WorldWideScience

Sample records for cement additives

  1. Organic Additive Implantation onto Cement Hydration Products

    Institute of Scientific and Technical Information of China (English)

    ZHU Jipeng; LI Zongjin; YANG Ruochong; ZHANG Yamei

    2014-01-01

    In polymer modified cementitious materials, it is hard to set up a chemical connection between the added polymer and the cement moiety. In this study FS (functional silane) was adopted to form this connection as a bridge component which has the functional group forming bonds with polymer. To testify the connection between FS and cement moiety, Q2/Q1 ratio (Qx:intensity ratio) investigation was carried out by the means of quantitative solid state 29Si MAS NMR. The results show that the Q2/Q1 ratio has increased with the addition of FS which indicates that the silicon chain length has increased, and the quantity of silicon atoms at site of Q2, chain site, has enhanced, showing that the silicon atom of FS has connected to the silicon chain of cement moiety by the bond“-Si-O-Si-”formation.

  2. Contamination effects of drilling fluid additives on cement slurry

    Directory of Open Access Journals (Sweden)

    Youzhi Zheng

    2015-10-01

    Full Text Available During the cementation of deep wells, contamination at the contact surface between cement slurry and drilling fluid will present a technical challenge, which may threaten operation safety. To deal with the problem, lab tests and analysis were performed specifically on the compatibility of fluids during cementation in Sichuan and Chongqing gas fields. Impacts of commonly used additives for drilling fluids were determined on fluidity and thickening time of conventional cement slurry. Through the infrared spectrum analysis, SEM and XRD, infrared spectrum data of kalium polyacrylamide (KPAM and bio-viscosifier were obtained, together with infrared spectrum, SEM and XRD data of cement slurry with additives. Contamination mechanisms of the cement slurry by conventional additives for drilling fluid were reviewed. Test results show that both KPAM and bio-viscosifier are such high-molecular materials that the long chains in these materials may easily absorb cement particles in the slurry to form mixed network structures; as a result, cement particles were prone to agglomeration and eventually lost their pumpability. Finally, assessment of and testing methods for the contamination effects of drilling fluid additives on cement slurry were further improved to form standards and codes that may help solve the said problems. This study will provide technological supports for the preparation of drilling fluids with desirable properties prior to cementation, the selection of optimal drilling fluids additives, and the development of innovative drilling fluids additives.

  3. Microbial analyses of cement and grouting additives

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, L.; Jaegevall, S.; Paeaejaervi, A.; Rabe, L.; Edlund, J.; Eriksson, S. [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2012-01-15

    During sampling in the ONKALO tunnel in 2006, heavy growth of a slimy material was observed in connection with grouting. It was suggested to be microbial growth on organic additives leaching from the grout. Two sampling campaigns resulted in the isolation of several aerobic bacterial strains. Some of these strains were used in biodegradation studies of three solid cement powders, eight liquid grout additives, and six plastic drainage materials. Degradation was also studied using ONKALO groundwaters as inoculums. The isolated strains were most closely related to hydrocarbon-degrading microorganisms. The biodegradation of seven of the products was tested using microorganisms isolated from the ONKALO slime in 2006; none of these strains could degrade the tested products. When ONKALO drillhole groundwaters were used as inoculums in the degradation studies, it was demonstrated that Structuro 111X, Mighty 150, and Super-Parmix supported growth of the groundwater microorganisms. Structuro 111X is a polycarboxylate condensate while Mighty 150 and Super-Parmix are condensates with formaldehyde and naphthalene. Some of the isolated microorganisms belonged to the genus Pseudomonas, many strains of which can degrade organic molecules. None of the plastic drainage materials supported growth during the degradation studies. Microorganisms were present in two of the liquid products when delivered, GroutAid and Super-Parmix. The potential of the organic compounds in grout additives to be degraded by microorganisms, increasing the risk of biofilm formation and complexing compound production, must be considered. Microbial growth will also increase the possibility of hydrogen sulphide formation. (orig.)

  4. Modeling the influence of limestone addition on cement hydration

    Directory of Open Access Journals (Sweden)

    Ashraf Ragab Mohamed

    2015-03-01

    Full Text Available This paper addresses the influence of using Portland limestone cement “PLC” on cement hydration by characterization of its microstructure development. The European Standard EN 197-1:2011 and Egyptian specification ESS 4756-1/2009 permit the cement to contain up to 20% ground limestone. The computational tools assist in better understanding the influence of limestone additions on cement hydration and microstructure development to facilitate the acceptance of these more economical and ecological materials. μic model has been developed to enable the modeling of microstructural evolution of cementitious materials. In this research μic model is used to simulate both the influence of limestone as fine filler, providing additional surfaces for the nucleation and growth of hydration products. Limestone powder also reacts relatively slow with hydrating cement to form monocarboaluminate (AFmc phase, similar to the mono-sulfoaluminate (AFm phase formed in ordinary Portland cement. The model results reveal that limestone cement has accelerated cement hydration rate, previous experimental results and computer model “cemhyd3d” are used to validate this model.

  5. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    Science.gov (United States)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  6. A Study of Metal-Cement Composites with Additives

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2014-12-01

    Full Text Available The application of small-sized metal fillers (SMF provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction. Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers.

  7. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  8. Using of borosilicate glass waste as a cement additive

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weiwei [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Tao, E-mail: sunt@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Li, Xinping [Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Mian [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Lu, Yani [Urban Construction Institute, Hubei Engineering University, Xiaogan, Hubei 432000 (China)

    2016-08-15

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  9. Using of borosilicate glass waste as a cement additive

    Science.gov (United States)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-08-01

    Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  10. Additives for cement compositions based on modified peat

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com; Demyanenko, Olga, E-mail: angel-n@sibmail.com [Tomsk State University of Architecture and Building, 2, Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  11. Additives for cement compositions based on modified peat

    Science.gov (United States)

    Kopanitsa, Natalya; Sarkisov, Yurij; Gorshkova, Aleksandra; Demyanenko, Olga

    2016-01-01

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  12. Influence of nano-dispersive modified additive on cement activity

    Energy Technology Data Exchange (ETDEWEB)

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru [Angarsk State Technical University, 60, Tchaykovsky St., 665835, Angarsk (Russian Federation); Skripnikova, Nelli, E-mail: nks2003@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.

  13. The influence of clay additives in Portland cement on the compressive strength of the cement stone

    Directory of Open Access Journals (Sweden)

    A.R. Gaifullin

    2015-11-01

    Full Text Available The introduction of mineral additives to binders, especially to Portland cement, is one of the promising trends for solving the resource and energy saving problems, as well as problems of environmental protection during production and application. Expanding the supplementary cementitious materials resource base can be achieved through the use of natural pozzolans and thermally activated polymineral clays(commonly known as glinites in Russia. One type of glinite is metakaolin, which is obtained by calcination of kaolin clays. Metakaolin is widely and effectively used as a pozzolanic additive due to its beneficial effect on the physical and mechanical properties of Portland cement-based materials. The obstacle to its wide production and use are the limited deposits of pure kaolin clays in many countries, including the Russian Federation. In this respect, the studies of pozzolanic activity of the most common mineral clays and their use in some countries have significantly advanced. Similar studies were widely performed in the 1940s in USSR. It seems reasonable to renew this trend to provide a scientific base for the production of local pozzolans made of clays commonly used in different regions. Comparative studies of the effect of 5 clays differing in mineral and chemical composition, calcination temperature and specific surface area, and high-quality metakaolin, on the strength of hardened Portland cement paste have been performed. It has been established that introducing 5…10 % of composite clays calcined at 400…8000 C° and milled to a specific surface area of 290…800 m2/kg into Portland cement enhanced the strength of the hardened cement paste considerably better than the introduction of metakaolin with a specific surface area of 1200 m2/kg. The findings of the study suggest that many kinds of commonly used polymineral clays have a specific calcination temperature and dispersity, which results in a higher pozzolanic activity compared with

  14. Does Addition of Propolis to Glass Ionomer Cement Alter its Physicomechanical Properties? An In Vitro Study.

    Science.gov (United States)

    Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S

    Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known.

  15. DETERMINATION OF DIPOLE MOMENTS IN PLASTICIZER ADDITIONS FOR CEMENT CONCRETES

    Directory of Open Access Journals (Sweden)

    P. I. Ioukhnevsky

    2010-01-01

    Full Text Available The paper contains a method for determination of dipole moments in chemical plasticizer addition molecules for cement concretes as in powder-state so in the form of aqueous solutions as well.The methodology is based on measuring dielectric substance  permittivity depending on temperature, construction of a diagram (ε – 1/(ε + 2 = f(1/T with subsequent calculation of the molecule dipole moment. The Ossipov’s formula has been used for aqueous solutions of super-plasticizer additions with the purpose to calculate a dipole moment of polar substance in the polar solvent.The obtained values of dipole moments in C-3 super-plasticizer addition molecule are in good agreement with the values obtained as a result of quantum-chemical calculations. 

  16. New cement additive improves slurry properties and saves cost

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, R.; Hibbeler, J.; DiLullo, G.; Shotton, E.A.

    1994-12-31

    A new cement additive has been developed which improves slurry performance and reduces cost. The additive is a vitrified aggregate of calcium-magnesium aluminosilicates with potential cementitious reactivity, hereafter abbreviated CMAS. CMAS has been used successfully on oil and gas wells throughout Indonesia. The purpose of this paper is to illustrate the technical enhancements and cost effectiveness of slurries incorporating CMAS. Laboratory data is presented and working mechanisms are defined to highlight CMAS`s positive effect on; compressive strength, fluid loss control, free water control, gas migration control, resistance to strength retrogression and aggressive fluids. Finally, case studies and an economic analysis are presented to show the cost savings for actual well applications.

  17. Recycling Jorf Lasfar fly ash as an additive to cement

    Directory of Open Access Journals (Sweden)

    Hamadi A

    2012-09-01

    Full Text Available Recycling fly ash is a good example of valorization of waste. It gives a solution the environmental problem by avoiding land filling, and reducing CO2 emission in the atmosphere. In this work we studied the physical-chemical characteristics of Jorf Lasfar fly ash. The parameters investigated were particle size, density, specific surface Blaine, chemical and mineralogical compositions. The techniques used are scanning electronic microscope (SEM, transmission electronic microscope (TEM, X-rays fluorescence (XRF, X-rays diffraction (XRD and atomic spectrometry emission coupled with inductive plasma ICP. We also conducted a study on the mechanical behavior of type CPJ45 cements produced from a combined grinding of clinker, limestone and gypsum. The substitution of a portion of the clinker by different percentages of fly ash was conducted. We noticed that the compression and bending resistances for these mixtures went through a maximum at 28 days with the addition of 7% (by mass of ash. This result showed that the mineral and chemical compositions of this ash conferred a Pozzoulanic power to the cement studied.

  18. Influence of Expanded Graphite Surface Ozonation on the Adhesion between Carbon Additive and Cement Matrix

    OpenAIRE

    2015-01-01

    Cement mortars modified with expanded graphite (EG) subjected to surface treatments in gaseous ozone were investigated. It was shown that the bonding between carbon additive and cement paste strongly depends on the surface modification of EG and the chemical composition of EG surface plays the important role in shaping the mechanical properties of cement composites. The expanded graphite subjected to ozone treatment showed the substantial increase of flexural toughness of cement composite. Th...

  19. Metakaolin sand – a promising addition for Portland cement

    Directory of Open Access Journals (Sweden)

    Janotka, I.

    2010-06-01

    Full Text Available The kaolin sand resource at the Vyšný Petrovec quarry in Slovakia comes to a total of 20 megatonnes. The metakaolin material obtained by heating kaolin sand at 650 ºC contains from 31.5 to 40% (wt metakaolinite, as well as illite, muscovite, quartz and feldspar. The aim of this study was to verify whether this calcined sand (MK1 is a pozzolanic material and characterize the cements and mortars prepared with it. The hydration reactions taking place in the blends were assessed with conduction calorimetry, X-ray diffraction (XRD and differential thermal analysis-thermogravimetry (DTA-TG. Blend and mortar strength development and pore structure were also evaluated. The results obtained showed that this metakaolin sand (MK-1 is a pozzolanic material apt for use as a cement addition and for making mortars.

    Las reservas de arena caolínica de la cantera eslovaca de Vyšný Petrovec ascienden a un total de 20 millones de toneladas. El material metacaolínico, que resulta al calentar la arena caolínica a 650 ºC, contiene entre un 31,5 y un 40% de metacaolinita, además de ilita, moscovita, cuarzo y feldespato. El objetivo de este estudio ha sido comprobar que esa arena calcinada es un material puzolánico; así como caracterizar los cementos y morteros preparados con dicha arena (MK-1. La hidratación de las mezclas se evaluó mediante calorimetría de conducción, y difracción de rayos X (DRX y Análisis térmico-diferencial y termogravimétrico (ATD-TG. Se ha evaluado el desarrollo resistente de las mezclas y morteros; así como su estructura porosa. Los resultados obtenidos han demostrado que esa arena metacolínica (MK-1 es un material puzolánico y que podría utilizarse como adición al cemento y en la preparación de morteros.

  20. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements.

    Science.gov (United States)

    An, Jie; Wolke, Joop G C; Jansen, John A; Leeuwenburgh, Sander C G

    2016-03-01

    To expand the clinical applicability of calcium phosphate cements (CPCs) to load-bearing anatomical sites, the mechanical and setting properties of CPCs need to be improved. Specifically, organic additives need to be developed that can overcome the disintegration and brittleness of CPCs. Hence, we compared two conventional polymeric additives (i.e. carboxylmethylcellulose (CMC) and hyaluronan (HA)) with a novel organic additive that was designed to bind to calcium phosphate, i.e. hyaluronan-bisphosphonate (HABP). The unmodified cement used in this study consisted of a powder phase of α-tricalcium phosphate (α-TCP) and liquid phase of 4% NaH2PO4·2H2O, while the modified cements were fabricated by adding 0.75 or 1.5 wt% of the polymeric additive to the cement. The cohesion of α-TCP was improved considerably by the addition of CMC and HABP. None of the additives improved the compression and bending strength of the cements, but the addition of 0.75% HABP resulted into a significantly increased cement toughness as compared to the other experimental groups. The stimulatory effects of HABP on the cohesion and toughness of the cements is hypothesized to derive from the strong affinity between the polymer-grafted bisphosphonate ligands and the calcium ions in the cement matrix.

