation of ettringite over the whole cement paste matrix due to the introduction of LSA. MIP measurement revealed that hardened cement paste specimens with the addition of LSA presented less medium diameter pores, more proportion of small pores and less proportion of large capillary pores, which is in a very good coincidence with the improvement of strength development of

  8. Effects of blended-cement paste chemical composition changes on some strength gains of blended-mortars.

    Science.gov (United States)

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  9. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Directory of Open Access Journals (Sweden)

    Mehmet Serkan Kirgiz

    2014-01-01

    Full Text Available Effects of chemical compositions changes of blended-cement pastes (BCPCCC on some strength gains of blended cement mortars (BCMSG were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP or 6%, 20%, 21%, and 35% brick powder (BP for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min. Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS and flexural strengths (FS of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2, sodium oxide (Na2O, and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2 at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM in comparison with reference mortars (RM at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  10. Pullout behavior of steel fibers from cement-based composites

    DEFF Research Database (Denmark)

    Shannag, M. Jamal; Brincker, Rune; Hansen, Will

    1997-01-01

    fiber reinforcement. The parameters investigated included a specially designed high strength cement based matrix called Densified Small Particles system (DSP), a conventional mortar matrix, fiber embeddment length, and the fiber volume fraction. The mediums from which the fiber was pulled included...... a control mortar mix without fibers, a mortar mix with 3, and 6 percent fibers by volume. The results indicate that: (1) The dense DSP matrix has significantly improved interfacial properties as compared to the conventional mortar matrix. (2) Increasing the fiber embeddment length and the fiber volume...

  11. Investigation on the Effect of Recycled Asphalt Shingle (RAS in Portland Cement Mortar

    Directory of Open Access Journals (Sweden)

    Jinwoo An

    2016-04-01

    Full Text Available Tear-off roofing shingle, referred to as Reclaimed asphalt shingle (RAS, is the byproduct of construction demolition and it is a major solid waste stream in the U.S. Reuse of this byproduct in road construction sector can contribute to the success of materials sustainability as well as landfill conservation. Ground RAS has similar particle distribution as sand and its major component includes aggregate granules, fibers, and asphalt. To promote the beneficial utilization of RAS, this study evaluates the effect of RAS in cement mortar when used as replacement of sand. In addition, the study investigates how cellulose fibers from RAS behave under high alkaline environment during cement hydration process, which may significantly affect mortar’s strength performance. The laboratory study includes measurements of physical, mechanical, and durability behaviors of cement mortar containing RAS replacing sand up to 30%. It was found that the optimum mixture proportions are 5% and 10% for compressive strength and toughness, respectively.

  12. Chloride ingress in cement paste and mortar measured by Electron Probe Micro Analysis

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    is 100-1000 times better than for conventional techniques.The present project is aimed to give a better understanding of the physical-chemical nature of chloride ingress. A number of different cement pastes and mortars are examined ranging from traditional to modern high-performance types. The pastes...... and mortars are exposed to synthetic seawater from 1 day to half a year. Thereafter, the samples are examined by EPMA. Modelling of the measured profiles focuses on a physico-chemical understanding of the mechanisms....

  13. Effect of Water to Cement Ratio and Age on Portland Composite Cement Mortar Porosity, Strength and Evaporation Rate

    Directory of Open Access Journals (Sweden)

    Enamur R. Latifee

    2016-08-01

    Full Text Available Durability and the compressive strength of concrete are directly related to the porosity. Water to cement ratio is the main parameter behind the nature and amount of pores within the matrix. Porosity is also influenced by the degree of cement hydration and the length of moist-curing. Even after the standard moist curing period, i.e. 28 days the concrete can gain strength and porosity can be reduced under ambient relative humidity and temperature. However, this fact, that is the age effect on porosity reduction of the cement mortar or concrete, kept in air with ambient relative humidity and temperature for long duration could not be found in the literature. Therefore, in this research, different w/c were used with constant amount Portland Composite Cement to find out whether the mortar porosity decreases significantly over time, after 28 days of water curing, while kept in air and if there is any interaction effect between the age of the mortar and different w/c; regarding porosity. It was also intended to find out if water-loss rate variation with different w/c has similar trend as porosity variation with different w/c. It was found that, there is significant decrease in porosity with time for the first six weeks in air and after that it dwindles down gradually, and there is no interaction between age and w/c. Also, after 100 days in air, samples were submerged under water for 24 hours and then kept in air for the evaporation in subsequent days. It has been found that the water evaporation vs. w/c curve, using 11-day evaporation of water from different w/c specimens in ambient condition is almost parallel to porosity vs. w/c curve. Therefore, 11-day evaporation of aged saturated mortar or concrete sample, such as core can also be used as a durability index, which can be used for old structure evaluation.

  14. Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars

    OpenAIRE

    Ortega Álvarez, José Marcos; Sánchez Martín, Isidro; Climent, Miguel-Ángel

    2015-01-01

    In this work, the microstructure of mortars made with an ordinary Portland cement and slag cement has been studied. These mortars were exposed to four different constant temperature and relative humidity environments during a 180-day period. The microstructure has been studied using impedance spectroscopy, and mercury intrusion porosimetry as a contrast technique. The impedance spectroscopy parameters make it possible to analyze the evolution of the solid fraction formation for the studied mo...

  15. Some considerations about the use of lime-cement mortars for building conservation purposes in Portugal : a reprehensible option or a lesser evil?

    OpenAIRE

    Torgal, Fernando Pacheco; Faria, Joana; Jalali, Said

    2012-01-01

    Some investigations about conservation actions in historical buildings points out that lime–cement mortars should be avoided and lime–pozzolan mortars should be use instead. Nevertheless this type of mortar is still under investigation and the absolute rejection of the use of Portland cement even with just a minimum amount appears to be a dogmatic position that is not fully grounded in scientific terms. Besides the use of lime–pozzolan mortars requires skilled craftsmanship and at least...

  16. Effect of strain rate and water-to-cement ratio on compressive mechanical behavior of cement mortar

    Institute of Scientific and Technical Information of China (English)

    周继凯; 葛利梅

    2015-01-01

    Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar (SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings. Strain rate sensitivity of the materials is measured in terms of failure modes, stress−strain curves, compressive strength, dynamic increase factor (DIF) and critical strain at peak stress. A significant change in the stress−strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress−strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor (DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.

  17. Effect of high doses of chemical admixtures on the strength development and freeze-thaw durability of portland cement mortar

    Science.gov (United States)

    Korhonen, Charles J.

    This thesis examines the low-temperature strength development of portland cement concrete made with high doses of chemical admixtures dissolved in the mixing water and the possible beneficial effect of these admixtures on that concrete's long-term freeze-thaw durability. The literature shows that high doses of chemical admixtures can protect fresh concrete against freezing and that, under certain conditions, these admixtures can enhance the freeze-thaw durability of concrete. The challenge is that there are no acceptance standards in the U.S. that allow chemicals to be used to protect concrete against freezing. Also, the perception is that chemicals might somehow harm the concrete. This perception seems to be based on the fact that deicing salts, when applied to concrete pavement, cause roadways to scale away. This study investigated the effect of high doses of commercially available admixtures on fresh concrete while it gained strength at low temperature and on hardened concrete exposed to repeated cycles of freezing and thawing in a moist environment. The reason for studying off-the-shelf admixtures was that these materials are approved for use in concrete; they were already governed by their own set of standards. Four mortars were examined, each with a different cement and water content, when dosed with five commercial admixtures. This allowed the fresh mortar to gain appreciable strength when it was kept at nearly -10C. The admixtures also enhanced the freeze-thaw durability of the mortar, even when it was not air-entrained. Clearly, as the dosage of admixture increased beyond approximately 22% by weight of water, the mortar appeared to be unaffected by up to 700 cycles of freezing and thawing.

  18. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  19. Effect of Chlorides on Conductivity and Dielectric Constant in Hardened Cement Mortar: NDT for Durability Evaluation

    Directory of Open Access Journals (Sweden)

    Sunkook Kim

    2016-01-01

    Full Text Available Dielectric constant and conductivity, the so-called EM properties (electromagnetic, are widely adopted for NDT (Nondestructive Technique in order to detect damage or evaluate performance of concrete without damage to existing RC (reinforced concrete. Among deteriorating agents, chloride ion is considered as one of the most critical threats due to rapid penetration and direct effect on steel corrosion. In the work, cement mortar samples with 3 w/c (water-to-cement ratios and 4 levels of chloride addition are considered. Conductivity and dielectric constant are measured in the normal frequency range. They increase with strength of mortar and more chloride ions due to denser pore formation. Furthermore, the behaviors of measured EM property are investigated with carbonation velocity and strength, which shows an attempt of application to durability evaluation through EM measurement.

  20. TRANSVERSAL INERTIAL EFFECT ON RELAXATION/RETARDATION TIME OF CEMENT MORTAR UNDER HARMONIC WAVE

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Yonghui Cao; Jiankang Chen

    2008-01-01

    Under dynamic loading, the constitutive relation of the cement mortar will be signif-icantly affected by the transversal inertial effect of specimens with large diameters. In this paper,one-dimensional theoretical analysis is carried out to determine the transversal inertial effect on the relaxation/retardation time of the cement mortar under the harmonic wave. Relaxation time or retardation time is obtained by means of the wave velocity, attenuation coefficient and the frequency of the harmonic wave. Thus, the transversal inertial effect on the relaxation time from Maxwell model, as well as on retardation time from Voigt model is analyzed. The results show that the transversal inertial effect may lead to the increase of the relaxation time, but induce the decrease of the retardation time. Those should be taken into account when eliminating the transversal inertial effect in applications.

  1. Immobilization in cement mortar of chromium removed from water using titania nanoparticles.

    Science.gov (United States)

    Husnain, Ahmed; Qazi, Ishtiaq Ahmed; Khaliq, Wasim; Arshad, Muhammad

    2016-05-01

    Because of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete. Combining these two properties of the material, titania nanoparticles were used to adsorb chromium and then added to mortar up to a concentration of 20% by weight. The compressive strength of the resulting mortar specimens that replaced 15% of cement with chromium laden titania showed an improved strength than that without titania, thus confirming that this material had positive effect on the mortar strength. Leachate tests using the Toxicity Characteristics Leaching Procedure (TCLP) confirmed that the mortar sample chromium leachate was well within the permissible limits. The proposed technique thus offers a safe and viable method for the ultimate disposal of toxic metal wastes, in general, and those laden waste chromium, in particular.

  2. Characterization and modeling of major constituent equilibrium chemistry of a blended cement mortar

    Directory of Open Access Journals (Sweden)

    Meeussen J.C.L.

    2013-07-01

    Full Text Available Cementitious materials containing ground granulated iron blast furnace slag and coal combustion fly ash as admixtures are being used extensively for nuclear waste containment applications. Whereas the solid phases of ordinary Portland cement (OPC have been studied in great detail, the chemistry of cement, fly ash and slag blends has received relatively less study. Given that OPC is generally more reactive than slag and fly ash, the mineralogy of OPC provides a logical starting point for describing the major constituent chemistry of blended cement mortars. To this end, a blended cement mortar containing Portland cement, granulated blast furnace slag, fly ash and quartz sand was modeled using a set of solid phases known to form in hydrated OPC with the geochemical speciation solver LeachXS/ORCHESTRA. Comparison of modeling results to the experimentally determined pH-dependent batch leaching concentrations (USEPA Method 1313 indicates that major constituent concentrations are described reasonably well with the Portland cement mineral set; however, modeled and measured aluminum concentrations differ greatly. Scanning electron microscopic analysis of the mortar reveals the presence of Al-rich phyllosilicate minerals heretofore unreported in similar cementitious blends: kaolinite and potassic phyllosilicates similar in composition to illite and muscovite. Whereas the potassic phyllosilicates are present in the quartz sand aggregate, the formation of kaolinite appears to be authigenic. The inclusion of kaolinite in speciation modeling provides a substantially improved description of the release of Al and therefore, suggests that the behavior of phyllosilicate phases may be important for predicting long-term physico-chemical behavior of such systems.

  3. Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2014-01-15

    This paper presents the performance of cement mortar containing black rice husk ash (BRHA) under nitric and acetic acid attacks. The BRHA, collected from an electrical generating power plant that uses rice husk as fuel, was ground using a grinding machine. The compressive strength loss, weight loss, and expansion of mortars under nitric and acetic acid attack were investigated. The test results of BRHA properties in accordance with the ASTM C 618 standard found that the optimal grinding time was 4 h as this achieved a Blaine fineness of 5370 cm(2)/g. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 20%, 30%, 40%, and 50% by weight of binder. The water-to-binder ratios were 0.55, 0.60, and 0.65. From test results, when the percentage replacements of BRHA in cement increased, it was observed that the strength loss and weight loss of mortars containing BRHA under acetic acid attack were higher than those of the mortars against nitric acid attack. It was found that, of the various BHRA mortars, the strength loss and weight loss due to nitric and acetic acid attacks were the lowest in the mortar with 10% BRHA replacement. For 10%, 20% and 30% BRHA replacements, the rate of expansion of the BRHA mortar decreased when compared with the control mortar. For the mortars with other percentage replacements of BRHA, the rate of expansion increased. Furthermore, the effective water-to-binder ratios of control and BRHA mortars were the primary factor for determining the durability of mortar mixed with BRHA.

  4. Evaluation of red mud as pozzolanic material in replacement of cement for production of mortars

    International Nuclear Information System (INIS)

    Red mud is a by-product of the alkaline extraction of aluminum from the bauxite and represents a renewed environmental problem due the significant annual throughput by the plants. In the present work, the pozzolanic properties of Brazilian red mud fired at 600, 700, 800 and 900 deg C were investigated by monitoring lime consumption using DTA analysis and Brazilian standard methodology NBR 5772 (1992). Products and kinetics of hydration were determined in cement pastes produced with 5 and 15% red mud using x-ray diffraction and DTA analysis. Compressive strength and capillary absorption tests were realized on mortars constituted by 5, 10 and 15% red mud in replacement of cement. When calcined at 600 deg C, the red mud develops good pozzolanic properties, and the compressive strength of mortars produced with this waste meet values in accordance with regulatory standard. These results shown than red mud can be used, in partial replacement of cement, as new construction material to produce sustainable mortars with low environmental impact. (author)

  5. Resistance to freezing and thawing of mortar specimens made from sulphoaluminate–belite cement

    Indian Academy of Sciences (India)

    I Janotka; L’ Krajèi

    2000-12-01

    Resistance to freezing and thawing of mortar specimens made from sulphoaluminate–belite cement (M–SAB) is compared with that of mortars made from portland cement (M–PC). The results suggest that larger median radius of the pores and total porosity of M–SAB compared to those of M–PC are primarily caused by the rapid setting of the SAB cement. The `coarsening’ of pore structure of mortar specimens under action of freezing and thawing is proved by the increase in the macropores portion, median pore radius, and total porosity values. This process is more intense in M–SAB. The effect of the frost attack is confirmed by lower compressive strength and dynamic modulus of elasticity on the one hand and higher absorption capacity, expansion, and crack propagation of M–SAB compared with those of M–PC on the other hand. Besides the decreased frost resistance of M–SAB as compared with that of M–PC, unsatisfactory passivation of steel in M–SAB was found. The reason of this fact is the pH value decrease to less than 11.5 of the M–SAB extract.

  6. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar.

    Science.gov (United States)

    Park, Sung-Jin; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-03-01

    The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

  7. Effect of mineral additives (natural pozzolana and sand of dunes) by substitution of cement on the performance and durability of mortars

    Science.gov (United States)

    Saidi, M.; Safi, B.

    2016-04-01

    The objective of our work consists of the study of the substitution effects of clinker by mineral additions such as: natural pozzolana (PZ) and the sand of dunes (SD) finely crushed on the mechanical properties and the durability of the mortars worked out according to various combinations containing these additions. The results from this research confirm that the substitution of 20% to 30% of cement APC (Artificial Portland Cement) by additions in binary cement (APC + PZ) or ternary (APC + PZ + SD) contributes positively to the mechanical strength of mortars and resistance to the chemical attacks in various corrosive conditions such as: hydrochloric acid, sulfuric acid and nitric acid. The mechanical strength of the different variants is comparable to those of the APC. The test results of the weight loss and phenolphthalein shows that the chemical resistance of variants (PZ20) and (PZ20 with SD5) are larger compared to the reference mortar APC and other variants. This study shows that adding value by substituting a part of clinker. This substitution can save 20% to 30% of clinker used for the manufacture of cement; this will have a beneficial effect for cement and economically (less energy spent for the clinker burning). This study contributes to the protection of the environment as to produce one ton of clinker generates about one ton of CO2 is harmful to the atmosphere. Based on our results we will reduce from 20% to 30% CO2 gas responsible for the greenhouse effect.

  8. Mortar and concrete based on calcium sulphate binders

    OpenAIRE

    Bakker, J.J.F.; Brouwers, H. J. H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For the calcinations of Portland cement, temperatures up to 1480 oC are needed, while the calcination of for instance hemihydrate requires a temperature of 170 oC

  9. Hydration of portland cement, natural zeolite mortar in water and sulphate solution

    Directory of Open Access Journals (Sweden)

    Janotka, I.

    2003-03-01

    Full Text Available The objective of this paper is to characterise sulphate resistance of mortars made from ordinary Portland cement ( PC and Portland-pozzolan cement with 35 wt.% of zeolite addition (zeolite-blended cement-ZBC . Mortars with two different cement types were tested in water and 5% sodium sulphate solution for 720 days. A favourable effect of zeolite on increased sulphate resistance of the cement is caused by decrease in free Ca(OH2 content of the mortar There is not sufficient of Ca(OH2 available for reacting with the sulphate solution to form voluminous reaction products. A decreased C3A, content due to 35 wt.% replacement of PC by zeolite is the next pronounced factor improving resistance of the mortar with such blended cement.

    El objetivo de este trabajo ha sido estudiar la resistencia a los sulfatos de morteros preparados con cemento portland ordinario (PC y cemento portland puzolánico, con un 35% en peso de zeolita (zeolite-blended cement (ZBC. Ambos tipos de morteros fueron conservados en agua y en una disolución de sulfato sódico al 5% durante 720 días. Se observó una mayor resistencia a los sulfatos en el mortero preparado con el cemento que contenía zeolita debido a su menor contenido en Ca(OH2. No hay cantidad suficiente de Ca(OH2 para que se produzca la reacción de los constituyentes de la pasta con la disolución de sulfato sódico y formar así productos de naturaleza expansiva. La disminución en el contenido de C,3A, debida a la sustitución de un 35% en peso de PC por zeolita, es el factor más determinante en el aumento de la resistencia del mortero en los cementos con adición.

  10. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar

    Energy Technology Data Exchange (ETDEWEB)

    P. Chindaprasirt; S. Homwuttiwong; V. Sirivivatnanon [Khon Kaen University, Khon Kaen (Thailand). Department of Civil Engineering

    2004-07-01

    In this paper, the influence of fineness of fly ash on water demand and some of the properties of hardened mortar are examined. In addition to the original fly ash (OFA), five different fineness values of fly ash were obtained by sieving and by using an air separator. Two sieves, Nos. 200 and 325, were used to obtain two lots of graded fine fly ash. For the classification using air separator, the OFA was separated into fine, medium and coarse portions. The fly ash dosage of 40% by weight of binder was used throughout the experiment. From the tests, it was found that the compressive strength of mortar depended on the fineness of fly ash. The strength of mortar containing fine fly ash was better than that of OFA mortar at all ages with the very fine fly ash giving the highest strength. The use of all fly ashes resulted in significant improvement in drying shrinkage with the coarse fly ash showing the least improvement owing primarily to the high water to binder ratio (W/B) of the mix. Significant improvement of resistance to sulfate expansion was obtained for all fineness values except for the coarse fly ash where greater expansion was observed. The resistance to sulfuric acid attack was also improved with the incorporation of all fly ashes. In this case the coarse fly ash gave the best performance with the lowest rate of the weight loss owing probably to the better bonding of the coarse fly ash particles to the cement matrix and less hydration products. It is suggested that the fine fly ash is more reactive and its use resulted in a denser cement matrix and better mechanical properties of mortar.

  11. Study of the Behavior of Grouting Cement Mortar%注浆用水泥浆体性能研究

    Institute of Scientific and Technical Information of China (English)

    梁乃兴; 陈忠明

    2000-01-01

    对注浆加固公路路基用的水泥浆体从稳定性、流动度、粘滞度、凝结时间、析水率等方面进行了研究.掺加适量的粉煤灰可增加浆体的稳定性,外加剂水玻璃可增加浆体的稳定性及结石率,同时对浆体的流动性有降低作用,而外加剂氯化钙则对浆体的流动性有增强作用.%In this paper, the behavior of grouting cement mortar to reinforce highway subgrade is analyzed from the aspects of stability, fluidity, viscosity, bleeding ratio and setting time of cement mortar. Mixing a certain content of fly ash to cement mortar can improve stability of mortar. Mixing water glass can improve stability and increase forming stone percent of mortar and can reduce the fluidity of mortar. While mixing CaCl2 can increase fluidity of mortar also

  12. 水泥粉煤灰砂浆应用研究%Application of fly ash cement mixed mortar

    Institute of Scientific and Technical Information of China (English)

    陶建红; 李权

    2015-01-01

    As a new type of cement and fly ash mortar is an alternative product in modern ordinary buildings . Orthogonal experiment results show that by using fly ash cement to replace part of the cement in mortar and fly ash mortar , the workability of the mortar is improved , which meets mortar construction and regulatory require-ments.Fly ash cement mixed mortar has good performance , its strength is relatively stable ,helping to ensure the quality of construction projects , while saving costs and protecting the environment .Fly ash cement mixed mortar, as green building materials , is the inevitable trend of future mortar development .%水泥粉煤灰砂浆作为一种新型建筑砂浆,是现代普通建筑砂浆的一种替代产品。通过正交试验结果表明:水泥粉煤灰砂浆通过利用粉煤灰替代部分水泥,提高了砂浆的和易性,满足砌筑砂浆的施工和规范要求。水泥粉煤灰砂浆性能良好,强度比较稳定,有利于保证工程的施工质量,同时节约成本,保护环境。水泥粉煤灰砂浆作为绿色建材是建筑砂浆未来发展的方向之一。

  13. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    Science.gov (United States)

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  14. Effect of metakaolinite on strength and chemical resistance of cement mortars

    Energy Technology Data Exchange (ETDEWEB)

    Malolepszy, J.; Pytel, Z. [Mining and Metallurgy Univ., Faculty of Materials Science and Ceramics, Cracow (Poland)

    2000-07-01

    The effect of the percentage of metakaolinite admixture and calcium aluminate content in portland cement, used as the main cementitious components, on the chemical resistance of a series of prepared standard mortars was investigated. Chemical resistance was evaluated by measuring strength, shrinkage and expansion on the samples stored in water and chemical solutions. Results showed minimal change in the standard properties of mortars by the metakaolinite. However, there was marked improvement in chemical resistance. Interest in the study of this material is related to the urgency of finding a useful application for it, in view of the fact that it is produced in large quantities as a waste-product of power generation. It is widely believed that there is a potential application for this product in improving the durability of concrete. 20 refs., 10 tabs., 9 figs.

  15. Cement content influence in rebar corrosion in carbonated mortars

    OpenAIRE

    Américo, P. O.; A.A. Nepomuceno

    2003-01-01

    The cement hydration products protect the concrete rebars of the reinforced concrete due to the production of Ca(OH)2, NaOH, and KOH that, upon dissolving in the concrete s aqueous phase, generate a pH above 12.5. However, reinforced concrete structures are exposed to pollutant gases, such as, CO2 which upon penetrating the concrete, reacts with the alkaline components, consequently reducing the pH of the aqueous phase causing the loss of passivit...

  16. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Water is often added to concrete placing for easy workability and finishability in construction site. The additional mixing water can help easy mixing and workability but causes increased porosity, which yields degradation of durability and structural performances. In this paper, cement mortar samples with 0.45 of W/C (water to cement ratio are prepared for control case and durability performances are evaluated with additional water from 0.45 to 0.60 of W/C. Several durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed, and they are analyzed with changed porosity. The changing ratios and patterns of durability performance are evaluated considering pore size distribution, total porosity, and additional water content.

  17. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    Directory of Open Access Journals (Sweden)

    López-Zaldívar, O.

    2015-09-01

    Full Text Available This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales.

  18. Properties and durability of metakaolin blended cements: mortar and concrete

    Directory of Open Access Journals (Sweden)

    Abbas, Rafik

    2010-12-01

    Full Text Available This article explores the effect of metakaolin, a pozzolan, on concrete performance. Compressive and splitting tensile strength were found for specimens cured for up to 360 and 90 days, respectively. Changes were recorded in the compressive strength of specimens exposed to salt (chloride and sulfatechloride solutions, and chloride penetration and binding capacity were measured. The findings were compared to the results for concrete prepared with ordinary Portland (OPC and moderate heat of hydration (Type II cement. MK was found to have a very positive effect on 28-day concrete strength, due to microstructure improvement of the hydrated cement. Replacing cement with metakaolin effectively raised concrete resistance to chloride attack. Concrete containing metakaolin proved to be substantially more durable in sulfate-chloride environment.

    En este trabajo se estudia el efecto del metacaolín sobre las prestaciones del hormigón. Las probetas curadas a 360 y 90 días se sometieron a ensayos de resistencia a compresión y de tracción indirecta respectivamente. Se hizo un seguimiento de la resistencia a la compresión de los materiales ante el ataque de sales (soluciones de cloruro y de sulfato-cloruro y, se midió la penetración de cloruros y la capacidad de los hormigones de inmovilizar estos iones. Los resultados se compararon con los obtenidos con hormigones elaborados con cemento pórtland ordinario (OPC y, con cemento de calor de hidratación moderado (tipo II. El MK resultó influir muy positivamente en la resistencia del hormigón a 28 días debido a la mejora de la microestructura del cemento hidratado. La sustitución de cemento por metacaolín aumentó la resistencia del hormigón al ataque de cloruros. El hormigón con metacaolín demostró ser más duradero en entornos de sulfato-cloruro que los hormigones elaborados con OPC o con cemento de tipo II. Los perfiles de concentración de cloruros a distintas profundidades y la

  19. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.

    Science.gov (United States)

    Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-11-01

    Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.

  20. Shrinkage and Cracking Sensitivity of Cement Mortar Containing Fly Ash, Granulated Blast-furnace Slag and Silica Fume

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF). Six mortar mixtures including control Portland cement (PC) and FA,GBFS and SF mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 20% and 35%, GBFS replaced the cement at the replacement ratios of 40%, SF replaced the cement at the replacement ratios of 8% and the blended mixtures with 20% FA, 20% GBFS and 8% SF. Water-cementitious materials ratio and sand-cementitious materials ratio were 0.4 and 2.0 for all mixtures, respectively. The mixtures were cured at 65% relative humidity and 20℃. The drying shrinkage value, initial cracking time and cracking width of the mortar samples were measured. The results show that all the mortar mixture containing FA exhibited the decrease of drying shrinkage.Moreover, initial cracking time was markedly delayed, and the crack width of the initial crack was reduced. However, the incorporations of various ratios of GBFS and SF led to an increase of drying shrinkage, initial cracking time and cracking width as compared to control mixture.

  1. Behaviour of alkaline cement mortars reinforced with acrylic and polypropylene fibres

    OpenAIRE

    Puertas, P.; Amat, T.; Vázquez, T.

    2000-01-01

    In the present work, the behaviour of alkaline cement mortars reinforced with fibres of different nature (acrylic and polypropylene fibres) is studied. Also the chemical stability of those fibres in strong alkaline medium has been investigated. Three different matrixes have been used: glass blast furnace slag activated with NaOH 2M (room temperature, 22 ºC); fly ash activated with NaOH 8M, cured at 85ºC during 24 hours and 50% fly ash / 50% slag activated with NaOH 8M, room temperature. The f...

  2. Interaction of Shock Waves in Cement Mortar Plate Investigated by the Digital Speckle Correlation Method

    Institute of Scientific and Technical Information of China (English)

    LI Xu-Dong; LIU Kai-Xin; ZHANG Guang-Sheng; WEN Shang-Gang; TAN Fu-Li

    2008-01-01

    @@ Interaction of shock waves in cement mortar plate is studied by digital speckle correlation method and digital high-speed photography technique. When the plates were destroyed by two detonators exploding at the same time, variation of shock wave field is obtained. Experimental results show that the interaction of shock waves will result in a nonlinear huge increase of local normal strain, leading to large deformation and serious destruction. However, the occurrence of this strongly nonlinear phenomenon sensitively depends on the interval between detonators, and it will only appear when the interval is smaller than the diameter of the region where shock waves exist.

  3. Evaluation of compressive strength in cement mortars, according to the dosage established by the colombian seismic resistance code. Case study

    Directory of Open Access Journals (Sweden)

    Sergio Giovanny Valbuena Porras

    2016-06-01

    Full Text Available Context: In a masonry wall the mortar it is between 10 and 20% of the total volume of the system, despite its effect on the behavior of it is significantly higher than this percentage indicates.Objective: The purpose of this research was to evaluate the resistance to compression of two types of mortar paste (A and B, prepared with natural sand from the town of Usme in Bogotá, in accordance with the proportions set by the Standard Colombian earthquake Resistant regulation (NSR-10.Method: Two types of mortar paste were prepared, according to the proportions of cement and sand established in NSR-10 section D.3.4-1 of (Table 1; these proportions were calculated using a 0.0028 m3 container for measuring unit weight. For type A mortar rock sand was used and river sand for type B mortar.Results: The resistance to compression for mortars type A at the end of the study was on average 84% of the expected resistance, whereas for type B mortars it averaged 64% above the expected resistance.Conclusion: Mortar mixes made with crushed or rock (type A arena do not reach the compressive strength required demanded by regulatory standards, despite complying with the dosage established in NSR 10 and with NTC quality criteria; while the natural sand origin or natural river sand meet these standards.

  4. Recycling municipal incinerator fly- and scrubber-ash into fused slag for the substantial replacement of cement in cement-mortars.

    Science.gov (United States)

    Lee, Tzen-Chin; Rao, Ming-Kang

    2009-06-01

    Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38microm for use as a cement substitute (20-40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3-11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.

  5. [Dynamic leaching behavior of heavy metals in eco-cement mortar block].

    Science.gov (United States)

    Li, Cheng; Liu, Jian-Guo; Zhang, Jun-Li; Yue, Dong-Bei; Nie, Yong-Feng; Wang, Chang-Hai

    2008-03-01

    A dynamic leaching test with the renewal of acidic leaching medium was designed to study the leaching behavior of the seven heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn) in three solidified eco-cement mortar samples with different particle size (fine granule, coarse granule, block) under a long-term leaching condition. It was demonstrated that all the heavy metals were detected in the leachate except Cd. The leaching ratio of Cr was the highest when compared with other metals in the same sample, and the leaching ratio of every metal showed an identical tendency: fine granule> coarse granule > block. The on-going leaching part of the relationship curve of accumulative leaching point (Pt) and t1/2 of each metal presented a fairly good linearity, which indicated that the leaching process was under the control of diffusion mechanism by the Fick Law. To each metal, the effective diffusion coefficient (Deff) showed a tendency of fine granule < coarse granule < block, which was opposite to the tendency of leaching ratio. It could be concluded that the solidified eco-cement mortar with a bigger size would have a lower leaching ratio and a shorter period to finish the leaching test. To all the metals, the Deff was very low, with the magnitude around 10(-10) cm2/s, which meant the leaching process would take a relatively long time. PMID:18649553

  6. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  7. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  8. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  9. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash.

    Science.gov (United States)

    Menéndez, E; Álvaro, A M; Hernández, M T; Parra, J L

    2014-01-15

    This paper assess the mechanical an environmental behaviour of cement mortars manufactured with addition of fly ash (FA) and bottom ash (BA), as partial cement replacement (10%, 25% and 35%). The environmental behaviour was studied by leaching tests, which were performed under several temperature (23 °C and 60 °C) and pH (5 and 10) conditions, and ages (1, 2, 4 and 7 days). Then, the accumulated amount of the different constituents leached was analysed. In order to obtain an environmental burden (EB) value of each cement mixture, a new methodology was developed. The EB value obtained is related to the amount leached and the hazardous level of each constituent. Finally, the integral study of compressive strength and EB values of cement mixtures allowed their classification. The results showed that mortars manufactured with ordinary Portland cement (OPC) and with coal BA had similar or even better environmental and mechanical behaviour than mortars with FA. Therefore, the partial replacement of cement by BA might be as suitable or even better as the replacement by FA.

  10. Mechanical characterization of Portland cement mortars containing petroleum or coal tar

    Directory of Open Access Journals (Sweden)

    Garcés, P.

    2007-08-01

    Full Text Available This article discusses experimental data on the flexural and compressive strength of Portland cement mortars containing additions or cement replacements consisting in petroleum or coal tar, by-products of the oil and coal industries. The materials studied were two coal (BACA and BACB and two petroleum (BPP and BPT tars. The results show that it is feasible to use such materials as a partial replacement for cement in mortar manufacture. This should lead to the design of a new sustainable product that will contribute to lowering the environmental impact of construction materials while at the same time opening up an avenue for the re-use of this type of industrial by-products.En este artículo se presentan datos experimentales de resistencia a flexión y a compresión de morteros de cemento Portland con adición y sustitución de breas de petróleo y de alquitrán de carbón, que son subproductos de la industria del carbón o del petróleo. Los materiales estudiados son breas de alquitrán de carbón A (BACA y B (BACB, y dos breas de petróleo (BPP y (BPT. Los datos demuestran la viabilidad del uso de estas breas en la fabricación de morteros con menores contenidos de cemento, permitiendo diseñar un nuevo material sostenible con el medio ambiente y que contribuya a reducir el impacto ambiental de los materiales de construcción, hecho que permite abrir una nueva vía de valorización de estos subproductos.

  11. Dry and wet "deposition" studies of the degradation of cement mortars

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1998-06-01

    Full Text Available The reaction of portland cement mortars with SO2 gaseous pollutant and artificial 'acid rain' solution has been examined using laboratory exposure chambers, with realistic presentation rates of pollutants. The mortar were previously carbonated to produce superficial carbonation. Two mortars with different w/c ratio and hence specific surface were prepared and exposed into the chambers. For dry deposition of SO2 pollutant gas, the important roles of water and water plus oxidant in increasing chemical reaction are readily revealed. Further, accessible porosity also increases reaction through increased times of reaction of pollutant with the mortars. Interestingly, in the absence of deliberate surface wetting, the presence of oxidant, ozone, leads to a reduction in the already limited extent of reaction. Wet deposition studies using artificial 'acid rain' solution result in gypsum formation, which is more extensive for mortars of increased w/c ratios.

    Se han realizado ensayos de laboratorio de simulación de los procesos ambientales de "deposición" seca y húmeda sobre morteros de cemento portland, estudiándose las reacciones que se producen con el contaminante SO2 ("deposición" seca y la disolución de 'lluvia acida' ("deposición" húmeda. Los morteros de cemento se carbonataron para favorecer la carbonatación superficial de los mismos. Se prepararon morteros con dos relaciones a/c con el fin de estudiar la influencia que la variable superficie específica tenía en el proceso de deterioro de dichos materiales. En los estudios de deposición seca con SO2 como gas agresivo se ha visto la importancia que el agua y el agua junto a un oxidante tienen en la reacción del contaminante con los componentes del mortero. La superficie específica Juega un papel importante, ya que al aumentar, aumenta la reacción con el contaminante. La reacción en presencia de oxidante, (SO2+O3

  12. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  13. Application of Image Analysis Based on SEM and Chemical Mapping on PC Mortars under Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    YU Cheng; SUN Wei; Scrivener Karen

    2014-01-01

    The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.

  14. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing

    Directory of Open Access Journals (Sweden)

    Yaning Kong

    2016-08-01

    Full Text Available In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a normal curing at 20 ± 1 °C with relative humidity (RH > 90%; (b steam curing at 40 °C for 10 h; and (c steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM. The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na+ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength.

  15. The chemistry and expansion of limestone - Portland cement mortars exposed to sulphate containing solutions

    International Nuclear Information System (INIS)

    Some concretes in sulphate-bearing groundwaters can deteriorate slowly through chemical reactions which cause expansion and stress. The overall process involves diffusion of sulphate into the concrete, chemical reaction with some cement constituents, internal expansion and, finally, physical disruption of the reacted zone. This work addresses the chemical reactions and the expansion resulting from them so that the overall process of sulphate attack can be modelled eventually. The extent and rate of reaction of calcium sulphate with ordinary and sulphate resisting Portland cements (OPC and SRPC) have been measured under various conditions. Additionally, mortar bars were fabricated from OPC, OPC/BFS (blast furnace slag) and SRPC cements with carboniferous limestone and exposed to various sulphate-containing solutions. The linear expansion of the bars was continuously monitored over a period of about 200 days and, after exposure, the bars were analysed in detail. The results show that the bulk expansion during sulphate attack is proportional to sulphur taken up in insoluble ettringite and magnesium (when present) precipitated as brucite. The results are used to rationalise the behaviour of concretes in sulphate-bearing environments. (author)

  16. Pozzolanic Activity of Burned Coal Gangue and Its Effects on Structure of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Changsen

    2006-01-01

    The pozzolanic activity of coal gangue burned at different burning temperatures was investigated. The burned coal gangue was mixed with portland cement in different proportions ( 20%-60% ). The pozzolanic activity of coal gangue burned and the hydration products were examined, the compressive strengths of the pastes of the mixtures were tested, and the mechanism of the reaction was discussed. The experimental results show that the coal gangue burned at 750 ℃ has the optimum pozzolanic activity, and the burned coal gangue with SiO2 and Al2O3 is in an active form. When the coal gangue burned at 750 ℃ is mixed into portland cement, the content of calcium hydroxide in paste is significantly reduced, while the contents of hydrated calcium silicate and hydrated calcium aluminate are increased accordingly, hence resulting in the improvement of the microstructure of mortar. The compressive strength of cement paste decreases with increasing the content of burned coal gangue. The decease in strength is small in the range of 20%- 30% coal gangue substitution and significant in 30%- 60% substitution.

  17. Physico-chemical studies of gamma-irradiated polyester. Impregnated cement mortar composite

    International Nuclear Information System (INIS)

    The effect of impregnation time on the physico-chemical and mechanical properties of polyester-cement mortar composite has been investigated. The samples were soaked in unsaturated polyester resin containing 40% styrene monomer at impregnation times ranging from 1-15 hours and then exposed to 50 kGy of γ-irradiation. The effects on polymer loading, compressive strength, apparent porosity, and water absorption in addition to IR spectra and TGA of the samples were studied. It was found that, the polymer loading and compressive strength increase with the increased of soaking time up to 4 hours and there is no significant improvement of the polymer loading and strength. Whereas, the apparent porosity and water absorption behave in an opposite direction. These are attributed to the presence of polymer in the pores of the samples. IR spectra showed that, new bands appeared as result of the reaction between polyester and set cement. TGA showed that, the polyester cement composite has higher thermal stability as a compared to irradiated polyester. (author)

  18. [Dynamic leaching behavior of heavy metals in eco-cement mortar block].

    Science.gov (United States)

    Li, Cheng; Liu, Jian-Guo; Zhang, Jun-Li; Yue, Dong-Bei; Nie, Yong-Feng; Wang, Chang-Hai

    2008-03-01

    A dynamic leaching test with the renewal of acidic leaching medium was designed to study the leaching behavior of the seven heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn) in three solidified eco-cement mortar samples with different particle size (fine granule, coarse granule, block) under a long-term leaching condition. It was demonstrated that all the heavy metals were detected in the leachate except Cd. The leaching ratio of Cr was the highest when compared with other metals in the same sample, and the leaching ratio of every metal showed an identical tendency: fine granule> coarse granule > block. The on-going leaching part of the relationship curve of accumulative leaching point (Pt) and t1/2 of each metal presented a fairly good linearity, which indicated that the leaching process was under the control of diffusion mechanism by the Fick Law. To each metal, the effective diffusion coefficient (Deff) showed a tendency of fine granule mortar with a bigger size would have a lower leaching ratio and a shorter period to finish the leaching test. To all the metals, the Deff was very low, with the magnitude around 10(-10) cm2/s, which meant the leaching process would take a relatively long time.

  19. The Effect Of Pozzolan Surface Properties On Physical And Mechanical Properties Of Cement Mortars

    OpenAIRE

    KOÇAK, YILMAZ; DORUM, Atila; Bülent YILMAZ; UCAR, Ali

    2010-01-01

    This study aims to determine mutual influence on blast furnace slag, fly ash and cement with added trass with Portland cement. For this purpose, physical, chemical, XRD, FT-IR, zeta (electrokinetic) potential and standard cement tests were applied to materials. In this study, it is shown that physical characteristics of pozzolan mostly depend on their molecular structures. Properties of molecular structure, in addition to its chrystal and amorphous character, change based on the existence of ...

  20. Altered cement hydration and subsequently modified porosity, permeability and compressive strength of mortar specimens due to the influence of electrical current

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2014-01-01

    This paper reports on the influence of stray current flow on microstructural prop-erties, i.e. pore connectivity and permeability of mortar specimens, and link these to the observed alterations in mechanical properties and cement hydration. Mortar specimens were partly submerged in water and calcium

  1. 水泥砂浆孔结构分形特征的研究%Study of Pore Fractal Characteristic of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    金珊珊; 张金喜; 陈春珍; 陈炜林

    2011-01-01

    利用压汞仪测定了不同水灰比及龄期水泥砂浆的孔结构,通过基于热力学关系的分形模型计算得到了水泥砂浆的孔表面积分形维数,并探讨了孔表面积分形维数与微观孔隙率、孔表面积、平均孔径、中值孔径等其他孔结构参数及砂浆强度之间的关系.结果表明:基于热力学关系的分形模型能够很好地表征水泥砂浆孔隙的复杂程度;孔表面积分形维数与微观孔隙率的相关性较差,而与孔表面积、平均孔径、中值孔径以及强度之间有较好的相关关系;随着孔表面积分形维数的增大,平均孔径和中值孔径减小,孔表面积增加,水泥砂浆的抗折强度及抗压强度增加.基于热力学关系的分形模型计算得到的孔表面积分形维数可作为水泥砂浆孔结构特征的综合评价指标,并且分形维数与其宏观力学性能相关性良好.%Pore structure of cement mortar was tested by mercury intrusion porosimetry(MIP) with different water-cement ratio at different age.Fractal model based on thermodynamic method was used in calculation of pore surface fractal dimension of cement mortar.The relationships between pore surface fractal dimensions and porosity, pore surface area, average pore diameter, median pore diameter and strength of mortar were studied.The results indicate that pore surface fractal dimension which is calculated by fractal model based on thermodynamic method can represent the complexity of pore structure very well, and pore surface fractal dimension has poor correlation with porosity but good correlation with pore surface area,average pore diameter,median pore diameter and strength.As pore surface fractal dimension increases,average pore diameter and median pore diameter of cement mortar decrease,and pore surface area and strength of mortar increase.Thus, pore surface fractal dimension that is calculated by fractal model based on thermodynamic method can be assumed as integrative

  2. Simple method of dynamic Young’s modulus determination in lime and cement mortars

    Directory of Open Access Journals (Sweden)

    Rosell, J. R.

