WorldWideScience

Sample records for cement based composites

  1. Sisal organosolv pulp as reinforcement for cement based composites

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  2. Additives for cement compositions based on modified peat

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com; Demyanenko, Olga, E-mail: angel-n@sibmail.com [Tomsk State University of Architecture and Building, 2, Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  3. Sisal organosolv pulp as reinforcement for cement based composites

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  4. Properties of cement based composites modified using diatomaceous earth

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  5. Pullout behavior of steel fibers from cement-based composites

    Shannag, M. Jamal; Brincker, Rune; Hansen, Will

    1997-01-01

    A comprehensive experimental program on pullout tests of steel fibers from cement based matrices is described. A specially designed single fiber pullout apparatus was used to provide a quantitative determination of interfacial properties that are relevant to toughening brittle materials through...... fiber reinforcement. The parameters investigated included a specially designed high strength cement based matrix called Densified Small Particles system (DSP), a conventional mortar matrix, fiber embeddment length, and the fiber volume fraction. The mediums from which the fiber was pulled included...... fraction in the cement matrix increase the peak pullout load and the pullout work. (3) The major bond mechanism in both systems is frictional sliding. ...

  6. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-01-01

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles. PMID:28772823

  7. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-04-27

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  8. Strengthening of Concrete Structures with cement based bonded composites

    Täljsten, Björn; Blanksvärd, Thomas

    2008-01-01

    Polymers). The method is very efficient and has achieved world wide attention. However, there are some drawbacks with the use of epoxy, e.g. working environment, compatibility and permeability. Substituting the epoxy adherent with a cement based bonding agent will render a strengthening system...... with improved working environment and better compatibility to the base concrete structure. This study gives an overview of different cement based systems, all with very promising results for structural upgrading. Studied parameters are structural retrofit for bending, shear and confinement. It is concluded...

  9. Calcium silicate-based cements: composition, properties, and clinical applications.

    Dawood, Alaa E; Parashos, Peter; Wong, Rebecca H K; Reynolds, Eric C; Manton, David J

    2017-05-01

    Mineral trioxide aggregate (MTA) is a calcium silicate-based cement (CSC) commonly used in endodontic procedures involving pulpal regeneration and hard tissue repair, such as pulp capping, pulpotomy, apexogenesis, apexification, perforation repair, and root-end filling. Despite the superior laboratory and clinical performance of MTA in comparison with previous endodontic repair cements, such as Ca(OH) 2 , MTA has poor handling properties and a long setting time. New CSC have been commercially launched and marketed to overcome the limitations of MTA. The aim of the present review was to explore the available literature on new CSC products, and to give evidence-based recommendations for the clinical use of these materials. Within the limitations of the available data in the literature regarding the properties and performance of the new CSC, the newer products could be promising alternatives to MTA; however, further research is required to support this assumption. © 2015 Wiley Publishing Asia Pty Ltd.

  10. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  11. State of the art of durability-performance evaluation of hardened cement based on phase compositions

    Kurashige, Isao; Imoto, Harutake; Yamamoto, Takeshi; Hironaga, Michihiko

    2006-01-01

    Upgrading durability-performance evaluation technique for concrete is urgently demanded in connection to its application to radio-active waste repository which needs ultra long-term durability. Common concrete structures also require an advanced method for minimizing the life-cycle cost. The purpose of this research is to investigate current problems and future tasks on durability-performance evaluation of hardened cement from the view point of phase composition. Although the phase composition of hardened cement has not fully been reflected to durability-performance evaluation, it influences concrete durability as well as its pore structure. This report reviews state of the art of the factors affecting phase composition, analytical and experimental evaluation techniques for phase composition, and durability-performance evaluation methods of hardened cement based on phase composition. (author)

  12. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Tolêdo Filho,Romildo Dias; Joseph,Kuruvilla; Ghavami,Khosrow; England,George Leslie

    1999-01-01

    ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical prop...

  13. New biodegradable air-entraining admixture based on LAS for cement-based composites

    Mendes, J.C.; Moro, T.K.; Dias, L.S.; Campos, P.A.M.; Silva, G.J.B.; Peixoto, R.A.F.; Cury, A.A.

    2016-01-01

    The active principle of Air Entraining Admixtures (AEA) are surfactants, analogously to washing up liquids. Washing up (or dishwashing) liquids are widely available products, relatively inexpensive, non-toxic and biodegradable, thus presenting smaller environmental impact. Therefore, the present work proposes the use of a biodegradable surfactant comprised in washing up liquids, Linear Alkylbenzene Sulfonate (LAS), as sustainable air entraining agent for cement-based composites. In this sense, a performance evaluation of the proposed AEA is carried out, by comparing the properties of mortars with proposed AEA, commercial AEA and ones without any admixture. Through the physical, mechanical and microstructural analysis, it was possible to determine the efficiency of the proposed AEA, as well as its optimum range of dosage. As a result, we seek to contribute to the technical development of cement-based composites in Brazil and in the world. (author)

  14. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    Xiaohua Bao

    2017-04-01

    Full Text Available Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs. Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  15. Agricultural residues based composites part II: Hydration characteristics of cement- cellulosic fibers composites

    Hekal, E.E.; Kishar, E.A.; Abd-El-Khader, A.H.; Ibrahim, A.A.; Mobarak, F.M.

    2005-01-01

    The aim of this study is the utilization of the local agricultural wastes, such as ice straw bagasse, cotton stalks and linen fibers, which cause a big environmental problem. Different cement-fiber composites were prepared using 1.5, 3, 4.5 and 6% fibers by weight of cement. The lengths of the fibers used were 0.5, 0.8, and 1.25 mm. Hydration of the different, composites was carried out at room temperature for various lime intervals namely, 1.3,7 .28 and 90 days. Combined water contents, compressive strength and phase composition of the different prepared composites were examined

  16. Characterization of composite materials based on cement-ceramic powder blended binder

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  17. Improved microstructure of cement-based composites through the addition of rock wool particles

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  18. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers.

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-05-08

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  19. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers

    Doo-Yeol Yoo

    2017-05-01

    Full Text Available This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs, graphite nanofibers (GNFs, and graphene (G, were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR. The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  20. Thermophysical properties of cement based composites and their changes after artificial ageing

    Šín, Peter; Pavlendová, Gabriela; Lukovičová, Jozefa; Kopčok, Michal

    2017-07-01

    The usage of recycled plastic materials in concrete mix gained increased attention. The behaviour of such environmental friendly material is studied. In this paper an investigation of the thermophysical properties of cement based composites containing plastic waste particles with different percentage is presented. Measurements were carried out using pulse transient method before and after artificial ageing in climatic chamber BINDER MKF (E3).

  1. Advanced technologies of production of cemented carbides and composite materials based on them

    Bondarenko, V.; Pavlotskaya, E.; Martynova, L.; Epik, I.

    2001-01-01

    The paper presents new technological processes of production of W, WC and (Ti, W)C powders, cemented carbides having a controlled carbon content, high-strength nonmagnetic nickel-bonded cemented carbides, cemented carbide-based composites having a wear-resistant antifriction working layer as well as processes of regeneration of cemented carbide waste. It is shown that these technological processes permit radical changes in the production of carbide powders and products of VK, TK, VN and KKhN cemented carbides. The processes of cemented carbide production become ecologically acceptable and free of carbon black, the use of cumbersome mixers is excluded, the power expenditure is reduced and the efficiency of labor increases. It becomes possible to control precisely the carbon content within a two-phase region -carbide-metal. A high wear resistance of parts of friction couples which are lubricated with water, benzine, kerosene, diesel fuel and other low-viscosity liquids, is ensured with increased strength and shock resistance. (author)

  2. Chemical composition influence of cement based mortars on algal biofouling

    Estelle, Dalod; Alexandre, Govin; Philippe, Grosseau; Christine, Lors; René, Guyonnet; Denis, Damidot

    2013-04-01

    The main cause of building-facade biodegradation is the growth of microorganisms. This phenomenon depends on several parameters such as the geographical situation, the environmental conditions and the surface state of the substrate. Several researches have been devoted to the study of the effect of porosity and roughness on the biofouling of stones and mortars. However, none of them have addressed the influence of the mortar chemistry on the microorganism growth kinetic. The main objective of this study is to highlight the influence of the mortar chemistry in relationship with its physical properties on biological weathering. Earlier work showed a good resistance of Calcium Aluminate Cements to biodeterioration by acidogenic bacteria (Thiobacillus) and fungi (Alternaria alternata, Aspergillus Niger and Coniosporium uncinatum). In order to characterize the influence of the mortar chemistry on biofouling, two Portland cements and two alumina cements are used. Among micro-organisms able to grow, green algae are most involved in the aesthetic deterioration of facades. Indeed, they can colonize any type of media and can be a source of nutrients for other micro-organisms such as fungi. The green algae Klebsormidium flaccidum is chosen because of its representativeness. It is indeed the species the most frequently identified and isolated from samples taken on sites. The biofouling kinetic is followed on samples exposed outdoor and on samples tested in a laboratory bench which consists in spraying an algae culture on mortar specimens. The results obtained by in situ trials are compared with the results obtained on the laboratory bench. The microorganism growth kinetic is measured by image analysis. To improve the detection of algae on the surface of the cementitious samples, the raw image is converted in the YIQ color space. Y, I and Q correspond respectively to luminance, in-phase, and quadrature. On the Q channel, the areas covered by algae and the areas of clean mortar

  3. A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis.

    Lv, Yang; Li, Ailing; Zhou, Fang; Pan, Xiaoyu; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2015-06-03

    Percutaneous vertebroplasty (VP) and balloon kyphoplasty (BKP) are now widely used to treat patients who suffer painful vertebral compression fractures. In each of these treatments, a bone cement paste is injected into the fractured vertebral body/bodies, and the cement of choice is a poly(methyl methacrylate) (PMMA) bone cement. One drawback of this cement is the very high exothermic temperature, which, it has been suggested, causes thermal necrosis of surrounding tissue. In the present work, we prepared novel composite PMMA bone cement where microcapsules containing a phase change material (paraffin) (PCMc) were mixed with the powder of the cement. A PCM absorbs generated heat and, as such, its presence in the cement may lead to reduction in thermal necrosis. We determined a number of properties of the composite cement. Compared to the values for a control cement (a commercially available PMMA cement used in VP and BKP), each composite cement was found to have significantly lower maximum exothermic temperature, increased setting time, significantly lower compressive strength, significantly lower compressive modulus, comparable biocompatibility, and significantly smaller thermal necrosis zone. Composite cement containing 20% PCMc may be suitable for use in VP and BKP and thus deserves further evaluation.

  4. Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring

    D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Rallini, Marco; Materazzi, Annibale L.; Kenny, Josè M.

    2016-04-01

    Cement-based smart sensors appear particularly suitable for monitoring applications, due to their self-sensing abilities, their ease of use, and their numerous possible field applications. The addition of conductive carbon nanofillers into a cementitious matrix provides the material with piezoresistive characteristics and enhanced sensitivity to mechanical alterations. The strain-sensing ability is achieved by correlating the variation of external loads or deformations with the variation of specific electrical parameters, such as the electrical resistance. Among conductive nanofillers, carbon nanotubes (CNTs) have shown promise for the fabrication of self-monitoring composites. However, some issues related to the filler dispersion and the mix design of cementitious nanoadded materials need to be further investigated. For instance, a small difference in the added quantity of a specific nanofiller in a cement-matrix composite can substantially change the quality of the dispersion and the strain sensitivity of the resulting material. The present research focuses on the strain sensitivity of concrete, mortar and cement paste sensors fabricated with different amounts of carbon nanotube inclusions. The aim of the work is to investigate the quality of dispersion of the CNTs in the aqueous solutions, the physical properties of the fresh mixtures, the electromechanical properties of the hardened materials, and the sensing properties of the obtained transducers. Results show that cement-based sensors with CNT inclusions, if properly implemented, can be favorably applied to structural health monitoring.

  5. Thermal and Electrical Characterization of the Carbon Nanofibers Based Cement Composites

    Agnieszka ŚLOSARCZYK

    2017-08-01

    Full Text Available The paper describes the influence of chemical modification of vapor grown carbon nanofibers (VGCnFs on the thermal and electrical properties of the cement composites. The surface modification of nanofibers was performed by means of ozone and nitric acid treatments. It was shown that the oxidized carbon nanofibers surface plays an important role in shaping the mechanical and especially electrical properties of cement composite. For cement matrix modified with carbon nanofibers subjected to oxidized treatment, the slightly increase of cement paste resistivity was observed. It confirms the better adhesion of carbon nanofibers to cement paste. However, independently of carbon nanofibers modification, the occurrence of VGCnFs in cement paste increased the electrical conductivity of the composite in comparison to the cement paste without fibers. The obtained values of electrical resistivity were comparable with values of cement composites modified with 4 mm long carbon fibers. Moreover, it was shown that the chemical modification of carbon nanofibers surface does not influence on the thermal properties of cement composites. In case of cement paste with unmodified and modified carbon nanofibers, the Seebeck voltage was proportional to the temperature difference and was independent of the oxidation degree of carbon nanofibers.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14993

  6. Cement based composites for thin building elements: Fracture and fatigue parameters

    Seitl, Stanislav; Bílek, V.; Keršner, Z.; Veselý, J.

    2010-01-01

    Roč. 2, č. 1 (2010), s. 911-916 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GA103/08/0963 Institutional research plan: CEZ:AV0Z20410507 Keywords : Cement-based composites * Fatigue concrete * Wöhler curve * Fibers Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

    Amir Mahmoudi

    2015-01-01

    In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow abilit...

  8. Characterization and treatment of sisal fiber residues for cement-based composite application

    Lima,Paulo R. L.; Santos,Rogério J.; Ferreira,Saulo R.; Toledo Filho,Romildo D.

    2014-01-01

    Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the rein...

  9. Study of behavior of concrete and cement based composite materials exposed to high temperatures

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, L. (Libor)

    2013-01-01

    The paper describes possibilities of observation of behaviour of concrete and cement based composite material exposed to high temperatures. Nowadays, for large-scale tests of behaviour of concrete exposed to high temperatures, testing devices of certified fire testing stations in the Czech Republic and surrounding states are used. These tests are quite expensive. For experimental verification of smaller test specimens, a testing device was built at the Technical University in Brno, wher...

  10. Nanoscaled Mechanical Properties of Cement Composites Reinforced with Carbon Nanofibers

    Barbhuiya, Salim; Chow, PengLoy

    2017-01-01

    This paper reports the effects of carbon nanofibers (CNFs) on nanoscaled mechanical properties of cement composites. CNFs were added to cement composites at the filler loading of 0.2 wt % (by wt. of cement). Micrographs based on scanning electron microscopy (SEM) show that CNFs are capable of forming strong interfacial bonding with cement matrices. Experimental results using nanoindentation reveal that the addition of CNFs in cement composites increases the proportions of high-density calcium...

  11. Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites

    Shazim Ali Memon

    2018-04-01

    Full Text Available The open burning of biomass residue constitutes a major portion of biomass burning and leads to air pollution, smog, and health hazards. Various alternatives have been suggested for open burning of crop residue; however, each of them has few inherent drawbacks. This research suggests an alternative method to dispose wheat straw, i.e., to calcine it in a controlled environment and use the resulting ash as a replacement of cement by some percentage in cement-based composites. When wheat straw, an agricultural product, is burned, it is very rich in SiO2, which has a pozzolanic character. However, the pozzolanic character is sensitive to calcination temperature and grinding conditions. According to the authors’ best knowledge, until now, no systematic study has been devised to assess the most favorable conditions of burning and grinding for pozzolanic activity of wheat straw ash (WSA. Hence, a systematic experimental program was designed. In Phase I, calcination of WS was carried out at 500 °C, 600 °C, 700 °C, and 800 °C for 2 h. The resulting ashes were tested for color change, weight loss, XRD, XRF, Chapelle activity, Fratini, and pozzolanic activity index (PAI tests. From test results, it was found that beyond 600 °C, the amorphous silica transformed into crystalline silica. The WSA calcined at 600 °C was found to satisfy Chapelle and Fratini tests requirements, as well as the PAI requirement of ASTM at 28 days. Therefore, WSA produced at 600 °C (WSA600 showed the best pozzolanic performance. In Phase II, WSA600 was ground for various intervals (15–240 min. These ground ashes were tested for SEM, Blaine fineness, Chapelle activity, Fratini, and PAI tests. From test results, it was observed that after 120 min of grinding, there was an increase of 48% in Blaine surface area, with a consequence that WSA-replaced cement cubes achieved a compressive strength almost similar to that of the control mix. Conclusively, wheat straw calcined at

  12. Influence of Graphene Nanosheets on Rheology, Microstructure, Strength Development and Self-Sensing Properties of Cement Based Composites

    Sardar Kashif Ur Rehman

    2018-03-01

    Full Text Available In this research, Graphene oxide (GO, prepared by modified hammer method, is characterized using X-ray Diffraction (XRD, Fourier Transform Infrared (FT-IR Spectrometry and Raman spectra. The dispersion efficiency of GO in aqueous solution is examined by Ultraviolet–visible spectroscopy and it is found that GO sheets are well dispersed. Thereafter, rheological properties, flow diameter, hardened density, compressive strength and electrical properties of GO based cement composite are investigated by incorporating 0.03% GO in cement matrix. The reasons for improvement in strength are also discussed. Rheological results confirm that GO influenced the flow behavior and enhanced the viscosity of the cement based system. From XRD and Thermogravimetric Analysis (TGA results, it is found that more hydration occurred when GO was incorporated in cement based composite. The GO based cement composite improves the compressive strength and density of mortar by 27% and 1.43%, respectively. Electrical properties results showed that GO–cement based composite possesses self-sensing characteristics. Hence, GO is a potential nano-reinforcement candidate and can be used as self-sensing sustainable construction material.

  13. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume

    Han, Ta-Yuan; Lin, Wei-Ting; Cheng, An; Huang, Ran; Huang, Chin-Cheng

    2012-01-01

    Highlights: ► Experimental study is focus on the engineering properties of cement-based composites. ► Different mixes containing fiber and silica fume proportions have been tested. ► The influence of different mixes on the engineering properties has been discussed. ► The properties are included strength, ductility, permeability and microstructure. -- Abstract: This study evaluated the mechanical properties of cement-based composites produced with added polyolefin fibers and silica fume. Material variables included the water-cementitious ratio, the dosage of silica fume, and the length and dosage of polyolefin fiber. Researchers conducted tests on compressive strength, splitting tensile strength, direct tensile strength, resistivity, rapid chloride penetration, and initial surface absorption, and performed microscopic observation. Test results indicate that the specimens containing silica fume have higher compressive strength than the control and specimen made with fibers. The specimens with polyolefin fiber and silica fume have considerably higher tensile strength and ductility than the control and specimens made with silica fume. The specimens containing silica fume and polyolefin fiber demonstrated better resistance to chloride penetration than composites with polyolefin fiber or silica fume. For a given volume fraction, short polyolefin fiber performs better than its long counterpart in improving the properties of concrete. Specimens containing silica fume demonstrated a significant increase in resistivity and decrease in the total charge passed and absorption. Scanning electron microscopy illustrates that the polyolefin fiber acts to arrest the propagation of internal cracks.

  14. Calcium phosphate composite cements based on simple mixture of brushite and apatite phases

    Egorov, A. A.; Fedotov, A. Yu; Pereloma, I. S.; Teterina, A. Yu; Sergeeva, N. S.; Sviridova, I. K.; Kirsanova, V. A.; Akhmedova, S. A.; Nesterova, A. V.; Reshetov, I. V.; Barinov, S. M.; Komlev, V. S.

    2018-04-01

    The composite cements based on simple mixtures brishite and apatite with ratio 70/30, 50/50, 30/70 were developed. The processes of phase formation, microstructure and mechanical properties were studied. The kinetics of degradation in simulated body fluid depending on the microstructure and the materials phase composition was carried out. The biological test in vitro were performed using the MTT-test on the human fibroblast immortalized (hFB) cell line and the human osteosarcoma cell line MG-63. The materials didn’t have acute cytoxicity and possessed surface matrix properties. It was determined that the both line of cells actively proliferated, with viable cells values higher 20-60 % then control at all observation periods.

  15. A cement based syntactic foam

    Li Guoqiang; Muthyala, Venkata D.

    2008-01-01

    In this study, a cement based syntactic foam core was proposed and experimentally investigated for composite sandwich structures. This was a multi-phase composite material with microballoon dispersed in a rubber latex toughened cement paste matrix. A trace amount of microfiber was also incorporated to increase the number of mechanisms for energy absorption and a small amount of nanoclay was added to improve the crystal structure of the hydrates. Three groups of cement based syntactic foams with varying cement content were investigated. A fourth group of specimens containing pure cement paste were also prepared as control. Each group contained 24 beam specimens. The total number of beam specimens was 96. The dimension of each beam was 30.5 cm x 5.1 cm x 1.5 cm. Twelve foam specimens from each group were wrapped with plain woven 7715 style glass fabric reinforced epoxy to prepare sandwich beams. Twelve cubic foam specimens, three from each group, with a side length of 5.1 cm, were also prepared. Three types of testing, low velocity impact test and four-point bending test on the beam specimens and compression test on the cubic specimens, were conducted to evaluate the impact energy dissipation, stress-strain behavior, and residual strength. Scanning electron microscope (SEM) was also used to examine the energy dissipation mechanisms in the micro-length scale. It was found that the cement based syntactic foam has a higher capacity for dissipating impact energy with an insignificant reduction in strength as compared to the control cement paste core. When compared to a polymer based foam core having similar compositions, it was found that the cement based foam has a comparable energy dissipation capacity. The developed cement based syntactic foam would be a viable alternative for core materials in impact-tolerant composite sandwich structures

  16. Structural Phenomenon of Cement-Based Composite Elements in Ultimate Limit State

    I. Iskhakov

    2016-01-01

    Full Text Available Cement-based composite materials have minimum of two components, one of which has higher strength compared to the other. Such materials include concrete, reinforced concrete (RC, and ferrocement, applied in single- or two-layer RC elements. This paper discusses experimental and theoretical results, obtained by the authors in the recent three decades. The authors have payed attention to a structural phenomenon that many design features (parameters, properties, etc. at ultimate limit state (ULS of a structure are twice higher (or lower than at initial loading state. This phenomenon is evident at material properties, structures (or their elements, and static and/or dynamic structural response. The phenomenon is based on two ideas that were developed by first author: quasi-isotropic state of a structure at ULS and minimax principle. This phenomenon is supported by experimental and theoretical results, obtained for various structures, like beams, frames, spatial structures, and structural joints under static or/and dynamic loadings. This study provides valuable indicators for experiments’ planning and estimation of structural state. The phenomenon provides additional equation(s for calculating parameters that are usually obtained experimentally and can lead to developing design concepts and RC theory, in which the number of empirical design coefficients will be minimal.

  17. Development of road soil cement compositions modified with complex additive based on polycarboxylic ether

    Bulanov, P. E.; Vdovin, E. A.; Mavliev, L. F.; Kuznetsov, D. A.

    2018-03-01

    The paper is focused on the research results of the main physical and technical properties of the cement-stabilized polymineral clay modified with a complex hydrophobic plasticizer based on polycarboxylate and octyltriethoxysilane ethers. A graphical result interpretation of the mathematic model which shows the influence of the complex hydrophobic plasticizer components on the cement-stabilized polymineral clay, containing more than 85% of relict minerals, has been designed. The research significance for the building sector lies in the fact that applying a complex hydrophobic plasticizer provides increasing the compressive strength of the cement-stabilized polymineral clay up to 102%, the tensile bending strength – up to 88%, the freeze-thaw resistance – up to 114%.

  18. Developing a novel magnesium glycerophosphate/silicate-based organic-inorganic composite cement for bone repair.

    Ding, Zhengwen; Li, Hong; Wei, Jie; Li, Ruijiang; Yan, Yonggang

    2018-06-01

    Considering that the phospholipids and glycerophosphoric acid are the basic materials throughout the metabolism of the whole life period and the bone is composed of organic polymer collagen and inorganic mineral apatite, a novel self-setting composite of magnesium glycerophosphate (MG) and di-calcium silicate(C2S)/tri-calcium silicate(C3S) was developed as bio-cement for bone repair, reconstruction and regeneration. The composite was prepared by mixing the MG, C2S and C3S with the certain ratios, and using the deionized water and phosphoric acid solution as mixed liquid. The combination and formation of the composites was characterized by FTIR, XPS and XRD. The physicochemical properties were studied by setting time, compressive strength, pH value, weight loss in the PBS and surface change by SEM-EDX. The biocompatibility was evaluated by cell culture in the leaching solution of the composites. The preliminary results showed that when di- and tri-calcium silicate contact with water, there are lots of Ca(OH) 2 generated making the pH value of solution is higher than 9 which is helpful for the formation of hydroxyapatite(HA) that is the main bone material. The new organic-inorganic self-setting bio-cements showed initial setting time is ranged from 20 min to 85 min and the compressive strength reached 30 MPa on the 7th days, suitable as the bone fillers. The weight loss was 20% in the first week, and 25% in the 4th week. Meanwhile, the new HA precipitated on the composite surface during the incubation in the SBF showed bioactivity. The cell cultured in the leaching liquid of the composite showed high proliferation inferring the new bio-cement has good biocompatibility to the cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Durability of pulp fiber-cement composites

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  20. Implementation of recycled cellulosic fibres into cement based composites and testing their influence on resulting properties

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, the application of raw materials from renewable sources such as wood, plants and waste paper to building materials preparing has gained a significant interest in this research area. The aim of this paper is to investigate the impact of the selected plasticizer on properties of fibres composites made of cellulosic fibres coming from recycled waste paper and cement. Investigations were performed on specimens with 0.5 wt. % of fibre addition without and with plasticizer. A comparative study did not show positive influence of plasticizer on the density and thermal conductivity of 28 days hardened composite. The specimens after 1, 3 and 7 days of hardening with plasticizer exhibited the highest impact on compressive strength in comparison to composite without plasticizer but 28 days hardened specimens reached the same value of strength characteristic (41 MPa).

  1. Effects on Mechanical Properties of Recycled PET in Cement-Based Composites

    Liliana Ávila Córdoba

    2013-01-01

    Full Text Available Concretes consisting of portland cement (OPC, silica sand, gravel, water, and recycled PET particles were developed. Specimens without PET particles were prepared for comparison. Curing times, PET particle sizes, and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and Young modulus were determined. Morphological and chemical compositions of recycled PET particles were seen in a scanning electron microscopy. Results show that smaller PET particle sizes in lower concentrations generate improvements on compressive strength and strain, and Young’s modulus decreases when the size of PET particles used was increased.

  2. CEMENT BONDED COMPOSITES – A MECHANICAL REVIEW

    Stephan Frybort

    2008-05-01

    Full Text Available Over the last years promising cement bonded wood composites for structural purposes have evolved. Durability, toughness, high dimen-sional stability, resistance against environmental influences such as biodegradation or weathering but also availability of the raw material as well as economic factors are features which can make cement-bonded composites superior to conventionally bonded composites. This paper reviews the relationship of diverse parameters, including density and particle size on mechanical and physical properties of cement bonded composites, based on published sources from the last 60 years. For general and recent information about bonding mechanisms, compatibility and setting problems, determination and improvement of compatibility, the used raw materials as well as accelerators are discussed. The main part deals with failure mechanisms in connection with several production parameters. Furthermore, the influence of particle size and geometry, orientation of the particles, cement-wood ratio and the effect of accelerators and treatment of the particles on modulus of elasticity, modulus of rupture as well as thickness swelling are discussed.

  3. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-01-01

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer

  4. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites

    Wang Chuang; Li Kezhi; Li Hejun; Jiao Gengsheng; Lu Jinhua; Hou Dangshe

    2008-01-01

    The preparation of carbon fiber-reinforced cement-based composites involved two-step dispersions of carbon fibers. Both steps affected greatly the mechanical properties of the composites. With the aid of ultrasonic wave, a new dispersant hydroxyethyl cellulose was used to help fiber dispersion in the first step. The fracture surface of the composites was observed by scanning electron microscopy. The distribution of major elements was analyzed by the energy dispersive spectroscopy and the composition was analyzed through X-ray diffraction. The flexural strength, tensile strength, modulus, and compression strength were measured. Results showed that the distribution of major elements varied with the variation of the fiber dispersion status. The compressive strength increased by 20%, the tensile strength was 2.4 times that of the material without carbon fibers, the modulus increased by 26.8%, whereas the flexure stress decreased by 12.9%

  5. Leaching of tritium from a cement composite

    Matsuzuru, Hideo; Ito, Akihiko

    1978-10-01

    Leaching of tritium from cement composites into an aqueous phase has been studied to evaluate the safety of incorporation of the tritiated liquid waste into cement. Leaching tests were performed by the method recommended by the International Atomic Energy Agency. The Leaching fraction was measured as functions of waste-cement ratio (Wa/C), temperature of leachant and curing time. The tritium leachability of cement in the long term test follows the order: alumina cement portland cement slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than synthetic sea water. The amount leached of tritium from a 200 l drum size specimen was estimated on the basis of the above results. (author)

  6. Composite cement mortars based on marine sediments and oyster shell powder

    Ez-zaki, H.

    2016-03-01

    Full Text Available Additions of dredged marine sediments and oyster shell powder (OS as cement substitute materials in mortars are examined by several techniques. The sediments have high water and chloride contents and calcite, quartz, illite and kaolinite as principal minerals. The OS powders are entirely composed of calcium carbonate and traces of other impurities. Four mixtures of treated sediments and OS powders at 650 °C and 850 °C are added to Portland cement at 8%, 16% and 33% by weight. The hydration of composite pastes is followed by calorimetric tests, the porosity accessible to water, the bulk density, the permeability to gas, the compressive strength and the accelerated carbonation resistance are measured. In general, the increase of addition amounts reduced the performance of mortars. However, a reduction of gas permeability was observed when the addition was up to 33%. Around 16% of addition, the compressive strength and carbonation resistance were improved.En este trabajo se ha valorado la sustitución de cemento en morteros por sedimentos marinos dragados y polvo de concha de ostra (OS. Los sedimentos tienen altos contenidos de agua, cloruros, calcita, cuarzo, illita y caolinita como minerales principales. Los polvos OS están compuestos de carbonato cálcico y trazas de otras impurezas. Se añadieron a un cemento Portland, cuatro mezclas de los sedimentos y polvos de OS tratados a 650 °C y 850 °C en proporciones del 8%, 16% y 33% en peso. La hidratación de pastas se estudió a través de calorimetría. Se estudió además la porosidad accesible al agua, densidad aparente, permeabilidad al gas, resistencia a compresión y carbonatación acelerada. En general, un aumento en la adición produjo una reducción del rendimiento de los morteros. Se observó, sin embargo, una reducción de la permeabilidad a los gases con porcentajes de adición de hasta el 33%. Con valores del 16% de sustitución, mejoraron las resistencias mecánicas y la

  7. Immobilization of radioactive waste in cement based matrices

    Glasser, F.P.; Rahman, A.A.; Macphee, S.; Atkins, M.; Beckley, N.; Carson, S.

    1986-11-01

    Experimental and theoretical studies of hydrated cement systems are described. The behaviour of slag-based cement is described with a view to predicting their long term pH, Esub(n) and mineralogical balance. Modelling studies which enable the prediction at long ages of cement composites are advanced and a base model of the CaO-SiO 2 -H 2 O system presented. The behaviour of U and I in cements is explored. The tolerance of cement systems for a wide range of miscellaneous waste stream components and environmental hazards is described. The redox potential in cements is effectively lowered by irradiation. (author)

  8. Effects of cement particle size distribution on performance properties of Portland cement-based materials

    Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M.

    1999-10-01

    The original size, spatial distribution, and composition of Portland cement particles have a large influence on hydration kinetics, microstructure development, and ultimate properties of cement-based materials. In this paper, the effects of cement particle size distribution on a variety of performance properties are explored via computer simulation and a few experimental studies. Properties examined include setting time, heat release, capillary porosity percolation, diffusivity, chemical shrinkage, autogenous shrinkage, internal relative humidity evolution, and interfacial transition zone microstructure. The effects of flocculation and dispersion of the cement particles in the starting microstructures on resultant properties are also briefly evaluated. The computer simulations are conducted using two cement particle size distributions that bound those commonly in use today and three different water-to-cement ratios: 0.5, 0.3, and 0.246. For lower water-to-cement ratio systems, the use of coarser cements may offer equivalent or superior performance, as well as reducing production costs for the manufacturer.

  9. Sulphur cement pre-composition and process for preparing such sulphur cement pre-composition

    2013-01-01

    The invention provides a process for the preparation of a sulphur cement pre-composition comprising reacting sulphur modifier with polysulphide-containing organosilane to obtain in the presence of sulphur the sulphur cement pre-composition, wherein the organosilane has the general molecular formula:

  10. Reinforcing of Cement Composites by Estabragh Fibres

    Merati, A. A.

    2014-04-01

    The influence of Estabragh fibres has been studied to improve the performance characteristics of the reinforced cement composites. The concrete shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of concrete specimens. Although, the Estabragh fibres lose their strength in an alkali environment of cement composites, but, the ability of Estabragh fibres to bridge on the micro cracks in the concrete matrix causes to decrease the width of the cracks on the surface of the concrete samples in comparison with the plain concrete. However, considering the mechanical properties of specimens such as bending strength and impact resistance, the specimens with 0.25 % of Estabragh fibre performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of concrete. Consequently, by adding 0.25 % of Estabragh fibres to the cement composite of concrete, a remarkable improvement in physical and mechanical properties of fibre-containing cement composite is achieved.

  11. Effect of Cement Composition in Lampung on Concrete Strength

    Riyanto, Hery

    2014-01-01

    The strength and durability of concrete depends on the composition of its constituent materials ie fine aggregate, coarse aggregate, cement, water and other additives. The cement composition is about 10% acting as a binder paste material fine and coarse aggregates. In the Lampung market there are several brands of portland cement used by the community to make concrete construction. Although there is a standard of the government of portland cement composition, yet each brand of cement has diff...

  12. Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles

    Pourjavadi, Ali; Fakoorpoor, Seyed Mahmoud; Khaloo, Alireza; Hosseini, Payam

    2012-01-01

    Highlights: ► Nano-SiO 2 fully compensates compressive but not flexural strength. ► Nano-SiO 2 has the major contribution both to yield stress and viscosity. ► Lower dosages of SAP could reduce viscosity and yield stress of pastes. -- Abstract: The application of superabsorbent polymer (SAP) as an internal curing agent for cement based composites results in benefits such as reduced autogenous shrinkage and cracking. However, a reduction in compressive and flexural strength usually occurs due to the empty voids remained in the matrix after deswelling of SAP particles. Nanoparticles are good candidates for improving the mechanical performance of cementitious materials, due to their multiple mechanisms of action, not the least their high pozzolanic activity. In the present work, the capability of amorphous nano-SiO 2 (NS) as the most widely used nanoparticle in cementitious materials, for retrieving mechanical properties of SAP-containing pastes was evaluated, and its impact on setting time and rheological properties was measured. It was found that small dosages of NS could offset the negative effect of SAP on compressive strength but flexural strength was not fully compensated. Optimization of the dosages of NS and SAP could reduce the negative influences on the yield stress and viscosity whilst improving mechanical performance. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to monitor the changes in microstructure and composition.

  13. The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

    Krejcirikova, Barbora; Kolarik, Jakub; Wargocki, Pawel

    2018-01-01

    The effects of emissions from cement-based and cement-ash-based mortar slabs were studied. In the latter, 30% of the cement content had been replaced by sewage sludge ash. They were tested singly and together with either carpet or linoleum. The air exhausted from the chambers was assessed by means...... of odour intensity and chemical characterization of emissions. Odour intensity increased with the increased exposed area of the slabs. It did not differ significantly between cement-based or cement-ash-based mortar and neither did the chemical composition of the exhaust air. A significant sink effect...

  14. The Effect of Resin-modified Glass-ionomer Cement Base and Bulk-fill Resin Composite on Cuspal Deformation.

    Nguyen, K V; Wong, R H; Palamara, J; Burrow, M F

    2016-01-01

    This study investigated cuspal deformation in teeth restored with different types of adhesive materials with and without a base. Mesio-occluso-distal slot cavities of moderately large dimension were prepared on extracted maxillary premolars (n=24). Teeth were assigned to one of four groups and restored with either a sonic-activated bulk-fill resin composite (RC) (SonicFill), or a conventional nanohybrid RC (Herculite Ultra). The base materials used were a flowable nanofilled RC (Premise Flowable) and a high-viscosity resin-modified glass-ionomer cement (RMGIC) (Riva Light-Cure HV). Cuspal deflection was measured with two direct current differential transformers, each contacting a buccal and palatal cusp. Cuspal movements were recorded during and after restoration placement. Data for the buccal and palatal cusp deflections were combined to give the net cuspal deflection. Data varied widely. All teeth experienced net inward cuspal movement. No statistically significant differences in cuspal deflection were found among the four test groups. The use of a flowable RC or an RMGIC in closed-laminate restorations produced the same degree of cuspal movement as restorations filled with only a conventional nanohybrid or bulk-fill RC.

  15. Photoactive glazed polymer-cement composite

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  16. Effect of Nanosilica on the Fresh Properties of Cement-Based Grouting Material in the Portland-Sulphoaluminate Composite System

    Shengli Li

    2016-01-01

    Full Text Available The effect of NS particle size and content on the fresh properties of the grouting material based on the portland-sulphoaluminate composite system was analyzed. The experimental results indicated that air content increased and apparent density decreased, with increased NS content, but the NS particle sizes have minimal effect on the air content and apparent density. The setting time of mortar was significantly shortened, with increased NS content; however, NS particle sizes had little influence on the setting time. The effect of fluidity on the mortars adding NS with particle size of 30 nm is larger than NS with particle sizes of 15 and 50 nm and the fluidity decreased with increased NS content, but the fluidity of mortars with the particle sizes of 15 and 50 nm is almost not affected by the NS content. XRD analysis shows that the formation of ettringite was promoted and the process of hydration reaction of cement was accelerated with the addition of NS. At the microscopic level, the interfacial transition zone (ITZ of the grouting material became denser and the formation of C-S-H gel was promoted after adding NS.

  17. Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites

    Seitl, Stanislav; Klusák, Jan; Veselý, V.; Řoutil, L.

    452-453, - (2011), s. 81-84 ISSN 1013-9826 R&D Projects: GA AV ČR KJB200410901; GA ČR GA103/08/0963 Institutional research plan: CEZ:AV0Z20410507 Keywords : wedge-splitting test, cementitious composites, quasi-brittle fracture, brittle fracture Subject RIV: JL - Materials Fatigue, Friction Mechanics www.scientific.net

  18. DESIGN OF CEMENT COMPOSITES WITH INCREASED IMPERMEABILITY

    Fedyuk Roman Sergeevich

    2016-05-01

    Full Text Available The paper deals with the development of composite binders for producing concrete with improved characteristics of gas, water and vapor permeability. The authors investigate the processes of composite materials formation in order of decreasing scale levels from macro to nanostructures. The criteria for optimization of the volume of dispersed additives in concrete are offered. The authors theoretically studied the technological features of the formation of hydrated cement stone structure. A positive effect of nanodispersed additives on the structure and physico-mechanical properties of cement composite materials are predicted. Thanks to its improved features, such as good ratio of strength and body density, high density and lifetime, the modified concrete may be used when solving various practical tasks of the construction branch.

  19. Literature survey on phase composition of hardened cement paste containing fly ash

    Otsuka, Taku; Yamamoto, Takeshi

    2015-01-01

    The purpose of this literature survey is to collect the knowledge on the effect of fly ash in hardened cement paste and the information about evaluation of physicochemical performance based on phase composition of hardened cement paste. The performance of hardened cement paste containing fly ash is affected by the property of fly ash, hydration of cement and pozzolanic reaction of fly ash. Some properties of fly ash such as density and chemical composition are reflected in phase composition, showing the progress of cement hydration and pozzolanic reaction. Therefore clarification of the relationship of phase composition and performance will lead to appropriate evaluation of the property of fly ash. The amount of pore, chemical shrinkage, pore solution, compressive strength, Young modulus and alkali silica reaction have relations to the phase composition of hardened cement paste. It is considered as future subject to clarify the relationship of phase composition and performance for various properties of fly ash. (author)

  20. Composite cements benefit from light-curing.

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To investigate the effect of curing of composite cements and a new ceramic silanization pre-treatment on the micro-tensile bond strength (μTBS). Feldspathic ceramic blocks were luted onto dentin using either Optibond XTR/Nexus 3 (XTR/NX3; Kerr), the silane-incorporated 'universal' adhesive Scotchbond Universal/RelyX Ultimate (SBU/RXU; 3M ESPE), or ED Primer II/Panavia F2.0 (ED/PAF; Kuraray Noritake). Besides 'composite cement', experimental variables were 'curing mode' ('AA': complete auto-cure at 21°C; 'AA*': complete auto-cure at 37°C; 'LA': light-curing of adhesive and auto-cure of cement; 'LL': complete light-curing) and 'ceramic surface pre-treatment' ('HF/S/HB': hydrofluoric acid ('HF': IPS Ceramic Etching Gel, Ivoclar-Vivadent), silanization ('S': Monobond Plus, Ivoclar-Vivadent) and application of an adhesive resin ('HB': Heliobond, Ivoclar-Vivadent); 'HF/SBU': 'HF' and application of the 'universal' adhesive Scotchbond Universal ('SBU'; 3M ESPE, only for SBU/RXU)). After water storage (7 days at 37°C), ceramic-dentin sticks were subjected to μTBS testing. Regarding the 'composite cement', the significantly lowest μTBSs were measured for ED/PAF. Regarding 'curing mode', the significantly highest μTBS was recorded when at least the adhesive was light-cured ('LA' and 'LL'). Complete auto-cure ('AA') revealed the significantly lowest μTBS. The higher auto-curing temperature ('AA*') increased the μTBS only for ED/PAF. Regarding 'ceramic surface pre-treatment', only for 'LA' the μTBS was significantly higher for 'HF/S/HB' than for 'HF/SBU'. Complete auto-cure led to inferior μTBS than when either the adhesive (on dentin) or both adhesive and composite cement were light-cured. The use of a silane-incorporated adhesive did not decrease luting effectiveness when also the composite cement was light-cured. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  2. Durability of Cement Composites Reinforced with Sisal Fiber

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  3. Cement-Polymer Composite Containers for Radioactive Wastes Disposal

    Ghattas, N.K.; Eskander, S.B.; Bayoumi, T.A.; Saleh, H.M.

    2009-01-01

    Improving cement-composite containers using polymer as organic additives was studied extensively. Both unsaturated styrenated polyester (SPE) and polymethyl methacrylate (PMMA) were used to fill the pores in cement containers that used for disposal of radioactive wastes. Two different techniques were adopted for the addition of organic polymers based on their viscosity. The low density PMMA was added using impregnation technique. On the other hand high density SPE was mixed with cement paste as a premix process. Predetermined weight of dried borate radioactive powder waste simulate was introduced into the Cement-polymer composite (CPC) container and then closed before subjecting it to leaching characterization. The effect of the organic polymers on the hydration of cement matrix and on the properties of the obtained CPC container has been studied using X-ray diffraction, IR-analysis, thermal effects and weight loss. Porosity, pore parameters and rate of release were also determined. The results obtained showed that for the candidate CPC container positive effect of polymer dominates and an improvement in the retardation rate of PMMA release radionuclides was observed

  4. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    Zhang, P.; Wittmann, F.H.; Zhao, T.J.; Lehmann, E.H.; Tian, L.; Vontobel, P.