  1. Lignin-based cement fluid loss control additive

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, P.

    1990-05-22

    This patent describes a hydraulic cement slurry composition. It comprises: a hydraulic cement, and the following expressed as parts by weight per 100 parts of the hydraulic cement, water from about 25 to 105 parts, and from abut 0.5 to 2.5 parts of a compound selected from the group consisting of a sulfonated lignin and a sulfomethylated lignin, wherein the lignin has been sequentially crosslinked by reacting the lignin with a member of the group consisting of formaldehyde and epichlorohydrin and alkoxylated with between about 2 to about 6 moles of a compound selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide and a combination thereof per 1000 g of the lignin.

  2. Brushite cement additives inhibit attachment to cell culture beads.

    Science.gov (United States)

    Jamshidi, Parastoo; Bridson, Rachel H; Wright, Adrian J; Grover, Liam M

    2013-05-01

    Brushite-forming calcium phosphate cements are of great interest as bone replacement materials because they are resorbable in physiological conditions. Cell-attached culture beads formed from this material could be of great use for cell therapy. Despite a significant amount of work on optimizing the physicochemical properties of these materials, there are very few studies that have evaluated the capacity of the materials to facilitate cell adhesion. In this study, we have formed resorbable calcium phosphate (brushite) culture beads and for the first time we showed that cell attachment to the surface of the brushite cement (BC) could be inhibited by the presence of an intermediate dicalcium phosphate-citrate complex, formed in the cement as a result of using citric acid, a retardant and viscosity modifier used in many cement formulations. The BC beads formed from the mixture of β-TCP/orthophosphoric acid using citric acid did not allow cell attachment without further treatment. Ageing of BC beads in serum-free Dulbecco's Modified Eagle's Medium (DMEM) solution at 37°C for 1 week greatly enhanced the cell adhesion capacity of the material. Scanning electron microscopy, X-ray diffraction (XRD), and confocal Raman microspectrometry indicated the increased capacity for cell adhesion was due to the changes in phase composition of BC. XRD patterns collected before and after ageing in aqueous solution and a high initial mass loss, suggest the formation of a dicalcium phosphate-citrate complex within the matrix. Since compacts formed from brushite powder supported cell attachment, it was hypothesized that the dicalcium phosphate-citrate complex prevented attachment to the cement surface.

  3. THE INFLUENCE OF THE COMPLEX CHEMICAL ADDITIVE CONTAINING THE STRUCTURED CARBON NANOMATERIAL ON PROPERTIES OF CEMENT

    Directory of Open Access Journals (Sweden)

    O. Yu. Sheyda

    2015-01-01

    Full Text Available The paper presents results of investigations on influence of domestic complex chemical additive containing structured carbon nanomaterial and characterized by a combination effect (curing acceleration and plasticizing on cement and cement stone properties. The purpose of the investigations, on the one hand, has been to confirm efficacy of УКД-1additive from the perspective for increasing the rate of gain, strength growth of cement concrete and additive influence on setting time with the purpose to preserve molding properties of concrete mixes in time, and on the other hand, that is to assess “mechanism” of the УКД-1 additive action in the cement concrete. The research results have revealed regularities in changes due to the additive of water requirements and time period of the cement setting. The reqularities are considered as a pre-requisite for relevant changes in molding properties of the concrete mixes. The paper also experimentally substantiates the possibility to decrease temperature of cement concrete heating with the УДК-1 additive. It has been done with the purpose to save energy resources under production conditions. In addition to this the paper proves the efficiency of the additive which is expressed in strength increase of cement stone up to 20–40 % in the rated age (28 days that is considered as a basis for strength growth of cement concrete. The paper confirms a hypothesis on physical nature of this phenomenon because the X-ray phase analysis method has shown that there are no changes in morphology of portland cement hydration products under the action of the additive agent containing a structured carbon nanomaterial. Results of theoretical and experimental investigations on УКД-1 additive efficiency have been proved by industrial approbation while fabricating precast concrete products and construction of monolithic structures under plant industrial conditions (Minsk, SS “Stroyprogress” JSC MAPID and on

  4. Recycling of red muds with the extraction of metals and special additions to cement

    Science.gov (United States)

    Zinoveev, D. V.; Diubanov, V. G.; Shutova, A. V.; Ziniaeva, M. V.

    2015-01-01

    The liquid-phase reduction of iron oxides from red mud is experimentally studied. It is shown that, in addition to a metal, a slag suitable for utilization in the construction industry can be produced as a result of pyrometallurgical processing of red mud. Portland cement is shown to be produced from this slag with mineral additions and a high-aluminate expansion addition to cement.

  5. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    Science.gov (United States)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested

  6. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    Science.gov (United States)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding

  7. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    OpenAIRE

    Ramírez-Arellanes, S.; Cano-Barrita, P. F. de J.; Julián-Caballero, F.; Gómez-Yañez, C.

    2012-01-01

    The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases ...

  8. Evolution of the hydration in cements with additions

    Directory of Open Access Journals (Sweden)

    Bonavetti, V. L.

    2002-12-01

    Full Text Available In this paper, the hydration mechanism of portland cement pastes with limestone, quartz and natural pozzolan (80/20 weight was analized. The techniques used were nonevaporable water content, pozzolanic activity and X-ray diffraction. Results show that filler effect increases initially the amount of hydration products in all pastes. For limestone pastes, the dilution effect is significant at long time, for quartz and pozzolan pastes the dilution effect was lower due to the contribution of the pozzolanic reaction.

    En el presente trabajo se analizó el mecanismo de hidratación de pastas de cemento portland normal con la incorporación de caliza, cuarzo y puzolana natural (proporción 80/20 en peso, por medio de la evaluación del contenido de agua no evaporable, la actividad puzolánica por vía química y la formación de productos de hidratación por DRX. Los resultados obtenidos permitieron determinar un aumento de la cantidad de productos de hidratación inicial debidos al efecto filler en todas las pastas. En las pastas con caliza se evidenció el efecto de dilución a edades avanzadas, en tanto que en las pastas con cuarzo y puzolana, este efecto fue menos predominante debido a la contribución de la reacción puzolánica.

  9. Influence of Expanded Graphite Surface Ozonation on the Adhesion between Carbon Additive and Cement Matrix

    Directory of Open Access Journals (Sweden)

    Agnieszka Ślosarczyk

    2015-06-01

    Full Text Available 800x600 Cement mortars modified with expanded graphite (EG subjected to surface treatments in gaseous ozone were investigated. It was shown that the bonding between carbon additive and cement paste strongly depends on the surface modification of EG and the chemical composition of EG surface plays the important role in shaping the mechanical properties of cement composites. The expanded graphite subjected to ozone treatment showed the substantial increase of flexural toughness of cement composite. The above results were confirmed by XPS and SEM analysis. Normal 0 21 false false false PL X-NONE X-NONE MicrosoftInternetExplorer4 DOI: http://dx.doi.org/10.5755/j01.ms.21.2.5860

  10. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate.

    Science.gov (United States)

    Gao, Xingbao; Wang, Wei; Ye, Tunmin; Wang, Feng; Lan, Yuxin

    2008-07-01

    The management of the big amount of fly ash as hazardous waste from the municipal solid waste incinerator (MSWI) has encountered many problems in China. In this study, a feasibility research on MSWI fly ash utilization as partial cement substitute in cement mortars was therefore carried out. MSWI fly ash was subjected to washing process to reduce its chlorine content (from 10.16% to 1.28%). Consequently, it was used in cement mortars. Ten percent and 20% replacement of cement by washed ash showed acceptable strength properties. In TCLP and 180-day monolithic tests, the mortars with washed ash presented a little stronger heavy metal leachability, but this fell to the blank level (mortar without washed ash) with the addition of 0.25% chelate. Therefore, this method is proposed as an environment-friendly technology to achieve a satisfactory solution for MSWI fly ash management.

  11. Study of chemical additives in the cementation of radioactive waste of PWR reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de, E-mail: tellocc@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Cementation is a very useful process to solidify radioactive wastes. Depending on the waste it can be necessary to use of chemical additives (admixtures) to improve the cementation process and its product. Admixtures are materials, other than cement, aggregate and water, that are added either before or during the mixing to alter some properties, such as workability, curing temperature range, and setting time. However there are a large variety of these materials that are frequently changed or taken out of the market. In this changeable scenario it is essential to know the commercially available materials and their characteristics. In this research the effects of chemical admixtures in the solidification process has been studied. For the tests it was prepared a solution simulating the evaporator concentrate waste, cemented by two different formulations, and three chemical admixtures from two manufacturers. The tested admixtures were accelerators, set retarders and super plasticizers. The experiments were organized by a planning factorial 23 to quantify the effects of formulations, of the admixtures, its quantity and manufacturer in properties of the paste and products. The measured parameters were the density, the viscosity and the setting time of the paste, and the product compressive strength. The parameter evaluated in this study was the compressive strength at age of 28 days, is considered essential security issues relating to the handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented products. (author)

  12. Impact of zeolite-based nanomodified additive on the structure and strength of the cement stone

    Science.gov (United States)

    Egorova, A. D.; Filippova, K. E.

    2015-01-01

    Portland cement is the main binder in the building materials industry; its properties strongly influence properties of mortars and concretes. Some regions experience difficulties with delivery and storage of Portland cement, raising the need to develop an effective additive from the available raw materials. Such materials for the Republic of Sakha (Yakutia) are zeolite-containing rocks. Studies have shown that introducing of dibutylphthalate to the composition of modified additive during mechanochemical activation leads to achievement of up to 11% of total amount particles with the size of 3-30 nm. After introducing 0.5% of the obtained additives, the compressive strength of cement-sand slurry samples increases up to 28%. Positive effect of additives introduction is also observed at high flow rate of water (W / C = 0.7). Gaining strength reaches 23%, allowing the efficient use of additive for movable mixtures with enhanced strength properties. In general, the proposed supplement allows reducing the water flow in the solution without decreasing its mobility, and increasing strength properties, which makes it possible to obtain a whole class of solutions of modified cement binder. The market value of the developed additives is 18 rubles per 1 kg, making sound competition in the market of modifying additives.

  13. Studies on the reuse of waste printed circuit board as an additive for cement mortar.

    Science.gov (United States)

    Ban, Bong-Chan; Song, Jong-Yoon; Lim, Joong-Yeon; Wang, Soo-Kyoon; An, Kwang-Guk; Kim, Dong-Su

    2005-01-01

    The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08 to approximately 0.15 and 0.15 to approximately 0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.

  14. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette Rica; Krøyer, Hanne;

    2008-01-01

    , and the nano-structure of the C-S-H depends on type of layer silicate. The effect of layer silicate addition is most pronounced for palygorskite and smectite having the largest surface area and negative charges on the particle surfaces. The cement pastes containing palygorskite and bentonite have......, in comparison to the pure cement pasta and the paste containing kaolinite, a more open pore structure consisting of fine pores. Silica fume paste contains a significant amount of closed pores. As a secondary result, it is demonstrated that both the degree and duration of sample drying strongly modifies...

  15. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    Science.gov (United States)

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  16. Animated sulfonated or sulformethylated lignins as cement fluid loss control additives

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, P.

    1991-05-07

    This patent describes a method of cementing a zone in a well penetrating a subterranean formation comprising injecting down the well and positioning in the zone to be cemented a hydraulic aqueous cement slurry composition. It comprises: a hydraulic cement, and the following expressed as parts by weight per 100 parts of the hydraulic cement, water from about 25 to 105 parts, and a fluid loss control additive comprising from about 0.5 to 2.5 parts of a compound selected from the group consisting of a sulfonated lignin and a sulfomethylated lignin, wherein the lignin has been aminated by reacting it with between about 2-5 moles of a polyamine and 2-5 moles of an aldehyde per 1,000g of the lignin, and 0.1 to 1.5 parts of a compound selected from the group consisting of sodium carbonate, sodium metasilicate, sodium phosphate, sodium sulfite and sodium naphthalene sulfonate and a combination thereof.

  17. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne;

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates), su...

  18. Calcium polyphosphate as an additive to zinc-silicate glass ionomer cements.

    Science.gov (United States)

    Valliant, Esther Mae; Gagnier, David; Dickey, Brett Thomas; Boyd, Daniel; Filiaggi, Mark Joseph

    2015-07-01

    Aluminum-free glass ionomer cements (GICs) are under development for orthopedic applications, but are limited by their insufficient handling properties. Here, the addition of calcium polyphosphate (CPP) was investigated as an additive to an experimental zinc-silicate glass ionomer cement. A 50% maximum increase in working time was observed with CPP addition, though this was not clinically significant due to the short working times of the starting zinc-silicate GIC. Surprisingly, CPP also improved the mechanical properties, especially the tensile strength which increased by ∼33% after 30 days in TRIS buffer solution upon CPP addition up to 37.5 wt%. This strengthening may have been due to the formation of ionic crosslinks between the polyphosphate chains and polyacrylic acid. Thus, CPP is a potential additive to future GIC compositions as it has been shown to improve handling and mechanical properties. In addition, CPP may stimulate new bone growth and provide the ability for drug delivery, which are desirable modifications for an orthopedic cement.

  19. Improved microstructure of cement-based composites through the addition of rock wool particles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  20. Permeability and mechanical properties of cement mortars colored by nano-mineral additives

    Directory of Open Access Journals (Sweden)

    Kamali Bernard S.

    2012-09-01

    Full Text Available This work concerns a preliminary study on issues that relate primarily to the permeability of cementitious materials under the influence of some specific inexpensive additions that can play an important role in preserving the environment. We studied the addition of dyes in the presence of TiO2 on the Portland cement mortar. The used dyes are a yellow powder containing iron oxyhydroxide (FeO (OH, a blue-based powder tellurate manganese (MnTe2O5 and red powder containing iron oxide (Fe2O3. We measure the setting time, permeability and mechanical properties of Portland cement mortars colored with nano-mineral oxides mentioned previously. Test results indicate that the addition of nano-particles has a little influence on the setting time, improves penetration resistance that is due the affinity of the pore structure of mortar and slightly improves the resistance to compression for low levels of nanoparticles of TiO2.