    2011-03-01

    Full Text Available The present work explains a simple method to determine the dynamic Young module (MOE by inducing a set of small mechanical perturbation to samples of lime and cement mortars and correlating the results obtained with results determined using other techniques and methods. The procedure described herein follows the instructions stated in the UNE-EN ISO 12680-1 standard for refractory products although in this study the instructions are applied to standardized RILEM 4x4x16 cm test samples made of lime and cement mortars. In addition, MOE determinations are obtained by using ultrasonic impulse velocity while static Young's modulus determinations are obtained by performing conventional bending tests. The ability of this procedure to correlate with results from other techniques, along with its simplicity, suggests that it can be widely adapted to determine the deformability of mortars under load using standardized samples.

    El presente trabajo muestra un método simple para determinar el módulo de Young dinámico (MOE a partir de pequeñas perturbaciones mecánicas producidas a probetas de mortero de cal y de cemento, correlacionando los resultados obtenidos con las correspondientes mediciones realizadas con otras técnicas. El procedimiento sigue básicamente las instrucciones fijadas en la norma UNE-EN ISO 12680-1 de productos refractarios, pero aplicándolo a probetas normalizadas RILEM 4x4x16 de morteros confeccionados con cal y cemento. Paralelamente se realizan determinaciones del MOE a partir de la velocidad de paso de impulsos ultrasónicos y determinaciones del módulo de Young estático a partir de ensayos de flexión convencionales. La simplicidad del método aplicado y la correlación de los resultados obtenidos con las variables medidas permiten concluir que esta metodología es de aplicación directa para determinar la deformabilidad bajo carga de los morteros a partir de probetas normalizadas.

  3. Coupling between mechanical behaviour and drying of cementing materials: experimental study on mortars

    International Nuclear Information System (INIS)

    The aim of this work is to understand the desiccation effects on the mechanical behaviour of cement materials. Two mortars of ratio E/C=0.5 and 0.8 have been tested. All the tests have been implemented after a six months maturing in water. The experimental study has been carried out as follows: 1)tests characterizing the differed behaviour and the transport properties have been carried out 2)tests characterizing the short term multiaxial mechanical behaviour have been carried out. The desiccation shrinkage in terms of the weight loss presents three characteristic phases. The permeability measurement on the mortar 05 shows that the permeability of the specimens dried and crept is greater than those of the specimens dried before being crept, and the permeability of the specimens submitted to a desiccation creep and then dried is sensibly the same as the last one in spite of a very important differed deformation. The influence of the desiccation on the uniaxial and deviatoric compressions resistance depends of the binding agent: for a cement paste of good quality (E/C=0.5), the resistances increase with the desiccation because of the capillary depression and of the hydric gradients. For a cement paste of low quality (E/C=0.8), there is a competitive effect between the increase of the microcracks induced and the specimen rigidification; the microcracking becomes then the parameter controlling the rupture process. The elasto-plastic behaviour becomes a damageable elasto-plastic behaviour during desiccation which induces, as the decrease of the E/C ratio, a translation of the elastic limit surfaces and ruptures towards higher stresses. In parallel, the elastic properties and the incompressibility modulus are damaged and the volume deformations increase after the drying. At last, the decrease of the Young modulus and the passage to the third shrinkage phase in terms of the weight loss coincide. This can be attributed to the induced microcracking: this decrease of the

  4. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, J.M. [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain); Fita, I.C., E-mail: infifer@fis.upv.es [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain); Soriano, L.; Payá, J.; Borrachero, M.V. [ICITECH, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València (Spain)

    2013-08-15

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration and allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.

  5. Influence of fly ash and its mean particle size on certain engineering properties of cement composite mortars

    Energy Technology Data Exchange (ETDEWEB)

    Gengying Li; Xiaozhong Wu [Shantou University, Shantou (China). Department of Civil Engineering

    2005-06-01

    An experimental investigation on the effects of incorporating large volumes of fly ash on the early engineering properties and long-term strength of masonry mortars is reported. The effect of fly ash and its mean particle size (PD) on the variation of workability and strength has been studied. It was found that fly ash and its mean particle size play a very significant role on the strength of masonry mortars. It has been observed that the early-term strength, except the mortars incorporating coarse fly ash (CFA), was slightly influenced by the replacement with fly ash. The long-term strength (both the bond strength and the compressive strength) will significantly increase, especially for the bond strength of mortars incorporating coarse fly ash. It was also found that the bond strength significantly increased as the mean particle size of fly ash decreases after 28 days curing. However, the 7-day strength was little influenced by fly ash particle size. The fluidity of composite mortar enhanced due to replace cement and lime with fly ash, and the mean PD of fly ash significantly influenced the workability.

  6. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    OpenAIRE

    Cruz González, José Mª; Fita Fernández, Inmaculada Concepción; Soriano Martinez, Lourdes; Paya Bernabeu, Jorge Juan; Borrachero Rosado, María Victoria

    2013-01-01

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all ...

  7. Behaviour of alkaline cement mortars reinforced with acrylic and polypropylene fibres

    Directory of Open Access Journals (Sweden)

    Puertas, P.

    2000-09-01

    Full Text Available In the present work, the behaviour of alkaline cement mortars reinforced with fibres of different nature (acrylic and polypropylene fibres is studied. Also the chemical stability of those fibres in strong alkaline medium has been investigated. Three different matrixes have been used: glass blast furnace slag activated with NaOH 2M (room temperature, 22 ºC; fly ash activated with NaOH 8M, cured at 85ºC during 24 hours and 50% fly ash / 50% slag activated with NaOH 8M, room temperature. The fibre content was 0,2 and 1% in mortar volume. The tests carried out were: tenacity and tenacity index, impact resistance and drying shrinkage. On the specimens tested, a microstructural study by SEM/EDX was carried out. The results obtained have demonstrated the following: a The acrylic and polypropylene fibres are stable in strong basic media, although the first undergo hydrolysis/ hydration processes showed by the alteration of the surface texture, b with low fibre contents (0,2% in volume, tenacity and tenacity index of these mortars remain unaffected. With higher contents (1%, an increase of the corresponding values is produced. This increment is higher in mortars with alkaline activated slag, c For the three matrixes studied, the polypropylene fibres increase the impact strength in higher degree than the acrylic ones. The reinforcement effect is more significative in matrix A and when the fibre content is 1% in volume, d the shrinkage of these mortars is modified depending on the matrix and fibre type. In mortars of activated slag, fibres do not reduce the shrinkage. In mortars of activated fly ash reinforced with acrylic fibres, shrinkage is lower than those containing polypropylene fibres are. Finally, in mortars of fly ash/ activated slag, the two fibres decrease the drying shrinkage.

    En el presente trabajo se estudia el comportamiento de morteros de cementos alcalinos reforzados con fibras de distinta naturaleza (acrílica y de polipropileno

  8. Effect of Concentration of Sodium Hydroxide and Degree of Heat Curing on Fly Ash-Based Geopolymer Mortar

    OpenAIRE

    Subhash V. Patankar; Ghugal, Yuwaraj M.; Jamkar, Sanjay S.

    2014-01-01

    Geopolymer concrete/mortar is the new development in the field of building constructions in which cement is totally replaced by pozzolanic material like fly ash and activated by alkaline solution. This paper presented the effect of concentration of sodium hydroxide, temperature, and duration of oven heating on compressive strength of fly ash-based geopolymer mortar. Sodium silicate solution containing Na2O of 16.45%, SiO2 of 34.35%, and H2O of 49.20% and sodium hydroxide solution of 2.91, 5.6...

  9. Efeito do tempo de cura na rigidez de argamassas produzidas com cimento Portland Effect of the curing time on the stiffness of mortars produced with Portland cement

    Directory of Open Access Journals (Sweden)

    G. C. R. Garcia

    2011-03-01

    Full Text Available O concreto de cimento Portland é um dos materiais mais usados no mundo inteiro, entretanto, devido a sua estrutura ser muito complexa, torna-se imprescindível estudar suas propriedades com bastante profundidade. O concreto é produzido a partir de uma argamassa, de areia e cimento, com adição de agregados graúdos, sendo que suas propriedades estão basicamente suportadas nessa argamassa de constituição. O objetivo deste trabalho foi estudar a variação da rigidez de duas argamassas de composições com razão cimento:areia de 1:2 e 1:3 em função do tempo de cura, tendo como parâmetro a variação do módulo de Young. Os resultados mostraram que o módulo de Young cresce até atingir o valor máximo no oitavo dia, sendo que nos três primeiros dias esse crescimento é mais acentuado. A análise dos resultados indica que grande parte do processo de hidratação do cimento, com formação das ligações químicas responsáveis pela rigidez da argamassa, acontece nos primeiros dias de cura.Concrete produced with Portland cement is one of building materials most widely used worldwide. However, due to its highly complex structure, its properties require in-depth studies. Concrete is a mortar consisting of a mixture of cement, sand and coarse aggregates, and its properties are represented basically by the mortar base. The aim of this work was to study the change in stiffness of two mortar compositions cured at 25 ºC with a cement-to-sand ratio of 1:2 and 1:3, as a function of curing time using the variation of Young modulus as the measuring parameter. The results showed that Young modulus increases up to a maximum value on the 8th day, and that this increase is more pronounced during the first three days. An analysis of the results indicates that a large part of the cement hydration process, involving the formation of chemical bonds that are responsible for the mortar stiffness, takes place in the early days of curing.

  10. Caracterização física e mecânica de argamassas à base de cimento Portland e cinza de casca de arroz residual Physical and mechanical characterization on Portland cement mortar with rice husk ash addition

    Directory of Open Access Journals (Sweden)

    Michelle S Rodrigues

    2010-04-01

    mechanical performance, the mortar based on ash (RHA did not present pozolanicity but it can be employed in cement matrices as inert material (filler.

  11. Changes in Properties of Cement and Lime Mortars When Incorporating Fibers from End-of-Life Tires

    Directory of Open Access Journals (Sweden)

    Lluís Gil

    2016-02-01

    Full Text Available This paper studies the addition of fibers from end-of-life tires to commercial mortar mixtures. Two different types of mortar, one lime-plastic and other cement-fluid, are mixed with different percentage of fibers ranging from 0% to 1%. The changes in bulk density, consistency, compressive and flexural strength, dynamic Young modulus and water absorption are studied. According to the results, consistency is the property that shows more relevant changes for an addition of 0.25% fibers. Consistency is related to workability and affects the water absorption and the Young modulus values. On the contrary, bulk density and mechanical properties did not change with the addition of fibers. The results prove that this fiber, considered a waste from recycling of end-of-life tires, can be used in commercial mixtures without losing strength. On the other hand, mortar workability limits the amount of fibers that can be included in the mixture and this parameter determines the performance of the mortar.

  12. Influence of free water content on the compressive mechanical behaviour of cement mortar under high strain rate

    Indian Academy of Sciences (India)

    Jikai Zhou; Xudong Chen; Longqiang Wu; Xiaowei Kan

    2011-06-01

    The effect of free water content upon the compressive mechanical behaviour of cement mortar under high loading rate was studied. The uniaxial rapid compressive loading testing of a total of 30 specimens, nominally 37 mm in diameter and 18.5 mm in height, with five different saturations (0%, 25%, 50%, 75% and 100%, respectively) were executed in this paper. The technique ‘Split Hopkinson pressure bar’ (SHPB) was used. The impact velocity was 10 m/s with the corresponding strain rate as 102/s. Water-cement ratio of 0.5 was used. The compressive behaviour of the materials was measured in terms of the maximum stress, Young’s modulus, critical strain at maximum stress and ultimate strain at failure. The data obtained from test indicates that the similarity exists in the shape of strain–stress curves of cement mortars with different water content, the upward section of the stress–strain curve shows bilinear characteristics, while the descending stage (softening state) is almost linear. The dynamic compressive strength of cement mortar increased with the decreasing of water content, the dynamic compressive strength of the saturated specimens was 23% lower than that of the totally dry specimens. With an increase in water content, the Young’s modulus first increases and then decreases, the Young’s modulus of the saturated specimens was 23% lower than that of the totally dry specimens. No significant changes occurred in the critical and ultimate strain value as the water content is changed.

  13. Improvement of Cracking-resistance and Flexural Behavior of Cement-based Materials by Addition of Rubber,Particles

    Institute of Scientific and Technical Information of China (English)

    KANG Jingfu; JIANG Yongqi

    2008-01-01

    By ring test and bend test,the improvement of waste tire rubber particles on the crack-resistance and flexural behaviors of cement-based materials were investigated.Test results show that the cracking time of the ring specimens can be retarded by the incorporation of rubber particles in the cement paste and mortar.The improvement in the crack-resistance depended on the rubber fraction.When the rubber fraction was 20%in volume,the cracking time was retarded about 15 h for the paste and 24 d for the mortar respectively.Flexural properties were evaluated based on the bend test results for both mortar and concrete containing different amount of rubber particles.Test results show that rubberized mortar and concrete specimens exhibit ductile failure and significant deformation before fracture.The ultimate deformations of both mortar and concrete specimen increase more than 2-4 times than control specimens.

  14. Influence of clinker grinding-aids on the intrinsic characteristics of cements and on the behaviour of mortars

    Directory of Open Access Journals (Sweden)

    Fernández Luco, L.

    2003-12-01

    Full Text Available In the production of portland cement, grinding aids are used to improve the grinding stage and reduce the energy required to achieve the required fineness. These additives remain in the final product and they might influence the characteristics and properties of the cement, and thus, mortar and concrete. This paper presents an evaluation of two grinding-aid additives used in the production of portland cement ground in a ball mill at a laboratory stage, with suitable proportions of portland cement clinker and gypsum. A control cement mix was also produced without using any admixture and the results are shown on a comparative basis. Conclusions indicate that grinding-aids additives have some influence on the characteristics of portland cement produced, increasing their specific surface and modifying microstructure and its packing ability. Mortars and concretes made with cements ground with the addition of gringing-aids exhibit higher strength at any age and a reduced water demand. Special attention should be taken to consider any interaction with water-reducing admixture in concretes and mortars.

    En la fabricación de cemento portland es una práctica creciente la utilización de aditivos para optimizar el proceso de molienda; éstos quedan incorporados en el producto final y pueden influir sobre las características y propiedades del cemento, morteros y hormigones. En este trabajo se presenta la evaluación de dos aditivos comerciales en la molienda conjunta de clínker de cemento portland y yeso comercial, tratados en un molino a bolas a escala de laboratorio, en forma comparativa con un cemento sin aditivo producido en forma equivalente. Las conclusiones indican que los aditivos de molienda tienen influencia en las características del cemento resultante, incrementando su superficie y modificando su microestructura y estado de agregación; los morteros mejoran sus prestaciones mecánicas a todas las edades y se reduce la demanda de agua

  15. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste util

  16. ASR potential of quartz based on expansion values and microscopic characteristics of mortar bars

    Science.gov (United States)

    Stastna, Aneta; Sachlova, Sarka; Kuchynova, Marketa; Pertold, Zdenek; Prikryl, Richard

    2016-04-01

    The alkali-silica reaction (ASR) is one of the most damaging factors for concrete structures. Different analytical techniques are used to quantify ASR potential of aggregates. The accelerated mortar bar test (ASTM C1260) in combination with the petrographic examination of aggregates by microscopic techniques belongs to the frequently employed methods. Such a methodical approach enables quantification of the ASR potential, based on the expansion values of accelerated mortar bars; and also to identify deleterious components in aggregates. In this study, the accelerated mortar bar test (ASTM C1260) was modified and combined with the scanning electron microscopy of polished sections prepared from mortar bars. The standard 14-day test period of mortar bars was prolonged to 1-year. ASR potential of aggregates was assessed based on expansion values (both 14-day and 1-year) of mortar bars and microscopic analysis of ASR products (alkali silica gels, microcracks, dissolution gaps) detected in the sections. Different varieties of quartz-rich rocks including chert, quartz meta-greywacke, three types of quartzite and pegmatite were used as aggregate. Only quartz from pegmatite was assessed to be non reactive (14-day expansion of 0.08%, 1-year expansion of 1.25%). Aggregate sections exhibited minor ASR products even after 1-year of mortar bar immersion in 1 M NaOH. Expansion values of the rest of samples exceeded the limit of 0.10% after 14-day test period indicating aggregates as reactive. The highest ASR potential was detected in mortar bars containing chert (14-day expansion of 0.55%, 1-year expansion of 2.70%) and quartz meta-greywacke (14-day expansion of 0.46%, 1-year expansion of 2.41%). The high ASR potential was explained by presence of cryptocrystalline matrix in significant volumes (24 - 65 vol%). Influence of the lengths of the immersion in the alkaline solution was observed mainly in the microstructure of the cement paste and on the extension of ASR products. The

  17. Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars

    Directory of Open Access Journals (Sweden)

    Ince, C.

    2015-06-01

    Full Text Available The purpose of this paper is an investigation of the possible role of supplementary cementitious materials (SCMs on water transport kinetics and mechanical properties of hydrated lime (CL90 and Portland cement (PC mortars. The properties of hydrated lime are significantly different from those of cement and therefore modifying fresh and hardened properties of these mortars are vital for mortar/substrate optimisation in masonry construction. The parameters investigated in this paper often are the main barriers to the use of hydrated lime in construction practice. The results show that transfer sorptivity and time to dewater freshly-mixed hydrated lime mortars can be modified when binder is partially replaced with SCMs. Compressive strength of CL90 mortars is increased systematically with the increased replacement levels of SCMs and the results are supported with the microstructural images. The ability to modify the water transport kinetics and mechanical properties allows compatibility between the mortar and the substrate unit in masonry construction.El objetivo de este artículo es investigar el papel de los materiales cementantes suplementarios (SCMs en la cinética de transporte del agua y en las propiedades mecánicas de los morteros de cal hidratada (CL90 y cemento Portland. Las propiedades de la cal hidratada son significativamente diferentes a las del cemento y por lo tanto el control de las propiedades de los morteros frescos y endurecidos es fundamental en la optimización mortero/substrato en albañilería. Los parámetros estudiados en este trabajo son a menudo las principales barreras para el uso de la cal hidratada en la práctica de la construcción. Los resultados indican que la absortividad y el tiempo necesario para deshidratar morteros de cal hidratada recién mezclados pueden ser controlados cuando el conglomerante es parcialmente remplazado por SCMs. La resistencia a compresión de los morteros CL90 aumenta sistem

  18. Engineering properties of cement mortar with pond ash in South Korea as construction materials: from waste to concrete

    Science.gov (United States)

    Jung, Sang; Kwon, Seung-Jun

    2013-09-01

    Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.

  19. Studies on potential of Portland cement mortar for binding of waterworks sludge to reduce heavy metal leaching

    Indian Academy of Sciences (India)

    PARAMALINGGAM THANALECHUMI; ABDULL RAHIM MOHD YUSOFF; MOHANADOSS PONRAJ; HANIM AWAB

    2016-03-01

    The investigation of heavy metal leaching and physicochemical properties of cement-solidified waterworks sludge (CMWWS) formed by incorporating waterworks sludge (WWS) into cement mortar was carried out. The chemical composition, compressive strength and other physicochemical properties of the CMWWS cube specimens were determined using field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD) and Fourier transform-infrared spectroscopy (FTIR). The major type of chemical components present in CMWWS was found to be Al and Fe. The increasing amount of WWS added to cement mortar resulted in the increasing of organic matter, urchin-like morphology and clear peak intensity. At the end of 28 days of curing, the soaking solution became strongly basic and CMWWS cube specimens leached out higher amount of heavy metals. The compressive strength of CMWWS increased up to a WWS percentage of 10%, and basic (pH [ 7) curing solution was found to be better than water for curing purposes. It is concluded that solidification–stabilisation (S/S) technique is able to effectively reduce the leaching of heavy metals from the WWS and CMWWS containing up to 10% WWS can be used as construction material.

  20. The effect of temperature rise on microstructural properties of cement-based materials: correlation of experimental data and a simulation approach

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2015-01-01

    This work reports on the influence of stray current flow on temperature rise in hardening cement-based materials and consequently altered cement hydration. To simulate stray current, different levels of electrical current were applied to cement paste and mortar specimens immediately after casting. I

  1. Effect of nano-Si2O and nano-Al2O3 on cement mortars for use in agriculture and livestock production

    OpenAIRE

    León Brito, Nestor; Massana Guitart, Jordi; Alonso Peralta, Francisco; Moragues Terrades, Amparo; Sanchez Espinosa, Elvira

    2014-01-01

    The effect of nano-silica, nano-alumina and binary combinations on surface hardness, resistance to abrasion and freeze-thaw cycle resistance in cement mortars was investigated. The Vickers hardness, the Los Angeles coefficient (LA) and the loss of mass in each of the freeze–thaw cycles to which the samples were subjected were measured. Four cement mortars CEM I 52.5R were prepared, one as control, and the other three with the additions: 5% nano-Si, 5% nano-Al and mix 2.5% n-Si and 2.5% n-Al. ...

  2. INFLUENCE OF FLY ASH REPLACEMENT ON STRENGTH PROPERTIES OF CEMENT MORTAR

    OpenAIRE

    AMARNATH YERRAMALA; BHASKAR DESAI V; RAMA CHANDURDU C

    2012-01-01

    Strength properties of fly ash mortars were evaluated through laboratory investigations. OPC of 53 grade replaced with class F fly ash with 5 - 25 % in the increments of 5 %. The results shown that at early age at all fly ash replacements the strength decreased with respect to normal mortar. However, after 28 days and above themortars made with fly ash replacement up to 15% resulted higher strength than normal OPC mortar. Fly ash replacement of 20 and 25% always had lower strength than normal...

  3. [Microbial settlement of paint- and building-materials in the sphere of drinking water. 9. Communication: experimental examination of cement mortar for the lining with tiles (author's transl)].

    Science.gov (United States)

    Schoenen, D; Thofern, E

    1981-12-01

    The observation of a microbial growth in form of macrocolonies upon the joints of a tiled drinking water reservoir caused the microbiological testing of different pure mineral and some plastic containing cement mortar. Besides the conditions allowing the growth of macrocolonies on tiled plates with a construction like in a reservoir were examined.

  4. DURABILITY OF NATURAL POZZOLAN-BASED MORTAR EXPOSED TO SULFATE ATTACK

    Directory of Open Access Journals (Sweden)

    L. Laoufi

    2016-05-01

    Full Text Available Cement is a strategic commodity in the civil engineering for the construction of reinforced concrete structures. But its production generates around 5% of toxic gases such as CO2 responsible for environmental degradation. Furthermore, cement industry is a consumer sector of non-renewable energy. The use in the cement of natural additions is a solution to reduce the CO2 gas and the cost of production. The purpose of this work is the study of a sustainable building material: natural pozzolan Beni-saf (PNB incorporated to mortars exposed to sulfate attack (5% Na2SO4. The loss of mass, monitoring the pH reading of each attack solution as well as specimens dimensions are different tests to study the durability of mortars made with 10, 20 and 30% of natural pozzolan. The result derived from this research is that pozzolan improves mortars resistance to sodium sulfate environment.

  5. Corrosion rate of steel embedded in blended Portland and fluid catalytic cracking catalyst residue (FC3R cement mortars

    Directory of Open Access Journals (Sweden)

    Payá, J.

    2008-12-01

    Full Text Available This paper reports on a study of the corrosion levels in steel bars embedded in mortars made with a blend of Portland cement and (0-20% spent fluid catalytic cracking catalyst residue (FC3R, with a variable (0.3-0.7 water/binder (w/b ratio. The specimens were stored in the following conditions: relative humidity of 40, 80 or 100% and CO2 concentrations of 5 and 100%. The steel corrosion rate was measured with polarization resistance techniques. In the absence of aggressive agents, the steel was found to remain duly passivated in mortars with an FC3R content of up to 15% under all the conditions of relative humidity tested. The reinforcement corrosion level in mortars with a w/b ratio of 0.3 and 15% FC3R subjected to accelerated carbonation was similar to the level observed in the unblended Portland cement control mortar.En este trabajo se ha estudiado el nivel de corrosión de barras de acero embebidas en morteros de cemento Portland con relación agua/material cementante (a/mc variable (0,3-0,7, en los que parte del cemento (0-20% se sustituyó por catalizador de craqueo usado (FC3R. Las condiciones de conservación de las probetas elaboradas fueron las siguientes: distintas humedades relativas (40, 80 y 100% y dos concentraciones de CO2 (5 y 100%. La velocidad de corrosión de los aceros se midió mediante la técnica de resistencia de polarización. Se ha podido determinar que, bajo las distintas condiciones de humedad relativa y ausencia de agresivo, los aceros se mantuvieron correctamente pasivados en los morteros con contenidos de FC3R de hasta el 15%. El nivel de corrosión que presenta el refuerzo embebidos en morteros con sustitución de un 15% de cemento por FC3R y relación a/mc 0,3, al ser sometidos a un proceso de carbonatación acelerada, era muy similar al mostrado por el mortero patrón, sin FC3R.

  6. CRTSⅡ型水泥乳化沥青砂浆施工质量控制%Impacts Analysis of Gap and Construction Quality Control on CRTSⅡ Type Cement Asphalt Mortar

    Institute of Scientific and Technical Information of China (English)

    钟杰

    2014-01-01

    Based on the practical experience from the construction of Beijing-shanghai high-speed railway and beijing-tianjin intercity passenger dedicated line , the control points of construction quality of cement asphalt mortar are expounded. The common diseases in the construction are described and the causes of diseases are analyzed. Effects of gap between slab and cement asphalt mortar layer on the deformation and stress of track structure are studied on the base of elastic foundation beam theory and finite element method. The results show that the gap between slab and cement asphalt mortar layer has significance effect on the deformation of track structure. In order to guarantee the train running quality and durability of track, the construction quality of cement asphalt mortar must be control strictly, the gap between slab and cement asphalt mortar layer must be prevented and adjusting the construction technology and maintenance timely.%本文以京沪高速铁路和京津城际客运专线工程施工实践为基础,阐述了水泥乳化沥青砂浆层施工质量控制要点,对施工中常见病害进行了描述与原因分析,最后基于弹性地基梁理论与有限元方法,研究了砂浆层离缝对轨道结构受力和变形的影响。结果表明轨道板与水泥乳化沥青砂浆层之间的离缝将加剧轨道结构的变形,为了保证高速列车行车品质与轨道结构的耐久性,必须严格控制水泥乳化沥青砂浆的施工质量,防止灌浆时砂浆离缝的出现,并及时进行施工工艺调整与养护维修。

  7. DC current-induced curing and ageing phenomena in cement-based materials

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2014-01-01

    This paper investigates DC current-induced “curing” and ageing phenomena in cement-based materials. Two current densities were used in a DC current regime i.e. mortar cubes were subjected to DC current flow of 1 A/m2 and 100 mA/m2; tap water and calcium hydroxide were external environment. Condition

  8. Effect of sewage sludge ash (SSA on the mechanical performance and corrosion levels of reinforced Portland cement mortars

    Directory of Open Access Journals (Sweden)

    Andión, L. G.ª

    2006-06-01

    Full Text Available The article describes a study conducted to determinecorrosion in reinforcement embedded in Portland cement(PC mortars with different percentages of sewage sludgeash (SSA admixtures. The polarization resistancetechnique was used to determine the steel corrosion rate(Icorr in the test specimens. The samples were subjectedto different environmental conditions and aggressiveagents: 100% relative humidity (RH, accelerated carbonationat 70% RH and seawater immersion. Portlandcement was partially substituted for SSA in the mixes atrates of 0, 10, 20, 30 and 60% (by mass to make thedifferent mortars. The results show that where cementwas replaced by SSA at rates of up to 10% by mass,mortar corrosion performance was comparable to thebehaviour observed in SSA-free mortars (control mortar:0% SSA. Data for higher rates are also shown. From themechanical standpoint, SSA exhibited moderate pozzolanicactivity and the best performance when SSA wasadded at a rate of 10% to mixes with a water/(binder:PC + SSA (w/b ratio of 0.5.Se ha estudiado el nivel de corrosion que presentan lasarmaduras embebidas en morteros fabricados con cementoPortland (CP con diferentes porcentajes de sustitucion deceniza de lodo de depuradora (CLD. Se ha utilizado la tecnicade la Resistencia a la Polarizacion para determinar lavelocidad de corrosion del acero embebido en las muestrasestudiadas. Las muestras se han sometido a diferentes condicionesambientales y agentes agresivos: 100% de humedadrelativa (HR, carbonatacion acelerada al 70% HR einmersion en agua de mar. Para la fabricacion de los distintosmorteros, el cemento Portland ha sido parcialmente sustituidopor CLD en los siguientes porcentajes en masa: 0,10, 20, 30 y 60%. Los resultados muestran que sustitucionesde cemento por CLD de hasta el 10% en masa no alteranel comportamiento frente a la corrosion de los morterosal compararlos con los morteros libres de CLD (morteroscontrol: 0% de sustitucion de cemento por CLD. Se

  9. Manufacturing of mortars and concretes non-traditionals, by Portland cement, metakaoline and gypsum (15.05%

    Directory of Open Access Journals (Sweden)

    Talero, R.

    1999-12-01

    Full Text Available In a thorough previous research (1, it appeared that creation, evolution and development of the values of compressive mechanical strength (CS and flexural strength (FS, measured in specimens 1x1x6cm of mortar type ASTM C 452-68 (2, manufactured by ordinary Portland cement P-1 (14.11% C3A or PY-6 (0.00% C3A, metakaolin and gypsum (CaSO4∙2H2O -or ternary cements, CT-, were similar to the ones commonly developed in mortars and concretes of OPC. This paper sets up the experimental results obtained from non-traditional mortars and concretes prepared with such ternary cements -TC-, being the portland cement/metakaolin mass ratio, as follows: 80/20, 70/30 and 60/40. Finally, the behaviour of these cements against gypsum attack, has been also determined, using the following parameters: increase in length (ΔL%, compressive, CS, and flexural, FS, strengths, and ultrasound energy, UE. Experimental results obtained from these non-traditional mortars and concretes, show an increase in length (ΔL, in CS and FS, and in UE values, when there is addition of metakaolin.

    En una exhaustiva investigación anterior (1, se pudo comprobar que la creación, evolución y desarrollo de los valores de resistencias mecánicas a compresión, RMC, y flexotracción, RMF, proporcionados por probetas de 1x1x6 cm, de mortero 1:2,75, selenitoso tipo ASTM C 452-68 (2 -que habían sido preparadas con arena de Ottawa, cemento portland, P-1 (14,11% C3A o PY- 6 (0,00% C3A, metacaolín y yeso (CaSO4∙2H2O-, fue semejante a la que, comúnmente, desarrollan los morteros y hormigones tradicionales de cemento portland. En el presente trabajo se exponen los resultados experimentales obtenidos de morteros y hormigones no tradicionales, preparados con dichos cementos ternarios, CT, siendo las proporciones porcentuales en masa ensayadas, cemento portland/metacaolín, las siguientes: 80/20, 70

  10. Mechanism and Preventive Technology of the Thaumasite Form of Sulfate Attack on Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The deterioration mechanism of thaumasite towards cement or concrete structure and the deterioration pattern of in-situ construction caused by the formation of thaumasite were studied in this paper. To improve the TSA (the thaumasite form of sulfate attack) resistance, the cement type, water to cement ratios, the mineral admixture and the circumstance factors should be taken into consideration.

  11. Influence on the physical-mechanical properties of portland-cement mortar, have admixtures of colophony and tannin

    Directory of Open Access Journals (Sweden)

    Fernández Cánovas, M.

    1989-12-01

    Full Text Available The colophony has been used as an admixture in the Portland cement mortar with the intention to observe its influence on the air content, water absorption, adhesive capacity and mechanical properties. The results obtained have shown that, the colophony acts as air entrainment, reduces the permeability and improves the adhesion between the past and aggregates. Likewise, the addition of tannin and montan wax to the colophony has the efect of reducing the formation of foam and improves the impermeability of the mortar.

    Se ha empleado la colofonia como aditivo en el mortero de cemento portland con el fin de observar su influencia sobre el contenido de aire, absorción de agua, capacidad adhesiva y propiedades mecánicas. Los resultados obtenidos han puesto de manifiesto que la colofonia actúa como aireante, aumenta la impermeabilidad y mejora la adherencia de la pasta al árido. Asimismo, la adición de tanino y cera montana a la colofonia tiene el efecto de reducir la formación de espuma y mejorar también la impermeabilidad del mortero.

  12. Mechanism and Test of Mineral Admixture Filling in Cement Mortar%矿物掺合料在水泥砂浆中的填充机理及试验研究

    Institute of Scientific and Technical Information of China (English)

    李滢

    2013-01-01

    主要讨论了矿物掺合料在水泥砂浆中的填充机理,并且以粉煤灰、矿渣粉及硅灰单一组分、复合组分考察其对水泥胶砂强度及微观结构的影响.研究表明,不同细度的矿物掺合料掺入到水泥浆体中后,可以优化粉体的次级颗粒级配,提高密实度.从而表现出水泥砂浆的强度得到提高,微观结构趋于密实.%Filling mechanism of mineral admixture in cement mortar was discussed,with fly ash,superfine slag powder,silica fume and their compounds filling into cement mortar to study their influence on the strength and microstructure of cement mortar.It is demonstrated that the different mineral admixtures can improve the secondary particles size distribution of cementations materials,and then improve the density of cement mortar.So the strength of cement mortar increased and the microstructure of cement mortar get denser.

  13. The compatibility of earth-based repair mortars with rammed earth substrates

    OpenAIRE

    Gomes, M. Idália; Gonçalves, Teresa D.; Faria, Paulina

    2013-01-01

    Earth constructions are susceptible to degradation due to natural or human causes. The degradation of the exterior surface of earth walls is very common, either due to lack of maintenance or to the use of incompatible materials, and often requires the application of a repair mortar. This work analyses experimentally the performance of earth-based repair mortars applied on rammed earth surfaces. The mortars are based on earth collected from rammed earth buildings in south Portugal or on a c...

  14. High-Performance Grouting Mortar Based on Mineral Admixtures

    OpenAIRE

    2015-01-01

    A study on high-performance grouting mortar is reported. The common mortar was modified by mineral admixtures such as gypsum, bauxite, and alunite. The effects of mineral admixtures on the fluidity, setting time, expansion, strength, and other properties of mortar were evaluated experimentally. The microstructure of the modified mortar was characterized by X-ray diffraction, scanning electron microscopy, and mercury intrusion porosimetry. Moreover, the expansive performance and strength of th...

  15. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  16. Evaluation of the properties of bitumen and cement pastes and mortars used in the immobilization of waste radioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Vanessa Mota; de Tello, Cledola Cassia Oliveira, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The Project RBMN was launched in November 2008 and aims to establish, manage and execute all tasks for implementing the Brazilian Repository, from its conception to its construction. The concept to be adopted will be a near-surface repository. The inventory includes wastes from the operation of nuclear power plants, fuel cycle facilities and from the use of radionuclides in medicine, industry and activities research and development. The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. In Brazil, for the immobilization and solidification of radioactive waste of low and intermediate level of radiation from NPPs are used cement, in Angra 1, and bitumen, in Angra 2. Studies indicate serious concerns about the risks associated with bituminization radioactive waste, much related to the process as the product. There are two major problems due to the presence of products bituminization in repositories, swelling of the waste products and their degradation in the long term. To accommodate the swelling, filling the drums must be limited to 70 - 90% of its volume, which reduces the structural stability of the repository and the optimization of deposition. This study aims to evaluate of the properties of bitumen and cement pastes and mortars used in the immobilization of waste radioactive. (author)

  17. Use of Different Barium Salts to Inhibit the Thaumasite Form of Sulfate Attack in Cement-based Materials

    Institute of Scientific and Technical Information of China (English)

    SU Ying; WEI Xiaochao; HUANG Jian; WANG Yingbin; HE Xingyang; WANG Xiongjue; MA Baoguo

    2016-01-01

    We investigated the effects of different barium compounds on the thaumasite form of sulphate attack (TSA) resistance of cement-based materials when they were used as admixtures in mortars. Moreover, we analyzed the inhibition mechanisms within different types of barium salts, namely BaCO3 and Ba(OH)2, on the thaumasite formation. The control cement mortar and mortars with barium salts to cement and limestone weight ratios of 0.5%, 1.0%, and 1.5% were immersed in 5% (by weight) MgSO4 solution at 5℃ to mimic TSA. Appearance, mass, and compressive strength of the mortar samples were monitored and measured to assess the general degradation extent of these samples. The products of sulphate attack were further analyzed by XRD, FTIR, and SEM, respectively. Experimental results show that different degradation extent is evident in all mortars cured in MgSO4 solution. However, barium salts can greatly inhibit such degradation. Barium in hydroxide form has better effectiveness in protection against TSA than carbonate form, which may be due to their solubility difference in alkaline cement pore solution, and the presence of these barium compounds can reduce the degree of TSA by comparison with the almost completely decomposed control samples.

  18. Ranking procedure based on mechanical, durability and thermal behavior of mortars with incorporation of phase change materials

    Directory of Open Access Journals (Sweden)

    Cunha, S.

    2015-12-01

    Full Text Available Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM. The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.Actualmente, existen varios productos de construcción, siendo importante una adecuada selección, con base en sus principales propiedades y funciones. En esta investigación se aplicó un procedimiento de clasificación desarrollado por Czarnecki y Lukowski, en morteros con incorporación de materiales de cambio de fase (PCM. Este procedimiento transforma los resultados experimentales de las propiedades en un único valor numérico. Los productos se clasifican de acuerdo con sus propiedades individuales o en una combinación optimizada de diferentes propiedades. El principal objetivo de este estudio fue la clasificación de morteros basado en los diferentes aglutinantes con incorporación de diferentes cantidades de PCM. Los aglutinantes utilizados fueran la cal aérea, cal hidráulica, yeso y cemento. Para cada aglutinante se han desarrollado tres morteros, siendo morteros de referencia, con incorporación de 40% de PCM y con incorporaci

  19. [Microbial settlement of paint- and building-materials in the sphere of drinking water. 5. Communication: Macrocolonies on the cement mortar lining in a water main (author's transl)].

    Science.gov (United States)

    Schoenen, D

    1980-09-01

    It is reported a microbial growth in form of macrocolonies on a cement mortar line in a potable water main. Simultaneously an increase of bacterial content in the water could be observed. The bacterial content could be reduced by chlorination, but the microbial growth on the surface of the lining was not suppressed. Macrocolonies could be observed the same as before at the last inspection 6 1/2 years after opening of the main.

  20. Drying Shrinkage of Cement-Based Materials Under Conditions of Constant Temperature and Varying Humidity

    Institute of Scientific and Technical Information of China (English)

    MA Bao-guo; WEN Xiao-dong; WANG Ming-yuan; YAN Jia-jia; Gao Xiao-jian

    2007-01-01

    Currently,deformations along the central axis of specimens were usually measured under fixed environmental conditions. Seldom were the effects of environmental factors on the drying-shrinkage deformation of cement-based material considered. For this paper, the drying-shrinkage deformation at different w/b ratios and different additions to mortars was investigated under different environments at a temperature of 20 ℃ and humidity ranging from 100% to 50%. The specimens were cured in water for 28 days before measurement. The results illustrate that mortar shows much less shrinkage under various drying conditions when a lower w/b ratio is adopted. With a decrease in relative humidity the speed of drying-shrinkage becomes gradually lower. The addition of silica fume reduces the drying-shrinkage of mortar under higher relative humidity, because the pore structure of mortar with silica fume becomes more refined. The addition of fly ash increases the total porosity and the volume of coarse pores in the mortar. The drying-shrinkage of mortar under different conditions increases with the addition of more of fly ash.

  1. Influence Of Volcanic Scoria On Mechanical Strength, Chemical Resistance And Drying Shrinkage Of Mortars

    Directory of Open Access Journals (Sweden)

    Al-Swaidani A.

    2014-09-01

    Full Text Available In the study, three types of cement have been prepared; one CEM I type (the control sample and two blended cements: CEM II/A-P and CEM II/B-P (EN 197-1, each of them with three replacement levels of volcanic scoria: (10 %, 15 %, 20 % wt. and (25 %, 30 %, 35 % wt., respectively. Strength development of mortars has been investigated at 2, 7, 28 and 90 days curing. Evaluation of chemical resistance of mortars containing scoria-based cements has been investigated through exposure to 5 % sulphate and 5 % sulphuric acid solutions in accordance with ASTM C1012 & ASTM 267, respectively. Drying shrinkage has been evaluated in accordance with ASTM C596. Test results showed that at early ages, the mortars containing CEM II/B-P binders had strengths much lower than that of the control mortar. However, at 90 days curing, the strengths were comparable to the control mortar. In addition, the increase of scoria significantly improved the sulphate resistance of mortars. Further, an increase in scoria addition improved the sulphuric acid resistance of mortar, especially at the early days of exposure. The results of drying shrinkage revealed that the CEM II/B-P mortar bars exhibited a greater contraction when compared to the control mortar, especially at early ages. However, drying shrinkage of mortars was not influenced much at longer times.