    2010-01-01

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  5. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  6. [Comparative studies on fissure sealing: composite versus Cermet cement].

    Hickel, R; Voss, A

    1989-06-01

    Fifty two molars sealed with either composite or Cermet cement were compared. The composite sealant was applied after enamel etching using a rubber dam. Before sealing with Cermet cement the enamel was only cleaned with pumice powder and sodium hypochlorie and the material was applied without enamel etching. After an average follow-up of 1.6 years composite sealants proved to be significantly more reliable. Cermet cement sealings showed defects more frequently.

  7. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag...... (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  8. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  9. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    Choi, Yun-Wang; Oh, Sung-Rok; Choi, Byung-Keol

    2017-01-01

    We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite m...

  10. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    Bediako, Mark; Amankwah, Eric Opoku

    2015-01-01

    The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, a...

  11. Safety evaluation of the radioactive waste-cement composites, (4)

    Matsuzuru, Hideo; Wadachi, Yoshiki; Ito, Akihiko

    1976-10-01

    The leaching behavior of 137 Cs has been studied to evaluate safety of sea and ground disposal of the cement composites. The rate depends on flow rate of the external solution, particle radius and composition of the cement composite. The rate-determining step of the leaching in the dynamic condition is the internal diffusion through the matrix cement composite. The rate in the static condition, on the other hand is controlled by external diffusion through the interface layer between solid and liquid. The cement composites containing mineral zeolite(25%) give very low leachability; the leaching fraction is 0.001 - 0.02 for the portland cement and 0.001 - 0.002 for the slag cement. (auth.)

  12. Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability

    Santos, S. F.

    2015-03-01

    Full Text Available The present review shows the state-of-art on the approachs about improving the processing, physical- mechanical performance and durability of non-conventional fiber-cement composites. The objective of this review is to show some of these strategies to mitigate the degradation of the vegetable fibers used as reinforcement in cost-effective and non-conventional fiber-cement and, consequently, to improve their mechanical and durability properties for applications in the housing construction. Beyond the introduction about vegetable fibers, the content of this review is divided in the following sections: (i surface modification of the fibers; (ii improving fiber-to-cement interface; (iii natural pozzolans; (iv accelerated carbonation; (v applications of nanoscience; and (vi principles of functionally graded materials and extrusion process were briefly discussed with focus on future research needs.La presente revisión explora la actualidad en el campo de los compuestos de fibrocemento no convencionales en relación a mejoras en el proceso productivo, el rendimiento físico-mecánico y la durabilidad. El objetivo de esta revisión es exponer algunas estrategias para mitigar la degradación de las fibras vegetales utilizadas como refuerzo en fibrocementos no convencionales y rentables, obteniendo en consecuencia una mejoría en el rendimiento de sus propiedades mecánicas y durabilidad para su aplicación en el área de la construcción de viviendas. Además de la introducción en relación a las fibras vegetales, el contenido de esta revisión se divide en las siguientes secciones: (i modificación de la superficie de las fibras; (ii mejoramiento de la interfaz fibra-cemento; (iii puzolanas naturales; (iv carbonatación acelerada; (v aplicaciones de la nanociencia; y (vi principios de los materiales funcionalmente graduados y el proceso de extrusión fueron discutidos brevemente con un enfoque a investigaciones futuras.

  13. Interfacial morphology and domain configurations in 0-3 PZT-Portland cement composites

    Jaitanong, N.; Zeng, H.R.; Li, G.R.; Yin, Q.R.; Vittayakorn, W.C.; Yimnirun, R.; Chaipanich, A.

    2010-01-01

    Cement-based piezoelectric composites have attracted great attention recently due to their promising applications as sensors in smart structures. Lead zirconate titanate (PZT) and Portland cement (PC) composite were fabricated using 60% of PZT by volume. Scanning Electron Microscope and piezoresponse force microscope were used to investigate the morphology and domain configurations at the interfacial zone of PZT-Portland cement composites. Angular PZT ceramic grains were found to bind well with the cement matrix. The submicro-scale domains were clearly observed by piezoresponse force microscope at the interfacial regions between the piezoelectric PZT phase and Portland cement phase, and are clearer than the images obtained for pure PZT. This is thought to be due to the applied internal stress of cement to the PZT ceramic particle which resulted to clearer images.

  14. Deflection hardening of sustainable fiber–cement composites

    Lima, P. R. L.; Santos, D. O. J.; Fontes, C. M. A.; Barros, Joaquim A. O.; Toledo Filho, R. D.

    2016-01-01

    In the present study sisal fiber–cement composites reinforced with 4% and 6% of short fibers were developed and their physical–mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding fly ash and metakaolin, and the natural aggregate was substituted by 10% and 20% of recycled concrete aggregate. Flat sheets were cast in a self-compacted cement matrix and bending tests were performed ...

  15. Self-sensing piezoresistive cement composite loaded with carbon black particles

    Monteiro, André O.; Cachim, Paulo B.; Da Costa, Pedro M. F. J.

    2017-01-01

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several

  16. Cement-based materials' characterization using ultrasonic attenuation

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  17. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions

    S. P. Dunuweera

    2018-01-01

    Full Text Available We first discuss cement production and special nomenclature used by cement industrialists in expressing the composition of their cement products. We reveal different types of cement products, their compositions, properties, and typical uses. Wherever possible, we tend to give reasons as to why a particular cement type is more suitable for a given purpose than other types. Cement manufacturing processes are associated with emissions of large quantities of greenhouse gases and environmental pollutants. We give below quantitative and qualitative analyses of environmental impact of cement manufacturing. Controlling pollution is a mandatory legal and social requirement pertinent to any industry. As cement industry is one of the biggest CO2 emitters, it is appropriate to discuss different ways and means of CO2 capture, which will be done next. Finally, we give an account of production of nanocement and advantages associated with nanocement. Nanofillers such as nanotitania, nanosilica, and nanoalumina can be produced in large industrial scale via top-down approach of reducing size of naturally available bulk raw materials to those in the nanorange of 1 nm–100 nm. We mention the preparation of nanotitania and nanosilica from Sri Lankan mineral sands and quartz deposits, respectively, for the use as additives in cement products to improve performance and reduce the amount and cost of cement production and consequent environmental impacts. As of now, mineral sands and other treasures of minerals are exported without much value addition. Simple chemical modifications or physical treatments would add enormous value to these natural materials. Sri Lanka is gifted with highly pure quartz and graphite from which silica and graphite nanoparticles, respectively, can be prepared by simple size reduction processes. These can be used as additives in cements. Separation of constituents of mineral sands is already an ongoing process.

  18. Study on Cr(VI) Leaching from Cement and Cement Composites

    Palascakova, Lenka; Kanuchova, Maria

    2018-01-01

    This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550

  19. Preparation and physical characterization of calcium sulfate cement/silica-based mesoporous material composites for controlled release of BMP-2

    Tan H

    2015-07-01

    Full Text Available Honglue Tan,1 Shengbing Yang,2 Pengyi Dai,1 Wuyin Li,1 Bing Yue2 1Luoyang Orthopedics and Traumatology Institution, Luoyang Orthopedic-Traumatological Hospital, Luoyang, 2Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Abstract: As a commonly used implant material, calcium sulfate cement (CSC, has some shortcomings, including low compressive strength, weak osteoinduction capability, and rapid degradation. In this study, silica-based mesoporous materials such as SBA-15 were synthesized and combined with CSC to prepare CSC/SBA-15 composites. The properties of SBA-15 were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen adsorption–desorption isotherms. SBA-15 was blended into CSC at 0, 5, 10, and 20 wt%, referred to as CSC, CSC-5S (5% mass ratio, CSC-10S (10% mass ratio, and CSC-20S (20% mass ratio, respectively. Fourier-transform infrared spectroscopy and compression tests were used to determine the structure and mechanical properties of the composites, respectively. The formation of hydroxyapatite on composite surfaces was analyzed using scanning electron microscopy and X-ray diffraction after soaking in simulated body fluid. BMP-2 was loaded into the composites by vacuum freeze-drying, and its release characteristics were detected by Bradford protein assay. The in vitro degradation of the CSC/SBA-15 composite was investigated by measuring weight loss. The results showed that the orderly, nanostructured, mesoporous SBA-15 possessed regular pore size and structure. The compressive strength of CSC/SBA-15 increased with the increase in SBA-15 mass ratio, and CSC-20S demonstrated the maximum strength. Compared to CSC, hydroxyapatite that formed on the surfaces of CSC/SBA-15 was uniform and compact. The degradation rate of CSC/SBA-15 decreased with increasing

  20. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  1. Experimental and numerical analysis of short sisal fiber-cement composites produced with recycled matrix

    Lima, Paulo Roberto Lopes; Barros, Joaquim A. O.; Santos, Daniele Justo; Fontes, Cintia Maria; Lima, José Mário F.; Toledo Filho, Romildo

    2016-01-01

    "Published online: 02 Jan 2017" The proper use of renewable or recycled source materials can contribute significantly to reducing the environmental impact of construction industry. In this work, cement based composites reinforced with natural fibers were developed and their mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding metakaolin and the natural aggregate was substitute...

  2. Leaching behaviour of strontium-90 in cement composites

    Matsuzuru, H.; Ito, A.

    1977-01-01

    The leaching of 90 Sr from a cement composite into an aqueous phase has been studied by the method recommended by IAEA. The amount leached was measured as functions of waste to cement ratio (Wa/C), salt content of waste, temperature of leachant and curing time of specimens. The leach coefficient of 90 Sr varies from ca. 6 x 10 -8 to 4 x 10 -7 cm 2 /day depending on the composition of specimen and the leaching conditions. The leachability depends on such factors as Wa/C, temperature of leachant and curing time. The Portland cement composite gives a higher leaching fraction than the slag cement one. Additives used have no significant effect on the leachability. The amount leached in deionized water as a leachant is higher than in synthetic sea water. On the basis of the results obtained, the amount of 90 Sr leached from a composite of 200 1 drum size for an extended period was estimated. (author)

  3. Self-healing polymer cement composites for geothermal wellbore applications

    Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.

    2017-12-01

    Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.

  4. Optimization of cement composites with the use of fillers from the Chechen Republic fields

    Balatkhanova Elita Mahmudovna

    Full Text Available The fillers together with binders take part in microstructure formation of matrix basis and contact zones of a composite. The advantage of cement matrix structure with a filler is that inner defects are localized in it - microcracks, macropores and capillary pores, as well as that their quantity, their sizes and stress concentration decrease. Structure formation of filled cement composites is based on the processes taking place in the contact of liquid and stiff phases, which means, it depends on the quantitative relation of the cement, fillers and water, and also dispersivity and physical and chemical activity of the fillers. In the article the authors offer research results of the processes of hydration and physical-mechanical properties of cement composites with fillers from the fields of the Chechen Republic. Research results of heat cement systems are presented, modified by fine fillers. Optimal composition of cement composites filled with powders of quartz, sandstone, river and a mountain limestone of different particle size composition, characterized by a high strength, are obtained.

  5. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior

    Rongda Ye

    2015-11-01

    Full Text Available Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28/expanded perlite (EP composite phase change materials (PCMs. The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%–35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  6. Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior.

    Ye, Rongda; Fang, Xiaoming; Zhang, Zhengguo; Gao, Xuenong

    2015-11-13

    Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%-35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.

  7. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties

    Zhang, He; Xing, Feng; Cui, Hong-Zhi; Chen, Da-Zhu; Ouyang, Xing; Xu, Su-Zhen; Wang, Jia-Xin; Huang, Yi-Tian; Zuo, Jian-Dong; Tang, Jiao-Ning

    2016-01-01

    Highlights: • A novel flaky graphite-doped phase-change microcapsule (FGD-MPCM) was prepared. • FGD-MPCM has substantial latent heat storage capacity (135.8 J/g). • FGD-MPCMs/cement composite is capable of reducing indoor temperature fluctuation. • Compressive strength of cement composite with 30% FGD-MPCMs can reach to 14.2 MPa. - Abstract: Facing upon the increasingly severe energy crisis, one of the key issues for reducing the building energy consumption is to pursue high-performance thermal energy storage technologies based on phase-change materials. In this study, a novel cement composite incorporated with flaky graphite-doped microencapsulated phase-change materials (FGD-MPCMs) was developed. Various techniques, such as field emission-scanning electron microscopy (FE-SEM), optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to analyse the composite structure and thermal performances. The results indicate that the spherical microcapsules are well dispersed in the cement matrix. When combined within the cement, the thermal stability of the microcapsules was highly improved, and the inclusion of greater amounts of FGD-MPCMs further increased the latent heat of the composite. The mechanical properties of the cement composites were affected with the increase of FGD-MPCMs dosage and the porosity of the composites. In spite of this, the compressive strength and flexural strength of the cement composite with 30% FGD-MPCM could still reach to as high as 14.2 MPa and 4.1 MPa, respectively. Results from the infrared thermography and the model room test suggested that the composite filled with FGD-MPCMs is capable of reducing indoor temperature fluctuation and exhibits good potential for application in buildings to enhance energy savings and thermal comfort.

  8. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  9. Corrosion resistance of cement brick on an organo-mineral base in a hydrogen sulfide medium

    Potapov, A G; Belousov, G A; Pustovalov, V I; Skorikov, B M

    1981-01-01

    Results are presented of strength tests of cement brick made of different types of cement as a function of the composition of the mixing liquid and storage conditions. It is established that cement brick made of cement on a cinder base mixed in hydrogen sulfide water possesses the highest corrosive resistance to hydrogen sulfide attack. A marked increase in corrosion resistance is observed in cement brick on an organo-mineral base. Results of industrial tests of organo-mineral grouting mortar in a hydrogen sulfide medium are demonstrated.

  10. Immobilization of technetium and nitrate in cement-based materials

    Tallent, O.K.; McDaniel, E.W.; Del Cul, G.D.; Dodson, K.E.; Trotter, D.R.

    1987-01-01

    The leachabilities of technetium and nitrate wastes immobilized in cement-based grouts have been investigated. Factors found to affect the leachabilities include grout mix ratio, grout fluid density, dry solid blend composition, and waste concentration. 10 refs., 7 figs., 3 tabs

  11. Experimental Investigation of the Piezoresistive Properties of Cement Composites with Hybrid Carbon Fibers and Nanotubes

    Seung-Jung Lee

    2017-11-01

    Full Text Available Cement-based sensors with hybrid conductive fillers using both carbon fibers (CFs and multi-walled carbon nanotubes (MWCNTs were experimentally investigated in this study. The self-sensing capacities of cement-based composites with only CFs or MWCNTs were found based on preliminary tests. The results showed that the percolation thresholds of CFs and MWCNTs were 0.5–1.0 vol.% and 1.0 vol.%, respectively. Based on these results, the feasibility of self-sensing composites with four different amounts of CFs and MWCNTs was considered under cyclic compression loads. When the amount of incorporated CFs increased and the amount of incorporated MWCNTs decreased, the self-sensing capacity of the composites was reduced. It was concluded that cement-based composites containing both 0.1 vol.% CFs and 0.5 vol.% MWCNTs could be an alternative to cement-based composites with 1.0 vol.% MWCNTs in order to achieve equivalent self-sensing performance at half the price. The gauge factor (GF for that composite was 160.3 with an R-square of 0.9274 in loading stages I and II, which was similar to the GF of 166.6 for the composite with 1.0 vol.% MWCNTs.

  12. Crack path and fracture surface modifications in cement composites

    Sajjad Ahmad

    2015-10-01

    Full Text Available There is a tremendous increase in the use of high strength and high performance self-consolidating cementitious composites due to their superior workability and mechanical strengths. Cement composites are quasi-brittle in nature and possess extremely low tensile strength as compared to their compressive strength. Due to the low tensile strength capacity, cracks develop in cementitious composites due to the drying shrinkage, plastic settlements and/or stress concentrations (due to external restrains and/or applied stresses etc. These cracks developed at the nanoscale may grow rapidly due to the applied stresses and join together to form micro and macro cracks. The growth of cracks from nanoscale to micro and macro scale is very rapid and may lead to sudden failure of the cement composites. The present paper reports the modifications in the crack growth pattern of the high performance cement composites to achieve enhanced ductility and toughness. The objective was accomplished by the incorporation of the micro sized inert particulates in the cement composite matrix. The results indicate that the incorporation of micro sized inert particles acted as the obstacles in the growth of the cracks thus improving the ductility and the energy absorption capacity of the self-consolidating cementitious composites.

  13. Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite

    Solange Machado Mota

    2008-03-01

    Full Text Available This study investigated the number of Streptococcus mutans CFU (colony forming units in the saliva and plaque adjacent to orthodontic brackets bonded with a glass ionomer cement - GIC (Fuji Ortho or a resin-based composite - RC (Concise. Twenty male and female patients, aged 12 to 20 years, participated in the study. Saliva was collected before and after placement of appliances. Plaque was collected from areas adjacent to brackets and saliva was again collected on the 15th, 30th, and 45th day after placement. On the 30th day, 0.4% stannous fluoride gel was applied for 4 minutes. No significant modification in the number of Streptococcus mutans CFU in saliva was observed after placement of the fixed orthodontic appliances. On the 15th day, the percentage of Streptococcus mutans CFU in plaque was statistically lower in sites adjacent to GIC-bonded brackets (mean = 0.365 than in those adjacent to RC-bonded brackets (mean = 0.935. No evidence was found of a contribution of GIC to the reduction of CFU in plaque after the 15th day. Topical application of stannous fluoride gel on the 30th day reduced the number of CFU in saliva, but not in plaque. This study suggests that the antimicrobial activity of GIC occurs only in the initial phase and is not responsible for a long-term anticariogenic property.

  14. Full factorial design analysis of carbon nanotube polymer-cement composites

    Fábio de Paiva Cota

    2012-08-01

    Full Text Available The work described in this paper is related to the effect of adding carbon nanotubes (CNT on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CNT weight addition and water/cement ratio. The response parameters of the full factorial design were the bulk density, apparent porosity, compressive strength and elastic modulus of the polymer-cement-based nanocomposites. All the factors considered in this analysis affected significantly the bulk density and apparent porosity of the composites. The compressive strength and elastic modulus were affected primarily by the cross-interactions between polymeric phase and CNT additions, and the water/cement ratio with polymeric phase factors.

  15. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  16. A Study of Metal-Cement Composites with Additives

    Mironov Victor

    2014-12-01

    Full Text Available The application of small-sized metal fillers (SMF provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction. Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers.

  17. Reinforcement of cement-based matrices with graphite nanomaterials

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  18. Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites

    Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo

    2017-04-01

    Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.

  19. High-Temperature Self-Healing and Re-Adhering Geothermal Well Cement Composites

    Pyatina, T.; Sugama, T.; Boodhan, Y.; Nazarov, L.

    2017-12-01

    Self-healing cementitious materials are particularly attractive for the cases where damaged areas are difficult to locate and reach. High-temperature geothermal wells with aggressive environments impose most difficult conditions on cements that must ensure durable zonal isolation under repeated thermal, chemical and mechanical stresses. The present work evaluates matrix and carbon steel (CS) - cement interface self-healing and re-adhering properties of various inorganic cementitious composites under steam, alkali carbonate or brine environments at 270-300oC applicable to geothermal wells. The composite materials included blends based on Ordinary Portland Cement (OPC) and natural zeolites and alkali or phosphate activated composites of Calcium Aluminate Cement (CAC) with fly ash, class F. Class G cement blend with crystalline silica was used as a baseline. Compressive-strength and bond-strength recoveries were examined to evaluate self-healing and re-adhering properties of the composites after repeated crush tests followed by 5-day healing periods in these environments. The optical and scanning electron microscopes, X-ray diffraction, Fourier Transform infrared, Raman spectroscopy and EDX measurements were used to identify phases participating in the strengths recoveries and cracks filling processes. Amorphous silica-rich- and small-size crystalline phases played an important role in the healing of the tested composites in all environments. Possible ways to enhance self-healing properties of cementitious composites under conditions of geothermal wells were identified.

  20. Compressive strength and magnetic properties of calcium silicate-zirconia-iron (III) oxide composite cements

    Ridzwan, Hendrie Johann Muhamad; Shamsudin, Roslinda; Ismail, Hamisah; Yusof, Mohd Reusmaazran; Hamid, Muhammad Azmi Abdul; Awang, Rozidawati Binti

    2018-04-01

    In this study, ZrO2 microparticles and γ-Fe2O3 nanoparticles have been added into calcium silicate based cements. The purpose of this experiment was to investigate the compressive strength and magnetic properties of the prepared composite cement. Calcium silicate (CAS) powder was prepared by hydrothermal method. SiO2 and CaO obtained from rice husk ash and limestone respectively were autoclaved at 135 °C for 8 h and sintered at 950°C to obtain CAS powder. SiO2:CaO ratio was set at 45:55. CAS/ZrO2 sample were prepared with varying ZrO2 microparticles concentrations by 0-40 wt. %. Compressive strength value of CAS/ZrO2 cements range from 1.44 to 2.44 MPa. CAS/ZrO2/γ-Fe2O3 sample with 40 wt. % ZrO2 were prepared with varying γ-Fe2O3 nanoparticles concentrations (1-5 wt. %). The additions of γ-Fe2O3 nanoparticles showed up to twofold increase in the compressive strength of the cement. X-Ray diffraction (XRD) results confirm the formation of mixed phases in the produced composite cements. Vibrating sample magnetometer (VSM) analysis revealed that the ferromagnetic behaviour has been observed in CAS/ZrO2/γ-Fe2O3 composite cements.

  1. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    Yun-Wang Choi

    2017-01-01

    Full Text Available We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite materials because they are protected from moisture by the wall material. Therefore, the untreated cement is present in the form of a capsule within the cement composite, and hydration can be induced by moisture penetrating the crack surface in the event of cracking. In the process of granulating the cement, it is important to obtain a suitable consistency through the kneading agent and to maintain the moisture barrier performance of the wall material. We can utilize the results of this study as a basis for advanced self-healing capsule technology for cement composites.

  2. Mechanical Properties and Durability of CNT Cement Composites

    María del Carmen Camacho

    2014-02-01

    Full Text Available In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.

  3. Immobilization and leaching mechanisms of radwaste in cement-based matrices

    Glasser, F.P.; Rahman, A.A.; Crawford, R.W.; McCullough, C.E.; Angus, M.J.

    1983-01-01

    The effect of potential sorbers including silicas, titania, calcined kaolin, zirconium phosphate and two crystalline calcium silicates, tobermorite and xonotlite, have been used to improve the Cs-retention capacity of cement-based systems. The analysis of the pore fluid compositions of equilibrated cement-radwaste composites provides evidence concerning the leach mechanisms whereby Cs is removed. The reactions occurring between cement and clinoptilolite are elucidated and results of kinetic studies presented. Simulate Magnox waste is shown to react with cement, leading to a carbonate exchange. (author)

  4. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    Okamoto, Y.; Shintani, H.; Yamaki, M.

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy

  5. Reinforcing graphene oxide/cement composite with NH2 ...

    Reinforcing graphene oxide/cement composite with NH2 functionalizing group. M EBRAHIMIZADEH ABRISHAMI1,∗ and V ZAHABI2. 1Materials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad. 9177948974, Iran. 2Department of Civil Engineering, Islamic Azad University, ...

  6. Rational design of cement composites containing pozzolanic additions

    Keppert, M.; Urbanová, Martina; Brus, Jiří; Čáchová, M.; Fořt, J.; Trník, A.; Scheinherrová, L.; Záleská, M.; Černý, R.

    2017-01-01

    Roč. 148, 1 September (2017), s. 411-418 ISSN 0950-0618 R&D Projects: GA ČR(CZ) GA16-13778S Institutional support: RVO:61389013 Keywords : cement composites * pozzolanic additions * XRD analysis Subject RIV: JN - Civil Engineering OBOR OECD: Civil engineering Impact factor: 3.169, year: 2016

  7. Practical Model of Cement Based Grout Mix Design, for Use into Low Level Radiation Waste Management

    Radu Lidia

    2015-12-01

    Full Text Available The cement based grouts, as functional performance composite materials, are widely used for both immobilisation and encapsulation as well as for stabilization in the field of inorganic waste management. Also, to ensure that low level radioactive waste (LLW are contained for storage and ultimate disposal, they are encapsulated or immobilized in monolithic waste forms, with cementbased grouts.

  8. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  9. Accelerated weathering of composite cements used for immobilisation

    Borges, P. H. R.; Milestone, N. B.; Streatfield, R. E.

    2008-01-01

    Trying to estimate the long-term durability of cemented waste-forms is a difficult task as the cement matrix is a reactive medium and interactions can occur with the encapsulated waste as well as with the environment. There are few studies of samples that have been stored under controlled conditions for more than 10-15 years. waste-forms are now being expected to last hundreds of years, much of that likely to be in some form of storage where sample integrity is important. There is also the concern that results from any long-term samples may only be indicative as both formulations and materials change with time. This paper discusses changes in physical properties that occur in composite cements when some of the short-term accelerated procedures employed in construction testing are applied to encapsulating matrices. Changes after increased temperature of curing, wetting/drying and accelerated carbonation are discussed. Many of the encapsulating formulations currently used are composite cements where large replacement levels of OPC with supplementary cementing materials (SCMs) such as PFA or BFS are made, primarily to reduce heat output. Accelerating the exposure conditions, either by increasing temperature or through wetting/drying has the effect of changing the hydration pattern of the composite cement by generating more hydration in the SCMs than would normally occur. The large amount of porosity that occurs because of limited hydration allows intrusion of gases and ready movement of water, so the samples subjected to accelerated testing do not appear as durable as expected if stored at ambient. (authors)

  10. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics

    Josep Claramunt

    2017-02-01

    Full Text Available The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure—thickness and entanglement—on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion. For a fixed thickness, the effect of the nonwoven entanglement on the mechanical behavior was evaluated under flexural and direct tension tests. The obtained results indicate that the flax nonwoven fabric reinforcement leads to cement composites with substantial enhancement of ductility.

  11. A pressure-sensitive carbon black cement composite for traffic monitoring

    Monteiro, A.O.

    2017-08-17

    Recent advances in nanotechnology have guided the development of a new generation of multifunctional construction materials. An example of this are cement-based composites, some of which can be used not just to pave roads but also to monitor them. A cement composite, integrating a carbon black (CB) filler, was used as a piezoresistive sensor to identify different cyclic compressive loadings, at temperatures ranging from 15°C to 45°C. The mechanical essays were performed under realistic conditions using 600cm3 specimens and uniaxial loads typical of automobile traffic. A linear and reversible pressure-sensing performance was found with gauge factors ranging from 40 to 60. Overall, these results show that CB/cement composites can act as stress-sensitive materials for traffic monitoring.

  12. 3.4. Chemical additives and granulometric composition influence on soils armed by cement

    Saidov, D.Kh.

    2011-01-01

    Purpose of this work was to evaluate an influence of various chemical additives on soils armed by portland cement. Experimental research of kinetics of soil cements structure formation after adding the chemicals was carried out. According to the investigations it was determined that structure formation process of soil cements depended on granulometric composition of armed soil, cement quantity, type and quantity of chemical additives.

  13. Transportation of ions through cement based materials

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  14. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  15. Impact performance of the fibre-cement composites

    Agopyan, V.; Savastano Junior, H.

    1995-01-01

    The transition zone of short filament fibres randomly dispersed in a paste of ordinary portland cement is analysed. Composites of vegetable fibres (malva, sisal and coir) are compared with those containing chrysotile asbestos and polypropylene fibres. The series of composites are prepared to be tested at the ages of 7, 28, 90 and 180 days. The water-cement ratio is 0.38 and at the age of 28 days specimens with ratio of 0.30 and 0.46 are also tested. The backscattered electron image and energy dispersive spectroscopy identify the major properties of the fibre-matrix interface. The microstructural characteristics are directly associated with the toughness of the composites, once the energy dissipation at transition zone is confirmed. (author). 8 refs., 4 figs., 1 tab

  16. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material

    Tanvir Manzur

    2016-01-01

    Full Text Available Carbon nanotubes (CNTs are a virtually ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. It is evident from contemporary research that utilization of CNT in producing new cement-based composite materials has a great potential. Consequently, possible practical application of CNT reinforced cementitious composites has immense prospect in the field of applied nanotechnology within construction industry. Several repair, retrofit, and strengthening techniques are currently available to enhance the integrity and durability of concrete structures with cracks and spalling, but applicability and/or reliability is/are often limited. Therefore, there is always a need for innovative high performing concrete repair materials with good mechanical, rheological, and durability properties. Considering the mechanical properties of carbon nanotubes (CNTs and the test results of CNT reinforced cement composites, it is apparent that such composites could be used conveniently as concrete repair material. With this end in view, the applicability of multiwalled carbon nanotube (MWNT reinforced cement composites as concrete repair material has been evaluated in this study in terms of setting time, bleeding, and bonding strength (slant shear tests. It has been found that MWNT reinforced cement mortar has good prospective as concrete repair material since such composites exhibited desirable behavior in setting time, bleeding, and slant shear.

  17. A pressure-sensitive carbon black cement composite for traffic monitoring

    Monteiro, A.O.; Loredo, A.; Da Costa, Pedro M. F. J.; Oeser, M.; Cachim, P.B.

    2017-01-01

    Recent advances in nanotechnology have guided the development of a new generation of multifunctional construction materials. An example of this are cement-based composites, some of which can be used not just to pave roads but also to monitor them. A

  18. Response of a PGNAA setup for pozzolan-based cement concrete specimens

    Naqvi, A.A.; Garwan, M.A.; Maslehuddin, M.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Raashid, M.

    2010-01-01

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the γ-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring γ-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  19. Response of a PGNAA setup for pozzolan-based cement concrete specimens

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-04-15

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the {gamma}-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring {gamma}-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  20. Environmental interactions of cement-based products

    Florea, M.V.A.; Schmidt, W.; Msinjili, N.S.

    2016-01-01

    The environmental interactions of concrete and other cement-based products encompasses both the influence of such materials on their environment, as well as the effects of the environment on the materials in time. There are a number of ways in which the environmental impact of concrete can be

  1. Self-sensing piezoresistive cement composite loaded with carbon black particles

    Monteiro, André O.

    2017-04-27

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several composite mixtures, with a CB filler loading up to 10% of binder mass, were mechanically tested under cyclic uniaxial compression, registering variations in electrical resistance as a function of deformation. The results show a reversible piezoresistive behaviour and a quasi-linear relation between the fractional change in resistivity and the compressive strain, in particular for those compositions with higher amount of CB. Gage factors of 30 and 24 were found for compositions containing 7 and 10% of binder mass, respectively. These findings suggest that the CB-cement composites may be a promising active material to monitor compressive strain in civil infrastructures such as concrete bridges and roadways.

  2. Mechanical properties of cement concrete composites containing nano-metakaolin

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  3. Use of coir pith particles in composites with Portland cement.

    Brasileiro, Gisela Azevedo Menezes; Vieira, Jhonatas Augusto Rocha; Barreto, Ledjane Silva

    2013-12-15

    Brazil is the fourth largest world's producer of coconut (Cocos nucifera L.). Coconut crops generate several wastes, including, coir pith. Coir pith and short fibers are the byproducts of extracting the long fibers and account for approximately 70% of the mature coconut husk. The main use of coir pith is as an agricultural substrate. Due to its shape and small size (0.075-1.2 mm), this material can be considered as a particulate material. The aim of this study was to evaluate the use of coir pith as an aggregate in cementitious composites and to evaluate the effect of the presence of sand in the performance of these composites. Some composites were produced exclusively with coir pith particles and other composites with coir pith partially substituting the natural sand. The cementitious composites developed were tested for their physical and mechanical properties and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy to evaluate the effect of coir pith particles addition in cement paste and sand-cement-mortar. The statistical significance of the results was evaluated by one-way analysis of variance (ANOVA) test followed by multiple comparisons of the means by Tukey's test that showed that the composites with coir pith particles, with or without natural sand, had similar mechanical results, i.e., means were not statistically different at 5% significance level. There was a reduction in bulk density and an improved post-cracking behavior in the composites with coir pith particles compared to conventional mortar and to cement paste. These composites can be used for the production of lightweight, nonstructural building materials, according to the values of compressive strength (3.97-4.35 MPa) and low bulk density (0.99-1.26 g/cm(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Physical and thermal behavior of cement composites reinforced with recycled waste paper fibers

    Hospodarova, Viola; Stevulova, Nadezda; Vaclavik, Vojtech; Dvorsky, Tomas

    2017-07-01

    In this study, three types of recycled waste paper fibers were used to manufacture cement composites reinforced with recycled cellulosic fibers. Waste cellulosic fibers in quantity of 0.2, 0.3, and 0.5 wt.% were added to cement mixtures. Physical properties such as density, water capillarity, water absorbability and thermal conductivity of fiber cement composites were studied after 28 days of hardening. However, durability of composites was tested after their water storage up to 90 days. Final results of tested properties of fiber cement composites were compared with cement reference sample without cellulosic fibers.

  5. Nano-modified cement composites and its applicability as concrete repair material

    Manzur, Tanvir

    Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an

  6. Polymer-Cement Composites Containing Waste Perlite Powder

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  7. POTENTIAL ANTISTATIC PROPERTIES OF A CEMENT COMPOSITION MODIFIED BY CHITOSAN

    Darchiya Valentina Ivanovna

    2012-10-01

    Full Text Available Environmental compatibility of construction materials and their impact onto the human organism and the environment are the essential factors to be taken account of in the course of construction. Therefore, natural renewable biological polymers arouse interest. Polysaccharide chitin takes a special position among them. It represents one of the most widely spread biological polymers; it is extracted from 100% renewable materials. It is part of the external skeleton of crustaceans and insects, and it also part of cell walls of mushrooms and algae. Any research of potential materials to be generated from chitin and its derivative chitosan may involve a practical implementation. The research of the antistatic properties followed the introduction of 1% of chitosan into the cement composition. Electrostatic field intensity was measured by Electrostatic Field Intensity Meter ST-01. The electrostatic property of the sample modified by chitosan turned out to be lower than the one of the benchmark sample by 5.6 times. The presence of chitosan in the cement composition makes no impact on strength-related properties of the construction material. The cement composition modified by chitosan may be used in the manufacturing of antistatic self-leveling floors.

  8. Evaluation of cement composites for tritiated water fixation, 1

    Amano, Hiroshi; Sakuma, Youichi; Okamoto, Tadashi; Utsunomiya, Toru; Moriya, Toshio; Shimbo, Takashi; Higuchi, Masanori.

    1985-01-01

    The integrity of a waste package of tritiated waste is one of the most important parameters in proceeding safety assessments of tritiated waste disposal systems. Of the many terms governing the integrity of a waste package, the one that is directly connected with safety assessment is the leach rate of tritium from the solidified object. Experiments focusing on measurements of leach rates were therefore conducted. These experiments consisted of three stages, in the first stage experiment, types of cement and mix proportions were selected on the bases of (1) weight reduction, (2) micro-structure, (3) compressive strength, (4) ignition loss, and (5) chemical analysis. And two mix proportions each, for normal portland cement and special cement, were chosen for further testing. In the second stage, as a preliminary experiment for measuring the leach rate of tritium, the leach rate of deuterium was studied by measuring densities of immersed liquid. The examination of the relations between the leach rates and the beforementioned properties ((1) to (4) in the first stage experiment) clearly showed that the lower leach rate were achieved with the lower water-cement ratio which represented the higher density of the cement form. In the third stage experiment, it is planned hereafter to confirm the above results by carrying out leach tests for tritium. (author)

  9. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  10. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction

    Guo, H; Wei, J; Liu, C S

    2006-01-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement

  11. Durability of cement and geopolimer composites

    Błaszczyński, T.; Król, M.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. This main feature depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used a highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in a chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcium ash from the burning of lignite.

  12. Cement based grouts - longevity laboratory studies: leaching behaviour

    Onofrei, M.; Gray, M.; Roe, L.

    1991-12-01

    This report describes a series of laboratory tests carried out to determine the possible leaching behaviour of cement-based grouts in repository environments. A reference high-performance cement-based grout, comprised of Canadian Type 50 (U.S. Type V) Sulphate Resisting Portland Cement, silica fume, potable water and superplasticizer, and a commercially available cement grout were subjected to leaching in distilled water and three simulated groundwaters of different ionic strength. Hardened, monolithic specimens of the grout were leached in static, pulsed-flow and continuous flow conditions at temperatures from 10 degrees C to 150 degrees C for periods of up to 56 days. The changes in concentration of ions in the leachants with time were determined and the changes in the morphology of the surfaces of the grout specimens were examined using electron microscopy. After a review of possible mechanisms of degradation of cement-based materials, the data from these experiments are presented. The data show that the grouts will leach when in contact with water through dissolution of more soluble phases. Comparison of the leaching performance of the two grouts indicates that, while there are some minor differences, they behaved quite similarly. The rate of the leaching processes were found to tend to decrease with time and to be accompanied by precipitation and/or growth of an assemblage of secondary alteration phases (i.e., CaCO 3 , Mg(OH) 2 ). The mechanisms of leaching depended on the environmental conditions of temperature, groundwater composition and water flow rate. Matrix dissolution occurred. However, in many of the tests leaching was shown to be limited by the precipitated/reaction layers which acted as protective surface coatings. (37 refs.) (au)

  13. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    Durdziński, Paweł T., E-mail: pawel.durdzinski@gmail.com [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Dunant, Cyrille F. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Haha, Mohsen Ben [HeidelbergCement Technology Center GmbH (HeidelbergCement AG), Rohrbacher Str. 95, 69181 Leimen (Germany); Scrivener, Karen L. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-15

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react.

  14. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    Durdziński, Paweł T.; Dunant, Cyrille F.; Haha, Mohsen Ben; Scrivener, Karen L.

    2015-01-01

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react

  15. Comparison of mineral trioxide aggregate's composition with Portland cements and a new endodontic cement.

    Asgary, Saeed; Eghbal, Mohammad Jafar; Parirokh, Masoud; Ghoddusi, Jamileh; Kheirieh, Sanam; Brink, Frank

    2009-02-01

    The aim of this study was to compare the compositions of mineral trioxide aggregates (MTAs), Portland cements (PCs), and a new endodontic cement (NEC). Our study also investigated the surface characteristics of MTA and NEC root-end fillings when immersed in normal saline. For part I, we prepared samples of 9 brands of MTAs, PCs, and NEC. The materials were imaged and analyzed by scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA). In part II, 3-mm-deep root-end preparations were filled with MTA or NEC and stored in normal saline for 1 week. Samples were imaged and analyzed by SEM and electron probe microanalysis (EPMA). EDXA investigations revealed differences in the dominant compounds of NEC, PCs, and MTAs. The major components of MTA and PC are the same except for bismuth. The most significant difference was the presence of higher concentrations of Fe (minor element) in gray MTA and PC when compared with white ones. EPMA results revealed remarkably different elements in MTA compared with surrounding dentin, whereas in the NEC group the distribution patterns of calcium, phosphorous, and oxygen were comparable. NEC differs chemically from MTAs and PCs and demonstrates comparable surface composition with adjacent dentin as a root-end filling material.

  16. The effect of chemically adjusting cement compositions on leachabilities of waste ions

    Barnes, M.W.; Scheetz, B.E.; Roy, D.M.

    1986-01-01

    The chemical composition of both portland and aluminate cements was adjusted by adding amorphous silica. In the case of portland cement, the object was to react with excess portlandite and obtain an overall composition compatible with C-S-H gel or C-S-H gel + silica at low temperatures, and to obtain the tobermorite composition in order to be in equilibrium with this phase at temperatures above normal ambient. In the case of aluminate cement, the object was to be in equilibrium with more silica-rich phases. These silica-adjusted cements were used to make composites with nuclear waste forms. Leach tests showed that the silica-adjusted composites were chemically more stable than those made with as-received cement. Leach rates were lower in the case of the adjusted cements for Rb, Cs, Ca, Sr, Ba, La, Ce, Nd, Gd, Al, and Si. Only Na in the case of both portland and aluminate cements, and Mg and U in the case of aluminate cements, had greater leach rates in adjusted cements. Adjusting the composition of cements with silica is concluded to be beneficial when making composites to encapsulate nuclear waste forms

  17. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a two-part...

  18. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  19. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: jjunior@peq.coppe.ufrj.b, E-mail: melo@peq.coppe.ufrj.b, E-mail: pinto@peq.coppe.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia. (PEQ/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano; Nele, M. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2011-04-15

    Artificial bone cements (BCs) based on poly(methyl methacrylate) (PMMA) powders and methyl methacrylate (MMA) liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA) and acrylic acid (AA) to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired. (author)

  20. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    J. G. F. Santos Jr.

    2011-06-01

    Full Text Available Artificial bone cements (BCs based on poly(methyl methacrylate (PMMA powders and methyl methacrylate (MMA liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in-situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA and acrylic acid (AA to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired.

  1. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT/Cement Composites

    Bhuvaneshwari Balasubramaniam

    2017-10-01

    Full Text Available The exciting features of carbon nanotubes (CNTs, such as high elastic modulus, high thermal and electrical conductivities, robustness, and nanoscopic surface properties make them attractive candidates for the cement industry. They have the potential to significantly enhanceengineering properties. CNTs play an important and critical role as nano-anchors in concrete, which enhance the strength by bridging pores in the composite matrix, thereby ensuring robust mechanical strength. The diameter, dispersion, aspect ratio, and interfacial surface interaction of CNTs affect the physical and mechanical properties of concrete, if due care is not taken. In this paper, the usable amount of CNT is scaled down considerably from 0.5% to 0.025% by weight of the cement and the fluctuation caused by these phenomena is assessed. It is observed that the properties and exact quantities of incorporated CNTs influence the hydration and consistency of the composites. In order to address these issues, the surface functionalization of CNTs and rheological studies of the composites are performed. The hydration products and functional groups are carefully optimized and characterized by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and a Zeta potential analyzer. For Mixes 6 and 7, the compressive and tensile strength of CNTs incorporated in mortar specimens caused77% and 48% increases in split tensile strength, respectively, and 17% and 35% increases in compressive strength, respectively, after 28 days of curing and compared withthe control Mix.

  2. Long-term modeling of glass waste in portland cement- and clay-based matrices

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ''templates'' was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ''affinity effect'' cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity

  3. Immobilization of radioactive waste in cement-based matrices

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Model studies of the behaviour of cement systems have been advanced by considering the nature of the phases formed during hydration and deriving pH-composition models for the CaO-SiO 2 -H 2 O system. Preliminary results of Esub(h) measurements are also reported. Leach tests on Sr from cements are interpreted in terms of Sr retention mechanisms. Present results indicate that the aluminate phases in OPC contribute to the chemical retentivity. Studies on cement-clinoptilolite reactions, made using coarse grained clinoptilolite are reported: ferrierite also reacts chemically with cement. Two critical surveys are presented, together with new data: one on the potential of blended cements, the other on cement durability in CO 2 -containing environments. (author)

  4. Sulfur polymer cement concrete

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  5. Interface and internal compatibility in a copper fibre cement composite

    Kittl, P.