  1. Effect of Additives on the Morphology of the Hydrated Product and Physical Properties of a Calcium Phosphate Cement

    Institute of Scientific and Technical Information of China (English)

    Xiupeng WANG; Jiandong YE; Yingjun WANG

    2008-01-01

    The morphology of a hydrated calcium phosphate cement (CPC) doped with several normally used additives was investigated by scanning electron microscopy (SEM) and the compressive strength of the cement was determined in this study. The hydrated products of CPC without additives was rod-like hydroxyapatite (HA) grains with around 2-5 μm in length and 100 nm in width. The addition of Sr obviously decreased the crystal size of the rod-like grains. CPCs containing carbonate, collagen and gelatin showed flake-like crystal morphology. Crylic acid-containing CPC presented flocculus-like structure. And malic acid-containing CPC exhibited oriented flake-like structure. The X-ray diffraction (XRD) analysis showed that the additives used in this study did not alter the hydration products of the cement. The compressive strength tests indicated that the compressive strength of the cement with rod-like morphology HA crystals was much higher than that of the cement with flake-like morphology HA crystals, and the cement with oriented flake-like morphology HA crystals .exhibited the poorest compressive strength.

  2. Calcium phosphate cements properties with polymers addition; Propriedades do cimento de fosfato de calcio com adicao de polimeros

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.M.; Trajano, W.T.; Escobar, C.F.; Santos, L.A., E-mail: julianafernandes2@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil)

    2012-07-01

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers.

  3. Effect of MgO Additive on Volumetric Expansion of Self-Degradable Cements

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Warren, J.; Butcher, T.

    2011-09-30

    We identified hard-burned magnesium oxide (MgO) as a suitable expansive additive for improving the plugging performance of self-degradable, temporary sodium silicate-activated slag/Class C fly ash (SSASC) blend cement sealers into rock fractures in Enhanced Geothermal Systems (EGSs). MgO extended the volumetric expansion of sealers during their exposure to a hydrothermal environment at 200 C under pressures, ranging from 300 to 1500 psi. A great expansion ratc of 19.3% was observed by adding 3.0 wt% MgO under 300 psi pressure, thus promising to plug thoroughly inner fracture. When the pressure was increased from 300 psi to 1500 psi, the expansion rate of cement markedly reduced, corresponding to the formaLion of crack-free specimens and the improvement of compressive strength. However, with 3.0 wt% MgO, the specimens still engendered the generation of numerous visual cracks, although they were prepared under a high pressure of 1500 psi. The effective content of MgO in minimizing and eliminating the generation of cracks was 2.0 wt%, which provided a moderate expansion of {ge} 0.5%. The compressive strength of 2.0 wt% MgO specimens made under a pressure of 300 psi rose {approx} 1.7-fold to 4816 psi with an increasing pressure to 1500 psi. The in-situ growth of brucite crystal formed by the hydrothermal hydration of MgO was responsive for such an expansion of the SSASC cement; meanwhile. two crystalline hydrothermal reaction products, 1.1 nm tobermorite and calcium silicate hydrated, contributed to the development of the sealer's compressive strength. Thus, the increasing pressure seems to suppress and control a growth rate of brucite crystal in response to a lower extension of expansion. Furthermore, all MgO-conlaining SSASC sealers possessed the water-catalyzed self-degradable properties.

  4. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Institute of Scientific and Technical Information of China (English)

    Hossein Mola-Abasi; Issa Shooshpasha

    2016-01-01

    It is well known that the cemented sand is one of economic and environmental topics in soil stabili-zation. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS) and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30%after 28 days. The rate of strength improvement is approximately between 20%and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  5. Influence of zeolite and cement additions on mechanical behavior of sandy soil

    Directory of Open Access Journals (Sweden)

    Hossein Mola-Abasi

    2016-10-01

    Full Text Available It is well known that the cemented sand is one of economic and environmental topics in soil stabilization. In this instance, a blend of sand, cement and other materials such as fiber, glass, nanoparticle and zeolite can be commercially available and effectively used in soil stabilization in road construction. However, the influence and effectiveness of zeolite on the properties of cemented sand systems have not been completely explored. In this study, based on an experimental program, the effects of zeolite on the characteristics of cemented sands are investigated. Stabilizing agent includes Portland cement of type II and zeolite. Results show the improvements of unconfined compressive strength (UCS and failure properties of cemented sand when the cement is replaced by zeolite at an optimum proportion of 30% after 28 days. The rate of strength improvement is approximately between 20% and 78%. The efficiency of using zeolite increases with the increases in cement amount and porosity. Finally, a power function of void-cement ratio and zeolite content is demonstrated to be an appropriate method to assess UCS of zeolite-cemented mixtures.

  6. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: Effect of microsilica addition

    Directory of Open Access Journals (Sweden)

    Pattem Hemanth Kumar

    2014-06-01

    Samples with decreasing cement content 15–05 wt.% were formulated in combination of both slag and calcined bauxite as matrix components. Effects of varying 0–10 wt.% microsilica as a micro-fine additive in these castables were investigated in this work. Pore filling properties of microsilica improved apparent porosity and bulk density. Phase analysis through X-ray diffraction techniques demonstrates successful formation of spinel and mullite crystalline phases. Mechanical behavior was evaluated through cold crushing strength and residual cold crushing strength after five consecutive water quenching cycles. Scanning electron microscopy measurements were carried out in order to better understand the packing density and reaction mechanisms of fired castables. Slag containing castables portrays good thermal properties such as thermal shock resistance, permanent linear change and pyrometric cone equivalent.

  7. The Early Strength of Slag Cements with Addition of Hydrate Microcrystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of hydrate microcrystals such as calcium silicate hydrates (CSH) and ettringite on the early strength of slag cements was studied.The authors explored the possibility of improving the early strength of the slag cement by applying crystal seed technology.It is shown that slag crystal seeds make the early strength of the cement increased due to the action of hydrate crystal seeds,which speed up the hydration of clinker minerals in the nucleation of ettringite.Therefore,the early strength of the slag cement is obviously improved.

  8. Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement.

    Science.gov (United States)

    Bohner, M; Merkle, H P; Landuyt, P V; Trophardy, G; Lemaitre, J

    2000-02-01

    Combinations of citrate (C6H5O(7)3-), pyrophosphate (P2O(7)4-) and sulfate (SO(4)2-) ions were used to modify the physico-chemical properties of a calcium phosphate cement (CPC) composed of beta-tricalcium phosphate (beta-TCP) and phosphoric acid (PA) solution. The results obtained with only one additive at a time are similar to those previously published. New facts are: the positive effect of C6H5O(7)3- ions on cement failure strain and their negative effect on cement pH. The position of the setting time maximum measured at an SO(4)2- concentration of 0.09 M was not displaced by the addition of C6H5O(7)3- and P2O(7)4- ions. However, the effect of SO(4)2- ions on the setting time was depressed by C6H5O(7)3- ions. Moreover, no increase in tensile strength was observed when increasing amounts of SO(4)2- were added into a C6H5O(7)3--containing cement. The latter results suggest a competitive effect of C6H5O(7)3- and SO(4)2- on setting time and tensile strength. Anhydrous dicalcium phosphate (DCP; CaHPO4) appeared in cement samples dried just after setting, but not in cement samples incubated for 24 h in deionized water before the drying step. It is believed that the setting reaction is stopped by the drying step, leaving a low internal pH in the sample, hence providing favorable conditions for the transformation of dicalcium phosphate dihydrate (DCPD) into DCP. Interestingly, even though C6H5O(7)3- ions dramatically lowered the equilibrium pH of the cement with 5 ml of deionized water, they still prevented the occurrence of the transformation of DCPD into DCP.

  9. Influence of polymer addition on the mechanical properties of a premixed calcium phosphate cement.

    Science.gov (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan

    2013-01-01

    Premixed calcium phosphate cements can reduce handling complications that are associated with the mixing of cements in the operating room. However, to extend the clinical indication of ceramic cements their mechanical properties need to be further improved. The incorporation of a polymeric material with intrinsically high tensile properties could possibly assist in increasing the mechanical properties of calcium phosphate cement. In this study polymer microparticles made from poly(lactid-co-glycolide) plasticised with poly(ethylene glycol) 400 (PLGA/PEG microparticles) were added in amounts of up to 5 wt% to a premixed acidic calcium phosphate cement. The PLGA/PEG microparticles added undergo a shape transformation at 37 °C, which could give a better integration between polymer microparticles and ceramic cement compared with polymer microparticles lacking this property. The results showed that the incorporation of 1.25 wt% PLGA/PEG microparticles increased the compressive strength by approximately 20% up to 15.1 MPa while the diametral tensile strength was kept constant. The incorporation of PLGA/PEG microparticles increased the brushite to monetite ratio after setting compared with pure ceramic cements. In conclusion, small amounts of PLGA/PEG microparticles can be incorporated into premixed acidic calcium phosphate cement and increase their mechanical properties, which could lead to increased future applications.

  10. Influence of polymer addition on the mechanical properties of a premixed calcium phosphate cement

    Science.gov (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan

    2013-01-01

    Premixed calcium phosphate cements can reduce handling complications that are associated with the mixing of cements in the operating room. However, to extend the clinical indication of ceramic cements their mechanical properties need to be further improved. The incorporation of a polymeric material with intrinsically high tensile properties could possibly assist in increasing the mechanical properties of calcium phosphate cement. In this study polymer microparticles made from poly(lactid-co-glycolide) plasticised with poly(ethylene glycol) 400 (PLGA/PEG microparticles) were added in amounts of up to 5 wt% to a premixed acidic calcium phosphate cement. The PLGA/PEG microparticles added undergo a shape transformation at 37 °C, which could give a better integration between polymer microparticles and ceramic cement compared with polymer microparticles lacking this property. The results showed that the incorporation of 1.25 wt% PLGA/PEG microparticles increased the compressive strength by approximately 20% up to 15.1 MPa while the diametral tensile strength was kept constant. The incorporation of PLGA/PEG microparticles increased the brushite to monetite ratio after setting compared with pure ceramic cements. In conclusion, small amounts of PLGA/PEG microparticles can be incorporated into premixed acidic calcium phosphate cement and increase their mechanical properties, which could lead to increased future applications. PMID:24270588

  11. Sustainable production of blended cement in Pakistan through addition of natural pozzolana

    Directory of Open Access Journals (Sweden)

    Ahmad Muhammad Imran

    2016-01-01

    Full Text Available In this work pozzolana deposits of district Swabi, Pakistan were investigated for partial substitution of Portland cement along with limestone filler. The cement samples were mixed in different proportions and tested for compressive strength at 7 and 28 days. The strength activity index (SAI for 10 % pozzolana, and 5% limestone blend at 7 and 28 days was 75.5% and 85.0% satisfying the minimum SAI limit of ASTM C618. Twenty two percents natural pozzolana and five percents limestone were interground with clinker and gypsum in a laboratory ball mill to compare the power consumption with ordinary Portland cement (OPC (95% clinker and 5% gypsum. The ternary blended cement took less time to reach to the same fineness level as OPC due to soft pozzolana and high grade lime stone indicating that intergrinding may reduce overall power consumption. Blended cement production using natural pozzolana and limestone may reduce the energy consumption and green house gas emissions.

  12. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  13. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive

    Science.gov (United States)

    Phoo-ngernkham, Tanakorn; Chindaprasirt, Prinya; Sata, Vanchai; Pangdaeng, Saengsuree; Sinsiri, Theerawat

    2013-02-01

    The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60°C for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.

  14. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  15. Effect of Nano-TiO2 Addition on the Hydration and Hardening Process of Sulphoaluminate Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; LI Hainan; MEI Junpeng; OUYANG Pei

    2015-01-01

    The influences of nano-TiO2 on the setting time, hydration process, hydration products and morphology of sulphoaluminate cement were studied by Vicat apparatus, isothermal calorimetry, X-ray diffraction (XRD), thermal analysis and scanning electron microscopy (SEM). The experimental results show that the incorporation of nano-TiO2 can obviously promote the setting and hardening process of sulphoaluminate cement, and shorten the interval between the initial and ifnal setting time, the hydration induction period of sulphoaluminate cement is significantly shortened and the acceleration period begins immediately, but the hydration exothermic rate at hydration stationary phase is not obviously impacted. The nano-TiO2 additives have inlfuence on the formation rate and degree of crystallinity, but do not affect the type of hydration process. The structure of hydration products is compact at middle age, but their content and microstructure do not change.

  16. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    Directory of Open Access Journals (Sweden)

    López-Zaldívar, O.

    2015-09-01

    Full Text Available This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales.

  17. Physical and mechanical characterization of Portland cement mortars made with expanded polystyrene particles addition (EPS

    Directory of Open Access Journals (Sweden)

    Ferrándiz-Mas, V.

    2012-12-01

    Full Text Available On this work the influence of the addition of different types (commercial and recycled and contents of expanded polystyrene on the physical and mechanical properties of Portland cement mortars has been studied. Variables studied are: workability, air content, bulk density, mechanical strength, porosity, water absorption and sound absorption. Mixtures have been also characterized by scanning electron microscopy. Air-entraining agents, water retainer and superplasticizer additives have been used in order to improve the workability of mortars. The results show that the workability and mechanical strength decreases with increasing content of expanded polystyrene. Additives improve the workability and porosity, allowing manufacture mortars with high levels of recycled material that show mechanical properties suitable for use as masonry mortars, stucco and plaster.

    El objetivo de este estudio es evaluar la influencia de la adición de distintos tipos y dosificaciones de poliestireno expandido, tanto comerciales como procedentes de reciclado, sobre las características físicas y mecánicas de morteros de cemento portland. Las variables estudiadas fueron: consistencia, aire ocluido, densidad aparente, resistencias mecánicas, porosidad, absorción de agua y absorción acústica. Los morteros también se han caracterizado por microscopia electrónica de barrido. Con objeto de mejorar la trabajabilidad de los morteros se ha empleado aditivos aireante, retenedor de agua y fluidificante. Los resultados muestran que al aumentar la cantidad de poliestireno expandido la trabajabilidad y las resistencias mecánicas disminuyen. El empleo de aditivos mejora la trabajabilidad y la porosidad, permitiendo fabricar morteros con altos contenidos de residuo, con propiedades mecánicas adecuadas para su empleo como morteros de albañilería, revoco y enlucido.

  18. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    Directory of Open Access Journals (Sweden)

    Ramírez-Arellanes, S.