  2. The effect of pozzolan additions on the shrinkage of cement pastes and mortars during their first hours of age

    Directory of Open Access Journals (Sweden)

    Ossa, M. Mauricio

    1992-03-01

    Full Text Available The traditional favour enjoyed by cement including additions and by their diverse uses in Chile calls for an extense investigation of their behaviour in order that the results may justify their utilization in specific projects. This works studies volume changes occurring in cement pastes and mortars containing pozzolan additions during their first hours of age. This investigation used cements made in the laboratory from raw materials supplied by chilean manufacturers. Two types of clinkers were used, namely; a gypsum type and a natural pozzolan type, added in proportions ranging from 0 to 30%.Tests were conducted to ascertain the shrinkage of cement pastes and mortars since the first moments following their mixing operation, employing there for moulds fitted with a special device designed and implemented at the laboratory of the IDIEM Department of Agglomerants. The results thus gathered corroborated the fact that independently of cement characteristics, in general the deformation of pastes and mortars exhibits successive periods of first shrinkage swelling, and second shrinkage. The first shrinkage is affected by the ambient conditions of humidity, temperature, and wind (evaporation, but also in a preponderant way by cement specific surface, which allows higher velocity in the chemical reactions occurring during that period. Moreover the compactation degree is also affecting shrinkage, here. On the other hand, it was confirmed that with cements of like fineness, those having higher C3A contents exhibit an overall shrinkage larger than that of cements having low contents. At last it was possible to ascertain that an increase in pozzolan contents does not affect shrinkage directly, but that its presence may eventually modify the gypsum/clinker ratio and thus give rise to changes, specially in the two States of swelling and second shrinkage.

    La tradicional aceptación en Chile de los cementos con adición y su diversidad

  3. 酸雨侵蚀对水泥砂浆力学性能的影响%Effect of acid rain attack on mechanical properties of cement mortar

    Institute of Scientific and Technical Information of China (English)

    李军

    2015-01-01

    研究了不同水胶比、不同胶凝材料的水泥砂浆受酸雨侵蚀后的力学性能变化。结果表明:在酸雨侵蚀条件下,砂浆抗压强度和抗折强度呈现先快速增长,而后迅速降低的趋势,且水灰比越小,强度增长和下降速度越快;粉煤灰掺量越高,56 d以前强度增长越快,56 d以后强度下降速度越缓慢;28 d前掺矿粉砂浆在酸雨中的抗压强度增长幅度高于未掺加矿粉的基准砂浆,且矿渣掺量越高砂浆抗压强度越高,矿粉对砂浆抗折强度的作用相对较小。%The mechanical properties of cement material of various water cement ratio and cement mortar under acid rain stress were studied. The results show that the compressive strength and bending strength of mortar show a rapid increase under acid rain stress,and then decrease,the strength increases and the decrease rate is faster when the water cement ratio is small. The strength of cement with the increase of fly ash show a rapid growth before 56d and a slow down after 56 d.The compressive strength of mortar with mineral powder increased more than that of control sample under acid rain stress before 28 d,The strength of mortar would be increased with the propor-tions of slag increased ,and mineral powder has little effect on the flexural strength of mortar.

  4. Multi-scale Modeling of the Effective Chloride lon Diffusion Coefficient in Cement-based Composite Materials

    Institute of Scientific and Technical Information of China (English)

    SUN Guowen; SUN Wei; ZHANG Yunsheng; LIU Zhiyong

    2012-01-01

    N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself.For the convenience of applications,the mortar and concrete were considered as a four-phase spherical model,consisting of cement continuous phase,dispersed aggregates phase,interface transition zone and their homogenized effective medium phase.A general effective medium equation was estabhshed to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure.During calculation,the tortuosity (n) and eonstrictivity factors (Ds/D0) of pore in the hardened pastes are n≈3.2,Ds/D0=1.0× 10-4 respectively from the test data.The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.

  5. High-Performance Grouting Mortar Based on Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Cong Ma

    2015-01-01

    Full Text Available A study on high-performance grouting mortar is reported. The common mortar was modified by mineral admixtures such as gypsum, bauxite, and alunite. The effects of mineral admixtures on the fluidity, setting time, expansion, strength, and other properties of mortar were evaluated experimentally. The microstructure of the modified mortar was characterized by X-ray diffraction, scanning electron microscopy, and mercury intrusion porosimetry. Moreover, the expansive performance and strength of the grouting mortar were verified by anchor pullout test. The results show that the best conditions for gypsum-bauxite grouting mortar are as follows: a water-to-binder ratio of 0.3, a mineral admixture content of ~15%, and a molar ratio K of 2. The ultimate bearing capacity of the gypsum-bauxite grouting mortar anchor increased by 39.6% compared to the common mortar anchor. The gypsum-bauxite grouting mortar has good fluidity, quick-setting, microexpansion, early strength, and high strength performances.

  6. Experimental study on the basic properties of cement admixture containing waste mortar powder%废砂浆粉作为水泥混合材的基本性能试验研究

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The article studies the basic properties of the waste mortar powder and the influence of it as a cement ad⁃mixture on the main properties of cement mortar, including grinding performance, water amount of normal consisten⁃cy, mobility and strength. Results show that waste mortar powder of fluidity of cement mortar is decreased and water amount of normal consistency is increased. And the fineness and content of waste mortar powder will affect the strength of cement mortar, bend-press ratio is increased, the material ductility is better.%研究了废砂浆粉基本性能及作为水泥混合材对水泥胶砂主要性能的影响,包括粉磨性能、标准稠度需水量、流动性和强度。结果表明,掺入废砂浆粉的混合水泥胶砂流动度有所下降,标准稠度需水量增加。而且废砂浆粉的细度和掺量都会影响强度,混合水泥折压比有所增长,材料延性较好。

  7. Effect of Concentration of Sodium Hydroxide and Degree of Heat Curing on Fly Ash-Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Subhash V. Patankar

    2014-01-01

    Full Text Available Geopolymer concrete/mortar is the new development in the field of building constructions in which cement is totally replaced by pozzolanic material like fly ash and activated by alkaline solution. This paper presented the effect of concentration of sodium hydroxide, temperature, and duration of oven heating on compressive strength of fly ash-based geopolymer mortar. Sodium silicate solution containing Na2O of 16.45%, SiO2 of 34.35%, and H2O of 49.20% and sodium hydroxide solution of 2.91, 5.60, 8.10, 11.01, 13.11, and 15.08. Moles concentrations were used as alkaline activators. Geopolymer mortar mixes were prepared by considering solution-to-fly ash ratio of 0.35, 0.40, and 0.45. The temperature of oven curing was maintained at 40, 60, 90, and 120°C each for a heating period of 24 hours and tested for compressive strength at the age of 3 days as test period after specified degree of heating. Test results show that the workability and compressive strength both increase with increase in concentration of sodium hydroxide solution for all solution-to-fly ash ratios. Degree of heating also plays vital role in accelerating the strength; however there is no large change in compressive strength beyond test period of three days after specified period of oven heating.

  8. Influence of Fly Ash and Slag Powder on Autogenous Shrinkage of Cement Mortars%粉煤灰和矿粉对水泥胶砂自收缩的影响

    Institute of Scientific and Technical Information of China (English)

    肖佳; 陈雷; 邢昊

    2011-01-01

    试验研究了粉煤灰和矿粉对水泥胶砂自收缩的影响.结果表明:当胶砂比(质量比)为1∶0.5,水胶比(质量比)为0.3时,随水化龄期延长,水泥胶砂自收缩增大,早期自收缩发展急剧.粉煤灰降低了水泥胶砂的自收缩,随着粉煤灰掺量(质量分数)增大,水泥胶砂自收缩减小;掺10%和20%粉煤灰水泥胶砂的21d自收缩较纯水泥胶砂分别下降了21.1%和29.5%.水化早期(5d前),矿粉掺量(质量分数)在10%~20%时,随着矿粉掺量增大,水泥胶砂自收缩降低;掺10%和20%矿粉水泥胶砂的21 d自收缩较纯水泥胶砂分别增加了11.1%和6.6%.%The influence of fly ash and slag powder on the autogenous shrinkage of cement mortars was studied. The experiment test results indicate that the autogenous shrinkage of cement mortar made with 1:0. 5 binder to sand ratio(by mass) and 0. 3 water to binder ratio(by mass) increases with development of hydration. At early age, rate of autogenous shrinkage develops sharply. Addition of fly ash reduces the autogenous shrinkage of cement mortar, and the autogenous shrinkage of cement mortar decreases with increase of fly ash content(by mass). Compared to pure cement mortar, after hydrated for 21 d , the 10% and 20% of fly ash addition reduce autogenous shrinkage of cement mortar by 21. 1% and 29. 5% respectively. Originally within 5 d, the 10%- 20% (by mass) of slag powder addition decreases autogenous shrinkage of cement mortar. Compared to pure cement mortar, after hydrated for 21 d, the 10% and 20% of slag powder addition increase autogenous shrinkage of cement mortar by 11. 1% and 6. 6% respectively.

  9. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    OpenAIRE

    Kara, P; Csetényi, L; Borosnyói, A

    2014-01-01

    In several countries, waste glass causes environmental concerns as quantities stockpiled exceed recycling in the packaging stream. Being amorphous and having relatively high silicium and calcium contents, glass is pozzolanic or even cementitious, when finely ground. Reducing particle sizes typically to less than 100 µm may give control over the alkali-silica reaction in concrete, therefore making this material a possible substitute to Portland cement. Such use may moderate the problem of dump...

  10. Study of Effect of Fly Ash on Fluidity and Strength of Cement Mortar%粉煤灰对水泥砂浆流动度和强度的影响研究

    Institute of Scientific and Technical Information of China (English)

    姚立阳; 姚丽红; 汪潇; 杨留栓

    2013-01-01

    Detailed study of fluidity and strength of cement mortar mixed with I Grade fly ash at different content showed that fly ash could improve the performance of cement mortar effectively. With water to binder ratios increasing, the fluidity of cement mortar with fly ash increased, higher fly ash content, the larger the fluidity. The early strength of cement mortar reduced slightly because fly ash admixed, but later strength increased, especially at 30%amount, 28d strength of cement mortar reached to peak.%通过对不同掺量时的Ⅰ级粉煤灰水泥砂浆的流动度和强度的研究,结果表明,粉煤灰的掺入可以有效改善水泥砂浆的性能。随水胶比增大,可使粉煤灰水泥砂浆的流动度得到提高,而且流动度随粉煤灰掺量的增加而增加;粉煤灰的掺入早期强度有所降低,但后期强度得到了提高,尤其是当粉煤灰掺量为30%时,28 d 龄期时强度达到最高。

  11. Modifications on Microporosity and Physical Properties of Cement Mortar Caused by Carbonation: Comparison of Experimental Methods

    Directory of Open Access Journals (Sweden)

    Son Tung Pham

    2013-01-01

    Full Text Available The influence of carbonation on the microstructure of normalised CEM II mortar was studied using nitrogen adsorption and porosity accessible to water. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity, and 20% CO2 concentration. Conflicts in results were observed because while the pore size distributions calculated by BJH method from nitrogen adsorption provided evolution of the micro- and mesopores during carbonation, the porosity accessible to water showed changes in all three porous domains: macro-, meso- and micropores. Furthermore, the porous domains explored by water and nitrogen molecules are not the same because of the difference in the molecular sizes. These two techniques are therefore different and help to complementarily evaluate the effects of carbonation. We also examined the evolution of macrophysical properties such as the solid phase volume using helium pycnometry, gas permeability, thermal conductivity, thermal diffusivity, and longitudinal and transverse ultrasonic velocities. This is a multiscale study where results on microstructural changes can help to explain the evolution of macro physical properties.

  12. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars

    International Nuclear Information System (INIS)

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  13. STUDY ON PASTES AND MORTARS OF PORTLAND CEMENT WITH REPLACEMENT BY SANITARY WARE

    Directory of Open Access Journals (Sweden)

    Silvina Zito

    2016-06-01

    Full Text Available In this paper the Sanitary Faience, use as a replacement for portland cement is analyzed. Replacements used were 8, 24 and 40% by weight; the assays used contemplated the evolution of hydration from the first minutes (up to 48 hours by calorimetry, and from 2 days (to 28 days by the fixing of calcium hydroxide, water chemically combined, mechanical flexural and compression and porosity. The results showed that with increasing the percentage of replacement, at the earliest ages the effect of dilution overlaps and contrats with the physical stimulation; and at the 28 days all blends showed, as well as physical stimulation, chemistry stimulation, trough of pozzolanic reactivity.

  14. Dosification of a cement-talc-chamotte refractory mortar subjected to thermal shock

    OpenAIRE

    Kittl, P.; Díaz, G.; Alarcón, H.

    1992-01-01

    A cement-talc-chamotte refractory mixture was dosified by subjecting the same to thermal shock. To this end, specimens compacted to 350 Kg/cm2 through compression as well as specimens compacted manually were prepared. All the specimens were submitted to an initial working temperature of 1000ºC and then left to cool down to room temperature. The thermal shock was originated by heating the specimens in an oven till reaching a certain temperature T¡ ...

  15. Sequestration of phosphorus from wastewater by cement-based or alternative cementitious materials.

    Science.gov (United States)

    Wang, Xinjun; Chen, Jiding; Kong, Yaping; Shi, Xianming

    2014-10-01

    Cement-based and alternative cementitious materials were tested in the laboratory for their capability of removing phosphate from wastewater. The results demonstrated that both Langmuir and Freundlich adsorption isotherms were suitable for describing the adsorption characteristics of these materials. Among the four types of filter media tested, the cement-based mortar A has the highest value of maximum adsorption (30.96 mg g(-1)). The P-bonding energy (KL) and adsorption capacity (K) exhibited a positive correlation with the total content of Al2O3 and Fe2O3 in each mortar. The maximum amount of P adsorbed (Qm) and adsorption intensity (1/n) exhibited a positive correlation with the CaO content in each mortar. For three of them, the P-removal rates were in excess of 94 percent for phosphorus concentrations ranging from 20 to 1000 mg L(-1). The underlying mechanisms were examined using field emission scanning microscopy (FESEM), coupled with energy-dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). The results reveal that the removal of phosphate predominantly followed a precipitation mechanism in addition to weak physical interactions between the surface of adsorbent filter media and the metallic salts of phosphate. The use of cement-based or alternative cementitious materials in the form of ground powder shows great promise for developing a cost-effective and environmentally sustainable technology for P-sequestration and for wastewater treatment.

  16. The grain grading model and prediction of deleterious porosity of cement-based materials

    Institute of Scientific and Technical Information of China (English)

    FENG Qi; LIU Jun-zhe

    2008-01-01

    The calculating model for the packing degree of spherical particles system was modified. The grain grading model of cement-based materials was established and could be applied in the global grading system as well as in the nano-fiber reinforced system. According to the grain grading model, two kinds of mortar were de-signed by using the global grain materials and nano-fiber materials such as fly ash, silica fume and NR powder.In this paper, the densities of two above systems cured for 90d were tested and the relationship of deleterious porosity and the total porosity of hardened mortar was discussed. Research results show that nano-fiber materialsuch as NR powder can increase the density of cement-based materials. The relationship of deleterious porosity and the total porosity of hardened mortar accords with logarithmic curve. The deleterious porosity and the ration-ality of the grading can be roughly predicted through calculating the packing degree by the grain grading model of cement-based materials.

  17. Attack of Limestone Cement-based Material Exposed to Magnesium Sulfate Solution at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fengchen; WU Shengxing; FANG Yonghao; ZHOU Jikai; LI Zhonghua

    2014-01-01

    Limestone in cement could be a source of CO32-needed for thaumasite formation which will result in thaumasite form of sulfate attack (TSA) probably. TSA has more deterioration than ettringite or gypsum form of sulfate attack because it targets the calcium silicate hydrates (C-S-H) which is the main binder phase in all Portland cement-based materials. By means of physical and mechanical property testing as well as erosion phases analysis, magnesium sulfate attack of cement-based material containing 35% limestone powder by mass at 5 ± 2℃is investigated. The compressive strength and flexural strength of mortar specimen immersed in MgSO4 solution increase firstly, then decrease rapidly with the immersing age. Relative dynamic elastic modulus of mortar specimen changes in a phased process. After immersing in MgSO4 solution for 15 weeks, the main erosion phases in paste specimen change from four phases compounds, three phases compounds to two phases compounds from surface to inside. Deterioration course of limestone cement-based material exposed to magnesium sulfate aggressive environment appears progressive damage layer by layer, and every layer probably suffers four stages, which are property strengthening stage, initial degradation stage, thaumasite formation stage and cementation loss stage, respectively.

  18. Influence of the activators’ type and content on the properties of no cement mortars%激发剂种类及掺量对无水泥砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    张海龙; 裴长春

    2015-01-01

    为了优化工业垃圾粉煤灰、高炉矿渣及生石灰作为胶凝材料的无水泥砂浆配合比设计,提高无水泥砂浆的基础性能,试验通过改变碱性激发剂的种类及掺量,研究了无水泥砂浆的表观密度及力学性能,得出了一些有价值的结论。%In order to optimize the mix design of no cement mortars with fly ash, blast furnace slag and lime as cementitious materials and to im-prove the performance of no cement mortars, the test studied the apparent density and mechanical properties of no cement mortars by changing the type and dosage of alkaline activator, some valuable conclusions are obtained.

  19. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  20. Investigation of cement based composites made with recycled rubber aggregate

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica Lj.

    2012-01-01

    Full Text Available The results of experimental investigations performed on cement based composites made with addition of recycled rubber as a partial replacement of natural river aggregate are presented in this paper. Different properties of cement based mortar were analyzed, both in fresh and in hardened state. Tested properties in the fresh state included: density, consistency and volume of entrained air. In the hardened state, the following properties were tested: density, mechanical properties (compressive and flexural strength, modulus of elasticity, adhesion to concrete substrate, water absorption, freeze-thaw resistance and ultrasonic pulse velocity. The obtained results indicate that recycled rubber can be successfully applied as a partial replacement of natural river aggregate in cement based composites, in accordance with the sustainable development concept. The investigation showed that physical-mechanical properties of cementituous composites depend to a great extent on the percentage of replacement of natural river aggregate with recycled rubber, especially when the density, strength, adhesion and freeze-thaw resistance are concerned. The best results were obtained in the freeze-thaw resistance of such composites.

  1. Repair mortars based on lime. Accelerated aging tests

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1995-06-01

    Full Text Available The behaviour under different accelerated aging tests (freeze/thaw and crystallization cycles of a new lime mortar with biocide properties destinated to monumental repair has been studied. New mortars (which have the biocide impregnated in a clay called sepiolite have a similar behaviour to lime mortars used as a reference. After the aging tests, the biocide properties of the mortars have been tried.

    Se ha estudiado el comportamiento frente a distintos ensayos de envejecimiento acelerado (ciclos de hielo/deshielo y cristalización de sales de un nuevo mortero de cal con propiedades biocidas, destinado a la reparación monumental. Se ha comprobado que los nuevos morteros (que llevan incorporado el biocida impregnado en una arcilla denominada sepiolita tienen un comportamiento muy similar a los morteros de cal utilizados como referencia. Tras los ensayos de envejecimiento se ha visto que las propiedades biocidas de los morteros se mantienen.

  2. Optimization of Blended Mortars Using Steel Slag Sand

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new kind of mortar made of ground granulated blast-furnace slag (GGBFS), gypsum,clinker and steel slag sand (<4.75 mm) was developed. The ratio of steel slag sand to GGBFS was 1:1 and the amount of gypsum was 4% by weight while the dosage of clinker ranged from 0% to 24%. The optimization formulation of such mortar was studied. The content of steel slag sand should be less than 50% according to the volume stability of blended mortar, and the dosage of clinker is about 10% based on the strength development.Besides strength, the hydration heat, pore structure and micro pattern of blended mortar were also determined.The experimental results show the application of steel slag sand may reduce the dosage of cement clinker and increase the content of industrial waste product such as GGBFS, and the clinker is also a better admixture for blended mortar using steel slag sand.

  3. Dosification of a cement-talc-chamotte refractory mortar subjected to thermal shock

    Directory of Open Access Journals (Sweden)

    Kittl, P.

    1992-03-01

    Full Text Available A cement-talc-chamotte refractory mixture was dosified by subjecting the same to thermal shock. To this end, specimens compacted to 350 Kg/cm2 through compression as well as specimens compacted manually were prepared. All the specimens were submitted to an initial working temperature of 1000ºC and then left to cool down to room temperature. The thermal shock was originated by heating the specimens in an oven till reaching a certain temperature T¡ and then quenching the same through immersion in water at 20ºC; temperature T¡ was varied between 170ºC and 970ºC by means of 100ºC increments. The optimum dosification amounting to 90 % cement-talc and 10 % chamotte was obtained by studying mean stress at compression fracture of five cement-talc-chamote mixtures as a function of thermal shock. In addition, thermal fatigue exhibited by the optimum dosification was studied through the determination of mean loss in compressive strength, which amounted to 52% after 7 cycles with ΔT = 500ºC.

    Se dosificó una mezcla refractaria cemento-talco-chamota sometiéndola a un choque térmico. Con este objeto se fabricaron probetas compactadas a 350 kg/cm2 mediante compresión y probetas compactadas manualmente. Se aplicó a todas ellas una temperatura inicial de trabajo a 1.000 ºC, luego se las dejó enfriar hasta que alcanzaran la temperatura de sala del laboratorio. El choque térmico se originó calentando las probetas en un horno hasta una temperatura T¡ y luego se las enfrió súbitamente sumergiéndolas en agua a 20 ºC; la temperatura T¡ varió entre 170 ºC y 970 ºC con incrementos de 100 ºC. La dosificación óptima, 90% cemento-talco y 10% chamota, se obtuvo estudiando la tensión media de fractura a la compresión de cinco mezclas de cemento-talco-chamota en función del choque térmico. Se estudió además la fatiga térmica de la dosificación óptima determinando la

  4. Influence of chloride in mortar made of Portland cement types II, III, and V on the near-field microwave reflection properties

    Science.gov (United States)

    Hu, Cairong; Benally, Aaron D.; Case, Tobias; Zoughi, Reza; Kurtis, Kimberly

    2000-07-01

    Corrosion of steel rebar in reinforced concrete structures, can be induced by the presence of chloride in the structure. Corrosion of steel rebar is a problematic issue in the construction industry as it compromises the strength and integrity of the structure. Although techniques exist for chloride detection and its migration into a structure, they are destructive, time consuming and cannot be used for the interrogation of large surfaces. In this investigation three different portland cement types; namely, ASTM types II, III and V were used, and six cubic (8' X 8' X 8') mortar specimens were produced all with water-to-cement (w/c) ratio of 0.6 and sand-to-cement (s/c) ratio of 1.5. Tap water was used when producing three of these specimens (one of each cement type). For the other three specimens calcium chloride was added to the mixing tap water resulting in a salinity of 2.5%. These specimens were placed in a hydration room for one day and thereafter left it the room temperature with low humidity. The reflection properties of these specimens, using an open-ended rectangular waveguide probe, were monitored daily at 3 GHz (S-band) and 10 GHz (X-band). The results show the influence of cement type on the reflection coefficient as well as the influence of chloride on the curing process and setting time.

  5. Effect of cement sand ratio on industrial waste residue dry-mixed mortar properties%灰砂比对工业废渣干混砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘秀伟; 杨林; 秦贤顺

    2015-01-01

    研究了高掺量磷渣粉、粉煤灰干混砂浆的灰砂比对砂浆性能的影响及激发剂对砂浆的作用机理。结果表明,在砂浆稠度基本不变的前提下,随着灰砂比减小,砂浆和易性变差,凝结时间延长,抗压强度降低,拉伸黏结强度逐渐减小,28 d干缩逐渐增大,但在灰砂比为1:1~1:6的范围内其性能均能满足GB/T 25181—2010《预拌砂浆》中对应等级标准要求,调整灰砂比可以配制出M5.0~M30不同强度等级的普通干混砂浆。%Study on the mechanism of effect of high content of phosphorus slag powder,fly ash dry mixed mortar cement sand ratio on the properties of mortar and activator on the mortar. The results show that,on the premise of mortar consistency basically unchanged, with the cement sand ratio decreases,mortar workability variation,extended the setting time,compressive strength decreases,the tensile bond strength decreases,28 d shrinking gradually increased,but in the cement sand ratio is in the range of 1:1~1:6 and its performance can meet the GB/T 25181—2010 ready mixed mortar in the corresponding grade standards,adjust the cement sand ratio can be prepared M5.0~M30 of different strength grade of ordinary dry mixed mortar.

  6. Water transfer properties and shrinkage in lime-based rendering mortars

    Science.gov (United States)

    Arizzi, A.; Cultrone, G.

    2012-04-01

    aspect to be considered in the evaluation of the decay caused by water is the high shrinkage suffered by renders when they are applied on an extended surface (i.e. a wall), especially when they are aerial lime-based mortars. The shrinkage causes the formation of fissures that become an easy way for water to entry and diffuse through the mortar pore system. This factor is rarely taken into consideration during the hydric assays performed in the laboratory, since mortar samples of 4x4x16 or 4x4x4 cm in size do not undergo to such degree of shrinkage. For this reason, we have also studied the shrinkage of these mortars and considered it in the final assessment of mortars hydric properties. The shrinkage was evaluated according to a non-standardized method, by means of a shrinkage-measuring device that measures the mortar dimensional variations over time. This measurement has shown that the highest the lime content the biggest the mortar shrinkage and, consequently, the strongest the decay due to water.

  7. Study on properties of cement mortar mixed with powdered slag & flyash%掺矿渣微粉和粉煤灰的水泥胶砂性能试验研究

    Institute of Scientific and Technical Information of China (English)

    杨华全; 覃理利; 董维佳; 王仲华

    2001-01-01

    Based on orthogonal design method,the orthogonal list L24(61×41×23) was selected for arranging test,the influences of the quantity of pozzolanic admixture,the ratio of powdered slag and flyash,the fineness of powdered slag,and the quality of flyash on the flowabilities,the compressive and flexural strengths of cement mortar at ages of 7,28,90 and 180 days,respectively,were explored.On the basis of experimental tests,the optimum combination of cement,powdered slag and flyash was determined. The test results showed that the cement mortar containg powdered slag and flyash is better than that only mixing with either powdered slag or flyash.%根据正交设计法,利用L24(61×41×23)正交表安排试验,探讨了混合材掺量、矿渣微粉与粉煤灰的比例、矿渣微粉细度、粉煤灰品种对水泥胶砂流动度、7,28,90 d龄期的抗压强度的影响,初步确定水泥熟料、矿渣微粉、粉煤灰三元体系的较优组合。结果表明,粉煤灰与矿渣微粉双掺比单掺矿渣微粉或单掺粉煤灰的水泥胶砂,具有一定的优势。

  8. Additives for cement compositions based on modified peat

    Science.gov (United States)

    Kopanitsa, Natalya; Sarkisov, Yurij; Gorshkova, Aleksandra; Demyanenko, Olga

    2016-01-01

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  9. Additives for cement compositions based on modified peat

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com; Demyanenko, Olga, E-mail: angel-n@sibmail.com [Tomsk State University of Architecture and Building, 2, Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  10. Experiment and Study for Corrosion of Fly Ash Cement Mortar by Sulfuric Acid%掺粉煤灰水泥砂浆抗稀硫酸侵蚀的试验研究

    Institute of Scientific and Technical Information of China (English)

    李燕涛; 宋志刚; 闵红光

    2012-01-01

    为研究稀硫酸侵蚀掺粉煤灰水泥砂浆的规律,对砂浆试块进行长期浸泡试验,用滴酸法间接测得腐蚀速率并结合偏相关理论分析了影响砂浆试块腐蚀速率各个因素.分析表明:pH值相同时,粉煤灰掺量0%~3 0%的砂浆试块的腐蚀过程符合浓度边界层溶解反应模型;试块的流动度与抗腐蚀能力呈负相关;掺粉煤灰并不能明显改善水泥砂浆的抗稀硫酸侵蚀的性能.%A long time immersion test of fly ash cement mortar in dilute sulfuric acid was carried out to study the mechanisms of corrosion-resistant. The rate of mortar corrosion was indirectly recorded and combining with the theory of partial correlation, the parameters that can affect the rate were obtained. It was showed that in soak solution with the same pH value, corrosion process of cement mortar with 0%~30% fly ash can reflect the dissolving reaction model of consistency boundary, with the fluidity of cement mortar inversely related to corrosion -resistant capability of cement mortar. The corrosion-resistant capability of cement mortar can not be improved remarkably by fly ash.

  11. Patch microstructure in cement-based materials: Fact or artefact?

    International Nuclear Information System (INIS)

    The appearance of patch microstructure, i.e. broad dense and porous regions separated by sharp and distinct boundaries and occurring randomly in bulk and interfacial transition zones, has been reported previously in various site- and laboratory-mixed concretes and mortars. In this paper, evidence is presented to show that patch microstructure is an artefact of sample preparation and does not reflect the true nature of the hydrated cement paste. The appearance of dense patches comes from paste areas that have been ground and polished beyond the epoxy resin intrusion depth. In a backscattered electron image, pores not filled with epoxy are not visible because the signal is generated from the base or side walls of the pores. A modified method for epoxy impregnation, which can achieve a much deeper epoxy penetration than conventional vacuum impregnation, is presented

  12. 改性稻壳水泥砂浆的性能研究%Study on properties of modified rice husk cement mortar

    Institute of Scientific and Technical Information of China (English)

    左洁; 董莪; 刘杰胜

    2016-01-01

    The potential value of rice husk will have important social significance as a green resource. This paper mainly studies the macroscopic physical properties of modified rice husk cement mortar. The results show that dif⁃ferent incorporation amount of modified rice husk has different degrees of impact on the porosity, water absorption, consistency and water retention of the cement mortar.%稻壳作为大宗废料处理是一种浪费,研究稻壳的潜在价值将其作为一种绿色资源具有重要的社会意义。主要研究改性稻壳水泥砂浆的宏观物理性能。通过试验得出,掺入不同量的改性稻壳对水泥砂浆的孔隙率、吸水率、稠度、保水率有不同程度的影响。

  13. Use of copper slag in cement mortar Uso de escória de cobre na fabricação de argamassas de cimento

    Directory of Open Access Journals (Sweden)

    Amin Salvador Nazer

    2012-03-01

    Full Text Available The use of a Chilean copper smelter slag in the manufacture of cement mortars was studied. Copper slag was characterized from the chemical, mineralogical and size distribution point of view. In addition, different Chilean standards were used to determine some important parameters of the waste and to perform compression and flexural assays of the cement mortars. The results obtained showed that the mortars manufactured with copper slag present a higher resistance to compression and flexural than those manufactured with river sand. It is concluded that this metallurgical residue can be used in civil construction.Estudou-se a utilização da escória de cobre de uma fundição do Chile na fabricação de argamassas de cimento. A escória foi caracterizada através de análise química, mineralógica e granulométrica. Também foram usados diferentes padrões para se conhecerem alguns parâmetros importantes da escória e se fazerem os ensaios de compressão e de flexão das argamassas. Os resultados mostraram que as argamassas feitas com escória de cobre apresentaram maior resistência à compressão e à flexão que as preparadas com areia. O estudo conclui que esse resíduo metalúrgico poderia ser utilizado na construção civil.

  14. Pengaruh Perendaman Air Laut Terhadap Kualitas Mortar Semen

    OpenAIRE

    Damayanti, Mentari C.; Rauf, Nurlaela; Juarlin, Eko

    2015-01-01

    This research of fabrication cement with adding sugarcane bagasse ash (SBA) as pozzolan. Then chemical composition of cement sample is measured by XRF, setting time of cement and mortar compressive strength is examined with and without immersion. The result showed sea water gives influence for mortar compressive strength. Mortar compressive strength without immersion increases with 6% persentage composition of SBA. While mortar compressive strength with immersion of sea water decreases along ...

  15. Behaviour of corroded steel in a Ca(OH2-saturated solution and in cement mortar. Possibility of rehabilitation

    Directory of Open Access Journals (Sweden)

    Hernández, L. S.

    2007-03-01

    Full Text Available The present study compared the response of rust-free and corroded steel electrodes in Ca(OH2-saturated solutions and in cement mortar, essentially defined in terms of polarization resistance as measured with gravimetric, metallographic and electrochemical methods. Answers were sought for the following questions, which persist despite the use of reinforced concrete (RC in building for over a century: At what corrosion rate is RC durability seriously compromised? Does restoration of the initial conditions in properly manufactured concrete guarantee repassivation of corroded steel? Does the use of inhibitors enhance repassivation? Does the nature of the corrosion products have any significant effect on the response of corroded steel reinforcement? The results obtained in indicated that the effectiveness of preventive methods is much more closely related to the degree of existing corrosion than to the nature of the corrosion products.En el presente trabajo se analizan las respuestas de electrodos de acero, limpios y precorroídos, en soluciones saturadas de Ca(OH2 y en mortero de cemento, recurriendo para ello a técnicas gravimétricas, metalográficas y electroquímicas, esencialmente a medidas de resistencia de polarización. Se intenta encontrar respuesta a las siguientes dudas persistentes después de más de un siglo de utilización de las estructuras de hormigón armado (EHA: ¿qué velocidades de corrosión comprometen seriamente la durabilidad de las EHA? ¿La restauración de las condiciones iniciales de un hormigón correctamente fabricado garantiza la recuperación del estado pasivo en los refuerzos ya corroídos? ¿La utilización de inhibidores facilita la repasivación de los refuerzos? ¿Cambia la naturaleza de los productos de corrosión sustancialmente la respuesta de las armaduras ya corroídas? Los resultados obtenidos indican que la eficacia de las medidas preventivas resulta mucho más condicionada por el grado de

  16. 含砂量对水泥砂浆强度与孔结构的影响%Effect of Sand Content on Strength and Pore Structure of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    周继凯; 金龙; 丁宁

    2013-01-01

    Results of a study conducted to evaluate the effect of four sand content on the compressive,flexural and splitting-tensile strength of cement mortar are report.An experimental investigation in the pore structure of cement mortar brought about by changing the sand content and water/cement ratio is also reportsed.The changes in the pore structure were quantified by measuring the porosity,and pore size distribution obtained using mercury intrusion porosimetry technique.Test results show that the strengths of cement mortar increase with increasing sand content.Sand content is an important parameter influencing the pore structure of cement mortar.Moreover,there is a good relationship between pore structure and strength of cement mortar.A quantative expression is given between strength and pore parameters.%探讨四种不同含砂量对水泥砂浆抗压、弯拉和劈拉强度的影响.通过试验研究了随着含砂量和水灰比的变化水泥砂浆孔结构的不同.通过测量孔隙率及压汞法测量孔径分布来描述水泥砂浆的孔结构.试验结果表明水泥砂浆的强度(弯拉,劈拉和抗压)随含砂量的增加而提高.含砂量对水泥砂浆的孔结构也有十分重要的影响,水泥砂浆强度与其孔结构间有一定的相关性,给出相对应孔结构参数(孔径分布与孔隙率)与强度的定量关系表达式.

  17. Biofouling e biodeterioração química de argamassa de cimento portland em reservatório de usina hidroelétrica Biofouling and chemical biodeterioration in hydroeletric power plant portland cement mortar

    Directory of Open Access Journals (Sweden)

    Kleber Franke Portella

    2009-01-01

    Full Text Available Last decade Brazilian rivers experimented progressive biofouling of Limnoperna fortunei communities and Cordylophora caspia hydroids. The microhabitat is so favorable that in around 1.5 years L. fortunei increased from 0.39 to nearby 149,000 units/m². Ten Portland cement mortar samples were produced with 1: 3.5: 0.4 dosages and installed for 1 year at Salto Caxias Brazilian Power Plant reservoir in 0.5 m and 1.0 m deep to investigate the biofouling influence on hydraulic civil structures. SEM, EDS, visual investigation and XRF results indicate none direct chemical interrelationships between L. fortunei and the mortar samples. However C. caspia diminished the mortar surface resistance and caused cement paste leaching.

  18. Effect of a biodegradable natural polymer on the properties of hardened lime-based mortars

    Directory of Open Access Journals (Sweden)

    Izaguirre, A.

    2011-06-01

    Full Text Available As an environmentally friendly and energy-saving alternative to cement-based materials and to some chemically obtained water-reducers, a commercialized starch was incorporated into aerial lime-based matrix. Different dosages were tested in order to study the influence that the amount of additive exerted on the properties of the material. Density, shrinkage, water absorption through capillarity, water vapour permeability, mechanical strengths, porosity, pore size distribution, and durability in the face of freezing-thawing cycles were studied in the mortars. The tested starch acted as a thickener for dosages up to 0.30%, and changed its behaviour for the largest dosage (0.50%: in that case it behaved as a plasticizer, dispersing the lime through the fresh mass and generating a more workable material. As a result, the matrix of the hardened mortar presented great coherence, owing to its large density and low porosity, characteristics which led to lower capillarity and permeability, better mechanical properties and durability.

    Como alternativa a los materiales con base cemento y a plastificantes obtenidos por vía química, se estudió el efecto de un almidón comercial incorporado a morteros de cal aérea. Se ensayaron dosificaciones diferentes para analizar su influencia sobre las propiedades del material. En los morteros se determinaron densidad, retracción, absorción de agua por capilaridad, permeabilidad, resistencias mecánicas, porosidad, distribución de tamaños de poro y durabilidad frente a ciclos de hielo-deshielo. El almidón actuó como espesante hasta la dosis de 0,30%, pero cambió al añadirlo en la dosis más alta (0,50%: en este caso, se comportó como un plastificante, dispersando la cal a través de la mezcla en fresco, dando lugar a un material más trabajable. Como resultado, en la dosis 0,50%, la matriz del mortero endurecido presentó gran coherencia, por su mayor densidad y menor porosidad, lo que implicó una

  19. Influence of Rubber Aggregate on Pore Structure of Cement Mortar%橡胶集料对水泥砂浆孔结构的影响

    Institute of Scientific and Technical Information of China (English)

    张海波; 管学茂; 勾密峰; 刘小星

    2013-01-01

    孔结构是影响砂浆或混凝土性能的重要参数.通过压汞法研究了橡胶颗粒对砂浆孔隙率及孔径分布的影响规律,分析了橡胶颗粒对砂浆孔结构的影响机理.结果表明,随橡胶颗粒含量增加,橡胶砂浆最可几孔径增加,总孔隙率增加,其中大孔(D>1000 nm)含量增加最为明显,而凝胶孔(D<10 nm)含量变化不大.橡胶表面与水的接触角为99.5.,说明其具有憎水性,同时由于橡胶颗粒表面存在着大量凹坑,水在毛细管作用下无法充满橡胶颗粒表面凹坑,导致橡胶颗粒与水泥基体界面处存在大量孔径较大的孔隙.%Pore structure is an important factor for performance of rubber cement mortar and concrete.The pore structure and pore size distributions of rubber mortars with different amount of rubber granules addition was examined using mercury porosimetry,and the influence mechanism of rubber granules on pore structure of mortar was analyzed.The increasement of rubber granules addition results in the increasement of mode pore diameter and the total porosity,particularly for the amount of macropore(D〉1000 nm).Nevertheless,the amount of gel pore(D<10 nm)is proximally the same as that of specimen with no rubber addition.The examined contact angle of water against rubber is 99.5°,which suggests the hydrophobic nature of rubber surface.Due to rubber granules' hydrophobic surface and rough surface morphology,the water in mortar can not fill the dent in rubber surface,which illustrates the formation of the pore structure of transition zone between rubber and cement matrix.

  20. Preparation and Properties of a New Composite of Epoxy Emulsion(EEM)Modified Cement

    Institute of Scientific and Technical Information of China (English)

    XIAO Liguang; JIN Yujie; GU Lixia

    2009-01-01

    High performance cement based composite materials was prepared by adding epoxy emulsion.The epoxy emulsion was synthesized with epoxy phosphoric acid ester and poly-glycol in laboratory.This epoxy emulsion has advantages over other emulsion,such as dehydrated slightly,and well film formation abilities.The mechanical properties, corruptness resistance and structure of ep-oxy emulsion modified cement mortars were studied.Experimental results show that the mechanical properties of modified cement mortars are slightly increased with increasing epoxy emulsion content, especially the flexure strength.The corruptness resistance of all modified mortars is better than the unmodified mortar.The polymer film forms the bridge phases between the matrix and the aggregate regions,and forms a three-dimension structure in the cement hydration system,which improves the mechanical properties of modified mortars.

  1. 水泥砂孔隙特征对抗冻性影响的研究%Research of cement mortar air content on the effects of pore characterstics and frost resistance

    Institute of Scientific and Technical Information of China (English)

    陈松; 李建新; 王起才; 李伟龙

    2015-01-01

    Through the frost resistance test,mercury intrusion test,hole spacing coefficient test to determine the cement mortar pore structure characteristics and the frost resistance under different air content,study the relationship between frost resistance and cement mortar pore structure characteristics,in addition,also analyzed the compressive strength of cement mortar under different air content. Ex-perimental results show that the as increase of air content the pore porosity of cement mortar,total pore volume,total hole area,average pore diameter are all increased,hole spacing coefficient decreases,and improved pore structure internal of cement mortar ,and pore size distribution more uniform and reasonable,although the strength decreases a bit,but the frost resistance was improved greatly.%通过抗冻性试验、压汞试验、孔间距系数试验测定了不同含气量下水泥砂的浆孔结构特征及其抗冻性,研究了抗冻性与孔结构之间的关系,此外,还分析了不同含气量水泥砂浆的抗压强度。试验结果表明:含气量的增加使水泥砂浆孔隙率、总孔体积、总孔面积、平均孔径均增加,孔间距系数减小,改善了其内部孔结构,孔径分布也比较均匀合理,虽然其强度有所降低,但大大提高了抗冻性。

  2. 不同含气量水泥砂浆孔体积分形维数研究%Study on Pore Volume Fractal Dimension for Cement Mortar with Different Air Contents

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The pore structure parameters of cement mortar with different air contents are measured by mercury porosimeter and pore structure analyzer. Fractal model based on thermodynamic method is used in calculation of different scales' pore structure fractal dimensions of cement mortar. The relationships between fractal dimension and porosity, average pore diameter, pore specific surface area, pore spacing coefficient, total pore volume of cement mortar are analyzed. The result shows that ( 1 ) the fractal dimension of pore structures with different scales calculated by the fractal model based on thermodynamics presents multiplicity, it can represent the complexity of cement mortar pore structure very well; ( 2 ) the increase of air content makes the fractal dimension of the pore whose diameter is more than the range of 102 nm has increase trend, while the fractal dimension of the pore whose diameter is under the range of 102 nm shows a trend of decrease; (3) the increase of age makes the fractal dimension of the pore whose diameter is in the range of 103 nm to 104 nm shows a trend of decrease, the others shows a trend of increase; (4) among the pore structure parameters, the pore volume fractal dimension has good correlation with porosity, average pore diameter and total pore volume, and has poor correlation with pore specific surface area in the range of 103 -104 nm and 102 -103 nm pore diameters. Considering the pores whose diameters in the range of 102 -103 nm have a high proportion in the total pore, it can be as a unified fractal dimension to signify the change of pore structure parameters.%采用压汞仪、气孔结构分析仪测定了不同含气量水泥砂浆的孔结构参数,通过热力学关系的分形模型计算得到了水泥砂浆不同尺度孔结构分形维数,并分析了水泥砂浆不同尺度孔结构孔体积分形维数与孔隙率、平均孔径、孔比表面积、孔间距系数、孔总体积关系.结果表明:基于热力学关系的分

  3. Piezoresistivity in Carbon Fiber Reinforced Cement Based Composites

    Institute of Scientific and Technical Information of China (English)

    Bing CHEN; Keru WU; Wu YAO

    2004-01-01

    The resu lts of some i nteresti ng investigation on the piezoresistivity of ca rbon fi ber reinforced cement based com posites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.