    1993-09-01

    Full Text Available This paper presents the mechanical behaviour of a compacted composite formed by short ductile copper fibres randomly distributed in portland cement matrix. The samples, a half with fibres and the other without them, were subjected to compression fatigue. So, 1 hertz and the value of stress corresponding to the 1% of the probability of fracture by gradual load were used. Diagrams of cumulative probability of fracture against cycles are obtained for both types of samples. Scanning electron microscopy shows that the mechanisms of fracture are different in each case. Samples of compacted neat-cement paste finish their life with a catastrophic fracture whereas samples of composite behave like a pseudoductile material devoid of catastrophic failure. The results are discussed and compared with the ones obtained by thermal shock and by the interface brittleness theory, as well as with the statistical theory of time-dependent fracture for cementitious materials subjected to cyclic loading. So, in the thermal shock microcracks are generated in the interface matrix-fibre which simultaneously act as emmitings and sumps of cracks whereas this does not occur in mechanical fatigue.

    Este trabajo presenta el comportamiento mecánico de un compuesto fabricado por compactación y constituido por fibras de cobre distribuidas aleatoriamente en una matriz de cemento portland. Las muestras, la mitad con fibras y la otra sin ellas, se sometieron a fatiga por compresión. El ciclo de carga fue de 1 hertz y la carga aplicada aquella correspondiente a la tensión asociada a un 1% de probabilidad de fractura cuando la carga se aplica gradualmente. Para ambos tipos de muestras se graficaron los diagramas de probabilidad acumulativa de fractura en función del número de ciclos. Con microscopía electrónica de barrido se observó que el mecanismo de fractura es diferente para cada tipo de muestras. Aquellas de pasta pura de cemento compactada terminaron su ciclo de

  6. Influence of the mineralogical composition of cement in the diffusion of chemical species

    Galicia A, E.

    2015-01-01

    The disposal is the final stage of radioactive waste management. This is essentially placing them in a facility with a reasonable assurance of safety. In this last stage, the ultimate goal is the confinement and isolation of radioactive waste from the human environment for a time period and under conditions such that the release of radionuclides not put in radiation risk to people and the environment. In relation to the storage of radioactive waste of low and medium activity, the final repositories for radioactive waste, based in cement materials are already operating in many countries. The isolation is performed by applying natural or artificial barriers between radioactive waste and man so as to prevent the release of radionuclides to the environment, until they have decreased their toxicity. The cement-based materials are involved in the different stages of the radioactive waste management since they are used for immobilization of waste in the container, container manufacturing and filling the spaces between the containers and vaults container and also as a barrier engineering and construction material in civil engineering. The concrete (cement mix + water + sand + gravel) it is one of the materials used to produce the engineered barrier system and produce containers for radioactive waste. In addition to their mechanical properties (product processing into hydraulic binder after being hydrated), their composition and solubility allow cushion the contact groundwater to ph higher (12.0 - 13.5) during considerable time scales (10 14 - 10 15 years) and it has an active role with the radionuclides confinement present in the radiological inventory of radioactive waste. The study of the microstructures of cement is a constant challenge for specialists working in this area, mainly due to the complex and heterogeneous mineralogical composition. Cement consists of many different phases in order to achieve specific properties such as reactivity properties, setting time

  7. Performance of aged cement - polymer composite immobilizing borate waste simulates during flooding scenarios

    Eskander, S.B.; Bayoumi, T.A.; Saleh, H.M.

    2012-01-01

    An advanced composite of cement and water extended polyester based on the recycled Poly(ethylene terephthalate) waste was developed to incorporate the borate waste. Previous studies have reported the characterizations of the waste composite (cement-polymer composite immobilizing borate waste simulates) after 28 days of curing time. The current work studied the performance of waste composite aged for seven years and subjected to flooding scenario during 260 days using three types of water. The state of waste composite was assessed at the end of each definite interval of the water infiltration through visual examination and mechanical measurement. Scanning electron microscopy, infrared spectroscopy, X-ray diffraction and thermal analyses were used to investigate the changes that may occur in the microstructure of the waste composite under aging and flooding effects. The actual experimental results indicated reasonable evidence for the waste composite. Acceptable consistency was confirmed for the waste composite even after aging seven years and exposure to flooding scenario for 260 days.

  8. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement-based

  9. A self-sensing carbon nanotube/cement composite for traffic monitoring

    Han Baoguo; Yu Xun; Kwon, Eil

    2009-01-01

    In this paper, a self-sensing carbon nanotube (CNT)/cement composite is investigated for traffic monitoring. The cement composite is filled with multi-walled carbon nanotubes whose piezoresistive properties enable the detection of mechanical stresses induced by traffic flow. The sensing capability of the self-sensing CNT/cement composite is explored in laboratory tests and road tests. Experimental results show that the fabricated self-sensing CNT/cement composite presents sensitive and stable responses to repeated compressive loadings and impulsive loadings, and has remarkable responses to vehicular loadings. These findings indicate that the self-sensing CNT/cement composite has great potential for traffic monitoring use, such as in traffic flow detection, weigh-in-motion measurement and vehicle speed detection.

  10. Preparation of composites of national rubber latex (NRL) - portland cement mould. Vol. 3

    Dessouki, A.M.; Taher, N.H.; El-Nahas, H.H.

    1996-01-01

    The aim of this study is to prepare some polymeric mould using national rubber latex (NRL) - portland cement composites based on a delayed- action mechanism. Factors affecting the preparation process such as concentration, mixing percentage, additives and their effect on what is regarded as a delayed action coacervant combination was studied. Composites of national latex (NRL) - portland cement would were prepared as two separate parts. The stabilized natural rubber latex (NRL) 100 parts with hydroxy ethyl cellulose (HEC) 2 parts as stabilizer and a delayed - action coacervant (sodium meta silicate as a delaying agent) 5 parts on one hand and the dry blend of cement 65 parts soluble in 65 parts of water as a paste on the other hand were mixed thoroughly on site. (HEC) was added to the rubber latex to prevent the coagulation of the rubber latex with the electrolyte (sodium meta silicate) present in the rubber mixture. Two kinds of stabilization occurred in the rubber part, namely steric stabilization and the stabilization against electrolyte. The effect of delayed - action coacervant (sodium meta silicate) on the initial setting time of rubber - cement mould showed that the molding process did not occur at sodium meta silicate concentration less than 2.66 parts per 100 parts of rubber latex (phr), and the optimum concentration used was 5% parts of rubber latex. It was observed that addition of a delaying agent (Sodium meta silicate) to the rubber part enhanced the delaying mechanism in the time needed for the molding process, while the addition of the delaying agent to the cement part did not have any effect on retardation of the molding process. Chemical coacervants function mainly by reducing the ζ potential which is associated with the electrical double layer surrounding the latex particle. This reduction may brought about in at least three distinct ways which take place in the system studied. 5 figs., 3 tabs

  11. Preparation of composites of national rubber latex (NRL) - portland cement mould. Vol. 3

    Dessouki, A M; Taher, N H; El-Nahas, H H [National Center for Radiation Research and Technology, Atomic Energy Athority, Cairo (Egypt)

    1996-03-01

    The aim of this study is to prepare some polymeric mould using national rubber latex (NRL) - portland cement composites based on a delayed- action mechanism. Factors affecting the preparation process such as concentration, mixing percentage, additives and their effect on what is regarded as a delayed action coacervant combination was studied. Composites of national latex (NRL) - portland cement would were prepared as two separate parts. The stabilized natural rubber latex (NRL) 100 parts with hydroxy ethyl cellulose (HEC) 2 parts as stabilizer and a delayed - action coacervant (sodium meta silicate as a delaying agent) 5 parts on one hand and the dry blend of cement 65 parts soluble in 65 parts of water as a paste on the other hand were mixed thoroughly on site. (HEC) was added to the rubber latex to prevent the coagulation of the rubber latex with the electrolyte (sodium meta silicate) present in the rubber mixture. Two kinds of stabilization occurred in the rubber part, namely steric stabilization and the stabilization against electrolyte. The effect of delayed - action coacervant (sodium meta silicate) on the initial setting time of rubber - cement mould showed that the molding process did not occur at sodium meta silicate concentration less than 2.66 parts per 100 parts of rubber latex (phr), and the optimum concentration used was 5% parts of rubber latex. It was observed that addition of a delaying agent (Sodium meta silicate) to the rubber part enhanced the delaying mechanism in the time needed for the molding process, while the addition of the delaying agent to the cement part did not have any effect on retardation of the molding process. Chemical coacervants function mainly by reducing the {zeta} potential which is associated with the electrical double layer surrounding the latex particle. This reduction may brought about in at least three distinct ways which take place in the system studied. 5 figs., 3 tabs.

  12. Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites

    Wu-Jian Long

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA. Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM atomic force microscope (AFM, and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM/backscattered mode (BSEM showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.

  13. Cement-Based Materials for Nuclear Waste Storage

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  14. Densified ultra-light cement-based materials

    Esteves, Luis Pedro

    2015-01-01

    be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with combined...

  15. Radiation chemical treatment of cement mortar - polymer composites

    Younes, M.M.

    1994-01-01

    The development of the hardened cement pastes,mortars and concretes which contain polymers has progressed rapidly in years. Developmental work has identified a number of applications where the high strength and excellent durability of the composite materials will provide definite advantages over conventional mortars and concretes. The first investigations of polymer - impregnated concrete tried mainly to increase the quantity of absorbed and polymerised monomer because this gave a greater decrease in the original of concrete and a subsequent improvement in physico - mechanical properties. However, the production costs which is due mainly to the organic polymer, becomes the most important item. In this respect recent research showed the possibility of obtaining with a very compact concrete, of relative low porosity, a compound material with high performances after impregnation 26 tabs.,28 figs.,109 refs

  16. Immobilisation of radwaste in cement based matrices

    Glasser, F.P.; Macphee, D.; Atkins, M.; Pointer, C.; Cowie, J.; Wilding, C.R.; Mattingley, N.J.; Evans, P.A.

    1989-01-01

    The solubilities and influence on cement pH are reported for calcium aluminate and aluminosulphate hydrates. The solubility of Ca(OH) 2 is reported to 700 bars. Polymerization of C-S-H is investigated by NMR. Specific interactions of U 6+ and iodine (I - , IO 3 - ) with cement components are described. The impact of radiation on cements and the influence of higher temperature are documented. The role of dissolved Ca and CO 2 in groundwaters as dissolution media for cements are reported. (author)

  17. Microindentation of Polymethyl Methacrylate (PMMA Based Bone Cement

    F. Zivic

    2011-12-01

    Full Text Available Characterization of polymethyl methacrylate (PMMA based bone cement subjected to cyclical loading using microindentation technique is presented in this paper. Indentation technique represents flexible mechanical testing due to its simplicity, minimal specimen preparation and short time needed for tests. The mechanical response of bone cement samples was studied. Realised microindentation enabled determination of the indentation testing hardness HIT and indentation modulus EIT of the observed bone cement. Analysis of optical photographs of the imprints showed that this technique can be effectively used for characterization of bone cements.

  18. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  19. From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene-Cement Composites.

    Gholampour, Aliakbar; Valizadeh Kiamahalleh, Meisam; Tran, Diana N H; Ozbakkaloglu, Togay; Losic, Dusan

    2017-12-13

    Graphene materials have been extensively explored and successfully used to improve performances of cement composites. These formulations were mainly optimized based on different dosages of graphene additives, but with lack of understanding of how other parameters such as surface chemistry, size, charge, and defects of graphene structures could impact the physiochemical and mechanical properties of the final material. This paper presents the first experimental study to evaluate the influence of oxygen functional groups of graphene and defectiveness of graphene structures on the axial tension and compression properties of graphene-cement mortar composites. A series of reduced graphene oxide (rGO) samples with different levels of oxygen groups (high, mild, and low) were prepared by the reduction of graphene oxide (GO) using different concentrations of hydrazine (wt %, 0.1, 0.15, 0.2, 0.3, and 0.4%) and different reduction times (5, 10, 15, 30, and 60 min) and were added to cement mortar composites at an optimal dosage of 0.1%. A series of characterization methods including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy were performed to determine the distribution and mixing of the prepared rGO in the cement matrix and were correlated with the observed mechanical properties of rGO-cement mortar composites. The measurement of the axial tension and compression properties revealed that the oxygen level of rGO additives has a significant influence on the mechanical properties of cement composites. An addition of 0.1% rGO prepared by 15 min reduction and 0.2% (wt %) hydrazine with mild level of oxygen groups resulted in a maximum enhancement of 45.0 and 83.7%, respectively, in the 28-day tensile and compressive strengths in comparison with the plain cement mortar and were higher compared to the composite prepared with GO (37.5 and 77.7%, respectively). These

  20. Immobilization of radioactive waste in cement based matrices

    Glasser, F.P.; Macphee, D.; Atkins, M.; Beckley, N.; Carson, S.; McHugh, G.; Mattingley, N.J.; Naish, C.C.; Wilding, C.R.

    1988-01-01

    The modelling of cement behaviour at longer ages is reported. Factors studied include composition, pH and Esub(h). The stresses arising from irradiation are evaluated. The behaviour of two elements in cement - U and I has been studied; new experimental data are reported including solubility measurements. Some additional data are given on Sr. Results of desk studies relevant to lifetime predictions are presented. (author)

  1. Evaluation of cement treated base courses : technical assistance report.

    2000-12-01

    The objectives of this project are to determine the strength characteristics of soil cement bases that were constructed under stabilized procedures (DOTD TR 432M/432-99) and the cement treated design philosophy. This was accomplished by using the Fal...

  2. Influence of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials

    Yu, R.; Shui, Z.H.

    2013-01-01

    This paper presents a study, including experimental and mechanism analysis, on investigating the effect of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials. The recycled additive is firstly produced form waste hardened cement paste

  3. Physical and Mechanical Properties of Composites Made with Aluminous Cement and Basalt Fibers Developed for High Temperature Application

    Pavel Reiterman

    2015-01-01

    Full Text Available Present paper deals with the experimental study of the composition of refractory fiber-reinforced aluminous cement based composites and its response to gradual thermal loading. Basalt fibers were applied in doses of 0.25, 0.5, 1.0, 2.0, and 4.0% in volume. Simultaneously, binder system based on the aluminous cement was modified by fine ground ceramic powder originated from the accurate ceramic blocks production. Ceramic powder was dosed as partial replacement of used cement of 5, 10, 15, 20, and 25%. Influence of composition changes was evaluated by the results of physical and mechanical testing; compressive strength, flexural strength, bulk density, and fracture energy were determined on the different levels of temperature loading. Increased dose of basalt fibers allows reaching expected higher values of fracture energy, but with respect to results of compressive and flexural strength determination as an optimal rate of basalt fibers dose was considered 0.25% in volume. Fine ground ceramic powder application led to extensive increase of residual mechanical parameters just up to replacement of 10%. Higher replacement of aluminous cement reduced final values of bulk density but kept mechanical properties on the level of mixtures without aluminous cement replacement.

  4. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  5. Performance of carbon nanofiber-cement composites subjected to accelerated decalcification

    Arnold J.; Kosson D.; Sanchez F.; Brown L.

    2013-01-01

    The effect of decalcification on the chemo-mechanical behavior of carbon nanofiber (CNF)-cement composites was studied. Portland cement pastes with and without 0.2% CNFs were subjected to accelerated decalcification by exposure to ammonium nitrate solutions. The influence of microstructural alterations during decalcification on the physical and mechanical properties of the composites was examined. The presence of CNF agglomerates influenced the chemo-mechanical behavior of the composite durin...

  6. Effect of surface treatment of carbon nanotubes on mechanical properties of cement composite

    KONDAKOV Alexander Igorevich

    2014-08-01

    Full Text Available The aim of the paper is to explore the influence of the carbon nanotubes functionalized by oxygen groups on the physical and mechanical properties of cement composites. Advantages and disadvantages of the main methods for the homogeneous distribution of carbon nanotubes (CNTs in solution are discussed. A method for covalent functionalization of CNTs is described. An acid-base titration and dispersion analysis of solutions containing functionalized carbon nanotubes (f-CNTs was performed. The research data made it possible to propose new technology of preparation of modified concrete. The results of the work can be used for designing of the additives commonly used in the construction industry, as well as for further studies of the effects of CNTs on the physical and mechanical and structural properties of building materials. Efficient modification of cement composite with f-CNTs was achieved at the concentration of f-CNTs ranging from 0.0004% to 0.0008% by weight of the binder. The observed increase of the concrete mechanical properties is explained by the fact that the CNTs act as nucleation centers for the cement hydration products.

  7. Concretes with ternary composite cements. Part III: multicriteria optimization

    Irassar, E. F.

    2007-06-01

    Full Text Available Optimization methods are tools of vital importance in composite material design, where large numbers of components and design criteria must be taken into account. The formulation of today’s separately milled custommade cements is a clear example of just such a case, for the components must be proportioned to yield mortars and concretes with the proper balance of durability, strength, financial and environmental features. Multicriteria optimization has been used to develop many materials, although its application in cement formulation has yet to be explored. The present paper discusses the use of an objective function to jointly optimize sorptivity and compressive strength in limestone- (up to 20% and/or granulated blast furnace slag- (up to 20% additioned Portland cement concrete.Los métodos de optimización constituyen una herramienta de vital importancia en el diseño de materiales compuestos, donde la cantidad de componentes de la mezcla y los criterios de diseño que deben tenerse en cuenta en el proceso de fabricación son numerosos. En la actualidad, la formulación de un cemento a medida (tailor made a partir del proceso de molienda separada es un claro ejemplo de ello, pues las proporciones relativas de las componentes de la mezcla deben permitir luego obtener morteros y hormigones con el equilibrio justo entre los requerimientos durables, mecánicos, económicos y ecológicos que se soliciten. La optimización por multicriterios ha sido empleada en el desarrollo de diversos materiales, sin embargo, su aplicación en la formulación del cemento no ha sido aún explorada. En este trabajo se presenta la optimización conjunta de la capacidad de absorción y la resistencia a compresión de hormigones elaborados con cemento Portland con caliza (hasta un 20% y/o escoria granulada de alto horno (hasta un 20% utilizando la función objetivo.

  8. Concrete and cement composites used for radioactive waste deposition.

    Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel

    2017-11-01

    This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study of the relation between hydrated portland cement composition and leaching resistance

    Eijk, van R.J.; Brouwers, H.J.H.

    1998-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  10. Study of hydrated Portland cement composition in regard to leaching resistance

    Eijk, van R.J.; Brouwers, H.J.H.

    1997-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  11. Research on the nanolevel influence of surfactants on structure formation of the hydrated Portland cement compositions

    Guryanov Alexander

    2016-01-01

    Full Text Available The research of the structure formation process on a nanolevel of the samples of hydrated Portland cement compositions containing the modifying additives has been conducted with the help of small angle neutron scattering method. Carbonate and aluminum alkaline slimes as well as the complex additives containing surfactants were used as additives. The influence of slimes and surfactants on structural parameters change of Portland cement compositions of the average size of the disseminating objects, fractal dimension samples is considered. These Portland cement compositions are shown to be fractal clusters.

  12. Microstructure and durability of Portland cement-carbon nanotube composites

    MacLeod, Alastair James Neil

    2017-01-01

    The incorporation of carbon nanotubes (CNTs), fibres with diameters less than 100 nanometres that exhibit a tensile strength in excess of ten times greater than steel, into Portland cement (OPC) is a relatively novel, yet promising, development for next-generation construction materials exhibiting enhanced strength and ductility, even multifunctionality. When added to Portland cement, creating a Portland cement-CNT nanocomposite material (OPC-CNT), CNTs promote the nucleation of the princi...

  13. Hydration kinetics of cement composites with varying water-cement ratio using terahertz spectroscopy

    Ray, Shaumik; Dash, Jyotirmayee; Devi, Nirmala; Sasmal, Saptarshi; Pesala, Bala

    2015-03-01

    Cement is mixed with water in an optimum ratio to form concrete with desirable mechanical strength and durability. The ability to track the consumption of major cement constituents, viz., Tri- and Dicalcium Silicates (C3S, C2S) reacting with water along with the formation of key hydration products, viz., Calcium-Silicate-Hydrate (C-S-H) which gives the overall strength to the concrete and Calcium Hydroxide (Ca(OH)2), a hydration product which reduces the strength and durability, using an efficient technique is highly desirable. Optimizing the amount of water to be mixed with cement is one of the main parameters which determine the strength of concrete. In this work, THz spectroscopy has been employed to track the variation in hydration kinetics for concrete samples with different water-cement ratios, viz., 0.3, 0.4, 0.5 and 0.6. Results show that for the sample with water-cement ratio of 0.3, significant amount of the C3S and C2S remain unreacted even after the initial hydration period of 28 days while for the cement with water-cement ratio of 0.6, most of the constituents get consumed during this stage. Analysis of the formation of Ca(OH)2 has been done which shows that the concrete sample with water-cement ratio of 0.6 produces the highest amount of Ca(OH)2 due to higher consumption of C3S/C2S in presence of excess water which is not desirable. Samples with water-cement ratio of 0.4 and 0.5 show more controlled reaction during the hydration which can imply formation of an optimized level of desired hydration products resulting in a more mechanically strong and durable concrete.

  14. Polymer-Cement Composites with Self-Healing Ability for Geothermal and Fossil Energy Applications

    Childers, M. Ian; Nguyen, Manh-Thuong; Rod, Kenton A.; Koech, Phillip K.; Um, Wooyong; Chun, Jaehun; Glezakou, Vassiliki-Alexandra; Linn, Diana; Roosendaal, Timothy J.; Wietsma, Thomas W.; Huerta, Nicolas John; Kutchko, Barbara G.; Fernandez, Carlos A.

    2017-05-18

    Sealing of wellbores in geothermal and tight oil/gas reservoirs by filling the annulus with cement is a well-established practice. Failure of the cement as a result of physical and/or chemical stress is a common problem with serious environmental and financial consequences. Numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This work reports on a novel polymer-cement composite with remarkable self-healing ability that maintains the required properties of typical wellbore cements and may be stable at most geothermal temperatures. We combine for the first time experimental analysis of physical and chemical properties with density functional theory simulations to evaluate cement performance. The thermal stability and mechanical strength are attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. Self-healing was demonstrated by sealing fractures with 0.3–0.5 mm apertures, 2 orders of magnitude larger than typical wellbore fractures. This polymer-cement composite represents a major advance in wellbore cementing that could improve the environmental safety and economics of enhanced geothermal energy and tight oil/gas production.

  15. Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements.

    Lise, Diogo Pedrollo; Van Ende, Annelies; De Munck, Jan; Yoshihara, Kumiko; Nagaoka, Noriyuki; Cardoso Vieira, Luiz Clovis; Van Meerbeek, Bart

    2018-02-01

    To assess light irradiance (LI) delivered by two light-curing units (LCU's) and to measure the degree of conversion (DC) of three composite cements, when cured through different thicknesses of two novel CAD-CAM block materials. 100-μm-thick films of a dual-curable composite cement (G-CEM LinkAce, GC), a light-curable flowable resin-based composite (RBC) (G-ænial Universal Flo, GC) and a micro-hybrid RBC (G-ænial Posterior, GC) were investigated as luting agents. Two 'polymer-ceramic' CAD-CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were sectioned in slabs with different thicknesses (1, 3 and 5mm). LI at the bottom of the specimens was measured using a calibrated spectrometer, while being light-cured through the CAD-CAM block slabs for 40s with a low- (±500mW/cm 2 ) or high- (±1,600mW/cm 2 ) irradiance LCU (n=5). After light-curing, micro-Raman spectra of the composite films were acquired to determine DC at 5min, 10min, 1h and 24h. LI data were statistically analyzed by Kruskal-Wallis followed by post-hoc comparisons, while a linear mixed-effect model was applied for the DC analysis. In addition, the CAD-CAM blocks ultrastructure was characterized upon argon-ion slicing using scanning transmission electron microscopy (STEM). Finally, light transmission (LT) through each CAD-CAM block material was assessed using a spectrophotometer. Curing-light attenuation and DC were significantly influenced by thickness and type of the overlying material. LCU only had a significant effect on DC of the micro-hybrid RBC. DC significantly increased over time for all composite cements. CAD-CAM block structural analysis revealed a relatively small and homogenous filler configuration (mean filler size of 0.2-0.5μm) for Cerasmart, while Enamic contained ceramic grains varying in shape and size (1-10μm), which were interconnected by the polymer-based network. LT was much higher at a wavelength range of 300-800nm for Cerasmart than for Enamic. Light-curable composite cements

  16. Autogenous healing properties of cement-based grouts

    Onofrei, M.; Roe, L.; Shenton, B.

    1997-05-01

    This report presents the results of a study conducted to provide information on the ability of cement-based grouts to self-seal. Autogenous sealing was investigated both on bulk grouts and in thin films of grouts. In both cases, the self-sealing capabilities of the cement-based grouts were investigated with water flowing through the grout. Autogenous sealing was studied through changes in pore structure (decrease in pore radius and volume of pores) and changes in the rate of water flow through the cement-based grouts. (author)

  17. Valorisation of waste plastic bags in cement-mortar composites as ...

    2015-01-07

    Jan 7, 2015 ... Keywords: Waste plastic bags, cement-plastic-mortar composite, aggregates coating ..... and closely attached to the aggregate by physical bonds and ... transformation steps, known as fusing material behaviour. In fact,.

  18. [Bonding of visible light cured composite resins to glass ionomer and Cermet cements].

    Kakaboura, A; Vougiouklakis, G

    1990-04-01

    The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.

  19. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-01-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO 2 –Na 2 O–CaO–P 2 O 5 –FeO–Fe 2 O 3 and contains magnetite (Fe 3 O 4 ) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests show hydroxyapatite precipitates

  20. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  1. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.

    Combes, C; Bareille, R; Rey, C

    2006-11-01

    The feasibility of making calcium carbonate-calcium phosphate (CaCO(3)-CaP) mixed cements, comprising at least 40% (w/w) CaCO(3) in the dry powder ingredients, has been demonstrated. Several original cement compositions were obtained by mixing metastable crystalline CaCO(3) phases with metastable amorphous or crystalline CaP powders in aqueous medium. The cements set within at most 1 h at 37 degrees C in atmosphere saturated with water. The hardened cement is microporous and exhibits weak compressive strength. The setting reaction appeared to be essentially related to the formation of a highly carbonated nanocrystalline apatite phase by reaction of the metastable CaP phase with part or almost all of the metastable CaCO(3) phase. The recrystallization of metastable CaP varieties led to a final cement consisting of a highly carbonated poorly crystalline apatite analogous to bone mineral associated with various amounts of vaterite and/or aragonite. The presence of controlled amounts of CaCO(3) with a higher solubility than that of the apatite formed in the well-developed CaP cements might be of interest to increase resorption rates in biomedical cement and favors its replacement by bone tissue. Cytotoxicity testing revealed excellent cytocompatibility of CaCO(3)-CaP mixed cement compositions.

  2. Electrical Current Flow and Cement Hydration : Implications on Cement-Based Microstructure

    Susanto, A.; Peng, G; Koleva, D.A.; van Breugel, K.

    2016-01-01

    Stray current is an electrical current “leakage” from metal conductors and electrical installations. When it flows through cement-based materials, electrical energy is converted to thermal energy that causes increasing temperature due to Joule heating phenomena. The aim of this paper is to shed

  3. Using bio-based polymers for curing cement-based materials

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying

  4. Utilization of barite/cement composites for gamma rays attenuation

    Sakr, Khaled; Ramadan, Wageeh; Sayed, Magda; El-Zakla, Tarek; El-Desouqy, Mohamed; El-Faramawy, Nabil

    2018-04-01

    The present work is directed to investigate the contribution of adding barite aggregates to cement as a shielding material for radioactive wastes disposal facilities. The percentages of barite from 5% up to 20% mixed with cement with different grain sizes were examined. Mechanical and physical properties such as compressive strength, wet and dry densities, water absorption, and porosity have been investigated. The thermogravimetric analysis and X-ray diffraction were used to examine the thermal stability and the characterizations of studied samples, respectively. The linear attenuation coefficient, mean free path, half value layer, and transmission fraction were evaluated. All the nuclear shielding parameters revealed the uppermost values for cement mixed with 5% barite of size range 250-600 µm. The attenuation coefficient of the investigated samples displayed an increase by more than 125% than that of neat cement.

  5. Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar

    Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.

    2017-11-01

    Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.

  6. Consolidation behavior of cement-based systems

    Kjeldsen, Ane Mette

    2007-01-01

    partikler på pakning og middelporestørrelse i frisk beton. Modellen er beskrevet og eftervist for Portland cement pasta med og uden silicastøv og såkaldte superplastificerende stoffer. Superplastificerende stoffer anvendes for at mindske de attraktive kræfter mellem de fine partikler og dermed øge...

  7. Surface roughness of orthodontic band cements with different compositions

    Françoise Hélène van de Sande

    2011-06-01

    Full Text Available OBJECTIVES: The present study evaluated comparatively the surface roughness of four orthodontic band cements after storage in various solutions. MATERIAL AND METHODS: Eight standardized cylinders were made from 4 materials: zinc phosphate cement (ZP, compomer (C, resin-modified glass ionomer cement (RMGIC and resin cement (RC. Specimens were stored for 24 h in deionized water and immersed in saline (pH 7.0 or 0.1 M lactic acid solution (pH 4.0 for 15 days. Surface roughness readings were taken with a profilometer (Surfcorder SE1200 before and after the storage period. Data were analyzed by two-way ANOVA and Tukey's test (comparison among cements and storage solutions or paired t-test (comparison before and after the storage period at 5% significance level. RESULTS: The values for average surface roughness were statistically different (pRMGIC>C>R (p0.05. Compared to the current threshold (0.2 µm related to biofilm accumulation, both RC and C remained below the threshold, even after acidic challenge by immersion in lactic acid solution. CONCLUSIONS: Storage time and immersion in lactic acid solution increased the surface roughness of the majority of the tested cements. RC presented the smoothest surface and it was not influenced by storage conditions.

  8. Performance of carbon nanofiber-cement composites subjected to accelerated decalcification

    Arnold J.

    2013-07-01

    Full Text Available The effect of decalcification on the chemo-mechanical behavior of carbon nanofiber (CNF-cement composites was studied. Portland cement pastes with and without 0.2% CNFs were subjected to accelerated decalcification by exposure to ammonium nitrate solutions. The influence of microstructural alterations during decalcification on the physical and mechanical properties of the composites was examined. The presence of CNF agglomerates influenced the chemo-mechanical behavior of the composite during decalcification. Precipitation of secondary hydrates within the agglomerates during decalcification resulted in a decrease in local porosity, which strengthened the composite and slowed the loss of flexural strength.

  9. Influence of superplasticizers on the long-term properties of cement pastes and possible impact on radionuclide uptake in a cement-based repository for radioactive waste

    Wieland, E.; Lothenbach, B.; Glaus, M.A.; Thoenen, T.; Schwyn, B.

    2014-01-01

    Highlights: • We investigate the hydration of different cement mixes containing concrete admixtures. • The concentration of concrete admixtures decreases with time due to sorption on cement phases. • We observe no influence on the phase composition of cement paste and the ion composition of pore fluids. • Uptake of 63 Ni, 152 Eu and 228 Th by cement paste is not affected by the concrete admixtures. - Abstract: Cementitious materials will be used for the construction of the engineered barrier of the planned repositories for radioactive waste in Switzerland. Superplasticizers (SPs) are commonly used to improve the workability of concretes and, along with a set accelerator (Acc), to produce shotcrete. In this study the influence of a polycarboxylate- (PCE) and a polynaphthalene-sulphonate-based (PNS) SP on the hydration process, mineral composition and the sorption behaviour of metal cations has been investigated using an ordinary Portland cement (OPC), a low-alkali cement mix (LAC) consisting of CEM III-type cement and nanosilica, and a shotcrete-type cement mix (ESDRED) consisting of a CEM I-type cement and silica fume prepared in the presence of an alkali-free set accelerator. Both the PCE and PNS SP do not significantly influence the amount and quantity of hydrates formed during hydration. The concentration of both SPs decreased rapidly in the early stage of the hydration process for all cements due to sorption onto cement phases. After 28 days of hydration and longer, the concentration of the PNS SP in the pore fluids of all cements was generally lower than that of the PCE SP, indicating stronger uptake of the PNS SP. The formate present in the Acc sorbs only weakly onto the cement phases, which led to higher aqueous concentration of organics in the ESDRED cement than in OPC and LAC. Sorption experiments with 63 Ni, 152 Eu and 228 Th on a cation exchange resin indicate that, at concentrations above 0.1 g L −1 , the two SPs could reduce sorption of metal

  10. Propriedades mecânicas de materiais compósitos à base de cimento Portland e resina epoxi Mechanical properties of composite materials based on portland cement and epoxy resin

    T. H. Panzera

    2010-03-01

    Full Text Available O estudo de materiais de alto desempenho e multifuncionais, como os compósitos poliméricos cimentícios, tem sido o foco de inúmeras pesquisas na indústria da construção civil. Este trabalho investiga o efeito da combinação de uma fase polimérica termorrígida, uma resina epóxi, com cimento Portland branco estrutural, seguido da avaliação da resistência à compressão e módulo de elasticidade. Este compósito, quando comparado individualmente com as suas matérias-prima originais, promove um aumento da resistência mecânica à compressão, redução da massa específica e, também uma mudança significativa do comportamento mecânico. As mudanças nas propriedades mecânicas estão associadas à hidratação da fase cimentícia na presença da resina, fato comprovado através da análise espectroscópica na região do infravermelho.The study of multi-functional materials of high performance, as the polymeric-cementitious composites, has been the focus of several researches in the industry of the civil engineering. This work investigates the effect of the combination of a thermorigid epoxy phase and the white Portland cement, followed by the evaluation of its compressive strength and modulus of elasticity. This composite, when the phases are individually compared, provides an increase of the compressive strength, a reduction of the density, and a significant change of the mechanical behaviour. The changes in mechanical behaviour are associated with the hydration of cement in the presence of resin, which was evident after infrared spectroscopy analysis.

  11. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  12. Lignin-based cement fluid loss control additive

    Schilling, P.

    1990-05-22

    This patent describes a hydraulic cement slurry composition. It comprises: a hydraulic cement, and the following expressed as parts by weight per 100 parts of the hydraulic cement, water from about 25 to 105 parts, and from abut 0.5 to 2.5 parts of a compound selected from the group consisting of a sulfonated lignin and a sulfomethylated lignin, wherein the lignin has been sequentially crosslinked by reacting the lignin with a member of the group consisting of formaldehyde and epichlorohydrin and alkoxylated with between about 2 to about 6 moles of a compound selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide and a combination thereof per 1000 g of the lignin.

  13. Immobilization of radioactive waste in cement based matrices

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; Atkins, M.; Beckley, N.; Lachowski, E.E.

    1986-04-01

    A mathematical and thermodynamic model of the Ca0-Si0 2 -H 2 0 system is presented to enable the solubility and pH relationships in cement and blended cement systems to be predicted. The Esub(h) function has been explored particularly in respect of slag rich systems. The stability of Sr in cements is shown to be influenced by both precipitation and lattice incorporation into the ettringite-like phase. Quality assurance parameters especially for aggregate materials and blast furnace slags are reviewed and recommendations made. It is shown that the latter fluctuate considerably in composition; additional measures for monitoring are recommended and additional research suggested to determine their long-term performance. (author)

  14. Color change of CAD-CAM materials and composite resin cements after thermocycling.

    Gürdal, Isil; Atay, Ayse; Eichberger, Marlis; Cal, Ebru; Üsümez, Aslihan; Stawarczyk, Bogna

    2018-04-24

    The color of resin cements and computer-aided-design and computer-aided-manufacturing (CAD-CAM) restorations may change with aging. The purpose of this in vitro study was to analyze the influence of thermocycling on the color of CAD-CAM materials with underlying resin cement. Seven different CAD-CAM materials, composite resins and glass-ceramics were cut into 0.7-mm and 1.2-mm thicknesses (n=10) and cemented with a dual-polymerizing resin cement, a light-polymerizing resin cement, and a preheated composite resin (N=420). Color values were measured by using spectrophotometry. Specimens were subjected to thermocycling (5°C and 55°C; 5000 cycles). The measured color difference (ΔE) data were analyzed by using descriptive statistics. Normality of data distribution was tested by using the Kolmogorov-Smirnov test. Three-way and 1-way ANOVA followed by the Scheffé post-hoc test and unpaired 2-sample Student t test were computed to determine the significant differences among the tested parameters (α=.05). ΔE values were significantly influenced by the CAD-CAM material (η p 2 =0.85, Pcement (η P 2 =0.03, P=.003) but were not influenced by thickness (P=.179). Significant interactions were present among thickness, cement, and CAD-CAM materials (Pcement showed significantly lower ΔE values than the preheated composite resin (P=.003). Restoration materials and composite resin cement types used for cementation influence the amount of color change due to aging. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors

    Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin

    2015-01-01

    Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h −1 to 70 km h −1 , the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement. (paper)

  16. Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites. Part I: Cohesive Crack Modelling

    Veselý, V.; Řoutil, L.; Seitl, Stanislav

    2011-01-01

    Roč. 452-453, - (2011), s. 77-80 ISSN 1013-9826 R&D Projects: GA AV ČR KJB200410901 Institutional research plan: CEZ:AV0Z20410507 Keywords : wedge-splitting test * cementitious composites * quasi-brittle fracture * brittleness Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Chloride Ingress in Chemically Activated Calcined Clay-Based Cement

    Joseph Mwiti Marangu

    2018-01-01

    Full Text Available Chloride-laden environments pose serious durability concerns in cement based materials. This paper presents the findings of chloride ingress in chemically activated calcined Clay-Ordinary Portland Cement blended mortars. Results are also presented for compressive strength development and porosity tests. Sampled clays were incinerated at a temperature of 800°C for 4 hours. The resultant calcined clay was blended with Ordinary Portland Cement (OPC at replacement level of 35% by mass of OPC to make test cement labeled PCC35. Mortar prisms measuring 40 mm × 40 mm × 160 mm were cast using PCC35 with 0.5 M Na2SO4 solution as a chemical activator instead of water. Compressive strength was determined at 28th day of curing. As a control, OPC, Portland Pozzolana Cement (PPC, and PCC35 were similarly investigated without use of activator. After the 28th day of curing, mortar specimens were subjected to accelerated chloride ingress, porosity, compressive strength tests, and chloride profiling. Subsequently, apparent diffusion coefficients (Dapp were estimated from solutions to Fick’s second law of diffusion. Compressive strength increased after exposure to the chloride rich media in all cement categories. Chemically activated PCC35 exhibited higher compressive strength compared to nonactivated PCC35. However, chemically activated PCC35 had the least gain in compressive strength, lower porosity, and lower chloride ingress in terms of Dapp, compared to OPC, PPC, and nonactivated PCC35.

  18. NANOFIBRILLATED CELLULOSE (NFC AS A POTENTIAL REINFORCEMENT FOR HIGH PERFORMANCE CEMENT MORTAR COMPOSITES

    Mònica Ardanuy,

    2012-07-01

    Full Text Available In this work, nanofibrillated cellulose (NFC has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle, sisal, and cotton linters pulps, were initially characterised in order to assess their reinforcing capability. Sisal pulp was found to be most suitable as reinforcement for the brittle cementitious matrix. Nanofibrillated cellulose was produced by the application of a high intensity refining process of the sisal pulp. It was found that 6 hours of refining time was required to obtain the desired nanofibrillation of the fibers. Cement mortar composites reinforced with both the sisal fibres and the nanofibrillated cellulose were prepared, and the mechanical properties were determined under flexural tests. The cement mortar composites reinforced with the nanofibrillated cellulose exhibited enhanced flexural properties, but lower values of fracture energy, than the ones reinforced with the conventional sisal fibres.

  19. Application of washed MSWI fly ash in cement composites: long-term environmental impacts.

    Yang, Zhenzhou; Tian, Sicong; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2018-04-01

    In the present study, long-term environmental impacts of compact and ground cement composites, in which 30 wt.% of cement was replaced by washed municipal solid wastes incineration (MSWI) fly ash, were investigated for use in building industry. Consecutive leaching tests over a time span of 180 days were performed in acid water, deionized water, and saline water, respectively, with the accumulative concentration of different elements determined in the leachate. Different leaching behaviors are observed among different potential toxic elements (PTEs). For instance, higher concentrations of V in the leachate were observed from the compact cement composites than those from the ground ones. The concentration of Ba in the leachate increased with the decrease of particle size of the cement composites, and an initial increase in the leaching efficiency of Sn was followed by a clear decline with the leaching time. In addition, kinetic study revealed that the leaching behaviors of potential toxic elements follow a second-order model. The results demonstrated that the addition of washed MSWI fly ash into cement can contribute to the attrition resistance, indicating that the washed MSWI fly ash could be a promising alternative for cement as supplementary building materials.

  20. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal... hip joint. The device limits translation and rotation in one or more planes via the geometry of its...

  1. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint... ankle joint. The device limits translation and rotation: in one or more planes via the geometry of its...

  2. Physical, chemical and antimicrobial evaluation of a composite material containing quaternary ammonium salt for braces cementation

    Sugii, Mari Miura [Departamento de Odontologia Restaurativa, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Ferreira, Fábio Augusto de Souza, E-mail: ferreira.fabio.a.s@gmail.com [Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São Carlos – Universidade de São Paulo, São Carlos, SP 13563-120 (Brazil); Müller, Karina Cogo [Departamento de Ciências Fisiológicas, Área de Farmacologia, Anestesiologia e Terapeutica, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Lima, Debora Alves Nunes Leite [Departamento de Odontologia Restaurativa, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Groppo, Francisco Carlos [Departamento de Ciências Fisiológicas, Área de Farmacologia, Anestesiologia e Terapeutica, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Imasato, Hidetake; Rodrigues-Filho, Ubirajara Pereira [Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São Carlos – Universidade de São Paulo, São Carlos, SP 13563-120 (Brazil); and others

    2017-04-01

    The antibiofilm effect of iodide quaternary ammonium methacryloxy silicate (IQAMS) in Transbond XT Light Cure Adhesive resin used for braces cementation was evaluated. Fourier Transform Infrared (FTIR) spectroscopy confirmed IQAMS formation and Scanning Electron Microscopy coupled to Energy-Dispersive X-ray Spectroscopy (SEM-EDS) revealed that as coating, the quaternary ammonium groups from IQAMS were homogeneously dispersed throughout the surface. When incorporated, the composite material presented homogeneous dispersion throughout the resin. Assays with Streptococcus mutans demonstrated enhanced antibiofilm effect for the IQAMS coated resin, with much lower colony-forming units (CFU), in comparison to incorporated IQAMS. Such a difference was assigned to low availability of quaternary ammonium groups at the surface of resin when IQAMS was incorporated, hindering its antibiofilm effect. Additionally, the incorporation of IQAMS led to slight decrease in ultimate bond strength (UBS) and shear bond strength (SBS), in comparison to the neat commercial resin. Thus, the synthesized IQAMS displays great potential as antibiofilm coating or sealant to prevent oral infections in brackets during orthodontic treatment. - Highlights: • Synthesis of ORMOSIL-based material with antibiofilm activity is performed. • Antibiofilm activity of the ORMOSIL-based material on commercial available resin for braces cementation is evaluated. • Antibiofilm ORMOSIL-based coating with potential application as varnish or sealant in orthodontic appliances is presented.