    2012-09-01

    Full Text Available The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases setting times, reduces flow, slows cement hydration, and inhibits the formation of calcium hydroxide crystals in comparison with the control. Capillary absorption was significantly reduced in concrete containing mucilage, and chloride diffusion coefficients dropped up to 20% in the mixture with a mucilage/cement ratio = 0.30. The mixture with a mucilage/cement ratio = 0.45 displayed marginal reduction, and the mixture with mucilage/cement ratio = 0.60 exhibited a diffusion coefficient that was greater than the control for the specimens without moist curing.En esta investigación se evaluó el efecto de una solución de mucílago de nopal al 3% en los tiempos de fraguado, fluidez, hidratación y microestructura de pastas de cemento, y absorción capilar de agua y difusión de cloruros en concreto. La hidratación fue caracterizada por XRD y la microestructura por medio de SEM. Las relaciones solución de mucílago/cemento y agua/cemento fueron 0,30; 0,45 y 0,60. Los resultados en las pastas de cemento indican que el mucílago retarda los tiempos de fraguado, reduce la fluidez, retarda la hidratación del cemento, e inhibe la formación de cristales de hidróxido de calcio, comparados con los controles. La absorción capilar en concreto conteniendo mucílago se redujo significativamente y los coeficientes de difusión de cloruros disminuyeron hasta 20% en la mezcla mucílago/cemento = 0.30. En la relación mucílago/cemento = 0.45 la reducción fue marginal y

  19. Influence of Geosta Addition on Cement-stabilised Chicoco Mud of the Niger Delta

    Directory of Open Access Journals (Sweden)

    Olujide Omotosho

    2005-01-01

    Full Text Available Chicoco is a very soft and extremely compressible organic marine mud found extensively and to considerable depths within the saline tidal flat or mangrove swamp of the Niger delta in southern Nigeria. Natural chicoco is highly undesirable, barely able to support a human of average weight but air-dried chicoco has been used successfully by the indigeneous people for shore protection, etc. especially if placed above water. Plain cement stabilization of most organic soils (including chicoco is known to be ineffective. In this study, geosta, a chemical stabiliser relatively newly developed for organic soils was combined with ordinary Portland cement to stabilise chicoco. It was observed that neutralisation of acidic "air-dried" chicoco by basic geosta inhibited the expected ion-exchange reaction and its attendant improvement on mechanical properties. As a result and as geosta content increases, maximum dry density (MDD was found to be only marginally improved but better for higher cement contents while optimum moisture content (OMC decreases but with higher values for lower cement contents. Unsoaked CBR (but with samples wax-cured for 3 days on the other hand was found to maximise at low geosta content and thereafter decreases continually - a major cost advantage in earthworks. In fact, the most effective influence was obtained at 4.0% cement plus about 1.5% geosta. This stabilization was also found to produce optimum road sub-base materials.

  20. Polymeric additives to enhance the functional properties of calcium phosphate cements

    Directory of Open Access Journals (Sweden)

    Roman A Perez

    2012-12-01

    Full Text Available The vast majority of materials used in bone tissue engineering and regenerative medicine are based on calcium phosphates due to their similarity with the mineral phase of natural bone. Among them, calcium phosphate cements, which are composed of a powder and a liquid that are mixed to obtain a moldable paste, are widely used. These calcium phosphate cement pastes can be injected using minimally invasive surgery and adapt to the shape of the defect, resulting in an entangled network of calcium phosphate crystals. Adding an organic phase to the calcium phosphate cement formulation is a very powerful strategy to enhance some of the properties of these materials. Adding some water-soluble biocompatible polymers in the calcium phosphate cement liquid or powder phase improves physicochemical and mechanical properties, such as injectability, cohesion, and toughness. Moreover, adding specific polymers can enhance the biological response and the resorption rate of the material. The goal of this study is to overview the most relevant advances in this field, focusing on the different types of polymers that have been used to enhance specific calcium phosphate cement properties.

  1. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  2. Additional chemical polymerization of dual resin cements: reality or a goal to be achieved?

    Directory of Open Access Journals (Sweden)

    Luzia Sakaguti UMETSUBO

    Full Text Available Abstract Introduction This study serves as a warning to dentists and researchers that dual-cured resin cements may not polymerize completely under some prosthetic crowns. Objective The aim of this study was to analyse the polymerization degree of dual-cured resin cements under prosthetic barrier, by microhardness test. Material and method Three cements (Bistite II, RelyX ARC and Variolink II were light-cured through different barriers, placed between the cement and the light source: G1: without barrier; G2: composite resin (Cesead; G3: Inceram alumina; G4: IPS Empress; G5: Inceram zirconia; G6: tooth fragment. Photopolymerization was carried out using a halogen light unit (650 mW/cm2; microhardness was evaluated using the Microhardness Tester FM 700, under a load of 50gf with a dwell time of 15s, at two evaluation times (30min and 24h. Result The results were submitted to ANOVA and Tukey tests (5%. Both Inceram alumina and Inceram zirconia ceramic barriers hindered polymerization. Bistite, followed by RelyX and Variolink, exhibited the highest microhardness values (p<0.05. As the highest values were obtained without a barrier, it was determined that the barrier, followed by the tooth, influenced microhardness. Both Empress and Cesead had the smallest microhardness values but with no statistically significant difference between them. Conclusion The barrier negatively affected the microhardness of dual-cured resin cements; evaluation time did not affect microhardness values for most of the conditions tested. There is a limited effect of the chemical activator on the polymerization of some dual-cured cements, and their performance is product specific.

  3. Characteristics and propierties of oil-well cements additioned with blast furnace slag

    Directory of Open Access Journals (Sweden)

    Sánchez, R.

    2011-06-01

    Full Text Available The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% of the cement by weight with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activating solution partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 29Si and 27Al MAS NMR and BSE/EDX studies, in turn, showed that the C-S-H gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios.

    En el presente trabajo se ha estudiado la activación alcalina de cementos Pórtland con incorporación de escoria de horno alto (20% y 30% con respecto al peso de cemento para su posible aplicación en la construcción de pozos petrolíferos. Los estudios de hidratación realizados indican que en mezclas cemento/escoria, la disolución activadora de silicato sódico inhibe parcialmente la disolución de las fases silicato del cemento Pórtland originando un retraso de su hidratación así como la menor precipitación de productos de reacción. Dicha parcial inhibición de los procesos reactivos en las mezclas cemento/escoria originan resistencias mecánicas significativamente inferiores a las pastas de cemento Portland hidratadas con agua. Finalmente, los estudios de 29Si y 27Al RMN MAS y BSE/EDX indican que el gel C-S-H formado en pastas de mezcla cemento/escoria activadas alcalinamente presenta Al en posiciones tetraédricas y bajas relaciones Ca/Si.

  4. Influence of an alloy addition on the physical and clinical behaviour of glass ionomer cement

    Science.gov (United States)

    Abour, Mohamed Abour Bashir

    These in vitro studies compared the various properties of an experimental high powder liquid content glass ionomer cement (EXPT) with those of a metal addition GIC (Hi-Dense) and disperse phase amalgam (Dispersalloy). Bi-axial, four point flexural and compressive tests were used to evaluate strength. Six groups of ten specimens were constructed for each test for each material and allowed to set in an oven at 37°C for 60 minutes. Specimens were stored in distilled water at 37°C until testing at one day, one week, one, three, six months and year. It was found that the strength of Hi-Dense increased and then maintained over extended time, whereas the strength of EXPT showed a declined at 3 months. The bond strengths of the materials to both enamel and dentine were also evaluated. Ten groups of ten teeth, five for each surface for each glass ionomer materials, were prepared. Teeth were aligned leaving the enamel and dentine surfaces exposed. The mixed material was condensed into a cylinder placed on the appropriate surface. These specimens were also stored in distilled water at 37°C. It was found that Hi-Dense had a higher bond strength to enamel that increased with time. The bond strength to dentine was maintained over the test period. The erosion rate of the materials was evaluated using the lactic acid erosion test. Three groups of six specimens for each material were constructed and tested after one hour, one day and at six months. Each specimen was subjected to an impinging jet of lactic acid solution. The erosion rate was determined by weight loss and dimensional change. It was found that Hi-Dense had a high erosion resistance which was slightly better than the experimental material. The microleakage, around restorations prepared, using the glass ionomer materials, was evaluated after cyclical loading the restoration-tooth complex. It was found that there was less leakage around Hi-Dense than EXPT at both the cervical and occlusal margins. In a clinical

  5. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate cement

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2014-05-01

    Full Text Available Morshed Khandaker,1 Melville B Vaughan,2 Tracy L Morris,3 Jeremiah J White,1 Zhaotong Meng1 1Department of Engineering and Physics, 2Department of Biology, 3Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, USA Abstract: The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate (PMMA. Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size, such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell

  6. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    OpenAIRE

    2016-01-01

    4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The ...

  7. Modifications on the properties of a calcium phosphate cement by additions of sodium alginate

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A., E-mail: trajano@ufrgs.br, E-mail: julianafernandes2@yahoo.com.br, E-mail: rsvieira.eng@gmail.com, E-mail: monicathurmer@yahoo.com.br, E-mail: luis.santos@ufrgs.br [Universidade Federal do Rio Grande do Sul (PPG/LABIOMAT/UFRGS), RS (Brazil)

    2012-07-01

    The Calcium Phosphate Cement (CPC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry due to its biocompatibility, bioactivity and osteoconductivity, and form a paste that can be easily shaped and placed into the surgical site. However, CPCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. In order to assess the strength and time to handle a CPC composed primarily of alpha phase, were added sodium alginate (1%, 2% and 3% wt) and an accelerator in an aqueous solution. The cement powder was mixed with liquid of setting, shaped into specimens and evaluated for apparent density and porosity by Archimedes method, X-ray diffraction and compressive strength. A significant increase in compressive strength by adding sodium alginate was verified. (author)

  8. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Donanzam, Blanda A.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade do Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Nuclear; Dalmazio, Ilza; Valente, Eduardo S., E-mail: id@cdtn.b, E-mail: valente@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, {beta}-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP-{sup 166}Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  9. The Use of Natural Pozzolan in Concrete as an Additive or Substitute for Cement

    Science.gov (United States)

    2011-12-01

    industrial processes such manufacturing steel can also take the form of a pozzolan, and this type is currently used as a concrete admixture. Another...Residue (%) 0.32 0.75 Blaine Fineness (m2/kg) 320 260 a Typical value (Mindess 1981). b When Tricalcium aluminate is more than 8%. (Tricalcium... aluminate = 2.650*% Al2O3 - 1.692 *% Fe2O3 = 2.650*5.68 - 1.692*3.98 = 8.32). Table 15. Particle size distribution of Portland cement. Cilas sieves (µm

  10. Constituent phases and mechanical properties of iron oxide-additioned phosphoaluminate cement

    Directory of Open Access Journals (Sweden)

    Yang, Shuai

    2015-06-01

    Full Text Available Iron oxide was added to phosphoaluminate clinker and its effects on cement constituents were determined using XRD, DSC, SEM-EDS and conduction calorimetry analysis. The variations in compressive strength were also studied. The results showed that in moderate amounts, iron oxide acts as a mineraliser during clinker sintering, furthering the conversion of CA1-Y(PY to LHss at a lower temperature than normally required for that reaction. The main constituents of iron oxide-rich phosphoaluminate clinker included LHss, CA1-Y(PY, CP1-Z(AZ and ferrite. The EDS findings showed that the composition of the ferrite phase was nonuniform. The conclusion drawn was that by modifying the dose of Fe2O3 , the composition of phosphoaluminate cement can be controlled to produce clinker and cement compliant with different mechanical strength requirements. The conduction calorimetry findings were consistent with those results.Este trabajo estudia, mediante DRX DSC, SEM-EDS y calorimetría de conducción, el efecto de la adición de óxido de hierro a un clinker de fosfoaluminato, así como las variaciones sufridas en su resistencia a compresión. Los resultados mostraron que en cantidades moderadas, el óxido de hierro actúa como mineralizador durante la sinterización del clinker, promoviendo la conversión de CA1-Y(PY a LHss a una temperatura más baja de la normalmente requerida. Los componentes principales del clínker de fosfoaluminato con óxido de hierrop son LHss, CA1-Y(PY, CP1-Z(AZ y fase ferritica. Los resultados de EDS mostraron que la composición de esta fase ferrítica no era uniforme. DE este estudio se ha podido concluir que variando la dosificación del Fe2O3 , se puede controlar la composición del fosfoaluminato para producir clinker y cemento compatibles con diferentes requisitos de resistencia mecánica. Los resultados de calorimetría de conducción fueron consistentes con los resultados.

  11. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    Energy Technology Data Exchange (ETDEWEB)

    Voglar, Grega E. [RDA - Regional Development Agency Celje, Kidriceva ulica 25, 3000 Celje (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.si [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2011-08-30

    Highlights: {yields} We assess the feasibility of using soil S/S for industrial land reclamation. {yields} Retarders, accelerators, plasticizers were used in S/S cementitious formulation. {yields} We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg{sup -1} of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm{sup -2} achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  12. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements

    Science.gov (United States)

    GUERREIRO-TANOMARU, Juliane Maria; VÁZQUEZ-GARCÍA, Fernando Antonio; BOSSO-MARTELO, Roberta; BERNARDI, Maria Inês Basso; FARIA, Gisele; TANOMARU, Mario

    2016-01-01

    ABSTRACT Objective Mineral Trioxide Aggregate (MTA) is a calcium silicate cement composed of Portland cement (PC) and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2) and hydroxyapatite nanoparticles (HAn). Material and Methods White MTA (Angelus, Brazil); PC (70%)+ZrO2 (30%); PC (60%)+ZrO2 (30%)+HAn (10%); PC (50%)+ZrO2 (30%)+HAn (20%) were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1) in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance. Results There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p>0.05) and these cements presented higher pH levels than MTA (p<0.05). The highest solubility was observed in PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p<0.05). MTA had the shortest initial setting time (p<0.05). All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05). Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05) after the post-manipulation period of 2 days. Conclusions The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%), the final setting time

  13. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements

    Directory of Open Access Journals (Sweden)

    Juliane Maria GUERREIRO-TANOMARU

    Full Text Available ABSTRACT Objective Mineral Trioxide Aggregate (MTA is a calcium silicate cement composed of Portland cement (PC and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2 and hydroxyapatite nanoparticles (HAn. Material and Methods White MTA (Angelus, Brazil; PC (70%+ZrO2 (30%; PC (60%+ZrO2 (30%+HAn (10%; PC (50%+ZrO2 (30%+HAn (20% were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1 in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance. Results There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10% and PC+ZrO2+HAn (20% (p>0.05 and these cements presented higher pH levels than MTA (p<0.05. The highest solubility was observed in PC+ZrO2+HAn (10% and PC+ZrO2+HAn (20% (p<0.05. MTA had the shortest initial setting time (p<0.05. All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05. Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05 after the post-manipulation period of 2 days. Conclusions The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%, the final setting time and

  14. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  15. Blooming gelatin: an individual additive for enhancing nanoapatite precipitation, physical properties, and osteoblastic responses of nanostructured macroporous calcium phosphate bone cements.