  4. Effects of the Component and Fiber Gradient Distributions on the Strength of Cement-based Composite Materials

    Institute of Scientific and Technical Information of China (English)

    YANG Jiu-jun; HAI Ran; DONG Yan-ling; WU Ke-ru

    2003-01-01

    The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied.The results show that the flexural strength and compressive strength of the mortar and concrete with interface component and fiber gradient distributions are obviously improved.The strengthes of the fiber gradient distributed mortar and concrete (FGDM/C) are higher than those of fiber homogeneously distributed mortar and concrete (FHDM/C).To obtain the same strength,therefore,a smaller fiber volume content in FGDM/C is needed than that in FHDM/C.The results also show that the component gradient distribution of the concrete can be obtained by means of multi-layer vibrating formation.

  5. Low Carbon Footprint Mortar from Pozzolanic Waste Material

    OpenAIRE

    Taha Mehmannavaz; Salihuddin Radin Sumadi; Muhammad Aamer Rafique Bhutta; Mostafa Samadi; Seyed Mahdi Sajjadi

    2014-01-01

    Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of...

  6. Piezoresistive Response Extraction for Smart Cement-based Composites/Sensors

    Institute of Scientific and Technical Information of China (English)

    HAN Baoguo; QIAO Guofu; JIANG Haifeng

    2012-01-01

    A kind of piezoresistive response extraction method for smart cement-based composites/sensors was proposed.Two kinds of typical piezoresistive cement-based composites/sensors were fabricated by respectively adding carbon nanotubes and nickel powders as conductive fillers into cement paste or cement mortar.The variation in measured electrical resistance of such cement-based composites/sensors was explored without loading and under repeated compressive loading and impulsive loading.The experimental results indicate that the measured electrical resistance of piezoresistive cement-based composites/sensors exhibits a two-stage variation trend of fast increase and steady increase with measurement time without loading,and an irreversible increase after loading.This results from polarization caused by ionic conduction in these composites/sensors.After reaching a plateau,the measured electrical resistance can be divided into an electrical resistance part and an electrical capacity part.The piezoresistive responses of electrical resistance part in measured electrical resistance to loading can be extracted by eliminating the linear electrical capacity part in measured electrical resistance.

  7. 掺合料和水胶比对水泥基材料水化产物和力学性能的影响%Influence of admixture and water-cement ratio on hydration products and mechanical properties of cement-based materials

    Institute of Scientific and Technical Information of China (English)

    吴福飞; 侍克斌; 董双快; 陈亮亮; 慈军; 王欣; 张凯

    2016-01-01

    Admixture and water-cement ratio are important factors affecting the development of properties of cement mortar or concrete. In order to study the influence of admixtures and water-cement ratio on the hydration products and the mechanical properties of cement-based materials, the study combined hydration reaction mechanism of pure cement and silicate admixture, derived the formulae of hydration products, theoretical maximum mixing amount and total porosity of composite cement-based materials, and investigated the effects of mixing amount of cement mortar with fly ash, steel slag and lithium slag on total porosity, mechanical properties and hydration products. This paper designed 3 gradients of water-cement ratio (0.50, 0.42 and 0.34), 3 kinds of admixtures (lithium slag, fly ash and steel slag) and 2 contents (20% and 60%); the ratio of cementitious material to sand was 1:2.5, and then, molding specimen accorded with the mix of mortar in the triple mold and the mechanical properties of mortar were tested when specimen was cured to 1, 3, 7, 28 and 90 d. The results showed that, after the same content of fly ash, steel slag and lithium slag incorporation, the contents of hydration products of composite cementitious materials, i.e. calcium hydroxide (CH) and calcium silicate hydrate (CSH), and the total porosity were smaller than those of pure cement; when the water-cement ratio decreased from 0.50 to 0.34, the total porosity of cement mortar decreased from 16.0% to 9.3%, and the contents of CH and CSH increased for the compound cement-based materials with mixing amount of 5%, but the increments were not big; the porosity of fly ash, steel slag and lithium slag cement-based composite materials reduced from 16.6%, 17.2% and 16.0% to 9.9%, 10.9% and 9.3%, respectively. When the admixture amount increased to 10%, the variation of porosity and hydration products of the 3 kinds of mortar was different. The content of hydration products (CH and CSH) of composite

  8. [Based on Curing Age of Calcined Coal Gangue Fine Aggregate Mortar of X-Ray Diffraction and Scanning Electron Microscopy Analysis].

    Science.gov (United States)

    Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang

    2016-03-01

    By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.

  9. 水泥乳化沥青砂浆孔体积的分形特征%Fractal Characteristic of Pore Volume of Cement and Asphalt Mortar

    Institute of Scientific and Technical Information of China (English)

    傅强; 郑克仁; 谢友均; 周锡玲; 蔡锋良

    2013-01-01

    The volume fractal characteristic of pores with the size of >1000nm in cement and asphalt mortar (CA mortar) was deter-mined by mercury intrusion porosimetry. The effect of internal physical and chemical properties of CA mortar on the fractal charac-teristic of pore volume was analyzed. The results show that the most probable pore diameter and the volume of pores with the size of >5000nm decrease,while the big capillary pores in the size range from 1000nm to 5000nm increase with the increase of age. The formation and filling effect of the hydration products of cement are the main influence factors that cause this phenomenon. The fractal dimension increases with the increase of age, but the increased rate reduces due to the influence of asphalt membrane on cement hy-dration. The porosity and the average of pore diameter decrease with the increase of fractal dimension, further indicating that the in-crease of fractal dimension is a continuous optimization of pore structure inside of CA mortar. The compressive strength and elastic modulus increase, the increased rate decreases when the fractal dimension increases. The fractal dimension is the indirect characteri-zation parameter of macro-mechanical property of CA mortar.%采用压汞测孔试验研究了水泥乳化沥青砂浆(CA砂浆)1000 nm以上孔径孔隙的体积分形特征,并进一步分析了CA砂浆内部微细观物理化学性能对其孔体积分形特征的影响机理。结果表明:随着龄期的增加,最可几孔径逐渐减小,CA砂浆内部孔径在5000 nm以上的孔隙体积逐渐减少,孔径为1000~5000 nm的大毛细孔体积逐渐增加,水泥水化产物的形成及其填充作用是主要影响因素;分形维数随龄期增加而逐渐增大,沥青膜对水泥水化的影响是分形维数增加速率逐渐减慢的主要原因;孔隙率和平均孔径随分形维数的增加而逐渐减小,进一步证明了分形维数的增大象征着CA砂浆内部孔结构的优化。

  10. Self-healing Action of Permeable Crystalline Coating on Pores and Cracks in Cement-based Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Guiming; YU Jianying

    2005-01-01

    The self-healing action of a permeable crystalline coating on the porous mortar was investigated by two times impermeability test. Moreover, the self-healing mechanism of cement-based materials with the permeable crystalline coating was studied by SEM. The results indicate that the permeable crystalline coating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or cracks produced by freeze-thaw cycles. Therefore, cement-based materials can be improved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great quantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.

  11. Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation.

    Science.gov (United States)

    Garrabrants, A C; Sanchez, F; Kosson, D S

    2004-01-01

    Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.

  12. Laboratory investigation of the influence of two types of modified hydrotalcites on chloride ingress into cement mortar

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.

    2015-01-01

    Owing to the unique molecular structure and high ion exchange capacity, hydrotalcites are believed to have a potential to be modified and tailor-made as an active component of mortar and/or concrete. In this paper, two types of modified hydrotalcites (MHT-pAB and MHT-NO2) were incorporated into ceme

  13. Use of olive biomass fly ash in the preparation of environmentally friendly mortars.

    Science.gov (United States)

    Cruz-Yusta, Manuel; Mármol, Isabel; Morales, Julián; Sánchez, Luis

    2011-08-15

    The incorporation of fly ash from olive biomass (FAOB) combustion in cogeneration plants into cement based mortars was explored by analyzing the chemical composition, mineralogical phases, particle size, morphology, and IR spectra of the resulting material. Pozzolanic activity was detected and found to be related with the presence of calcium aluminum silicates phases. The preparation of new olive biomass fly ash content mortars is effective by replacing either CaCO(3) filler or cement with FAOB. In fact, up to 10% of cement can be replaced without detracting from the mechanical properties of a mortar. This can provide an alternative way to manage the olive biomass fly ash as waste produced in thermal plants and reduce cement consumption in the building industry, and hence an economically and environmentally attractive choice.

  14. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength.

    Science.gov (United States)

    Maschio, Stefano; Tonello, Gabriele; Piani, Luciano; Furlani, Erika

    2011-10-01

    In the present research mortar pastes obtained by replacing a commercial cement with the equivalent mass of 5, 10, 20 and 30 wt.% of fly ash or bottom ash from fir chips combustion, were prepared and rheologically characterized. It was observed that the presence of ash modifies their rheological behaviour with respect to the reference blend due to the presence, in the ashes, of KCl and K2SO4 which cause precipitation of gypsum and portlandite during the first hydration stages of the pastes. Hydrated materials containing 5 wt.% of ash display compression strength and absorption at 28 d of same magnitude as the reference composition; conversely, progressive increase of ash cause a continuous decline of materials performances. Conversely, samples tested after 180 d display a marked decline of compression strength, as a consequence of potassium elution and consequent alkali-silica reaction against materials under curing.

  15. Study on the property of cement mortar with scrap rubber powder%橡胶粉水泥砂浆的性能研究

    Institute of Scientific and Technical Information of China (English)

    杨文华; 吴法宝

    2011-01-01

    本文以不同掺量废轮胎橡胶粉取代部分细集料的方法,研究橡胶粉的掺量对橡胶水泥砂浆流动度和和物理力学性能的影响。实验结果表明流动度随着胶粉掺量的增大而增大,强度随着胶粉掺量增加而降低。%The effect on mobility and mechanical property of cement mortar were investigated respectively when additive composition of scrap tire powder replaces part of sand.The result showed mobility was up, but strength was down with increasing scrap tire powder.

  16. Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz Duran Atis; Alaettin Kilic; Umur Korkut Sevim [Cukurova University, Balcali-Adana (Turkey). Engineering and Architecture Faculty

    2004-01-01

    A laboratory study was undertaken to assess the compressive and flexural tensile strength and drying shrinkage properties of mortar mixtures containing high-calcium nonstandard Afsin-Elbistan fly ash (FA). Possibility of using Afsin-Elbistan FA in cement-based materials as shrinkage-reducing or compensation agent was also discussed. Five mortar mixtures including control Portland cement (PC) and FA mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 10%, 20%, 30% and 40%. Water-cementitious materials ratio was 0.4 for all mixtures. The mixtures were cured at 65% relative humidity and 20{+-}2{sup o}C. The compressive and flexural tensile strength and drying shrinkage values of the mortar mixtures were measured. The results show that Afsin-Elbistan FA reduced drying shrinkage of the mortar by 40%. Therefore, it was concluded that Afsin-Elbistan FA can be used as a shrinkage-reducing agent. The mortar containing 40% FA expanded. This indicates that Afsin-Elbistan FA may be utilized to compensate drying shrinkage of cement-based materials.

  17. Efeito da aplicação do poliestireno sulfonado (PSSNa como aditivo em argamassas e concretos de cimento Portland CPV32 Effect of PSSNa as admixture in mortars and concrete of cement portand CPV32

    Directory of Open Access Journals (Sweden)

    Betina Royer

    2005-03-01

    Full Text Available Neste trabalho foi investigado o uso do Poliestireno sulfonado (PSSNa, produzido a partir de copos plásticos descartáveis de Poliestireno (PS, como aditivo em argamassas e concretos de cimento Portland CPV32. A avaliação do PSSNa como aditivo foi baseada em ensaios de fluidez e resistência mecânica à compressão de corpos de prova. Foi observado, em argamassas com relação água/cimento (a/c de 0,48, um aumento na fluidez com o aumento das porcentagens de PSSNa (0,25 a 1,00%. A adsorção do PSSNa sobre as partículas de cimento melhora a dispersão dos componentes da argamassa, aumentando a resistência mecânica à compressão dos corpos de prova após a cura. A aplicação do PSSNa em concreto apresentou o mesmo efeito. O abatimento do concreto sem PSSNa foi de 50 mm, atingindo cerca de 200 mm com o uso do polieletrólito. Devido à elevada plasticização observada é possível empregar o PSSNa como aditivo redutor de água. Foi produzido um concreto com o mesmo abatimento da referência sem aditivo reduzindo-se a quantidade de água em 20,8%. O ganho de resistência mecânica à compressão obtido foi de 21,5 e 26,3 %, respectivamente aos 7 e 28 dias de cura. Estes resultados mostraram que soluções de PSSNa podem atuar eficientemente como aditivo superplastificante ou redutor de água em argamassas e concretos.In this work an investigation was made of the effects from adding PSSNa, obtained from disposable polystyrene (PS cups, as admixture agent in mortars and concrete with varying ratios from 0.25 to 1.00%. The evaluation of PSSNa as additive was based on results of fluidity and mechanical strength to compression. In mortars with water/cement ratio of 0.48, an increase in flow was observed when the dosage of PSSNa varied from 0.25 to 1.00%. The dispersion of mortar components was improved due to the adsorption of PSSNa on cement particles, which increased the mechanical strength of mortars. Similar results were obtained with the

  18. Non destructive determination of the free chloride content in cement based materials

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, B. [Department of Inorganic and Analytical Chemistry, University of Cagliari, I-09128 Cagliari (Italy); Institute of Materials Chemistry and Corrosion, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zuerich (Switzerland); Zimmermann, L.; Boehni, H. [Institute of Materials Chemistry and Corrosion, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zuerich (Switzerland)

    2003-06-01

    A non-destructive chloride sensitive sensor element for use in cement based porous materials is presented. The sensor element determines the activity of the free chloride ions in solutions and in porous cement based materials such as cement paste, mortar or concrete. The calibration in synthetic pore solution showed a response according to Nernst law over three decades of chloride concentration. The sensor element has shown excellent reproducibility and long term stability. The sensor element has been used to monitor the chloride uptake into mortar specimens. The results show a good agreement between the free chloride content determined by the sensor and by pore water expression. Applications in monitoring of reinforced concrete structures and their limitations are discussed. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] In der vorliegenden Arbeit wird ein Chloridsensor zur zerstoerungsfreien Erfassung des Chloridgehalts in zementoesen Materialien beschrieben. Der Sensor bestimmt die Aktivitaet der freien Chloridionen in Loesungen und in Zementstein, Moertel oder Beton. Die Kalibrierungskurve in synthetischer Betonporenloesung zeigt das erwartete Nernst'sche Verhalten ueber mehr als drei Konzentrationsdekaden. Der Sensor weist eine sehr hohe Reproduzierbarkeit und Langzeitstabilitaet auf. Der Chloridsensor wurde eingesetzt, um das Eindringen der Chloridionen in Moertelpruefkoerpern zu untersuchen. Ein Vergleich der Chloridkonzentration bestimmt durch Auspressen der Porenloesung am Ende der Versuche mit den von Sensoren bestimmten Chloridkonzentration zeigt eine sehr gute Uebereinstimmung. Praktische Anwendungen und die Einsatzgrenzen des Sensors werden diskutiert. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  19. Performance of fly ash-based geopolymer mortar

    OpenAIRE

    Abdollahnejad, Zahra; Félix, T.; Torgal, Fernando Pacheco; Aguiar, J. L. Barroso de

    2015-01-01

    This study has investigated the joint effect of several mix parameters on the properties of foam geopolymers. The mix parameters analysed through a laboratory experiment of 54 different mortar mixes were, sodium silicate/sodium hydroxide mass ratio (2.5, 3.5, 4.5), activator/binder mass ratio (0.6, 0.8, 1.0), chemical foaming agent type (hydrogen peroxide (H2O2) and sodium perborate (NaBO3)) and foaming agent mass ratio content (1%, 2%, 3%). Properties, SEM and FTIR analysis and c...

  20. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar

    International Nuclear Information System (INIS)

    Highlights: • Results show POFA is adaptable as replacement in FA based geopolymer mortar. • The increase in POFA/FA ratio delay of the compressive development of geopolymer. • The density of POFA based geoploymer is lower than FA based geopolymer mortar. - Abstract: This paper presents the effects and adaptability of palm oil fuel ash (POFA) as a replacement material in fly ash (FA) based geopolymer mortar from the aspect of microstructural and compressive strength. The geopolymers developed were synthesized with a combination of sodium hydroxide and sodium silicate as activator and POFA and FA as high silica–alumina resources. The development of compressive strength of POFA/FA based geopolymers was investigated using X-ray florescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM). It was observed that the particle shapes and surface area of POFA and FA as well as chemical composition affects the density and compressive strength of the mortars. The increment in the percentages of POFA increased the silica/alumina (SiO2/Al2O3) ratio and that resulted in reduction of the early compressive strength of the geopolymer and delayed the geopolymerization process

  1. Web-Based Organizing In Traditional Brick-And-Mortar Companies: The Impact On HR

    NARCIS (Netherlands)

    J. Paauwe (Jaap); E. Farndale (Elaine); A.R.T. Williams (Roger)

    2004-01-01

    textabstractThis chapter introduces the notion of how old economy brick-and-mortar firms are adapting their HRM policies and practices and the roles of their HR departments in light of newly introduced Web-based business-to-business transaction practices. It argues that the Internet has introduced t

  2. Experimental study of phosphorous gypsum based insulation mortar powder material%磷石膏基保温砂浆胶粉料试验研究

    Institute of Scientific and Technical Information of China (English)

    王玉麟; 赖振斌; 黄巧玲; 漆贵海

    2012-01-01

    The article studies on preparation of thermal insulation mortar powder materials with phosphorus gypsum which was an industrial waste residue, supplemented with cement and slag powder. Phosphorous gypsum based thermal insulation mortar powder material is prepared by experimental study and analysis on the influence of various factors to the mechanical properties and softening coefficient of phosphorous gypsum based mineral binder. The optimized formulation is verified. Through the comparison of mechanical properties and water absorption of gypsum based reference specimen, it is obtained that in the prepared phosphorus gypsum-based insulation mortar, the phosphorus gypsum amount is 54%, slag content is 30%, lime is 5%, cement is 10% and admixture is 1%, which provides a new approach for comprehensive utilization of phosphorus gypsum.%利用工业废渣磷石膏作为主要胶凝材料,辅以水泥、矿渣粉等研制保温砂浆胶粉料.通过各因素对磷石膏基胶粉料力学性能与软化系数影响的试验研究及分析,配制出了磷石膏基保温砂浆胶粉料.并对优化后的配方进行了验证;石膏基准试件的力学性能与吸水率进行了比较,得出磷石膏基保温砂浆中的磷石膏用量为54%时,矿渣掺量为30%,石灰为5%,水泥为10%,外加剂为1%,以期为磷石膏的有效利用提供新的途径.

  3. Physical-mechanical characterization of hydraulic and non-hydraulic lime based mortars for a French porous limestone

    CERN Document Server

    Al-Mukhtar, M

    2006-01-01

    The focus of the study presented in this paper is to provide reliable criteria that can be used to estimate the degree of compatibility between the French limestone tuffeau and mortar. It is suggested through this study to use the same parent material (i.e., tuffeau) as mortar. The mortar used in this study is composed of non-hydraulic (hydrated) lime or hydraulic lime and aggregates obtained from fragments and powder of the tuffeau stone. Water transfer properties and mechanical behaviour of the mortars are evaluated and compared with the original stone Tuffeau. Based on these studies, some key guidelines are provided such that a mortar that is compatible with properties of Tuffeau and can be prepared and used as construction material of monuments and maintenance purposes.

  4. Characterisation and use of biomass fly ash in cement-based materials.

    Science.gov (United States)

    Rajamma, Rejini; Ball, Richard J; Tarelho, Luís A C; Allen, Geoff C; Labrincha, João A; Ferreira, Victor M

    2009-12-30

    This paper presents results about the characterisation of the biomass fly ashes sourced from a thermal power plant and from a co-generation power plant located in Portugal, and the study of new cement formulations incorporated with the biomass fly ashes. The study includes a comparative analysis of the phase formation, setting and mechanical behaviour of the new cement-fly ash formulations based on these biomass fly ashes. Techniques such as X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermal gravimetric and differential thermal analysis (TG/DTA), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and environmental scanning electron spectroscopy (ESEM) were used to determine the structure and composition of the formulations. Fly ash F1 from the thermal power plant contained levels of SiO(2), Al(2)O(3) and Fe(2)O(3) indicating the possibility of exhibiting pozzolanic properties. Fly ash F2 from the co-generation plant contained a higher quantity of CaO ( approximately 25%). The fly ashes are similar to class C fly ashes according to EN 450 on the basis of chemical composition. The hydration rate and phase formation are greatly dependant on the samples' alkali content and water to binder (w/b) ratio. In cement based mortar with 10% fly ash the basic strength was maintained, however, when 20% fly ash was added the mechanical strength was around 75% of the reference cement mortar. The fly ashes contained significant levels of chloride and sulphate and it is suggested that the performance of fly ash-cement binders could be improved by the removal or control of these chemical species.

  5. Farklı Puzolanik Katkıların Çimento Harçlarının Mekanik Özelikleri Üzerine Etkisi = The Effect of Different Puzzolanic Additives on Mechanical Properties of Cement Mortars

    Directory of Open Access Journals (Sweden)

    H. Aygül YEPREM

    2004-06-01

    Full Text Available In this study, cement mortar samples containing fly ash obtained from Soma Power Plant, two different types of natural pozzolan supplied from Yenişehir and Bilecik and silica fume from Antalya Ferrocrom Industry partial replacement of cement clinker. The strength of the mortars prepared by these mixtures were investigated. The mixtures were prepared by using 10% fly ash and 5% silica fume and the trass contents varied as 30%, 35%, and 40%. Chemical analyses of these mixtures were carried out and Blaine specific surface area values were measured. In performed tests, the highest strength values were noticed in mortars containing natural puzzolan from Bilecik which has high fineness.

  6. 胶凝材料性质对干混砂浆抗压强度的影响研究%Influence of the properties of cementing materials on the unconfined compressive strengths of dry-mixed mortar

    Institute of Scientific and Technical Information of China (English)

    郑娟荣; 赵雪飞

    2014-01-01

    为了研究胶凝材料性质对干混砂浆抗压强度的影响规律,共制备了24组样品,其中3组样品的微观形貌和孔结构采用扫描电子显微镜和压汞测孔仪(Autopore IV 9500)等测试手段进行了分析。试验结果表明:无论胶凝材料是100%水泥、50%水泥+50%矿渣粉和50%水泥+50%粉煤灰,7 d和28 d砂浆抗压强度均随胶凝材料总量增加而明显提高,增加水泥掺量对砂浆早期强度有利;与以100%水泥为胶凝材料制备的砂浆相比,当每吨干混砂浆中胶凝材料总量分别为100、150、200、250 kg时,以50%水泥+50%矿渣粉为胶凝材料制备的砂浆的抗压强度分别提高47%、55%、10%和0,而以50%水泥+50%粉煤灰为胶凝材料制备的砂浆的抗压强度分别降低77%、66%、56%和44%。与15%水泥制备的砂浆28 d硬化体相比,7.5%水泥+7.5%矿渣制备的砂浆28 d硬化体中水化产物更多或更分散、基体与骨料结合更密实、总孔隙更低及孔径更细;7.5%水泥+7.5%粉煤灰制备的砂浆28 d硬化体中水化产物更少、基体更松散、总孔隙更高及孔径更大。%24 groups of samples were made so as to investigating the influence of the properties of cementing materials on the uncon-fined compressive strengths (UCS) of dry-mixed mortar.The morphology and pore structure of 3 groups of 24 samples were investigated by scanning electron microscope(SEM) and mercury intrusion porosimeter(Autopore IV 9500)(MIP).The results showed that the 7 d and 28 d UCS of hardened mortars increased with the increase of the total content of cementing materials no matter what cementing materials were 100%cement and 50%cement+50%slag powder and 50%cement+50%fly-ash ,and the increase of cement content was in favour of early strength of hardened mortar.Comparing with the hardened mortar of 100%cement as cementing material ,the 28 d UCS of the hard-ened mortar of 50%cement+50%slag powder as cementing material respectively

  7. On the role of hydrophobic Si-based protective coatings in limiting mortar deterioration.

    Science.gov (United States)

    Cappelletti, G; Fermo, P; Pino, F; Pargoletti, E; Pecchioni, E; Fratini, F; Ruffolo, S A; La Russa, M F

    2015-11-01

    In order to avoid both natural and artificial stone decay, mainly due to the interaction with atmospheric pollutants (both gases such as NOx and SO2 and particulate matter), polymeric materials have been widely studied as protective coatings enable to limit the penetration of fluids into the bulk material. In the current work, an air hardening calcic lime mortar (ALM) and a natural hydraulic lime mortar (HLM) were used as substrates, and commercially available Si-based resins (Alpha®SI30 and Silres®BS16) were adopted as protective agents to give hydrophobicity features to the artificial stones. Surface properties of coatings and their performance as hydrophobic agents were studied using different techniques such as contact angle measurements, capillary absorption test, mercury intrusion porosimetry, surface free energy, colorimetric measurements and water vapour permeability tests. Finally, some exposure tests to UV radiation and to real polluted atmospheric environments (a city centre and an urban background site) were carried out during a wintertime period (when the concentrations of the main atmospheric pollutants are higher) in order to study the durability of the coating systems applied. The effectiveness of the two commercial resins in reducing salt formation (sulphate and nitrate), induced by the interaction of the mortars with the atmospheric pollutants, was demonstrated in the case of the HLM mortar. Graphical Abstract ᅟ.

  8. Application of Cement Mortar Mixing Pile in Treatment of Soft-soil Foundation of Tianjin-Baoding Railway%水泥砂浆桩在津保铁路软土地基处理中的应用

    Institute of Scientific and Technical Information of China (English)

    甘兴旺

    2013-01-01

    Taking the engineering of the soft foundation for DK55-DK67 Section of Tianjin-Baoding Railway reinforced by cement mortar mixing pile as the example, the technological test, construction process and specifications relating to cement mortar mixing pile are described, and the construction quality inspection and control points are generalized. The on-site inspection result shows that the cement mortar mixing pile has such high strength that the bearing capacity of the soft foundation so reinforced is improved; and the effect of such reinforcement is good enough to meet the requirement of foundation treatment for 200-250 km/h PDL and line for mixed passenger and freight traffic.%以津保铁路DK55~DK67段水泥砂浆桩加固处理软基工程为例,叙述了水泥砂浆桩工艺试验、施工工艺流程及工艺参数等,总结了施工质量检测及控制要点.现场检测结果表明,水泥砂浆桩成桩强度高,加固软土地基后地基承载力提高,加固效果好,能满足200 ~ 250 km/h铁路客运专线和客货共线铁路地基加固处理要求.

  9. Evaluation of red mud as pozzolanic material in replacement of cement for production of mortars; Avaliacao da lama vermelha como material pozolanico em substituicao ao cimento para producao de argamassas

    Energy Technology Data Exchange (ETDEWEB)

    Manfroi, E.P.; Cheriaf, M.; Rocha, J.C., E-mail: elizmanfroi@yahoo.com.b, E-mail: malik@valores.ufsc.b [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Civil

    2010-07-01

    Red mud is a by-product of the alkaline extraction of aluminum from the bauxite and represents a renewed environmental problem due the significant annual throughput by the plants. In the present work, the pozzolanic properties of Brazilian red mud fired at 600, 700, 800 and 900 deg C were investigated by monitoring lime consumption using DTA analysis and Brazilian standard methodology NBR 5772 (1992). Products and kinetics of hydration were determined in cement pastes produced with 5 and 15% red mud using x-ray diffraction and DTA analysis. Compressive strength and capillary absorption tests were realized on mortars constituted by 5, 10 and 15% red mud in replacement of cement. When calcined at 600 deg C, the red mud develops good pozzolanic properties, and the compressive strength of mortars produced with this waste meet values in accordance with regulatory standard. These results shown than red mud can be used, in partial replacement of cement, as new construction material to produce sustainable mortars with low environmental impact. (author)

  10. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Haneefa, K., E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2014-08-15

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO{sub 3}, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone.

  11. 掺活化煤矸石粉、粉煤灰水泥砂浆抗压强度预测%Prediction of compressive strength of cement mortars with fly ash and activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    周双喜; 陈益民; 张文生

    2006-01-01

    The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete.%煤矸石经不同的温度(500~1000 ℃)热活化后,其辅助胶凝性能相差很大.为了研究双掺活化煤矸石与粉煤灰对水泥强度性能的影响,运用单纯形-中心设计方法,并确立各组分的上下限,通过7组砂浆实验,得出活化煤矸石粉、粉煤灰多元复合水泥不同龄期强度数学模型,并利用5组砂浆实验,对强度预测方程的精确性进行了研究.实验结果表明方程的计算值与实验测量值相差很小,误差范围在3%以下.为配制多种混合材的复合水泥最优配比提供了一个简单实用的方法.

  12. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    Science.gov (United States)

    Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung

    2015-01-01

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.

  13. A new surface-modified technology of cement mortar using calcium carbonate biodeposition%一种基于微生物沉积的水泥砂浆表面改性技术

    Institute of Scientific and Technical Information of China (English)

    朱飞龙; 李庚英; 杜虹; 崔鹏飞; 吴亚庆; 刘海峰

    2013-01-01

    The paper presents a new surface modification of cement mortar using biodeposition involving a method employing sporosarcina pasteurii (bacillus pasteurii) bacteria and using cement mortar power as covering layer. It was possible to obtain reduction in water absorption of cement mortars. The effect was more visible in case of using nutrient medium containing urea, and the coefficient of capillary suction of the treated cement mortar was reduced by 58%. Presence of spherical and columnar vaterite and calcite calcium carbonate crystals filling-voids in cement mortar was confirmed by observations under SEM and XRD. The total porosity reduced by 40% was demonstrated by using mercury intrusion porosimetry (MIP).%某些微生物能诱导沉积出具有胶凝和矿化作用的碳酸钙,可以用来修复和密实水泥基材料.但是目前微生物沉积技术工艺复杂,成本高,不利于推广和工程应用.尝试采用水泥砂浆粉作为覆膜载体,利用巴斯德芽孢杆菌对水泥砂浆进行表面处理.研究结果表明,采用该方法能使巴斯德芽孢杆菌在水泥试块表面诱导沉积出碳酸钙,有效减少水泥砂浆的吸水性能.当微生物采用含有尿素的培养基培养时,表面改性后的水泥砂浆吸水系数降低了58%.采用压汞测试仪(MIP)分析了处理前后水泥试块表层的孔隙率以及孔结构特征.发现采用巴斯德芽孢杆菌处理后,样品孔隙率显著降低,大孔的含量显著减少,当微生物采用含有尿素的培养基培养时,总孔隙率降低了40%.X射线衍射仪(XRD)和场发射扫描电镜(SEM)分析表明,经微生物技术处理后水泥试块内部的孔洞和裂缝被球霰石和方解石填充.

  14. Sorption of radionuclides by cement-based barrier materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefei, E-mail: likefei@tsinghua.edu.cn; Pang, Xiaoyun

    2014-11-15

    This paper investigates the sorption of radionuclide ions, {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+}, by cement-based barrier materials for radioactive waste disposal. A mortar with ternary binder is prepared and powder samples are ground from the hardened material following a predetermined granulometry. After pre-equilibrium with an artificial pore solution, the sorption behaviors of powder samples are investigated through single sorption and blended sorption. The results show that: (1) no systematic difference is observed for single and blended sorptions thus the interaction between {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+} sorptions must be weak; (2) the sorption kinetics is rapid and all characteristic times are less than 1d; (3) the sorption capacity is enhanced by C–A–S–H hydrates and the measured K{sub d} values can be predicted from C–S–H sorption data with Ca/Si ratio equal to Ca/(Si + Al) ratio.

  15. Effect of Metakaolin on Strength and Efflorescence Quantity of Cement-Based Composites

    OpenAIRE

    Tsai-Lung Weng; Wei-Ting Lin; An Cheng

    2013-01-01

    This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction anal...

  16. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    International Nuclear Information System (INIS)

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers. (paper)

  17. Microstructure Formation in Cement Mortars Modified With Water-Soluble Polymers (Microstructuuropbouw bij cementmortels gemodificeerd met wateroplosbare polymeren)

    OpenAIRE

    KNAPEN, Elke

    2007-01-01

    Tijdens de uitharding van cementmortels gemodificeerd met wateroplosbare polymeren vinden er twee processen plaats: cementhydratatie en polymeerfilmvorming. Het hoofddoel van dit doctoraatswerk is het bestuderen van het effect van polymeeroplossingen op de cementhydratatiereacties, van de polymeer-cement interacties in een vroeg stadium en van de polymeerfilmvorming bij zeer lage polymeerconcentraties (1% van het cementgewicht). In de praktijk werd polymeerfilmvorming bij deze kleine poly...

  18. Analysis on Settlement Deformation of Soft Soil Foundation Treated by Cement Mortar Pile in High-Speed Railway%水泥砂浆桩处理某高速铁路软基沉降变形分析

    Institute of Scientific and Technical Information of China (English)

    金海元; 周宏元; 陈尚勇

    2012-01-01

    高速铁路对路基工后沉降提出了严格的要求,某高速铁路路基段存在大范围软土地基,采用水泥砂浆桩进行地基加固处理。通过对地基处理后一年多的路基沉降变形观测分析及预测表明:各观测点的沉降量-时间曲线均已经收敛,路堤荷载作用下路基面沉降已经稳定,沉降板预测最大工后沉降ΔS’为4.8mm,路基面观测桩双曲线法预测路基面最大残余沉降为2.3mm,沉降完成比例St/S∞最小为92.4%,均满足高速铁路沉降控制标准。因此,水泥砂浆桩处理高速铁路软土地基是可行的,可以在较短时间内满足工后沉降的要求。%High-speed railway puts forward strict demands on post construction settlement. There is a wide range of soft ground at one high-speed railway embankment, which is strengthened by cement mortar pile. Based on a- nalysis and prediction of settlement after one and a half years monitoring, we have found that settlement-time curves of every observation points are convergent and settlement of embankment surface under embankment load is stable. The predicted maximum post construction settlement (AS') of settlement plate is 4.8mm and the maxi- mum residual settlement of observation pile predicted by hyperbolic method is 2.3ram, the minimum completion percentage ( S/S~ ) of settlement is 92.4%, all of which can meet the settlement control standard of high-speed railway. So it is feasible to reinforce the soft foundation of high-speed railway with cement mortar pile because it can meet the requirements of the settlement in a relatively short period of time.

  19. Lime-based repair mortars with water-repellent admixtures: laboratory durability assessment

    OpenAIRE

    Nunes, C.; Slížková, Z. (Zuzana)

    2015-01-01

    Conservation of architectural structures using lime binders is currently an important research topic aiming compatibility, durability and sustainability. In this study, lime (L) and lime-metakaolin (LM) mortars were prepared with the addition of water-repellent admixtures: linseed oil, stand oil and a silane based water-repellent. Experimental results demonstrate that oil imparts higher hydrophobicity to both L and LM mixtures. Durability was assessed through freeze-thaw and NaCl crystal...

  20. Web-Based Organizing In Traditional Brick-And-Mortar Companies: The Impact On HR

    OpenAIRE

    Paauwe, Jaap; Farndale, Elaine; Williams, Roger,

    2004-01-01

    textabstractThis chapter introduces the notion of how old economy brick-and-mortar firms are adapting their HRM policies and practices and the roles of their HR departments in light of newly introduced Web-based business-to-business transaction practices. It argues that the Internet has introduced three new business models in old economy companies: the Internet as a marketplace, the Internet as a supply chain integrator, and the Internet as a catalyst for business model redefinition. These in...

  1. Compatibility of repair mortars in restoration projects

    OpenAIRE

    Schueremans, Luc; Van Balen, Koenraad; Cizer, Özlem; Janssens, Elke; Serré, Gerty; Elsen, Jan; Brosens, Kris; Ignoul, Sven

    2010-01-01

    Mortars used for restoration must be highly compatible with historic materials in terms of physical, chemical and mechanical properties in order to assure the durability of masonry on the long term. Compatibility criteria are defined based on the original mortar characteristics but the efficiency and the performance of the repair mortar after application on masonry are not generally evaluated. From this perspective, historic mortars and repair mortars from 3 historic masonry structures were a...

  2. Effect of Crumb Rubber on Pore Structure of Cement Mortar%橡胶集料对水泥砂浆孔结构的影响

    Institute of Scientific and Technical Information of China (English)

    杨林虎; 朱涵; 张亚梅

    2011-01-01

    采用压汞法(MIP)测试了掺加橡胶集料的水泥砂浆的孔径分布和孔隙率,研究了橡胶集料对水泥砂浆孔结构的影响.通过橡胶集料含量与孔隙率和含气量之间的关系,分析了橡胶集料的引气作用.测试结果表明,掺入橡胶集料后,砂浆的最可几孔径、平均孔径、中值孔径以及孔隙率均增大,但砂浆的孔径分布趋于均匀.橡胶集料的引气作用随其含量的增加而增强.%In this paper, mercury intrusion porosimeter(MIP) was used to test pore size distribution and porosity of the mortar incorporating crumb rubber. The effect of crumb rubber on pore structure of mortar was investigated. The air-entraining ability of crumb rubber was analyzed based on the relationship between crumb rubber content and porosity and air content. The test results show that mode pore diameter, mean pore diameter, median pore diameter and porosity of the mortar increase after crumb rubber is incorporated, but the distribution of pore size reveals a uniform distribution tendency. The air-entraining ability of crumb rubber is enhanced as its content increases.

  3. Adjoint Based A Posteriori Analysis of Multiscale Mortar Discretizations with Multinumerics

    KAUST Repository

    Tavener, Simon

    2013-01-01

    In this paper we derive a posteriori error estimates for linear functionals of the solution to an elliptic problem discretized using a multiscale nonoverlapping domain decomposition method. The error estimates are based on the solution of an appropriately defined adjoint problem. We present a general framework that allows us to consider both primal and mixed formulations of the forward and adjoint problems within each subdomain. The primal subdomains are discretized using either an interior penalty discontinuous Galerkin method or a continuous Galerkin method with weakly imposed Dirichlet conditions. The mixed subdomains are discretized using Raviart- Thomas mixed finite elements. The a posteriori error estimate also accounts for the errors due to adjoint-inconsistent subdomain discretizations. The coupling between the subdomain discretizations is achieved via a mortar space. We show that the numerical discretization error can be broken down into subdomain and mortar components which may be used to drive adaptive refinement.Copyright © by SIAM.

  4. Model of Coherent Interface Formation in Cement-Based Composites Containing Polyblend of Polyvinyl Alcohol and Methylcellulose

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA),methylcellulose (MC) and their polyblend in an amount of 10 wt % with respect to cement,as well as the texture of dehydrated bodies of PVA,MC,and the polyblend solutions,were investigated with SEM.The network texture of the dehydrated polyblend is confirmed by comparing the texture of dehydrated bodies of PVA and MC.The network texture has restrained the movement of polyblend molecules in the cement mortar but is helpful to forming a coherent interface between cement paste and quartz.The key factor of forming the coherent interface is not the neutralization reaction between H+ from hydrolysis of quartz and OH- from hydration of cement,but the electrostatic attraction and the chemical reaction between polar groups on the polyblend molecule and cations and anions from hydrolysis of quartz and hydration of cement,respectively.The model of the coherent interface formation is that excessive [HSiO3]- and [SiO3]2- anions are bonded with the hydrated cations such as Ca2+ and Al3+,which is confirmed by the gel containing Ca and Si on the quartz surface.