  3. Physical, chemical and antimicrobial evaluation of a composite material containing quaternary ammonium salt for braces cementation

    Sugii, Mari Miura; Ferreira, Fábio Augusto de Souza; Müller, Karina Cogo; Lima, Debora Alves Nunes Leite; Groppo, Francisco Carlos; Imasato, Hidetake; Rodrigues-Filho, Ubirajara Pereira

    2017-01-01

    The antibiofilm effect of iodide quaternary ammonium methacryloxy silicate (IQAMS) in Transbond XT Light Cure Adhesive resin used for braces cementation was evaluated. Fourier Transform Infrared (FTIR) spectroscopy confirmed IQAMS formation and Scanning Electron Microscopy coupled to Energy-Dispersive X-ray Spectroscopy (SEM-EDS) revealed that as coating, the quaternary ammonium groups from IQAMS were homogeneously dispersed throughout the surface. When incorporated, the composite material presented homogeneous dispersion throughout the resin. Assays with Streptococcus mutans demonstrated enhanced antibiofilm effect for the IQAMS coated resin, with much lower colony-forming units (CFU), in comparison to incorporated IQAMS. Such a difference was assigned to low availability of quaternary ammonium groups at the surface of resin when IQAMS was incorporated, hindering its antibiofilm effect. Additionally, the incorporation of IQAMS led to slight decrease in ultimate bond strength (UBS) and shear bond strength (SBS), in comparison to the neat commercial resin. Thus, the synthesized IQAMS displays great potential as antibiofilm coating or sealant to prevent oral infections in brackets during orthodontic treatment. - Highlights: • Synthesis of ORMOSIL-based material with antibiofilm activity is performed. • Antibiofilm activity of the ORMOSIL-based material on commercial available resin for braces cementation is evaluated. • Antibiofilm ORMOSIL-based coating with potential application as varnish or sealant in orthodontic appliances is presented.

  4. Properties of Portland-Composite Cements with metakaolin: Commercial and manufactured by Thermal Activation of Serbian Kaolin Clay

    Mitrovic A.

    2012-09-01

    Full Text Available Portland-composite cements (CEM II were prepared with addition of 5 to 35% of metakaolin (MK, manufactured by thermal activation/calcination of Serbian kaolin clay, and commercial matakaolin (CMK. Performance of the composite cements was evaluated, through the setting time (initial and final, compressive strengths (for ages 2, 7, 28, 90 and 180 days and soundness, and compared with control cement (Portland cement – CEM I. Setting time (initial and final is accelerated in Portlandcomposite cements, for both metakaolins used. The acceleration is higher in cement with addition of commercial metakaolin. Lower compressive strength is obtained after 2 days of curing for all Portland-composite cements in comparison with control cement, since pozzolanic reaction still did not show its effect. After 7 days, pozzolanic reaction show its effect, manifested as compressive strength increase of Portland-composite cements with addition of up to 35% of CMK, and 25% in the case of cements with MK. After 28 days compressive strength was higher than that for control cement for cements prepared with addition of CMK, and with addition of up to 25% MK. After 90 days increased compressive strength was noticed with addition of 10 - 20% of CMK, and with 10 and 15% of MK, while after 180 days addition of both metakaolins influences compressive strength decrease. The results of the soundness, 0.5 mm for CEM I, and 1.0 mm in most Portland-composite cements indicate soundness increase with addition of metakaolins. Generally, better performance of Portland-composite cements was obtained with addition of commercial metakaolin, which may be attributed to the differences in the pozzolanic activity of the applied metakaolins, 20.5 MPa and 14.9 MPa for CMK and MK, respectively. By our previous findings pozzolanic activity of the thermally activated clay may be increased by subsequent milling of the metakaolin manufactured by thermal activation process.

  5. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Crown and bridge cements: clinical applications.

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  7. Radiaton-resistant electrical insulation on the base of cement binders

    Afanas'ev, V.V.; Korenevskij, V.V.; Pisachev, S.Yu.

    1985-01-01

    The problems of designing radiation-resistant electrical insulations on the base of BATs and Talum cements for the UNK magnets operating under constant and pulse modes are discussed. The data characterizing dielectrical ad physico-mechanical properties of 25 various compositions are given. Two variants of manufacturing coils are considered: solid and with the use of asbestos tape impregnated with aluminous cement solution. The data obtained testify to the fact that the advantages of insulation on Talum cement are raised radiation resistance, high strength (particularly compression strength), weak porosity, high elasticity modulus and high thermal conductivity. BATs cement insulation is characterized by high radiation resistance, absence of shrinkage, rather low elasticity modulus and high dielectrical characteristics under normal conditions. The qualities of the solid insulation variant are its high technological effectiveness and posibility to fill up the spaces of complex configuration. In case of using as solid insulation Talum cement, however special measures for moisture removal are required. The advantage of insulation on the base of the asbestos tape is its reliability. For complex configuration magnets, however to realize is such insulation somewhat difficult

  8. Influence of chemical composition of civil construction waste in the cement paste

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C.

    2009-01-01

    The construction and demolition waste when disposed inappropriately might cause serious public health problems. Its reutilization focusing on the development of new products using simple production techniques, assuring a new product life cycle and not damaging the environment is inserted in sustainable concept. The aim of this work was identifying the characteristics of types of waste generated in a residential reform (glassy ceramic and fill dirt leftovers) verifying separately its influence on cement pastes mechanical behavior. Cement pastes + wastes were prepared in 25% and 50% proportions with an approximately 0,35 water/cement relation and, glue time determination, water absorption, resistance to compression and X-ray fluorescence assays were taken. The results indicate that the chemical composition of the waste causes changes in the behavior of cement pastes, reflecting on their resistance to compression. (author)

  9. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  10. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    Mengxue Wu

    2017-01-01

    Full Text Available In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD. The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  11. Effect of a bonding agent on in vitro biochemical activities of remineralizing resin-based calcium phosphate cements.

    Dickens, Sabine H; Flaim, Glenn M

    2008-09-01

    To test whether fluoride in a resin-based Ca-PO4 ion releasing cement or coating with an acidic bonding agent for improved adhesion compromised the cement remineralization potential. Cements were formulated without fluoride (Cement A) or with fluoride (Cement B). The treatment groups were A=Cement A; A2=Cement A+bonding agent; B=Cement B; B2=Cement B+bonding agent. The calcium, phosphate, and fluoride ion release in saliva-like solution (SLS) was determined from hardened cement disks without or with a coating of bonding agent. For the remineralization, two cavities were prepared in dentin of extracted human molars and demineralized. One cavity received composite resin (control); the other received treatment A, A2, B or B2. After 6 week incubation in SLS, 180 microm cross-sections were cut. The percentage remineralization was determined by transverse microradiography comparing the dentin mineral density under the cement to that under the control. The percentage of remineralization (mean+/-S.D.) was A (39+/-14)=B (37+/-18), A2 (23+/-13), B2 (14+/-7). Two-way analysis of variance (ANOVA) and Holm-Sidak test showed a significant effect from the presence of bonding agent (p0.05). The ion solution concentrations of all groups showed undersaturation with respect to dicalcium phosphate dihydrate and calcium fluoride and supersaturation for fluorapatite and hydroxyapatite suggesting a positive remineralization potential. Compared to the control all treatments resulted in mineral increase. The remineralization was negatively affected by the presence of the bonding agent.

  12. Elastoplastic cup model for cement-based materials

    Yan Zhang

    2010-03-01

    Full Text Available Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The case study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.

  13. Composite cements containing natural pozzolan and granulated blast furnace slag

    Irassar, E. F.

    2006-09-01

    Full Text Available For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20% and/or granulated blast furnace slag (up to 35% on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days, the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.Debido a las exigencias del mercado y de la producción de cemento Portland, es cada vez más frecuente la elaboración de cementos con dos o más adiciones a partir de la molienda separada de sus constituyentes, dando origen a la formulación de los cementos a medida.Cuando el contenido de adiciones es alto, la utilización de puzolana y escoria en este tipo de cementos presenta la peculiaridad de disminuir la resistencia inicial del cemento resultante. Sin embargo, si algunas o ambas adiciones se activan, este problema puede minimizarse. En este trabajo se analiza la influencia de la incorporación al cemento Portland de puzolana natural (hasta 20% activada físicamente y/o escoria granulada de alto horno (hasta 35% sobre la resistencia a flexión y a compresión de morteros. Los resultados indican que los cementos ternarios presentan un mejor comportamiento resistente que los cementos binarios. Las máximas resistencias a compresión en las primeras edades (2 y 7 díasse alcanzan con hasta 13% de puzolana natural y 5% de

  14. Impairment of resin cement application on the bond strength of indirect composite restorations

    Jovito Adiel SKUPIEN

    2015-01-01

    Full Text Available The aims of this study were to evaluate the effect of immediate and delayed resin cement application on the microtensile bond strength of indirect composite resin restorations and, to evaluate adhesive strategies (for regular resin cement or humidity parameters for self-adhesive resin cement. Forty-five enamel/dentin discs (0.5 mm height and 10 mm of diameter obtained from bovine teeth were divided into nine groups (n = 5. For regular cement, the variation factors were cementation technique at three levels (immediate cementation, 5 or 30 min after adhesive system application; and type of adhesive system at two levels (three- or two-step. For self-adhesive cement, the dentin moisture was the source of variation at three levels (normal, dry, or wet cementation. The specimens were submitted to microtensile bond strength (μTBS testing using a universal testing machine. Data were analyzed by ANOVA, Tukey’s test, and linear regression. Regular cement and three-step etch-and-rinse adhesive system showed the highest values of bond strength (25.21 MPa–30 min of delay. Only for this condition, three-step adhesive showed higher bond strength than the two-step adhesive. Nevertheless, the linear regression showed that irrespective of the strategy, the use of the two-step approach when compared with three-step adhesive system decreased μTBS (p < 0.001. The failure analysis showed predominant adhesive failures for all tested groups. All groups had comparable values of bond strength to bovine dentin when the same materials were used, even in suboptimal clinical conditions.

  15. Production and characterization of setting hydraulic cements based on calcium phosphate

    Oliveira, Luci C. de; Rigo, Eliana C.S.; Santos, Luis A dos; Boschi, Anselmo Ortega; Carrodeguas, Raul G.

    1997-01-01

    Setting hydraulic cements based on calcium phosphate has risen great interest in scientific literature during recent years due to their total bio compatibility and to the fact that they harden 'in situ', providing easy handling and adaptation to the shape and dimensions of the defect which requires correction, differently from the predecessors, the calcium phosphate ceramics (Hydroxy apatite, β-tri calcium phosphate, biphasic, etc) in the shape of dense or porous blocks and grains. In the work, three calcium-phosphate cement compositions were studied. The resulting compositions were characterized according to the following aspects: setting times, pH, mechanical resistance, crystalline phases, microstructure and solubility in SBF (Simulated Body Fluid). The results show a potential use for the compositions. (author)

  16. EFFECTS OF MINERAL ADMIXTURE ON THE CARBONIC ACID LEACHING RESISTANCE OF CEMENT-BASED MATERIALS

    Yun Dong

    2017-07-01

    Full Text Available In order to reveal the degradation process and deterioration mechanism of cement-based materials, this paper analyzes the effects of carbonic acid leaching on the mechanical strength of mortars, as well as relative mass loss, microstructure, and composition of various cement pastes. The results indicate that cement pastes containing less than 20 % fly ash have higher carbonic acid leaching resistance than cement pastes without fly ash. However, after carbonic acid leaching, the compressive strength of the samples with fly ash is lower than that of the cement pastes without fly ash. The leaching resistance is good for samples cured at an early age before leaching. Carbonic acid leaching proceeds from the paste surface to the interior. The incorporation of an appropriate amount of slag powder helps to increase the density of the paste. Due to the pozzolanic activity of fly ash at late-stage leaching, a mixture of fly ash (≤ 20 % and slag powder (≤ 20 % effectively improves carbonic acid leaching resistance. The products of early-stage leaching were mainly CaCO₃ and small amounts of SiO₂ and Fe₂O₃. The C-S-H phase at the paste surface suffered serious damage after long periods of leaching, and the main products of leaching were SiO₂ and Fe₂O₃.

  17. Incorporation of cement bypass flue dust in fly ash and blast furnace slag-based geopolymer

    Mohamed E. Sultan

    2018-06-01

    Full Text Available This work utilizes cement kiln dust in fly ash and blast furnace slag-based geopolymer. Geopolymer cement was produced using different compositions of ground, granulated blast furnace slag with fly ash and cement bypass flue dust. Crystalline sodium metasilicate pentahydrate was used as an activator at 10, 15 and 20% (by weight of the geopolymer source materials. The geopolymer is formed in the solid state like ordinary Portland cement. The mechanical and chemical properties of the geopolymeric materials were examined. Measuring of mechanical properties by compressive strength of the hardened geopolymer pastes at different curing ages; microstructure was evaluated by X-ray diffraction (XRD and scanning electron microscope (SEM; thermal properties were estimated by thermogravimetry analysis (TGA and derivative thermogravimetric analysis (DTG. The results indicate that the compressive strength of the geopolymer pastes is increased with higher Na2SiO3.5H2O content. The geopolymeric properties were enhanced by higher pH, which helps in the dissolution of geopolymer source materials during geopolymerization. SEM showed that mixes containing 15 and 20% sodium metasilicate had more compact and dense structures. On the other hand, GGBFS mix (G-20 exhibits more hydration and geopolymeric products during TGA/DTG compared with other mixes which contain FA with/without GGBFS. Keywords: Cement bypass flue dust, Geopolymer, Ground granulated blast furnace, Fly ash

  18. Study of chloride ion transport of composite by using cement and starch as a binder

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,; Reski, Nurhadi; Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are depending on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.

  19. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  20. Feasibility of using ceramic furnace wastes in cement composites

    Fazzan, J.V.; Sanches, A.O.; Akasaki, J.L.; Malmonge, J.A.

    2016-01-01

    Currently, the region of Epitacio-SP President is classified as Paulista West Center in the production of ceramic tiles and bricks. However, as these industries have also generated environmental impacts in the production process with the generation of waste, the construction industries presents as great potential to absorb a large portion of these materials, called Pozzolans. In this sense, the research aims to study the characterization of Ceramic Furnace Wastes (CFC) and the evaluation of their reactivity. Mortar specimens were molded with different waste percentages in partial replacement of Portland cement, for analysis of compressive strength and capillary water absorption test. The characterization results show that important properties can be obtained by the preparation conditions of ashes, besides obtaining resistant activity index higher than expected by technical standards when using the material in replacement of Portland cement. (author)

  1. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    URKHANOVA Larisa Alekseevna

    2014-08-01

    Full Text Available Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of basalt fiber.

  2. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    URKHANOVA Larisa Alekseevna; LKHASARANOV Solbon Aleksandrovich; ROZINA Victoria Yevgenievna; BUYANTUEV Sergey Lubsanovich; BARDAKHANOV Sergey Prokopievich

    2014-01-01

    Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of ba...

  3. Leaching of heavy metals from cementitious composites made of new ternary cements

    Kuterasińska-Warwas, Justyna; Król, Anna

    2017-10-01

    The paper presents a comparison of research methods concerning the leaching of harmful substances (selected heavy metal cations ie. Pb, Cu, Zn and Cr) and their degree of immobilization in cement matrices. The new types of ternary cements were used in the study, where a large proportion of cement clinker was replaced by other non-clinker components - industrial wastes, ie. siliceous fly ash from power industry and granulated blast furnace slag from the iron and steel industry. In studied cementitious binders also ground limestone was used, which is a widely available raw material. The aim of research is determining the suitability of new cements for neutralizing harmful substances in the obtained matrices. The application of two research methods in accordance with EN 12457-4 and NEN 7275 intends to reflection of changing environmental conditions whom composite materials may actually undergo during their exploitation or storing on landfills. The results show that cements with high addition of non-clinker components are suitable for stabilization of toxic substances and the obtained cement matrices retain a high degree of immobilization of heavy metals at the level of 99%.

  4. Overview of the applications of cement-based immobilization technologies developed at US DOE facilities

    Dole, L.R.

    1985-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25-mm-(1-in.-) diam pellets in a glove box to producing 240-m-(800-ft-) diam grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of immobilization materials. The US DOE sites and their programs are: (1) Oak Ridge National Laboratory (ORNL), Hydrofracture Grout; (2) Hanford, Transportable Grout Facility (TGF); (3) Savannah River Plant (SRP), Nitrate Saltcrete; (4) EG and G Idaho, Process Experimental Pilot Plant (PREPP); (5) Mound Laboratory (ML), Waste Pelletization Process; (6) ORNL, FUETAP Concretes, and (7) Rocky Flats Plant (RFP), Inert Carrier Concrete Process (ICCP). The major issues regarding the application of cement-based waste forms to radioactive waste management problems are also presented. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is included along with a discussion of future trends in cement-based waste form developments and applications. 35 refs., 12 figs

  5. Collaboration of polymer composite reinforcement and cement concrete

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  6. Effect of Ultrasonic Versus Manual Cementation on the Fracture Strength of Resin Composite Laminates

    Ozcan, M.; Mese, A.

    2009-01-01

    This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations I mm above the cemento-enamel junction were made on intact human maxillary central

  7. Polymerization shrinkage stress of composite resins and resin cements – What do we need to know?

    Carlos José SOARES

    2017-08-01

    Full Text Available Abstract Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  8. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?

    Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis

    2017-08-28

    Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  9. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  10. Analysis of Cement-Based Pastes Mixed with Waste Tire Rubber

    Sola, O. C.; Ozyazgan, C.; Sayin, B.

    2017-03-01

    Using the methods of thermal gravimetry, differential thermal analysis, Furier transform infrared analysis, and capillary absorption, the properties of a cement composite produced by introducing waste tyre rubber into a cement mixture were investigated. It was found that the composite filled with the rubber had a much lower water absorption ability than the unfilled one.

  11. A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites

    Silva, Flávio de Andrade; Toledo Filho, Romildo D.; Mobasher, Barzin; Chawla, Nikhilesh

    2010-01-01

    Durable sisal fiber cement composites reinforced with long unidirectional aligned fibers were developed and their mechanical behavior was characterized in a multi-scale level. Tensile tests were performed in individual sisal fibers. Weibull statistics were used to quantify the degree of variability in fiber strength at different gage lengths. The fiber-matrix pull-out behavior was evaluated at several curing ages and embedded lengths. The composite's mechanical response was measured under dir...

  12. Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites

    Ardanuy Raso, Mònica; Claramunt Blanes, Josep; Arévalo Peces, Raquel; Parés Sabatés, Ferran; Aracri, Elisabetta; Vidal Lluciá, Teresa

    2012-01-01

    In this work, nanofibrillated cellulose (NFC) has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle), sisal, and cotton linters pulps, were initially characterized in order to assess their reinforcement capability. Sisal pulp was found to be most suitable as reinforcement for their brittle cementitious matrix. Nanofibrillated cellulose was produced by th...

  13. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  14. The composition of cement hydrating at 60 deg C from synchrotron radiation

    Auld, J.; Turner, K.; Thorogood, G.J.; Ball, C.J.; Aldridge, L.P.; Taylor, J.C.

    2002-01-01

    Full text: Cement consists of 5 phases C3S, C2S, C3A, C4AF (where C denotes CaO, S denotes SiO 2 , A denotes AI 2 O 3 and F denotes Fe 2 O 3 ) and gypsum. When cement hydrates it forms an amorphous calcium silicate hydrate (C-S-H) as well as the crystalline ettringite and calcium hydroxide. The x-ray diffraction pattern of the hydrated cement is difficult to interpret because of its complexity. In addition, the overlapping lines from the remaining cement compounds make it difficult to quantify the amount of the crystalline components present. Using Rietveld analysis we have been able to interpret the patterns obtained from synchrotron x-ray diffraction patterns obtained at the Photon Factory at the Australian National Beamline Facility using BIGDIF. The changes in the composition of the hydrated cement paste were determined as a function of time during hydration at 60 deg C. Copyright (2002) Australian X-ray Analytical Association Inc

  15. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages

  16. Obtaining and physical mechanical properties of cement composites with the use of fillers and mixing water from the Chechen Republic fields

    Erofeev Vladimir Trofimovich

    Full Text Available Improving physical mechanical and operational properties of concretes and other composite materials is one of the most important tasks in construction material science. At the present time various methods are applied for that, which includes the use of additives, composite binders, activated mixing water, etc. Composite construction materials based on cement binders with mineral additives are widelu used, because they possess improved physical mechanical and technological properties. Implementation of additives improve placeability and nonsegregation factors of concrete and mortar mixes, lead to compaction of concrete and mortars structure. The additives substantially lower heat generation of concretes, which is of great importance in concrete casting of large structures. The article presents the results of experimental studies of cement composites filled with powders of rocks and mixable with activated water from the deposits of the Chechen Republic. The soundness of cement compositions with the additives of mountain and river limestone, sandstone and quartz sand was established. The results of experimental studies on establishing the effect of fine and coarse aggregate on strength formation of cement composites activated by water mixing were presented.

  17. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wzirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  18. Thio-urethanes improve properties of dual-cured composite cements.

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  19. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-01-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating 'smart' electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported

  20. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-07-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating "smart" electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.

  1. Nano-Inclusions Applied in Cement-Matrix Composites: A Review

    Guillermo Bastos

    2016-12-01

    Full Text Available Research on cement-based materials is trying to exploit the synergies that nanomaterials can provide. This paper describes the findings reported in the last decade on the improvement of these materials regarding, on the one hand, their mechanical performance and, on the other hand, the new properties they provide. These features are mainly based on the electrical and chemical characteristics of nanomaterials, thus allowing cement-based elements to acquire “smart” functions. In this paper, we provide a quantitative approach to the reinforcements achieved to date. The fundamental concepts of nanoscience are introduced and the need of both sophisticated devices to identify nanostructures and techniques to disperse nanomaterials in the cement paste are also highlighted. Promising results have been obtained, but, in order to turn these advances into commercial products, technical, social and standardisation barriers should be overcome. From the results collected, it can be deduced that nanomaterials are able to reduce the consumption of cement because of their reinforcing effect, as well as to convert cement-based products into electric/thermal sensors or crack repairing materials. The main obstacle to foster the implementation of such applications worldwide is the high cost of their synthesis and dispersion techniques, especially for carbon nanotubes and graphene oxide.

  2. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation

    Alge, Daniel L; Cruz, Grace Santa; Chu, Tien-Min Gabriel; Goebel, W Scott

    2009-01-01

    Dicalcium phosphate dihydrate (DCPD) cements are typically prepared using β-tricalcium phosphate (β-TCP) as the base component. However, hydroxyapatite (HA) is an interesting alternative because of its potential for reducing cement acidity, as well as modulating cement properties via ionic substitutions. In the present study, we have characterized DCPD cements prepared with a novel formulation based on monocalcium phosphate monohydrate (MCPM) and HA. Cements were prepared using a 4:1 MCPM:HA molar ratio. The reactivity of HA in this system was verified by showing DCPD formation using poorly crystalline HA, as well as highly crystalline HA. Evaluation of cements prepared with poorly crystalline HA revealed that setting occurs rapidly in the MCPM/HA system, and that the use of a setting regulator is necessary to maintain workability of the cement paste. Compressive testing showed that MCPM/HA cements have strengths comparable to what has previously been published for DCPD cements. However, preliminary in vitro analysis of cement degradation revealed that conversion of DCPD to HA may occur much more rapidly in the MCPM/HA system compared to cements prepared with β-TCP. Future studies should investigate this property further, as it could have important implications for the use of HA-based DCPD cement formulations.

  3. Long-term chloride migration coefficient in slag cement-based concrete and resistivity as an alternative test method

    van Noort, R.; Hunger, M.; Spiesz, P.R.

    2016-01-01

    This article reports on investigations of the resistivity and chloride migration coefficient (DRCM) obtained in the accelerated Rapid Chloride Migration test for slag cement-based concretes. Determinations of the resistivity and DRCM were performed on 47 different concrete compositions, up to the

  4. Microwave detection of delaminations between fiber reinforced polymer (FRP) composite and hardened cement paste

    Hughes, D.; Kazemi, M.; Marler, K.; Zoughi, R.; Myers, J.; Nanni, A.

    2002-05-01

    Fiber reinforced polymer (FRP) composites are increasingly being used for the rehabilitation of concrete structures. Detection and characterization of delaminations between an FRP composite and a concrete surface are of paramount importance. Consequently, the development of a one sided, non-contact, real time and rapid nondestructive testing (NDT) technique for this purpose is of great interest. Near-field microwave NDT techniques, using open-ended rectangular waveguide probes, have shown great potential for detecting delaminations in layered composite structures such as these. The results of some theoretical and experimental investigations on a specially prepared cement paste specimen are presented here.

  5. Solidification/stabilization of technetium in cement-based grouts

    Gilliam, T.M.; Bostick, W.D.; Spence, R.D.; Shoemaker, J.L.

    1990-01-01

    Mixed low-level radioactive and chemically hazardous process treatment wastes from the Portsmouth Gaseous Diffusion Plant are stabilized by solidification in cement-based grouts. Conventional portland cement and fly ash grouts have been shown to be effective for retention of hydrolyzable metals (e.g., lead, cadmium, uranium and nickel) but are marginally acceptable for retention of radioactive Tc-99, which is present in the waste as the highly mobile pertechnate anion. Addition of ground blast furnace slag to the grout is shown to reduce the leachability of technetium by several orders of magnitude. The selective effect of slag is believed to be due to its ability to reduce Tc(VII) to the less soluble Tc(IV) species. 12 refs., 4 tabs

  6. Constitutive modeling of fiber-reinforced cement composites

    Boulfiza, Mohamed

    The role of fibers in the enhancement of the inherently low tensile stress and strain capacities of fiber reinforced cementitious composites (FRC) has been addressed through both the phenomenological, using concepts of continuum damage mechanics, and micro-mechanical approaches leading to the development of a closing pressure that could be used in a cohesive crack analysis. The observed enhancements in the matrix behavior is assumed to be related to the ability of the material to transfer stress across cracks. In the micromechanics approach, this is modeled by the introduction of a nonlinear closing pressure at the crack lips. Due to the different nature of cracking in the pre-peak and post peak regimes, two different micro-mechanical models of the cohesive pressure have been proposed, one for the strain hardening stage and another for the strain softening regime. This cohesive pressure is subsequently incorporated into a finite element code so that a nonlinear fracture analysis can be carried out. On top of the fact that a direct fracture analysis has been performed to predict the response of some FRC structural elements, a numerical procedure for the homogenization of FRC materials has been proposed. In this latter approach, a link is established between the cracking taking place at the meso-scale and its mechanical characteristics as represented by the Young's modulus. A parametric study has been carried out to investigate the effect of crack patterning and fiber volume fractions on the overall Young's modulus and the thermodynamic force associated with the tensorial damage variable. After showing the usefulness and power of phenomenological continuum damage mechanics (PCDM) in the prediction of ERC materials' response to a stimuli (loading), a combined PCDM-NLFMsp1 approach is proposed to model (predict, forecast) the complete response of the composite up to failure. Based on experimental observations, this approach assumes that damage mechanics which predicts

  7. The bond of different post materials to a resin composite cement and a resin composite core material.

    Stewardson, D; Shortall, A; Marquis, P

    2012-01-01

    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (p<0.05). Surface roughening of the tested FRC posts is

  8. Assessing degradation of composite resin cements during artificial aging by Martens hardness.

    Bürgin, Stefan; Rohr, Nadja; Fischer, Jens

    2017-05-19

    Aim of the study was to verify the efficiency of Martens hardness measurements in detecting the degradation of composite resin cements during artificial aging. Four cements were used: Variolink II (VL2), RelyX Unicem 2 Automix (RUN), PermaFlo DC (PDC), and DuoCem (DCM). Specimens for Martens hardness measurements were light-cured and stored in water at 37 °C for 1 day to allow complete polymerization (baseline). Subsequently the specimens were artificially aged by water storage at 37 °C or thermal cycling (n = 6). Hardness was measured at baseline as well as after 1, 4, 9 and 16 days of aging. Specimens for indirect tensile strength measurements were produced in a similar manner. Indirect tensile strength was measured at baseline and after 16 days of aging (n = 10). The results were statistically analyzed using one-way ANOVA (α = 0.05). After water storage for 16 days hardness was significantly reduced for VL2, RUN and DCM while hardness of PDC as well as indirect tensile strength of all cements were not significantly affected. Thermal cycling significantly reduced both, hardness and indirect tensile strength for all cements. No general correlation was found between Martens hardness and indirect tensile strength. However, when each material was analyzed separately, relative change of hardness and of indirect tensile strength revealed a strong linear correlation. Martens hardness is a sensible test method to assess aging of resin composite cements during thermal cycling that is easy to perform.

  9. The Determination of the Optimal Material Proportion in Natural Fiber-Cement Composites Using Design of Mixture Experiments

    Aramphongphun Chuckaphun; Ungtawondee Kampanart; Chaysuwan Duangrudee

    2016-01-01

    This research aims to determine the optimal material proportion in a natural fiber-cement composite as an alternative to an asbestos fibercement composite while the materials cost is minimized and the properties still comply with Thai Industrial Standard (TIS) for applications of profile sheet roof tiles. Two experimental sets were studied in this research. First, a three-component mixture of (i) virgin natural fiber, (ii) synthetic fiber and (iii) cement was studied while the proportion of c...

  10. Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

    M. Aruna

    2014-01-01

    Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. ...

  11. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC

    Seok-Joon Jang

    2014-02-01

    Full Text Available This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.

  12. Evaluation of degree of conversion and the effect of thermal aging on the color stability of resin cements and flowable composite.

    Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei

    2018-01-01

    The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).

  13. A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration.

    Almaroof, A; Rojo, L; Mannocci, F; Deb, S

    2016-02-01

    To formulate and evaluate new dual cured resin composite based on the inclusion of eugenyl methacrylate monomer (EgMA) with Bis-GMA/TEGDMA resin systems for intracanal post cementation and core build-up restoration of endodontically treated teeth. EgMA was synthesized and incorporated at 5% (BTEg5) or 10% (BTEg10) into dual-cure formulations. Curing properties, viscosity, Tg, radiopacity, static and dynamic mechanical properties of the composites were determined and compared with Clearfil™DC Core-Plus, a commercial dual-cure, two-component composite. Statistical analysis of the data was performed with ANOVA and the Tukey's post-hoc test. The experimental composites were successfully prepared, which exhibited excellent curing depths of 4.9, 4.7 and 4.2 mm for BTEg0, BTEg5 and BTEg10 respectively, which were significantly higher than Clearfil™DC. However, the inclusion of EgMA initially led to a lower degree of cure, which increased when measured at 24 h with values comparable to formulations without EgMA, indicating post-curing. The inclusion of EgMA also lowered the polymerization exotherm thereby reducing the potential of thermal damage to host tissue. Both thermal and viscoelastic analyses confirmed the ability of the monomer to reduce the stiffness of the composites by forming a branched network. The compressive strength of BTEg5 was significantly higher than the control whilst flexural strength increased significantly from 95.9 to 114.8 MPa (BTEg5) and 121.9 MPa (BTEg10). Radiopacity of the composites was equivalent to ∼3 mm Al allowing efficient diagnosis. The incorporation of EgMA within polymerizable formulations provides a novel approach to prepare reinforced resin composite material for intracanal post cementation and core build-up and the potential to impart antibacterial properties of eugenol to endodontic restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  15. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Mehmet Serkan Kirgiz

    2014-01-01

    Full Text Available Effects of chemical compositions changes of blended-cement pastes (BCPCCC on some strength gains of blended cement mortars (BCMSG were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP or 6%, 20%, 21%, and 35% brick powder (BP for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min. Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS and flexural strengths (FS of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2, sodium oxide (Na2O, and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2 at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM in comparison with reference mortars (RM at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  16. Enhanced properties of graphene/fly ash geopolymeric composite cement

    Saafi, Mohamed, E-mail: m.bensalem.saafi@strath.ac.uk [Department of Civil and Environmental Engineering, University of Strathclyde, G4 0NG (United Kingdom); Tang, Leung [Agilent Technologies, EH12 9DJ (United Kingdom); Fung, Jason; Rahman, Mahbubur [Department of Civil and Environmental Engineering, University of Strathclyde, G4 0NG (United Kingdom); Liggat, John [Department of Pure and Applied Chemistry, University of Strathclyde, G4 0NG (United Kingdom)

    2015-01-15

    This paper reports for the first time the incorporation of in-situ reduced graphene oxide (rGO) into geopolymers. The resulting rGO–geopolymeric composites are easy to manufacture and exhibit excellent mechanical properties. Geopolymers with graphene oxide (GO) concentrations of 0.00, 0.10, 0.35 and 0.50% by weight were fabricated. The functional groups, morphology, void filling mechanisms and mechanical properties of the composites were determined. The Fourier transform infrared (FTIR) spectra revealed that the alkaline solution reduced the hydroxyl/carbonyl groups of GO by deoxygenation and/or dehydration. Concomitantly, the spectral absorbance related to silica type cross-linking increased in the spectra. The scanning electron microscope (SEM) micrographs indicated that rGO altered the morphology of geopolymers from a porous nature to a substantially pore filled morphology with increased mechanical properties. The flexural tests showed that 0.35-wt.% rGO produced the highest flexural strength, Young's modulus and flexural toughness and they were increased by 134%, 376% and 56%, respectively.

  17. Compósitos à base de cimento reforçados com polpa celulósica de bambu. Parte I: Determinação do teor de reforço ótimo Cement-based composite reinforced with bamboo pulp. Part I: Determination of optimum reinforcement percentage

    Marcos A. S. dos Anjos

    2003-08-01

    Full Text Available Este trabalho apresenta os resultados experimentais de um estudo em que se procurou desenvolver compósitos de matriz cimentícia reforçada com polpa de bambu. Foram usados dois tipos de polpa: refinada e sem refino. Fez-se variar o teor de fibras de 0 a 16% em massa de cimento e se desenvolveu um processo com sucção, moldagem e prensagem para fabricação dos compósitos. As relações constitutivas dos compósitos foram definidas através de ensaio a compressão e tração de corpos-de-prova cilíndricos de 5x10 cm e do ensaio de flexão em três pontos. A partir delas, foi obtida a capacidade de absorção de energia. Determinaram-se, também, algumas propriedades físicas, como absorção, porosidade aparente, densidade seca e úmida dos compósitos. Os resultados mostraram melhor performance dos compósitos com fibras refinadas em relação àquelas com fibras sem refino e também indicaram que o teor ótimo de fibras refinadas se situou em torno de 8%, quando promoveram notáveis melhoramentos das propriedades mecânicas dos compósitos em relação à matriz plena.This work presents the experimental results of a study which intended to develop a composite with cementations matrix reinforced with bamboo pulp. Two types of pulps were used: refined and unrefined pulps. The fibre content varied between 0 and 16% cement (weight basis. After the preparation of fresh composite mix the experimental specimens were prepared applying a specially developed process based on Hastshek method using suction then moulding and pressing. The compression, tension and the flexural behavior and their constitutive relations were established using 5 cm diameter by 10 cm high cylindrical specimens and three point bending tests at respectively. The energy absorbing capacity of the new composites was also established. Physical properties such as water absorption, apparent porosity, dry and humid density were also obtained. The results showed a better performance

  18. [Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit].

    Wang, Song; Yang, Han; Yang, Jian; Kang, Jianping; Wang, Qing; Song, Yueming

    2017-12-01

    To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n =15) or CPC (control group, n =15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t =4.254, P =0.006; t =2.476, P =0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between

  19. Effect of porosity on physical properties of lightweight cement composite with foamed glass aggregate

    Kurpińska Marzena

    2017-01-01

    Full Text Available This paper reports on a study of physical properties of lightweight cement composite. We investigate the possibility of replacing traditional aggregate with Granulated Ash Aggregate (GAA and above all with Granulated Expanded Glass Aggregate (GEGA. For this purpose, 15 specimens of different percentage share of each aggregate in total aggregate volume were tested: 0%, 25%, 50%, 75% or 100% of foam glass aggregate (GEGA partially replaced by ash aggregate (GAA content in the cement composite. The water-cement ratio was constant and equal to w/c=0.5. Three grain sizes were analyzed: 2mm, 4mm (both GEGA and 8mm (GAA. Numerical simulations of concrete specimen behavior under static loading were conducted with the implementation of elastic plastic model of each component. The study shows a significant impact of grain type and size on physical properties of lightweight concrete. Due to lower density of foamed glass aggregate, specimens shows various apparent density and porosity, which affect concrete properties. Compressive strength of concrete decreases with the increase in foam glass aggregate content; however specimens show different workability and in consequence porosity of lightweight concrete.

  20. Physico-chemical studies of gamma-irradiated polyester. Impregnated cement mortar composite

    Ismail, M.R.; Afifi, M.S.

    1998-01-01

    The effect of impregnation time on the physico-chemical and mechanical properties of polyester-cement mortar composite has been investigated. The samples were soaked in unsaturated polyester resin containing 40% styrene monomer at impregnation times ranging from 1-15 hours and then exposed to 50 kGy of γ-irradiation. The effects on polymer loading, compressive strength, apparent porosity, and water absorption in addition to IR spectra and TGA of the samples were studied. It was found that, the polymer loading and compressive strength increase with the increased of soaking time up to 4 hours and there is no significant improvement of the polymer loading and strength. Whereas, the apparent porosity and water absorption behave in an opposite direction. These are attributed to the presence of polymer in the pores of the samples. IR spectra showed that, new bands appeared as result of the reaction between polyester and set cement. TGA showed that, the polyester cement composite has higher thermal stability as a compared to irradiated polyester. (author)

  1. Transport of nitrate from a large cement based waste form

    Pepper, D.W.

    1986-01-01

    A finite-element model is used to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith with and without a clay cap. Model predictions agree well with data from two lysimeter field experiments begun in 1984. The clay cap effectively reduces the flux of nitrate from the monolith. Predictions for a landfill monolith design show a peak concentration occurring within 25 years; however, the drinking water guideline is exceeded for 1200 years. Alternate designs and various restrictive liners are being considered

  2. Content of heavy metals and chemical composition of the hydraulic cement marketed in Costa Rica

    Venegas Padilla, Jimmy; Calderon Jimenez, Bryan; Sibaja Brenes, Jose Pablo; Salazar Delgado, Jorge; Rodriguez Castro, Ellen

    2017-01-01

    The concentration of heavy metals, specifically lead (Pb), chromium (Cr), and mercury (Hg), and also the chemical composition (CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 among others) were quantified of the hydraulic cement marketed in Costa Rica. The physical parameters of density and fineness confirmed the homogeneity of the samples to determinate accurately the content of the major components and heavy metals in the cements. The mineralogical constitution was determined by X-ray Fluorescence (XRF). Specifically, the cements showed a mass fraction in the range of (61.22 - 63.12) % of CaO, (18.10 - 26.14) % of SiO 2 , (3.70 - 6.05) % of Al 2 O 3 , (2.57 - 3.36) % Fe 2 O 3 and (0.60 - 4.09) % de MgO. Other components such as MgO, TiO 2 , K 2 O, P 2 O 5 , Na 2 O and Mn 2 O 3 were found on an average mass fraction lower than 1%. Moreover, using the ignition test results and assuming a complete decomposition of the limestone, it was possible to estimate (indirectly) the content of CaCO 3 and CaO given by the raw materials. The metal content of the heavy metals was determined using Flame Atomic Absorption Spectroscopy (FAAS), Electrothermal Atomic Absorption Spectroscopy (ETAAS), and Cold Vapor Atomic Absorption Spectroscopy (CVAAS). The analysis demonstrated that the Pb in cements is present in different concentrations ranging the (2.45 ± 0.72) mg kg -1 to the (8.95 ± 1.34) mg kg -1 . Chromium (Cr) was presented in higher concentrations of (10.69 ± 0.92) mg kg-1. The Hg concentration was below 0.141 ± 0.021 mg kg -1 . In general terms, the hydraulic cements marketed and used in Costa Rica have a suitable chemical composition compared with some cements marketed in Germany. The results of the content of heavy metals presented in this study provide significant information for future studies in the area of toxicology, ecotoxicology, standardization and national regulation. (author) [es

  3. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by

  4. Chemical stability of seven years aged cement-PET composite waste form containing radioactive borate waste simulates

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt); Tawfik, M.E. [Department of Polymers and Pigments, National Research Center, Dokki (Egypt); Bayoumi, T.A. [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt)

    2011-04-15

    Different samples of radioactive borate waste simulate [originating from pressurized water reactors (PWR)] have been prepared and solidified after mixing with cement-water extended polyester composite (CPC). The polymer-cement composite samples were prepared from recycled poly (ethylene terephthalate) (PET) waste and cement paste (water/cement ratio of 40%). The prepared samples were left to set at room temperature (25 deg. C {+-} 5) under humid conditions. After 28 days curing time the obtained specimens were kept in their molds to age for 7 years under ambient conditions. Cement-polymer composite waste form specimens (CPCW) have been subjected to leach tests for both {sup 137}Cs and {sup 60}Co radionuclides according to the method proposed by the International Atomic Energy Agency (IAEA). Leaching tests were justified under various factors that may exist within the disposal site (e.g. type of leachant, surrounding temperature, leachant behavior, the leachant volume to CPCW surface area...). The obtained data after 260 days of leaching revealed that after 7 years of aging the candidate cement-polymer composite (CPC) containing radioactive borate waste samples are characterized by adequate chemical stability required for the long-term disposal process.

  5. Technology and market opportunities in fiber cement composites for ...

    Solving problems of unemployment and developing new materials for buildings requires moving beyond the traditional approaches to more economical, environmentally benign performance models and design properties. New approaches should develop models based on the literature and a full understanding of the root ...

  6. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses.

    Brauer, Delia S; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V; Radecka, Izabela; Hill, Robert G

    2013-01-06

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, giving compressive strength of up to 35 MPa. Strontium release was dependent on BG composition with increasing strontium substitution resulting in higher concentrations in the medium. Bactericidal effects were tested on Staphylococcus aureus and Streptococcus faecalis; cell counts were reduced by up to three orders of magnitude over 6 days. Results show that bactericidal action can be increased through BG strontium substitution, allowing for the design of novel antimicrobial and bone enhancing cements for use in vertebroplasty or kyphoplasty for treating osteoporosis-related vertebral compression fractures.

  7. Interaction of Water with Cement Based Repository Materials - Application of Neutron Imaging

    Mcglinn, P.J.; Brew, D.R.M.; Beer, F.C. De; Radebe, M.J.; Nshimirimana, R.

    2013-01-01

    Cementitious materials are conventionally used in conditioning intermediate and low level radioactive waste. In this study, a candidate cement-based wasteform and a series of barrier materials have been investigated using neutron imaging to: 1) characterise the wasteform for disposal in a repository for radioactive materials, and 2) characterise the compositon of the barrier materials in assessing their potential to transmit water. Imaging showed both the pore size distribution and the extent of the cracking that had occurred in the wasteform samples. The rate of the water penetration measured both by conventional sorptivity measurements and neutron imaging was greater than in pastes made from Ordinary Portland Cement. The ability of the cracks to distribute the water through the sample in a very short time was also evident. Macro-pore volume distributions of barrier samples, also acquired using neutron tomography, are shown to relate to water/cement ratio, composition and sorptivity data. The study highlights the significant potential of neutron imaging in the investigation of cementitious materials. The technique has the advantage of visualising and measuring, non-destructively, material distribution within macroscopic samples and is particularly useful in defining movement of water through the cementitious materials. (author)

  8. Jordanian silica sand and cement as a reinforcement material for polystyrene matrix composites

    Jalham, S. I.