    Science.gov (United States)

    Orshesh, Ziba; Hesaraki, Saeed; Khanlarkhani, Ali

    2017-01-01

    In recent years, there has been a great interest in using natural polymers in the composition of calcium phosphate bone cements to enhance their physical, mechanical, and biological performance. Gelatin is a partially hydrolyzed form of collagen, a natural component of bone matrix. In this study, the effect of blooming gelatin on the nanohydroxyapatite precipitation, physical and mechanical properties, and cellular responses of a calcium phosphate bone cement (CPC) was investigated. Various concentrations of blooming gelatin (2, 5, and 8 wt.%) were used as the cement liquid and an equimolar mixture of tetracalcium phosphate and dicalcium phosphate was used as solid phase. The CPC without any gelatin additive was also evaluated as a control group. The results showed that gelatin accelerated hydraulic reactions of the cement paste, in which the reactants were immediately converted into nanostructured apatite precipitates after hardening. Gelatin molecules induced 4%-10% macropores (10-300 μm) into the cement structure, decreased initial setting time by ~190%, and improved mechanical strength of the as-set cement. Variation in the above-mentioned properties was influenced by the gelatin concentration and progressed with increasing the gelatin content. The numbers of the G-292 osteoblastic cells on gelatin-containing CPCs were higher than the control group at entire culture times (1-14 days), meanwhile better alkaline phosphatase (ALP) activity was determined using blooming gelatin additive. The observation of cell morphologies on the cement surfaces revealed an appropriate cell attachment with extended cell membranes on the cements. Overall, adding gelatin to the composition of CPC improved the handling characteristics such as setting time and mechanical properties, enhanced nanoapatite precipitation, and augmented the early cell proliferation rate and ALP activity.

  16. The effect of pozzolan additions on the shrinkage of cement pastes and mortars during their first hours of age

    Directory of Open Access Journals (Sweden)

    Ossa, M. Mauricio

    1992-03-01

    Full Text Available The traditional favour enjoyed by cement including additions and by their diverse uses in Chile calls for an extense investigation of their behaviour in order that the results may justify their utilization in specific projects. This works studies volume changes occurring in cement pastes and mortars containing pozzolan additions during their first hours of age. This investigation used cements made in the laboratory from raw materials supplied by chilean manufacturers. Two types of clinkers were used, namely; a gypsum type and a natural pozzolan type, added in proportions ranging from 0 to 30%.Tests were conducted to ascertain the shrinkage of cement pastes and mortars since the first moments following their mixing operation, employing there for moulds fitted with a special device designed and implemented at the laboratory of the IDIEM Department of Agglomerants. The results thus gathered corroborated the fact that independently of cement characteristics, in general the deformation of pastes and mortars exhibits successive periods of first shrinkage swelling, and second shrinkage. The first shrinkage is affected by the ambient conditions of humidity, temperature, and wind (evaporation, but also in a preponderant way by cement specific surface, which allows higher velocity in the chemical reactions occurring during that period. Moreover the compactation degree is also affecting shrinkage, here. On the other hand, it was confirmed that with cements of like fineness, those having higher C3A contents exhibit an overall shrinkage larger than that of cements having low contents. At last it was possible to ascertain that an increase in pozzolan contents does not affect shrinkage directly, but that its presence may eventually modify the gypsum/clinker ratio and thus give rise to changes, specially in the two States of swelling and second shrinkage.

    La tradicional aceptación en Chile de los cementos con adición y su diversidad

  17. Effect of mineral additives (natural pozzolana and sand of dunes) by substitution of cement on the performance and durability of mortars

    Science.gov (United States)

    Saidi, M.; Safi, B.

    2016-04-01

    The objective of our work consists of the study of the substitution effects of clinker by mineral additions such as: natural pozzolana (PZ) and the sand of dunes (SD) finely crushed on the mechanical properties and the durability of the mortars worked out according to various combinations containing these additions. The results from this research confirm that the substitution of 20% to 30% of cement APC (Artificial Portland Cement) by additions in binary cement (APC + PZ) or ternary (APC + PZ + SD) contributes positively to the mechanical strength of mortars and resistance to the chemical attacks in various corrosive conditions such as: hydrochloric acid, sulfuric acid and nitric acid. The mechanical strength of the different variants is comparable to those of the APC. The test results of the weight loss and phenolphthalein shows that the chemical resistance of variants (PZ20) and (PZ20 with SD5) are larger compared to the reference mortar APC and other variants. This study shows that adding value by substituting a part of clinker. This substitution can save 20% to 30% of clinker used for the manufacture of cement; this will have a beneficial effect for cement and economically (less energy spent for the clinker burning). This study contributes to the protection of the environment as to produce one ton of clinker generates about one ton of CO2 is harmful to the atmosphere. Based on our results we will reduce from 20% to 30% CO2 gas responsible for the greenhouse effect.

  18. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2016-01-01

    Full Text Available 4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The results showed that the burnout rate was increased after adding the additives; meanwhile, the NOX and SO2 release concentration were reduced, but the degree of action varied for different additives and coals. The substitute of chemical reagents by industrial wastes was very effective; overall, the cold-rolled iron oxide worked better than others; the particles surface was tougher and the peaks of crystalline phase were lower than raw coal, which indicated that the additives played good roles in combustion process.

  19. Freeze-Thaw Performance and Moisture-Induced Damage Resistance of Base Course Stabilized with Slow Setting Bitumen Emulsion-Portland Cement Additives

    Directory of Open Access Journals (Sweden)

    Mojtaba Shojaei Baghini

    2015-01-01

    Full Text Available Freeze-thaw (FT cycles and moisture susceptibility are important factors influencing the geotechnical characteristics of soil-aggregates. Given the lack of published information on the behavior of cement-bitumen emulsion-treated base (CBETB under environmental conditions, especially freezing and thawing, this study investigated the effects of these additives on the CBETB performance. The primary goal was to evaluate the resistance of CBETB to moisture damage by performing FT, Marshall conditioning, and AASHTO T-283 tests and to evaluate the long-term stripping susceptibility of CBETB while also predicting the liquid antistripping additives to assess the mixture’s durability and workability. Specimens were stabilized with Portland cement (0%–6%, bitumen emulsion (0%–5%, and Portland cement-bitumen emulsion mixtures and cured for 7 days, and their short- and long-term performances were studied. Evaluation results of both the Marshall stability ratio and the tensile strength ratio show that the additions of additives increase the resistance of the mixtures to moisture damage. Results of durability tests performed for determining the resistance of compacted specimens to repeated FT cycles indicate that the specimen with the 4% cement-3% bitumen emulsion mixture significantly improves water absorption, volume changes, and weight losses. This indicates the effectiveness of this additive as a road base stabilizer with excellent engineering properties for cold regions.

  20. 水泥与混凝土外加剂适应性地解决%Adaptability solution of cement and concrete additive

    Institute of Scientific and Technical Information of China (English)

    封培然

    2014-01-01

    结合XM水泥厂具体情况,在对影响其水泥与混凝土外加剂适应性因素进行分析,提出改善熟料冷却速度,降低出厂水泥中温度,更换原燃材料,使用助磨剂等建议与措施。在实施部分措施后,XM水泥与外加剂的适应性差的问题得到较好解决。%The factors of compatibility between cement and concrete additive were analysed, combined with particular case of XM ce-ment plant, a series of measures were put forward including clinker cooling speed improvement, reducing finished cement temperature, changing raw material and fuel and using grinding agent, etc. By some measures, the adaptability problems between cement and concret dditive of XM cement plant were solved sucessfully.

  1. Improvement of bioactivity, degradability, and cytocompatibility of biocement by addition of mesoporous magnesium silicate into sodium-magnesium phosphate cement.

    Science.gov (United States)

    Wu, Yingyang; Tang, Xiaofeng; Chen, Jie; Tang, Tingting; Guo, Han; Tang, Songchao; Zhao, Liming; Ma, Xuhui; Hong, Hua; Wei, Jie

    2015-09-01

    A novel mesoporous magnesium-based cement (MBC) was fabricated by using the mixed powders of magnesium oxide, sodium dihydrogen phosphate, and mesoporous magnesium silicate (m-MS). The results indicate that the setting time and water absorption of the MBC increased as a function of increasing m-MS content, while compressive strength decreased. In addition, the degradability of the MBC in a solution of Tris-HCl and the ability of apatite formation on the MBC were significantly improved with the increase in m-MS content. In cell culture experiments, the results show that the attachment, proliferation, and alkaline phosphatase activity of the MC3T3-E1 cells on the MBC were significantly enhanced with the increase of the content of m-MS. It can be suggested that the MBC with good cytocompatibility could promote the proliferation and differentiation of the MC3T3-E1 cells. In short, our findings indicate that the MBC containing m-MS had promising potential as a new biocement for bone regeneration and repair applications.

  2. Effects of silica addition on the chemical, mechanical and biological properties of a new α-Tricalcium Phosphate/Tricalcium Silicate Cement

    Directory of Open Access Journals (Sweden)

    Loreley Morejón-Alonso

    2011-12-01

    Full Text Available The addition of tricalcium silicate (C3S to apatite cements results in an increase of bioactivity and improvement in the mechanical properties. However, adding large amounts raises the local pH at early stages, which retards the precipitation of hydroxyapatite and produces a loss of mechanical strength. The introduction of Pozzolanic materials in cement pastes could be an effective way to reduces basicity and enhance their mechanical resistance; thus, the effect of adding silica on the chemical, mechanical and biological properties of α-tricalcium phosphate/C3S cement was studied. Adding silica produces a reduction in the early pH and a decrease in setting times; nevertheless, the presence of more calcium silicate hydrate (C-S-H delays the growth of hydroxyapatite crystals and consequently, reduces early compressive strength. The new formulations show a good bioactivity, but higher cytotoxicity than traditional cements and additions higher than 2.5% of SiO2 cause a lack of mechanical strength and an elevated degradability.

  3. Improvement of the mechanical properties of an {alpha}-TCP cement by the addition of a polymeric drug containing salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ginebra, M.P.; Rilliard, A.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). Dept. of Materials Science and Metallurgical Engineering; Elvira, C.; San Roman, J. [CSIC, Madrid (Spain). Inst. de Ciencia y Tecnologia de Polimeros

    2001-07-01

    The aim of this work is to study the possibility to improve the mechanical properties of a calcium phosphate cement by adding a polymeric acrylic system supporting a derivative of the aminosalicylic acid. It is shown that besides the analgesic and antiinflammatory properties, the salicylic group present a calcium complexation ability. This feature makes it reasonable to envisage a good bonding between the inorganic and the polymeric phase, which can act as a reinforcing component in the cement. The inorganic phase of the cement studied consisted in {alpha}- tricalcium phosphate ({alpha}-Ca{sub 3}(PO{sub 4}){sub 2}) and precipitated hydroxyapatite as a seed, and the liquid phase was an aqueous solution of Na{sub 2}HPO{sub 4}. The polymeric drug used (poly (4-HMA), where 4-HMA is a methacrylamide derived from 4-aminosalicylic acid) was added in a 5 wt% to the liquid phase. The hydrolysis of the {alpha}-TCP into hydroxyapatite was not prevented, but the polymer produced a delay in the reaction. As a consequence the cement hardening was slightly slower, although the final compressive strength was 25% higher. The bending strength increased noticeably, from 5 MPa to 9 MPa with the addition of the polymeric drug. The strengthening of the structure could be related by SEM observations with the formation of a polymeric network between the entangled crystals of hydroxyapatite. (orig.)

  4. Effect of an organic additive on the rheology of an aluminous cement paste and consequences on the densification of the hardened material

    Science.gov (United States)

    El Hafiane, Y.; Smith, A.; Bonnet, J. P.; Tanouti, B.

    2005-03-01

    The material used in the present work is Secar 71 (Lafarge) mixed with water containing an organic additive (acetic acid noted HOAc). The rheological behavior of these pastes is studied. The best dispersion is obtained when the mass content of the additive with respect to the cement is equal to 0.5%. The microstructural characterizations of samples aged 4 days at 20° C and 95 % relative humidity reveal a significant increase in the density and a reduction in porosity for very small percentages of additive. The remarkable effect of the acetic acid on the microstructure of hardened material is correlated with its good dispersing action.

  5. Improvement of Cracking-resistance and Flexural Behavior of Cement-based Materials by Addition of Rubber,Particles

    Institute of Scientific and Technical Information of China (English)

    KANG Jingfu; JIANG Yongqi

    2008-01-01

    By ring test and bend test,the improvement of waste tire rubber particles on the crack-resistance and flexural behaviors of cement-based materials were investigated.Test results show that the cracking time of the ring specimens can be retarded by the incorporation of rubber particles in the cement paste and mortar.The improvement in the crack-resistance depended on the rubber fraction.When the rubber fraction was 20%in volume,the cracking time was retarded about 15 h for the paste and 24 d for the mortar respectively.Flexural properties were evaluated based on the bend test results for both mortar and concrete containing different amount of rubber particles.Test results show that rubberized mortar and concrete specimens exhibit ductile failure and significant deformation before fracture.The ultimate deformations of both mortar and concrete specimen increase more than 2-4 times than control specimens.

  6. Synthesis of Ag doped calcium phosphate particles and their antibacterial effect as additives in dental glass ionomer cements

    OpenAIRE

    2016-01-01

    Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy...