  5. PVA 改性碳黑-水泥砂浆力学性能及微观结构%Mechanical properties and microstructure of carbon black modified cement mortar incorporating PVA

    Institute of Scientific and Technical Information of China (English)

    范杰; 李庚英; 熊光晶

    2016-01-01

    试验探讨了聚乙烯醇(PVA)及其掺量对纳米碳黑‐水泥砂浆力学性能的影响,结果表明:当PVA掺量为0.2%时,改性水泥砂浆的抗压、抗折强度和黏结弯曲强度分别提高了32.1%,12.2%和18.6%.采用扫描电镜、傅里叶红外光谱、X射线衍射光谱和差示扫描热分析仪观察了 PV A改性纳米碳黑‐水泥砂浆的物理化学性能,结果表明:当PVA掺量较少时,PVA形成丝状聚合物膜均匀分散于水泥砂浆中,填充孔洞和桥接裂缝,改善了水泥砂浆的微细观结构;但是,当 PVA掺量过多时会在水泥浆体内形成大量片状结构,包裹水泥颗粒和水泥水化产物,阻碍水泥的水化速度,导致改性砂浆的力学强度降低.%The effect of polyvinyl alcohol (PVA) on the mechanical properties of carbon black modi‐fied cement mortar was investigated .Results show that the compressive strength ,flexural strength and felt‐bending strength of modified cement mortar increase 32 .1% ,12 .2% and 18 .6% when 0 .2%PVA is incorporated .Fourier scanning electron microscope infrared spectrum ,X ray diffraction and differential scanning thermal analyzer were used to analyze the physical and chemical properties of modified cement mortar incorporating PVA ,and the results show that PVA polymer films bridging cracks w ere responsible for the considerable enhancement of mechanical properties w hen incorporated few PVA .However ,large amount of polymer films will be precipitated in the cement matrix when the mixing amount of PVA supersaturated ,and the main hydration products of cement will be reduced with the agglomeration of PVA films ,leading a low mechanical strength of cement mortar .

  6. Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring

    Science.gov (United States)

    D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Rallini, Marco; Materazzi, Annibale L.; Kenny, Josè M.

    2016-04-01

    Cement-based smart sensors appear particularly suitable for monitoring applications, due to their self-sensing abilities, their ease of use, and their numerous possible field applications. The addition of conductive carbon nanofillers into a cementitious matrix provides the material with piezoresistive characteristics and enhanced sensitivity to mechanical alterations. The strain-sensing ability is achieved by correlating the variation of external loads or deformations with the variation of specific electrical parameters, such as the electrical resistance. Among conductive nanofillers, carbon nanotubes (CNTs) have shown promise for the fabrication of self-monitoring composites. However, some issues related to the filler dispersion and the mix design of cementitious nanoadded materials need to be further investigated. For instance, a small difference in the added quantity of a specific nanofiller in a cement-matrix composite can substantially change the quality of the dispersion and the strain sensitivity of the resulting material. The present research focuses on the strain sensitivity of concrete, mortar and cement paste sensors fabricated with different amounts of carbon nanotube inclusions. The aim of the work is to investigate the quality of dispersion of the CNTs in the aqueous solutions, the physical properties of the fresh mixtures, the electromechanical properties of the hardened materials, and the sensing properties of the obtained transducers. Results show that cement-based sensors with CNT inclusions, if properly implemented, can be favorably applied to structural health monitoring.

  7. 纤维水泥砂浆与混凝土界面黏结性能钻芯拉拔试验研究%Core drilling and pull-off tests of interfacial bond behaviors between fiber cement mortar and concrete

    Institute of Scientific and Technical Information of China (English)

    卜良桃; 周云鹏

    2016-01-01

    To investigate the interfacial bond behaviors between fiber cement mortar and concrete with core drilling and pull⁃off tests, medium⁃sized columnar concrete samples enclosed with different strengths of polyvinyl alcohol fiber cement mortar, polypropylene fiber cement mortar, and steel fiber cement mortar were prepared. Core drilling and pull⁃off tests were conducted on the samples to obtain the pulling force with failure occurring at the interface, and the results of different kinds of samples from pull⁃off tests were compared with the axial tensile strength of concrete and compressive strength of fiber cement mortar. The results show that the interfacial bond strength between synthetic fiber cement mortar and concrete is higher than that between steel fiber cement mortar and concrete, and that the interfacial bond strength is positively correlated with the axial tensile strength of concrete and compressive strength of fiber cement mortar. There is also a linear correlation between the interfacial bond strength and compressive strength of fiber cement mortar.%为研究纤维水泥砂浆与混凝土界面黏结性能,采用钻芯拉拔法试验制作模拟中型柱混凝土构件,并分别外包不同强度的聚乙烯醇纤维水泥砂浆、聚丙烯纤维水泥砂浆、钢纤维水泥砂浆。对制作的试验构件进行钻芯拉拔试验,得出界面破坏时的拉拔力,将得到的不同类型的纤维水泥砂浆构件拉拔力数据与构件混凝土轴心抗拉强度、纤维水泥砂浆抗压强度进行比较分析。结果表明,在该试验中合成纤维水泥砂浆的界面黏结强度比钢纤维水泥砂浆的界面黏结强度高;界面黏结强度与构件混凝土轴心抗拉强度呈正相关关系,与纤维水泥砂浆抗压强度呈正相关关系,界面黏结力与砂浆抗压强度呈线性相关关系。

  8. Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Decheng; XU Dongyu; CHENG Xin; CHEN Wen

    2009-01-01

    The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete(HPC)were investigated.The experimental results show that with the decreasing water/cement ratio,the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably,and the carbonation resistance capability is also improved with the adding admixtures.The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD.The analysis results reveal that the main hydration product of sulphoaluminate cement,that is ettringite(AFt),de-composes after carbonation.

  9. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Experimental and theoretical studies of hydrated cement systems are described. The behaviour of slag-based cement is described with a view to predicting their long term pH, Esub(n) and mineralogical balance. Modelling studies which enable the prediction at long ages of cement composites are advanced and a base model of the CaO-SiO2-H2O system presented. The behaviour of U and I in cements is explored. The tolerance of cement systems for a wide range of miscellaneous waste stream components and environmental hazards is described. The redox potential in cements is effectively lowered by irradiation. (author)

  10. Application of micromechanics to the characterization of mortar by ultrasound.

    Science.gov (United States)

    Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G

    2002-05-01

    Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.

  11. 多孔集料砂浆的吸波特性%Absorbing Properties of Cement Mortar Filled with Porous Aggregates

    Institute of Scientific and Technical Information of China (English)

    李宝毅; 段玉平; 刘顺华

    2011-01-01

    对发泡聚苯乙烯、膨胀珍珠岩、页岩陶粒等3种多孔集料填充水泥基复合材料的电磁波吸收性能进行了研究。结果表明:多孔集料提高了复合材料与自由空间的波阻抗匹配程度,还可引起电磁波多次反射和散射,从而使电磁波迅速衰减;多孔集料填充率、集料种类、集料粒径等对电磁波吸收性能有显著影响;选用的多种集料中发泡聚苯乙烯对复合材料吸波性能的改善最为明显,当发泡聚苯乙烯粒径为2mm、与水泥体积比为1:l时,试样在4.5GHz处有最小反射率-18dB,且小于-10dB的吸收带宽达8.1GHz。%The absorbing properties of cement mortar filled with porous aggregates, such as expanded polystyrene, expanded perlite and shale, were investigated. The results show that porous aggregates can improve the impedance matching characteristic of the composites, and attenuate the electromagnetic wave by mulitple scattering and reflection. The filling ratio, the type and the size of porous aggregates all had effects on the absorbing properties. Among the aggregates used, the expanded polystyrene (EPS) had a superior ability to improve the absorbing properties of cement composite. When the filling ratio of EPS with the size of 2 mm to cement was 1:1 in volume, the lowest reflectivity of-18 dB was obtained at 4.5 GHz and the bandwidth less than -10 dB was 8.1 GHz.

  12. Properties of Cement Based Materials Containing Copper Tailings

    OpenAIRE

    Onuaguluchi, Obinna

    2012-01-01

    ABSTRACT: Increasing demands for copper and copper allied products have made the processing of low grade ores with high volume waste output unavoidable. Presently, billions of tons of copper tailings can be found in major copper producing countries. This study explored the possibility of using these copper tailings either as a cement replacement or additive material in pastes, mortars and concretes of 0.65, 0.57 and 0.50 w/b ratios. Fresh properties of mixtures such as paste consistencies an...

  13. ASSESSMENT OF FINE RECYCLED AGGREGATES IN MORTAR

    OpenAIRE

    Feys, Charles; Joseph, Miquel; Boehme, Luc; Zhang, Yunlian

    2016-01-01

    In this study, the influence of fine recycled concrete aggregates as replacement for sand in mortar and the use as cement replacement and filler is investigated. Mortar with fine recycled aggregates is examined on its mechanical and physical properties. The samples are also examined on a microscopic scale. The fine recycled concrete aggregates are made with one-year old concrete made in the laboratory. Fine recycled aggregates (FRCA) are added as a cement replacement (0 %, 10 %...

  14. Cementation of Loose Sand Particles based on Bio-cement

    Institute of Scientific and Technical Information of China (English)

    RONG Hui; QIAN Chunxiang

    2014-01-01

    Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium carbonate were tested to characterize the cementation effectiveness. In addition, the formed mineral composition and the microstructure of bio-sandstone were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The experimental results show that the feasibility of binding loose sand particles using microbial induced magnesium carbonate precipitation is available and the acquired compressive strength of bio-sandstone can be excellent at certain ages. Moreover, the compressive strength and the porosity could be improved with the increase of microbial induced magnesium carbonate content. XRD results indicate that the morphology of magnesium carbonate induced by microbe appears as needles and SEM results show that the cementation of loose sand particles to sandstone mainly relies on the microbial induced formation of magnesium carbonate precipitation around individual particles and at particle-particle contacts.

  15. Concentration Boundary Layer Model of Mortar Corrosion by Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    SONG Zhigang; ZHANG Xuesong; MIN Hongguang

    2011-01-01

    A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid. Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric acid is 3.5 and 4.0 respectively. The pH meter is used to monitor the soak solution and the titration sulfuric acid with given concentration is added to maintain original pH value, through which the acid consumption of mortar is recorded. A theoretical reaction rate model is also proposed based on concentration boundary layer model. The results show that theoretical model fits the experimental results well and the corrosion mechanism can be modeled by a diffusion process accompanied with an irreversible chemical reaction when pH value of soak solution is no less than 3.5.

  16. Effect of gypsum content on sulfoaluminate mortars stability

    OpenAIRE

    DESBOIS, Tiffany; Le Roy, Robert; PAVOINE, Alexandre; PLATRET, Gérard; FERAILLE-FRESNET, Adélaïde; ALAOUI, Amina

    2010-01-01

    Calcium sulfoaluminate clinker is one of the most promising cements that would lower the greenhouse gas effect accompanying cement production. This article examines the effect of gypsum content on the dimensional stability of sulfoaluminate mortars. Mechanical properties as chemical evolution are studied. Our results show that the mortar with the greatest gypsum content expands without a decrease of its mechanical properties when it is cured in water. Two hypotheses about the mortars hydratio...

  17. Effect of kaolin treatment temperature on mortar chloride permeability

    OpenAIRE

    Puertas, F.; Mejía de Gutiérrez, R.; J. Torres

    2007-01-01

    The present paper discusses the results of chloride resistance tests conducted on ordinary Portland cement (OPC) mortars containing a Colombian kaolin pre-treated at temperatures of from 600 to 800 ºC. The resulting metakaolin (MK) was added to OPC mortar mixes in proportions of 10 and 20% by cement weight. The mortars were compared for physical and chemical properties, including capillary absorption, chloride permeability and pore microstructure as assessed by mercury porosimetry....

  18. Effects of Nano-TiO2 on the Toughness and Durability of Cement-Based Material

    Directory of Open Access Journals (Sweden)

    Baoguo Ma

    2015-01-01

    Full Text Available The effects of nano-TiO2 (NT on microstructures and mechanical properties of cement mortars were studied by scanning electron microscopy (SEM, X-ray diffraction (XRD, and mercury intrusion porosimetry (MIP. Results show that 3% NT can remarkably increase the tensile/flexural strengths (i.e., the toughness is improved and promote the precipitation of AFt crystal. The flexural and tensile strengths have significant positive correlation to the formation amount of AFt. The pores of mortars can be significantly refined and shift to harmless pores by controlling the growth of CH crystal and increasing the hydration reaction rate. The durability of cement-based materials is discussed by testing their water absorption and water-vapour permeability. Results show that the addition of 3% NT can decrease the water absorption ratio by 40–65%, water absorption coefficients by more than 40%, and water-vapour permeability coefficients by 43.9%, indicating that 3% NT can effectively improve the compactness and durability of cement-based materials.

  19. Microstructure development of a drying tile mortar containing methylhydroxy-ethylcellulose (MHEC)

    NARCIS (Netherlands)

    Faiyas, A.P.A.; Erich, S.J.F.; Nijland, T.G.; Hunnink, H.P.; Adan, O.C.G.

    2015-01-01

    Cement based mortars are widely used as adhesive for tiles in building and construction. They have a limited timespan during which a tile can be placed effectively in order to develop sufficient bond strength. This timespan, usually called ’open time’, is controlled, amongst others, by adding water

  20. 一种外掺新型引气剂的水泥胶砂抗折强度试验研究%A Study on the Bending Strength Test of Cement Mortar Added in a New Type of Air Entraining Agent

    Institute of Scientific and Technical Information of China (English)

    李铁军; 郭红兵

    2014-01-01

    In order to improve the mechanical property of cement mortar, admixtures are pro-posed to be put into cement mortar by adding air-entraining agent separately or mixing air en-training agent and water-reducing agent. The bending strength test of cement mortar has been done. The best model and the optimal dosage of air entraining agent in cement mortar have been determined for its optimal mechanical property. The result shows that the bending strength of cement mortar is significantly greater when air entraining agent and water-reducing agent are mixed. 2 # air-entraining agent has better effect in meeting the requirements of the bending strength of cement mortar.%为了提高水泥胶砂的力学性能,提出在水泥胶砂中掺加外加剂的方法,通过在水泥胶砂中单掺引气剂、复掺引气剂与减水剂两种途径,进行水泥胶砂抗折强度检测试验,对比确定水泥胶砂力学性能最优的引气剂型号及其最佳掺量。结果表明:引气剂与减水剂复掺时水泥胶砂的抗折强度明显大于引气剂单掺时水泥胶砂的抗折强度,2#引气剂最能满足水泥胶砂抗折强度要求。

  1. 微生物水泥砂浆的强度及耐久性试验研究%EXPERIMENTAL STUDY OF STRENGTH AND DURABILITY OF MICROBIAL CEMENT MORTAR

    Institute of Scientific and Technical Information of China (English)

    谭谦; 郭红仙; 程晓辉

    2015-01-01

    The bacteria Sporosarcina pasteurii ( S.p ) solution and the urease of S.p was added into the cement mortar.The urea-calcium acetate solution, bacterial culture medium and water were used to cure specimens.The uniaxial compressive test, the split tensile strength test and freeze-thaw cycling test were carried out to study the changes of their strength and durability .The mercury intrusion porosimeter was used to understand the microstructure of microbial cement mortar.The results showed that the microbial cement mortar had an increase in strength, the highest compressive strength increased by 47.22%, the highest tensile strength increased by 60.39%.In addition, the microbial cement mortar specimen cured in water had an excellent performance in freeze-thaw cycle test.%以添加巴氏芽孢八叠球菌或其脲酶的水泥砂浆试块为研究对象,分别使用营养液(尿素-乙酸钙溶液)、细菌培养液和水对水泥砂浆试块进行养护,通过单轴抗压强度、劈裂抗拉强度和冻融循环等试验研究其强度和耐久性的变化,并通过压汞试验研究其微观孔隙结构。结果表明:添加微生物后,水泥砂浆的抗压和抗拉强度都有提高,抗压、抗拉强度提高最多的分别是对照组的1.47倍和1.60倍;添加菌液在水中养护的水泥砂浆试块的抗冻融能力有较大提高。

  2. Sulfate Attack of Cement-Based Material with Limestone Filler Exposed to Different Environments

    Science.gov (United States)

    Gao, Xiaojian; Ma, Baoguo; Yang, Yingzi; Su, Anshuang

    2008-08-01

    Mortar prisms made with OPC cement plus 30% mass of limestone filler were stored in various sulfate solutions at different temperatures for periods of up to 1 year, the visual appearance was inspected at intervals, and the flexural and compressive strength development with immersion time was measured according to the Chinese standard GB/T17671-1999. Samples were selected from the surface of prisms after 1 year immersion and examined by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), laser-raman spectroscopy and scanning electron microscopy (SEM). The results show that MgSO4 solution is more aggressive than Na2SO4 solution, and Mg2+ ions reinforce the thaumasite sulfate attack on the limestone filler cement mortars. The increase of solution temperature accelerates both magnesium attack and sulfate attack on the limestone filler cement mortar, and leads to more deleterious products including gypsum, ettringite and brucite formed on the surface of mortars after 1 year storage in sulfate solutions. Thaumasite forms in the mortars containing limestone filler after exposure to sulfate solutions at both 5 °C and 20 °C. It reveals that the thaumasite form of sulfate attack is not limited to low-temperature conditions.

  3. Effect of Mineral Admixtures on Resistance to Sulfuric Acid Solution of Mortars with Quaternary Binders

    Science.gov (United States)

    Makhloufi, Zoubir; Bederina, Madani; Bouhicha, Mohamed; Kadri, El-Hadj

    This research consists to study the synergistic action of three mineral additions simultaneously added to the cement. This synergistic effect has a positive effect on the sustainability of limestone mortars. Tests were performed on mortars based on crushed limestone sand and manufactured by five quaternary binders (ordinary Portland cement and CPO mixed simultaneously with filler limestone, blast-furnace and natural pozzolan). The purpose of this research was to identify the resistance of five different mortars to the solution of sulfuric acid. Changes in weight loss and compressive strength measured at 30, 60, 90, 120 and 180 days for each acid solution were studied. We followed up on the change in pH of the sulfuric acid solution at the end of each month up to 180 days.

  4. Evaluation of frost damage in cement-based materials by a nonlinear elastic wave technique

    Science.gov (United States)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Soriano, L.; Payá, J.

    2014-03-01

    Frost resistance of concrete is a major concern in cold regions. RILEM (International union of laboratories and experts in construction materials, systems and structures) recommendations provide two alternatives for evaluating frost damage by nondestructive evaluation methods for concrete like materials. The first method is based on the ultrasonic pulse velocity measurement, while the second alternative technique is based on the resonant vibration test. In this study, we monitor the frost damage in Portland cement mortar samples with water to cement ratio of 0.5 and aggregate to cement ratio of 3. The samples are completely saturated by water and are frozen for 24 hours at -25°C. The frost damage is monitored after 0, 5, 10, 15 and 20 freezing-thawing cycles by nonlinear impact resonance acoustic spectroscopy (NIRAS). The results obtained are compared with those obtained by resonant vibration tests, the second alternative technique recommended by RILEM. The obtained results show that NIRAS is more sensitive to early stages of damage than the standard resonant vibration tests.

  5. Effect of Fly Ash and Silica Fume on Hydration Rate of Cement Pastes and Strength of Mortars

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; ZHANG Yun; LIU Runqing; ZHANG Bing

    2014-01-01

    The effect of fly ash and silica fume on hydration rate and strength of cement in the early stage was studied. Contrast test was applied to the complex cementitious system to investigate the hydration rate. Combined with mechanical strength, the influence of fly ash and silica fume during the hydration process of complex binder was researched. The peak of the rate of hydration heat evolution and the mechanical strength decreased as the ratio of fly ash increased, however, as the ratio of silica fume increased, the peak of the rate of hydration heat evolution and the mechanical strength increased obviously. When the ratios of fly ash and silica fume are 10%and 5%, the peak of the rate of hydration heat evolution is the highest. At the same time 7 days of flexural and compressive strength are the highest as 8.89 MPa and 46.52 MPa, respectively. Fly ash and silica fume are the main factors affecting the hydration rate and the mechanical property.

  6. On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement

    Directory of Open Access Journals (Sweden)

    Md. Rezaul Karim

    2014-12-01

    Full Text Available Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash as an alkali activated binder (AAB that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC. Surprisingly, AAB-mortars (with 2.5 molar solution achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.

  7. Surface and subsurface damage detection in cement-based materials using electrical resistance tomography

    Science.gov (United States)

    Ruan, T.; Poursaee, A.

    2016-04-01

    Cement-based materials are widely used in infrastructure facilities. However, often the degradation of structures leads to the failures earlier than designed service life. Thus, non-destructive testing techniques are urgently needed to evaluate the health information of the structures. In this paper, the implementation of Electrical Resistance Tomography (ERT) was investigated. This low cost, radiation free and easy to perform modality is based on measuring the electrical properties of the material under test and using that to evaluate the existence of defects in that material. It uses a set of boundary potentials and injected current to reconstruct the conductivity distribution. An automatic measurement system was developed and surface damages as well as subsurface damages on mortar specimens were investigated. The reconstructed images were capable to show the presence and the location of the damages.

  8. Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    S. M. Alamgir Kabir

    2015-01-01

    Full Text Available The investigation concerns the use of the optimum mix proportion of two locally available pozzolanic waste materials, namely, ground granulated blast furnace slag (GGBS and palm oil fuel ash (POFA, together with metakaolin (MK as binders. In addition, another local waste material, manufactured sand (M-sand, was used as a replacement for conventional sand in the development of green geopolymer mortar. Twenty-four mortar mixtures were designed with varying binder contents and alkaline activators. The oven dry curing was also kept consistent for all the mix proportions at a temperature of 65°C for 24 hours. The highest 28-day compressive strength of about 48 MPa was obtained for the mortar containing 20% of MK, 35% of GGBS, and 45% of POFA. The increment of MK beyond 20% leads to reduction of the compressive strength. The GGBS replacement beyond 35% also reduced the compressive strength. The entire specimen achieved average 80% of the 28-day strength at the age of 3 days. The density decreased with the increase of POFA percentage. The finding of this research by using the combination of MK, GGBS, and POFA as binders to wholly replace conventional ordinary Portland cement would lead to alternate eco-friendly geopolymer matrix.

  9. Near-field microwave inspection and characterization of cement based materials

    Science.gov (United States)

    Bois, Karl Joseph

    The objective of this research project has been to investigate the potential of correlating the near-field microwave reflection coefficient properties of hardened cement paste (water and cement powder), mortar (water, cement powder and sand) and concrete (water, cement powder, sand and coarse aggregate) specimens to their various constituent make-up and compressive strengths. The measurements were conducted using open-ended rectangular waveguide probes operating at various microwave frequencies and in-contact with cubic specimens. For each material, various properties of the measured microwave reflection coefficient, such as the mean of the measured magnitude of reflection coefficient, and the standard deviation of the measured magnitude of reflection coefficient at various frequencies were monitored. Subsequently, the measurements were correlated to important parameters such as w/c ratio, s/c ratio, ca/c ratio, cure-state, constituent volume content and compressive strength. Other issues such as the detection of aggregate segregation in concrete as well as the detection chloride in cement paste and mortar were also addressed. Other related issues such as the detection of grout in masonry blocks were also investigated. In achieving these objectives, several theoretical modeling efforts were required, constituting significant contributions to the available literature. A complete analytical full wave expression (i.e. inclusion of higher-order modes) for the fields at the aperture of an open-ended waveguide probe radiating into a dielectric infinite half-space was derived. Also a novel two-port transmission line dielectric property measurement technique for granular and liquid materials was developed. A decision making process, based on the maximum likelihood scheme, was also implemented to determine w/c, s/c and ca/c ratios from the measured mean and standard deviation of reflection coefficient at two frequency bands. Finally, the issue of non-contact measurement was

  10. Effect of additives on the performance of recycled fine aggregate cement mortar%外加剂对再生细骨料水泥砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    王复星; 李国忠; 陈娟

    2014-01-01

    The effect of additives on the mechanical properties and water resistance of recycled fine aggregate cement mortar is studied. The result shows that the 28d flexural strength, compressive strength and osmotic pressure of cement mortar samples compared with the blank sample are increased by15.6%, 35.5%, 41.1%when silicone waterproofing agent is 0.2wt%, naphdalin series water reducer is wt1.0%,polycarboxylate super plasticizer is 0.8wt%.%研究了外加剂对再生细骨料水泥砂浆力学性能、防水性能的影响。结果表明:当有机硅防水剂掺量0.2 wt%、萘系减水剂1.0 wt%、聚羧酸减水剂0.8 wt%时,水泥砂浆试样与空白试样相比,其28 d抗折强度、抗压强度、渗透压力分别提高15.6%、35.5%、41.1%。实验中利用SEM对砂浆试样断面微观形貌进行了观察分析,同时利用XRD对水化产物进行了物相鉴定。

  11. Link between microstructure and tritiated water diffusivity in mortars

    Directory of Open Access Journals (Sweden)

    Dangla P.

    2013-07-01

    Full Text Available Ions and radionuclide diffusivity in concrete is one of the most important factors that determine service life and safety assessment of cement based structures in nuclear power plants and radioactive-waste repositories. Apart from the influence of cement paste microstructure, the presence of aggregates may have an impact on transport properties of the material. The well-known interfacial transition zone, denoted by ITZ, is created near the aggregates and characterized by a greater porosity. The goal of this study is to investigate the competition between the more diffusing ITZ zone and the less diffusing aggregates. To this end, several series of tritiated water diffusion tests are conducted on mortars characterized by different water-to-cement ratios and sand volume fractions. In parallel, microstructure of these materials is explored by mercury and water porosimetry. It was observed that at low sand content (0% – 50%, diffusion properties of mortars are dominated by aggregates dilution effect. At 60% sand, diffusion increases significantly suggesting that percolation’s pores threshold has been reached. Results indicate also that sand particle size distribution has a great impact on the diffusivity of mortars.

  12. Link between microstructure and tritiated water diffusivity in mortars

    Science.gov (United States)

    Larbi, B.; Dridi, W.; Le Bescop, P.; Dangla, P.; Petit, L.

    2013-07-01

    Ions and radionuclide diffusivity in concrete is one of the most important factors that determine service life and safety assessment of cement based structures in nuclear power plants and radioactive-waste repositories. Apart from the influence of cement paste microstructure, the presence of aggregates may have an impact on transport properties of the material. The well-known interfacial transition zone, denoted by ITZ, is created near the aggregates and characterized by a greater porosity. The goal of this study is to investigate the competition between the more diffusing ITZ zone and the less diffusing aggregates. To this end, several series of tritiated water diffusion tests are conducted on mortars characterized by different water-to-cement ratios and sand volume fractions. In parallel, microstructure of these materials is explored by mercury and water porosimetry. It was observed that at low sand content (0% - 50%), diffusion properties of mortars are dominated by aggregates dilution effect. At 60% sand, diffusion increases significantly suggesting that percolation's pores threshold has been reached. Results indicate also that sand particle size distribution has a great impact on the diffusivity of mortars.

  13. The performance of mortar containing added metakaolin regarding sulfate action

    Directory of Open Access Journals (Sweden)

    Janneth Torres Agredo

    2010-04-01

    Full Text Available This paper evaluates the performance of adding Colombian metakaolin (MK to mortar when these are submitted to sulphate action. Four proportions of MK were used as cement replacement in this study: 10%, 20%, 35% and 50% by weight of cement; cement having 11% tricalcium aluminate was used. Mortar specimens were immersed in 5% sodium sulphate solution for a total period of 280 days after the specified initial moist curing period, The degree of sulphate attack was evaluated by measuring the mortar’s cylindrical expansion, mortar cubes’ compressive strength reduction and visual inspection of mortar specimens. An additional study using X-ray diffraction was conducted to determine the products formed in the cement pastes due to the sulphate attack. The results showed that MK mortar sulphate resistance increased when increasing MK replacement level. An MK proportion greater than 20% is re-commended for obtaining better performance against sulphate attack.

  14. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 2: Significance of transition zones on physical and mechanical properties of portland cement mortar; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.F.F.; Cohen, M.D.; Chen, W.F.; Zhang, Y.

    1998-08-01

    The research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  15. Quantitative microstructure analysis of polymer-modified mortars.

    Science.gov (United States)

    Jenni, A; Herwegh, M; Zurbriggen, R; Aberle, T; Holzer, L

    2003-11-01

    Digital light, fluorescence and electron microscopy in combination with wavelength-dispersive spectroscopy were used to visualize individual polymers, air voids, cement phases and filler minerals in a polymer-modified cementitious tile adhesive. In order to investigate the evolution and processes involved in formation of the mortar microstructure, quantifications of the phase distribution in the mortar were performed including phase-specific imaging and digital image analysis. The required sample preparation techniques and imaging related topics are discussed. As a form of case study, the different techniques were applied to obtain a quantitative characterization of a specific mortar mixture. The results indicate that the mortar fractionates during different stages ranging from the early fresh mortar until the final hardened mortar stage. This induces process-dependent enrichments of the phases at specific locations in the mortar. The approach presented provides important information for a comprehensive understanding of the functionality of polymer-modified mortars.

  16. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    Science.gov (United States)

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis. PMID:27002788

  17. The Crack Self-healing Properties of Cement-based Material with EVA Heat-melt Adhesive

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiongzhou; SUN Wei; ZUO Xiaobao; LI Hua

    2011-01-01

    An experimental program was carried out to investigate whether EVA(ethylene vinyl acetate copolymer)heat-melt adhesive can potentially act as a self-healing agent in cement-based material.The effects of incorporation of EVA and heating on the properties of mortar were studied.Self-healing capacity of EVA specimens was also verified.The experimental results show that the addition of EVA would not greatly affect original characteristics of the matrix when EVA content was less than 5%;the interface between EVA and cement matrix was well improved after heating,which allows a significant improvement in flexural strength and toughness of specimen;pre-damaged specimens in various degrees(30%,50% and 70%)were effectively repaired by EVA and the repair efficiency all exceeded 100%.

  18. Effect of Fly Ash on Microstructure Property of Cement Mortar%粉煤灰对水泥砂浆微结构性能的影响

    Institute of Scientific and Technical Information of China (English)

    张乃明

    2014-01-01

    矿物掺合料如粉煤灰、矿渣等,能显著改善结构混凝土的耐久性,而得到普遍应用。从微观角度出发,采用压汞法(MIP)和X-CT断层扫描技术分析粉煤灰分别为10%、30%和50%对水泥基材料微结构的影响,进一步从氯离子传输角度分析掺合料对微结构改变的本质。压汞法的结果表明,粉煤灰掺量从10%到50%,水泥基材料的毛细孔和凝胶孔的体积率分别减少和增加,但总孔隙率在50%时出现增加;X-CT三维重构的结果显示,水泥基材料的微缺陷随着掺合料的增加而减少;氯离子传输的实验显示,含50%掺合料的试样,具有较大的传输系数,表明不适量的掺合料会降低水泥基材料的抗渗透性能。%Mineral admixture like fly ash and slag is applied widely because it can greatly improve the durability of the structure concrete. The Mercury Intrusion Pore method (MIP) and X-CT were employed to study the effect of binding materials with 10%, 30%and 50%fly ash on microstructure property of cement based materials, which further analyzes the affect of admixture to the microstructure property from the angle of chloride ion diffusion. Test result of MIP shows that volume fraction of capillary pore and gel pore in cement based materials decreased and increased with fly ash content from 10%~50%, total pore volume fraction of cement based materials increased with 50% of admixture. 3D reconfiguration result of X-CT indicates that micro-defect volume fraction of cement based materials decreased with increasing fly ash content. The Chloride ion penetration resistance of cement based materials decreased at 50 % content of admixture.

  19. Effect of Nanosilica on the Fresh Properties of Cement-Based Grouting Material in the Portland-Sulphoaluminate Composite System

    Directory of Open Access Journals (Sweden)

    Shengli Li

    2016-01-01

    Full Text Available The effect of NS particle size and content on the fresh properties of the grouting material based on the portland-sulphoaluminate composite system was analyzed. The experimental results indicated that air content increased and apparent density decreased, with increased NS content, but the NS particle sizes have minimal effect on the air content and apparent density. The setting time of mortar was significantly shortened, with increased NS content; however, NS particle sizes had little influence on the setting time. The effect of fluidity on the mortars adding NS with particle size of 30 nm is larger than NS with particle sizes of 15 and 50 nm and the fluidity decreased with increased NS content, but the fluidity of mortars with the particle sizes of 15 and 50 nm is almost not affected by the NS content. XRD analysis shows that the formation of ettringite was promoted and the process of hydration reaction of cement was accelerated with the addition of NS. At the microscopic level, the interfacial transition zone (ITZ of the grouting material became denser and the formation of C-S-H gel was promoted after adding NS.

  20. Potencialidades de um caulim calcinado como material de substituição parcial do cimento portland em argamassas Potentialities of a calcined kaolin as material of partial replacement of portland cement in mortars

    Directory of Open Access Journals (Sweden)

    Marilia P. de Oliveira

    2006-06-01

    Full Text Available A utilização de argilas calcinadas na forma de metacaulinita, como material pozolânico para argamassas e concretos, tem recebido atenção considerável nos últimos anos. Este trabalho objetivou avaliar o desempenho mecânico de argamassas, nas quais foi utilizado um caulim calcinado proveniente do Estado da Paraíba, como material de substituição parcial do cimento Portland. Utilizaram-se duas finuras do caulim: passando nas peneiras ABNT 200 (0,074 mm e 325 (0,044 mm e calcinados nas temperaturas de 700, 800 e 900 ºC pelo tempo de 2 h. As amostras foram caracterizadas através de análise química, análise térmica diferencial, difração de raios-X e área específica. Obteve-se o índice de atividade pozolânica com a cal e o cimento Portland. O percentual de substituição adotado foi de 0, 10, 20, 30 e 40%. A relação aglomerante: areia foi de 1:1,5 e a relação água/aglomerante fixada igual 0,4. O efeito da substituição parcial do cimento na argamassa foi avaliado através da resistência à compressão simples, nas idades de 7, 28 e 90 dias. As argamassas estudadas apresentaram resistência superior em relação à da referência, até o nível de 30% de substituição.The use of burnt clays, in the metakaolin form, as pozzolanic material for mortars and concretes has received a remarkable attention in the last years. This paper aimed to evaluate the mechanical property of mortars, in which a calcined kaolin originating from the State of Paraiba, was used as partial cement replacement material. Two finess of the kaolin were used: ABNT 200 (0.074 mm and 325 (0.044 mm and burnt at temperatures of 700, 800 and 900 ºC for a period of 2 h. Both materials were characterized by chemical analysis, differential thermal analysis, X-ray diffraction, specific area tests. The pozolanic activity index was obtanied using lime and cement Portland. The amounts of replacement were 10, 20, 30 and 40%, besides the reference mortar. The binder

  1. Characterization of the leaching behaviour of concrete mortars and of cement-stabilized wastes with different waste loading for long term environmental assessment.

    Science.gov (United States)

    van der Sloot, H A

    2002-01-01

    The leaching behaviour of cement-based products-both construction products and cement-stabilized wastes--have been shown to be similar after assessing the leaching characteristics by means of a pH dependence leaching test. This procedure is particularly suited to identifying the chemical speciation of materials. Geochemical modelling has shown a number of solubility controlling phases in this largely inorganic matrix, that can very well explain the observed leaching patterns as a function of pH. Understanding these relationships allows the prediction of leaching behaviour under other exposure conditions and to improve the ultimate quality of products, if so desired. The role of ettringite-type phases for the binding of oxyanions in the pH range above pH 12 has been identified before and confirmed in this work. The order of incorporation follows from the ratio between the maximum leachability at mildly alkaline pH and at high pH. Increased levels of sulfate negatively influence the binding of oxyanions in cement-stabilized waste through site competition.

  2. Effects of Ethylene/Vinyl Chloride/Vinyl Laurate Redispersible Terpolymer on Pore Structure and Properties of Cement Mortar%E/VC/VL三元共聚物对水泥砂浆孔结构和性能的影响

    Institute of Scientific and Technical Information of China (English)

    张国防; 王培铭

    2013-01-01

    Effects of ethylene/vinyl chloride/vinyl laurate redispersible terpolymer(E/VC/VL) on the pore structure of cement mortar were studied through mercury intrusion porosimeter(MIP) and environmental scanning electron microscopy(ESEM). The relationships between the pore structure and the properties of cement mortar were also discussed. The results show that E/VC/VL remarkably affects the pore structure of cement mortar. E/VC/VL definitely increases the total pore volume, porosity and the average pore radius. E/VC/VL significantly increases the content of large capillary pores of cement mortar, which distribute in the C-S-H gel. With the increase of its use level, the effect of E/VC/VL on the pore structure of cement mortar is enhanced. As the porosity and the total pore volume of cement mortar modified with E/VC/VL increases, the bulk density and the compressive strength of cement mortar decrease, but the water permeation resistance is greatly enhanced.%利用压汞法和环境扫描电子显微镜分析方法,研究了乙烯/氯乙烯/月桂酸乙烯酯(E/VC/VL)三元共聚物对水泥砂浆孔结构的影响规律,并探讨了其与水泥砂浆的体积密度、抗压强度、抗水渗性、吸水量和吸水率等宏观性能的关系.研究表明:E/VC/VL三元共聚物能显著影响水泥砂浆的孔结构,增大水泥砂浆的孔隙率、总孔体积和平均孔半径;导致大毛细孔显著增多,且密布在C-S-H凝胶之间.E/VC/VL三元共聚物掺量越大,对水泥砂浆孔结构的影响越显著.E/VC/VL三元共聚物改性水泥砂浆的孔隙率和孔体积与宏观性能之间存在密切关系:孔隙率和孔体积越大,水泥砂浆的体积密度和抗压强度越小,但其抗水分渗透性能则越好.

  3. Using bio-based polymers for curing cement-based materials

    OpenAIRE

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying shrinkage. Continuous cement hydration also guarantees a strong bond between aggregate, fewer voids, and depercoliation of capillary pores. Thus, a properly cured cement-based material is prepared for...

  4. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  5. Self-healing of lime based mortars: Microscopy observations on case studies

    NARCIS (Netherlands)

    Lubelli, B.; Nijland, T.G.; Hees, R.P.J. van

    2011-01-01

    Lime mortars have, up to a certain extent, a self-healing capacity which may contribute to their durability. Self-healing in lime mortars consists of a process of dissolution, transport and re-precipitation of calcium compounds to heal cracks and fissures. The spontaneous occurrence of self-healing

  6. Self-healing of lime based mortars: microscopy observations on case studies

    NARCIS (Netherlands)

    Lubelli, B.; Nijland, T.G.; Van Hees, R.P.J.

    2011-01-01

    Lime mortars have, up to a certain extent, a self-healing capacity which may contribute to their durability. Self-healing in lime mortars consists of a process of dissolution, transport and re-precipitation of calcium compounds to heal cracks and fissures. The spontaneous occurrence of self-healing

  7. Spalling Resistant Bauxite Based Bricks for Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Peng Xigao

    2011-01-01

    @@ 1.Scope This standard specifies the term,definition,classification,labeling,technical requirements,test methods,inspection rules,packing,marking,transportation,storage,and quality certificate of spalling resistant bauxite based bricks for cement kiln.This standard is applicable to the spalling resistant bauxite based bricks for cement kiln.

  8. Densified ultra-light cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with combined...

  9. Evaluation of the Katz-Thompson model for estimating the water permeability of cement-based materials from mercury intrusion porosimetry data

    Energy Technology Data Exchange (ETDEWEB)

    El-Dieb, A.S.; Hooton, R.D. (Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering)

    1994-01-01

    The permeability of concrete is becoming a focal characteristic with regard to the durability and performance of cement-based materials, pastes, mortars and concretes. Since it is mainly affected by the microstructure of the porous media, many models and theories have been developed relating the permeability of porous media to their microstructural parameters. One which proved to be useful in predicting the permeability of sedimentary rock, from mercury intrusion porosimetry data, is the Katz-Thompson theory. A review of this theory and its assumptions is presented, and its applicability to cementitious materials is investigated using two sets of data of various hardened cement pastes and concretes. Also, the major differences between cement-based materials and sedimentary rock from the microstructural point of view is reported.

  10. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  11. Immobilisation of radwaste in cement based matrices

    International Nuclear Information System (INIS)

    The solubilities and influence on cement pH are reported for calcium aluminate and aluminosulphate hydrates. The solubility of Ca(OH)2 is reported to 700 bars. Polymerization of C-S-H is investigated by NMR. Specific interactions of U6+ and iodine (I-, IO3-) with cement components are described. The impact of radiation on cements and the influence of higher temperature are documented. The role of dissolved Ca and CO2 in groundwaters as dissolution media for cements are reported. (author)

  12. The shrinkage in lime mortars

    Directory of Open Access Journals (Sweden)

    Sánchez, J. A.

    1997-03-01

    Full Text Available Nowadays, the methodology existing to measure the shrinkage in air, developed for paste and cement mortars, has serious problems to be applied to lime mortars, due to its different mechanism of hardening several modifications in Norms UNE 80-113-86 y 80-112-89 make possible the determination of the shrinkage in these traditional mortars.

    La metodología existente en la actualidad para la medida de la retracción de secado, desarrollada para las pastas y los morteros de cemento, presenta serios problemas a la hora de su aplicación a los morteros de cal debido a su distinto mecanismo de endurecimiento. Algunas modificaciones de las normas UNE 80-113-86 y 80-112-89 hacen posible la determinación de la retracción en estos morteros tradicionales.

  13. Effects of Nano-TiO2 on the Toughness and Durability of Cement-Based Material

    OpenAIRE

    Baoguo Ma; Hainan Li; Junpeng Mei; Xiangguo Li; Fangjie Chen

    2015-01-01

    The effects of nano-TiO2 (NT) on microstructures and mechanical properties of cement mortars were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and mercury intrusion porosimetry (MIP). Results show that 3% NT can remarkably increase the tensile/flexural strengths (i.e., the toughness is improved) and promote the precipitation of AFt crystal. The flexural and tensile strengths have significant positive correlation to the formation amount of AFt. The pores of mortars c...

  14. 高性能混凝土外加剂对水泥砂浆力学性能的影响%Mechanical properties research of high-performance concrete admixtures on the cement mortar

    Institute of Scientific and Technical Information of China (English)

    程朝霞; 张自新; 胡志超; 杨健辉

    2011-01-01

    A new type of admixtures on mortar strength was researched with mixed-level orthogonal table.Mixing a few different factors and levels of additives to form a new group of 16 specimens of cement mortar,and testing 3 d and 28 d strength of these prism specimens,then using orthogonal design analysis of variance test methods such as error analysis researched the influence of high-performance concrete admixtures on the cement mortar strength.The results showed that high-performance concrete admixtures are not the most perfect additives.Without reducing water consumption,high performance concrete admixtures with the same quality of cement replacement,the admixtures on the strength of the effect is not significant factors.In the dosage less case,the improvement is not obvious on the strength of concrete,and mixed with excessive can cause retardation.Admixture of polycarboxylate superplasticizer increases the strength.There was an interaction between high-performance concrete admixtures and water reducing agent.%采用混合水平正交表研究了新型外加剂对砂浆强度的影响.通过掺加不同因子及水平数的新型外加剂成型了16组水泥砂浆试件,测试了3 d和28 d龄期的强度,采用正交设计中的方差分析、试验误差等方法分析表明,高性能混凝土外加剂并不是性能最好的外加剂,不减少用水量的情况下,用高性能混凝土外加剂替代同等质量水泥后,外加剂对强度的影响并不是显著因素.掺量较少的情况下,对混凝土强度的提高不明显,掺量过大,会造成缓凝.掺加聚羧酸减水剂提高强度,高性能混凝土外加剂和减水剂之间存在交互作用.