    1999-01-01

    The behaviour of polystyrene matrix composites with different percentages of Jordaanian Silica Sand as a Reinforcement Materials (0, 5, 25, 50, and 75 wt%) and different mean grain sizes of sand particles (60, 75, 85, and 300μ m) and with cement as a boning materials in the amount fo 1/6 wt% of the wt% of silica sand were manufactured and tested under compression loading in the Industrial Engineering Department as the Uninersity of Jordan as a part of large study on local materials. The main conclusions of this investigation are: a long-term, durable structure of the polystyrene composite reinforced by silica sand and cement was achieved by mixing the constituents with water; the higher the volume fraction of the reinforcement, the higher the volume fraction of reinforcement, the higher the strength while for 75% of reinforcement, the strength dropped to an amount less than that of the matrix; the higher the grain size, the higher the strength; longitudinal brittle fracture was observed for the composites, and a homogeneous distribution of the sand particles helped in increasing the strength of the composite by playing an important role in distributing the applied load. (author). 11 refs., 6 tabs, 2 figs

  9. Superplasticizer function and sorption in high performance cement based grouts

    Onofrei, M.; Gray, M.N.; Roe, L.H.

    1991-08-01

    This report describes laboratory studies undertaken to determine interactions between the main components of high-performance cement-based grout. These interactions were studied with the grouts in both their unset and hardened states with the specific intention of determining the following: the mechanistic function of superplasticizer; the phase of residence of the superplasticizer in hardened materials; and the permanence of the superplasticizer in hardened grouts. In unset pastes attempts were made to extract superplasticizer by mechanical processes. In hardened grout the superplasticizer was leached from the grouts. A microautoradiographic method was developed to investigate the phases of residence of superplasticizer in hardened grouts and confirm the inferences from the leaching studies. In hardened grout the superplasticizer was located on the hydrated phases formed during the early stages of cement hydration. These include tricalcium aluminate hydrates and tricalcium silicate phases. There is some tendency for the superplasticizer to sorb on ettringite. The presence of superplasticizer did not coincide with the locations of unreacted silica fume and high silica content phases such as C 2 S-H. The observations explain the findings of the studies of unset pastes which also showed that the sorption of superplasticizer is likely to be enhanced with increased mixing water content and, hence, distribution in and exposure to the hydration reaction surfaces in the grout. Superplasticizer can be leached in very small quantities from the hardened grouts. Rapid release takes place from the unsorbed superplasticizer contained in the accessible pore space. Subsequent release likely occurs with dissolution of the cement phases and the exposure of isolated pores to groundwater. (au) (37 refs.)

  10. Features of Composition and Cement Type of the Lower Triassic Reservoirs in the North of the Timan-Pechora Oil and Gas Province

    N.N. Timonina

    2017-03-01

    Full Text Available The work is devoted to the study of cement type and composition of the Lower Triassic deposits of the Timan-Pechora province, their influence on reservoir properties of rocks. The work was based on laboratory studies of core, generalization of published data. Morphological and genetic analysis of clay minerals was carried out using X-ray and electron-microscopic methods. As a result of the conducted studies it was established that the type, composition and distribution of the cement is influenced by the composition of demolition sources, sedimentation conditions, and post-sedimentation transformations. Kaolinite, chlorite, smectite and hydromica associations are distinguished according to the predominance of clay mineral in the sandstone cement. Kaolinite cement of sandstones is most typical for continental fluvial facies, especially channel beds. Smectite association is most characteristic of the floodplain, oxbow and lake facies of the zone. The revealed regularities will contribute to the improvement of accurate reconstruction of sedimentation conditions, construction of more adequate geological models of the reservoir, taking into account its reservoir heterogeneity both at the level of the reservoir and its constituent interlayers.

  11. Cement-based grouts in geological disposal of radioactive waste

    Onofrei, M.

    1996-01-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from -7 m s -1 to 10 -9 m s -1 and to penetrate fissures in the rock with apertures as small as 10 μm. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment

  12. Research needs in cement-based waste forms

    McDaniel, E.W.; Spence, R.D.; Tallent, O.K.

    1990-01-01

    Cement-based waste forms are one of the most widely used waste disposal options, yet definitive knowledge of the fate of the waste species inside the waste form is lacking. A fundamental understanding of the chemistry and microstructure of the waste forms would lead to a better understanding of the mass transfer of the waste species, more confidence in predicting and extrapolating waste form performance, and design of better waste forms. Better and cheaper leach tests would lead to quicker and more cost effective screening of waste form alternatives. In addition, assessment of durability may be important to predicting waste form performance in the field. It should be noted that the research needs discussed in this report are from the perspective of investigators working in applied waste management areas, while the proposed investigations are fundamental or basic. Details as to experimental methods and tools to be used in achieving the objectives of the proposed are research beyond the scope of this paper and are better filled in by others. In broad terms, the research topics discussed are correlation of cement-based waste form physical properties to performance, waste-form fundamental chemistry and microstructure, and product performance testing

  13. PHYSICAL-MECHANICAL CHARACTERISTICS OF CEMENT-BONDED KENAF BAST FIBRES COMPOSITE BOARDS WITH DIFFERENT DENSITIES

    B. AHMED AMEL

    2017-08-01

    Full Text Available This study was carried out to explore the potential of kenaf bast fibres (KBFs for production of cement-bonded kenaf composite boards (CBKCBs. More than 70% of the KBFs were of size >3.35 mm and length of 31±0.4 mm, therefore, they were used for CBKCBs production. The CBKCBs with the dimensions of 450 × 450 × 12 mm were produced using cement (C: KBF with proportion of (2:1 and different board densities (BD namely 1100, 1300 and 1500 kg/m3. The CBKCBs were first cured in a tank saturated with moisture for 7days, and then kept at room temperature for 21 days. Mechanical and physical properties of the CBKCBs were characterized with regards to their modulus of rupture (MOR, modulus of elasticity (MOE, internal bond (IB, water absorption (WA, and thickness swelling (TS. Results of the tested CBKCBs revealed that the MOR increased while the MOE decreased due to uniform distribution of KBFs. It was found that loading of KBFs has a negative influence on the internal bond (IB of the CBKCBs; the IB was reduced as KBFs tend to balling and making unmixed aggregates with the cement. These results showed that the CBKCB is a promising construction material that could potentially be used in different structural applications due to their good mechanical characteristics.

  14. DEVELOPMENT and TESTING OF A CEMENT-BASED SOLID WASTE FORM USING SYNTHETIC UP-1 GROUNDWATER

    COOKE, G.A.; LOCKREM, L.L.

    2006-01-01

    The Effluent Treatment Facility (ETF) in the 200 East Area of the Hanford Site is investigating the conversion of several liquid waste streams from evaporator operations into solid cement-based waste forms. The cement/waste mixture will be poured into plastic-lined mold boxes. After solidification the bags will be removed from the molds and sealed for land disposal at the Hanford Site. The RJ Lee Group, Inc. Center for Laboratory Sciences (CLS) at Columbia Basin College (CBC) was requested to develop and test a cementitious solids (CS) formulation to solidify evaporated groundwater brine, identified as UP-1, from Basin 43. Laboratory testing of cement/simulant mixtures is required to demonstrate the viability of cement formulations that reduce the overall cost, minimize bleed water and expansion, and provide suitable strength and cure temperature. Technical support provided mixing, testing, and reporting of values for a defined composite solid waste form. In this task, formulations utilizing Basin 43 simulant at varying wt% solids were explored. The initial mixing consisted of making small (∼ 300 g) batches and casting into 500-mL Nalgene(reg s ign) jars. The mixes were cured under adiabatic conditions and checked for bleed water and consistency at recorded time intervals over a 1-week period. After the results from the preliminary mixing, four formulations were selected for further study. The testing documentation included workability, bleed water analysis (volume and pH) after 24 hours, expansivity/shrinkage, compressive strength, and selected Toxicity Characteristic Leaching Procedure (TCLP) leach analytes of the resulting solid waste form

  15. Physico-Chemical studies on irradiated polymer-reinforcement cement mortar composites

    Younes, M.M.

    2001-01-01

    The reinforced concrete suffers from corrosion by several salts, acids or alkalies and physico-mechanical properties are greatly affected. This leads to reduce the life of reinforced concrete structure. The present investigation deals with a comparison of corrosion presentation efficiency and passivity retention of reinforcement steel coated with methylethyl and propyl inhibitors which are prepared by using γ radiation and non-coated steel embedded in γ -induced polyester cement mortar composites. From the results of these studies several conclusions could be derived and these are summarized as follows: 1- The time required to reach passivation for coated steel embedded in the mortar after soaking in tap water for 28 days lies within the range 5-15 minutes; whereas, the time required to reach passivation for steel embedded in the polyester cement mortar composites is very short (1 minute). This result is related to the presence of copolymerized polyester in the pore system of the specimens. 2- The time required to reach passivation for steel coated by inhibitors in the mortar specimens after curing in tap water for 6 months is lower than that of non -coated steel embedded in the mortar specimens cured at the same conditions. 3- A relatively high degree of corrosion inhibition was obtained for the steel embedded in polyester-cement mortar composites after curing in sea water for 28 days, the time required to reach passivation is considered as moderate in the case of methyl and ethyl inhibitors the time to passivation (T.T.P.) = 9 minutes and the degree of inhibition of steel coated with the propyl inhibitor is comparatively low (T.T.P.=21 minutes)

  16. Cement-based processes for the immobilization of intermediate level radioactive waste

    Brown, D.J.; Lee, D.J.; Price, M.S.T.; Smith, D.L.G.

    1985-01-01

    Increasing attention is being paid to the use of cement-based materials for the immobilisation of intermediate level wastes. Various cementitious materials are surveyed and the use of blast furnace slag is shown to be advantageous. The properties of cemented wastes are surveyed both during processing and as solid products. The application of Winfrith Cementation Laboratory technology to plant and flowsheet development for Winfrith Reactor sludge immobilisation is described. (author)

  17. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  18. Immobilization of radioactive waste in cement based matrices

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1985-06-01

    The kinetics of reaction between cement and clinoptilolite are elucidated and rate equations containing temperature dependent constants derived for this reaction. Variations in clinoptilolite particle size and their consequences to reactivity are assessed. The presence of pozzolanic agents more reactive than clinoptilolite provides sacrificial agents which are partially effective in lowering the clinoptilolite reactivity. Blast furnace slag-cements have been evaluated and the background literature summarized. Experimental studies of the pore fluid in matured slag-cements show that they provide significantly more immobilization for Cs than Portland cement. The distribution of Sr in cemented waste forms has been examined, and it is shown that most of the chemical immobilization potential in the short term is likely to be associated with the aluminate phases. The chemical and structural nature of these are described. Carbonation studies on real cements are summarized. (author)

  19. Immobilization of radioactive waste in cement-based matrices

    Glasser, F.P.; Rahman, A.A.; Crawford, R.W.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Tobermorite and xonotlite, two synthetic calcium silicate hydrates, improve the Cs retention of cement matrices for Cs, when incorporated at the 6 to 10% level. A kinetic and mechanistic scheme is presented for the reaction of fine grained, Cs-loaded clinoptilolite with cement. The Magnox waste form reacts quickly with cement, leading to an exchange of carbonate between waste form and cement components. Carbonation of cements leads to a marked improvement in their physical properties of Cs retentivity. Diffusion models are presented for cement systems whose variable parameters can readily be derived from experimental measurements. Predictions about scaled-up behaviour of large immobilized masses are applied to extrapolation of laboratory scale results to full-size masses. (author)

  20. Mineralization dynamics of metakaolin-based alkali-activated cements

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  1. Mineralization dynamics of metakaolin-based alkali-activated cements

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler J.; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29 Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  2. Confirmation of the applicability of low alkaline cement-based material in the Horonobe Underground Research Laboratory

    Nakayama, Masashi; Niunoya, Sumio; Minamide, Masashi

    2016-01-01

    In Japan, high-level radioactive waste repository will be constructed in a stable host rock formation more than 300 m underground. Tunnel support is used for safety during the construction and operation, so, shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement, water and various additives. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed the low alkaline cement, named as HFSC (Highly fly-ash contained silicafume cement), containing over 60wt% of silicafume (SF) and Fly-ash (FA). JAEA is presently constructing the underground research laboratory (URL) at Horonobe for research and development in the geosciences and repository engineering technology. HFSC was used experimentally as the shotcrete material in construction of part of the 350 m deep gallery in the Horonobe URL in 2013. The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC in normal concrete. The total length of tunnel constructed using HFSC shotcrete is about 112 m at 350 m deep drift. The workability of HFSC shotcrete was confirmed by this experimental construction. In this report, we present detailed results of the in-situ construction test. (author)

  3. Incinerated sewage sludge ash as alternative binder in cement-based materials

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...... it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  4. Investigation on the Mechanical Properties of a Cement-Based Material Containing Carbon Nanotube under Drying and Freeze-Thaw Conditions

    Wei-Wen Li

    2015-12-01

    Full Text Available This paper aimed to explore the mechanical properties of a cement-based material with carbon nanotube (CNT under drying and freeze-thaw environments. Mercury Intrusion Porosimetry and Scanning Electron Microscopy were used to analyze the pore structure and microstructure of CNT/cement composite, respectively. The experimental results showed that multi-walled CNT (MWCNT could improve to different degrees the mechanical properties (compressive and flexural strengths and physical performances (shrinkage and water loss of cement-based materials under drying and freeze-thaw conditions. This paper also demonstrated that MWCNT could interconnect hydration products to enhance the performance of anti-microcracks for cement-based materials, as well as the density of materials due to CNT’s filling action.

  5. Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy

    Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia

    2013-02-01

    The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.

  6. A systematic approach to standardize artificial aging of resin composite cements.

    Blumer, Lukas; Schmidli, Fredy; Weiger, Roland; Fischer, Jens

    2015-07-01

    The aim of the investigation was to contribute to the ongoing discussion at the international standardization committee on how to artificially age dental resin composite cements. Indirect tensile strength (n=30) of a dual-cured resin composite cement (Panavia F2.0) was measured to evaluate the effect of water storage at 37°C or thermal cycling (5°C/55°C/1min) for up to 64 days. The influence of water temperature (5-65°C) after 16 days and the effect of 1 day water storage at 37°C prior to aging were assessed. Storage in air at 37°C served as control. Thermal cycling affected the indirect tensile strength most, followed by water storage at 55°C, whereas water storage at 37°C had only little influence. Major deterioration occurred before day 4 (≈6000 cycles). A 1-day pre-treatment by water storage at 37°C prior to thermal cycling attenuated the effect of aging. For the material investigated, thermal cycling for 4 days is the most efficient aging procedure. A 1-day water storage at 37°C prior to thermal cycling is recommended to allow complete polymerization. A 4-day water storage at 55°C may be considered as a viable alternative to thermal cycling. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Life Cycle Assessment on Cement Treated Recycling Base (CTRB Construction

    Sudarno Sudarno

    2014-08-01

    Full Text Available LCA is one of the few environmental management techniques that are used to perform a risk assessment, environmental performance evaluation, environmental auditing, and environmental impact assessment and must be applied to the construction CTRB. The purpose of this study was to determine the amount of energy consumption is used and determine the amount of emissions (CO2 in the implementation of the Foundation Layer Top (base course with the former asphalt pavement aggregate blended cement / Recycling Cement Treated Base (CTRB. This study uses: (i Compilation and data inventory of relevant inputs and outputs of a product system; (ii Evaluating the potential environmental impacts associated with the data input and output; (iii Interpret the results of the inventory analysis and impact assessment in relation to the research objectives. The results showed that Energy consumption in the implementation of recycling pavement (CTRB is 225.46 MJ / km of roads and the resulting GHG emissions 17,43Ton CO2 / km of roads. Previous researchers to calculate the energy consumption of road works on the implementation of conventional (hotmix is 383.46 MJ / km of roads and the resulting GHG emissions 28.24 Ton CO2 / km of roads. If the calculated difference between a job and Hotmix CTRB and then a comparison is made CTRB energy consumption is 158 MJ / km of road, this happens 70.07% savings and GHG emissions resulting difference is 10.81 tons of CO2 / km of road, resulting in a decrease in 62,02%.

  8. Development programs in the United States of America for the application of cement-based grouts in radioactive waste management

    Dole, L.R.; Row, T.H.

    1984-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25 mm (1 in.) diameter pellets in a glove box to producing 240 m (800 ft.) diameter grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of materials. This paper also discusses the major issues regarding the application of cement-based waste forms to radioactive waste management problems. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is given This paper also discusses future trends in cement-based waste form development and applications. 31 references, 11 figures.

  9. Development programs in the United States of America for the application of cement-based grouts in radioactive waste management

    Dole, L.R.; Row, T.H.

    1984-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25 mm (1 in.) diameter pellets in a glove box to producing 240 m (800 ft.) diameter grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of materials. This paper also discusses the major issues regarding the application of cement-based waste forms to radioactive waste management problems. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is given This paper also discusses future trends in cement-based waste form development and applications. 31 references, 11 figures

  10. Influence of the mineralogical composition of cement in the diffusion of chemical species; Influencia de la composicion mineralogica del cemento en la difusion de especies quimicas

    Galicia A, E.

    2015-07-01

    The disposal is the final stage of radioactive waste management. This is essentially placing them in a facility with a reasonable assurance of safety. In this last stage, the ultimate goal is the confinement and isolation of radioactive waste from the human environment for a time period and under conditions such that the release of radionuclides not put in radiation risk to people and the environment. In relation to the storage of radioactive waste of low and medium activity, the final repositories for radioactive waste, based in cement materials are already operating in many countries. The isolation is performed by applying natural or artificial barriers between radioactive waste and man so as to prevent the release of radionuclides to the environment, until they have decreased their toxicity. The cement-based materials are involved in the different stages of the radioactive waste management since they are used for immobilization of waste in the container, container manufacturing and filling the spaces between the containers and vaults container and also as a barrier engineering and construction material in civil engineering. The concrete (cement mix + water + sand + gravel) it is one of the materials used to produce the engineered barrier system and produce containers for radioactive waste. In addition to their mechanical properties (product processing into hydraulic binder after being hydrated), their composition and solubility allow cushion the contact groundwater to ph higher (12.0 - 13.5) during considerable time scales (10{sup 14} - 10{sup 15} years) and it has an active role with the radionuclides confinement present in the radiological inventory of radioactive waste. The study of the microstructures of cement is a constant challenge for specialists working in this area, mainly due to the complex and heterogeneous mineralogical composition. Cement consists of many different phases in order to achieve specific properties such as reactivity properties

  11. Characteristic of Polymer-Impregnated Cement Mortar: Composites: Bulk Density and Microstructure

    Younes, M.M.; Abo-El-Enein, S.A.; El-Saft, M.M.; Sadek, M.A.; Zohdy, K.M.

    2010-01-01

    The effect of radiation initiated polymerization of some monomers on the physical properties of polymer-incorporated mortar was studied. The monomers used were: castor oil (C.O.), 4, 4'-diphenylmethane diisocyanate (MDI) and methyl methacrylate (MMA). Polymerization was carried out by subjecting the monomer-impregnated mortar specimens to different doses of gamma radiation. Where polyurethane (pu) and polyurethane -methyl methacrylate copolymers were formed within the pore system. The influence of polymer impregnation on the various physico-mechanical characteristics of the resulting composites was studied with respect to bulk density and polymer loading. Scanning electron microscopy (SEM) was employed to study the micro-structural characteristics of the neat hardened Ordinary Portland Cement (OPC) mortar pastes and their polymer-impregnated composites

  12. The effect of dolomite type and Al2O3 content on the phase composition in aluminous cements containing spinel

    R. Naghizadeh

    2011-06-01

    Full Text Available In this paper, the effect of dolomite type and Al2O3 content on the phase composition in aluminous cements containing MA spinel is investigated. For this reason, the raw and calcined dolomites are used as raw materials along with calcined alumina in the preparation of the cement. Then, different compositions are prepared at 1350°C using the sintering method and their mineralogical compositions are investigated using the diffractometric technique. Also, their microstructures arre evaluated. The results indicate that raw materials used have great effect on the type and amount of formed phases in cement composition. Independently of the dolomite type used, a mixed phase product consisting of spinel accompanied by CA and CA2 is obtained. The content of CA phase in the cement composition is decreased with increasing of Al2O3 in the raw materials composition. On the other hand, the content of CA2 phase is increased with the addition of Al2O3. In addition, the results show that the formation of C12A7 is favored by use of calcined dolomite.

  13. Stabilization techniques for reactive aggregate in soil-cement base course : technical summary.

    2003-01-01

    The objectives of this research are 1) to identify the mineralogical properties of soil-cement bases which have heaved or can potentially heave, 2) to simulate expansion of cement-stabilized soil in the laboratory, 3) to correlate expansion with the ...

  14. Sealing properties of cement-based grout materials used in the rock sealing project

    Onofrei, M.; Gray, M.N.; Pusch, R.; Boergesson, L.; Karnland, O.; Shenton, B.; Walker, B.

    1993-12-01

    The Task Force on Sealing Materials and Techniques of the Stripa Project recommended that work be undertaken to study the sealing properties of cement-based grout materials. A new class of cement-based grouts (high-performance grouts) with the ability to penetrate and seal fine fractures in granite was investigated. The materials were selected for their small mean particle size and the ability to be made fluid by a superplasticizer at low water/cementitious-materials ratios. The fundamental physical and chemical properties (such as the particle size and chemical composition) of the materials were evaluated. The rheological properties of freshly mixed grouts, which control the workability of the grouts, were determined together with the properties of hardened materials, which largely control the long-term performance (longevity) of the materials in repository settings. The materials selected were shown to remain gel-like during the setting period, and so the grouts may be expected to remain largely homogenous during and after injection into the rock without separating into solid and liquid phases. The hydraulic conductivity and strength of hardened grouts were determined. The microstructure of the bulk grouts was characterized by a high degree of homogeneity with extremely fine porosity. The low hydraulic conductivity and good mechanical properties are consistent with the extremely fine porosity. The ability of the fractured grouts to self-seal was also observed in tests in which the hydraulic conductivity of recompacted granulated grouts was determined. The laboratory tests were carried out in parallel with investigations of the in situ performance of the materials and with the development of geochemical and theoretical models for cement-based grout longevity. (author). 56 refs., 15 tabs., 98 figs

  15. Sealing properties of cement-based grout materials used in the rock sealing project

    Onofrei, M; Gray, M N; Pusch, R; Boergesson, L; Karnland, O; Shenton, B; Walker, B

    1993-12-01

    The Task Force on Sealing Materials and Techniques of the Stripa Project recommended that work be undertaken to study the sealing properties of cement-based grout materials. A new class of cement-based grouts (high-performance grouts) with the ability to penetrate and seal fine fractures in granite was investigated. The materials were selected for their small mean particle size and the ability to be made fluid by a superplasticizer at low water/cementitious-materials ratios. The fundamental physical and chemical properties (such as the particle size and chemical composition) of the materials were evaluated. The rheological properties of freshly mixed grouts, which control the workability of the grouts, were determined together with the properties of hardened materials, which largely control the long-term performance (longevity) of the materials in repository settings. The materials selected were shown to remain gel-like during the setting period, and so the grouts may be expected to remain largely homogenous during and after injection into the rock without separating into solid and liquid phases. The hydraulic conductivity and strength of hardened grouts were determined. The microstructure of the bulk grouts was characterized by a high degree of homogeneity with extremely fine porosity. The low hydraulic conductivity and good mechanical properties are consistent with the extremely fine porosity. The ability of the fractured grouts to self-seal was also observed in tests in which the hydraulic conductivity of recompacted granulated grouts was determined. The laboratory tests were carried out in parallel with investigations of the in situ performance of the materials and with the development of geochemical and theoretical models for cement-based grout longevity. (author). 56 refs., 15 tabs., 98 figs.

  16. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material.

  17. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    Bentz, Dale P.; Jensen, Ole Mejlhede; Hansen, Kurt Kielsgaard

    2001-01-01

    The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal r...

  18. Temperature and composition of carbonate cements record early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA

    Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.

    2016-10-01

    Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.

  19. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  20. Preparation of Cement Composites with Ordered Microstructures via Doping with Graphene Oxide Nanosheets and an Investigation of Their Strength and Durability

    Shenghua Lv

    2016-11-01

    Full Text Available The main problem with cement composites is that they have structural defects, including cracks, holes, and a disordered morphology, which significantly affects their strength and durability. Therefore, the construction of cement composites with defect-free structures and high strength and long durability is an important research topic. Here, by controlling the size and chemical groups of graphene oxide nanosheets (GONs used for doping, we were able to control the entire cement matrix to form an ordered microstructure consisting of polyhedron-like crystals and exhibit flower-like patterns. The cracks and holes in the cement matrix just about vanished. The compressive and flexural strengths as well as the parameters for the durability assessment of the corresponding cement composites obviously improved compared with the control samples. Thus, the formation mechanism of the cement matrix with the ordered microstructure is proposed, and a proper explanation is given to regulation action.

  1. Immobilization of radioactive waste in cement-based matrices

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; Angus, M.J.; Atkins, M.; Dept. of Chemistry)

    1985-01-01

    A solubility model of the system CaO-SiO 2 -H 2 O is developed which takes account of the state of Si polymerization in the solid. Free energies of formations of its bonding hydrogel are tabulated. The internal redox conditions in cements have been measured; in particular, slags lower the Esub(eta) relative to OPC. The fate of Sr and U in cement systems has been determined; Sr is incorporated in the aluminate phases, while U 6+ is precipitated as Ca-U-O-H 2 O phases. Lowering the internal Esub(eta) reduces U solubility. Studies of the carbonation of slag-cement blends are reported. (author)

  2. Calculation of crack stress density of cement base materials

    Chun-e Sui

    2018-01-01

    Full Text Available In this paper, the fracture load of cement paste with different water cement ratio, different mineral admixtures, including fly ash, silica fume and slag, is obtained through experiments. the three-dimensional fracture surface is reconstructed and the three-dimensional effective area of the fracture surface is calculated. the effective fracture stress density of different cement paste is obtained. The results show that the polynomial function can accurately describe the relationship between the three-dimensional total area and the tensile strength

  3. Low porosity portland cement pastes based on furan polymers

    Darweesh, H.H.M.

    2005-01-01

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  4. Research on stress distribution regularity of cement sheaths of radial well based on ABAQUS

    Shi, Jihui; Cheng, Yuanfang; Li, Xiaolong; Xiao, Wen; Li, Menglai

    2017-12-01

    To ensure desirable outcome of hydraulic fracturing based on ultra-short radius radial systems, it is required to investigate the stress distribution regularity and stability of the cement sheath. On the basis of the theoretical model of the cement sheath stress distribution, a reservoir mechanical model was built using the finite element software, ABAQUS, according to the physical property of a certain oil reservoir of the Shengli oilfield. The stress distribution of the casing-cement-sheath-formation system under the practical condition was simulated, based on which analyses were conducted from multiple points of view. Results show that the stress on the internal interface of the cement sheath exceeds that on the external interface, and fluctuates with higher amplitudes, which means that the internal interface is the most failure-prone. The unevenness of the cement sheath stress distribution grows with the increasing horizontal principal stress ratio, and so does the variation magnitude. This indicates that higher horizontal principal stress ratios are unfavourable for the structural stability of the cement sheath. Both the wellbore quantity of the URRS and the physical property of the material can affect the cement sheath distribution. It is suggested to optimize the quantity of the radial wellbore and use cement with a lower elastic modulus and higher Poisson’s ratio. At last, the impact level of the above factor was analysed, with the help of the grey correlation analysis.

  5. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  6. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    Chae, Sejung R.; Moon, Juhyuk; Yoon, Seyoon; Bae, Sungchul; Levitz, Pierre; Winarski, Robert; Monteiro, Paulo J. M.

    2013-01-01

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three

  7. Microleakage of Glass Ionomer-based Provisional Cement in CAD/CAM-Fabricated Interim Crowns: An in vitro Study.

    Farah, Ra'fat I; Al-Harethi, Naji

    2016-10-01

    The aim of this study was to compare in vitro the marginal microleakage of glass ionomer-based provisional cement with resin-based provisional cement and zinc oxide non-eugenol (ZONE) provisional cement in computer-aided design and computer-aided manufacturing (CAD/CAM)-fabricated interim restorations. Fifteen intact human premolars were prepared in a standardized manner for complete coverage of crown restorations. Interim crowns for the prepared teeth were then fabricated using CAD/CAM, and the specimens were randomized into three groups of provisional cementing agents (n = 5 each): Glass ionomer-based provisional cement (GC Fuji TEMP LT™), bisphenol-A-glycidyldimethacrylate (Bis-GMA)/ triethylene glycol dimethacrylate (TEGDMA) resin-based cement (UltraTemp® REZ), and ZONE cement (TempBond NE). After 24 hours of storage in distilled water at 37°C, the specimens were thermocycled and then stored again for 24 hours in distilled water at room temperature. Next, the specimens were placed in freshly prepared 2% aqueous methylene blue dye for 24 hours and then embedded in autopolymerizing acrylic resin blocks and sectioned in buccolingual and mesiodistal directions to assess dye penetration using a stereomicroscope. The results were statistically analyzed using a nonparametric Kruskal-Wallis test. Dunn's post hoc test with a Bonferroni correction test was used to compute multiple pairwise comparisons that identified differences among groups; the level of significance was set at p provisional cement demonstrated the lowest microleakage scores, which were statistically different from those of the glass ionomer-based provisional cement and the ZONE cement. The provisional cementing agents exhibited different sealing abilities. The Bis-GMA/TEGDMA resin-based provisional cement exhibited the most effective favorable sealing properties against dye penetration compared with the glass ionomer-based provisional cement and conventional ZONE cement. Newly introduced glass

  8. Sisal fibre pull-out behaviour as a guide to matrix selection for the production of sisal fibre reinforced cement matrix composites

    Mapiravana, Joe

    2011-12-01

    Full Text Available Natural fibre reinforced cement composites are promising potential materials for use in panelised construction. The structural properties of these composite materials are yet to be fully understood. As the role of the natural fibre is to reinforce...

  9. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  10. Design and application of environmentally effective concrete with usage of chrysotile-cement waste

    Egorova Lada; Semenov Vyacheslav; Pligina Anna; Askhadullin Aizat

    2016-01-01

    Construction is resource-demanding industry, characterized by a large volume of waste. Particularly chrysotile cement waste obtained both in production and in dismantling over age chrysotile-cement products: corrugated asbestos boards and flat sheets, chrysotile-cement tubes. We propose to use dry chrysotile-cement waste as recycled aggregate for concrete. Based on developed compositions and identified properties of heavy concrete with chrysotile-cement waste introduce this technology to the ...

  11. Effect of nylon fiber on mechanical properties of cement based mortar

    Hanif, I. M.; Syuhaili, M. R. Noor; Hasmori, M. F.; Shahmi, S. M.

    2017-11-01

    An investigation has been carried out to study the effect of nylon fiber on the mechanical properties of cement based mortar after receiving large quantities of nylon waste. Subsequently, this research was conducted to compare the compressive, tensile and flexural strength of normal cement based mortar with nylon fiber cement based mortar. All samples using constant water-cement ratio of 0.63 and three different percentages of nylon fiber were added in the mixture during the samples preparation period which consists of 0.5%, 1.5% and 2.5% by total weight of cement based mortar. The results obtained with different nylon percentage marked an increases in compressive strength (up to 17%), tensile strength (up to 21%) and flexural strength (up to 13%) when compared with control cement based mortar samples. Therefore, the results obtained from this study shows that by using nylon fiber as additive material can improve the mechanical properties of the cement based mortar and at the same time produce a good sustainable product that can protects and conserve the marine environment.

  12. Solidification of Simulated Radioactive Incineration Ash by Alkali-activated Slag Composite Cement

    Li changcheng; Cui Qi; Zhao Yanhong; Pan Sheqi

    2010-01-01

    Simulated radioactive incineration ash (SRIA) was solidified by alkali-activated slag composite cement (AASCC) modified by metakaolin, zeolite, and polymer emulsion powder. The results show that the performance of solidified waste form containing 40% SRIA meets the requirements of GB 14569.1-93. The lowest leaching rate of Cs + on 42nd days reaches 1.32 x 10 -4 cm/d (GB 7023-86,25 degree C), cumulative leach percentage is only 0.041 cm. Also, the lowest 28 days compressive strength of solidified waste form is 45.6 MPa, and later strength growth is still high. The fast setting characteristic of AASCC overcomes effectively the disadvantageous influence caused by some components in SRIA on hydration of cement. The compressive strength of solidified waste is enhanced remarkably, and the ability of immobilizing radionuclide ions is also improved. This is mainly due to synergistic effect between metakaolin and zeolite. Polymer modification also improves the performance of solidified waste form significantly. The three-dimensional polymer network structure formed by emulsion powder in solidified waste form enhances its toughness and impact resistance, and the durability is improved by reducing interconnected pores and optimizing pore structure. However,it also results in reduction in compressive strength. Thus, it is concluded that the suitable dosage percentage is 5%. (authors)

  13. Morphology of root canal surface: A reflection on the process of cementation of the composite relined glass fiber post

    Yasmine Mendes Pupo

    2017-01-01

    Full Text Available Background: The present study was conducted to evaluate the bond strength in the different root thirds (premolars and maxillary central incisors of composite relined glass fiber posts compared to untreated glass fiber posts cemented with dual- or chemical-cure cements. Materials and Methods: Sixty human single-rooted premolars (flat canal (n = 15 and 12 maxillary central incisors were used (round canal (n = 3. The teeth were sectioned, and the roots received endodontic treatment. The standardized preparation of the canals was carried out, and the roots were randomly divided into four groups according to the cementation systems: G1: cemented posts (dual: Ambar/Allcem; G2: relined posts (dual: Ambar/Allcem; G3: cemented posts (chemical: Fusion Duralink/Cement Post; and G4: relined posts (chemical: Fusion Duralink/Cement Post. The roots were cut to give two slices of each third of the root canal per specimen. Push-out test was conducted at a speed of 0.5 mm/min. Data were analyzed by analysis of variance and Tukey's post hoc test (α = 0.05. Results: There was no statistically significant difference between groups for the premolars (flat canal (P = 0.959. There was a significant difference in the central incisors between the middle and apical thirds in the cemented group when using the dual system (P = 0.04 and between the middle and apical thirds (P = 0.003 and cervical and apical thirds (P = 0.033 when using the chemical system. Conclusion: Due to the anatomy of the root canal, flat canal of the premolars does not require relining, but round canal of the maxillary central incisors demands it for more secure in the bond strength.

  14. Modeling long-term leaching experiments of full scale cemented wastes: effect of solution composition on diffusion

    Borkel, C.; Montoya, V.; Kienzler, B.

    2015-01-01

    The code PHREECQ V3.1 has been used to simulate leaching experiments performed with cemented simulated waste products in tap water for more than 30 years. In this work the main focus is related with the leaching of Cs explained by diffusion processes. A simplifying model using the code PHREECQ V3.1 was used to investigate the influence of different parameters on the release of Cs from the cement solid to the leaching solution. The model setup bases on four main assumptions: a) the solid as well as the distribution of Cs is homogeneous and of isotropic texture, b) there is no preferential direction regarding cement degradation or water intrusion into the solid, c) the pore space is entirely connected and d) Cs adsorption to the cement or container is negligible. In the modeling the constraint of charge balance was stressed. Effective diffusion coefficients (D e ) were obtained analytically and from modeling the diffusive release of Cs from cemented waste simulates. The obtained values D e for Cs leaching are in perfect agreement with the values published in literature. Contradictory results to diffusive release were obtained from XRD analysis of the solids, suggesting that water may not have penetrated the cement monoliths entirely, but only to some centimeters depth. XRD analysis have been done to determine the solid phases present in cement and are used to help outlining strength and weaknesses of the different models

  15. CAD-based intelligent robot system integrated with 3D scanning for shoe roughing and cementing

    Chiu Cheng-Chang

    2017-01-01

    Full Text Available Roughing and cementing are very essential to the process of bonding shoe uppers and the corresponding soles; however, for shoes with complicated design, such as sport shoes, roughing and cementing greatly relied on manual operation. Recently, shoe industry is progressing to 3D design, thus 3D model of the shoe upper and sole will be created before launching into mass production. Taking advantage of the 3D model, this study developed a plug-in program on Rhino 3D CAD platform, which realized the complicated roughing and cementing route planning to be performed by the plug-in program, integrated with real-time 3D scanning information to compensate the planned route, and then converted to working trajectory of robot arm to implement roughing and cementing. The proposed 3D CAD-based intelligent robot arm system integrated with 3D scanning for shoe roughing and cementing is realized and proved to be feasible.

  16. ToF-SIMS images and spectra of biomimetic calcium silicate-based cements after storage in solutions simulating the effects of human biological fluids

    Torrisi, A.; Torrisi, V.; Tuccitto, N.; Gandolfi, M. G.; Prati, C.; Licciardello, A.

    2010-01-01

    ToF-SIMS images were obtained from a section of a tooth, obturated by means of a new calcium-silicate based cement (wTCF) after storage for 1 month in a saline solutions (DPBS), in order to simulate the body fluid effects on the obturation. Afterwards, ToF-SIMS spectra were obtained from model samples, prepared by using the same cement paste, after storage for 1 month and 8 months in two different saline solutions (DPBS and HBSS). ToF-SIMS spectra were also obtained from fluorine-free cement (wTC) samples after storage in HBSS for 1 month and 8 months and used for comparison. It was found that the composition of both the saline solution and the cement influenced the composition of the surface of disks and that longer is the storage greater are the differences. Segregation phenomena occur both on the cement obturation of the tooth and on the surface of the disks prepared by using the same cement. Indirect evidences of formation of new crystalline phases are supplied.

  17. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  18. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications

    Lopez-Heredia, M.A.; Pattipeilohy, J.; Hsu, S.; Grykien, M.; Weijden, B. van der; Leeuwenburgh, S.C.G.; Salmon, P.; Wolke, J.G.C.; Jansen, J.A.

    2013-01-01

    Calcium phosphate cements (CPCs) and fibrin glue (FG) are used for surgical applications. Their combination is promising to create bone substitutes able to promote cell attachment and bone remodeling. This study proposes a novel approach to create CPC-FG composites by simultaneous CPC setting and FG

  19. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  20. Transport of nitrate from a large cement-based wasteform

    Pepper, D.W.

    1986-10-01

    A two-dimensional finite element model has been developed to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith. A steady-state velocity field is also calculated, based on saturated ground water flow and Darcy's law. Model predictions are compared with data from two lysimeter field experiments begun in 1984. The model results agree very well with data from the uncapped and clay-capped monoliths. A peak concentration of 140 ppM is predicted for the uncapped case within four years; the clay-capped case shows a rather flat peak of 70 ppM occurring within approximately 20 years. The clay cap effectively reduces the groundwater velocity and dispersion coefficient adjacent to the exposed monolith surface. The cap also significantly reduces the flux of nitrate out the top surface of the monolith, in contrast to the uncapped monolith. Predictions for a landfill monolith design show a peak concentration of approximately 280 ppM occurring within 25 years. Results indicate that the 44 ppM drinking water guideline would be exceeded for over 1000 years. Alternate designs and various restrictive liners are being considered. 9 refs., 8 figs

  1. Research on preparation and performance of graphite cement-based materials used for fast neutron shielding

    Xu Jun; Kang Qing; Shen Zhiqiang; Wang Zhenggang; Wang Zhiqiang

    2014-01-01

    Measurements have been carried out to investigate the 14.8 MeV neutron attenuation properties for 3 kinds of cement-graphite composites. In comparison with the void group, the 14.8 MeV neutron attenuation properties of cement-graphite composites raised not clearly in 8 mm thickness, and drop not remarkably in 40 mm thickness; with the increase of graphite content and the thickness, the 14.8 MeV neutron attenuation properties were enhanced clearly. The data may be useful to the radiation shielding design of neutron. (authors)

  2. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  3. The influence of natural pozzolana mineralogical composition in the properties of blended cement

    Gener Rizo, M.

    2002-09-01

    Full Text Available The pozzolana activity is the main property of the active additions but, in order to select them, we have to consider - between other factors- its mineralogical composition with a great influence, not only in the active component, but also in other cement properties. In the present work we have studied 4 different Cuban natural pozzolanes, characterized with the help of X ray diffraction and with thermic and chemical analysis. The pozzolanic activity was also evaluated through a chemical and physicomechanic method. Some cements were prepared with different contents of each one of the pozzolanics, and analysed their physicomechanic and chemical properties. Finally, we found that the pozzolanics mineralogical composition has a great influence in the pozzolanic activity and in the properties of mixed cements. Also we found that it 5 possible to obtain the best resistances in the time and the smaller needs of water when the vitreous phase prevail in the additions.

    La actividad puzolánica es la propiedad fundamental de las adiciones activas, pero para la selección de la misma se debe considerar, entre otros factores, su composición mineralógica, que influye no sólo en los constituyentes activos, sino también en muchas propiedades de los cementos. En el presente trabajo, como material puzolánico se estudiaron 4 puzolanas naturales cubanas, las cuales fueron caracterizadas mediante difracción de Rayos X, análisis térmico y análisis químico; se evaluó, además, la actividad puzolánica mediante un método químico y otro físico-mecánico. Se prepararon cementos con diferentes contenidos de cada una de las puzolanas y se analizaron sus propiedades químicas y físico-mecánicas. Se concluye que la composición mineralógica de las puzolanas influye de forma determinante en la actividad puzolánica y en las propiedades de los cementos mezclados; que los mejores desarrollos de resistencias en el tiempo y los menores requerimientos

  4. Fabrication of GO/Cement Composites by Incorporation of Few-Layered GO Nanosheets and Characterization of Their Crystal/Chemical Structure and Properties.

    Lv, Shenghua; Hu, Haoyan; Zhang, Jia; Luo, Xiaoqian; Lei, Ying; Sun, Li

    2017-12-18

    Original graphene oxide (GO) nanosheets were prepared using the Hummers method and found to easily aggregate in aqueous and cement composites. Using carboxymethyl chitosan (CCS) as a dispersant, few-layered GO nanosheets (1-2 layers) were obtained by forming CCS/GO intercalation composites. The testing results indicated that the few-layered GO nanosheets could uniformly spread, both in aqueous and cement composites. The cement composites were prepared with GO dosages of 0.03%, 0.05% and 0.07% and we found that they had a compact microstructure in the whole volume. A special feature was determined, namely that the microstructures consisted of regular-shaped crystals created by self-crosslinking. The X-ray diffraction (XRD) results indicated that there was a higher number of cement hydration crystals in GO/cement composites. Meanwhile, we also found that partially-amorphous Calcium-Silicate-Hydrate (C-S-H) gel turned into monoclinic crystals. At 28 days, the GO/cement composites reached the maximum compressive and flexural strengths at a 0.05% dosage. These strengths were 176.64 and 31.67 MPa and, compared with control samples, their increased ratios were 64.87% and 149.73%, respectively. Durability parameters, such as penetration, freeze-thaw, carbonation, drying-shrinkage value and pore structure, showed marked improvement. The results indicated that it is possible to obtain cement composites with a compact microstructure and with high performances by introducing CCS/GO intercalation composites.