  7. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRAFINE WC/Co CEMENTED CARBIDES WITH CUBIC BORON NITRIDE AND Cr₃C₂ ADDITIONS

    Directory of Open Access Journals (Sweden)

    Genrong Zhang

    2016-03-01

    Full Text Available This study investigates the microstructure and mechanical properties of ultrafine tungsten carbide and cobalt (WC/Co cemented carbides with cubic boron nitride (CBN and chromium carbide (Cr₃C₂ fabricated by a hot pressing sintering process. This study uses samples with 8 wt% Co content and 7.5 vol% CBN content, and with different Cr₃C₂ content ranging from 0 to 0.30 wt%. Based on the experimental results, Cr₃C₂ content has a significant influence on inhibiting abnormal grain growth and decreasing grain size in cemented carbides. Near-full densification is possible when CBN-WC/Co with 0.25 wt% Cr₃C₂ is sintered at 1350°C and 20 MPa; the resulting material possesses optimal mechanical properties and density, with an acceptable Vickers hardness of 19.20 GPa, fracture toughness of 8.47 MPa.m1/2 and flexural strength of 564 MPa.u̇ Å k⃗

  8. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  9. Effect of Raw Bauxite Addition on Thermal Behaviour of Ultra-low Cement Al2O3-SiO2 Castables

    Institute of Scientific and Technical Information of China (English)

    HOU Wanguo; ZHOU Ningsheng

    2009-01-01

    This work investigated the thermo-gravimetric (TG) change and explosion resistance of ultra-low cement Al2O3 -SiO2 castables added with 0, 5%, 10%, 15% and 20% of ≤74 μm raw bauxite powders containing 72. 8% Al2O3, respectively. The castables were prepared using white fused alumina as aggregate, powders of white fused alumina, fused mullite, α-Al2O3 ultrafines, 3% CA cement and 5% microsilica as the matrix portion. TG change of the castables was investi-gated by a thermo-gravimetric analyzer for large size specimen. When the raw bauxite addition is less than 10%, the mass-losing behavior of the castables is simi-lar to that without raw bauxite, tending to reach a con-stant mass around 400 ℃ , before which the mass-loss is mild and producing little destructive influence. With more than 10% raw bauxite addition, however, the mass-loss increases significantly, and the temperature to reach a constant mass increases to 600 ℃ or higher, unfavorable to structural stabilization. With the raw bauxite addition up to 20%, no negative influence on explosion resistance is found.

  10. Evaluation of the use of red mud as a pozzolanic additive in Portland cement; Avaliacao do uso de residuo de bauxita como aditivo pozolanico no cimento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Gustavo Mattos; Balbino, Thiago Gabriel Ferreira; Lourenco, Rafaela Roberta; Rodrigues, Jose de Anchieta [Universidade Federal de Sao Carlos (GEMM/DEMa/UFSCar), Sao Carlos, SP (Brazil). Departamento de Engenharia de Materias. Grupo de Engenharia de Microestrutura de Materiais; Montini, Marcelo [Alcoa Aluminio S.A., Pocos de Caldas, MG (Brazil)

    2011-07-01

    It is estimated that the aluminum industry generates approximately 13.7 million tones/year of red mud (RB) in Brazil. Although, being the RB rich in Al{sub 2}O{sub 3} and SiO{sub 2} and partially amorphous, a potential pozzolanic activity is suggested. Thus, this work aims to evaluate the application of 15w-% of RB, as a pozzolanic additive, to the ordinary Portland cement (CPI), simulating a pozzolanic compost Portland cement (CPII-Z). To study the pozzolanic activation of the RB, this one was added without calcination, calcinated at 400°C and at 600°C. The compressive strength was measured in mortars of CPI with additions of RB, of CPI and CPII (references), after 28 days of curing. The analysis of the apparent porosity and the characterization of the hydration products were done to complement the evaluation. The mortars with calcinated RB showed good results of mechanical strength, reaching more than 85% (45 MPa) of the CPI's strength and higher values than the CPII-Z32. (author)

  11. Use of a simplified generalized standard additions method for the analysis of cement, gypsum and basic slag by slurry nebulization ICP-OES.

    Science.gov (United States)

    Marjanovic, Ljiljana; McCrindle, Robert I; Botha, Barend M; Potgieter, Herman J

    2004-05-01

    The simplified generalized standard additions method (GSAM) was investigated as an alternative method for the ICP-OES analysis of solid materials, introduced into the plasma in the form of slurries. The method is an expansion of the conventional standard additions method. It is based on the principle of varying both the sample mass and the amount of standard solution added. The relationship between the sample mass, standard solution added and signal intensity is assumed to be linear. Concentration of the analyte can be found either geometrically from the slope of the two-dimensional response plane in a three-dimensional space or mathematically from the ratio of the parameters estimated by multiple linear regression. The analysis of a series of certified reference materials (CRMs) (cement CRM-BCS No 353, gypsum CRM-Gyp A and basic slag CRM No 382/I) introduced into the plasma in the form of slurry is described. The slurries contained glycerol and hydrochloric acid and were placed in an ultrasonic bath to ensure good dispersion. "Table curve 3D" software was used to fit the data. Results obtained showed that the method could be successfully applied to the analysis of cement, gypsum and slag samples, without the need to dissolve them. In this way, we could avoid the use of hazardous chemicals (concentrated acids), incomplete dissolution and loss of some volatiles. The application of the simplified GSAM for the analysis did not require a CRM with similar chemical and mineralogical properties for the calibration of the instrument.

  12. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis; Sintese e caracterizacao de pastas de cimento aditivadas com resinas epoxi - analises cineticas, termodinamicas e calorimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, A.M.G.; Andrade Junior, M.A.S.; Cestari, A.R.; Vieira, E.F.S., E-mail: macleybiane@gmail.co [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2010-07-01

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  13. Evaluation of compressive strength and water absorption of soil-cement bricks manufactured with addition of pet (polyethylene terephthalate wastes

    Directory of Open Access Journals (Sweden)

    João Alexandre Paschoalin Filho

    2016-04-01

    Full Text Available This paper presents the evaluation of compressive strength of soil-cement bricks obtained by the inclusion in their mixture of PET flakes through mineral water bottles grinding. The Polyethylene Terephthalate (PET has been characterized by its difficulty of disaggregation in nature, requiring a long period for this. On the other hand, with the increase in civil construction activities the demand for raw material also increases, causing considerable environmental impacts. In this context, the objective of this research is to propose a simple methodology, preventing its dumping and accumulation in irregular areas, and reducing the demand of raw materials by the civil construction industry. The results showed that compressive strengths obtained were lower than recommended by NBR 8491 (Associação Brasileira de Normas Técnicas [ABNT], 2012b at seven days of curing time. However, they may be used as an alternative solution in masonry works in order to not submit themselves to great loads or structural functions. The studied bricks also presented water absorption near to recommended values by NBR 8491 (ABNT, 2012b. Manufacturing costs were also determined for this brick, comparing it with the costs of other brick types. Each brick withdrew from circulation approximately 300 g of PET waste. Thus, for an area of 1 m2 the studied bricks can promote the withdrawal of approximately 180 beverage bottles of 2 L capacity.

  14. Efeito de aditivos minerais sobre as propriedades de chapas cimento-madeira Effect of minerals additives on the properties of wood cement-bonded particleboard

    Directory of Open Access Journals (Sweden)

    Gilmar Correia Silva

    2006-06-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da adição de dois tipos de aditivos minerais (microssílica e metacaulim sobre as propriedades de chapas de cimento-madeira, aplicando-se diferentes teores aditivos (0, 20 e 30%. O aglomerante empregado na produção dos painéis foi o cimento Portland tipo ARI, juntamente com partículas de madeira de Eucalyptus urophylla. Os resultados indicaram que a adição dos aditivos minerais não causou melhorias significativas nas propriedades mecânicas avaliadas. Já, em relação às propriedades físicas, o efeito positivo da adição de 20% de microssílica pôde ser observado no ensaio de absorção em água após a imersão em 2 e 24 horas. O aditivo metacaulim não apresentou tendência clara, porém, de forma geral, a sua adição causou redução na qualidade das chapas.The objective of this work was to evaluate the effect of the two minerals additives (microsilica and meta-kaolin on the properties of wood cement-bonded particleboard (WCBP with different amounts (0%, 20% and 30% of additives. Portland cement of high initial resistance was used in the production of panels as binder material. It was mixed with Eucalyptus urophylla wood particles to boards formation. The results indicated that the addition of mineral additives did not cause significant improvements in the evaluated mechanical properties. For physical properties, the positive effect of the addition of 20% microsilica can be observed on the absorption in water properties after 2 and 24 hours. The additive meta-kaolin did not present a clear trend, but, in general, the addition of this additive caused a reduction in the quality of boards.

  15. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  16. Study of mechanical properties of calcium phosphate cement with addition of sodium alginate and dispersant; Estudo das propriedades mecanicas de cimento de fosfato de calcio com adicao de alginato de sodio e defloculante

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.M.; Coelho, W.T.; Thurmer, M.B.; Vieira, P.S.; Santos, L.A., E-mail: julianafernandes2@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), RS (Brazil)

    2011-07-01

    Several studies in literature have shown that the addition of polymer additives and deflocculant has a strong influence on the mechanical properties of cements in general.The low mechanical strength is the main impediment to wider use of bone cement of calcium phosphate (CFCs) as the implant material, since they have mechanical strength which equals the maximum of trabecular bone.In order to evaluate the strength of a CFC compound alpha-tricalcium phosphate, sodium alginate were added (1%, 2% and 3% by weight) and dispersant ammonium polyacrylate (3%) in aqueous solution.Specimens were made and evaluated for density, porosity, crystalline phases and mechanical strength.The results show the increase of the mechanical properties of cement when added sodium alginate and dispersant. (author)

  17. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    Science.gov (United States)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  18. THE EFFECT OF NANO-TITANIA ADDITION ON THE PROPERTIES OF HIGH-ALUMINA LOW-CEMENT SELF-FLOWING REFRACTORY CASTABLES

    Directory of Open Access Journals (Sweden)

    Sasan Otroj

    2011-12-01

    Full Text Available The self-flow characteristics and properties of high-alumina low-cement refractory castables added with nano-titania particles are investigated. For this reason, the reactive alumina in the castable composition is substituted by nano-titania powder in 0-1 %wt. range. The microstructures, phase composition, physical and mechanical properties of these refractory castables at different temperatures are studied. The results show that the addition of nano-titania particles has great effect on the self-flow characteristics, phase composition, physical and mechanical properties of these refractory castables. With increase of nano-titania particles in castable composition, the self-flow value and working time tend to decrease. With addition of 0.5 wt.% nano-titania in the castable composition, the mechanical strength of castable in all firing temperatures tends to increase. It is attributed to the formation of CA6 phase and enhanced ceramic bonding. Nano-titania particles can act as a nucleating agent for hibonite phase and decrease the formation temperature of hibonite. Because of perovskite phase formation, the addition of 1 wt.% nano-titania can decrease the mechanical strength of castable after firing.

  19. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  20. The novel fluid loss additive HTF-200C for oil field cementing%新型固井降失水剂HTF-200C

    Institute of Scientific and Technical Information of China (English)

    郭锦棠; 卢海川; 刘硕琼; 靳建州; 于永金

    2012-01-01

    The domestic fluid loss additives often have lower thermal stability and poor salt-tolerance and their comprehensive properties are not good enough. To solve the problems, a novel cement fluid loss additive HTF-200C. Which can resist high temperature and high salt content, was synthesized using the monomers of 2-acrylamido-2-methyl-propane sulphonic acid (AMPS), N, N-dimethyl acrylamide (DMAA) and a new compound with double carboxyl by the method of aqueous solution polymerization. The microstructural characterization and application performance of HTF-200C show that the polymer with the structure of all the monomers has an excellent thermal stability and strong salt tolerance, and can be used in 200 "C or in saturated brine. And the problem of the normal fluid loss additive being easy to hydrolyze due to high temperature can be solved with HTF-200C. What's more, it can also deal with the bulge of thickening curve in consistency test. The cement slurry prepared mainly by HTF-200C presents good comprehensive properties such as low filtration, high thermal stability, strong salt tolerance, rapid development of strength in low temperature, without far delayed solidification, short transit time during thickening process, and so on. The cementing job quality of Well Chengu 1-3 in the Liaohe Oilfield is excellent after it is used.%针对目前中国常规固井降失水剂抗温抗盐能力差、综合性能欠佳的问题,以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、N,N-二甲基丙烯酰胺(DMAA)、新型双羧基化合物为单体,采用水溶液自由基聚合的方法合成了耐盐、抗高温的共聚物型固井水泥降失水剂HTF-200C.HTF-200C微观结构表征和应用性能综合评价表明,各单体成功参与聚合,共聚物热稳定性良好;该降失水剂控失水耐温可达200℃,抗盐达饱和,可解决常规降失水剂高温下易水解、稠化实验“鼓包”等问题;以HTF-200C为主剂的水泥浆体系失水量低、抗盐耐温

  1. Polyelectrolyte addition effect on the properties of setting hydraulic cements based on calcium phosphate; Efeito da adicao de polieletrolitos sobre as propriedades de cimentos de fosfato de calcio de pega hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis A. dos; Oliveira, Luci C. de; Rigo, Eliana C.S.; Boschi, Anselmo Ortega [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Carrodeguas, Raul Gracia [Universidad de La Habana, Habana, (Cuba). Centro de Biomateriales

    1997-12-31

    In the present work the effects of the addition of some poly electrolytes (sodium alginate and poly acrylic acid) on the solubility, crystalline phases, pH and mechanical strength under compression of three calcium phosphate cements were studied. (author) 10 refs., 2 figs., 4 tabs.

  2. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    Science.gov (United States)

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level.