  15. Quantification of uncertainty of experimental measurement in leaching test on cement-based materials.

    Science.gov (United States)

    Coutand, M; Cyr, M; Clastres, P

    2011-10-01

    When mineral wastes are reused in construction materials, a current practice is to evaluate their environmental impact using standard leaching test. However, due to the uncertainty of the measurement, it is usually quite difficult to estimate the pollutant potential compared to other materials or threshold limits. The aim of this paper is to give a quantitative evaluation of the uncertainty of leachate concentrations of cement-based materials, as a function of the number of test performed. The relative standard deviations and relative confidence intervals are determined using experimental data in order to give a global evaluation of the uncertainty of leachate concentrations (determination of total relative standard deviation). Various combinations were realized in order to point out the origin of large dispersion of the results (determination of relative standard deviation linked to analytical measured and to leaching procedure), generalisation was suggested and the results were compared to literature. An actual example was given about the introduction of residue (meat and bone meal bottom ash--MBM-BA) in mortar, leaching tests were carried out on various samples with and without residue MBM-BA. In conclusion large dispersion were observed and mainly due to heterogeneity of materials. So heightened attention needed to analyse leaching result on cement-based materials and further more other tests (e.g. ecotoxicology) should be performed to evaluate the environmental effect of these materials.

  16. Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-07-01

    Full Text Available The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too.

  17. Role of different superplasticizers on hydrated lime pastes and mortars

    OpenAIRE

    Alvarez, J. I.; Fernandez, J M; Sirera, R. (Rafael); Perez-Nicolas, M. (María); Navarro-Blasco, I. (Íñigo); Duran, A

    2015-01-01

    The behaviour of different superplasticizers admixtures was assessed for hydrated lime pastes and mortars. Sometimes, air lime pastes and mortars were modified with two supplementary cementing materials (SCMs), namely nanosilica (NS) and metakaolin (MK). Two different polycarboxylate ethers, a lignosulfonate and a naphthalene condensed sulfonate superplasticizer were added to lime pastes and mortars and their effects on fresh-state properties as well as on the mechanical strengths were evalua...

  18. Effect of metakaolin on strength and efflorescence quantity of cement-based composites.

    Science.gov (United States)

    Weng, Tsai-Lung; Lin, Wei-Ting; Cheng, An

    2013-01-01

    This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight.

  19. 砂浆板冲击破坏试验研究%Damage tests for a cement mortar plate under shock load

    Institute of Scientific and Technical Information of China (English)

    顾培英; 邓昌; 章道生; 汤雷; 王建

    2015-01-01

    通过锤击、均匀冲击荷载试验,采用逐级递增循环冲击加载方式,研究冲击荷载下砂浆板的破坏特征及冲击力、冲击能与最大加速度响应间关系。试验表明,二种冲击作用均使砂浆板跨中区域出现贯穿裂缝,呈脆性劈裂破坏形态,均匀冲击作用下破坏位置与跨中有一定偏移;锤击力时程经历主冲击、次冲击、卸载三阶段,加速度响应随锤击力增加而增加,裂缝贯穿后冲击力、加速度响应大幅减小;均匀冲击下加速度有二组响应区,响应随冲击能增加而增加,当冲击能达一定程度时响应大幅减小;继续增加冲击能,响应又会增加,并较快发生劈裂破坏,响应大幅减小;支座螺栓松动能缓冲部分冲击作用。%Hammering and uniform shock tests of a cement mortar plate were conducled.The opposite sides of the plate were elastic supports.Through cyclic shocks with amplitude increasing,the failure features,the relationship between shock force and acceleration response,and the relationship between impact energy and acceleration response of the plate were studied.The results showed that a transverse crack nearby the midspan of the plate appears,its failure state is brittle splitting;the location of failure offsets the midspan under uniform shock;time history curves of the hammering force include three stages of major shock,secondary shock and unloading;the acceleration response of the plate increases with increase in the hammering force,however,the hammering force and acceleration response decrease obviously after the transverse crack appears;there are two groups of acceleration response regions under uniform shock;the acceleration response increases with increase in impact energy;once impact energy reaches a certain level,the acceleration response decreases obviously;if impact energy continuously increases,the acceleration response increases again,brittle splitting failure occurs

  20. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  1. Corrosion performance of reinforced mortar in the presence of polymeric nano-aggregates: electrochemical behavior, surface analysis, and properties of the steel/cement paste interface

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This study reports on the effect of admixed polyethylene oxide-b-polystyrene (PEO113-b-PS70)micelles on corrosion behavior of reinforced mortar. The electrochemical measurement shows that the corrosion performance of the reinforcing steel was not significantly improved. However, surface analysis and

  2. Water extraction out of mortar during brick laying. An NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.

    1996-01-01

    The water extraction out of mortar during brick laying was studied by nuclear magnetic resonance. The water extraction is an important parameter that determines, e.g., the stiffness of the mortar due to compaction of the cement particles and the bond strength of the cured-mortar interfaces but allo

  3. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the fo

  4. Durability of expanded polystyrene mortars

    OpenAIRE

    Ferrándiz Mas, Verónica; García Alcocel, Eva María

    2013-01-01

    The influence of the addition of various types and various concentrations of expanded polystyrene foam (both commercial and recycled) on the durability of Portland cement mortars is studied. In particular, the microstructure is studied utilizing the following methods: capillary absorption of water, mercury intrusion porosimetry, impedance spectroscopy and open porosity. In addition, the effects of heat cycles and freeze–thaw cycles on compressive strength are examined. Scanning electron micro...

  5. InfIuence of curing conditions on the performance of persuIphated phosphogypsum-sIag cement mortar%养护条件对过硫磷石膏矿渣水泥砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    曾潇; 水中和; 丁沙; 田素芳; 陈飞翔

    2015-01-01

    PPSC is a kind of new cementing materials.Itˊs a mixture of 40%~50%phosphogypsum(PG),40%~50%ground granulated blast-furnace slag(GGBFS),2%steel slag(SS)and 4% portland cement clinker.The influence of thermostatic temperature,delay time and thermostatic period on the strength of PPSC mortar was studied by using orthogonal design testing method. Based on the testing technology of XRD and SEM,the influence of thermostatic temperature on the strength and microstructure of PPSC mortar was also studied.The results indicated that thermostatic temperature has a significant influence on the strength and microstructure of PPSC mortar under steam curing,and 40 ℃ of thermostatic temperature is favorable for its strength and microstructure.%过硫磷石膏矿渣水泥( PPSC)是由40%~50%磷石膏、40%~50%粒化高炉矿渣、2%钢渣以及4%水泥熟料混合而成的一种新型胶凝材料。通过正交试验设计研究了恒温温度、静停时间和保温时间对过硫磷石膏矿渣水泥砂浆强度的影响,并通过X射线衍射( XRD)和扫描电子显微镜( SEM)测试技术初步探讨了恒温温度对蒸养过硫磷石膏矿渣水泥砂浆强度和微观结构的影响。试验结果表明:在蒸汽养护条件下,恒温温度对强度的影响最为显著,静停时间和养护时间影响较小,高温不利于其强度发展,40℃为适宜的恒温温度。

  6. Salt resistant mortars: present knowledge and future perspectives

    NARCIS (Netherlands)

    Lubelli, B.

    2013-01-01

    Salt crystallization damage is one of the most common causes of decay for bedding, pointing and plastering mortar. Attempts to tackle the problem have been mainly focused on increasing the mechanical strength of the mortar, by the replacement of lime with (PTL) cement, or on reducing the moisture tr

  7. Salt resistant mortars: present knowledge and future perspectives

    NARCIS (Netherlands)

    Lubelli, B.A.

    2013-01-01

    Salt crystallization damage is one of the most common causes of decay for bedding, pointing and plastering mortar. Attempts to tackle the problem have been mainly focused on increasing the mechanical strength of the mortar by the replacement of lime with (PTL) cement, or on reducing the moisture tra

  8. Lime-based mortars with linseed oil: sodium chloride resistance assessment and characterization of the degraded material

    OpenAIRE

    Nunes, C.; Slížková, Z. (Zuzana); Janotová, D. (Dana)

    2013-01-01

    Lime mortar is often used to repair historic buildings but is prone to salt crystallization with deleterious consequences. Lime mortar is a very susceptible material due to its high porosity and low mechanical resistance. Recent findings concerning mortar additives that impart hydrophobic properties to mortar show that by limiting water penetration, damage from frost and salt can be decreased. Linseed oil was commonly used in former times as an additive for mortar in order to grant hydrophobi...

  9. INFLUENCE OF GROUND MINERAL ADMIXTURES ON PORE STRUCTURE OF HARDENED CEMENT PASTE AND STRENGTH OF CEMENT MORTAR%磨细矿物掺合料对水泥硬化浆体孔结构及砂浆强度的影响

    Institute of Scientific and Technical Information of China (English)

    李永鑫; 陈益民

    2006-01-01

    采用压汞法研究了钢渣、矿渣、粉煤灰单掺或复掺对水泥硬化浆体孔结构的影响.同时还研究了掺合料单掺或复掺对水泥砂浆抗压强度的影响.结果表明:掺合料单掺或复掺对早期水泥硬化浆体的孔结构有一定的劣化作用;水化后期,矿渣与钢渣均明显降低了水泥硬化浆体的孔隙率,矿渣与粉煤灰均明显降低了水泥硬化浆体的中值孔径并改善了水泥石的孔径分布,掺合料复掺对改善水泥硬化浆体的孔结构有积极作用,尤其是掺合料三元复合可取得最佳的效果.3种掺合料降低水泥硬化浆体孔隙率能力的大小顺序为:矿渣>钢渣>粉煤灰.3种掺合料降低水泥硬化浆体孔径并改善孔径分布能力的大小顺序为:矿渣>粉煤灰>钢渣.掺合料降低了水泥砂浆早期的抗压强度,却增加了水泥砂浆90 d的抗压强度.掺合料的活性大小顺序为:矿渣>钢渣>粉煤灰.%The influence of singly and compositely adding steel slag, blast furnace slag and fly ash on the pore structure of handened cement paste was studied using mercury intrusion porosimetry (MIP). Furthermore, their influence on the compressive strength of cement mortar was also investigated. The results show that the pore structure of cement paste become worse at early ages by singly or compositely adding any of the mineral admixtures. At later ages, adding either blast furnace slag or steel slag remarkably reduces the porosity of cement paste, while either blast furnace slag or fly ash remarkably reduces median pore diameter and improves pore size distribution. The most reduction in the porosity of cement paste is observed for the cement with blast furnace slag, while the cement with steel slag less, and the cement with fly ash the least. The biggest improvement on pore structure is observed for the cement with blast furnace slag, while the cement with fly ash smaller, and the cement with steel slag the smallest. Pore structure

  10. Rendering mortars in Medina Azahara, Part I: Material characterization and alteration process

    OpenAIRE

    Blanco-Varela, M. T.; Puertas, F.; Palomo, A.

    1997-01-01

    Rendering mortars, which are still exposed to the open air on some of the walls of Medina Azahara, are studied and characterized in this work. Some repairing mortars used in different previous restorations are also characterized. Those rendering mortars are of different make considering the composition of their binder: lime, gypsum and mixed lime/ gypsum. Repairing mortars used in previous interventions are made of lime, excepting for a portland cement used by Félix Hernández in the rest...

  11. Leaching of metals on stabilization of metal sludge using cement based materials

    Institute of Scientific and Technical Information of China (English)

    Carmalin Sophia A; K. Swaminathan

    2005-01-01

    Toxicity characteristic leaching procedure(TCLP) of zinc plating sludge was carried out to assess the leaching potential of the sludge and the leachates were analyzed for heavy metals. The concentration of zinc, chromium, and lead in the leachate were 371.5mg/L, 1.95 mg/L and 1.99 mg/L respectively. Solidification of zinc sludge was carried out using four different binder systems consisting of cement mortar, fly ash, clay and lime and cured for 28 d. The ratio of sludge added varied from 60% to 80% by volume. The solidified products were tested for metal fixing efficiency and physical strength. It was observed that the volume of sludge added that resulted in maximum metal stabilization was 60% for all the combinations, above which the metal fixation efficiency decreased resulting in high values of zinc in the leachate. Addition of 5% sodium silicate enhanced the chemical fixation of metals in all the binder systems. Among the four fixing agents studied, mixture of fly ash: lime, and cement mortar: lime stabilized zinc and other metals in the sludge effectively than other combinations. Addition of lime increased the stabilization of zinc whereas cement mortar increased the strength of the solidified product.

  12. Using bio-based polymers for curing cement-based materials

    NARCIS (Netherlands)

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying shr

  13. Sulfate and acid resistant concrete and mortar

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  14. The Aesthetical quality of SSA-containing mortar and concrete

    DEFF Research Database (Denmark)

    Kappel, Annemette; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.;

    2014-01-01

    that gives a characteristic red colour. The process of grinding SSA has shown to improve the compressive strength of SSA- containing mortar (Donatello et al. 2010). Thus, in this study SSA was grinded in 6 different intervals ranging from 0 – 10 min, and then added to the mortar mix replacing 20% of cement....... The experiment revealed that the colour of the SSA-containing mortar intensified as the time interval of the grinding process increased. Each of the 6 steps within the time interval provided an additional colour tone and generated a colour scale consisting of mortar samples ranging from greyish to a more...

  15. ACID RESISTANCE OF FLYASH BASED GEOPOLYMER MORTAR UNDER AMBIENT CURING AND HEAT CURING

    Directory of Open Access Journals (Sweden)

    V.Sreevidya

    2012-02-01

    Full Text Available An Experimental study was conducted to assess the Acid resistance of flyash based geopolymer mortar specimens of size 50x50x50mm with a ratio of flyash to sand as 1:3.The ratio between solution(Sodiumhydroxide and Sodium silicate solution to flyash were 0.376,0.386,0.396 and 0.416. After casting the specimens were subjected to both ambient curing and heat curing. In heat curing the specimens were kept continuously at 60oC for 24 hrs. Durability of specimens was assessed by immersing them in 5% of sulfuric acid and 5%hydrochloric acid for a period of 14 weeks. Evaluation of its resistance in terms of change in weight, compressive strength and visual appearance at regular intervals was carried out. After exposure in the acid solutions for 14 weeks, the samples showed very low weight loss. Results obtained from the present study indicate that Geopolymers are highly resistance to sulfuric acid and hydrochloric acid.

  16. Bleeding and Filtration of Cement-Based Grout

    OpenAIRE

    Draganovic, Almir

    2009-01-01

    Grouting is a common method of sealing rock around tunnels to reduce or stop water inflow. Successful grouting significantly minimizes the maintenance cost and safety of the tunnel. Some questions about bleeding and penetrability of the grouts have to be examined more closely to carry out a successful grouting. Bleeding of cement-based grout is a complex problem. Measuring methods used today originate from the measuring of the bleeding of cement pastes used in ordinary building industry. Whet...

  17. The Effective Superiority of I Grade Fly Ash and Effects on the Strength of Cement Sand Mortar in Sanxia Engineering%三峡工程用Ⅰ级粉煤灰效应优势及其对水泥砂浆强度贡献

    Institute of Scientific and Technical Information of China (English)

    朱蓓蓉; 张树青; 吴学礼; 黄士元

    2001-01-01

    研究了三峡工程用Ⅰ级粉煤灰效应优势及其对水泥砂浆强度的贡献。结果表明:相比于Ⅱ级粉煤灰,Ⅰ级粉煤灰的火山灰活性未必更高,但Ⅰ级粉煤灰颗粒形态效应上的优势导致了其对水泥砂浆强度产生更明显的影响。%This paper studies the effective superiority of Ⅰ grade fly ash and effects on the strength of cement sand mortar in Sanxia engineering.The results show that compared with Ⅱ grade fly ash,Ⅰ grade fly ash is not certainly good in chemical reactivity,but its  advantage in shape effect is obvious to the strength of cement sand mortar.

  18. Strengthening of two-way reinforced concrete slabs with Textile Reinforced Mortars (TRM)

    OpenAIRE

    Papanicolaou, Catherine; Triantafillou, Thanasis; Papantoniou, Ioannis; Balioukos, Christos

    2009-01-01

    An innovative strengthening technique is applied for the first time in this study to provide flexural strengthening in two-way reinforced concrete (RC) slabs supported on edge beams. The technique comprises external bonding of textiles on the tension face of RC slabs through the use of polymer-modified cement- based mortars. The textiles used in the experimental campaign comprised fabric meshes made of long stitch-bonded fibre rovings in two orthogonal directions. The specimens measured 2 x 2...

  19. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Sahmaran; Heru Ari Christianto; Ismail Ozgur Yaman [Middle East Technical University, Ankara (Turkey). Department of Civil Engineering

    2006-05-15

    Mortar serves as the basis for the workability properties of self-compacting concrete (SCC) and these properties could be assessed by self-compacting mortars (SCM). In fact, assessing the properties of SCM is an integral part of SCC design. The objective of this study was to evaluate the effectiveness of various mineral additives and chemical admixtures in producing SCMs. For this purpose, four mineral additives (fly ash, brick powder, limestone powder, and kaolinite), three superplasticizers (SP), and two viscosity modifying admixtures (VMA) were used. Within the scope of the experimental program, 43 mixtures of SCM were prepared keeping the amount of mixing water and total powder content (Portland cement and mineral additives) constant. Workability of the fresh mortar was determined using mini V-funnel and mini slump flow tests. The setting time of the mortars, were also determined. The hardened properties that were determined included ultrasonic pulse velocity and strength determined at 28 and 56 days. It was concluded that among the mineral additives used, fly ash and limestone powder significantly increased the workability of SCMs. On the other hand, especially fly ash significantly increased the setting time of the mortars, which can, however, be eliminated through the use of ternary mixtures, such as mixing fly ash with limestone powder. The two polycarboxyl based SPs yield approximately the same workability and the melamine formaldehyde based SP was not as effective as the other two.

  20. Effect of a biodegradable natural polymer on the properties of hardened lime-based mortars; Efecto de un polimero natural biodegradable en las propiedades de morteros de cal en estado endurecido

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, A.; Lanas, J.; Alvarez, J. I.

    2011-07-01

    As an environmentally friendly and energy-saving alternative to cement-based materials and to some chemically obtained water-reducers, a commercialized starch was incorporated into aerial lime-based matrix. Different dosages were tested in order to study the influence that the amount of additive exerted on the properties of the material. Density, shrinkage, water absorption through capillarity, water vapour permeability, mechanical strengths, porosity, pore size distribution, and durability in the face of freezing-thawing cycles were studied in the mortars. The tested starch acted as a thickener for dosages up to 0.30%, and changed its behaviour for the largest dosage (0.50%): in that case it behaved as a plasticizer, dispersing the lime through the fresh mass and generating a more workable material. As a result, the matrix of the hardened mortar presented great coherence, owing to its large density and low porosity, characteristics which led to lower capillarity and permeability, better mechanical properties and durability. (Author) 46 refs.

  1. High performance superplasticized silica fume mortars for ferrocement works

    Directory of Open Access Journals (Sweden)

    Rathish Kumar P.

    2010-01-01

    Full Text Available Ferrocement works demand cement mortars of good workability and high strength. Reduction in water-cement ratio combined with a refined pore structure increases the compressive strength in addition to the enhancement of durability characteristics, but the workability decreases. Workability becomes important, as the mortar has to easily penetrate between the layers of the mesh wires. A reasonably workable high strength cement mortar can be obtained by using a high cement content coupled with the use of superplasticizers. These were also found to retain the cohesiveness and check undesirable bleeding and segregation. An experimental program was conducted to study the functional efficacy of an SNF condensate used as a water reducing superplasticizer. The compressive strength and flow characteristics of the mortars were determined to decide their suitability for ferrocement works. The parameters included the mix proportions, the grade of cement, age of curing and the dosage of superplasticizer. It was concluded from the study that the addition of an optimum dosage of superplasticizer improved the workability and strength characteristics of silica fume mortars. There was a late gain in the compressive strength of silica fume mortars.

  2. Research on the Correlation between Pore Structures and the Strength of Cement Mortar with Pozzolanic%火山灰水泥砂浆孔结构与其强度相关性的研究

    Institute of Scientific and Technical Information of China (English)

    张凌; 孙海燕; 龚爱民; 张国林

    2013-01-01

    In this paper, the strength of mortars with the 15%, 30% and 45% dosages pozzolanic and the 7 d, 28 d and 60 d curing ages is studied. Meanwhile, based on the absorption-hydrodynamic method, pore structure of mortars with the different dosages pozzolanic is tested by the parameters of pore homogeneity and average pore diameter when at different curing ages. When a certain a-mount pozzolanic is mixed, pore structure of mortars can be optimized and denser. That is, the optimum parameters value of pore structure can be achieved when pozzolanic dosage increases to 30%, but after increasing continuously to exceed 45%, pore structure of mortars begin to be deteriorated. There is a better correlation between the parameters of pore structured and λ-) and the strength of mortars with different pozzolanic dosages at different curing ages.%研究了15%、30%和45%3种火山灰掺量和7d、28 d和60d3个养护龄期对水泥砂浆强度的影响,并基于吸水动力学法以孔径均匀性和平均孔径两个参数,研究了不同水化龄期下,3种掺量火山灰对水泥砂浆孔结构的影响规律.结果表明:不同掺量的火山灰水泥砂浆试件,随火山灰掺量在增加,其最佳活性效应位置点和孔结构均出现在30%时,向水泥砂浆中掺入一定量的火山灰可以细化水化浆体的孔结构,当火山灰的掺量不超过30%时,水泥石的平均孔径参数均随火山灰的掺量增加而减小,且孔径均匀性提高,对水泥砂浆的孔结构改善效果比较好,当其掺量增加到45%后,水泥砂浆的孔结构反而又开始呈现出劣化趋势.不同水化龄期时各掺量粉煤灰砂浆孔结构参数(α和λ)与其强度试验结果间相关性较好.

  3. Cement industry control system based on multi agent

    Institute of Scientific and Technical Information of China (English)

    王海东; 邱冠周; 黄圣生

    2004-01-01

    Cement production is characterized by its great capacity, long-time delay, multi variables, difficult measurement and muhi disturbances. According to the distributed intelligent control strategy based on the multi agent, the multi agent control system of cement production is built, which includes integrated optimal control and diagnosis control. The distributed and multiple level structure of multi agent system for the cement control is studied. The optimal agent is in the distributed state, which aims at the partial process of the cement production, and forms the optimal layer. The diagnosis agent located on the diagnosis layer is the diagnosis unit which aims at the whole process of the cement production, and the central management unit of the system. The system cooperation is realized by the communication among optimal agents and diagnosis agent. The architecture of the optimal agent and the diagnosis agent are designed. The detailed functions of the optimal agent and the diagnosis agent are analyzed.At last the realization methods of the agents are given, and the application of the multi agent control system is presented. The multi agent system has been successfully applied to the off-line control of one cement plant with capacity of 5 000 t/d. The results show that the average yield of the clinker increases 9.3% and the coal consumption decreases 7.5 kg/t.

  4. Effect of Binder’s Type on Physico-Mechanical and Thermal Properties of Mortars with a Basis of Coir

    Directory of Open Access Journals (Sweden)

    Athanas Konin

    2012-05-01

    Full Text Available This study aims to study the effect of type of binder on properties of mortars with coir. Two types of binders were used for the manufacturing of mortars containing coir: lime is used as binder for mortar nº1 (Mortar 1 and cement is used for mortar nº2 (Mortar 2. The measurements of the physical, mechanical and thermal properties of the specimens show that Mortar 1 has higher water absorption values than those of Mortar 2 and consequently has the lowest values of thermal conductivity. The results also indicate that dry density of the specimens has more important role than the type of binder on mechanical properties. Relationships were established between mechanical properties and dry density of these mortars. These relationships are independent to the type of binder. The mortars also satisfied most recommended thermal insulation standards.

  5. Properties of Rice Husk Ash (RHA and MIRHA Mortars

    Directory of Open Access Journals (Sweden)

    Narayanan Sambu Potty

    2014-05-01

    Full Text Available Rice husk Ash (produced by traditional burning called RHA and by using microwave incinerator called MIRHA has shown promise as a cement replacement material. This study investigated the properties of RHA and MIRHA mortar used for brick manufacture at binder sand proportions of 1:3 and 1:4. RHA and MIRHA were intermediate in particle size to cement and sand particles. Percentages of replacement were 5, 10, 15, 20, 25 and 30%, respectively. Strength at w/c ratios (0.5, 0.55, 0.6 and 0.65, respectively was investigated to identify optimum w/c ratios as well as optimum percent replacement of RHA and MIRHA. Variations of IRS, density and water absorption were investigated. Generally 1:3 RHA and 1:3 MIRHA mortars strength showed decreasing trend with increasing percentage replacement with RHA and MIRHA. Whereas 1:4 RHA and 1:4 MIRHA mortars showed increase in strength at 5% replacement and decrease thereafter. IRS values for RHA mortars are generally within limits (0.25-1.5 kg/m2.min recommended. Water absorption values of RHA mortars are generally higher than control mortar. IRS values for MIRHA mortars with w/c 0.5 and 0.55 ranged between 1.4-2.0 kg/m2 .min; indicating the need for wetting the bricks before use. IRS values for 1:3 MIRHA mortars with w/c 0.6 and 0.65 were below 1.0 kg/m2.min indicating low suction values. For 1:4 MIRHA mortars, IRS values were very low in all cases. Water absorption values of MIRHA mortars are generally higher than the control mortar. MIRHA mortars with w/c 0.6 and 0.65 showed low percentages of water absorption.

  6. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  7. In vivo characterization of polymer based dental cements

    Directory of Open Access Journals (Sweden)

    Widiyanti P

    2011-12-01

    Full Text Available Background: In vivo studies investigating the characterization of dental cements have been demonstrated. As few in vitro studies on this cement system have been performed. Previous researches in dental material has been standardized dental cement which fulfilled the physical and mechanical characteristic such as shear strength but were on in vitro condition, the animal model and clinical study of dental cement from laboratory has not been done yet. This research examined physical and mechanical characteristic in vivo using rabbit by making the caries (class III in anterior teeth especially in mesial or distal incisive, fulfilled the cavity by dental cement and analyzed the compressive strength, tensile strength, and microstructure using scanning electron microscope (SEM. Purpose: This study is aimed to describe the in vivo characterization of dental cements based on polymer (zinc phosphate cement, polycarboxylate, glass ionomer cement and zinc oxide eugenol. Methods: First, preparation was done on animal model’s teeth (6 rabbits, male, 5 months old. The cavity was made which involved the dentin. Then the cavity was filled with dental cement. After the filling procedure, the animal model should be kept until 21 days and than the compressive test, tensile test and microstructure was characterized. Compressive test and tensile test was analyzed using samples from extracted tooth and was measured with autograph. The microstructure test was measured using SEM. Results: The best compressive strength value was belongs to zinc phosphate cement which was 101.888 Mpa and the best tensile strength value was belongs to glass ionomer cement which was 6.555 Mpa. Conclusion: In conclusion, comparing with 3 others type of dental cements which are zinc phosphate, polycarboxylate and glass ionomer cement, zinc oxide eugenol cement has the worst for both physical and mechanical properties.Latar belakang: Studi in vivo meneliti karakterisasi secara in vivo dari

  8. A novel cement-based hybrid material

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are known to possess exceptional tensile strength, elastic modulus and electrical and thermal conductivity. They are promising candidates for the next-generation high-performance structural and multi-functional composite materials. However, one of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of purification and functionalization of the carbon nanomaterial are required. We propose a new approach to grow CNTs/CNFs directly on the surface of matrix particles. As the matrix we selected cement, the most important construction material. We synthesized in a simple one-step process a novel cement hybrid material (CHM), wherein CNTs and CNFs are attached to the cement particles. The CHM has been proven to increase 2 times the compressive strength and 40 times the electrical conductivity of the hardened paste, i.e. concrete without sand.

  9. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    José Aparecido Canova

    2009-12-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  10. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    J. A. Canova

    2009-01-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  11. Visualization and quantification of water movement in porous cement-based materials by real time thermal neutron radiography:Theoretical analysis and experimental study

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Water movement in porous cement-based materials is of great importance when studying their deterioration processes and durability.Many traditional methods based on mass changes,electricity or nuclear magnetic resonances are available for studying water transport in cement-based materials.In this research,an advanced technique i.e.thermal neutron radiography was utilized to achieve visualization and quantification of time dependent water movement including water penetration and moisture vapor in porous cement-based materials through theoretical analysis and experimental study.Because thermal neutrons ex-perience a strong attenuation by hydrogen,neutron radiography exhibits high sensitivity to small amounts of water.A neutron transmission analysis for quantitative evaluation of raw radiographic measurements was developed and optimized based on point scattered functions(PScF).The determinations of the real time and space dependent water penetration into uncracked and cracked mortar samples,as well as the drying process have been presented in this paper.It is illustrated that thermal neutron radiography can be a useful research tool for visualization and quantification of water movement in porous building materials.The obtained results will help us to better understand deteriorating processes of cement-based materials and to find ways to improve their durability.

  12. Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials

    Science.gov (United States)

    Eiras, Jesus N.; Kundu, Tribikram; Popovics, John S.; Monzó, José; Borrachero, María V.; Payá, Jordi

    2016-01-01

    Carbonation causes a physicochemical alteration of cement-based materials, leading to a decrease of porosity and an increase of material hardness and strength. However, carbonation will decrease the pH of the internal pore water solution, which may depassivate the internal reinforcing steel, giving rise to structural durability concerns. Therefore, the proper selection of materials informed by parameters sensitive to the carbonation process is crucial to ensure the durability of concrete structures. The authors investigate the feasibility of using linear and nonlinear dynamic vibration response data to monitor the progression of the carbonation process in cement-based materials. Mortar samples with dimensions of 40×40×160 mm were subjected to an accelerated carbonation process through a carbonation chamber with 55% relative humidity and >95% of CO2 atmosphere. The progress of carbonation in the material was monitored using data obtained with the test setup of the standard resonant frequency test (ASTM C215-14), from a pristine state until an almost fully carbonated state. Linear dynamic modulus, quality factor, and a material nonlinear response, evaluated through the upward resonant frequency shift during the signal ring-down, were investigated. The compressive strength and the depth of carbonation were also measured. Carbonation resulted in a modest increase in the dynamic modulus, but a substantive increase in the quality factor (inverse attenuation) and a decrease in the material nonlinearity parameter. The combined measurement of the vibration quality factor and nonlinear parameter shows potential as a sensitive measure of material changes brought about by carbonation.

  13. Characterization and Degradation of Masonry Mortar in Historic Brick Structures

    Directory of Open Access Journals (Sweden)

    Denis A. Brosnan

    2014-01-01

    Full Text Available This study characterized mortars from a masonry fortification in Charleston, South Carolina (USA, harbor where construction was during the period 1839–1860. This location for analysis was interesting because of the sea water impingement on the structure. The study was included as part of an overall structural assessment with restoration as an objective. The mortars were found to be cement, lime, and sand mixtures in proportions similar to ones expected from the historic literature, that is, one part binder to two parts of sand. The binder was found to be American natural cement, a substance analogous to the European Roman cement. The results suggest that the thermal history of the cement during manufacturing affected setting rate explaining why the cements were considered as variable during the mid-to-late 1800s. Fine pores were found in mortars exposed to sea water resulting from corrosion. Contemporary natural cement was shown to release calcium in aqueous solution. While this release of calcium is necessary for setting in natural and Portland cements, excessive calcium solution, as exacerbated by sea water contact and repointing with Portland cement mortars, was shown to result in brick scaling or decay through cryptoflorescence.

  14. DURABILITY OF NATURAL POZZOLAN-BASED MORTAR EXPOSED TO SULFATE ATTACK

    OpenAIRE

    L. Laoufi; Y. Senhadji; A. Benazzouk; L. Thierry; M. Mouli; I. Laoufi

    2016-01-01

    Cement is a strategic commodity in the civil engineering for the construction of reinforced concrete structures. But its production generates around 5% of toxic gases such as CO2 responsible for environmental degradation. Furthermore, cement industry is a consumer sector of non-renewable energy. The use in the cement of natural additions is a solution to reduce the CO2 gas and the cost of production. The purpose of this work is the study of a sustainable building material: natural pozzolan Be...

  15. Optimization of Mix Proportion of High Performance Mortar for Structural Applications

    Directory of Open Access Journals (Sweden)

    Cheah C. Ban

    2010-01-01

    Full Text Available Problem statement: Mortar mix is a major construction material in fabrication of ferrocement structural elements. However, there have been scarce amount of technical data available on suitable mix proportion to achieve structural grade mortar with specific strength requirement and adequate level of workability for proper placement into construction formwork. Moreover, current practice in ferrocement construction work which uses mortar mix with cement: sand ratio ranging between 1:1.5 to 1:2 incurs high requirement of cement yet producing mix with suboptimum level of compressive strength. Approach: An experimental investigation was carried out to evaluate workability and compressive strength properties of structural grade mortar mixes with various cement: sand ratios ranging from 1:2.0-1:2.75 and varying water/binder ratio between 0.35 and 0.50. Throughout the laboratory investigation, a total of 28 batches of mortar mixes with various mix proportion were designed, cast and tested in accordance to relevant standards of practice prescribed by British Standard Institute (BSI and American Society of Testing Material (ASTM. Results: At the end of the laboratory investigation program, high performance mortar mix with compressive strength exceeding 55 MPa and slump level within 50-90 mm which is suitable for heavy duty ferrocement construction work was successfully developed. Moreover, data on mix proportion for several other grades of mortar mixes ranging from grade 35 to grade 55 were also derived. Conclusion: It was found that optimum cement: Sand ratio of structural mortar is 1:2.25. With the use of this cement: Sand ratio in the production of structural grade mortar mix in fabrication of ferrocement structural elements, consumption of cement binder will be economized hence resulting in potential savings in term of material and production cost of mortar mix in the construction industry. Besides, it was also observed that strengths

  16. Análise fluido-dinâmica do escoamento em ensaio de permeabilidade ao ar de argamassas preparadas com cimento Portland de alto-forno Fluid-dynamic analysis of the flow in air permeability measurement of mortars prepared with blast-slag furnace Portland cement

    Directory of Open Access Journals (Sweden)

    V. M. Pereira

    2008-06-01

    . These studies not only have evaluated the permeability of porous media, but also to analyze the behavior of the fluid during the flow. Being about to the cement based materials, the measuring of the permeability becomes basic so that the durability of these can be estimate, therefore is the permeability that controls the rate of ingression and movement of deleterious agents inside these materials. Thus, diverse methodologies and mathematical equations have been used to foresee the permeability of cementitious materials, however, some discrepancies and nonsense in the results have been found. Amongst the used methodologies to measure the permeability of porous media, one meets developed it by Thenoz, which it has demonstrated good results in cement based materials. Thus, this work aims at, by means of assay of permeability to air, carried through in accordance with the methodology of Thenoz, to evaluate the fluid-dynamic behavior of air during the assay of permeability in mortars. For this, mortars prepared with two types of Portland cement of blast furnace (CP IIE-32 and CP III - 32, two relations water/cement (0.5 and 0.6 and ages of 14 and 28 days were used. By means of the gotten results it was possible to observe that during the draining the compressibility of air can be ignored, the regimen of draining can be considered as to plate, demonstrating that the methodology proposal for Thenoz and used mathematical equations can result in coefficients of trustworthy air permeability, therefore phenomena and considerations that could influence in this type of flow can be neglected, in accordance with what it is considered by literature.

  17. Elastoplastic cup model for cement-based materials

    Directory of Open Access Journals (Sweden)

    Yan ZHANG

    2010-03-01

    Full Text Available Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The case study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.

  18. APT analysis of WC-Co based cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Weidow, Jonathan, E-mail: jonathan.weidow@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Andren, Hans-Olof [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2011-05-15

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: {yields} We develop a method for producing specimens from WC-Co based cemented carbides. {yields} Measure segregated atoms to an interface between phases with different field evaporation field. {yields} The interface chemistry in cemented carbides. {yields} The transition metal solubility in WC.

  19. APT analysis of WC-Co based cemented carbides

    International Nuclear Information System (INIS)

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: → We develop a method for producing specimens from WC-Co based cemented carbides. → Measure segregated atoms to an interface between phases with different field evaporation field. → The interface chemistry in cemented carbides. → The transition metal solubility in WC.

  20. Smart Behavior of Carbon Fiber Reinforced Cement-based Composite

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers.Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress andstrain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relationof thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to theincrease in the material volume resistivity during crack generation or propagation and the decrease in the resistivity duringcrack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect inthe cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage andtemperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in theconcrete structures.

  1. STUDY OF EXPANSIVE REACTIONS IN MORTAR MADE OF PORTLAND CEMENT WITH RICE HUSK ASH (RHA = ESTUDO DE REAÇÕES EXPANSIVAS EM ARGAMASSAS DE CIMENTO PORTLAND COM CINZA DE CASCA DE ARROZ (CCA

    Directory of Open Access Journals (Sweden)

    Jorge Luis Akasaki

    2007-01-01

    Full Text Available Rice husk is an agroindustrial residue which, when adequately burned and ground, may become an important pozzolan to be added in mortars. One factor contributing to the feasibility of its use is that of the 10 million tons of rice produced annually in this country, two million tons of husk remain, which can produce about 400 thousand tons of ash - enough to supply the market for mortars, concrete andothers. This large amount of material has become an environmental problem because it is being discarded inappropriately. Seeking a viable use of rice husk ash in the civil construction, the present research studies the variation in mortar behavior with different levels of RHA (Rice Husk Ash. Prismatic specimens were used, measuring 25x25x285mm, moulded with 0% (reference, 5%, 10% and 25% RHA. The influence of the RHA’s was verified through the following tests: efficiency of pozzolanic materials in avoiding expansion and alkali-aggregate reaction. The result obtained in the expansion reduction test (NBR 12651 showed that RHA reduces considerably the expansion of mortars due to reaction with the alkalis in the cement(94.29%, with the minimum reduction required by the norm for a pozolan being 75%. Although the expansion values in the alkali-aggregate reaction test (ASTM C-1260 remained above the limit allowed to consider the material innocuous, RHA levels of 5% as well as 10% obtained better results (expanded less then the referenceline. = A casca de arroz é um resíduo agroindustrial que adequadamente queimada e moída, pode se tornar uma importante pozolana a ser adicionada em argamassas. Um fator que viabiliza o seu emprego, é que dos 10 milhões de toneladas de arroz que o país produz por ano, sobram dois milhões de toneladas de casca – que podem rendercerca de 400 mil toneladas de cinza, o suficiente para suprir o mercado de argamassas, concreto e outros. Esta grande quantidade de material produzido passa a se tornar um problema, porque

  2. Properties of Fiber-Reinforced Mortars Incorporating Nano-Silica

    Directory of Open Access Journals (Sweden)

    Ahmed Ghazy

    2016-02-01

    Full Text Available Repair and rehabilitation of deteriorating concrete elements are of significant concern in many infrastructural facilities and remain a challenging task. Concerted research efforts are needed to develop repair materials that are sustainable, durable, and cost-effective. Research data show that fiber-reinforced mortars/concretes have superior performance in terms of volume stability and toughness. In addition, it has been recently reported that nano-silica particles can generally improve the mechanical and durability properties of cement-based systems. Thus, there has been a growing interest in the use of nano-modified fiber-reinforced cementitious composites/mortars (NFRM in repair and rehabilitation applications of concrete structures. The current study investigates various mechanical and durability properties of nano-modified mortar containing different types of fibers (steel, basalt, and hybrid (basalt and polypropylene, in terms of compressive and flexural strengths, toughness, drying shrinkage, penetrability, and resistance to salt-frost scaling. The results highlight the overall effectiveness of the NFRM owing to the synergistic effects of nano-silica and fibers.

  3. MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Chun-jia Bi; Li-kang Li

    2004-01-01

    In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.

  4. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement

    Science.gov (United States)

    Pavlík, Zbyšek; Trník, Anton; Kulovaná, Tereza; Scheinherrová, Lenka; Rahhal, Viviana; Irassar, Edgardo; Černý, Robert

    2016-03-01

    Cement industry belongs to the business sectors characteristic by high energy consumption and high {CO}2 generation. Therefore, any replacement of cement in concrete by waste materials can lead to immediate environmental benefits. In this paper, a possible use of waste ceramic powder in blended binders is studied. At first, the chemical composition of Portland cement and ceramic powder is analyzed using the X-ray fluorescence method. Then, thermal and mechanical characterization of hydrated blended binders containing up to 24 % ceramic is carried out within the time period of 2 days to 28 days. The differential scanning calorimetry and thermogravimetry measurements are performed in the temperature range of 25°C to 1000°C in an argon atmosphere. The measurement of compressive strength is done according to the European standards for cement mortars. The thermal analysis results in the identification of temperature and quantification of enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates dehydration and portlandite, vaterite and calcite decomposition. The portlandite content is found to decrease with time for all blends which provides the evidence of the pozzolanic activity of ceramic powder even within the limited monitoring time of 28 days. Taking into account the favorable results obtained in the measurement of compressive strength, it can be concluded that the applied waste ceramic powder can be successfully used as a supplementary cementing material to Portland cement in an amount of up to 24 mass%.

  5. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  6. High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends

    Directory of Open Access Journals (Sweden)

    Bernal, S. A.