  5. Optimum permeability for a cement based backfill material

    Jacobs, F.; Wittmann, F.H.; Iriya, K.

    1989-01-01

    In Switzerland it is planned to dispose low- and intermediate radioactive waste (LLW/ILW) in an underground repository. Between the materials present in a repository different chemical reactions may occur. Due to radiolytic decomposition, microbiological degradation and corrosion gas (mainly hydrogen) may be produced. The release of gas can cause the build-up of pressure in the cavern and finally lead to the formation of cracks and/or serious damage in the concrete structure or host rock. Through cracks a contamination of the groundwater and the biosphere could be possible. This investigation develops a suitable cement based material which can be used as backfill for the repository. Besides other aspects mentioned later a suitable backfill material has to be characterized by a certain minimum gas permeability and a as low as possible hydraulic conductivity. On the one hand gas permeability is necessary to release gas overpressure and on the other hand a low hydraulic conductivity should prevent leaching of backfill materials and contamination of the environment

  6. Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

    Kameyama, Atsushi; Bonroy, Kim; Elsen, Caroline; Lührs, Anne-Katrin; Suyama, Yuji; Peumans, Marleen; Van Meerbeek, Bart; De Munck, Jan

    2015-01-01

    The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations.

  7. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  8. Summary report on the development of a cement-based formula to immobilize Hanford facility waste

    Gilliam, T.M.; McDaniel, E.W.; Dole, L.R.; Friedman, H.A.; Loflin, J.A.; Mattus, A.J.; Morgan, I.L.; Tallent, O.K.; West, G.A.

    1987-09-01

    This report recommends a cement-based grout formula to immobilize Hanford Facility Waste in the Transportable Grout Facility (TGF). Supporting data confirming compliance with all TGF performance criteria are presented. 9 refs., 24 figs., 50 tabs

  9. Evaluation of cement and fly ash treated recycled asphalt pavement and aggregates for base construction.

    2011-12-01

    Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base material, temporary haul roads, : and, in the case of RAP, hot mix asphalt construction. Several states currently allow the use of RAP combined with cement : for...

  10. Cement-Based Renders Manufactured with Phase-Change Materials: Applications and Feasibility

    Luigi Coppola

    2016-01-01

    Full Text Available The paper focuses on the evaluation of the rheological and mechanical performances of cement-based renders manufactured with phase-change materials (PCM in form of microencapsulated paraffin for innovative and ecofriendly residential buildings. Specifically, cement-based renders were manufactured by incorporating different amount of paraffin microcapsules—ranging from 5% to 20% by weight with respect to binder. Specific mass, entrained or entrapped air, and setting time were evaluated on fresh mortars. Compressive strength was measured over time to evaluate the effect of the PCM addition on the hydration kinetics of cement. Drying shrinkage was also evaluated. Experimental results confirmed that the compressive strength decreases as the amount of PCM increases. Furthermore, the higher the PCM content, the higher the drying shrinkage. The results confirm the possibility of manufacturing cement-based renders containing up to 20% by weight of PCM microcapsules with respect to binder.

  11. Bonding Characteristics of Macrosynthetic Fiber in Latex-Modified Fiber-Reinforced Cement Composites as a Function of Carbon Nanotube Content

    Ji-Hong Jean

    2016-01-01

    Full Text Available The effect of carbon nanotube content (0, 0.5, 1.0, 1.5, and 2.0% of the cement weight on the bonding properties of macrosynthetic fiber in latex-modified hybrid fiber cement-based composites (LMHFRCCs was evaluated. The slump value, compressive strength, and bonding strength were measured for each LMHFRCC. As the carbon nanotube content increased to 1.5%, the bonding properties of the macrosynthetic fiber improved. However, the bonding performance deteriorated at a carbon nanotube content of 2.0%. A decrease in the fluidity of the mix negatively affected the dispersion of the nanotubes in the LMHFRCCs. The addition of carbon nanotubes also affected the relative bonding strength independently of the improvement in compressive strength. Microscopic analysis of the macrosynthetic fiber surfaces was used to understand changes in the bonding behavior.

  12. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Expansive cements for the manufacture of the concrete protective bandages

    Yakymechko, Yaroslav; Voloshynets, Vladyslav

    2017-12-01

    One of the promising directions of the use of expansive cements is making the protective bandages for the maintenance of pipelines. Bandages expansive application of the compositions of the pipeline reinforce the damaged area and reduce stress due to compressive stress in the cylindrical area. Such requirements are best suited for expansive compositions obtained from portland cement and modified quicklime. The article presents the results of expansive cements based on quick lime in order to implement protective bandages pipelines.

  14. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  15. Investigation of Waste Paper Cellulosic Fibers Utilization into Cement Based Building Materials

    Viola Hospodarova

    2018-03-01

    Full Text Available Recently, the utilization of renewable natural cellulosic materials, such as wood, plants, and waste paper in the preparation of building materials has attracted significant interest. This is due to their advantageous properties, low environmental impact and low cost. The objective of this paper is to investigate the influence of recycled cellulosic fibers (in the amount 0.5 wt % of the filler and binder weight and superplasticizer (in the amount 0.5 wt % of the cement weight on the resulting properties of cement composites (consistency of fresh mixture, density, thermal conductivity, and compressive and flexural strength for hardening times of 1, 3, 7, 28, and 90 days. Plasticizer use improved the workability of fresh cement mixture. In comparison to the reference sample, the results revealed a decrease in density of 6.8% and in the thermal conductivity of composites with cellulosic fibers of 34%. The highest values of compressive (48.4 MPa and flexural (up to 7 MPa strength were achieved for hardened fiber cement specimens with plasticizer due to their significantly better dispersion of cement particles and improved bond strength between fibers and matrix.

  16. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  17. physico-chemical studies on polymer impregnated blending cement mortar composite

    Abdel-Rahman, H.A.

    2001-01-01

    as the increasing of the demand on a specific performance characteristics in concrete such as improved strength, low heat, sulfate resistance, improved impermeability and certain other applications. some of the industrial waste materials such as the blast-furnace slag, silica fume and fly ash were mixed with the cement clinker to produce blended cement . the use of these materials modifies the strength, pore structure and permeability of hardened cement mortar or concrete. the incorporation of blast furnace slag and silica fume in the hardened blended cement mortar or concrete is a common practice recently due to technological, economical and environmental benefits

  18. Mechanical damage of a cement-based matrix subjected to a bio leaching test

    Lajili, H.; Grambin-Lapeyre, C.; Lajili, H.; Devillers, Ph.; Lajili, H.; Degorce-Dumas, J.R.; Roussy, J.; Bournazel, J.P.

    2007-01-01

    Waste packages are often embedded in concrete containers and placed in storage sites. Cement-based materials due to their favourable physical properties, are commonly used for the solidification and stabilisation of these wastes. Waste repositories can be situated in geological formations where microorganisms capable of degrading cement matrices are present. In such situations, the stability of concrete used in underground repositories for immobilization of nuclear waste may be impaired by Inter alia filamentous fungi. Fungal growth on cement matrices leads to physicochemical and mechanical degradations which considerably affects their durability, thus bio-leaching scenario must be seriously considered. This paper outlines the detrimental impact of Aspergillus niger fungus on the integrity of cement paste and describes the associated mechanisms of biodegradation. (authors)

  19. REST based service composition

    Grönvall, Erik; Ingstrup, Mads; Pløger, Morten

    2011-01-01

    This paper presents an ongoing work developing and testing a Service Composition framework based upon the REST architecture named SECREST. A minimalistic approach have been favored instead of a creating a complete infrastructure. One focus has been on the system's interaction model. Indeed, an aim...

  20. Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement

    Juan García Olmo

    2013-06-01

    Full Text Available Low-pH cements are designed to be used in underground repositories for high level waste. When they are based on Ordinary Portland Cements (OPC, high mineral admixture contents must be used which significantly modify their microstructure properties and performance. This paper evaluates the microstructure evolution of low-pH cement pastes based on OPC plus silica fume and/or fly ashes, using Mid-Infrared and Near-Infrared spectroscopy to detect cement pastes mainly composed of high polymerized C-A-S-H gels with low C/S ratios. In addition, the lower pore solution pH of these special cementitious materials have been monitored with embedded metallic sensors. Besides, as the use of reinforced concrete can be required in underground repositories, the influence of low-pH cementitious materials on steel reinforcement corrosion was analysed. Due to their lower pore solution pH and their different pore solution chemical composition a clear influence on steel reinforcement corrosion was detected.

  1. Metal-composite adhesion based on diazonium chemistry.

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    Tawie, R.; Lee, H. K.

    2011-08-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.

  3. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    Tawie, R; Lee, H K

    2011-01-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials

  4. Application of Neutron imaging in pore structure of hydrated wellbore cement: comparison of hydration of H20 with D2O based Portland cements

    Dussenova, D.; Bilheux, H.; Radonjic, M.

    2012-12-01

    storage of the hydrogen atom. In such case, neutron tomography does not give information of the pore structure as neutrons will strongly scatter of H and the data have low count and low statistics or low neutron transmission. Hence, as the comparison and the possible tuning technique, neutron tomography measurements are performed on a Deuterium Oxide (D2O) or heavy water samples the same dimensions, cement composition, cement/liquid content and hydration time as the H2O samples. The advantage of using heavy water is that the total neutron cross-section for Deuterium is approximately four times smaller than Hydrogen's and, thus, permits better neutron transmission, i.e. better statistics. D2O does not alter cement properties or its chemical composition; therefore, the samples are almost identical. Comparison of the measurements using water and heavy water samples and the preparation of the measurement cement samples are discussed in this

  5. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  6. Microhardness of dual-polymerizing resin cements and foundation composite resins for luting fiber-reinforced posts.

    Yoshida, Keiichi; Meng, Xiangfeng

    2014-06-01

    The optimal luting material for fiber-reinforced posts to ensure the longevity of foundation restorations remains undetermined. The purpose of this study was to evaluate the suitability of 3 dual-polymerizing resin cements and 2 dual-polymerizing foundation composite resins for luting fiber-reinforced posts by assessing their Knoop hardness number. Five specimens of dual-polymerizing resin cements (SA Cement Automix, G-Cem LincAce, and Panavia F2.0) and 5 specimens of dual-polymerizing foundation composite resins (Clearfil DC Core Plus and Unifil Core EM) were polymerized from the top by irradiation for 40 seconds. Knoop hardness numbers were measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours and 7 days after irradiation. Data were statistically analyzed by repeated measures ANOVA, 1-way ANOVA, and the Tukey compromise post hoc test (α=.05). At both times after irradiation, the 5 resins materials showed the highest Knoop hardness numbers at the 0.5-mm depth. At 7 days after irradiation, the Knoop hardness numbers of the resin materials did not differ significantly between the 8.0-mm and 10.0-mm depths (P>.05). For all materials, the Knoop hardness numbers at 7 days after irradiation were significantly higher than those at 0.5 hours after irradiation at all depths (Presin materials were found to decrease in the following order: DC Core Plus, Unifil Core EM, Panavia F2.0, SA Cement Automix, and G-Cem LincAce (Pcomposite resins were higher than those of the 3 dual-polymerizing resin cements, notable differences were seen among the 5 materials at all depths and at both times after irradiation. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Characterization of cement-based ancient building materials in support of repository seal materials studies

    Roy, D.M.; Langton, C.A.

    1983-12-01

    Ancient mortars and plasters collected from Greek and Cypriot structures dating to about 5500 BC have been investigated because of their remarkable durability. The characteristics and performance of these and other ancient cementitious materials have been considered in the light of providing information on longevity of concrete materials for sealing nuclear waste geological repositories. The matrices of these composite materials have been characterized and classified into four categories: (1) gypsum cements; (2) hydraulic hydrated lime and hydrated-lime cements; (3) hydraulic aluminous and ferruginous hydrated-lime cements (+- siliceous components); and (4) pozzolana/hydrated-lime cements. Most of the materials investigated, including linings of ore-washing basins and cisterns used to hold water, are in categories (2) and (3). The aggregates used included carbonates, sandstones, shales, schists, volcanic and pyroclastic rocks, and ore minerals, many of which represent host rock types of stratigraphic components of a salt repository. Numerous methods were used to characterize the materials chemically, mineralogically, and microstructurally and to elucidate aspects of both the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical (mineralogical) and microstructural factors. Durability was found to be affected by matrix mineralogy, particle size and porosity, and aggregate type, grading, and proportioning, as well as method of placement and exposure conditions. Similar factors govern the potential for durability of modern portland cement-containing materials, which are candidates for repository sealing. 29 references, 29 figures, 6 tables

  8. EFFECT OF SEA WATER ON THE STRENGTH OF POROUS CONCRETE CONTAINING PORTLAND COMPOSITE CEMENT AND MICROFILAMENT POLYPROPYLENE FIBER

    TJARONGE, M.W

    2011-01-01

    The aim of this research is to study the influence of sea water on the strength of porous concrete containing Portland Composite cement and micro monofilament polypropylene fibre. The specimens of porous concrete were immersed in the sea water up to 28 days. The compressive strength test and flexural strength test were carried out at 3, 7 and 28 days in order to investigate the strength development. The test result indicated that the strength of porous concrete can develop in t...

  9. Electrical conductivity and transport properties of cement-based materials measured by impedance spectroscopy

    Shane, John David

    The use of Impedance Spectroscopy (IS) as a tool to evaluate the electrical and transport properties of cement-based materials was critically evaluated. Emphasis was placed on determining the efficacy of IS by applying it as a tool to investigate several families of cement-based materials. Also, the functional aspects of electroding and null corrections were also addressed. The technique was found to be advantageous for these analyses, especially as a non-destructive, in-situ, rapid test. Moreover, key insights were gained into several cement-based systems (e.g., cement mortars and oil-well grouts) as well as the effect that certain testing techniques can have on materials (e.g., the rapid chloride permeability test). However, some limitations of IS were identified. For instance, improper electroding of samples can lead to erroneous results and incorrect interpretations for both two-point and multi-point measurements. This is an area of great importance, but it has received very little attention in the literature. Although the analysis of cement/electrode techniques is in its infancy, much progress was made in gaining a full understand of how to properly and reliably connect electrodes to cement-based materials. Through the application of IS to materials such as oil-well grouts, cement mortars and concretes, a great deal of valuable information about the effectiveness of IS has been gained. Oil-well cementing is somewhat limited by the inability to make measurements in the well-bore. By applying IS to oil-well grouts in a laboratory environment, it was demonstrated that IS is a viable technique with which to test the electrical and transport properties of these materials in-situ. Also, IS was shown to have the ability to measure the electrical conductivity of cement mortars with such accuracy, that very subtle changes in properties can be monitored and quantified. Through the use of IS and theoretical models, the complex interplay between the interfacial transition

  10. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  11. Sealing properties of cement-based grout materials. Final report on the Rock sealing project

    Onofrei, M.; Gray, Malcolm; Shenton, B.; Walker, Brad; Pusch, R.; Boergesson, L.; Karnland, O.

    1992-10-01

    This report presents the results of laboratory studies of material properties. A number of different high performance grouts were investigated. The laboratory studies focused on mixtures of sulphate resistant portland cement, silica fume, superplasticizer and water. The ability of the thin films to self seal was confirmed. The surface reactions were studied in specimens of hardened grouts. The leach rates were found to vary with grout and water composition and with temperature. The short-term hydraulic and strength or properties of the hardened grout were determined. These properties were determined for the grouts both in-bulk and as thin-films. The hydraulic conductivities of the bulk, hardened material were found to be less than 10 -14 m/s. The hydraulic conductivities of thin films were found to be less than 10 -11 m/s. Broken, the hydraulic conductivity of the thin films could be increased to 10 -7 m/s. Examination of the leached grout specimens revealed a trend for the pore sizes to decrease with time. The propensity for fractured grouts to self seal was also observed in tests in which the hydraulic conductivity of recompacted mechanically disrupted, granulated grouts was determined. These tests showed that the hydraulic conductivity decreased rapidly with time. The decreases were associated with decreases in mean pore size. In view of the very low hydraulic conductivity it is likely that surface leaching at the grout/groundwater interface will be that major process by which bulk high-performance grouts may degrade. With the completion of the laboratory, in situ and modelling studies it appears that high-performance cement based grouts can be considered as viable materials for some repository sealing applications. Some of the uncertainties that remain are identified in this report. (54 refs.)

  12. The hydration of slag, part 2: reaction models for blended cement

    Chen, Wei; Brouwers, H.J.H.

    2007-01-01

    The hydration of slag-blended cement is studied by considering the interaction between the hydrations of slag and Portland cement clinker. Three reaction models for the slag-blended cement are developed based on stoichiometric calculations. These models correlate the compositions of the unhydrated

  13. Chemical composition, radiopacity, and biocompatibility of Portland cement with bismuth oxide.

    Hwang, Yun-Chan; Lee, Song-Hee; Hwang, In-Nam; Kang, In-Chol; Kim, Min-Seok; Kim, Sun-Hun; Son, Ho-Hyun; Oh, Won-Mann

    2009-03-01

    This study compared the chemical constitution, radiopacity, and biocompatibility of Portland cement containing bismuth oxide (experimental cement) with those of Portland cement and mineral trioxide aggregate (MTA). The chemical constitution of materials was determined by scanning electron microscopy and energy-dispersive X-ray analysis. The radiopacity of the materials was determined using the ISO/6876 method. The biocompatibility of the materials was tested by MTT assay and tissue reaction. The constitution of all materials was similar. However, the Portland cement and experimental cement were more irregular and had a larger particle size than MTA. The radiopacity of the experimental cement was similar to MTA. The MTT assay revealed MTA to have slightly higher cell viability than the other materials. However, there were no statistically significant differences between the materials, with the exception of MTA at 24 h. There was no significant difference in the tissue reaction between the experimental groups. These results suggest that the experimental cement may be used as a substitute for MTA.

  14. STUDY OF HORIZONTAL SCREEN STRENGTH CREATED BY INJECTION TECHNOLOGY CEMENT BINDER BASED

    BORISOV A. A.

    2016-09-01

    Full Text Available Annotation. Formulation of the problem. An important indicator in the planning of injection works is a particle size distribution of the soil and the very composition of injection. The ideal case is to comply with the injection optimum ratio between the size of particles in solution and injectable medium. This ratio corresponds to complete impregnation of the environment. Today in the field of building technologies known classical methods of grouting with the injection process [9]. This may be a cementation or silicification with different chemical compositions. Due to the fact that we have proposed an innovative technology of impervious curtain device, special attention should be paid to the performance and physical and mechanical properties of the resulting soil-injection. This is due to the fact that the proposed technology provides for lesser known technical solutions, the use of which should ultimately result in impervious screens with desired properties. Goal. The aim of this study is to investigate the properties of the resulting soil-concrete impervious screen. Such structures should have defined a number of physical and mechanical properties. In this paper, it was of interest to study the compressive strength of the resulting soil-concrete structure. Conclusion. As a result of experimentation and implementation of complex obtained experimentally-statistical models that describe the main soil-quality indicators. Based on these data is possible optimal selection of formulation and technological structure for sandy soils with different modules size of its particles.

  15. A critical analysis of the degree of conversion of resin-based luting cements

    NORONHA FILHO, Jaime Dutra; BRANDÃO, Natasha Lamego; POSKUS, Laiza Tatiana; GUIMARÃES, José Guilherme Antunes; da SILVA, Eduardo Moreira

    2010-01-01

    Objective This study analyzed the degree of conversion (DC%) of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II) activated by two modes (chemical and dual), and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. Material and Methods In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm2 for 40 s. In a third group, the cements were lightactivated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR). The data were analyzed by two-way ANOVA and Tukey's HSD test. Results For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (pEmpress 2 disc (pEmpress 2. PMID:21085798

  16. Application progress of solid 29Si, 27Al NMR in the research of cement-based materials

    Feng Chunhua; Wang Xijian; Li Dongxu

    2014-01-01

    Background: The solid-state Nuclear Magnetic Resonance (NMR) is an effective method for the research of cement-based materials. Now it focuses on using solid 29 Si and 27 Al NMR to research the hydration structure of the cement-based materials in cement chemistry. Purpose: A theoretical guidance is proposed for solid 29 Si and 27 Al NMR technology used in cement chemistry research. Methods: We reviewed the application of solid 29 Si and 27 Al NMR in the cement-based materials and analyzed the problem among the researches. Results: This paper introduced an fundamental, relevant-conditions and basic parameters of NMR, and studied the technical parameters of solid 29 Si and 27 Ai NMR together with the relationship among the hydration structure of cement based material. Moreover, this paper reviewed the related domestic and overseas achievements in the research of hydration structure of the cement-based materials using solid 29 Si and 27 Al NMR. Conclusion: There were some problems in the research on cement-based materials by technology of solid 29 Si and 27 Al NMR. NMR will promote the Hydration theory of cement-based material greatly. (authors)

  17. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke

    2015-01-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH) 2 . Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  18. Microscopía electrónica para el estudio del Na2Si0(4 en la durabilidad de un compuesto a base de cemento portlánd y refuerzo de caoba Analysis of Na2Si0(4 effect on durability of a portlánd cement matrix and mahogany reinforcement composite through electron microscopy

    Inocente Bojórque

    2007-12-01

    Full Text Available Con la ayuda de la microscopía electrónica, se logra apreciar el trabajo desarrollado por el silicato de sodio como agente mineraüzador de las fibras orgánicas en compuestos polifásicos con matriz de cemento Portland Tipo I. El objetivo de este trabajo fue el estudio de la acción del agente en la durabilidad del material, debido a la incompatibilidad química entre el hidróxido de calcio Ca(OH2 y el refuerzo a base de fibras procedentes de la caoba (Swietenia Macrophylla, en compuestos con características semejantes pero de tres diferentes edades y en compuestos de la misma edad pero elaborados con dos diferentes fracciones volumétricas del ingrediente orgánico. Los ensayos se realizaron en tres diferentes zonas: matriz, refuerzo y transición, empleando un Microscopio Electrónico de Barrido (MEB mientras que la composición química se hizo con un Analizador de Rayos "X" (EDS; a través del primer equipo se observó el contraste entre las diversas fases del compuesto por la diferencia entre los números atómicos; con el segundo, se analizó la composición química de las zonas de interés. Los resultados mostraron las bondades del agente en la durabilidad del material y, los beneficios del uso de la microscopía electrónica para visualizar el comportamiento microestructuralNa2Si0(4 behavior as a mineralizer agent on organic fibers composites with Type I Portland Cement matrix is possible to observe it through a Scanning Electron Microscope (SEM. The purpose of this research was to study the role of this agent on this material's durability due to the chemical incompatibility between calcium hydroxide Ca(OH2 and the fiber reinforcement from the mahogany (Swietenia Macrophylla, from composites of three different ages and two different fiber volumetric fraction as well. The tests were made in three different zones: matrix, reinforcement and transition zone, using a SEM, whereas the chemical composition was scanned out with an Energy

  19. MeCrAl coatings obtained by arc PVD and pack cementation processes on nickel base superalloys

    Swadzba, L.; Maciejny, A.; Formanek, B.; Mendala, B.

    1997-01-01

    The paper presents the results of researches on obtaining and structure of high temperature resistance coatings on superalloys. The coatings were deposited on nickel and nickel base superalloys in two stages. During the first stage, the NiCr and NiCrHf coatings were obtained by arc-PVD method. Basic technology, bias, arc current, rotation, parameters of deposition of NiCr and MeCrHf coatings were defined. The high efficiency of deposition of both single and two sources was observed. The targets were made by vacuum melting and machining. An influence of targets chemical composition on coating structure and chemical coatings composition was described. The second stage was made by pack cementation HTLA (high temperature low activity) on 1323 K chromoaluminizing process. These arc-PVD and diffusion (pack cementation) connected processes permitted to obtain MeCrAl and MeCrAlHf type of coatings. The morphology, structure and microchemical composition were characterized by scanning electron microscopy, X-ray microanalysis, energy dispersive X-ray spectroscopy and X-ray diffraction methods. (orig.)

  20. Modelling of the interaction between chemical and mechanical behaviour of ion exchange resins incorporated into a cement-based matrix

    Le Bescop P.

    2013-07-01

    Full Text Available In this paper, we present a predictive model, based on experimental data, to determine the macroscopic mechanical behavior of a material made up of ion exchange resins solidified into a CEM III cement paste. Some observations have shown that in some cases, a significant macroscopic expansion of this composite material may be expected, due to internal pressures generated in the resin. To build the model, we made the choice to break down the problem in two scale’s studies. The first deals with the mechanical behavior of the different heterogeneities of the composite, i.e. the resin and the cement paste. The second upscales the information from the heterogeneities to the Representative Elementary Volume (REV of the composite. The heterogeneities effects are taken into account in the REV by applying a homogenization method derived from the Eshelby theory combined with an interaction coefficient drawn from the poroelasticity theory. At the first scale, from the second thermodynamic law, a formulation is developed to estimate the resin microscopic swelling. The model response is illustrated on a simple example showing the impact of the calculated internal pressure, on the macroscopic strain.

  1. Influence of different degrees of acetylation in the physical and mechanical properties of particleboards and wood-cement composites

    Setsuo Iwakiri

    2014-12-01

    Full Text Available Chemical modified wood particles used to particleboards manufacture may, at the same time, improve the dimensional stability and damage the internal bond. The aim of this research was find the optimal point of acetylation for particleboards. Pinus taeda particles with different degrees of acetylation, 8, 15 and 20% of weight percentage gain (WGP, were used in the production of particleboards with urea-formaldehyde resin and wood-cement composites produced by mechanical and vibratory compaction. It was evaluated the water absorption, thickness swelling and internal bind of the particleboards according to the European standards EN 317 and EN 319. Particleboards produced with 15 WPG showed the lowest water absorption and thickness swelling values. However, the use of chemically modified wood had a negative influence in the internal bind of the boards. This phenomenon can be explain due to the similar behavior between resin and water, that way, the high degree acetylation stops the adhesive and adherent bind. In the case of wood-cement composites, the internal bind improves as the acetylation degrees get higher. Nevertheless the inhibition of acetylated wood particles to the cement hydration got higher when the WPG was higher than 8%.

  2. Cementitious Composites for Immobilization of Radioactive Waste into Final Wasteform

    Varlakov, A.P.

    2013-01-01

    Research and development works are important on universal cementation technological processes to achieve maximal conditioning efficiency for various type wastes such as saline liquid radioactive waste (LRW), where the variants of cement composition formulations, modes of cement compounds preparation and types of equipment are minimised. This work presents the results of development of multi-component cement compositions for the complex of technological processes of different types of radioactive waste (RAW) cementation: concentrated saline LRW, concentrated boron-containing saline LRW, LRW with high surface active substances content, with residues, liquid organic radioactive waste, spent ion-exchange resins and filter-perlite powder, ash residues from solid radioactive waste (SRW) combustion, mixed closely packed and large-fragmented SRW. The research has found technological parameters of equipment and cement compositions providing reliable RAW cementation. Continuous and periodic cycle plants were developed for LRW cementation by mixing. Pouring and penetration methods were developed for SRW cementation. Based on compliance with equipment parameters, methods and cement grouts were selected for most effective technological processes of cementation. Formulations of cement compositions were developed to provide reliable preparation of cement compounds with maximal waste loading at required cement compound quality. The complex of technological processes of cementation using multi-component cement compositions allows highly efficient treatment of the wide range of RAW including problematic waste streams and wastes generated in small amounts. Rational reduction of cementation variants significantly increases economical efficiency of immobilisation. (author)

  3. Mechanical properties and antibiotic release characteristics of poly(methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles.

    Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Kingshuk, Poddar; Shi, Zhilong; Wang, Wilson; Tan, Reginald B H

    2017-08-01

    The influence of mesoporous silica nanoparticles (MSNs) loaded with antibiotics on the mechanical properties of functional poly(methyl methacrylate)-(PMMA) based bone cements is investigated. The incorporation of MSNs to the bone cements (8.15wt%) shows no detrimental effects on the biomechanical properties of the freshly solidified bone cements. Importantly, there are no significant changes in the compression strength and bending modulus up to 6 months of aging in PBS buffer solution. The preserved mechanical properties of MSN-functionalized bone cements is attributed to the unchanged microstructures of the cements, as more than 96% of MSNs remains in the bone cement matrix to support the cement structures after 6 months of aging. In addition, the MSN-functionalized bone cements are able to increase the drug release of gentamicin (GTMC) significantly as compared with commercially available antibiotic-loaded bone cements. It can be attributed to the loaded nano-sized MSNs with uniform pore channels which build up an effective nano-network path enable the diffusion and extended release of GTMC. The combination of excellent mechanical properties and sustainable drug delivery efficiency demonstrates the potential applicability of MSN-functionalized PMMA bone cements for orthopedic surgery to prevent post-surgery infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of Gamma Irradiation on Polymer Modified White Sand Cement Mortar Composites

    Khattab, M.M.

    2012-01-01

    This study focuses on the substitution effect of standard sand of conventional cement mortar made from ordinary Portland cement (OPC) and standard sand (SS) OPC/SS 1:3; by different ratios of white sand (WS) powder to prepare three types of white sand cement mortar designated as 1OPC:2SS:1WS, 1OPC:1SS:2WS and 1OPC:0SS:3WS. The prepared samples were first cured under tap water for different time intervals namely 3, 7, 28 and 90 days. The effect of addition of 10% styrene-acrylic ester (SAE) as well as the effect of different doses of gamma rays (10, 20, 30 and 50 kGy) on the physicomechanical properties of polymer modified white sand cement mortar specimens also discussed. Compression strength test, total porosity and water absorption percentages were measured according to standard specifications. The obtained data indicated that, the cement mortar samples containing different ratios of white sand have lower values of compressive strength as compared to the conventional cement mortar while, the percentages of total porosity and water absorption increased. On the other hand, the polymer modified mortar specimens showed a noticeably enhancement in the physico-mechanical properties under the effect of gamma-radiation than those of untreated samples. These results were confirmed by scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) studies

  5. A critical analysis of the degree of conversion of resin-based luting cements

    Jaime Dutra Noronha Filho

    2010-10-01

    Full Text Available OBJECTIVE: This study analyzed the degree of conversion (DC% of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II activated by two modes (chemical and dual, and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. MATERIAL AND METHODS: In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm² for 40 s. In a third group, the cements were light-activated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR. The data were analyzed by two-way ANOVA and Tukey's HSD test. RESULTS: For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (p<0.05. Irrespective of the activation mode, Rely X presented the highest DC% (p<0.05. Chemically activated Variolink and All Ceram showed the worst results (p<0.05. The DC% decreased significantly when activation was performed through a 2.0-mm-thick IPS Empress 2 disc (p<0.05. CONCLUSION: The results of the present study suggest that resin-based cements could present low DC% when the materials are dually activated through 2.0 mm of reinforced ceramic materials with translucency equal to or less than that of IPS-Empress 2.

  6. Production and characterization of setting hydraulic cements based on calcium phosphate; Obtencao e caracterizacao de cimentos de fosfato de calcio de pega hidraulica

    Oliveira, Luci C. de; Rigo, Eliana C.S.; Santos, Luis A dos; Boschi, Anselmo Ortega [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Carrodeguas, Raul G. [Universidad de La Habana, Habana (Cuba). Centro de Biomateriales

    1997-12-31

    Setting hydraulic cements based on calcium phosphate has risen great interest in scientific literature during recent years due to their total bio compatibility and to the fact that they harden `in situ`, providing easy handling and adaptation to the shape and dimensions of the defect which requires correction, differently from the predecessors, the calcium phosphate ceramics (Hydroxy apatite, {beta}-tri calcium phosphate, biphasic, etc) in the shape of dense or porous blocks and grains. In the work, three calcium-phosphate cement compositions were studied. The resulting compositions were characterized according to the following aspects: setting times, pH, mechanical resistance, crystalline phases, microstructure and solubility in SBF (Simulated Body Fluid). The results show a potential use for the compositions. (author) 6 figs., 4 tabs.

  7. Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars

    Ballester, P.; Hidalgo, A.; Marmol, I.; Morales, J.; Sanchez, L.

    2009-01-01

    The effect of temperature on fresh mortar and cement paste was evaluated by simulating the curing conditions of external buildings plastering applied under extremely hot weather. The specimens were heated at controlled temperatures in the 40-80 o C range by exposure to IR radiation over short periods. The effect of soaking for a short time was also examined. The results of compressive strength tests, scanning electron microscopy, infrared spectroscopy and mercury porosimetry helped to characterize the mechanical and physico-chemical properties of the studied sample. Early age behaviour (28 days) in neat cement was barely affected by the temperature. By contrast, exposure to high temperatures caused significant microstructural changes in the mortar. However, successive soaking over short periods was found to reactivate the mechanism of curing and restore the expected mechanical properties. Based on the results, application of cement based mortar at high temperatures is effective when followed by a short, specific soaking process.

  8. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces......, is one possible explanation for the observed low global diffusion rates in the pore system of positively charged ions compared to the negatively charged ones. Here it is of interest to simulate the multi ionic diffusion behavior when assigning positively charged ions a comparably lower diffusion constant...

  9. Signal-inducing bone cements for MRI-guided spinal cementoplasty: evaluation of contrast-agent-based polymethylmethacrylate cements

    Bail, Hermann Josef; Tsitsilonis, Serafim; Wichlas, Florian; Sattig, Christoph; Papanikolaou, Ioannis; Teichgraeber, Ulf Karl Mart

    2012-01-01

    The purpose of this work is to evaluate two signal-inducing bone cements for MRI-guided spinal cementoplasty. The bone cements were made of polymethylmethacrylate (PMMA, 5 ml monomeric, 12 g polymeric) and gadoterate meglumine as a contrast agent (CA, 0-40 μl) with either saline solution (NaCl, 2-4 ml) or hydroxyapatite bone substitute (HA, 2-4 ml). The cement's signal was assessed in an open 1-Tesla MR scanner, with T1W TSE and fast interventional T1W TSE pulse sequences, and the ideal amount of each component was determined. The compressive and bending strength for different amounts of NaCl and HA were evaluated. The cement's MRI signal depended on the concentration of CA, the amount of NaCl or HA, and the pulse sequence. The signal peaks were recorded between 1 and 10 μl CA per ml NaCl or HA, and were higher in fast T1W TSE than in T1W TSE images. The NaCl-PMMA-CA cements had a greater MRI signal intensity and compressive strength; the HA-PMMA-CA cements had a superior bending strength. Concerning the MR signal and biomechanical properties, these cements would permit MRI-guided cementoplasty. Due to its higher signal and greater compressive strength, the NaCl-PMMA-CA compound appears to be superior to the HA-PMMA-CA compound. (orig.)

  10. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC.

  11. Cementation feasibility of a uranium-thorium based solution by physical and mechanical characterization

    Carpentiero, R.; Luce, A.; Troiani, F.

    2002-01-01

    By reprocessing Elk River nuclear fuel, at the ENEA ITREC Plant (South of Italy), about 3 m 3 of Uranium-Thorium based solution were produced. Previously considered an intermediate product to be further treated to recover U and Th, it is now being considered a waste, due to considerable content of fission products and to phasing out of the Italian nuclear industry. Together with other treatment options, a conditioning process in cement matrix is being evaluated, supported by some chemical, physical and mechanical tests on samples prepared with simulated waste. The main components selected to simulate the real solution were thorium nitrate (at two different concentrations), ferrous nitrate and nitric acid. This solution has been neutralized with sodium carbonate (at two different concentration) and cemented by means of a properly defined formulation. Pozzolanic blend cement, at different water to cement ratio, with and without a silica type additive, has been investigated. Cubic samples were subjected to compression tests and repeated freeze-thaw cycles followed by compression tests. Cylindrical samples were subjected to a leach test (according. to the tn ANSI/ANS-16.1 standard). The obtained results are above the minimum acceptance values established by the Italian authority. The evaluated properties are the first important elements to estimate the long term-instability of conditioned radioactive waste. Meanwhile a preliminary theoretical study has been done to evaluate the gas evolution from the matrix due to radiolysis effect. The reached conclusions encourage the development of further analysis to implement a cementation facility. (Author)

  12. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (pcement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  13. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes.

    Favier, Aurélie; Hot, Julie; Habert, Guillaume; Roussel, Nicolas; d'Espinose de Lacaillerie, Jean-Baptiste

    2014-02-28

    Geopolymers are presented in many studies as alternatives to ordinary Portland cement. Previous studies have focused on their chemical and mechanical properties, their microstructures and their potential applications, but very few have focussed on their rheological behaviour. Our work highlights the fundamental differences in the flow properties, which exist between geopolymers made from metakaolin and Ordinary Portland Cement (OPC). We show that colloidal interactions between metakaolin particles are negligible and that hydrodynamic effects control the rheological behaviour. Metakaolin-based geopolymers can then be described as Newtonian fluids with the viscosity controlled mainly by the high viscosity of the suspending alkaline silicate solution and not by the contribution of direct contacts between metakaolin grains. This fundamental difference between geopolymers and OPC implies that developments made in cement technology to improve rheological behaviour such as plasticizers will not be efficient for geopolymers and that new research directions need to be explored.

  15. Composites Based on Fly Ash and Clay

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  16. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses

    Brauer, Delia S.; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V.; Radecka, Izabela; Hill, Robert G.

    2013-01-01

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, gi...

  17. Design of ceramic-based cements and putties for bone graft substitution

    M Bohner

    2010-07-01

    Full Text Available In the last 15 years, a large number of commercial ceramic-based cements and putties have been introduced as bone graft substitutes. As a result, large efforts have been made to improve our understanding of the specific properties of these materials, such as injectability, cohesion, setting time (for cements, and in vivo properties. The aim of this manuscript is to summarize our present knowledge in the field. Instead of just looking at scientific aspects, industrial needs are also considered, including mixing and delivery, sterilization, and shelf-life.

  18. Oxalate Acid-Base Cements as a Means of Carbon Storage

    Erdogan, S. T.

    2017-12-01

    Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is

  19. Research on cement-based grouts for the OECD/NEA international Stripa project

    Onofrei, M.

    1994-01-01

    This paper deals with the work that has been carried out on cement-based by AECL research in Canada. The results indicate that it is possible to manufacture low water content high-performance cement-grouts, the performance of which would be acceptable for at least thousands of years and probably for much longer periods. Moreover, these grouts were shown to have negligible hydraulic conductivity, associated with very low porosity and to be highly leach resistant in repository conditions. (TEC). 18 refs., 1 tab., 6 figs

  20. An evaluation of the composition of soil cement bricks with construction and demolition waste - doi: 10.4025/actascitechnol.v33i2.9377

    Antonio Anderson da Silva Segantini

    2011-04-01

    Full Text Available Sustainable development requires the existence of a production network that includes the reuse of construction waste for new materials. Current analysis investigates an optimal soil-cement composition made up of construction and demolition waste for the manufacture of pressed bricks. Soil-cement bricks were manufactured from construction and demolition wastes (CDW, A-4 classified fine sandy soil and cement CP II Z 32. Laboratory tests, comprising test compaction, optimum water content and maximum dry specific weight, consistency limits, grain size distribution and linear shrinkage, were made to characterize the materials researched. Compressive strength and absorption tests were also undertaken in different combinations of composition. Results showed that the application of CDW improved soil-cement qualities and reduced shrinkage of the material used.

  1. Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features

    Bastos, Guillermo; Patiño-Barbeito, Faustino; Patiño-Cambeiro, Faustino; Armesto, Julia

    2016-01-01

    For more than a century, several inclusions have been mixed with Portland cement—nowadays the most-consumed construction material worldwide—to improve both the strength and durability required for construction. The present paper describes the different families of inclusions that can be combined with cement matrix and reviews the achievements reported to date regarding mechanical performance, as well as two other innovative functionalities of growing importance: reducing the high carbon footprint of Portland cement, and obtaining new smart features. Nanomaterials stand out in the production of such advanced features, allowing the construction of smart or multi-functional structures by means of thermal- and strain-sensing, and photocatalytic properties. The first self-cleaning concretes (photocatalytic) have reached the markets. In this sense, it is expected that smart concretes will be commercialized to address specialized needs in construction and architecture. Conversely, other inclusions that enhance strength or reduce the environmental impact remain in the research stage, in spite of the promising results reported in these issues. Despite the fact that such functionalities are especially profitable in the case of massive cement consumption, the shift from the deeply established Portland cement to green cements still has to overcome economic, institutional, and technical barriers. PMID:28774091

  2. Air-Cured Fiber-Cement Composite Mixtures with Different Types of Cellulose Fibers

    Ali Murat Soydan

    2018-01-01

    Full Text Available This present study was carried out to check the feasibility of different cellulose fibers obtained from cropped virgin cellulose, blenched eucalyptus, and araucaria pulps through different new environmentally friendly curing processes for fiber-cement production. The aim is to introduce the different sources of cellulose fibers with lower cost to produce the “fiber-cement without autoclave” (FCWA. The slurries used in the experiments contain approximately 8% wt. of cellulose. The influence of the waste marble powder addition to the cement mixture was also studied. The physical and mechanical properties of the products which were prepared with this method under different curing conditions were investigated. The mechanical properties of eucalyptus cellulose appear to offer the best combination, especially after longer air-cure cycles. The results showed that the production of FCWA is very economical by using waste marble powders. And moreover, two new types of cellulose fibers (eucalyptus and araucaria celluloses; EuC and ArC, resp., which provide a better density and packing in the fiber-cement leading to better modulus of rupture (MOR and modulus of elasticity (MOE values as virgin cellulose (ViC, are very usable for production of the fiber-cement in industrial scale.

  3. In situ synchrotron X-ray powder diffraction study of the early hydration of α-tricalcium phosphate/tricalcium silicate composite bone cement

    Morejon-Alonso, Loreley; Correa, Jose Raul, E-mail: lmorejon@fq.uh.cu [Departamento de Quimica General, Facultad de Quimica, Universidad de La Habana, UH (Cuba); Motisuke, Mariana [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil); Carrodeguas, Raul Garcia [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Laboratorio de Avaliacao e Desenvolvimento de Biomateriais do Nordeste; Santos, Luis Alberto dos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Departamento de Materiais

    2015-01-15

    Bioactivity, osteogenicity and mechanical properties of α-tricalcium phosphate (α-TCP) based phosphates cements can be improved by adding tricalcium silicate (C{sub 3}S); however, the addition of C{sub 3}S delays the precipitation and growth of calcium deficient hydroxyapatite (CDHA). Thus, the aim of this work was the study of in situ setting reaction of α-TCP/C{sub 3}S composite bone cement under high energy X-ray generated by a synchrotron source within the first 72h. The results showed that the addition of C{sub 3}S induces the precipitation of nanosized CDHA at early times depending on the added content. Calculated crystallite sizes showed that the higher the content of C{sub 3}S, the smaller the crystal size at the beginning of the precipitation. These results are different from those obtained by conventional XRD method, suggesting that the proposed technique is a powerful tool in determining the composition and extent of reaction of CPCs surfaces in real time. (author)

  4. Field and lab evaluation of the use of lime fly ash to replace soil cement as a base course : final report.

    1997-09-01

    This study evaluates the performance of lime/fly ash stabilized base as an alternative to soil cement stabilized base for flexible pavement systems on reconstructed highways in Louisiana. Louisiana has historically used soil cement for most flexible ...