  3. Effects of chemical and mineral additives and the water/cement ratio on the thermal resistance of Portland cement concrete; O efeito de aditivos quimicos e minerais e da relacao agua/cimento na resistencia ao calor do concreto de concreto de cimento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, Leandro Cesar Dias; Morelli, Arnaldo C.; Baldo, Joao Baptista [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais

    1998-07-01

    The exposure of Portland concrete to high temperatures (>250 deg C) can damage drastically the microstructural integrity of the material. Since the water/cement ratio as well as the inclusion of superplasticizers and mineral additives (silica fume) can alter constitutively and micro structurally the material, in this work it was investigated per effect of these additions on the damage resistance of portland concrete after exposure to high temperatures. (author)

  4. Cement from magnesium substituted hydroxyapatite.

    Science.gov (United States)

    Lilley, K J; Gbureck, U; Knowles, J C; Farrar, D F; Barralet, J E

    2005-05-01

    Brushite cement may be used as a bone graft material and is more soluble than apatite in physiological conditions. Consequently it is considerably more resorbable in vivo than apatite forming cements. Brushite cement formation has previously been reported by our group following the mixture of nanocrystalline hydroxyapatite and phosphoric acid. In this study, brushite cement was formed from the reaction of nanocrystalline magnesium-substituted hydroxyapatite with phosphoric acid in an attempt to produce a magnesium substituted brushite cement. The presence of magnesium was shown to have a strong effect on cement composition and strength. Additionally the presence of magnesium in brushite cement was found to reduce the extent of brushite hydrolysis resulting in the formation of HA. By incorporating magnesium ions in the apatite reactant structure the concentration of magnesium ions in the liquid phase of the cement was controlled by the dissolution rate of the apatite. This approach may be used to supply other ions to cement systems during setting as a means to manipulate the clinical performance and characteristics of brushite cements.

  5. POZZOLAN AND CEMENTS WITH POZZOLAN

    Directory of Open Access Journals (Sweden)

    Hasan KAPLAN

    1995-02-01

    Full Text Available Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, cement with pozzolan is produced by adding the pozzolan, which has a large reservoir in the country, in cement in sertain amount. However this type of cement is consumed in the construction sector, sortage of scientific investigation and speculative news on the subject.are worried the users and producers. In this paper, prior to an experimental study on the cements having pozzolan additive, historical development of pozzolan, reservoir of Turkiye, and comparison with portland cement is carried out. Advantages and disadvantages of pozzolan are also discussed in some points.

  6. Addition of 1, 2 and 3% in mass of sodium alginate in calcium phosphate cement; Adicao de alginato de sodio a cimento de fosfato de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, W.T.; Fernandes, J.M.; Vieira, R.S.; Thurmer, M.B.; Santos, L.A., E-mail: trajano@ufrgs.br [Universidade Federal do Rio Grande do Sul (LABIOMAT/UFRS), RS (Brazil)

    2011-07-01

    The calcium phosphate cement (CFC) are bone substitutes with great potential for use in orthopedics, traumatology and dentistry because of their biocompatibility, bioactivity, osteoconductivity and osteotransdutivity, and a paste that can be easily molded and placed into the surgical site. However, CFCs have low mechanical strength, which equals the maximum mechanical strength of trabecular bone. Aiming to evaluate the strength and time to handle a CFC phase composed mainly of alpha were added to sodium alginate (1%, 2% and 3% wt) and an accelerator handle in an aqueous medium. The cement powder was mixed with liquid takes 2 minutes and resigned in specimens and assessed for apparent density and porosity by the Archimedes method, X-ray diffraction and mechanical strength. We noticed a significant increase in mechanical properties of cement added sodium alginate. (author)

  7. 外加剂对水泥固化铁矾渣性能的影响%Effect of Additives on Properties of Cement Solidified Body

    Institute of Scientific and Technical Information of China (English)

    侯小强; 郑旭涛; 郭从盛; 谭宏斌

    2014-01-01

    Cementitious materials were prepared by adding jarosite slag in portland cement clinker.The effect of additives(fly ash zeolite,sodium sulfide and fly ash)on the solidified body strength and leaching toxicity were studied,respectively. When the jarosite slag content was 60% in cementitious material,the stability of heavy metal ion in solidified body were improved by adding zeolite,sodium sulfide as stabilizer and leaching toxicity values of different solidified body were lower than the national standard. When the fly ash was added in cementitious material,fly ash content increased,the strength of solidified body decreased,the leaching toxicity values of different solidified body were also lower than the national standard.%在硅酸盐水泥熟料中加入铁矾渣,制备成胶凝材料。分别以粉煤灰沸石、硫化钠和粉煤灰为外加剂,研究其对水泥固化体强度和浸出毒性的影响。在胶凝材料中铁矾渣加入量为60%时,加入沸石、硫化钠为稳定剂,均可提高重金属离子的稳定性,不同固化体的浸出毒性值均低于国家标准。在胶凝材料中加入粉煤灰,粉煤灰掺量增加,固化体强度下降,不同固化体的浸出毒性值也均低于国家标准。

  8. Resistance to acid attack of portland cement mortars produced with red mud as a pozzolanic additive; Resistencia ao ataque acido de argamassas de cimento Portland produzido com residuo de bauxita como aditivo pozolanico

    Energy Technology Data Exchange (ETDEWEB)

    Balbino, Thiago Gabriel Ferreira; Fortes, Gustavo Mattos; Lourenco, Rafaela Roberta; Rodrigues, Jose de Anchieta [Universidade Federal de Sao Carlos (DEMa/PPGCEM/UFSCar), SP (Brazil). Programa de Pos-Graducao em Ciencia e Engenharia de Materiais. Departamento de Engenharia de Materiais; Montini, Marcelo [Alcoa Aluminio S.A., Pocos de Caldas, MG (Brazil)

    2011-07-01

    Portland cement structures are usually exposed to aggressive environments, which requires the knowledge of the performance of these materials under deleterious conditions. In this study, it was evaluated the resistance to acid attack of mortars that contain ordinary (CPI) and compost (CPII-Z) Portland cements, adding to the first red mud (RB) as a pozzolanic additive in different conditions: without calcination, calcined at 400 ° C and at 600 ° C. The specimens were subjected to HCl and H{sub 2}SO{sub 4} solutions, both with concentration of 1.0 Mol L{sup -1} for 28 days, monitoring the weight loss and leached material nature by atomic emission inductively coupled plasma (ICP). The hydration products were studied by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) of the hydrated cement pastes. It was observed a reduction of portlandite amount in the RB containing cement pastes, indicating a possible pozzolanic activity of the red mud. The mortars prepared with RB were more resistant to HCl, while that ones with calcined RB present a better performance in H{sub 2}SO{sub 4} attack. (author)

  9. Effects of EVA emulsion addition on magnesium phosphate cement performances%EVA乳液对磷酸镁水泥性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    黄煜镔; 王润泽; 周静静; 余帆

    2014-01-01

    选择原材料是改善磷酸镁水泥性能的重要方法,为扩大磷酸镁水泥的应用范围,对 EVA 乳液改性磷酸镁水泥进行研究,结果表明,EVA 乳液的掺加对磷酸镁水泥的凝结时间与流动性影响小;磷酸镁水泥的抗压与抗折强度均随着 EVA 乳液掺量的增大,表现出先提高后降低的趋势,但存在不同的适宜掺量;EVA乳液显著增大磷酸镁水泥的粘结强度与断裂能;微观分析表明EVA乳液不改变磷酸镁水泥水化产物类型,但改变水化反应速度,影响水化产物形貌,其中MgNH4 PO4�6 H2 O 主要以柱状存在,并且结构更加致密。%Raw material selection was an essential and important way to improve the performance of magnesium phosphate cement (MPC).Using EVA emulsion to modify MPC to expand its application scope was investiga-ted.The results show that:(1 )the impact of EVA emulsion addition in MPC on its setting time and fluidity was insignificant;(2)with the increase of mixing amount of EVA emulsion,the compressive strength and the flexural strength of MPC both appear a trend of initial increase and subsequent decrease,but with different opti-mum dosage;and (3)addition of EVA emulsion can significantly increase MPC bond strength and fracture en-ergy.Further microscopic analysis indicates that addition of EVA emulsion does not change the types of hydra-tion products,but change the hydration rate and the morphology formation of hydrated products,e.g., MgNH4 PO4��6 H2 O mainly exists as columnar forms and with more condensed structure.

  10. Effect of addition of sugar cane biomass ash in properties of fresh state in cement slurries for oil wells; Efeito da adicao de cinza de biomassa de cana-de-acucar nas propriedades no estado fresco de pastas de cimento para pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Lornna L.A.; Santos, Herculana T.; Souza, Pablo Diego Pinheiro; Freitas, Julio Cezar Oliveira [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Nascimento, Julio Cesar S. [Universidade Federal da Bahia (UFBA), BA (Brazil); Amorim, Natalia M.M. [Universidade Potiguar (UNP), RN (Brazil); Martinell, Antonio E. [Mcgill University (MCGILL) (Canada); Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    Recent studies have shown that ashes from biomass, in particular those generated by the alcohol industry have pozzolanic activity and can replace cement in many applications, reducing the consumption of cement and, consequently, the environmental impact caused by the production of this material. The present work evaluated the behavior of ash sugarcane biomass partially replacing Portland cement in concentrations of 10, 20 and 40% BWOC in oil well slurries. The results of rheology, thickening time and stability showed that the addition of 40% of biomass ash in oil well slurries significantly improves their properties, enabling the replacement of cement by ash. (author)

  11. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  12. Time reduction in well construction with the addition of glass microspheres and thixotropic agents in cement slurries in zonal isolation at Solimoes Basin; Reducao do tempo de construcao de pocos de petroelo na Bacia do Solimoes atraves da utilizacao de microsferas de vidro e agentes tixotropicos nas fases de cimentacao

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cledeilson R.L.; Duque, Luis H.; Steffan, Rodolfo H.P.; Guimaraes, Zacarias [Baker Hyghes, Houston, TX (United States); Corregio, Fabio; Augusto, Marcelo; Mendes, Sandro C. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the problems faced by the oil industry during the well construction is the damage effect of the hydrostatic head of cement slurries on unconsolidated reservoirs, trending to a necessity of lightweight cementing slurries with high resistance for zonal isolation. This paper presents experiences with lightweight cementing slurries obtained by the addition of glass microspheres and thixotropic agents in oil and gas wells located at Solimoes Basin - Amazon Basin, Brazil, which led to 100% time reduction on well construction when compared with the standard cementing procedures, besides the benefit of no reservoir damage. It also includes lab tests, cement slurry designs, case histories and results that allow a complete evaluation of the technique that can be applied in other similar environments. (author)

  13. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Konstantin Sobolev

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  14. International development trends in low-energy cements

    Energy Technology Data Exchange (ETDEWEB)

    Stark, J.; Mueller, A.

    1988-04-01

    Besides the currently dominant tendency to increase the proportion of interground additive in cement, the following development trends are internationally emerging in the material composition of so-called low-energy cements with a view to minimizing energy input for cement manufacture: (1) active belite cement with the principal clinker minerals a'C/sub 2/S and C/sub 3/S; (2) belite sulphoaluminate cement (..beta.. C/sub 2/S, C/sub 4/A/sub 3/S); (3) belite sulphoferrite cement (..beta.. C/sub 2/S, C/sub 4/AF, C/sub 4/A/sub 3/S); (4) NTS cement (alinite).

  15. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  16. Hidration kinetics study of tlie mixed cements

    OpenAIRE

    Duque Fernández, Gabriel . L; Díaz Quintanilla, David; Zapata Sierra, Manuel; Rubio Frías, Ester

    1993-01-01

    A study of the hydration process of cements with 10% and 20% addition of a tuff from "Las Carolinas" quarry (Cienfuegos, Cuba) by different methods was done. The results obtained by different methods showed a good agreement. It was proved an increment of the hydration products, an acceleration of alite hydration and a swelling of the fixed water in mixed cements. The resistance of the cement with 10% addition is similar to that of the pure cement for ages of 28 days, whereas with 20% addition...

  17. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  18. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing%AMPS/DMAM/AA 共聚物固井降滤失剂的研究

    Institute of Scientific and Technical Information of China (English)

    朱兵; 聂育志; 邱在磊; 王浩任; 陈红壮; 马鹏

    2014-01-01

    为解决固井降滤失剂普遍存在的抗温能力差、与其他外加剂配伍性欠佳以及综合性能差等问题,选用2丙烯酰胺基2甲基丙磺酸(AMPS)、N ,N 二甲基丙烯酰胺(DMAM)和丙烯酸(AA)为共聚单体,采用水溶液聚合法制得共聚物AMPS/DMAM/AA。对共聚物AMPS/DMAM/AA的微观结构进行了分析,并对其性能进行了评价,结果表明:各单体都参与了聚合,共聚物分解温度为380℃;淡水基浆中该共聚物加量超过3%时,在温度不高于120℃时,可将滤失量控制在100 m L以内,且水泥浆初始稠度低,过渡时间短,稠化曲线线形良好,抗压强度适中,没有过度缓凝现象;饱和NaCl盐水基浆中该共聚物加量超过4%时,可将滤失量控制在80 mL以内。这表明AM PS/DM AM/AA共聚物降滤失剂的抗温、抗盐能力强,与其他外加剂、尤其是高温缓凝剂配伍性好,以该共聚物为降滤失剂的水泥浆具有很好的综合性能。%In order to improve the temperature‐resistance performance of some domestic fluid loss addi‐tives and to understand their poor compatibility with other additives as well as their comprehensive proper‐ties ,a cement fluid loss additive was synthesized using monomers acrylic acid (AA) ,2‐acrylamido‐2‐meth‐yl‐propane sulphonic acid (AMPS) and N ,N‐dimethyl acrylamide(DMAM)through aqueous solution poly‐merization .The micro‐structural characterization of AMPS/DMAM/AA was analyzed and its performance was tested .The result showed that copolymer AMPS/DMAM/AA has the structure of all monomers and can resist high temperatures up to 380℃ .When the amount of AMPS/DMAM/AA was more than 3.0 % , the filtration of fresh‐water cement slurry can be reduced to less than 100 mL .Moreover ,the cement slurry has excellent properties such as low initial consistency ,short transition time ,good thickening curve without far delayed solidification

  19. Swine deep bedding ashes as a mineral additive for cement based mortar Cinzas de cama sobreposta de suínos como adição mineral em argamassas de cimento

    Directory of Open Access Journals (Sweden)