    2012-12-01

    Full Text Available This paper assesses the performance of mortars and concretes based on alkali activated granulated blastfurnace slag (GBFS/metakaolin (MK blends when exposed to high temperatures. High stability of mortars with contents of MK up to 60 wt.% when exposed to 600 °C is identified, with residual strengths of 20 MPa following exposure to this temperature. On the other hand, exposure to higher temperatures leads to cracking of the concretes, as a consequence of the high shrinkage of the binder matrix and the restraining effects of the aggregate, especially in those specimens with binders containing high MK content. A significant difference is identified between the water absorption properties of mortars and concretes, and this is able to be correlated with divergences in their performance after exposure to high temperatures. This indicates that the performance at high temperatures of alkali-activated mortars is not completely transferable to concrete, because the systems differ in permeability. The differences in the thermal expansion coefficients between the binder matrix and the coarse aggregates contribute to the macrocracking of the material, and the consequent reduction of mechanical properties.

    Este artículo evalúa el desempeño de morteros y hormigones basados en mezclas de escoria siderúrgica (GBFS/metacaolín (MK, activadas alcalinamente expuestos a temperaturas altas. Se identifica una elevada estabilidad en morteros con contenidos de MK de hasta un 60% cuando se exponen a temperaturas de 600 ºC, con una resistencia residual de 20 MPa posterior a la exposición a esta temperatura. Por otra parte, la exposición a temperaturas más elevadas conduce al agrietamiento de los hormigones como consecuencia de una elevada contracción de la matriz cementante y las restricciones por efecto de los áridos, especialmente en aquellos especímenes con cementantes que contienen altos contenidos de MK. Se identifican diferencias significativas en

  7. Three-dimensional Microstructure Simulation Model of Cement Based Materials,

    NARCIS (Netherlands)

    Ye, G.; Van Breugel, K.

    2003-01-01

    This paper describes a computer-based numerical model for the simulation of the development of microstructure during cement hydration. Special emphasis is on the algorithm for characterizing the pores. This includes the porosity and the pore size distribution and the topological properties of the po

  8. Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-based Materials

    NARCIS (Netherlands)

    Zhang, M.

    2013-01-01

    Cement-based materials are the most widely used man-made materials in the world. The durability of cement-based materials has been a major concern due to the premature failure and serviceability issues of many reinforced concrete structures. Durability of cement-based materials is to a large content

  9. Avrami's law based kinetic modeling of colonization of mortar surface by alga Klebsormidium flaccidum

    OpenAIRE

    Tran, Thu Hien; Govin, Alexandre; Guyonnet, René; Grosseau, Philippe; Lors, Christine; Damidot, Denis; Devès, Olivier; Ruot, Bertrand

    2013-01-01

    International audience The aim of this research was to modelize the colonization of mortar surface by green algae using Avrami's law. The resistance of mortars, with different intrinsic characteristics (porosity, roughness, carbonation state), to the biofouling was studied by means of an accelerated lab-scale test. A suspension of green alga Klebsormidium flaccidum, was performed to periodically sprinkle the mortar surfaces. The covered surface rate followed a sigmoidal type curve versus t...

  10. The Influence of Mineral Admixtures on Bending Strength of Mortar on the Premise of Equal Compressive Strength

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; YAN Peiyu; FENG Jianwen

    2012-01-01

    The influence of mineral admixtures on bending strength of mortar on the premise of equal compressive strength was investigated.Three mineral admixtures (fly ash,ground granulated blast-furnace slag and steel slag) were used.The adding amount of mineral admixture in this study ranges from 22.5% to 60%,and the water-to-binder ratio ranges from 0.34 to 0.50.With equal compressive strength,different mortars can be arranged in such a descending order with their bending strength:cement-fly ash mortar,cement mortar,cement-GGBS mortar,and cement-steel slag mortar.With the same compressive strength,the higher the steel slag content and water-to-binder ratio,the lower the bending strength of mortars.However,the effect of mineral mixture content and water-to-binder ratio on the bending strength of cement-fly ash mortar and cement-GGBS mortar is far inconspicuous.

  11. Correlation Between Initial Calcium Oxide Content of Slag Blended Cement and Mortar Leaching Mass Loss%矿渣混合水泥中初始氧化钙含量与砂浆溶蚀质量损失的关系

    Institute of Scientific and Technical Information of China (English)

    王培铭; 庞敏; 刘贤萍

    2016-01-01

    In the accelerated corrosion 142 d, the leaching mass loss behavior of Portland cement and slag blended cement of three different slag contents (50%, 70% and 90%, in mass fraction) mortar with two different pre-cured ages (28 and 180 d) was investigated. The initial CaO content, calcium hydroxide (CH) content and total hydration degree were analyzed. Based on the relation between CH content and initial CaO content in cement as well as mass loss, the correlation between the initial CaO content and mass loss, and the effect of total hydration degree on mass loss were studied. The results show that the mass loss of all the specimens of two different pre-cured age increase with the increase of leaching time (after 84 d increased slowly), decrease with the increase of addition of slag in blended cement. That is slag can improve the corrosion resistance performance, the fundamental cause of above improvement lies in slag reduced the CH content and hydration degree of blended cement paste. The mass loss with leaching time of 84 d and CH content (0 except) in cement paste, as well as the hydration degree (only slag blended cement) has the following linear relationship respectively. The former is y=0.207 5x–0.015 7, the latter is y=0.029 6x–0.125 4. The mass loss with leaching time of 84 d and initial CaO content in cement has a logarithmic relationship. Pre-cured 28 d, the regression equation is y=6.059ln(x)–22.164. Pre-cured 180 d, the regression equation is y=7.612 3ln(x)–27.656. Based on the logarithmic relationship, cement mortar corrosion resistance can be preliminary judged.%研究了2个预养护龄期(28和180 d)的硅酸盐水泥和3个矿渣粉掺量(50%、70%和90%)的混合水泥砂浆在加速溶蚀142 d 内的溶蚀质量损失规律,分析了硅酸盐水泥和混合水泥初始 CaO 含量、浆体中氢氧化钙(CH)含量和水化程度,基于浆体中 CH 含量与水泥初始 CaO 含量,以及溶蚀质量损失之间的

  12. Porosity estimation of aged mortar using a micromechanical model.

    Science.gov (United States)

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  13. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars; Evaluacion del comportamiento estructural y de resistencia a la corrosion de armaduras de acero inoxidable austenitico AISI 304 y duplex AISI 2304 embebidas en morteros de cemento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-07-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  14. Dimensional stability of materials based on Portland cement at the early stages

    Science.gov (United States)

    Mesa Yandy, Angélica; Zerbino, Raúl L.; Giaccio, Graciela M.; Russo, Nélida A.; Duchowicz, Ricardo

    2014-09-01

    In this work two fiber optic sensing techniques are used to study the dimensional stability in fresh state of different cementitious materials. A conventional Portland cement mortar and two commercial grouts were selected. The measurements were performed by using a Bragg grating embedded in the material and a non-contact Fizeau interferometer. The first technique was applied in a horizontal sample scheme, and the second one, by using a vertical configuration. In addition, a mechanical length comparator was used in the first case in order to compare the results. The evolution with time of the dimensional changes of the samples and the analysis of the observed behavior are included.

  15. Preliminary investigation of the effect of air-pollution-control residue from waste incineration on the properties of cement paste and mortar

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Kjeldsen, Ane Mette; Galluci, Emmanuel;

    2006-01-01

    For preliminary assessment of the engineering properties of concrete with air-pollution-control residue from waste incineration (APC) the possible reactivity of APC and the effect of APC on cement hydration were investigated by isothermal calorimetry, chemical shrinkage (pychnometry), thermal...... analysis (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Furthermore, compressive strength development was measured and impregnated plane sections were prepared. The APC was from a Danish wet process plant. Although the APC contained high amounts of chloride (approx. 10%) and heavy...

  16. Neutron radiography of heated high-performance mortar

    OpenAIRE

    Weber B; Wyrzykowski M.; Griffa M.; Carl S.; Lehmann E.; Lura P.

    2013-01-01

    Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  17. Neutron radiography of heated high-performance mortar

    Directory of Open Access Journals (Sweden)

    Weber B.

    2013-09-01

    Full Text Available Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  18. Cement based grouts - longevity laboratory studies: leaching behaviour

    International Nuclear Information System (INIS)

    This report describes a series of laboratory tests carried out to determine the possible leaching behaviour of cement-based grouts in repository environments. A reference high-performance cement-based grout, comprised of Canadian Type 50 (U.S. Type V) Sulphate Resisting Portland Cement, silica fume, potable water and superplasticizer, and a commercially available cement grout were subjected to leaching in distilled water and three simulated groundwaters of different ionic strength. Hardened, monolithic specimens of the grout were leached in static, pulsed-flow and continuous flow conditions at temperatures from 10 degrees C to 150 degrees C for periods of up to 56 days. The changes in concentration of ions in the leachants with time were determined and the changes in the morphology of the surfaces of the grout specimens were examined using electron microscopy. After a review of possible mechanisms of degradation of cement-based materials, the data from these experiments are presented. The data show that the grouts will leach when in contact with water through dissolution of more soluble phases. Comparison of the leaching performance of the two grouts indicates that, while there are some minor differences, they behaved quite similarly. The rate of the leaching processes were found to tend to decrease with time and to be accompanied by precipitation and/or growth of an assemblage of secondary alteration phases (i.e., CaCO3, Mg(OH)2). The mechanisms of leaching depended on the environmental conditions of temperature, groundwater composition and water flow rate. Matrix dissolution occurred. However, in many of the tests leaching was shown to be limited by the precipitated/reaction layers which acted as protective surface coatings. (37 refs.) (au)

  19. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

  20. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    Science.gov (United States)

    Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.

    2014-01-01

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  1. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  2. Chloride binding of cement-based materials subjected to external chloride environment - A review

    OpenAIRE

    Yuan, Q.; Shi, C; Schutter, G. de; Audenaert, K.; Deng, D.

    2009-01-01

    This paper reviews the chloride binding of cement-based materials subjected to external chloride environments. Chloride ion exist either in the pore solution, chemically bound to the hydration products, or physically held to the surface of the hydration products. Chloride binding of cement-based material is very complicated and influenced by many factors, such as chloride concentration, cement composition, hydroxyl concentration, cation of chloride salt, temperature, supplementary cementing m...

  3. Comparative investigation of mortars from Roman Colosseum and cistern

    Energy Technology Data Exchange (ETDEWEB)

    Silva, D.A. [Department of Civil and Environmental Engineering, 725 Davis Hall 94720-1710, University of California at Berkeley, Berkeley, CA (United States)]. E-mail: denise@ecv.ufsc.br; Wenk, H.R. [Department of Earth and Planetary Science, 497 McCone 94720-4767, University of California at Berkeley, Berkeley, CA (United States); Monteiro, P.J.M. [Department of Civil and Environmental Engineering, 725 Davis Hall 94720-1710, University of California at Berkeley, Berkeley, CA (United States)

    2005-11-01

    Mortar from the Roman Colosseum and a Roman cistern from Albano Laziale were characterized with optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)). The different techniques provided consistent results that the mortar of the Colosseum is mainly calcareous lime, while the mortar of the cistern is pozzolanic siliceous material. The study highlights the capabilities of the different methods for the analysis of cement. For routine analysis XRD is adequate but for characterization of poorly crystalline phases FT-IR and TGA have definite advantages.

  4. Characterization of cement-based ancient building materials in support of repository seal materials studies

    International Nuclear Information System (INIS)

    Ancient mortars and plasters collected from Greek and Cypriot structures dating to about 5500 BC have been investigated because of their remarkable durability. The characteristics and performance of these and other ancient cementitious materials have been considered in the light of providing information on longevity of concrete materials for sealing nuclear waste geological repositories. The matrices of these composite materials have been characterized and classified into four categories: (1) gypsum cements; (2) hydraulic hydrated lime and hydrated-lime cements; (3) hydraulic aluminous and ferruginous hydrated-lime cements (+- siliceous components); and (4) pozzolana/hydrated-lime cements. Most of the materials investigated, including linings of ore-washing basins and cisterns used to hold water, are in categories (2) and (3). The aggregates used included carbonates, sandstones, shales, schists, volcanic and pyroclastic rocks, and ore minerals, many of which represent host rock types of stratigraphic components of a salt repository. Numerous methods were used to characterize the materials chemically, mineralogically, and microstructurally and to elucidate aspects of both the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical (mineralogical) and microstructural factors. Durability was found to be affected by matrix mineralogy, particle size and porosity, and aggregate type, grading, and proportioning, as well as method of placement and exposure conditions. Similar factors govern the potential for durability of modern portland cement-containing materials, which are candidates for repository sealing. 29 references, 29 figures, 6 tables

  5. An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors

    Institute of Scientific and Technical Information of China (English)

    Tuan; Anh; Nguyen; Recep; AVCI

    2009-01-01

    The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCl and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mortar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hydrates at the steel-mortar interfacial region, but partially displaced chloride ions. Chloride and the admixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the polarization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.

  6. Low Carbon Footprint Mortar from Pozzolanic Waste Material

    Directory of Open Access Journals (Sweden)

    Taha Mehmannavaz

    2014-04-01

    Full Text Available Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA and Pulverized Fuel Ash (PFA as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  7. International Workshop Sustainable and Science-driven Engineering of Cement-based Materials (SSEC 2011)

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On fundamental scientific research, the thermodynamics and kinetics of hydration of cements are introduced and used to optimize the formation of cement hydrates and accordingly the microstructure of cement-based materials.

  8. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  9. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer

    Directory of Open Access Journals (Sweden)

    Alaa M. Rashad

    2015-12-01

    Full Text Available Disposal of fly ash (FA resulting from the combustion of coal-fired electric power stations is one of the major environmental challenges. This challenge continues to increase with increasing the amount of FA and decreasing the capacity of landfill space. Therefore, studies have been carried out to re-use high-volumes of fly ash (HVFA as cement replacement in building materials. This paper presents an overview of the previous studies carried out on the use of high volume Class F FA as a partial replacement of cement in traditional paste/mortar/concrete mixtures based on Portland cement (PC. Fresh properties, mechanical properties, abrasion resistance, thermal properties, drying shrinkage, porosity, water absorption, sorptivity, chemical resistance, carbonation resistance and electrical resistivity of paste/mortar/concrete mixtures containing HVFA (⩾45% as cement replacement have been reviewed. Furthermore, additives used to improve some properties of HVFA system have been reviewed.

  10. Multivariate optimization and simultaneous determination of hydride and non-hydride-forming elements in samples of a wide pH range using dual-mode sample introduction with plasma techniques: application on leachates from cement mortar material.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Asfaw, Alemayehu

    2009-02-01

    Analytical methods have been developed for the simultaneous determination of hydride-forming (As, Sb) and non-hydride-forming (Cr, Mo, V) elements in aqueous samples of a wide pH range (pH 3-13). The methods used dual-mode (DM) sample introduction with ICP-AES and ICP-MS instruments. The effect of selected experimental variables, i.e., sample pH and concentrations of HNO(3), thiourea, and NaBH(4), were studied in a multivariate way using face-centered central composite design (FC-CCD). Compromised optimum values of the experimental parameters were identified using a response optimizer. The statistically found optimum values were verified experimentally. The methods provided improved sensitivities for the hydride-forming elements compared with the respective conventional nebulization (Neb) systems by factors of 67 (As) and 64 (Sb) for ICP-AES and 36 (As) and 54 (Sb) for ICP-MS. Slight sensitivity improvements were also observed for the non-hydride-forming elements. The limits of detection (LOD) of As and Sb were lowered, respectively, to 0.8 and 0.9 microg L(-1) with the DM-ICP-AES system and to 0.01 and 0.02 microg L(-1) with the DM-ICP-MS system. The short-term stabilities of both methods were between 2.1 and 5.4%. The methods were applied for the analysis of leachates of a cement mortar material prepared in the pH range 3-13. The elemental concentration of the leachates determined by the two DM methods were statistically compared with the values obtained from Neb-ICP-MS analysis; the values showed good agreement at the 95% confidence level. Quantitative spike recoveries were obtained for the analytes from most of the leachates using both DM methods.

  11. Valorization of Drinking Water Treatment Sludges as Raw Materials to Produce Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    R. M.R. Zamora

    2008-01-01

    Full Text Available The purpose of this work was to assess the technical feasibility to valorize sludges, generated and stored at the Los Berros drinking water facility (PPLB, as raw material to produce building products (mortar and concrete for the construction industry. The experimental study was divided into three stages: 1 sampling and characterization of PPLB sludges to determine their potential as raw material (sand substitute and supplementary cementing materials to produce mortar and concrete; 2 production and characterization of specimens, using sludge in different weight ratios of mixtures with cement, lime, commercial mortar and plaster to prepare mortars and concretes and 3 comparison of compressive strength and drying contraction values between each specimen and the Mexican criteria to build mortars and concretes. The characterization results of the PPLB sludges showed that these residues could be used as a sand substitute in mortar and concrete formulations, since they were mainly comprised of this material (46.83%. The specimens prepared with a the binary formulations, sludge-cement and sludge-mortar (90-10% and b the ternary formulation, sludge-lime-cement (90-5-5%, gave the best results (ranging from 130 to 150 kg cm-2 of the compressive strength test. The compressive strength values of these formulations were higher than those of equivalent mortar (types I, II and III and cement mixtures (125 kg cm-2 prepared according to the Mexican complementary technical criteria to design and build masonry. These cementing properties exhibited by the PPLB sludges might be associated to their high content of aluminum and silicon oxides, 31.98 and 33.23%, respectively. Thus, calcium silicate (the main carrier strength in hardened cement can be produced from lime hydration of cement with the active silica present in the sludge. Considering all these results, the PPLB sludges present a high feasibility for being valorized as raw materials (supplementary cementing

  12. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    International Nuclear Information System (INIS)

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  13. Application of AMDS mortar as a treatment agent for arsenic in subsurface environment

    Science.gov (United States)

    Choi, J.; Lee, H.; Choi, U. K.; Yang, I. J.

    2014-12-01

    Among the treatment technologies available for As in soil and groundwater, adsorption or precipitation using acid mine drainage (AMD) sludge has become a promised technique because of high efficiency, inexpensiveness and simple to handling. The adsorbents were prepared by addition of Cement, Joomoonjin sand, fly ash, and Ca(OH)2 to air dry AMD sludge. In this work, the adsorption of As (III) and As (V) on AMDS mortar has been studied as a function of kinetic, pH, and initial arsenic concentration. Results of batch study showed that 75-90% of both As (III) and As (V) were removed at pH 7. Arsenic adsorption capacities were the highest at neutral pH condition and the adsorption equilibrium time reached in 7 days using AMDS mortar. Additionally, the adsorption kinetic process is expressed well by pseudo-second-order model. The adsorption capacities of AMDS mortar for As(III) and As(V) were found 19.04 and 30.75 mg g-1, respectively. The results of As (III) adsorption isotherms were fitted well to the Freundlich model. Moreover, As (V) adsorption isotherms were fitted well to the Langmuir model rather than Freundlich model. Based on experimental results in this study, we could conclude that AMDS mortar can be effectively used for arsenic removal agent from subsurface environment.

  14. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2015-01-01

    Full Text Available Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM and slag-foamed mortar (SFM, 50% cement was replaced by slag weight. Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  15. Elastoplastic cup model for cement-based materials

    OpenAIRE

    Zhang, Yan; Shao, Jian-Fu

    2010-01-01

    Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results...

  16. Temperature reduction during brucite-based magnesia cement production

    Directory of Open Access Journals (Sweden)

    B.Y. Trofimov

    2013-04-01

    Full Text Available The article considers the problem of reducing the energy consumption during the production process of magnesia cement based on brucite admixed with serpentine, because this solid requires roasting at high temperatures (1100–1200°C. It was demonstrated that the most effective way to increase the energy efficiency of the technology is to use additives, so that roasting intensifiers. We investigated the effect of various additives and intensifiers to reduce the roasting temperature of serpentinized brucite material. We found that the most effective additives are those, destabilizing a crystal lattice of roasted solid and simultaneously producing the hot melt during their dehydration. It was shown that the highest temperature can be reduced by 100–300°C without increasing the heat treatment time. We also estimated the quality of magnesia cement obtained by the developed method and confirmed its compliance with all relevant regulations.

  17. Microstructure of Steel Fiber Reinforced Polymer-cement-based Composites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite.The results indicate that the large pore volume decreases by 57.8%-51.2% and by 87.1%-88% with the addition of steel fibers and polymers respectively.When both steel fibers and polymers are simultaneously added,the large pore volume decreases by 88.3%-90.1%.As a surface active material,polymer has a favorable water-reduced and forming-film effect,which is contributed to the decrease of the thickness of water film and the improvement of the conglutination between the fibers and the matrix.Polymers could form a microstructure network.This network structure and the bone structure of cement hydration products penetrate each other and thus the interpenetrating network with sticky aggregate and steel fiber inside forms.

  18. On the Fresh/Hardened Properties of Cement Composites Incorporating Rubber Particles from Recycled Tires

    Directory of Open Access Journals (Sweden)

    Alessandra Fiore

    2014-01-01

    Full Text Available This study investigates the ameliorative effects on some properties of cement-based materials which can be obtained by incorporating rubber particles as part of the fine aggregates. The aim is to find out optimal cement composite/mortar mixtures, containing recycled-tyre rubber particles, suitable for specific engineering applications. Different percentages of rubber particles, from 0% to 75%, were used and, for each percentage, the suitable amount of sand was investigated in order to achieve the best fresh/hardened performances. In particular the following characteristics were examined: density, compressive strength, modulus of elasticity, shrinkage, weight loss, flexural behaviour, thermal conductivity, rapid freezing and thawing durability, and chloride permeability. The experimental results were compared with the ones of cement composite specimens without rubber aggregates. Test results show that the proposed rubberized mortar mixes are particularly suitable for some industrial and architectural applications, such as under-rail bearings, road constructions, paving slabs, false facades, and stone backing.

  19. Leaky Rayleigh wave investigation on mortar samples.

    Science.gov (United States)

    Neuenschwander, J; Schmidt, Th; Lüthi, Th; Romer, M

    2006-12-01

    Aggressive mineralized ground water may harm the concrete cover of tunnels and other underground constructions. Within a current research project mortar samples are used to study the effects of sulfate interaction in accelerated laboratory experiments. A nondestructive test method based on ultrasonic surface waves was developed to investigate the topmost layer of mortar samples. A pitch and catch arrangement is introduced for the generation and reception of leaky Rayleigh waves in an immersion technique allowing the measurement of their propagation velocity. The technique has been successfully verified for the reference materials aluminium, copper, and stainless steel. First measurements performed on mortar specimens demonstrate the applicability of this new diagnostic tool.

  20. [The Analysis of Traditional Lime Mortars from Zhejiang Province, China].

    Science.gov (United States)

    Liu, Xiao-bin; Cui, Biao; Zhang, Bing-jian

    2016-01-01

    The components of ancient mortars have always been an important research field in historic building conservation. It has been well known that using traditional mortars in conservation projects have many advantages, such as compatibility and stability. So, developing new binding materials based on traditional mortar has become an international study hotspot. With China's economic development, the protection of ancient buildings also began to put on the agenda, but the understanding on Chinese traditional mortar is limited, and rare literatures are reported. In the present work, the authors investigate seven ancient city wall sites in Zhejiang Province in situ, and subsequently laboratory analysis were carried out on collected mortar samples. The characterizations of mortar samples were made by multi-density gauge, XRD, FTIR, TG-DSC and wet chemical analysis. The experimental results showed that: the main component of masonry mortars is calcium carbonate, the content between 75% - 90%, and they should be made from relatively pure lime mortar. The raw materials of mortar samples were mainly calcareous quick lime, and sample from Taizhou city also contained magnesium quick lime. There are four city walls were built by sticky-rice mortars. It suggests that the technology of adding the sticky rice soup into mortar was universal in the Ming Dynasties. These mortars have lower density between 1.2 and 1.9 g x cm(-3); this outcome should be the result of long-term natural erosion. We have also analyzed other chemical and physical characteristics of these masonry mortars. The results can afford the basic data for the future repairmen programs, development of new protective materials, and comparative study of mortars.

  1. Monitoring the self-healing process of biomimetic mortar using coda wave interferometry method

    Science.gov (United States)

    Liu, Shukui; Basaran, Zeynep; Zhu, Jinying; Ferron, Raissa

    2014-02-01

    Internal stresses might induce microscopic cracks in concrete, which can provide pathways for ingress of harmful chemicals and can lead to loss of strength. Recent research in concrete materials suggests that it might be possible to develop a smart cement-based material that is capable of self-healing by leveraging the metabolic activity of microorganisms to provide biomineralization. Limited research on biomineralization in cement-based systems has shown promising results that healing of cracks can occur on the surface of concrete and reduce permeability. This paper presents the results from an investigation regarding the potential for a cement-based material to repair itself internally through biomineralization. Compressive strength test and coda wave interferometry (CWI) analyses were conducted on mortar samples that were loaded to 70% of their compressive strength and cured in different conditions. Experimental results indicate that the damaged mortar samples with microorganisms showed significantly higher strength development and higher increase of ultrasonic wave velocity compared to samples without microorganisms at 7 and 28 days.

  2. Reuse of ground waste glass as aggregate for mortars.

    Science.gov (United States)

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  3. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial......-strength DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....

  4. Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar

    OpenAIRE

    S. M. Alamgir Kabir; U. Johnson Alengaram; Mohd Zamin Jumaat; Afia Sharmin; Azizul Islam

    2015-01-01

    The investigation concerns the use of the optimum mix proportion of two locally available pozzolanic waste materials, namely, ground granulated blast furnace slag (GGBS) and palm oil fuel ash (POFA), together with metakaolin (MK) as binders. In addition, another local waste material, manufactured sand (M-sand), was used as a replacement for conventional sand in the development of green geopolymer mortar. Twenty-four mortar mixtures were designed with varying binder contents and alkaline activ...

  5. Effects of the restoration mortar on chalk stone buildings

    Science.gov (United States)

    Ion, R. M.; Teodorescu, S.; Ştirbescu, R. M.; Dulamă, I. D.; Şuică-Bunghez, I. R.; Bucurică, I. A.; Fierăscu, R. C.; Fierscu, I.; Ion, M. L.

    2016-06-01

    The monument buildings as components of cultural heritage are exposed to degradation of surfaces and chemical and mechanical degradation, often associated to soiling and irreversible deterioration of the building. In many conservative and restorative works, a cement-based mortar was used without knowing all the adverse effects of this material on the building. This paper deals with the study of the effects of natural cement used in restorative works in the particular case of the Basarabi-Murfatlar Churches Ensemble. Cement-based materials exposed to sulfate present in the chalk stone - gypsum (CaSO4.2H2O), can induce signs of deterioration, due to ettringite ([Ca3Al (OH)612H2O]2(SO4)32H2O) or thaumasite (Ca3[Si(OH)612H2O](CO3)SO4) formation. These phases contribute to strain within the material, inducing expansion, strength loss, spalling and severe degradation. Several combined techniques (XRD, EDXRF, ICP-AES, SEM, EDS, sulphates content, FT-IR and Raman analysis were carried out to put into evidence the effects of them on the building walls.

  6. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  7. Drying shrinkage of mortars with limestone filler and blast-furnace slag

    OpenAIRE

    Carrasco, M. F.; Bonavetti, V. L.; Irassar, E. F.

    2003-01-01

    During the 1990's the use of cements made with port land clinker and two mineral admixtures, called ternary or blended cements, has grown considerably. Nowadays, cements containing several combinations of fly ash and silica fume, blast-furnace slag and silica fume or blast-furnace slag and limestone filler are commonly used. There are numerous works on the influence of blended cements on the fresh state and mechanical properties of mortar and concrete, but the their deformations due to drying...

  8. INFLUENCE OF ENVIRONMENTAL CHARACTERISTICS ON SULFATE ATTACK TYPES OF CEMENT MORTARS%特性环境对水泥砂浆硫酸盐侵蚀类型的影响

    Institute of Scientific and Technical Information of China (English)

    马保国; 罗忠涛; 李相国; 高小建; 张美香

    2007-01-01

    研究了硫酸盐种类(Na2SO4,MgSO4)及温度(5 ℃,20 ℃)等影响因素对水泥砂浆硫酸盐侵蚀类型的影响,以明确碳硫硅酸钙型硫酸盐侵蚀的特性环境条件.试验结果表明:掺加石灰石粉的水泥砂浆试件置于5% MgSO4溶液、5 ℃及20 ℃温度环境下浸泡450 d后,均能生成碳硫硅酸钙.而一般水泥砂浆试件置于5% Na2SO4溶液、5 ℃及20 ℃温度环境浸泡侵蚀后,未生成碳硫硅酸钙.证明水泥混凝土在>15 ℃的硫酸盐侵蚀环境下亦可生成碳硫硅酸钙,而Mg2+的存在对碳硫硅酸钙的形成过程具有加速催化作用.%The influence of environmental factors with different sulfate types (Na2SO4, MgSO4) and temperatures (5, 20 ℃) on various kinds of sulfate attack of cement mortars was studied, and the special environmental factors for the formation of thaumasite were confirmed. The experimental results show that after immersion for 450 d, the samples including limestone exposed to 5% MgSO4 solution at 5 ℃ and 20 ℃ both could produce thaumasite. However, thaumasite could not be found in the samples without limestone exposed to 5% Na2SO4 solution at 5 ℃ and 20 ℃. This proves that concrete can produce thaumasite in a sulfate environment over 15 ℃, and the existence of Mg2+ can accelerate the formation of thaumasite.

  9. The colour potentials of SSA-containing mortar

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie;

    2015-01-01

    is with a few exceptions landfilled and thus, wasted.The purpose of the experiments was to examine the influence of SSA and how it affected the colour of mortar samples. SSA was ground in 6 different intervals and added to mortar mixes by replacing 20% of the cement. An additional focus was to examine......This paper reports an experimental study of aesthetical qualities of mortar containing sewage sludgeash (SSA). SSA is the residue produced at water treatment plants where incineration of the sludge is applied in order to decrease volume and to prevent pathogens from spreading. Today SSA...... the possibilities to accentuate the colours of the hardened mortar by using paper cuttings in the production of the samples. The result of the experiments showed that a colour scale can be developed from ground SSA, and that paper may have the potential of providing divers textural qualities when it is used...

  10. Concentration Limits in the Cement Based Swiss Repository for Long-lived, Intermediate-level Radioactive Wastes (LMA)

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Urs

    1999-12-01

    The Swiss repository concept for long-lived, intermediate-level radioactive wastes (LMA), in Swiss terminology) foresees cylindrical concrete silos surrounded by a ring of granulated bentonite to deposit the waste. As one of the possible options and similar to the repository for high level wastes, the silos will be located in a deep crystalline host rock. Solidified with concrete in steel drums, the waste is stacked into a silo and the silo is then backfilled with a porous mortar. To characterize the release of radionuclides from the repository, the safety assessment considers first the dissolution into the pore water of the concrete, and then diffusion through the outer bentonite ring into the deep crystalline groundwater. For 19 safety relevant radionuclides (isotopes of U, Th, Pa, Np, Pu, Am, Ni, Zr, Mo, Nb, Se, Sr, Ra, Tc, Sn, I, C, Cs, Cl) the report recommends maximum elemental concentrations to be expected in the cement pore water of the particularly considered repository. These limits will form the parameter base for subsequent release model chains. Concentration limits in a geochemical environment are usually obtained from thermodynamic equilibrium calculations performed with geochemical speciation codes. However, earlier studies revealed that this procedure does not always lead to reliable results. Main reasons for this are the complexity of the systems considered, as well as the lacking completeness of, and the uncertainty associated with the thermodynamic data. To improve the recommended maximum concentrations for a distinct repository design, this work includes additional design- and system-dependent criteria. The following processes, inventories and properties are considered in particular: a) recent experimental investigations, particularly from cement systems, b) thermodynamic model calculations when reliable data are available, c) total inventories of radionuclides, d) sorption- and co-precipitation processes, e) dilution with stable isotopes, f

  11. A study of the application of residue from burned biomass in mortars

    Directory of Open Access Journals (Sweden)

    Enori Gemelli

    2004-12-01

    Full Text Available The goal of this work was to study the viability of burnt biomass residue from a pulp and paper plant applied as a raw material for mortar used in the construction industry. The waste - bottom ash - was incorporated into the mortar as a mineral addition to the Portland cement. The effect of the waste's grain size on the properties of mortars containing 10% in volume of waste was investigated, as well as the effect of the concentration of waste with grain size under 0.15 mm. The samples were evaluated after 28 days of aging by uniaxial compression, leaching test and scanning electron microscopy. These characterization techniques indicated that the properties of the mortars depend on the concentration, granulation and size distribution of the waste in the mortar's structure. Furthermore, some chemical elements may be present in stabilized and/or encapsulated form in the cement matrix.

  12. Penetrability due to filtration tendency of cement based grouts

    OpenAIRE

    Eklund, Daniel

    2005-01-01

    Grouting as a method of strengthening and sealing rock, soil and concrete is widely used. The possibilities of sealing structures are of great importance from both an economical and environmental point of view. The cost of grouting has in certain projects been as high as the cost for the blasting and excavation of the tunnel. To improve the technique of grouting with cement based material, it is necessary to focus on the properties of the used grout mixture. The ability of a grout to penetrat...

  13. Development of Advanced Cement-Based Building Products

    Institute of Scientific and Technical Information of China (English)

    Zongjin LI; Bin MU; Stanley N.C.CHIU

    2000-01-01

    @@ In this study, short fiber-reinforced cement-based building products of sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been developed by the extrusion technique. The experimental works have shown that these products do have very good mechanical properties. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of ext rudate, a nonlinear viscoelastic model was applied to investigate the rheology behavior of a movable fresh cementitious composite in a single screw extruder channel. The theoretical analysis is used to guide the practical manufacturing.

  14. APT analysis of WC-Co based cemented carbides.

    Science.gov (United States)

    Weidow, Jonathan; Andrén, Hans-Olof

    2011-05-01

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. PMID:21664543

  15. Transport of nitrate from a large cement based waste form

    International Nuclear Information System (INIS)

    A finite-element model is used to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith with and without a clay cap. Model predictions agree well with data from two lysimeter field experiments begun in 1984. The clay cap effectively reduces the flux of nitrate from the monolith. Predictions for a landfill monolith design show a peak concentration occurring within 25 years; however, the drinking water guideline is exceeded for 1200 years. Alternate designs and various restrictive liners are being considered

  16. Base Course Modification through Stabilization using Cement and Bitumen

    Directory of Open Access Journals (Sweden)

    S. M. Marandi

    2009-01-01

    Full Text Available The main objectives of this research was to analyze the use of combined cement and bitumen emulsion in base course stabilization in details and examine its replacement with conventional pavement in regions with low quality materials and limited construction period. To conduct the objectives, the research divided into three phases. Phase I involved the optimization of cement and bitumen emulsion. In this case, a series of Indirect Tensile Strength (ITS, Unconfined Compressive Strength (UCS and Marshal Tests carried out. In the second phase, various alternative roadway sections examined for minimizing the pavement thickness and increasing the bearing capacity and finally in third phase, a Falling Weight Deflectometer (FWD machine used to examine the pavement bearing capacity for three sections of the roadway. It was found that, the optimum values to eliminate the creation of shrinkage cracks in the whole project and minimize the execution period and construction costs were 3% for both binders in stabilization and its replacement with conventional pavement method (i.e., stabilized layer with conventional sub-base and base layers. Also, FWD results showed that, the bearing capacity of the constructed pavement using stabilization method is far beyond the predicted values in pavement design. Furthermore, it was found that, with high inflation rate and political situation in the region, base stabilized method decreased the final roadway construction costs in compare with conventional pavement method.

  17. Synergic Effect of Wheat Straw Ash and Rice-Husk Ash on Strength Properties of Mortar

    Science.gov (United States)

    Goyal, Ajay; Kunio, Hattori; Ogata, Hidehiko; Garg, Monika; Anwar, A. M.; Ashraf, M.; Mandula

    Pozzolan materials obtained from various sources; when used as partial replacement for Portland cement in cement based applications play an important role not only towards sustainable development but in reducing the construction costs as well. Present study was conducted to investigate the synergic effect of Rice-Husk Ash (RHA) and Wheat Straw Ash (WSA) on the strength properties of ash substituted mortar. Ash materials were obtained after burning the wastes at 600°C for 5 h at a control rate of 2°C min. Two binary blends of mortar substituting 15% cement with WSA and RHA and three combinations of ternary blend with (10+5)%, (5+10)% and (7.5+7.5)% mix ratios of WSA and RHA, together with a control specimen were subjected to destructive (compressive and flexural strength) as well as non-destructive (ultrasonic pulse velocity) tests till 180 days of curing. Ternary blend with (7.5 + 7.5)% combination of WSA and RHA showed better strength results than control and other blends and proved to be the optimum combination for achieving maximum synergic effect.

  18. Effect of Modified Polymer on Crack Resistance of Mortar

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    At present, the basic technical principle in China is to adopt polymers to modifying the properties of mortar so as to improve the crack-resistance of construction structures and to strengthen their water-resisting and climate-resisting properties as well. However, how polymer acts on anti-crack mortar is short of systematic research. Theoretical exposition of polymer mortar is basically explained by Ohama Model, which is cement slaking and polymer coating are carried on together and mutually-cross web structure interweaved with liquid and polymer coating. But anti-crack mortar has its own special characteristics because of fewer polymers mixed in it and its high viscosity. So this paper is to showing how different polymers affect its crack-resistance cannot be reflected from this theory. Vinyl-acetate ethylene (VAC/E) has been selected as representation of polymerization, whose property is modified by compounding it from some inorganic components, such as talc, CaCO3 and so on. And then the mechanics property and shrinkage of anti-crack polymer mortar is tested when different amount of polymers is added as admixture of mortar. The result indicates that, the working performance and mechanics property of the polymer mortar are worse mixed VAC/E only. It basically meets the demands for mechanics strength and working performance when mixed both VAC/E and CaCO3. While it achieves much better mechanical property and working performance than the two former when mixed VAC/E,talc and CaCO3; the result of corresponding scanning electron microscopy (SEM) of sample indicates that the internal result of the polymer mortar, compared with classical Ohama Model, has a particularity that its structure is formed by polymer coating instead of filling up the intervals among cement grains.

  19. Response of a PGNAA setup for pozzolan-based cement concrete specimens

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-04-15

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the {gamma}-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring {gamma}-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  20. Response of a PGNAA setup for pozzolan-based cement concrete specimens.

    Science.gov (United States)

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Raashid, M

    2010-01-01

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the gamma-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring gamma-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  1. Response of a PGNAA setup for pozzolan-based cement concrete specimens.

    Science.gov (United States)

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Raashid, M

    2010-01-01

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the gamma-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring gamma-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete. PMID:19819713

  2. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    Science.gov (United States)

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  3. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    Science.gov (United States)

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters. PMID:27483913

  4. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Trtik, Pavel [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Münch, Beat [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Weiss, Jason [Purdue University, School of Civil Engineering, West Lafayette (United States); Vontobel, Peter [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Lura, Pietro [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); ETH Zurich, Institute for Building Materials (IfB), Zurich (Switzerland)

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  5. Strength, porosity, and chloride resistance of mortar using the combination of two kinds of pozzolanic materials

    Science.gov (United States)

    Rukzon, Sumrerng; Chindaprasirt, Prinya

    2013-08-01

    This article presents a study on the resistance to chloride penetration, corrosion, porosity, and strength of mortar containing fine fly ash (FA), ground rice husk-bark ash (RB), and ground bagasse ash (BA). Ordinary Portland cement (CT) was blended with a single pozzolan and two pozzolans. Strength, porosity, rapid chloride penetration, immersion, and corrosion tests were performed to characterize the mortar. Test results showed that the use of ternary blends of CT, FA, and RB or BA decreased the porosity of the mortar, as compared with binary blended mortar containing CT and RB or BA. The resistance to chloride penetration of the mortar improved substantially with partial replacement of CT with FA, RB, and BA. The use of ternary blends of CT, FA and RB or BA produced the mortar with good strength and resistance to chloride penetration. The resistance to chloride penetration was higher with an increase in the replacement level due to the reduced calcium hydroxide.

  6. Filler effect of fine particle sand on the compressive strength of mortar

    Science.gov (United States)

    Jaturapitakkul, Chai; Tangpagasit, Jatuphon; Songmue, Sawang; Kiattikomol, Kraiwood

    2011-04-01

    The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%-40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-μm sieve can pass the strength requirement.

  7. An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors

    Institute of Scientific and Technical Information of China (English)

    SHI XianMing; YANG ZhengXian; Tuan Anh Nguyen; SUO ZhiYong; Recep AVCI; SONG ShiZhe

    2009-01-01

    The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCI and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mor-tar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hy-drates at the steel-mortar interracial region, but partially displaced chloride ions. Chloride and the ad-mixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the po-larization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.

  8. Superplasticizer function and sorption in high performance cement based grouts

    International Nuclear Information System (INIS)

    This report describes laboratory studies undertaken to determine interactions between the main components of high-performance cement-based grout. These interactions were studied with the grouts in both their unset and hardened states with the specific intention of determining the following: the mechanistic function of superplasticizer; the phase of residence of the superplasticizer in hardened materials; and the permanence of the superplasticizer in hardened grouts. In unset pastes attempts were made to extract superplasticizer by mechanical processes. In hardened grout the superplasticizer was leached from the grouts. A microautoradiographic method was developed to investigate the phases of residence of superplasticizer in hardened grouts and confirm the inferences from the leaching studies. In hardened grout the superplasticizer was located on the hydrated phases formed during the early stages of cement hydration. These include tricalcium aluminate hydrates and tricalcium silicate phases. There is some tendency for the superplasticizer to sorb on ettringite. The presence of superplasticizer did not coincide with the locations of unreacted silica fume and high silica content phases such as C2S-H. The observations explain the findings of the studies of unset pastes which also showed that the sorption of superplasticizer is likely to be enhanced with increased mixing water content and, hence, distribution in and exposure to the hydration reaction surfaces in the grout. Superplasticizer can be leached in very small quantities from the hardened grouts. Rapid release takes place from the unsorbed superplasticizer contained in the accessible pore space. Subsequent release likely occurs with dissolution of the cement phases and the exposure of isolated pores to groundwater. (au) (37 refs.)