  5. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  6. The influence of chemical composition and fineness on the performance of alkali activated cements obtained from blast furnace slags

    Langaro, Eloise Aparecida; Matoski, Adalberto; Luz, Caroline Angulski da; Buth, Islas Stein; Moraes, Maryah Costa de; Pereira Filho, Jose Ilo

    2017-01-01

    New binders are being developed for concrete in order to reduce the environmental impact mainly related to CO_2 emissions. Alkali -activated cements (CATs) are obtained from lime-aluminosilicate materials and an alkali activator and can reduce by 80% the emission of CO_2 compared to Portland Cement (PC). Papers have also shown physical and mechanical properties similar or higher than those presented by the PC, however, the activation of raw material is complex. Recent papers have also have showed a strong influence of the characteristics of raw material on the performance of CAT, however, little mentioned in the literature.. Therefore, this paper aimed to analyze the influence of characteristics of blast furnace slag (fineness and chemical composition) on the behavior of activated alkali cements. For this purpose, two slags were used, A and B, which were submitted to different milling times; and activated using 5% of NaOH. Mortars and pastes were prepared for compressive strength testing (7 and 28 days), measurements of heat of hydration and investigation of microstructure (XRD and DSC) were made. The results showed that the mortar made with slag A reached a very good mechanical performance, close to 48MPa at 28 days, and higher formation of CSH, in opposite of slag B. The probable hypothesis of this study is that the system formed in CAT made with slag A (containing more Al_2O_3) could provide CSH with a greater incorporation of Al and a lower crystallinity, increasing the mechanical strength. (author)

  7. New Procedure for Compacting Prismatic Specimens of Cement-Treated Base Materials

    Alaitz Linares-Unamunzaga

    2018-06-01

    Full Text Available Understanding the long-term behaviour of cement-treated base materials is a key factor to improve its design and obtain environmentally friendly pavement base materials. Their characterization requires manufacturing prismatic specimens. However, various authors highlight the absence of standardized test methods for fabricating beams in the field and laboratory, which is not an easy task because it depends on the qualification and experience of the testing team. The aim of this paper is to present a new device and procedure for compacting prismatic specimens of cement-treated base materials. In this research, it was used for compacting soil-cement to simulate its performance as a road base material. This device employs elements that are generally available in a concrete laboratory test, such as a vibrating table or prismatic moulds. Once the procedure was established, and in order to verify its suitability, flexural and compressive strength tests were carried out. Results showed that the values obtained were consistent with this material and, despite the heterogeneity of the material, specimens from the same batch provided similar results and, hence, validated the compaction process. This new compacting procedure can improve understanding of the long-term performance of cement-treated materials from flexural and fatigue tests.

  8. The Integration of EIS parameters and bulk matrix characterization in studying reinforced cement-based materials

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  9. The integration of eis parameters and bulk matrix characteristics in studying reinforced cement-based materials

    Koleva, D.A.; Van Breugel, K.

    2011-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  10. Modelling Inter-Particle Forces and Resulting Agglomerate Sizes in Cement-Based Materials

    Kjeldsen, Ane Mette; Geiker, Mette Rica

    2005-01-01

    The theory of inter-particle forces versus external shear in cement-based materials is reviewed. On this basis, calculations on maximum agglomerate size present after the combined action of superplasticizers and shear are carried out. Qualitative experimental results indicate that external shear ...

  11. Systematic approach for the design of pumpable cement-based grouts for immobilization of hazardous wastes

    Sams, T.L.; Gilliam, T.M.

    1987-01-01

    Cement-based grouts have been proven to be an economical and environmentally acceptable means of waste disposal. Costs can be reduced if the grout is pumped to the disposal site. This paper presents a systematic approach to guide the development of pumpable grouts. 20 refs., 2 figs

  12. Measurement with corrugated tubes of early-age autogenous shrinkage of cement-based material

    Tian, Qian; Jensen, Ole Mejlhede

    2009-01-01

    The use of a special corrugated mould enables transformation of volume strain into horizontal, linear strain measurement in the fluid stage. This allows continuous measurement of the autogenous shrinkage of cement-based materials since casting, and also effectively eliminates unwanted influence...

  13. Mechanical, electrical and microstructural properties of cement-based materials in conditions of current flow

    Susanto, A.; Koleva, D.A.; Copuroglu, O.; Van Beek, C.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete structures is not only induced by the penetration of aggressive substances (e.g. chlorides and/or CO2) but also influenced by stray currents. Further, the degradation mechanisms in reinforced cement-based systems due to the combined effect of stray current and

  14. Healing agent in cement-based materials and structures, and process for its preparation

    Jonkers, H.M.

    2009-01-01

    The present invention relates to healing agent in cement-based materials and structures, wherein said healing agent comprises organic compounds and/or bacteria-loaded porous particles, which porous particles comprise expanded clay- or sintered fly ash. Furthermore, said porous particles are intact

  15. Polymer reinforcement of cement systems

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  16. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-01-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T 1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T 1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T 1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used. [copyright] 2001 American Institute of Physics

  17. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements.

    Dawood, A E; Manton, D J; Parashos, P; Wong, Rhk; Palamara, Jea; Stanton, D P; Reynolds, E C

    2015-12-01

    This study investigated the physical properties and ion release of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified calcium silicate-based cements (CSCs) and compared the properties of a trial mineral trioxide aggregate (MTA) with two commercially available CSCs, Biodentine(™) and Angelus(®) MTA. The setting time, solubility, compressive strength and Vickers surface microhardness of the three CSCs incorporated with 0%, 0.5%, 1.0%, 2.0% and 3.0% (w/w) CPP-ACP were investigated. Release of calcium (Ca(2+) ), phosphate ions (Pi ) and pH of the test cements were measured after 24, 72, 168 and 336 h of storage. The addition of up to 1.0% CPP-ACP into Biodentine(™) and 0.5% into the other cements did not adversely affect their physical properties except for the setting time. The addition of 0.5% CPP-ACP increased Ca(2+) released from Biodentine(™) (after 168 and 336 h), Angelus(®) MTA (after 168 h) and the trial MTA (after 72 h). The addition of 1.0-3.0% CPP-ACP increased Ca(2+) and Pi released from all the cements. Biodentine(™) released more Ca(2+) particularly in the early stages and showed shorter setting time and higher mechanical properties than the other cements. The mechanical properties of Angelus(®) MTA and the trial MTA were similar. All the cements produced highly alkaline storage solutions. Up to 1.0% CPP-ACP in Biodentine(™) improves Ca(2+) and Pi release and 0.5% CPP-ACP in Angelus(®) MTA and the trial MTA improves Ca(2+) release without altering the mechanical properties and solubility. The addition of CPP-ACP into CSCs prolonged the setting time. © 2015 Australian Dental Association.

  18. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Shujie Fan

    2017-11-01

    Full Text Available Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  19. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Fan, Shujie; Li, Tongchun; Zhou, Jun; Liu, Xiaoqing; Liu, Xiaoming; Qi, Huijun; Mu, Zhiyong

    2017-11-01

    Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz) non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS) during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  20. Effect of eugenol-based endodontic sealer on the adhesion of intraradicular posts cemented after different periods.

    Dias, Larissa Lustosa Lima; Giovani, Alessandro Rogério; Silva Sousa, Yara Teresinha Corrêa; Vansan, Luiz Pascoal; Alfredo, Edson; Sousa-Neto, Manoel Damião; Paulino, Silvana Maria

    2009-01-01

    This study evaluated in vitro the influence of an eugenol-based sealer (EndoFill) on the retention of stainless steel prefabricated posts cemented with zinc phosphate and resin-based (Panavia F) cements after different periods of root canal obturation, using the pull-out test. Sixty upper canines were decoronated and the roots were embedded in resin blocks. The specimens were distributed into 3 groups, according to the period elapsed between canal obturation and post cementation: Group I - immediately; Group II - 72 h and Group III - 4 months. The groups were subdivided according to the type of cement used for post cementation: A - zinc phosphate and B - Panavia F. Following the experimental periods, specimens were subjected to pullout test in an Instron machine with application of tensile force at a crosshead speed of 0.5 mm/min until post dislodgement. The maximum forces required for post removal were recorded (kN) and means were subjected to statistical analysis by 2-way ANOVA and Tukey-Kramer test (alpha=0.001) There were statistically significant differences (pcemented with zinc phosphate cement (0.2112 kN) and Panavia F (0.0501 kN). However, no statistically significant differences (p>0.05) were found between the three post cementation periods, regardless of the cement. It was concluded that the eugenol-based sealer influenced the tensile strength of the posts cemented with the resin cement, but had no influence on the time waited between root canal obturation and post space preparation/post cementation.

  1. Influence of frost damage and sample preconditioning on the porosity characterization of cement based materials using low temperature calorimetry

    Wu, Min; Fridh, Katja; Johannesson, Björn

    2015-01-01

    Low temperature calorimetry (LTC) can be used to study the meso-porosity of cement based materials. The influence of frost damage on the meso-porosity determination by LTC was explored on a model material MCM-41 and two cement pastes by conducting repeated cycles of freezing and melting measureme...

  2. Comparative Study of Portland Cement-based and Zeolite-based Concretes in Terms of Hexavalent Chromium Leaching

    Oravec Jozef

    2016-12-01

    Full Text Available The paper presents the results of the leaching study of Portland cement-based and zeolite-based concretes regarding water soluble hexavalent chromium. Three leaching water media (distilled water, rain water, and Britton-Robinson buffer of various pH values were under investigation. The correlation between pH and leached-out concentrations of chromium was not confirmed. The content of hexavalent water-soluble chromium in leachates of zeolite-based concretes was found to be higher than that in leachates of Portland cement-based samples.

  3. Strengthening Masonry Arches with Lime-Based Mortar Composite

    Valerio Alecci

    2017-06-01

    Full Text Available In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs. These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load

  4. Possibilities of using aluminate cements in high-rise construction

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  5. A new method to analyze copolymer based superplasticizer traces in cement leachates.

    Guérandel, Cyril; Vernex-Loset, Lionel; Krier, Gabriel; De Lanève, Michel; Guillot, Xavier; Pierre, Christian; Muller, Jean François

    2011-03-15

    Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste

  6. Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage

    Ana Lívia GOMES-CORNÉLIO

    2016-01-01

    Full Text Available Abstract Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA. The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2 of pure calcium silicate-based cements (CSC and modified formulations: modified calcium silicate-based cements (CSCM and three resin-based calcium silicate cements (CSCR1 (CSCR 2 (CSCR3. The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT, apoptosis/necrosis assay and comet assay. The negative control (CT- was performed with untreated cells, and the positive control (CT+ used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni’s posttest (p < 0.05, and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05. The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.

  7. LONG – TERM PROPERTIES OF CEMENT COMPOSITES WITH VARIOUS METAKAOLINITE CONTENT

    ĽUDOVÍT KRAJČI

    2013-03-01

    Full Text Available The optimal temperature transformation of kaolin sand to metakaolin sand (MKS resulting in complete conversion of kaolinite to pozzolanic active metakaolinite (MK is 650°C in the time of 1 hour. To obtain information on mechanism of pozzolanic reaction in studied binary system, the cement pastes with two MKS at substitution level of Ordinary Portland cement (OPC with MKS by 10, 20 and 40 wt. % corresponding to 3.6 - 16.0 % MK content in pastes, were tested. Pozzolanic reaction of MK with hydrating OPC was clearly confirmed mainly by XRD and thermal analyses. This process accompanied with gradual reduction of Ca(OH2 content was the most intense in pastes with the highest MK contents (14.4 and 16.0 %. The decrease of micropore and total pore volume until MK content in paste of 7.2 % is measure of pore structure improvement specified as pore structure refinement. Until MK content of 8.0 % in paste, micropores portion with pore radius less than 10 nm rises and pore radius in the range between 10 and 100 nm declines. Resulted compressive strengths of related cement pastes with various MK content were comparable with strengths of pastes without MK. The obtained results confirmed that MKS can be used as promising additive in OPC to form prospective blended cements.

  8. The suitability of a supersulfated cement for nuclear waste immobilisation

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  9. The suitability of a supersulfated cement for nuclear waste immobilisation

    Collier, N.C.; Milestone, N.B.; Gordon, L.E.; Ko, S.-C.

    2014-01-01

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste

  10. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study.

    Palmer, Iwan; Nelson, John; Schatton, Wolfgang; Dunne, Nicholas J; Buchanan, Fraser; Clarke, Susan A

    2016-12-01

    This work establishes the in vivo performance of modified calcium phosphate bone cements for vertebroplasty of spinal fractures using a lapine model. A non-modified calcium phosphate bone cement and collagen-calcium phosphate bone cements composites with enhanced mechanical properties, utilising either bovine collagen or collagen from a marine sponge, were compared to a commercial poly(methyl methacrylate) cement. Conical cement samples (8 mm height × 4 mm base diameter) were press-fit into distal femoral condyle defects in New Zealand White rabbits and assessed after 5 and 10 weeks. Bone apposition and tartrate-resistant acid phosphatase activity around cements were assessed. All implants were well tolerated, but bone apposition was higher on calcium phosphate bone cements than on poly(methyl methacrylate) cement. Incorporation of collagen showed no evidence of inflammatory or immune reactions. Presence of positive tartrate-resistant acid phosphatase staining within cracks formed in calcium phosphate bone cements suggested active osteoclasts were present within the implants and were actively remodelling within the cements. Bone growth was also observed within these cracks. These findings confirm the biological advantages of calcium phosphate bone cements over poly(methyl methacrylate) and, coupled with previous work on enhancement of mechanical properties through collagen incorporation, suggest collagen-calcium phosphate bone cement composite may offer an alternative to calcium phosphate bone cements in applications where low setting times and higher mechanical stability are important.

  11. Ultrafine portland cement performance

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  12. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    Wang, Tao; Zhuang, Hao; Jiang, Xin, E-mail: xin.jiang@uni-siegen.de

    2015-12-30

    Graphical abstract: - Highlights: • Novel diamond/beta-silicon carbide composite gradient interlayers were synthesized. • The interlayer features a cross-sectional gradient with increasing diamond content. • Diamond top layers and the interlayers were deposited in one single process. • The adhesion of the diamond film is drastically improved by employing the interlayer. • The stress was suppressed by manipulating the distribution of diamond and silicon carbide. - Abstract: Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co{sub 2}Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  13. LOW WATER DEMAND CEMENTS - WAY OF EFFICIENT USE OF CLINKER AND MINERAL FILLERS IN CONCRETES

    Khokhryakov Oleg Viktorovich

    2017-10-01

    Full Text Available Subject: the provisions in the updated edition of the technical specifications for cements are analyzed. A trend to decrease the clinker volume in Portland cement due to the wider use of mineral additives, up to 95%, was observed. Research objectives: substantiation of the most complete and efficient use of Portland cement and mineral additives in the composition of low water demand cements. Materials and methods: portland cement, mineral additives and superplasticizer were used as raw materials for obtaining cements of low water demand. The experimental methods comply with the current standards. Results: comparative properties of low water demand cements and cements with mineral additives are presented. The properties of cement-water suspensions of these binders have been studied, and, on their basis, heavy concretes have been made. The results of the grindability of Portland cement and mineral components with a superplasticizer are given. Conclusions: it is shown that the cement of low water demand, in which the advantages of both Portland cement and mineral additives are more fully and efficiently presented, complies with the tendency to decrease the clinker volume to the greatest degree. It is established that the clinker volume index for heavy concrete prepared on low water demand cement is almost four times lower than that for heavy concrete based on common Portland cement.

  14. Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification.

    Li, Jiang-Shan; Wang, Lei; Tsang, Daniel C W; Beiyuan, Jingzi; Poon, Chi Sun

    2017-12-01

    Cement-based stabilization/solidification (S/S) is a practical treatment approach for hazardous waste with anthropogenic As sources; however, its applicability for geogenic As-containing soil and the long-term leaching potential remain uncertain. In this study, semi-dynamic leaching test was performed to investigate the influence of S/S binders (cement blended with fuel ash (FA), furnace bottom ash (FBA), or ground granulated blast furnace slag (GGBS)) on the long-term leaching characteristics of geogenic As. The results showed that mineral admixtures with higher Ca content and pozzolanic activity were more effective in reducing the leached As concentrations. Thus, cement blended with FBA was inferior to other binders in suppressing the As leaching, while 20% replacement of ordinary Portland cement by GGBS was considered most feasible for the S/S treatment of As-containing soils. The leachability of geogenic As was suppressed by the encapsulation effect of solidified matrix and interlocking network of hydration products that were supported by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results. The long-term leaching of geogenic As from the monolithic samples was diffusion-controlled. Increasing the Ca content in the samples led to a decrease in diffusion coefficient and an increase in feasibility for "controlled utilization" of the S/S-treated soils.

  15. Analysis of metal contents in Portland Type V and MTA-based cements.

    Dorileo, Maura Cristiane Gonçales Orçati; Bandeca, Matheus Coelho; Pedro, Fábio Luis Miranda; Volpato, Luiz Evaristo Ricci; Guedes, Orlando Aguirre; Dalla Villa, Ricardo; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique

    2014-01-01

    The aim of this study was to determine, by Atomic Absorption Spectrometry (AAS), the concentration levels of 11 metals in Type V gray and structural white PC, ProRoot MTA, and MTA Bio. Samples, containing one gram of each tested cement, were prepared and transferred to a 100 mL Teflon tube with a mixture of 7.0 mL of nitric acid and 21 mL of hydrochloric acid. After the reaction, the mixture was filtered and then volumed to 50 mL of distilled water. For each metal, specific patterns were determined from universal standards. Arsenic quantification was performed by hydride generator. The analysis was performed five times and the data were statistically analyzed at 5% level of significance. Only the cadmium presented concentration levels of values lower than the quantification limit of the device. The AAS analysis showed increased levels of calcium, nickel, and zinc in structural white PC. Type V PC presented the greatest concentration levels of arsenic, chromium, copper, iron, lead, and manganese (P cements, and the lowest concentration levels were observed in Portland cements, while the highest were observed in ProRoot MTA. Both PC and MTA-based cements showed evidence of metals inclusion.

  16. Influence of chemical composition of civil construction waste in the cement paste; Influencia da composicao quimica dos residuos da construcao civil a pasta de cimento

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C., E-mail: valeria@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2009-07-01

    The construction and demolition waste when disposed inappropriately might cause serious public health problems. Its reutilization focusing on the development of new products using simple production techniques, assuring a new product life cycle and not damaging the environment is inserted in sustainable concept. The aim of this work was identifying the characteristics of types of waste generated in a residential reform (glassy ceramic and fill dirt leftovers) verifying separately its influence on cement pastes mechanical behavior. Cement pastes + wastes were prepared in 25% and 50% proportions with an approximately 0,35 water/cement relation and, glue time determination, water absorption, resistance to compression and X-ray fluorescence assays were taken. The results indicate that the chemical composition of the waste causes changes in the behavior of cement pastes, reflecting on their resistance to compression. (author)

  17. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  18. Study on an Improved Phosphate Cement Binder for the Development of Fiber-Reinforced Inorganic Polymer Composites

    Zhu Ding

    2014-11-01

    Full Text Available Magnesium phosphate cement (MPC has been proven to be a very good repair material for deteriorated concrete structures. It has excellent adhesion performance, leading to high bonding strength with old concrete substrates. This paper presents an experimental study into the properties of MPC binder as the matrix of carbon fiber sheets to form fiber-reinforced inorganic polymer (FRIP composites. The physical and mechanical performance of the fresh mixed and the hardened MPC paste, the bond strength of carbon fiber sheets in the MPC matrix, the tensile strength of the carbon FRIP composites and the microstructure of the MPC matrix and fiber-reinforced MPC composites were investigated. The test results showed that the improved MPC binder is well suited for developing FRIP composites, which can be a promising alternative to externally-bonded fiber-reinforced polymer (FRP composites for the strengthening of concrete structures. Through the present study, an in-depth understanding of the behavior of fiber-reinforced inorganic MPC composites has been achieved.

  19. Modeling of the interaction between chemical and mechanical behavior of ion exchange resins encapsulated into a cement-based matrix

    Neji, Mejdi

    2014-01-01

    Ion exchange resins (IER) are widely used in the nuclear industry to purge non directly storable infected effluents. IER then become a solid waste which could be stored as any classical nuclear waste. One way of conditioning consists in embedding it into a cement paste matrix. This process raises some concerns regarding the cohesiveness of the composite. Once embedded, the IER might indeed interact with the cement paste which would lead, in some cases, to the swelling of the composite. This thesis has been set up to address this potential issue, with the aim to develop a numerical tool able to predict the mechanical behavior of this kind of material. This work only focuses on the long term behavior and more specifically on the potential degradations of the cement paste/IER composite due to cationic IER. (author)

  20. Cement mortar-degraded spinney waste composite as a matrix for immobilizing some low and intermediate level radioactive wastes: Consistency under frost attack

    Eskander, S.B.; Saleh, H.M.

    2012-01-01

    Highlights: ► Spinney fiber is one of the wastes generated from spinning of cotton raw materials. ► Cement mortar composite was hydrated by using the degraded slurry of spinney wastes. ► Frost resistance was assessed for the mortar-degraded spinney waste composite specimens. ► SEM image, FT-IR and XRD patterns were performed for samples subjected to frost attack. - Abstract: The increasing amounts of spinning waste fibers generated from cotton fabrication are problematic subject. Simultaneous shortage in the landfill disposal space is also the most problem associated with dumping of these wastes. Cement mortar composite was developed by hydrating mortar components using the waste slurry obtained from wet oxidative degradation of these spinney wastes. The consistency of obtained composite was determined under freeze–thaw events. Frost resistance was assessed for the mortar composite specimens by evaluating its compressive strength, apparent porosity and mass loss at the end of each period of freeze–thaw up to 45 cycles. Scanning electron microscopy, infrared spectroscopy and X-ray diffraction analyses were performed for samples subjected to frost attack aiming at evaluating the cement mortar in the presence of degraded spinney waste. The cement mortar composite exhibits acceptable resistance and durability against the freeze–thaw treatment that could be chosen in radioactive waste management as immobilizing agent for some low and intermediate level radioactive wastes.

  1. Influence of Basalt Mesh Induced Increase of Heterogeneity of Cement Composites with Dispersed Fibers on Its Resistance under Near-Field Blast

    Zíma, J.; Foglar, M.

    2017-09-01

    This paper describes the influence of multiple basalt meshes in the cement composite specimens on the damage induced by near-field blast. Experimental measurements performed in the Boletice military area in 2014 and 2015 are evaluated by numerical simulations. The evaluation of the results is mainly focused on the stress propagation in the cement composite with dispersed fibers, the propagation of the overpressure caused by the blast and velocity of the ejected parts from the specimen. The influence of the presence and position of the basalt meshes in the specimen on its damage induced by delamination is also examined.

  2. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  3. Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements.

    Tibbetts, V R; Schnell, R J; Swartz, M L; Phillips, R W

    1976-01-01

    Thermal diffusion was measured in vitro and in vivo through amalgam and amalgam underlaid with bases of zinc phosphate, zinc oxide-eugenol, and calcium hydroxide cements. Although the magnitudes differed, there generally was good agreement between in vitro and in vivo data with respect to the relative rates of thermal diffusivity through amalgam restorations underlaid with bases of each of the three materials. In all tests, both in vitro and in vivo, the zinc oxide-eugenol base proved to be the best thermal insulator. Calcium hydroxide was the next best thermal barrier and was followed by zinc phosphate cement. In vitro tests indicated dentin to be a better thermal insulator than zinc phosphate cement but inferior to the zinc oxide-eugenol and calcium hydroxide base materials used here. Although a method has been presented here for the in vivo assessment of the efficacy of thermal insulating bases and a number of in vivo experiments were conducted, much research remains to be done in this area. Additional investigation is needed to better define the parameters of thermal change beneath various types of restoratives and also to establish more exactly the role of base thickness in providing thermal protection beneath clinical metallic restorations.

  4. Light-weight wood-magnesium oxychloride cement composite building products made by extrusion

    Zhou, X; Li, Z

    2012-01-01

    This is the post-print version of the final paper published in Construction and Building Materials. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V. Magnesium oxychloride (MOC) cement is ...

  5. Resistance to fracture of endodontically treated premolars restored with glass ionomer cement or acid etch composite resin: An in vitro study

    B Ranga

    2010-01-01

    Full Text Available Aim: Due to the weakness of endodontically treated posterior teeth requires more strengthened restoration to withstand occlusal forces. The purpose of the present study was to determine and compare the resistance to fracture of endodontically treated maxillary 1 st premolars restored with different materials in mesio-occluso-distal (MOD cavity preparations. Materials and Methods: MOD cavity preparations in 80 endodontically treated maxillary 1 st premolars were restored using four different methods. Fiber rings were filled with stone plaster and the teeth were placed into the plaster up to the level of cemento-enamel junction. The teeth were grouped according to restorative method, mounted in an Instrom T.T. machine, and the buccal walls subjected to a slowly increasing compressive force until fracture occurred. Result: The force of fracture of the walls of each tooth was recorded and the results in the various groups compared. All teeth fractured in a similar manner irrespective of the restorative method used. Conclusion: The resistance to the fracture of the teeth was the same when they were stored with glass ionomer cement as a base over which composite resin was placed. When the entire cavities were filled with glass ionomer cement, the resistance to fracture of the teeth decreased significantly compared with the acid etch resin technique.

  6. Elastic behavior and onset of cracking in cement composite plates reinforced by perforated thin steel sheets

    Aronchik, V.

    1996-03-01

    Thin cement mortar plates reinforced by perforated thin steel sheets have been tested in four-point flexure loading. Six kinds of sheet reinforcement and to additional ones (for control) were used. Perforated sheets of the Daugavpils Factory of Machinery Chains differed by their thickness (0.6-1.8 mm), shape (round, rectangular, oval, "dumbbell"), and mark of steel (St. 08, 50, 70). Dimensions of plantes were 100×20×2 cm. Cements-sand mortar with a 1∶2 ratio of cement PZ35 and river sand of 3 mm grains was used as a matrix. Control specimens of similar dimensions and matrix were reinforced by wire cages and meshes (ferrocement). The testing was performed using an UMM-5 testing machine. Maximum deflection (at the midspan), tension, and shear strains were recorded. The expeimental data are presented in tables and graphs. The testing results showed that the elasticity modulus of material was in good agreement with the "admixture rule;" an onset of cracking for all types (excluding one) practically did not differ from reference samples; the mode of fracture in typical cases included an adhesion failure and significant shear strains. In one case the limit of the tension strength of the reinforcement was achieved.

  7. Investigation on the Rheological Behavior of Fly Ash Cement Composites at Paste and Concrete Level

    Thiyagarajan, Hemalatha; Mapa, Maitri; Kushwaha, Rakhi

    2018-06-01

    Towards developing sustainable concrete, nowadays, high volume replacement of cement with fly ash (FA) is more common. Though the replacement of fly ash at 20-30% is widely accepted due to its advantages at both fresh and hardened states, applicability and acceptability of high volume fly ash (HVFA) is not so popular due to some adverse effects on concrete properties. Nowadays to suit various applications, flowing concretes such as self compacting concrete is often used. In such cases, implications of usage of HVFA on fresh properties are required to be investigated. Further, when FA replacement is beyond 40% in cement, it results in the reduction of strength and in order to overcome this drawback, additions such as nano calcium carbonate (CC), lime sludge (LS), carbon nano tubes (CNT) etc. are often incorporated to HVFA concrete. Hence, in this study, firstly, the influence of replacement level of 20-80% FA on rheological property is studied for both cement and concrete. Secondly, the influence of additions such as LS, CC and CNT on rheological parameters are discussed. It is found that the increased FA content improved the flowability in paste as well as in concrete. In paste, the physical properties such as size and shape of fly ash is the reason for increased flowability whereas in concrete, the paste volume contributes dominantly for the flowability rather than the effect due to individual FA particle. Reduced density of FA increases the paste volume in FA concrete thus reducing the interparticle friction by completely coating the coarse aggregate.

  8. Microstructural analysis of the potential of sugarcane bagasse ash as a pozzolan material in cement composites

    Pereira, A.M.; Assuncao, C.C.; Guimaraes, L. de M.; Malmonge, J.A.; Tashima, M.M; Akasaki, J.L.

    2016-01-01

    For civil construction, the ash obtained by burning sugarcane bagasse (SCBA) in sugar-cane industry is being treated as a pozzolan material because, in addition to containing high amounts of silicon and aluminium oxides, can promote reduction of the environmental impact caused by cement production, since this alternative material may partially replace the Portland cement.The present study evaluated the pozzolanic potential of the SCBA, from different states of Brazil (Sao Paulo (SP), Goias (GO) and Mato Grosso (MT)). The reactivity of the material was analyzed by microstructural characterization, besides the pastes production (lime / SCBA and cement / SCBA) for the analysis of the hydration products formed, which are evaluated by TG and SEM. There was a decrease in the formation of ettringite in the matrixes, inversely proportional to the amount of ash, which favored the reduction of the cracking in cementitious matrices. It has also observed that the pastes produced with the ashes from State of SP showed greater fixation of lime and, consequently, a high reactivity. (author)

  9. Effect of various Portland cement paste compositions on early-age strain

    Guzzetta, Alana G.

    Early-age strain in paste, mortar, and concrete mixtures was investigated using a new method where the specimen shape was a cone frustum. Strain of the specimen from both the horizontal and vertical directions was captured by height change measurement. The volumetric strain was then calculated as a function of the height change and was plotted versus time. A correlation was found between the slopes of the volumetric strain curve resulting from this test method and the initial setting time of the tested material. An initial evaluation of the repeatability of this innovative test method was conducted. The early-age strain effects of aggregate volume, shrinkage reducing admixture, water-cementitious ratio (w/cm), and partial cement replacement with supplementary cementitious materials were tested and individually compared. From these comparisons, it was observed that ambient temperature, bleed water development, and rheological properties had a significant impact on the volumetric strain results. Data showed increased strain as aggregate volume was reduced and as the w/cm was changed from 0.25 up to 0.50. The addition of shrinkage reducing admixture generally caused an increase in the 36-hour volumetric strain value. In most of the mixtures, cement replacement with 20% fly ash or 10% metakaolin reduced the measured volumetric strain when the w/cm was 0.30. Replacement of cement with 10% silica fume caused an insignificant change in volumetric strain results.

  10. Restoration of Strip Crown with a Resin-Bonded Composite Cement in Early Childhood Caries

    Mi-ae Jeong

    2013-01-01

    Full Text Available Background. Early childhood caries is a widely prevalent disease throughout the world. It is necessary to treat this condition in early childhood; however, child behavior management may be particularly challenging during treatment. To overcome this challenge, we used Carigel to remove caries and RelyX Unicem resin cement for strip crown restoration. It not only has the desired aesthetic effect but is also more effective for primary teeth, which are used for a shorter period than permanent teeth are. Case Presentation. We report a case of three pediatric patients with early childhood caries, in whom caries was removed by using Carigel to avoid the risk of pulpal exposure associated with high-speed handpieces. Subsequently, aesthetic restoration was performed using strip crown with RelyX Unicem self-adhesive resin cement. Conclusion. RelyX Unicem has the following advantages: (1 not requiring have any special skills for the dentist for performing the procedure, (2 decreased occurrence of bubbles during injection of the cement, and (3 overall short duration of the procedure. Thus, it is appropriate for the treatment of pediatric patients whose behavior is difficult to manage. However, further studies are required in order to establish the use of RelyX Unicem as a stable restorative material in early childhood caries.

  11. Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products

    Krolo Petar

    2012-01-01

    Full Text Available This study has examined leaching behavior of monolithic stabilized/solidified products contaminated with zinc by performing modified dynamic leaching test. The effectiveness of cement-based stabilization/solidification treatment was evaluated by determining the cumulative release of Zn and diffusion coefficients, De. The experimental results indicated that the cumulative release of Zn decreases as the addition of binder increases. The values of the Zn diffusion coefficients for all samples ranged from 1.210-8 to 1.1610-12 cm2 s-1. The samples with higher amounts of binder had lower De values. The test results showed that cement-based stabilization/solidification treatment was effective in immobilization of electroplating sludge and waste zeolite. A model developed by de Groot and van der Sloot was used to clarify the controlling mechanisms. The controlling leaching mechanism was found to be diffusion for samples with small amounts of waste material, and dissolution for higher waste contents.

  12. Manufacturing of wollastonite-based glass from cement dust: Physical and mechanical properties

    A.A. Francis

    2016-12-01

    Full Text Available By-pass cement dust is considered as a source of environmental pollution. Wollastonite-based glass foams are made by adding glass waste and SiC to the cement dust. XRD on samples indicated that the main crystalline phase after heat treatment at 850–1,000°C is wollastonite. Empirical models were developed to derive conclusion on the impact of SiC and temperature on the physical and mechanical properties of the products. The optimum sintering temperature was found to be at 900°C for 60 min, at which crushing strength was about 15 MPa and was the best uniform. Such wollastonite-based glass foam could be very attractive for thermal and acoustic applications.

  13. Utilization of cement treated recycled concrete aggregates as base or subbase layer in Egypt

    Ahmed Ebrahim Abu El-Maaty Behiry

    2013-12-01

    Full Text Available Recently, environmental protection has a great concern in Egypt where recycling of increased demolition debris has become a viable option to be incorporated into roads applications. An extensive laboratory program is conducted to study the feasibility of using recycled concrete aggregate (RCA mixed with traditional limestone aggregate (LSA which is currently being used in base or subbase applications in Egypt. Moreover, the influence of mixture variables on the mechanical properties of cement treated recycled aggregate (CTRA is investigated. Models to predict the compressive and tensile strengths based on mixture parameters are established. The results show that the adding of RCA improves the mechanical properties of the mixture where the unconfined compressive strength (UCS is taken as an important quality indicator. Variables influencing the UCS such as cement content, curing time, dry density play important roles to determine the performance of CTRA.

  14. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  15. The effect of temperature rise on microstructural properties of cement-based materials : Correlation of experimental data and a simulation approach

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2015-01-01

    This work reports on the influence of stray current flow on temperature rise in hardening cement-based materials and consequently altered cement hydration. To simulate stray current, different levels of electrical current were applied to cement paste and mortar specimens immediately after casting.

  16. [PVD-silicoating before cementation of zirconia-based knee prostheses effects better cement adhesion and lower aseptic loosening rates].

    Marx, R; Faramarzi, R; Oberbach, T; Begand, S; Grätz, N; Wirtz, D C

    2012-02-01

    CoCrMo alloys are contraindicated for allergy patients. For these patients, cemented or uncemented prostheses made of titanium alloy are indicated. Uncemented prostheses, however, have low primary retention, particularly the tibial components of knee joint prostheses because of the lack of a positive locking. Therefore, for knee replacement cemented CoCrMo prostheses may be suitable also for allergy sufferers if these are masked by ZrN or TiNbN layers. Alternatively the CoCrMo alloy may be replaced by high-strength oxide ceramics. For adhesion of bone cement to the ceramic surface, however, only inefficient mechanical retention spots are exposed as compared with a metal surface. Undercuts generated by corundum blasting, although highly efficient on a CoCrMo surface, are not such efficient centres on a ceramic surface due to its brittleness. Therefore, the mechanical component of retention is significantly reduced. When specific adhesion between bone cement and surface does not exist due to physical and chemical forces, the hydrolytic stability will be insufficient. Micromotions are promoted and early aseptic loosening is predictable. Silicoating of the ceramic surface will allow specific adhesion and can result in better hydrolytic stability of bonding. In order to evaluate the effectiveness of silicoating the bond strengths of blasted (mean size of corundum grains 50 µm) and silicate layered alumina-toughened zirconia (ATZ) surfaces were compared with "as fired" surfaces by utilising TiAlV probes (diameter 6 mm) for traction-adhesive strength testing. Samples machined out of CoCrMo alloy were utilised for reference. After preparing the samples for traction-adhesive strength testing (sequence: substrate, silicate and silane, protective lacquer [PolyMA], bone cement, TiAlV probe) they were aged up to 360 days at 37 °C in Ringer's solution. The bond strengths observed for all ageing intervals were well above 20 MPa and much higher and more hydrolytically

  17. Petrographic Analysis of Portland Cement Concrete Cores from Pease Air National Guard Base, New Hampshire

    2016-11-01

    Petrographic Analysis of Portland Cement Concrete Cores from Pease Air National Guard Base, New Hampshire E n g in e e r R e s e a rc h a n d...id, age of the concrete being evaluated and tests performed...4 3 Preface This study was conducted in support of the Air Force Civil Engineer Center (AFCEC) to assess concrete obtained from Pease

  18. Combined Use of Shrinkage Reducing Admixture and CaO in Cement Based Materials

    Tittarelli, Francesca; Giosuè, Chiara; Monosi, Saveria

    2017-10-01

    The combined addition of a Shrinkage-Reducing Admixture (SRA) with a CaO-based expansive agent (CaO) has been found to have a synergistic effect to improve the dimensional stability of cement based materials. In this work, aimed to further investigate the effect, mortar and self-compacting concrete specimens were prepared either without admixtures, as reference, or with SRA alone and/or CaO. Their performance was compared in terms of compressive strength and free shrinkage measurements. Results showed that the synergistic effect in reducing shrinkage is confirmed in the specimens manufactured with SRA and CaO. In order to clarify this phenomenon, the effect of SRA on the hydration of CaO as well as cement was evaluated through different techniques. The obtained results show that SRA induces a finer microstructure of the CaO hydration products and a retarding effect on the microstructure development of cement based materials. A more deformable mortar or concrete, due to the delay in microstructure development by SRA, coupled with a finer microstructure of CaO hydration products could allow higher early expansion, which might contribute in contrasting better the successive drying shrinkage.

  19. In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells

    Kupresan, D.; Radonjic, M.; Heathman, J.

    2013-12-01

    Wellbore cement provides casing support, zonal isolation, and casing protection from corrosive fluids, which are essential for wellbore integrity. Cements can undergo one or more forms of failure such as debonding at cement/formation and cement/casing interface, fracturing and defects within cement matrix. Failures and defects within cement will ultimately lead to fluids migration, resulting in inter-zonal fluid migration and premature well abandonment. There are over 27,000 abandoned oil and gas wells only in The Gulf of Mexico (some of them dating from the late 1940s) with no gas leakage monitoring. Cement degradation linked with carbon sequestration can potentially lead to contamination of fresh water aquifers with CO2. Gas leaks can particularly be observed in deviated wells used for hydraulic fracking (60% leakage rate as they age) as high pressure fracturing increases the potential for migration pathways. Experimental method utilized in this study enables formation of impermeable seals at interfaces present in a wellbore by mechanically manipulating wellbore cement. Preliminary measurements obtained in bench scale experiments demonstrate that an impermeable cement/formation and cement/casing interface can be obtained. In post-modified cement, nitrogen gas flow-through experiments showed complete zonal isolation and no permeability in samples with pre-engineered microannulus. Material characterization experiments of modified cement revealed altered microstructural properties of cement as well as changes in mineralogical composition. Calcium-silicate-hydrate (CSH), the dominant mineral in hydrated cement which provides low permeability of cement, was modified as a result of cement pore water displacement, resulting in more dense structures. Calcium hydroxide (CH), which is associated with low resistance of cement to acidic fluids and therefore detrimental in most wellbore cements, was almost completely displaced and/or integrated in CSH as a result of

  20. Radionuclide migration through porous cement-waste composition in semi-real conditions

    Plecas, I.; Peric, A.; Kostadinovic, A.

    1989-01-01

    In this paper, result of examination of Leakage rate or radionuclides Co-60 and Cs-137 in semi-real conditions are given. Radionuclides Co-60 and Cs-137 were immobilized by cement process and conditioned in concrete containers trying to make similar scenario for storing radioactive waste materials as in engineering trench system, repository. Experiments were realized with two waste water, evaporator bottom and reactor cooling system, (EB) and (RCS), from Nuclear Power Plants Krsko, in which the main radionuclides are Co-60 and Cs-137. These results will be used for future Yugoslav radioactive waste storing center (author)

  1. Degradation of recycled PET fibers in Portland cement-based materials

    Silva, D.A.; Betioli, A.M.; Gleize, P.J.P.; Roman, H.R.; Gomez, L.A.; Ribeiro, J.L.D.

    2005-01-01

    In order to investigate the durability of recycled PET fibers embedded in cement-based materials, fiber-reinforced mortar specimens were tested until 164 days after mixing. Compressive, tensile, and flexural strengths, elasticity modulus, and toughness of the specimens were determined. The mortars were also analyzed by SEM. The results have shown that PET fibers have no significant influence on mortars strengths and elasticity modulus. However, the toughness indexes I 5 , I 10 , and I 20 decreased with time due to the degradation of PET fibers by alkaline hydrolysis when embedded in the cement matrix. Fourier transform infrared spectroscopy (FT-IR) and SEM analysis of PET fibers immersed and kept for 150 days in alkaline solutions supported the conclusions

  2. High-performance cement-based grouts for use in a nuclear waste disposal facility

    Onofrei, M.; Gray, M.N.

    1992-12-01

    National and international agencies have identified cement-based materials as prime candidates for sealing vaults that would isolate nuclear fuel wastes from the biosphere. Insufficient information is currently available to allow a reasonable analysis of the long-term performance of these sealing materials in a vault. A combined laboratory and modelling research program was undertaken to provide the necessary information for a specially developed high-performance cement grout. The results indicate that acceptable performance is likely for at least thousands of years and probably for much longer periods. The materials, which have been proven to be effective in field applications, are shown to be virtually impermeable and highly leach resistant under vault conditions. Special plasticizing additives used in the material formulation enhance the physical characteristics of the grout without detriment to its chemical durability. Neither modelling nor laboratory testing have yet provided a definitive assessment of the grout's longevity. However, none of the results of these studies has contraindicated the use of high-performance cement-based grouts in vault sealing applications. (Author) (24 figs., 6 tabs., 21 refs.)

  3. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  4. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  5. Mechanical Characterization of High-Performance Steel-Fiber Reinforced Cement Composites with Self-Healing Effect

    Kim, Dong Joo; Kang, Seok Hee; Ahn, Tae-Ho

    2014-01-01

    The crack self-healing behavior of high-performance steel-fiber reinforced cement composites (HPSFRCs) was investigated. High-strength deformed steel fibers were employed in a high strength mortar with very fine silica sand to decreasing the crack width by generating higher interfacial bond strength. The width of micro-cracks, strongly affected by the type of fiber and sand, clearly produced the effects on the self-healing behavior. The use of fine silica sand in HPSFRCs with high strength deformed steel fibers successfully led to rapid healing owing to very fine cracks with width less than 20 μm. The use of very fine silica sand instead of normal sand produced 17%–19% higher tensile strength and 51%–58% smaller width of micro-cracks. PMID:28788471

  6. Analysis of CCRL proficiency cements 151 and 152 using the Virtual Cement and Concrete Testing Laboratory

    Bullard, Jeffrey W.; Stutzman, Paul E.