  9. Steel passive state stability in activated fly ash mortars

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    2010-12-01

    Full Text Available The present study explores the behaviour of structural steel embedded in Portland cement (OPC mortars and NaOH- and NaOH-waterglass-activated fly ash, in the presence and absence of 2 % Cl- (CaCl2. Variations were determined in the corrosion potential (Ecorr, linear polarization resistance (Rp and corrosion current density (icorr under different environmental conditions (90 days at 95 % relative humidity (RH, 30 days at ≈ 30 % RH, 760 days at ≈ 95 % RH. In the absence of Cl-, fly ash mortars were able to passivate steel reinforcement, although the stability of the passive state in changing environmental conditions was found to depend heavily on the activating solution used. Steel corrosion in the presence of 2 % Cl- was observed to be similar to the corrosion reported for the material in OPC mortars.

    En el presente trabajo se estudia el comportamiento del acero estructural embebido en morteros de cemento Pórtland (OPC y de cenizas volantes activadas con NaOH y una mezcla de NaOH y waterglass, en ausencia y en presencia de un 2% de Cl- (CaCl2. Se determino la evolución del potencial de corrosión (Ecorr, la resistencia de polarización lineal (Rp y la intensidad de corrosión (icorr, variando las condiciones ambientales (90 días al 95% de humedad relativa (HR-30 días a ≈ 30% HR- 760 días a ≈ 95% HR. En ausencia de Cl- los morteros de cenizas volantes activadas pueden pasivar los refuerzos de acero, si bien la estabilidad del estado pasivo ante cambios en las condiciones ambientales parece mostrar una fuerte dependencia de la solución activadora empleada. En presencia de un 2% de Cl- los aceros se corroen mostrando en comportamiento similar al observado en morteros en base OPC.

  10. The effects of nano-materials on the behaviors of sludge mortar specimens.

    Science.gov (United States)

    Luo, H L; Lin, D F; Kuo, W T

    2004-01-01

    In this research, nano-composites are added to sewage sludge ash to create a mixture, which then replaces part of cement. Nano-composites are manufactured from pure quartzose sand. The influences of different amounts of nano-composites and sludge ash on mortar are evaluated. Cement, sludge ash (0%, 10%, and 20%), and nano-composites (0%, 0.5%, 1%, 2%, and 3%), which defined as the percent weight of cement and sludge ash, are mixed together in batches to make mortar specimens. Results show that the flowability of sludge ash mortar reduces with increasing amount of cement replaced and of nano-composites added. The compressive strength of mortar lowers when more amounts of cement are replaced by sludge ash, but increases with more quantity of nano-composites added. Moreover, the study shows that nano-composites can fortify the compressive strength of mortar. With the help of efficiency of compressive strength, nano-composites benefit most to the mortar with replacement of 10% sludge ash, followed by the substitution of 20% and 0%.

  11. Concretes and mortars with waste paper industry: Biomass ash and dregs.

    Science.gov (United States)

    Martínez-Lage, Isabel; Velay-Lizancos, Miriam; Vázquez-Burgo, Pablo; Rivas-Fernández, Marcos; Vázquez-Herrero, Cristina; Ramírez-Rodríguez, Antonio; Martín-Cano, Miguel

    2016-10-01

    This article describes a study on the viability of using waste from the paper industry: biomass boiler ash and green liquor dregs to fabricate mortars and concretes. Both types of ash were characterized by obtaining their chemical and mineralogical composition, their organic matter content, granulometry, adsorption and other common tests for construction materials. Seven different mortars were fabricated, one for reference made up of cement, sand, and water, three in which 10, 20, or 30% of the cement was replaced by biomass ash, and three others in which 10, 20, or 30% of the cement was replaced with dregs. Test specimens were fabricated with these mortars to conduct flexural and compression tests. Flexural strength is reduced for all the mortars studied. Compressive strength increases for the mortars fabricated with biomass ash and decreases for the mortar with dregs. Finally, 5 concretes were made, one of them as a reference (neither biomass ash nor dregs added), two of them with replacements of 10 and 20% of biomass ash instead of cement and another two with replacements of 10 and 20% of dregs instead of cement. The compressive and tensile splitting strength increase when a 10% of ash is replaced and decrease in all the other cases. The modulus of elasticity always decreases.

  12. Study on Strength of Innovative Mortar Synthesis with Epoxy Resin, Fly Ash and Quarry Dust

    Directory of Open Access Journals (Sweden)

    P. Sudheer

    2016-06-01

    Full Text Available Generally, mortar is a uniform combination of Fine aggregate and cement. In this study an innovative concept adopts to synthesis a hybrid mortar with Epoxy resin, Fly ash and quarry dust which are replacing the fine aggregate and cement. The alternative materials are preferably waste products such as quarry dust and fly ash in order to moderate the cost of mortar. The main objective of this work is to study the compressive strength of mortar cubes by various combinations of cement and fine aggregate replaced by Epoxy resin, fly ash, and quarry dust at the age of 7 days. The results of mortarmade with cement replaced with 20%, 25%, and 30% (w/w of Epoxy resin, and fine aggregate replaced by (0% QD - 100% FA (100% QD - 0% FA and (70% QD - 30% FA of quarry dust and fly ash were compared with conventional mortar cubes. It was observed that all mortar cubes made with Epoxy resin, fly ash, and quarry dust had found to have a compressive strength of more than 150% when compared to compressive strength with normal cement of OPC53 grade at the age of 7 days (Approx.35.5Mpa

  13. Cement-based grouts in geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Onofrei, M. [AECL Research, Pinnawa, Manitoba (Canada)

    1996-04-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from <10{sup -7} m s{sup -1} to 10{sup -9} m s{sup -1} and to penetrate fissures in the rock with apertures as small as 10 {mu}m. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment.

  14. Flexural reinforcement of concrete with textile reinforced mortar TRM

    OpenAIRE

    Gil Espert, Lluís; Escrig Pérez, Christian; Bernat Masó, Ernest

    2013-01-01

    This work presents a method of strengthening concrete structures based on textiles of high strength and mortars. The combination of textiles and mortars produces a new composite material of cementitic matrix. This material can be used for the reinforcement of concrete beams under bending loads. We tested several combinations of fibers: glass, PBO, steel and carbon fibers with mortar and we used them to reinforce precast concrete beams. All the specimens were tested with a four-point load test...

  15. Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA cement blends

    Directory of Open Access Journals (Sweden)

    P. Herrmann

    2014-05-01

    Full Text Available Calcium sulfoaluminate (CSA is a comparatively new cementitious material that is mainly established in China where it is produced in a large scale. CSA cement is not covered by European standards. However, it provides different beneficial properties such as rapid hardening and high early strength development. Furthermore, the usage of CSA cement can save energy during production process in comparison to established cementitious materials. Therefore it is also more environmental friendly. Insufficient knowledge of this material behaviour restricts the possibilities and makes further research necessary. The research project applied a laboratory test program to elaborate the characterization of the materials. The obtained knowledge from these tests was then applied to further tests to determine application relevant key properties of CSA based pastes and mortars.The properties of pure CSA cement had been compared with the properties of CSA blends. The additions were PC, HAC, FA and GGBS with quantities of 10, 20 and 30%. The water to cement ratio was varying between 0.4, 0.5 and 0.6. General tests like fineness, XRD and XRF were used to define the present non-standardized material. Investigation of fresh pastes included measurement of setting time and calorimetry. Hardened mortar specimens of different ages were examined for compressive strength. The results showed that CSA itself hardens very rapidly and gives an early strength development. Possible ways of utilization of CSA based mortars and concretes were also emphasized in the paper.

  16. Relation between Modulus of Elasticity and Compressive Strength of Ultrahigh-Strength Mortar with Mixed Silicon Carbide as Fine Aggregate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elasticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.

  17. Evaluation of the leachability of heavy metals from cement-based materials.

    Science.gov (United States)

    Dell'Orso, Marcello; Mangialardi, Teresa; Paolini, Antonio Evangelista; Piga, Luigi

    2012-08-15

    A new leaching test on comminuted (0.125-2.0mm gradation) cementitious matrices, designated as Modified-Pore Water (M-PW) test, was developed to evaluate the effect of varying leachate pH (4-12.8) and/or liquid-to-solid, L/S, ratio (0.6-50 dm(3)/kg) on the availability factor, F(AV), of heavy metals. The M-PW test was applied to leaching of lead and zinc ions from ground Portland cement mortar incorporating Municipal Solid Waste Incinerator (MSWI) fly ash. Correlation of M-PW test results (F(AV)-L/S data) allowed the determination of the pore-liquid availability factor, F(AVP), at different leachate pHs. These F(AVP) values were utilized, in conjunction with a kinetic pseudo-diffusional model, to evaluate the leaching behavior of monolithic mortar specimens subjected to dynamic leaching tests (constant leachant pH 4 or 6).A good agreement was found between the effective diffusion coefficients, D(e), of lead and zinc ions calculated by such a methodological approach and those obtained from recognized microstructural models. In contrast, no satisfactory agreement was found when these D(e) values were compared with the ones calculated from the results of other availability tests on granular solid samples (NEN 7341 and AAT tests).

  18. Pack cementation diffusion coatings for iron-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1995-02-01

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels. The Cr-Si ferrite layers have proven to be very resistant to high temperature cyclic oxidation and to pitting in aqueous solutions. The process has been patented, and is being transferred for industrial application, e.g. for water walls of utility boilers, etc. In the proposed extension of this project, the use of mixed pure metal powders in the pack will be extended to achieve similar ferrite Fe-Cr-Al coatings with excellent oxidation resistance, with the eventual transfer of the technology to industry. In other recent studies, Ni-base alloy rods were aluminized by the halide-activated pack cementation process to bring their average composition to that for the ORNL-developed Ni{sub 3}Al, for use as a welding rod. A similar effort to develop a welding rod for the ORNL Fe{sub 3}Al alloy did not yield reproducible coating compositions or growth kinetics. The continued effort to produce Duriron-type (Fe-18Si-5Cr) coatings on steels was not successful. Literature for the intrinsic diffusion coefficients suggests that this task cannot be achieved.

  19. Mortar constituent of concrete under cyclic compression

    Science.gov (United States)

    Maher, A.; Darwin, D.

    1980-10-01

    The behavior of the mortar constituent of concrete under cyclic compression was studied and a simple analytic model was developed to represent its cyclic behavior. Experimental work consisted of monotonic and cyclic compressive loading of mortar. Two mixes were used, with proportions corresponding to concretes having water cement ratios of 0.5 and 0.6. Forty-four groups of specimens were tested at ages ranging from 5 to 70 days. complete monotonic and cyclic stress strain envelopes were obtained. A number of loading regimes were investigated, including cycles to a constant maximum strain. Major emphasis was placed on tests using relatively high stress cycles. Degradation was shown to be a continuous process and a function of both total strain and load history. No stability or fatigue limit was apparent.

  20. Determination of the effective diffusion coefficient of water through cement-based materials when applying an electrical field

    International Nuclear Information System (INIS)

    The safety and the reliability of a radioactive waste repository rely essentially on the confinement ability of the waste package and the storing structure. In the case of the low-level and intermediate level short-lived radioactive waste, the confinement property, relying on solid matrices made of cement-based materials, is assessed through a natural diffusion test, using a radioactive tracer, from which an effective diffusion coefficient is deduced. The evolution of the materials and more particularly the enhancement of the confinement properties of cement-based materials lead to test duration from a couple of months to a couple of years. The main objective of the present work involves the determination of the effective diffusion coefficient of reference chemical species, in our case the tritiated water, within a shorter time. The theoretical foundation is based on the description of ionic species mass transfer under the effects of an electrical field. With the definitions of a precise experimental protocol and of a formation factor, considered as an intrinsic topological feature of the porous network, it is possible to determine the effective diffusion coefficient of tritiated water for various types of concretes and mortars, and this within a few hours only. The comparison between the developed accelerated test, based on the application of a constant electrical field, and the normed natural diffusion test, using tritiated water, underlined two critical issues. First, omitting the impact of the radioactive decay of tritium during a natural diffusion test, leads to a non-negligible underestimation of the effective diffusion coefficient. Second, maintaining samples in high relative humidity conditions after casting is essential in order to avoid contrasted and unrelated results when performing the electrokinetic tests. Eventually, the validation of the electrokinetics technique, main objective of this work, rests on the assessment of the theoretical hypothesis

  1. Practical Model of Cement Based Grout Mix Design, for Use into Low Level Radiation Waste Management

    Directory of Open Access Journals (Sweden)

    Radu Lidia

    2015-12-01

    Full Text Available The cement based grouts, as functional performance composite materials, are widely used for both immobilisation and encapsulation as well as for stabilization in the field of inorganic waste management. Also, to ensure that low level radioactive waste (LLW are contained for storage and ultimate disposal, they are encapsulated or immobilized in monolithic waste forms, with cementbased grouts.

  2. Properties of microcement mortar with nano particles

    Science.gov (United States)

    Alimeneti, Narasimha Reddy

    Carbon nanotubes (CNT) and Carbon nanofibers (CNF) are one of the toughest and stiffest materials in the world presently with extreme properties yet to be discovered in terms of elastic modulus and tensile strength. Due to the advanced properties of these materials they are being used in almost all fields of science at nanolevel and are being used in construction industry recently for improvement of material properties. Microcement is fine ground cement which as half the particle size of ordinary Portland cement. In this research the behavior of cement mortar of micro cement with the addition of nanoparticles is studied. Due to high aspect ratio and strong van der Waal forces between the particles of CNT and CNF, they agglomerate and form bundles when mixed with water, sonication method is used to mix nanoparticles with few drops of surfactant and super plasticizer. Mechanical properties such as compressive strength and flexural strength with CNT and CNF composites are examined and compared with control samples. 0.1% and 0.05 % of nanoparticles (both CNT and CNF) by the weight of cement are used in this research and 0.8% of super plasticizer by weight of cement was also used along with 0.4, 0.45 and 0.50 water cement ratios for making specimens for compression test. The compressive strength results are not satisfactory as there was no constant increase in strength with all the composites, however strength of few nanocomposites increased by a good percentage. 0.5 water cement ratio cement mortar had compressive strength of 7.15 ksi (49.3 MPa), whereas sample with 0.1% CNT showed 8.38 ksi (57.8 MPa) with 17% increase in strength after 28 days. Same trend was followed by 0.4 water cement ratio as the compressive strength of control sample was 8.89 ksi (61.3 MPa), with 0.05% of CNT strength increased to 10.90 ksi (75.2 MPa) with 23% increase in strength. 0.4 water cement ratio was used for flexural tests including 0.1%, 0.05% of CNT and 0.1%, 0.05% of CNF with 0

  3. Characterization of diffusive transport in cementitious materials: influence of microstructure in mortars

    International Nuclear Information System (INIS)

    Concrete durability is a subject of considerable interest, especially with the use of cement based materials on structures increasingly demanding on term of sustainability and resistance to aggressive ions penetration or radionuclide release. Diffusion is considered as one of the main transport phenomena that cause migration of aggressive solutes and radionuclide in a porous media according to most studies. In order to enable more effective prediction of structures service life, the understanding of the link between cement based materials microstructure and transport macro properties needed to be enhanced. In this context, the present study is undertaken to enhance our understanding of the links between microstructure and tritiated water diffusivity in saturated mortars. The effect of aggregates via the ITZ (Interfacial Transition Zone) on transport properties and materials durability is studied. (author)

  4. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Tobermorite and xonotlite, two synthetic calcium silicate hydrates, improve the Cs retention of cement matrices for Cs, when incorporated at the 6 to 10% level. A kinetic and mechanistic scheme is presented for the reaction of fine grained, Cs-loaded clinoptilolite with cement. The Magnox waste form reacts quickly with cement, leading to an exchange of carbonate between waste form and cement components. Carbonation of cements leads to a marked improvement in their physical properties of Cs retentivity. Diffusion models are presented for cement systems whose variable parameters can readily be derived from experimental measurements. Predictions about scaled-up behaviour of large immobilized masses are applied to extrapolation of laboratory scale results to full-size masses. (author)

  5. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Model studies of the behaviour of cement systems have been advanced by considering the nature of the phases formed during hydration and deriving pH-composition models for the CaO-SiO2-H2O system. Preliminary results of Esub(h) measurements are also reported. Leach tests on Sr from cements are interpreted in terms of Sr retention mechanisms. Present results indicate that the aluminate phases in OPC contribute to the chemical retentivity. Studies on cement-clinoptilolite reactions, made using coarse grained clinoptilolite are reported: ferrierite also reacts chemically with cement. Two critical surveys are presented, together with new data: one on the potential of blended cements, the other on cement durability in CO2-containing environments. (author)

  6. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag ...

  7. Oyster shell as substitute for aggregate in mortar.

    Science.gov (United States)

    Yoon, Hyunsuk; Park, Sangkyu; Lee, Kiho; Park, Junboum

    2004-06-01

    Enormous amounts of oyster shell waste have been illegally disposed of at oyster farm sites along the southern coast of Korea. In this study to evaluate the possibility of recycling this waste for use as a construction material, the mechanical characteristics of pulverized oyster shell were investigated in terms of its potential utilization as a substitute for the aggregates used in mortar. The unconfined compressive strengths of various soil mortar specimens, with varying blending ratios of cement, water and oyster shell, were evaluated by performing unconfined compression tests, and the results were compared with the strengths of normal cement mortar made with sand. In addition, the effect of organic chemicals on the hardening of concrete was evaluated by preparing ethyl-benzene-mixed mortar specimens. The long-term strength improvement resulting from the addition of fly ash was also examined by performing unconfined compression tests on specimens with fly-ash content. There was no significant reduction in the compressive strength of the mortars containing small oyster shell particles instead of sand. From these test data, the possible application of oyster shells in construction materials could be verified, and the change in the strength parameters according to the presence of organic compounds was also evaluated.

  8. Development of Mechanistic-Empirical Pavement Design for Tropical Climate Using Cement-Treated Base Layer

    Directory of Open Access Journals (Sweden)

    O. S. Aderinola

    2016-08-01

    Full Text Available A mechanistic-empirical pavement design method is developed characterising cement-treated base layers for pavement design in Nigeria or other similar tropical and subtropical countries. Asphalt Concrete surface, Subbase and Aggregate base were characterised based on back calculation data from Claros et al (1986 while cement-treated base layer was based on modulus tests that had been conducted by past researchers. Failure criteria for the Asphalt Concrete fatigue failure and the subgrade rutting failure were based on those by Claros and Ijeh (1987 for Nigerian pavements. Cracking criterion used for the cement-treated layer was that developed by Otee et al. (1982. The comparison between the Soil-Cement and Aggregate base showed that at a low Equivalent Single Axle Load (ESAL (0.5 million repetitions was considered, the use of Aggregate base was better than Soil-Cement base. That for Aggregate base and Cement-Treated Gravel Base showed that the Cement-Treated Gravel Base was better than the Aggregate base at high ESAL (2.5 million repetitions was considered

  9. Use of glazed ceramic waste as additive in mortar and the mathematical modelling of its strength.

    Science.gov (United States)

    Altin, Zehra Gulten; Erturan, Seyfettin; Tepecik, Abdulkadir

    2008-04-01

    This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement.

  10. Use of glazed ceramic waste as additive in mortar and the mathematical modelling of its strength.

    Science.gov (United States)

    Altin, Zehra Gulten; Erturan, Seyfettin; Tepecik, Abdulkadir

    2008-04-01

    This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement. PMID:18578160

  11. Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength.

    Science.gov (United States)

    Faraone, Nicola; Tonello, Gabriele; Furlani, Erika; Maschio, Stefano

    2009-11-01

    The present paper reports on the results of some experiments obtained from the production, hydration and subsequent measurement of the mechanical properties of several mortars prepared using a commercial CII/B-LL Portland cement, steelmaking slag, superplasticizer and water. Relevant parameters for the mortar preparation are the weight ratios of cement/water, the weight ratio superplasticizer/cement and between fine and granulated coarse particles. It has been demonstrated that optimisation of such parameters leads to the production of materials with mechanical properties suitable for civil engineering applications. Moreover, materials with improved compressive strength can be prepared by the use of slag containing extensive amounts of large particles.

  12. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.;

    1999-01-01

    modelled on Fick's law modified by a term for chloride binding. Inclusion of chloride binding significantly improves the profile shape of the modelled ingress profiles. The presence of fine aggregate and formation of interfacial transition zones at paste-aggregate boundaries does not significantly affect...

  13. The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar.

    Science.gov (United States)

    Luo, Huan-Lin; Chang, Wei-Che; Lin, Deng-Fong

    2009-04-01

    To improve the drawbacks caused by the sludge ash replacement in mortar, the previous studies have shown that the early strength and durability of sludge ash/cement mortar are improved by adding nano-silicon dioxide (nano-SiO2) to mortar. In this article, three types of nano-SiO2--SS, HS, and SP (manufacturer code names)--were applied to sludge ash/cement mixture to make paste or mortar specimens. The object is to further extend the recycle of the sludge ash by determining the better type of nano-SiO2 additive to improve properties of sludge ash/ cement paste or mortar. The cement was replaced by 0, 10, 20, and 30% of sludge ash, and 0 and 2% of nano-SiO2 additives were added to the sludge ash paste or mortar specimens. Tests such as setting time, compressive strength, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and thermogravimetric analysis/differential thermal analysis were performed in this study. Test results show that nano-SiO2 additives can not only effectively increase the hydration product (calcium silicate hydrate [C-S-H] gel), but also make the crystal structure denser. Among the three types of nano-SiO2 additive, the SS type can best improve the properties of sludge ash/cement paste or mortar, followed by the SP and HS types.

  14. Assessing the potential of ToF-SIMS as a complementary approach to investigate cement-based materials — Applications related to alkali–silica reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Laetitia, E-mail: laetitia.bernard@empa.ch [Laboratory for Nanoscale Materials Science, Empa, Swiss Federal Laboratories for Material Science and Technology, Ueberlandstr. 129, 8600 Duebendorf (Switzerland); Leemann, Andreas [Laboratory for Concrete/Construction Chemistry, Empa, Swiss Federal Laboratories for Material Science and Technology, Ueberlandstr. 129, 8600 Duebendorf (Switzerland)

    2015-02-15

    In this study, the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) for the application in cement-based materials is assessed in combination and comparison with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Mortar, concrete and samples from model systems providing products formed by the alkali–silica reaction (ASR) were studied. ToF-SIMS provides qualitative data on alkalis in cases where EDX reaches its limits in regard to detectable concentration, lateral resolution and atomic number of the elements. Due to its high in-depth resolution of a few atomic monolayers, thin layers of reaction products can be detected on the surfaces and chemically analyzed with ToF-SIMS. Additionally, it delivers information on the molecular conformation within the ASR product, its hydrogen content and its isotope ratios, information not provided by EDX. Provided the samples are carefully prepared, ToF-SIMS opens up new possibilities in the analysis of cement-based materials.

  15. Solid phase characterization and gas transfers through unsaturated porous media: experimental study and modeling applied diffusion of hydrogen through cement-based materials

    International Nuclear Information System (INIS)

    This thesis documents the relationship between the porous microstructure of cement based materials and theirs gaseous diffusivity properties relative to the aqueous phase location and the global saturation level of the material. The materials studied are cement pastes and mortars. To meet the thesis objective, the materials are characterized in detail by means of several experimental methods: mercury intrusion porosimetry, water porosimetry, thermo-poro-metry, nitrogen sorption and water desorption. In addition, diffusion tests realized on materials maintained in controlled humidity chambers allow obtaining the effective hydrogen diffusivity as function of the microstructure and the saturation state of material with a gas chromatography. The experimental results are then used as a data base that is compared to a modeling approach. The model developed consists of a combination of ordinary diffusion (Fick regime) and Knudsen diffusion of hydrogen. The model also accounts for the effects of the liquid curtains, the impact of tortuosity on gas diffusion, and the saturation level of the porous system. (author)

  16. Properties of lightweight cement-based composites containing waste polypropylene

    Science.gov (United States)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  17. Life Cycle Assessment on Cement Treated Recycling Base (CTRB Construction

    Directory of Open Access Journals (Sweden)

    Sudarno Sudarno

    2014-08-01

    Full Text Available LCA is one of the few environmental management techniques that are used to perform a risk assessment, environmental performance evaluation, environmental auditing, and environmental impact assessment and must be applied to the construction CTRB. The purpose of this study was to determine the amount of energy consumption is used and determine the amount of emissions (CO2 in the implementation of the Foundation Layer Top (base course with the former asphalt pavement aggregate blended cement / Recycling Cement Treated Base (CTRB. This study uses: (i Compilation and data inventory of relevant inputs and outputs of a product system; (ii Evaluating the potential environmental impacts associated with the data input and output; (iii Interpret the results of the inventory analysis and impact assessment in relation to the research objectives. The results showed that Energy consumption in the implementation of recycling pavement (CTRB is 225.46 MJ / km of roads and the resulting GHG emissions 17,43Ton CO2 / km of roads. Previous researchers to calculate the energy consumption of road works on the implementation of conventional (hotmix is 383.46 MJ / km of roads and the resulting GHG emissions 28.24 Ton CO2 / km of roads. If the calculated difference between a job and Hotmix CTRB and then a comparison is made CTRB energy consumption is 158 MJ / km of road, this happens 70.07% savings and GHG emissions resulting difference is 10.81 tons of CO2 / km of road, resulting in a decrease in 62,02%.

  18. [Utilizing the wastewater treatment plant sludge for the production of eco-cement].

    Science.gov (United States)

    Lin, Yi-Ming; Zhou, Shao-Qi; Zhou, De-Jun; Wu, Yan-Yu

    2011-02-01

    The aim of this paper was to study the effect on cement property by using of municipal sewage as additive in the process of clinker burning. Based on the standard sample P. 042. 5 from cement plant, the properties of eco-cement samples adding municipal sewage to unit raw material by 0%, 0.50%, 1.00%, 1.50%, 2.00%, 2.50% respectively and the standard sample from the cement plant were compared. According to the analysis of X-ray diffraction, microstructure, the particles size determination material change, the setting time, specific surface area, leaching toxicity and strength of cement mortar of the cement, respectively, it showed that the strength of the productions were similar to the P. 042.5 standard sample. The metal ion concentrations of Al, Fe, Ba, Mn and Ti in clinkers and raw material decreased, the initial and setting time increased, as well as the strength of the paste within the curing time of 3 days decreased with the increase of municipal sewage ratio. However, after the curing of 7 days, the strength was similar to non-sludge-mortar or even higher.

  19. Properties of wastepaper sludge in geopolymer mortars for masonry applications.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi

    2012-12-15

    This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products.

  20. ASHES AS AN AGENT FOR CEMENT-LIME BASED SOLIDIFICATION/STABILIZATION OF THE HAZARDOUS WASTE

    Directory of Open Access Journals (Sweden)

    Barbora Lyčkova

    2008-12-01

    Full Text Available One of the common treatment methods for the hazardous waste is the cement and cement-lime based solidification/stabilization (S/S. This article deals with the possibility of currently used recipe modification using fluidized bed heating plant ashes as an agent.

  1. ASHES AS AN AGENT FOR CEMENT-LIME BASED SOLIDIFICATION/STABILIZATION OF THE HAZARDOUS WASTE

    OpenAIRE

    Barbora Lyčkova; Vladimir Huda

    2008-01-01

    One of the common treatment methods for the hazardous waste is the cement and cement-lime based solidification/stabilization (S/S). This article deals with the possibility of currently used recipe modification using fluidized bed heating plant ashes as an agent.

  2. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement-based

  3. Nondestructive evaluation of notched cracks in mortars by nonlinear ultrasonic technique

    Science.gov (United States)

    Chen, Jun; Ren, Jun; Yin, Tingyuan

    2016-04-01

    In this paper, a nonlinear ultrasonic technique is used to nondestructively characterise concentrated defects in cement-based materials. Cracks are artificially notched in mortar samples and five different crack widths are used to simulate increased damage of samples. The relative ratio of second harmonic amplitude to the square of fundamental ultrasonic signal amplitude is defined as the damage indicator of the nonlinear ultrasonic technique, which is measured for mortar samples in conjunction with a typical linear nondestructive evaluation parameter - ultrasonic pulse velocity. It is found that both linear and nonlinear damage parameters have a good correlation with the change of crack width, while the nonlinearity parameter shows a better sensitivity to the width increase. In addition, the nonlinearity parameter presents an exponential increase with the crack growth, indicating an accelerating nonlinear ultrasonic response of materials to increased internal damage in the late phase. The results demonstrate that the nonlinear ultrasonic technique based on the second harmonic principle keeps the high sensitivity to the isolated cracks in cement-based materials, similarly to the case of distributed cracks in previous studies. The developed technique could thus be a useful experimental tool for the assessment of concentrated damage of concrete structures.

  4. 石灰-水泥系外墙防水装饰砂浆与外墙外保温系统适应性研究%The adaptive research of lime-cement waterproof decorative mortar for exterior wall and exterior insulation system

    Institute of Scientific and Technical Information of China (English)

    韩方晖; 王栋民; 许晨阳; 刘晓斌; 刘天德

    2012-01-01

    To make lime-cement waterproof decorative mortar for exterior wall which successes through chemical modification technology to be widely applied in exterior insulation system, it must have good adaptability with exterior insulation system. This paper through establishing force diagram of facing external wall thermal insulation and adopting ESP external wall thermal insulation to be used in high-rise building)analyzing and calculating the earthquake effect by level, wind load and both combination effect and vertical stress gravity and bond force: meanwhile,on the basis of the calculation method to calculate the force of the 100 m-high high-rise building top exterior insulation system in the Beijing center: furthermore, calculating the force of facing external wall thermal insulation when the exterior wall facing is ceramic tile, coating and carrying on the comparison. Results indicate: it is safe when the exterior wall facing is lime-cement waterproof decorative mortar for exterior wall in high-rise exterior insulation system; by the size of the load is for ceramic tile > lime-cement waterproof decorative mortar for exterior wall > coating, in comprehensive comparison, lime-cement waterproof decorative mortar for exterior wall has superiority.%要使通过化学改性技术研制成功的石灰-水泥系外墙防水装饰砂浆在外墙外保温系统中得到广泛应用,其必须与外墙外保温系统有很好的适应性.通过建立饰面外墙外保温系统受力图,对采用膨胀聚苯板作为高层建筑外墙外保温时,所受水平地震作用、风荷载和两者组合效应及竖直方向受力重力和压剪粘结力分析计算;同时,依据这些计算方法计算了北京市中心高为100m的高层建筑顶部外墙外保温系统受力情况;计算了外墙饰面为瓷砖、涂料时外墙外保温系统的受力情况,并对其进行比较.结果表明:外墙饰面为石灰-水泥系外墙防水装饰砂浆时应用于高层外

  5. Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Yun Yong Kim

    2014-01-01

    Full Text Available This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2 and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.

  6. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar.

    Science.gov (United States)

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu; Kwon, Seung-Jun

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm(2) and 45 N/mm(2), respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.

  7. Influence of Rubber Size on Properties of Crumb Rubber Mortars

    Directory of Open Access Journals (Sweden)

    Yong Yu

    2016-06-01

    Full Text Available Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2–4 mm, 1–3 mm, and 0–2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs. Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs.

  8. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    A solubility model of the system CaO-SiO2-H2O is developed which takes account of the state of Si polymerization in the solid. Free energies of formations of its bonding hydrogel are tabulated. The internal redox conditions in cements have been measured; in particular, slags lower the Esub(eta) relative to OPC. The fate of Sr and U in cement systems has been determined; Sr is incorporated in the aluminate phases, while U6+ is precipitated as Ca-U-O-H2O phases. Lowering the internal Esub(eta) reduces U solubility. Studies of the carbonation of slag-cement blends are reported. (author)

  9. FILTRATION LOSSES IN OILWELL CEMENT CONTAMINATED BY PSEUDO OIL BASE MUDS

    Directory of Open Access Journals (Sweden)

    Sunday Isehunwa

    2010-07-01

    Full Text Available Contamination of oilfield cement slurries by drilling fluids is one of the causes of cement job failures and it results in expensive remedial actions. While the general adverse effects of Pseudo Oil Base Mud (POBM contamination of cement slurries are known, little has been published on the actual effects of POBM on specific slurry properties. The effect of POBM on the filtration losses in oil well cement slurries was investigated. POBM contaminated slurries at varying contamination volumes up to 40% at intervals of 5% were prepared. The filtration losses were determined using standard American Petroleum Institute (API procedures. The results show that while API fluid losses increased with time, it decreased with increasing POBM contamination in cement slurries.

  10. Application of k0-based internal mono-standard PGNAA for compositional characterization of cement samples

    International Nuclear Information System (INIS)

    The k0-based internal mono-standard prompt gamma-ray neutron activation analysis (IM-PGNAA) method was used for compositional analysis of a cement standard provided by the International Atomic Energy Agency as a part of inter-laboratory comparison exercise. The PGNAA was also applied to a local cement sample for comparison purpose. The concentration ratios of elements with respect Ca were determined using the internal mono-standard method. The concentration ratios were then converted to the absolute concentrations by determining concentration of Ca in the cement using relative method. Concentrations of 11 elements were determined in both sample and standard of cement. The results of cement standard are found to be in good agreement with the certified values. The uncertainties on the elemental concentrations were in the range of 5-10 %. (author)

  11. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation.

    Science.gov (United States)

    Fottner, Andreas; Nies, Berthold; Kitanovic, Denis; Steinbrück, Arnd; Mayer-Wagner, Susanne; Schröder, Christian; Heinemann, Sascha; Pohl, Ulrich; Jansson, Volkmar

    2016-09-01

    In the past, bioactive bone cement was investigated in order to improve the durability of cemented arthroplasties by strengthening the bone-cement interface. As direct bone-cement bonding may theoretically lead to higher stresses within the cement, the question arises, whether polymethylmethacrylate features suitable mechanical properties to withstand altered stress conditions? To answer this question, in vivo experiments and finite element simulations were conducted. Twelve rabbits were divided into two groups examining either bioactive polymethylmethacrylate-based cement with unchanged mechanical properties or commercially available polymethylmethacrylate cement. The cements were tested under load-bearing conditions over a period of 7 months, using a spacer prosthesis cemented into the femur. For the finite element analyses, boundary conditions of the rabbit femur were simulated and analyses were performed with respect to different loading scenarios. Calculations of equivalent stress distributions within the cements were applied, with a completely bonded cement surface for the bioactive cement and with a continuously interfering fibrous tissue layer for the reference cement. The bioactive cement revealed good in vivo bioactivity. In the bioactive cement group two failures (33 %), with complete break-out of the prosthesis occurred, while none in the reference group. Finite element analyses of simulated bioactive cement fixation showed an increase in maximal equivalent stress by 49.2 to 109.4 % compared to the simulation of reference cement. The two failures as well as an increase in calculated equivalent stress highlight the importance of fatigue properties of polymethylmethacrylate in general and especially when developing bioactive cements designated for load-bearing conditions. PMID:27530301

  12. Immobilization and leaching mechanisms of radwaste in cement-based matrices

    International Nuclear Information System (INIS)

    Studies of Cs immobilization continue. On account of its high solubility, it has proved to be difficult to immobilize and high leach rates have been reported from cement-based forms. High specific surface area silicas have been shown to possess significant sorption and retention for Cs in the alkaline cement environment. The mechanism and amount of sorption have been assessed for some representative, commercially-available silicas and siliceous materials. The behaviour of zeolites in cement matrices has been examined. Zeolites containing Cs undergo two types of reaction with cement matrices; ion exchange of Cs in the zeolite with other ions furnished by the cement and pozzolanic reactions, leading to physical consumption of the zeolite. Relatively simple techniques have been developed whereby the separate contributions of the two reactions can be distinguished. Ion exchange is more rapid at 20 deg C than the pozzolanic reaction, but the latter is markedly accelerated at higher temperatures. Diffusion experiments on Cs in cement have also begun. The immobilization of some standard reference waste forms in cement matrices has begun. It is found that the hydration demands of the cement result in the removal of water from salt-rich solutions containing nitrates and sulphates. (author)

  13. In Vitro and In Vivo Response to Low-Modulus PMMA-Based Bone Cement

    Directory of Open Access Journals (Sweden)

    Elin Carlsson

    2015-01-01

    Full Text Available The high stiffness of acrylic bone cements has been hypothesized to contribute to the increased number of fractures encountered after vertebroplasty, which has led to the development of low-modulus cements. However, there is no data available on the in vivo biocompatibility of any low-modulus cement. In this study, the in vitro cytotoxicity and in vivo biocompatibility of two types of low-modulus acrylic cements, one modified with castor oil and one with linoleic acid, were evaluated using human osteoblast-like cells and a rodent model, respectively. While the in vitro cytotoxicity appeared somewhat affected by the castor oil and linoleic acid additions, no difference could be found in the in vivo response to these cements in comparison to the base, commercially available cement, in terms of histology and flow cytometry analysis of the presence of immune cells. Furthermore, the in vivo radiopacity of the cements appeared unaltered. While these results are promising, the mechanical behavior of these cements in vivo remains to be investigated.

  14. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    The modelling of cement behaviour at longer ages is reported. Factors studied include composition, pH and Esub(h). The stresses arising from irradiation are evaluated. The behaviour of two elements in cement - U and I has been studied; new experimental data are reported including solubility measurements. Some additional data are given on Sr. Results of desk studies relevant to lifetime predictions are presented. (author)

  15. Sulfate resistance of ordinary Portland cement with fly ash

    OpenAIRE

    Irassar, Edgardo F.; Batic, Oscar R.

    1989-01-01

    Low calcium fly ash has demonstrated to be an effective pozzolan to improve sulfate resistance of ordinary portland cement (type I). In this paper physico-chemical effects that produce this pozzolan in the mortar exposed to sulfate attack are studied. Dilution and dispersion affects are analyzed using mixes of cement with an inert mineral admixture. Mineralogical changes of mortar are studied using X-ray diffraction and the help of scanning electron microscope. The results show that fly...

  16. The physical, chemical, and microscopic properties of masonry mortars from Alhambra Palace (Spain in reference to their earthquake resistance

    Directory of Open Access Journals (Sweden)

    Hanifi Binici

    2016-03-01

    Full Text Available Al-Andalus mortar is an ancient binding material (lime mortar that was used for centuries in numerous historical buildings in Al-Andalus, Granada (Spain. The physico-chemical and microscopic properties of Al-Andalus mortars in Granada were studied as part of an investigation into the mineral raw materials present in the territory of Spain. Scanning electron microscope and X-ray diffraction analyses of eight main types of mortars were performed to show the presence of calcite, gypsum, quartz, and muscovite minerals with organic fibers. Chemical analyses of the specimens showed that high SiO2+Al2O3+Fe2O3 contents yielded high values of hydraulicity and cementation indices. A significant result of this study was that mortars with high hydraulicity and cementation indices have high mechanical strengths. This characteristic may be the main reason for the earthquake resistance of the historical Alhambra Palace.

  17. Transport of nitrate from a large cement-based wasteform

    International Nuclear Information System (INIS)

    A two-dimensional finite element model has been developed to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith. A steady-state velocity field is also calculated, based on saturated ground water flow and Darcy's law. Model predictions are compared with data from two lysimeter field experiments begun in 1984. The model results agree very well with data from the uncapped and clay-capped monoliths. A peak concentration of 140 ppM is predicted for the uncapped case within four years; the clay-capped case shows a rather flat peak of 70 ppM occurring within approximately 20 years. The clay cap effectively reduces the groundwater velocity and dispersion coefficient adjacent to the exposed monolith surface. The cap also significantly reduces the flux of nitrate out the top surface of the monolith, in contrast to the uncapped monolith. Predictions for a landfill monolith design show a peak concentration of approximately 280 ppM occurring within 25 years. Results indicate that the 44 ppM drinking water guideline would be exceeded for over 1000 years. Alternate designs and various restrictive liners are being considered. 9 refs., 8 figs

  18. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah

    2014-04-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time. The cement phase is replaced by different percentages of dry or wet hemp fibres ranging from 1.1. wt% up to 3.1. wt% whereas carbon nanotubes are dispersed in the aqueous solution. Our experimental results show that compressive and flexural strengths of wet fibres modified mortar are higher than those for dry hemp-mortar material. The achieved optimal percentage of wet hemp fibres is 2.1. wt% allowing a flexural strength higher than that of reference mortar. The addition of an optimal CNT concentration (0.01. wt%) combined with wet hemp has a reinforcing effect which turns to be related to an improvement of compressive and flexural strengths by 10% and 24%, respectively, in comparison with reference condition. © 2013 Elsevier Ltd.

  19. Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Yeom, E-mail: kimky@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang 411-712 (Korea, Republic of); Yun, Tae Sup, E-mail: taesup@yonsei.ac.kr [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Kwang Pil, E-mail: bamtol97@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang 411-712 (Korea, Republic of)

    2013-08-15

    When cement-based materials are exposed to the high temperatures induced by fire, which can rapidly cause temperatures of over 1000 °C, the changes in pore structure and density prevail. In the present study, mortar specimens were subjected to a series of increasing temperatures to explore the temperature-dependent evolution of internal pore structure. High-performance X-ray computed tomography (CT) was used to observe the evolution of temperature-induced discontinuities at the sub-millimeter level. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to investigate the cause of physical changes in the heated mortar specimens. Results exhibit the changes in pore structure caused by elevated temperatures, and thermally induced fractures. We discuss the progressive formation of thermally induced fracture networks, which is a prerequisite for spalling failure of cement-based materials by fire, based on visual observations of the 3D internal structures revealed by X-ray CT.

  20. Performance of Polymer Modified Mortar with Different Dosage of Polymeric Modifier

    OpenAIRE

    Ganesan Shankar; Othuman Mydin Md Azree; Sani Norazmawati Md.; Che Ani Adi Irfan

    2014-01-01

    Polymer modified mortar system is defined as hydraulic cement combined at the time of mixing with organic polymers that are dispersed or re-dispersed in water, with or without aggregates. The compressive strength and flexural strength of polymer modified mortar obtained at early age are low and it required prolong curing period for the strength enhancement. In order to enhance the mechanical properties of cementitious mixture as well as its durability, hybridization of polymeric modifiers are...