    2006-01-01

    To test the ability of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software to predict cement hydration properties, characterization of mineralogy and phase distribution is necessary. Compositional and textural characteristics of Cement and Concrete Reference Laboratory (CCRL) cements 151 and 152 were determined via scanning electron microscopy (SEM) analysis followed by computer modeling of hydration properties. The general procedure to evaluate a cement is as follows: (1) two-dimensional SEM backscattered electron and X-ray microanalysis images of the cement are obtained, along with a measured particle size distribution (PSD); (2) based on analysis of these images and the measured PSD, three-dimensional microstructures of various water-to-cement ratios are created and hydrated using VCCTL, and (3) the model predictions for degree of hydration under saturated conditions, heat of hydration (ASTM C186), setting time (ASTM C191), and strength development of mortar cubes (ASTM C109) are compared to experimental measurements either performed at NIST or at the participating CCRL proficiency sample evaluation laboratories. For both cements, generally good agreement is observed between the model predictions and the experimental data

  7. Low pH Cements

    Savage, David; Benbow, Steven

    2007-05-01

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  8. Low pH Cements

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  9. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate

    Chen, Chun-Cheng; Wang, Chien-Wen; Hsueh, Nai-Shuo; Ding, Shinn-Jyh

    2014-01-01

    Highlights: • Dicalcium silicate can improve osteogenic activity of calcium sulfate cement. • The higher the calcium sulfate content, the shorter the setting time in the composite cement. • The results were useful for designing calcium-based cement with optimal properties. -- Abstract: An ideal bone graft substitute should have the same speed of degradation as formation of new bone tissue. To improve the properties of calcium sulfate hemihydrate (CSH) featured for its rapid resorption, a low degradation material of dicalcium silicate (DCS) was added to the CSH cement. This study examined the effect of DCS (20, 40, 60 and 80 wt%) on the in vitro physicochemical properties and osteogenic activities of the calcium-based composite cements. The diametral tensile strength, porosity and weight loss of the composite cements were evaluated before and after soaking in a simulated body fluid (SBF). The osteogenic activities, such as proliferation, differentiation and mineralization, of human mesenchymal stem cells (hMSCs) seeded on cement surfaces were also examined. As a result, the greater the DCS amount, the higher the setting time was in the cement. Before soaking in SBF, the diametral tensile strength of the composite cements was decreased due to the introduction of DCS. On 180-day soaking, the composite cements containing 20, 40, 60 and 80 wt% DCS lost 80%, 69%, 61% and 44% in strength, respectively. Regarding in vitro bioactivity, the DCS-rich cements were covered with clusters of apatite spherulites after soaking for 7 days, while there was no formation of apatite spherulites on the CSH-rich cement surfaces. The presence of DCS could reduce the degradation of the CSH cements, as evidenced in the results of weight loss and porosity. More importantly, DCS may promote effectively the cell proliferation, proliferation and mineralization. The combination of osteogenesis of DCS and degradation of CSH made the calcium-based composite cements an attractive choice for

  10. Influence of silica fume and fly ash on hydration, microstructure and strength of cement based mixtures

    Weng, Kaimao

    1992-10-01

    The influence of fly ash and silica fume on the hydration, microstructure and strength of cement-based mixtures was investigated. A literature review of the hydration processes, compressive strength development, and microstructure of Portland cement is presented, followed by description of materials and specimens preparation and experimental methodology. It was found that silica fume retards cement hydration at low water/concrete ratios. It reduces calcium hydroxide significantly and increases the amount of hydrates at early ages. Fly ash retards hydration more significantly at high water/concrete ratios than at low ratios. The combination of silica fume and fly ash further retards hydration at one day. Silica fume dominates the reaction with calcium hydroxide. Silica fume significantly increases early strength of mortars and concrete, while fly ash reduces early strength. Silica fume can substantially increase strength of fly ash mortar and concrete after 7 days. Silica fume refines pores in the range 100-500 A, while fly ash mortars exhibit gradual pore refinement as hydration proceeds. Silica fume dominates the pore refinement if used with fly ash. 89 refs., 74 figs., 16 tabs.

  11. Cement Based Batteries and their Potential for Use in Low Power Operations

    Byrne, A.; Holmes, N.; Norton, B.

    2015-11-01

    This paper presents the development of an innovative cement-electrolyte battery for low power operations such as cathodic protection of reinforced concrete. A battery design was refined by altering different constituents and examining the open circuit voltage, resistor loaded current and lifespan. The final design consisted of a copper plate cathode, aluminium plate anode, and a cement electrolyte which included additives of carbon black, plasticiser, Alum salt and Epsom salt. A relationship between age, temperature and hydration of the cell and the current it produced was determined. It was found that sealing the battery using varnish increased the moisture retention and current output. Current was also found to increase with internal temperature of the electrolyte and connecting two cells in parallel further doubled or even tripled the current. Parallel-connected cells could sustain an average current of 0.35mA through a 10Ω resistor over two weeks of recording. The preliminary findings demonstrate that cement-based batteries can produce sufficient sustainable electrical outputs with the correct materials and arrangement of components. Work is ongoing to determine how these batteries can be recharged using photovoltaics which will further enhance their sustainability properties.

  12. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties

  13. Modified pavement cement concrete

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  14. Topological calculation of key parameters of fibre for production of foam concrete based on cement-free nanostructured binder

    KHARKHARDIN Anatoly Nikolaevich

    2016-08-01

    Full Text Available Fiber reinforcement is the process of introduction of fibers of different origins into binding system to enhance strength, stress-strain behavior of products and structures. Maximal effect of reinforcing process is possible when optimal parameters (length and consumption of fibre are determined. Moreover one need to consider particle-size composition and hardening process of binding system. In this paper the critical length of natural and sinthesized fibres as well as minimally required content in cellular systems is calculated with the mathematical apparatus of structural topology. As an example the foam concrete based on cement-free nanostructured binder with basalt fibre and microreinforcing constructional polymeric fibre is studied. Fiber diameter, refined with microstructure analysis, accomplished by SEM-microscopy and experimentally determined packing density in loose and compact state are applied as input parameters. Measurement of the fibre topological characteristics with acceptable is accomplished according to material porosity and pore size. So the minimal effective fibre length taking into account homogeneous distribution in bulk of composite matrix is less of 1 mm; minimal fibre consumption is 0,2–0,5 (by wt. %. Irrational optimization leads to unreasonable cost growth of final materials as well as formation of balling inclusions that negatively affects on final performance of composite.

  15. Determination of the effective diffusion coefficient of water through cement-based materials when applying an electrical field

    Wattez, T.

    2013-01-01

    The safety and the reliability of a radioactive waste repository rely essentially on the confinement ability of the waste package and the storing structure. In the case of the low-level and intermediate level short-lived radioactive waste, the confinement property, relying on solid matrices made of cement-based materials, is assessed through a natural diffusion test, using a radioactive tracer, from which an effective diffusion coefficient is deduced. The evolution of the materials and more particularly the enhancement of the confinement properties of cement-based materials lead to test duration from a couple of months to a couple of years. The main objective of the present work involves the determination of the effective diffusion coefficient of reference chemical species, in our case the tritiated water, within a shorter time. The theoretical foundation is based on the description of ionic species mass transfer under the effects of an electrical field. With the definitions of a precise experimental protocol and of a formation factor, considered as an intrinsic topological feature of the porous network, it is possible to determine the effective diffusion coefficient of tritiated water for various types of concretes and mortars, and this within a few hours only. The comparison between the developed accelerated test, based on the application of a constant electrical field, and the normed natural diffusion test, using tritiated water, underlined two critical issues. First, omitting the impact of the radioactive decay of tritium during a natural diffusion test, leads to a non-negligible underestimation of the effective diffusion coefficient. Second, maintaining samples in high relative humidity conditions after casting is essential in order to avoid contrasted and unrelated results when performing the electrokinetic tests. Eventually, the validation of the electrokinetics technique, main objective of this work, rests on the assessment of the theoretical hypothesis

  16. Removal of Heavy Metal Ions by Using Composite of Cement Kiln Dust/Ethylene Glycol co Acrylic Acid Prepared by y-Irradiation

    Sokker, H.H.; Abdel-Rahman, H.A.; Khattab, M.M.; Ismail, M.R.

    2010-01-01

    Various composites of cement kiln dust (CKD) and poly(ethylene glycol co acrylic acid) using y-irradiation was investigated. The samples were prepared using three percentages of cement kiln dust namely, 20, 50 and 75 by wt % and mixed with an equimolar ratio (1:1) of ethylene glycol and acrylic acid then irradiated at doses; 10,20 and 30 kGy of gamma-irradiation. The results showed that (CKD) and poly(ethylene glycol co acrylic acid) composites were formed only at 30 kGy. In addition, CKD alone has the lowest degree of removal of heavy metal ions compared with the prepared composites. A composite containing 75% cement kiln dust by weight percentage, showed the highest degree of removal of cobalt ions, whereas, a composite of 20% CKD showed the highest degree for cadmium ion removal. While the composite of 75% CKD showed a higher selectivity of cobalt ion than cadmium ion in their mixed solution.

  17. Thermodynamic modelling of alkali-activated slag cements

    Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.

    2015-01-01

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  18. The U phase formation in cement-based systems containing high amounts of Na2SO4

    Li, G.; Moranville, M.; Le Bescop, P.

    1996-01-01

    Simulated cemented low level wastes containing high amounts of Na 2 SO 4 (10--15%) were examined with respect to the mineralogy of the solid phases, chemical composition of the interstitial aqueous phase and immersion behavior in water. All results reveal the formation of a mineral called U phase, first observed by Dosch and zur Strassen in 1967, and its deleterious effects on the samples immersed in water. It appears that this phase can form only at very high alkaline concentration, not compatible with traditional cement paste. Two possible degradation mechanisms associated with the U phase are proposed which are to be elucidated in further works

  19. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    Schroefl, Christof, E-mail: christof.schroefl@tu-dresden.de [Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Baustoffe, DE-01062 Dresden (Germany); Mechtcherine, Viktor [Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Baustoffe, DE-01062 Dresden (Germany); Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard [Paul Scherrer Institut, Laboratory for Neutron Scattering and Imaging, CH-5232 Villigen/AG (Switzerland)

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  20. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-01-01

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1

  1. Cermet cements.

    McLean, J W

    1990-01-01

    Cermet ionomer cements are sintered metal/glass powders, which can be made to react with poly(acids). These new cements are significantly more resistant to abrasion than regular glass ionomer cements and are widely accepted as core build-up materials and lining cements. They can strengthen teeth and provide the clinician with an opportunity to treat early dental caries.

  2. Novel adaptations to zinc-silicate glass polyalkenoate cements: the unexpected influences of germanium based glasses on handling characteristics and mechanical properties.

    Dickey, B T; Kehoe, S; Boyd, D

    2013-07-01

    Aluminum-free glass polyalkenoate cements (GPC) have been hindered for use as injectable bone cements by their inability to balance handling characteristics with mechanical integrity. Currently, zinc-based, aluminum-free GPCs demonstrate compression strengths in excess of 60MPa, but set in c. 1-2 min. Previous efforts to extend the setting reaction have remained clinically insufficient and are typically accompanied by a significant drop in strength. This work synthesized novel glasses based on a zinc silicate composition with the inclusion of GeO2, ZrO2, and Na2O, and evaluated the setting reaction and mechanical properties of the resultant GPCs. Germanium based GPCs were found to have working times between 5 and 10 min, setting times between 14 and 36 min, and compression strengths in excess of 30 MPa for the first 30 days. The results of this investigation have shown that the inclusion of GeO2, ZrO2, and Na2O into the glass network have produced, for the first time, an aluminum-free GPC that is clinically viable as injectable bone cements with regards to handling characteristics and mechanical properties. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles

    T. Russo

    2017-09-01

    As reported in the literature, the stress distribution may be altered in bones after the implantation of a total joint prosthesis. Some scientific works have also correlated uncemented TKA to a progressive decrease of bone density below the tibial component. Antibiotic-loaded bone cements are commonly employed in conjunction with systemic antibiotics to treat infections. Furthermore, nanoparticles with antimicrobial activity have been widely analysed. Accordingly, the current research was focused on a preliminary analysis of the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. The obtained results demonstrated that nanocomposite cements with a specific concentration of gold nanoparticles improved the punching performance and antibacterial activity. However, critical aspects were found in the optimization of the nanocomposite bone cement.

  4. An ongoing investigation on modeling the strength properties of water-entrained cement-based materials

    Esteves, L.P.

    2012-01-01

    Water-entrained cement based materials by superabsorbent polymers is a concept that was introduced in the research agenda about a decade ago. However, a recent application in the production of high performance concrete revealed potential weaknesses when the proportioning of this intelligent......-based materials. Beyond the discussion of whether or not the introduction of superabsorbent polymers leads to a strength reduction, this paper uses both experimental and theoretical background to separate the effect of SAP in both pore structure and internal relative humidity and the effect from the active...

  5. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  6. Cement-base bearing pads mortar for connections in the precast concrete: study of surface roughness

    M. K. El Debs

    Full Text Available Bearing pads are used in precast concrete connections to avoid concentrated stresses in the contact area between the precast elements. In the present research, the bearing pads are Portland cement mortar with styrene-butadiene latex (SB, lightweight aggregate (expanded vermiculite-term and short fibers (polypropylene, glass and PVA, in order to obtain a material with low modulus of elasticity and high tenacity, compared with normal Portland cement mortar. The objective of this paper is to analyze the influence of surface roughness on the pads and test other types of polypropylene fibers. Tests were carried out to characterize the composite and test on bearing pads. Characterization tests show compressive strength of 41MPa and modulus of elasticity of 12.8GPa. The bearing pads tests present 30% reduction of stiffness in relation to a reference mortar. The bearing pads with roughness on both sides present a reduction up to 30% in stiffness and an increase in accumulated deformation of more than 120%, regarding bearing pads with both sides smooth.

  7. Prediction of SEM–X-ray images’ data of cement-based materials using artificial neural network algorithm

    Ashraf Ragab Mohamed

    2014-09-01

    Full Text Available Recent advances of computational capabilities have motivated the development of more sophisticated models to simulate cement-based hydration. However, the input parameters for such models, obtained from SEM–X-ray image analyses, are quite complicated and hinder their versatile application. This paper addresses the utilization of the artificial neural networks (ANNs to predict the SEM–X-ray images’ data of cement-based materials (surface area fraction and the cement phases’ correlation functions. ANNs have been used to correlate these data, already obtained for 21 types of cement, to basic cement data (cement compounds and fineness. Two approaches have been proposed; the ANN, and the ANN-regression method. Comparisons have shown that the ANN proves effectiveness in predicting the surface area fraction, while the ANN-regression is more computationally suitable for the correlation functions. Results have shown good agreement between the proposed techniques and the actual data with respect to hydration products, degree of hydration, and simulated images.

  8. The effect of mixing method on tricalcium silicate-based cement.

    Duque, J A; Fernandes, S L; Bubola, J P; Duarte, M A H; Camilleri, J; Marciano, M A

    2018-01-01

    To evaluate the effect of three methods of mixing on the physical and chemical properties of tricalcium silicate-based cements. The materials evaluated were MTA Angelus and Portland cement with 20% zirconium oxide (PC-20-Zr). The cements were mixed using a 3 : 1 powder-to-liquid ratio. The mixing methods were manual (m), trituration (tr) and ultrasonic (us) activation. The materials were characterized by means of scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy. Flowability was analysed according to ANSI/ADA 57/2012. Initial and final setting times were assessed following ASTM C266/08. Volume change was evaluated using a micro-CT volumetric method. Solubility was analysed according to ADA 57/2012. pH and calcium ion release were measured after 3, 24, 72 and 168 h. Statistical analysis was performed using two-way analysis of variance. The level of significance was set at P = 0.05. The SEM analysis revealed that ultrasonic activation was associated with a homogeneous distribution of particles. Flowability, volume change and initial setting time were not influenced by the mixing method (P > 0.05). Solubility was influenced by the mixing method (P < 0.05). For pH, at 168 h, significant differences were found between MTA-m and PC-20-Zr-m (P < 0.05). For calcium ion release, PC-20-Zr-tr had higher values than MTA-m at 3 h, and MTA-tr had higher values than PC-20-Zr-m at 168 h (P < 0.05). The ultrasonic and trituration methods led to higher calcium ion release and pH compared with manual mixing for all cements, whilst the ultrasonic method produced smaller particles for the PC-20-Zr cement. Flow, setting times and volume change were not influenced by the mixing method used; however, it did have an impact on solubility. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Radiolysis in cement-based materials ; application to radioactive waste-forms

    Bouniol, P.

    2014-01-01

    Cement-based materials appear to be an original environment with respect to radiolysis, due to their intrinsic complexity (porous, multiphasic and evolutional medium) or their very specific physico-chemical conditions (hyper-alkaline medium with pH ≥ 13, high content in calcium) or by the fact of numerous couplings existing between different phenomenologies. At the level of a radioactive cemented wasteform, a high degree of complexity is reached, in particular if the system communicates with the atmosphere (open system allowing regulation of the pressures but also the admission of O 2 , strong reactive with regards to radiolysis). Then, the radiolysis description exceeds widely the only one aspect of the decomposition of alkaline water under irradiation and makes necessary a global phenomenological approach. In this context, some 'outlying' phenomena, highly coupled with radiation chemistry, have to be taken into account because they contribute to deeply modify the net result of the radiolysis: radioactive decay of multiple αβγ emitters with filiation, phase changes (for example H 2 aq → H 2 gas) within the pores, gas transport by convection (Darcy law) and by diffusion (Fick law), precipitation/dissolution of solid phases, effect of the ionic strength and the temperature, disturbances connected to the presence of some solutes with redox potentialities (iron, sulphur). The integration work carried out on the previous points leads to an operational model (DOREMI) allowing the estimate of H 2 amounts produced by radiolysis in different cemented radioactive waste-forms. As the final expression of the model, numerical simulations constitute a relevant tool of expertise and prospecting, contributing to accompany the thought on radiolysis in cement matrices in general and in cemented waste-forms in particular. Starting from different examples, simulations can be so used in order to test some hypotheses or illustrate the greatest influence of gas transport, dose

  10. Corrosion-resistant Foamed Cements for Carbon Steels

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  11. Microstructural changes and residual properties of fiber reinforced cement composites exposed to elevated temperatures

    Keppert, M.; Vejmelková, E.; Švarcová, Silvie; Bezdička, Petr; Černý, R.

    2012-01-01

    Roč. 17, č. 2 (2012), s. 77-89 ISSN 1425-8129 Institutional research plan: CEZ:AV0Z40320502 Keywords : fiber reinforced cementcomposites * high temperatures * mineralodical composition * microstructure * residual strength * apparent moisture diffusivity Subject RIV: JI - Composite Materials Impact factor: 0.385, year: 2012

  12. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate

    Puertas, F.; Fernandez-Jimenez, A.; Blanco-Varela, M.T.

    2004-01-01

    In this work, the relationship between the composition of pore solution in alkali-activated slag cement (AAS) pastes activated with different alkaline activator, and the composition and structure of the main reaction products, has been studied. Pore solution was extracted from hardened AAS pastes. The analysis of the liquids was performed through different techniques: Na, Mg and Al by atomic absorption (AA), Ca ions by ionic chromatography (IC) and Si by colorimetry; pH was also determined. The solid phases were analysed by XRD, FTIR, solid-state 29 Si and 27 Al NMR and BSE/EDX. The most significant changes in the ionic composition of the pore solution of the AAS pastes activated with waterglass take place between 3 and 24 h of reaction. These changes are due to the decrease of the Na content and mainly to the Si content. Results of 29 Si MAS NMR and FTIR confirm that the activation process takes place with more intensity after 3 h (although at this age, Q 2 units already exist). The pore solution of the AAS pastes activated with NaOH shows a different evolution to this of pastes activated with waterglass. The decrease of Na and Si contents progresses with time. The nature of the alkaline activator influences the structure and composition of the calcium silicate hydrate formed as a consequence of the alkaline activation of the slag. The characteristic of calcium silicate hydrate in AAS pastes activated with waterglass is characterised by a low structural order with a low Ca/Si ratio. Besides, in this paste, Q 3 units are detected. The calcium silicate hydrate formed in the pastes activated with NaOH has a higher structural order (higher crystallinity) and contains more Al in its structure and a higher Ca/Si ratio than those obtained with waterglass

  13. Compositional, thermal and microstructural characterization of the Nopal (opuntia ficus indica), for addition in commercial cement mixtures

    Hernández Carrillo, C. G.; Gómez-Cuaspud, J. A.; E Martínez Suarez, C.

    2017-12-01

    The Nopal (opuntia ficus indica) from remote times has contributed like food and additive product in prehispanic constructions; although it grows in all the Colombian territory is very little used and its contribution in mixtures of Colombian cement is unknown. In order to evaluate the hydration characteristics of Nopal, several Thermogravimetric Analysis (TGA) were performed to evaluate the optimal temperature of dehydration. Initially, the results show that around 175°C the weight loss is approximately 95%, this mass loss corresponds to the process of physical removal, suggesting that at least a remaining amount of 5% (w/w) has the ability to retain large amounts of water which is stored in the micro-structural deposits of Nopal. The evaluation by means Scanning Electron Microscopy (SEM), confirm that the whole cactus structure enables the water storage at cellular level. The results of infrared spectroscopy (FT-IR) and Energy Dispersive X-ray (EDX) analysis allowed the qualitative and semi-quantitative evaluation of the presence of functional groups and elemental chemical composition of Nopal respectively, mainly related with polysaccharide functional groups, which corresponds to 85% of the total composition. Other functional groups, are related with protein and mineral components. This found characteristics are relevant for the water retention in process that require the decrease of water consumption and the reinforcing of mechanical properties and durability, due to ability of Nopal mucilage to restore its hydration characteristics.

  14. Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions

    D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.

    2016-04-01

    The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.

  15. Prediction of chloride ingress and binding in cement paste

    Geiker, Mette Rica; Nielsen, Erik Pram; Herforth, Duncan

    2007-01-01

    This paper summarizes recent work on an analytical model for predicting the ingress rate of chlorides in cement-based materials. An integral part of this is a thermodynamic model for predicting the phase equilibria in hydrated Portland cement. The model’s ability to predict chloride binding...... in Portland cement pastes at any content of chloride, alkalis, sulfates and carbonate was verified experimentally and found to be equally valid when applied to other data in the literature. The thermodynamic model for predicting the phase equilibria in hydrated Portland cement was introduced into an existing...... Finite Difference Model for the ingress of chlorides into concrete which takes into account its multi-component nature. The “composite theory” was then used to predict the diffusivity of each ion based on the phase assemblage present in the hydrated Portland cement paste. Agreement was found between...

  16. Effect of Processing Parameters on 3D Printing of Cement - based Materials

    Lin, Jia Chao; Wang, Jun; Wu, Xiong; Yang, Wen; Zhao, Ri Xu; Bao, Ming

    2018-06-01

    3D printing is a new study direction of building method in recent years. The applicability of 3D printing equipment and cement based materials is analyzed, and the influence of 3D printing operation parameters on the printing effect is explored in this paper. Results showed that the appropriate range of 3D printing operation parameters: print height/nozzle diameter is between 0.4 to 0.6, the printing speed 4-8 cm/s with pumpage 9 * 10-2 m 3/ h.

  17. Internet and Fuzzy Based Control System for Rotary Kiln in Cement Manufacturing Plant

    Hanane Zermane

    2017-01-01

    Full Text Available This paper develops an Internet-based fuzzy control system for an industrial process plant to ensure the remote and fuzzy control in cement factories in Algeria. The remote process consists of control, diagnosing alarms occurs, maintaining and synchronizing different regulation loops. Fuzzy control of the kiln ensures that the system be operational at all times, with minimal downtime. Internet technology ensures remote control. The system reduces downtimes and can guided by operators in the main control room or via Internet.

  18. Application of high-strength non-shrink cement based grouting material in nuclear power installations

    Li Zhong; Zuo Weiwei

    2011-01-01

    This paper briefly describes the related technical requirement of secondary grouting during the process of equipment installation in nuclear power projects. The method and procedure are introduced in detail from the aspects of acceptance, preparation, pouring, collecting and maintenance of the high-strength non-shrinking based pouring cement material, and the cautions during the construction is also provided. The factors affecting the quality of the field grouting is analyzed, and the measures to reduce or eliminate the micro-cracks during the process is provided. (authors)

  19. In situ grouting of low-level burial trenches with a cement-based grout

    Francis, C.W.; Spalding, B.P.

    1991-01-01

    A restoration technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at Oak Ridge National Laboratory (ORNL) is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in Solid Waste Storage Area 6 (SWSA 6) were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability and decreased potential for leachate migration following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. 7 refs., 3 figs., 5 tabs

  20. Hydration characteristics and structure formation of cement pastes containing metakaolin

    Dvorkin Leonid

    2018-01-01

    Full Text Available Metakaolin (MK is one of the most effective mineral admixtures for cement-based composites. The deposits of kaolin clays are wide-spread in the world. Metakaolin is comparable to silica fume as an active mineral admixture for cement-based composites. In this paper, the rheological and mechanical properties of cement paste containing metakaolin are investigated. The effect of MK is more evident at “tight” hydration conditions within mixtures with low water-cement ratio, provided by application of superplasticizers. The cement is replaced with 0 to 15% metakaolin, and superplasticizer content ranged from 0 to 1.5% by weight of cementitious materials (i.e. cement and metakaolin. An equation is derived to describe the relationship between the metakaolin and superplasticizer content and consistency of pastes. There is a linear dependence between metakalolin content and water demand. Second-degree polynomial describe the influence of superplasticizer content. The application of SP and MK may produce cement-water suspensions with water-retaining capacity at 50-70% higher than control suspensions. The investigation of initial structure forming of cement pastes with SP-MK composite admixture indicates the extension of coagulation structure forming phase comparing to the pastes without additives. Crystallization stage was characterized by more intensive strengthening of the paste with SP-MK admixture comparing to the paste without admixtures and paste with SP. Results on the porosity parameters for hardened cement paste indicate a decrease in the average diameter of pores and refinement of pore structure in the presence of metakaolin. A finer pore structure associated with an increase in strength. X-ray analysis data reveal a growing number of small-crystalline low-alkaline calcium hydrosilicates and reducing portlandite content, when MK dosage increases. Scanning electron microscopy (SEM data confirm, that hardened cement paste containing MK has

  1. Physicochemical changes of cements by ground water corrosion in radioactive waste storage

    Contreras R, A.; Badillo A, V. E.; Robles P, E. F.; Nava E, N.

    2009-10-01

    Knowing that the behavior of cementations materials based on known hydraulic cement binder is determined essentially by the physical and chemical transformation of cement paste (water + cement) that is, the present study is essentially about the cement paste evolution in contact with aqueous solutions since one of principal risks in systems security are the ground and surface waters, which contribute to alteration of various barriers and represent the main route of radionuclides transport. In this research, cements were hydrated with different relations cement-aqueous solution to different times. The pastes were analyzed by different solid observation techniques XRD and Moessbauer with the purpose of identify phases that form when are in contact with aqueous solutions of similar composition to ground water. The results show a definitive influence of chemical nature of aqueous solution as it encourages the formation of new phases like hydrated calcium silicates, which are the main phases responsible of radionuclides retention in a radioactive waste storage. (Author)

  2. Study of a hydraulic DCPA/CaO-based cement for dental applications.

    El Briak, Hasna; Durand, Denis; Boudeville, Philippe

    2008-02-01

    A CPC was obtained by mixing calcium hydrogenphosphate (DCPA: CaHPO(4)) and calcium oxide with either water or sodium phosphate (NaP) buffers. Physical and mechanical properties such as compressive strength (CS), initial (I) and final (F) setting times, cohesion time (T(C)), dough time (T(D)), swelling time (T(S)), dimensional and thermal behavior, injectability (t(100%)), antimicrobial properties, setting reaction kinetics, and powder stability over time were investigated by varying different parameters such as liquid-to-powder (L/P) ratio (0.35 to 0.7 mL g(-1)), molar calcium-to-phosphate (Ca/P) ratio (1.67 to 3), the pH (4, 7 or 9) and the concentration (0 to 1 M) of the NaP buffer. The best results were obtained with the pH 7 NaP buffer at a concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (CS), 6 to 10 min (I), 11 to 15 min (F), 15 to 45 min (T(S)), 3 to 12 min (t(100%)), 16 min (T(D)). This cement expanded during its setting (2.5-7%), and is thus appropriate for tight filling. Finally the cement has antimicrobial activity from Ca/P = 2 and the whole properties were conserved after 8 months storage. Given the mechanical, rheological and antimicrobial properties of this new DCPA/CaO-based cement, its use as root canal sealing or pulp capping material may be considered as similar to calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point.

  3. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications.

    el-Briak, Hasna; Durand, Denis; Nurit, Josiane; Munier, Sylvie; Pauvert, Bernard; Boudeville, Phillipe

    2002-01-01

    By mixing CaHPO(4) x 2H(2)O (DCPD) and CaO with water or sodium phosphate buffers as liquid phase, a calcium phosphate cement was obtained. Its physical and mechanical properties, such as compressive strength, initial and final setting times, cohesion time, dough time, swelling time, dimensional and thermal behavior, and injectability were investigated by varying different parameters such as liquid to powder (L/P) ratio (0.35-0.7 ml g(-1)), molar calcium to phosphate (Ca/P) ratio (1.67-2.5) and the pH (4, 7, and 9) and the concentration (0-1 M) of the sodium phosphate buffer. The best results were obtained with the pH 7 sodium phosphate buffer at the concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (compressive strength), 6 to 10 min (initial setting time), 11 to 15 min (final setting time), 15 to 30 min (swelling time), 7 to 20 min (time of 100% injectability). The dough or working time was over 16 min. This cement expanded during its setting (1.2-5 % according to Ca/P and L/P ratios); this would allow a tight filling. Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 447-453, 2002

  4. A sorption model for alkalis in cement-based materials - Correlations with solubility and electrokinetic properties

    Henocq, Pierre

    2017-06-01

    In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.

  5. Microstructural Properties of Cement Paste and Mortar Modified by Low Cost Nanoplatelets Sourced from Natural Materials

    Piao Huang

    2018-05-01

    Full Text Available Nanomaterials have been widely used in cement-based materials. Graphene has excellent properties for improving the durability of cement-based materials. Given its high production budget, it has limited its wide potential for application in the field of engineering. Hence, it is very meaningful to obtain low cost nanoplatelets from natural materials that can replace graphene nanoplatelets (GNPs The purpose of this paper is to improve the resistance to chloride ion penetration by optimizing the pore structure of cement-based materials, and another point is to reduce investment costs. The results illustrated that low cost CaCO3 nanoplatelets (CCNPs were successfully obtained under alkali treatment of seashell powder, and the chloride ion permeability of cement-based materials significantly decreased by 15.7% compared to that of the control samples when CCNPs were incorporated. Furthermore, the compressive strength of cement pastes at the age of 28 days increased by 37.9% than that of the plain sample. Improvement of performance of cement-based materials can be partly attributed to the refinement of the pore structure. In addition, AFM was employed to characterize the nanoplatelet thickness of CCNPs and the pore structures of the cement-based composites were analyzed by MIP, respectively. CCNPs composite cement best performance could lay the foundation for further study of the durability of cement-based materials and the application of decontaminated seashells.

  6. EFFECT OF MgO ON THE COMPOSITION AND PROPERTIES OF BELITE-BARIUM CALCIUM SULPHOALUMINATE CEMENT IN THE PRESENCE OF Na2O AND K2O

    Jie Zhang

    2015-06-01

    Full Text Available The purpose of this study is to explore the effect of MgO (1 - 9 wt. % on the composition and properties of belite-barium calcium sulphoaluminate cement with additions of Na2O and K2O. The results show that 1 - 5 wt. % content of MgO can stabilize crystal types of M3-C3S, R-C3S and β-C2S. Moreover, MgO can promote the formation of C3S and C4AF, but has little effect on the formation of C2.75B1.25A3$ and C3A. The C3A/C4AF ratio is reduced by 22 % at 5 wt. % MgO, which indicates that appropriate MgO can decrease the liquid viscosity. In the presence of Na2O and K2O, the highest limit of incorporated amount of MgO is about 3 wt. %, which is higher than that in Portland cement clinker of 2 wt. %. Besides, MgO favors the formation of small C3S crystals in size of 4 - 20 μm. MgO enhances the hydration rate and mechanical property of cement at an optimal dosage (1 - 5 wt. %, beyond which an adverse effect could be resulted. At a MgO dosage of 5 wt. %, the compressive strengths of the cement at 1, 3, 7 and 28 days are 15.8, 39.3, 68.6 and 97.3 MPa, which increases by 116 %, 17 %, 10 % and 6 % respectively compared to the cement without MgO dopant. This study could lead to the effective use of magnesia-rich limestone in industrial production of belite-barium calcium sulphoaluminate cement.

  7. Nanohydroxyapatite Silicate-Based Cement Improves the Primary Stability of Dental Implants: An In Vitro Study

    Hooman Khorshidi

    2017-01-01

    Full Text Available Objectives. Insufficient cortical bone volume when placing implants can lead to lack of primary stability. The use of cement as a bone fill material in bone defects around dental implant could result in better clinical outcome. HA has shown excellent biological properties in implant dentistry. The purpose of this study was to evaluate the effect of nanohydroxyapatite powder (Nano-HA in combination with accelerated Portland cement (APC on implant primary stability in surgically created circumferential bone defects in a bovine rib in vitro model. Materials and Methods. Sixteen bovine rib bones and thirty-six implants of same type and size (4 mm × 10 mm were used. Implants were divided into six groups: no circumferential bone defect, defect and no grafting, bone chips grafting, Nano-HA grafting, APC grafting, and Nano-HA mixed to APC grafting (Nano-HA-APC. Circumferential defects around the implants were prepared. The implant stability quotient (ISQ values were measured before and after the grafting. Results. APC exhibited the highest ISQ values. A significant increase of ISQ values following the grafting of Nano-HA-APC (18.08±5.82 and APC alone (9.50±4.12 was achieved. Increase of ISQ values after 72 hours was 24.16±5.01 and 17.58±4.89, respectively. Nano-HA grafting alone exhibited the least rise in ISQ values. Conclusions. Nanohydroxyapatite silicate-based cement could improve the primary stability of dental implants in circumferential bone defect around implants.

  8. In situ grouting of low-level burial trenches with a cement-based grout

    Francis, C.W.; Spalding, B.P.

    1991-01-01

    A restoration technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at Oak Ridge National Laboratory (ORNL) is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in Solid Waste Storage Area 6 (SWSA 6) were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability and decreased potential for leachate migration following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. After grouting, soil-penetration tests disclosed that stability had been improved greatly. For example, refusal (defined as > 100 blows to penetrate 1 ft) was encountered in 17 of the 22 tests conducted within the trench area. Mean refusal depths for the two trenches were 3.5 and 2.6 m. Stability of the trench was significantly better than pregrout conditions, and at depths > 2.4 m, the stability was very near that observed in the native soil formation outside the trench. Tests within the trench showed lower stability within this range probably because of the presence of intermediate-sized soil voids (formed during backfilling) that were too small to be penetrated and filled by the conventional cement grout formulation. Hydraulic conductivity within the trench remained very high (>0.1 cm/s) and significantly greater than outside the trench. Postgrout air pressurization tests also revealed a large degree of intervoid linkage within and between the two trenches. To effectively reduce hydraulic conductivity and to develop stability within the upper level of the trench, injection of a clay/microfine cement grout into the upper level of the grouted trench is planned

  9. Impact of carbonation on water transport properties of cement-based materials

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.

    2015-01-01

    Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)

  10. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  11. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.

    Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng

    2018-04-17

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  12. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    Shiping Huang

    2018-04-01

    Full Text Available The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  13. The influence of orientation and practical size on the interface fracture of a bone-nano composite cement

    Ilik, Igor; Khandaker, Morshed

    2010-01-01

    Clinical follow-up studies in cemented total hip arthroplasties found that femoral prosthesis loosening is caused by the fracture of the bone-cement interfaces. The research objectives were to determine whether orientation of the bone has any influence on the interface fracture strength, and to determine whether inclusion of micro/nano sizes MgO particles on Cobalt HV bone cement has any influence on the interface fracture strength. Flexural tests were conducted on five groups of specimens to find Young Modulus and bending strength: (1) longitudinal bone, (2) transverse bone, (3) pure cement particles, (4) cement with 36 im and 27 nm MgO particles, and (5) cement with 27nm MgO particles. Also, fracture tests were conducted on six groups of bone-cement specimen to find interface fracture toughness: (1) longitudinal bone-cement without MgO particles, (2) transverse bone-cement without MgO particles, (3) longitudinal bone-cement with 36 im MgO particles, (4) transverse bone-cement with 36 im MgO particles, (5) , longitudinal bone-cement with 27 nm MgO particles, and (6) transverse bone-cement with 27 nm MgO particles. Transverse bone specimen was 14% stiffer than longitudinal specimen, while bending strength and fracture toughness of longitudinal specimen was 29% and 2.6 times lower than the transverse specimen, respectively. Reduction of Young's modulus (7.3%), bending strength (27%) and fracture toughness (16%) was observed by the inclusion of microsize MgO particles, and a reduction of the Young's Modulus (19%), bending strength (21%),and fracture toughness (19%) for nanosize MgO particles. The interface toughness of the transverse bone infused with 27nm MgO was about 6 times higher than transverse bone infused with 36 im particles of MgO. Preliminary studies show that orientation of the bone has significant influence on the interface fracture. MgO particles size have a significant effect on the strength of the bone - cement interface.(Author)

  14. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid.   Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  15. The rim zone of cement based materials - barrier or fast lane for chemical degradation?

    Schwotzer, M.; Kaltenbach, J.; Heck, P.F.; Konno, K.; Gerdes, A.

    2015-01-01

    This contribution focuses exemplarily on the chemical and mineralogical changes in the rim zone of cement paste samples exposed to different chloride solutions (NaCl, KCl, MgCl 2 and CaCl 2 ), to hard tap water and to demineralized water. The determination of the Ca(OH) 2 and Mg(OH) 2 content of the solid phases was performed by means of thermogravimetry with pulverized samples (TGA/SDTA 851, Mettler-Toledo). A potential relation between temperature and the time dependant development of the material due to reactive transport processes will also be addressed. The experiments with tap water showed that the contact between the cement paste samples and hard tap water did not lead to significant changes in the composition of the solid samples or of the reaction solution. This can be attributed to a rapid formation of a protective calcium carbonate layer on the surface of the cement paste. The slight decrease of the Ca 2+ content in the solution indicates that the growth of this layer occurs within the first few hours. In contrast to the tap water exposure, the results of the experiments with the MgCl 2 solutions show features of an intense attack despite the presence of crystalline covering layers. The quick formation of a thick and dense Mg(OH) 2 layer does not provide any protection against reactive transport processes. In this experiment, the degradation rate of Ca(OH) 2 as well as the Ca 2+ release was higher than in all other experiments. In addition the rapid formation of a Mg(OH) 2 layer starting already during the first hour of the experiment did not prevent the chloride ingress compared to the other experiments with chloride solutions. The pH value of the reaction solution remains stable and relatively low which indicates a crystallisation process. In the other experiments, performed with demineralized water, alkali chloride solutions, and the CaCl 2 solution, no significant formation of potentially protective covering layers and no development of transport

  16. The comparison of properties and cost of material use of natural rubber and sand in manufacturing cement mortar for construction sub-base layer

    Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.

    2017-11-01

    The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.

  17. Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites

    Shaikh, F.U.A.

    2013-01-01

    Highlights: • Deflection hardening behaviour is achieved in the DFRGC similar to that observed in DFRCC. • The first crack load or in other word the limit of proportionality (LOP) of DFRGC is similar to that of DFRCC. • The DFRGC also exhibited higher deflection at peak load than DFRCC. • The toughness at peak load of DFRGC is also high than that of DFRCC. • The ductility of DFRGC is also higher than that of DFRCC. - Abstract: This paper reports the newly developed ductile fibre reinforced geopolymer composite (DFRGC) exhibiting deflection hardening and multiple cracking behaviour. The binder of the above composite is different from that used in conventional cement based system. The class F fly ash is used instead of Portland cement in DFRGC and is activated by alkaline liquids (sodium hydroxide and sodium silicate). In this study, two types of fibres namely steel (ST) and polyvinyl alcohol (PVA) fibres are used in mono as well as in ST–PVA hybrid form, with a total volume fraction of 2%. The deflection hardening behaviour of newly developed DFRGC is also compared with that of conventional ductile fibre reinforced cementitious composites (DFRCC). The effects of two different sizes of sand (1.18 mm, and 0.6 mm) and sand/binder ratios of 0.5 and 0.75 on the deflection hardening and multiple cracking behaviour of both DFRGC and DFRCC are also evaluated. Results revel that the deflection hardening and multiple cracking behaviour is achieved in geopolymer based DFRGC similar to that of cement based system. For a given sand size and sand content, comparable deflection hardening behaviour, ultimate flexural strength and the deflection at peak load are observed in both cement and geopolymer based composites irrespective of fibre types and combination. The deflection hardening behaviour of DFRGC is also confirmed by the calculated toughness index values of I 20 > 20. The scanning electron microscope (SEM) study shows no degradation of PVA and steel fibres in the

  18. Analysis of the mechanical resistance and porosity of a composite cement with EVA and reinforced with piacava fibers

    Silva, R.M.; Dominguez, D.S.; Alvim, R.C.; Iglesias, S.M.

    2013-01-01

    Nowadays, a lot of solid waste material is discarded into the environment. One of these residues is the EVA (Ethyl Vinyl Acetate) which has the footwear industry, as its main consumer. Studies are focused on the reusing of these materials, particularly in the civil construction, where is used as an aggregate in the production of light mortars. Due to the specific characteristics of lightweight concrete, is necessary to reinforce these materials. The palm Attalea Funifera Martius, known as piacava, may be an excellent alternative as a reinforcement element in light cement mixes. In this work, it's verified the mechanical strength of a composite lightweight cementitious with EVA and reinforced with Piacava fibers, also, the porosity of the new material was measured. To evaluate the mechanical properties of this new material was made mechanical tests and verified the importance of vegetal fibers as the material reinforcing. For the compound porosity evaluation, samples were studied using microcomputer tomography (μTC). With images processing techniques we identify and quantify the pores. The processing digital images through μTC showed up as a non-destructive method for efficient and acceptable results. (author)

  19. Sustainable hemp-based composites for the building industry application

    Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola

    2017-07-01

    Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.

  20. Study on Strength and Microstructure of Cement-Based Materials Containing Combination Mineral Admixtures

    Meijuan Rao

    2016-01-01

    Full Text Available The compressive strength of complex binders containing two or three blended mineral admixtures in terms of glass powder (GP, limestone powder (LP, and steel slag powder (SP was determined by a battery solution type compressive testing machine. The morphology and microstructure characteristics of complex binder hydration products were also studied by microscopic analysis methods, such as XRD, TG-DTA, and SEM. The mechanical properties of the cement-based materials were analyzed to reveal the most appropriate mineral admixture type and content. The early sample strength development with GP was very slow, but it rapidly grew at later stages. The micro aggregate effect and pozzolanic reaction mutually occurred in the mineral admixture. In the early stage, the micro aggregate effect reduced paste porosity and the small particles connected with the cement hydration products to enhance its strength. In the later stage, the pozzolanic reaction of some components in the complex powder occurred and consumed part of the calcium hydroxide to form C-S-H gel, thus improving the hydration environment. Also, the produced C-S-H gel made the structure more compact, which improved the structure’s strength.