    Melissa Selaysim Di Campos

    2008-04-01

    Full Text Available The sustainability of intensive swine production demands alternative destinations for the generated residues. Ashes from swine rice husk-based deep bedding were tested as a mineral addition for cement mortars. The ashes were obtained at 400 to 600ºC, ground and sieved through a 325 mesh sieve (# 0.045 mm. The characterization of the ashes included the determination of the index of pozzolanic activity with lime. The ashes were also tested as partial substitutes of Portland cement. The mortars were prepared using a cement:sand proportion of 1:1.5, and with water/cement ratio of 0.4. Three percentages of mass substitution of the cement were tested: 10, 20 and 30%. Mortar performances were assessed at 7 and 28 days determining their compressive strength. The chosen condition for calcinations at the laboratory scale was related to the maximum temperature of 600ºC since the resulting ashes contained vitreous materials and presented satisfactory values for the pozzolanic index under analysis. The pozzolanic activity indicated promising results for ashes produced at 600ºC as a replacement of up to 30% in cement masses.A sustentabilidade das regiões de produção intensiva de suínos requer destinos alternativos para os resíduos gerados. Cinzas de cama sobreposta de suínos à base casca de arroz, foram testadas como adição mineral em substituição ao cimento. As cinzas foram obtidas nas temperaturas de 400 a 600ºC, moídas e passadas por peneira ABNT 325 (# 0,045 mm. A caracterização de cinzas incluiu a determinação do índice de atividade pozolânica com a cal. As cinzas também foram testadas como substitutos parciais de cimento Portland. As argamassas foram preparadas na proporção cimento:areia de 1:1,5 e com fator água-cimento de 0,4. Três porcentagens de substituição do cimento comercial foram usadas: 10, 20 e 30% em massa. O desempenho das argamassas foi avaliado aos 7 e aos 28 dias com a determinação da resistência

  20. Effect of additives on the performance of recycled fine aggregate cement mortar%外加剂对再生细骨料水泥砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    王复星; 李国忠; 陈娟

    2014-01-01

    The effect of additives on the mechanical properties and water resistance of recycled fine aggregate cement mortar is studied. The result shows that the 28d flexural strength, compressive strength and osmotic pressure of cement mortar samples compared with the blank sample are increased by15.6%, 35.5%, 41.1%when silicone waterproofing agent is 0.2wt%, naphdalin series water reducer is wt1.0%,polycarboxylate super plasticizer is 0.8wt%.%研究了外加剂对再生细骨料水泥砂浆力学性能、防水性能的影响。结果表明:当有机硅防水剂掺量0.2 wt%、萘系减水剂1.0 wt%、聚羧酸减水剂0.8 wt%时,水泥砂浆试样与空白试样相比,其28 d抗折强度、抗压强度、渗透压力分别提高15.6%、35.5%、41.1%。实验中利用SEM对砂浆试样断面微观形貌进行了观察分析,同时利用XRD对水化产物进行了物相鉴定。

  1. [Burns caused by cement mortar (based on expert opinion)].

    Science.gov (United States)

    Kleinhans, D

    1984-01-01

    A 35-year-old farmer with scars on his right arm, following erosion obviously due to wet cement (case of an expert opinion), was examined. Cement water had continuously soaked his shirt while he was planing a freshly applied wet cement ceiling with his right arm upwards. The cement did not contain special additives, so the normal alkalinity of wet cement and occlusion effects caused the erosion. The farmer sued the manufacturer of the cement for damages because of missing warning notices. The court decided in his favor.

  2. Sustainable development of the cement industry and blended cements to meet ecological challenges.

    Science.gov (United States)

    Sobolev, Konstantin

    2003-05-05

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and--at the same time--uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  3. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  4. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  5. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  6. Influence of relation CaO/SiO{sub 2} mixtures of anhydrous cement and mineral additives on the formation of CSH and combat the retrogression; Influencia da relacao CaO/SiO{sub 2} de misturas anidras de cimento e aditivos minerais na formacao do C-S-H e no combate a retrogressao

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Marcos A.S. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio Grande do Norte (IFRN), Natal, RN (Brazil); Martinelli, Antonio E.; Melo, Dulce M.A.; Souza, Pablo P.D. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Renovato, Tiago

    2012-07-01

    Temperatures above de 110 deg C cause cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells. This paper presents the results of an experimental study aimed to investigate the influence of the molar ratio of different mixtures CaO/SiO{sub 2} Portland cement (CP) and minerals additives in the formation of CSH and retrogression of cement slurries subjected to high temperature and pressure. For both cement slurries were formulated with the addition of sugarcane biomass waste, silica flour and metakaolin in different concentrations of additives. The results of compressive strength and XRD showed that the use of cement slurries with molar ratio CaO/SiO{sub 2} near one can minimize the effect of retrogression when pulps are subjected to temperatures of 280 deg C and 17.2 MPa. (author)

  7. Efeito da adição de cinza da casca de arroz em misturas cimento-casca de arroz Effect of the addition of rice husk ash in cement-rice husk mixtures

    Directory of Open Access Journals (Sweden)

    Loris L. Zucco

    2008-06-01

    based cement mixtures. Thus, different mixes cement-rice husk with and without the addition of ash were evaluated in order to highlight the influence of its components (husk; ash, which could otherwise be excluded or be underestimated. Cylindrical samples (test of simple compression and traction by diametrical compression and samples extracted from manufactured pressed board (test of bending and parallel compression to the surface, were used to evaluate the behavior of different mixtures of components (rice hush; RHA - rice husk ahs. The results of the mechanical tests showed, in general, there is not a statistical difference between the mixtures, which are associated with the chemical suppressive effect of the rice husk ash. The mixture of rice husk of 10 mm, with an addition of 35% of the rice husk ash, is notable for allowing the highest consumption of rice husk and rice husk ash, to reduce 25% the consumption of cement and to allow the storage (without emissions to the atmosphere, around 1.9 ton of CO2 per ton of cement consumed, thus contributing to the reduction of CO2 emissions, which can stimulate rural constructions under an ecological point of view.

  8. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  9. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  10. Influência de aditivos sobre a trabalhabilidade de concretos refratários de ultra-baixo teor de cimento Influence of additives on the working time of ultra-low cement refractory castables

    Directory of Open Access Journals (Sweden)

    I. R. de Oliveira

    2003-03-01

    Full Text Available A trabalhabilidade de concretos refratários é determinada principalmente pela cinética de hidratação do ligante hidráulico. Têm-se observado que o processo de gelificação/hidratação desse material em meio aquoso é sensivelmente influenciado pela presença de aditivos dispersantes. Em virtude disso, este trabalho investigou a correlação entre a trabalhabilidade de concretos refratários de ultra-baixo teor de cimento no sistema Al2O3-SiC-SiO2-C e as características apresentadas por suspensões aquosas de cimento na presença de diferentes aditivos. A influência desses aditivos no processo de hidratação do cimento foi estudada através de ensaios de microscopia eletrônica de varredura, difração de raios X, sedimentação, condutividade elétrica e ensaios reológicos. Os resultados obtidos indicam que a "pega" inicial do concreto ocorre devido à aglomeração das partículas induzida pela formação de um produto coloidal amorfo ("gel" entre elas. Observou-se que o citrato de sódio favorece a formação de uma quantidade significativa de "gel" entre as partículas, reduzindo a trabalhabilidade do concreto.The working time of refractory castables is mainly determined by the hydration kinetic of the hydraulic binder. It has been observed that the gelation/hydration process of this material in aqueous solutions is significantly influenced by the addition of dispersing additives. Hence, this work investigated the correlation between the working time of ULC refractory castables in the Al2O3-SiC-SiO2-C system and the physic-chemical characteristics of cement aqueous suspensions in the presence of different sort of additives. The influence of these additives in the cement hydration process was studied by scanning electron microscopy, X-ray diffraction, sedimentation experiments, electrical conductivity and rheological tests. The initial setting of castables was found to be associated to particle coagulation and the development of

  11. Cementation of Loose Sand Particles based on Bio-cement

    Institute of Scientific and Technical Information of China (English)

    RONG Hui; QIAN Chunxiang

    2014-01-01

    Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium carbonate were tested to characterize the cementation effectiveness. In addition, the formed mineral composition and the microstructure of bio-sandstone were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The experimental results show that the feasibility of binding loose sand particles using microbial induced magnesium carbonate precipitation is available and the acquired compressive strength of bio-sandstone can be excellent at certain ages. Moreover, the compressive strength and the porosity could be improved with the increase of microbial induced magnesium carbonate content. XRD results indicate that the morphology of magnesium carbonate induced by microbe appears as needles and SEM results show that the cementation of loose sand particles to sandstone mainly relies on the microbial induced formation of magnesium carbonate precipitation around individual particles and at particle-particle contacts.

  12. Effect of bioglass granules on the physico-chemical properties of brushite cements

    Energy Technology Data Exchange (ETDEWEB)

    Bohner, M. [Robert Mathys Foundation, Bettlach (Switzerland); Matter, S. [Stratec Medical, Oberdorf (Switzerland)

    2001-07-01

    Bioglass granules were added to a brushite cement in an attempt to neutralize the cement paste after setting. Results show that the pH of the cement paste was drastically increased by the addition of these granules. However, the setting time and the mechanical properties of the cement were strongly reduced. Therefore, the addition of bioglass granules is not a good way to modify the acidity of the cement paste after setting. (orig.)

  13. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  14. Evaluation of the chemical modifications in petroleum asphalt cement with the addition of polypropylene; Avaliacao das modificacoes quimicas no cimento asfaltico de petroleo com a adicao de polipropileno

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, C.P.; Sales, M.J.A.; Resck, I.S., E-mail: mjsales@unb.b [Universidade de Brasilia (LabPol/UnB), DF (Brazil). Inst. de Quimica. Lab. de Pesquisa em Polimeros; Farias, M.M.; Souza, M.V.R. [Universidade de Brasilia (UnB), DF (Brazil). Dept. de Engenharia Civil e Ambiental

    2010-07-01

    Studies show that the common distress mode in the Brazilian highway network are fatigue cracks and plastic deformation, which are associated with the type of material used in the pavement layers, structural project, excessive traffic load and weathering. To minimize these defects, research on modifiers such as polymers, added to asphalt binders have been developed to provide physical, chemical and rheological improvement. This paper investigates chemical modifications of the binders with the addition of PP by FTIR, NMR and DSC. FTIR spectra of pure and modified binder showed no differences in absorption. NMR analysis showed no strong chemical bonds between the binder and PP. DSC curve of PP showed a melting temperature of 160 deg C ({Delta}H = 94J/g) and the pure binder presented an endothermic transition between 20 and 40 deg C ({Delta}H = 2J/g). In the DSC curves of mixtures, these transitions are not significant, indicating possible interactions between asphalt binder and PP. (author)

  15. Portland cement with additives in the repair of furcation perforations in dogs Cimento Portland com aditivos na reparação de perfurações radiculares em cães

    Directory of Open Access Journals (Sweden)

    José Dias da Silva Neto

    2012-11-01

    Full Text Available PURPOSE: To evaluate the use of Portland cements with additives as furcation perforation repair materials and assess their biocompatibility. METHODS: The four maxillary and mandibular premolars of ten male mongrel dogs (1-1.5 years old, weighing 10-15 kg received endodontic treatment (n=80 teeth. The furcations were perforated with a round diamond bur (1016 HL. The perforations involved the dentin, cementum, periodontal ligament, and alveolar bone. A calcium sulfate barrier was placed into the perforated bone to prevent extrusion of obturation material into the periradicular space. The obturation materials MTA (control, white, Type II, and Type V Portland cements were randomly allocated to the teeth. Treated teeth were restored with composite resin. After 120 days, the animals were sacrificed and samples containing the teeth were collected and prepared for histological analysis. RESULTS: There were no significant differences in the amount of newly formed bone between teeth treated with the different obturation materials (p=0.879. CONCLUSION: Biomineralization occurred for all obturation materials tested, suggesting that these materials have similar biocompatibility.OBJETIVO: Avaliar o uso de cimentos Portland aditivados na reparação de perfurações radiculares e a biocompatibilidade destes materiais. MÉTODOS: Oitenta pré-molares, quatro da arcada dentária superior e quatro da arcada inferior de 10 cães machos, sem raça definida, com idade em torno de um a um ano e meio, pesando entre 10 e 15 kg foram submetidos a tratamento endodôntico, sendo realizadas perfurações nas furcas com broca de diamante 1016 HL. A cavidade envolveu dentina e cemento, como também periodonto e o osso alveolar. Na porção óssea da obturação, barreira de sulfato de cálcio foi utilizada evitando extravasamento do cimento para o espaço periodontal. Foi realizada a distribuição randomizada dos cimentos MTA (controle, Portland tipo II, Portland tipo V e

  16. Control of in vivo mineral bone cement degradation.

    Science.gov (United States)

    Kanter, Britta; Geffers, Martha; Ignatius, Anita; Gbureck, Uwe

    2014-07-01

    The current study aimed to prevent the formation of hydroxyapatite reprecipitates in brushite-forming biocements by minimizing the availability of free Ca(2+) ions in the cement matrix. This was achieved by both maximizing the degree of cement setting to avoid unreacted, calcium-rich cement raw materials which can deliver Ca(2+) directly to the cement matrix after dissolution, and by a reduction in porosity to reduce Ca(2+) diffusion into the set cement matrix. In addition, a biocement based on the formation of the magnesium phosphate mineral struvite (MgNH4PO4·6H2O) was tested, which should prevent the formation of low-solubility hydroxyapatite reprecipitates due to the high magnesium content. Different porosity levels were fabricated by altering the powder-to-liquid ratio at which the cements were mixed and the materials were implanted into mechanically unloaded femoral defects in sheep for up to 10 months. While the higher-porosity brushite cement quantitatively transformed into crystalline octacalcium phosphate after 10 months, slowing down cement resorption, a lower-porosity brushite cement modification was found to be chemically stable with the absence of reprecipitate formation and minor cement resorption from the implant surface. In contrast, struvite-forming cements were much more degradable due to the absence of mineral reprecipitates and a nearly quantitative cement degradation was found after 10 months of implantation.

  17. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  18. Laboratory development and field application of novel cement system for cementing high-temperature oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, X.; Zhang, H.; Li, Y.; Yang, Y. [SINOPEC, Beijing (China); Shan, H.; Xiao, Z. [OPT, Beijing (China)

    2010-07-01

    The challenges that oil and gas well engineers face when cementing mid-to-high temperature exploration oil and gas wells were discussed. A newly developed cement system with an effective laminar-flow spacer was presented along with case histories that document the system's effectiveness for cementing high temperature exploration wells. The problems associated with cementing high temperature exploration wells include high bottom hole static temperature; very low pump rates; and very long job times. These challenges contribute to the operational risks during cement slurry placement in the wellbore as well as during cement sheath setting during the life of the well. The new cement formulation presented in this paper addresses these challenges. Eight jobs have been completed in the field with much success. The combination of a new retarder and fluid loss control additive improves the system performance considerably in terms of low fluid loss rate, minimal free water, proper rheology, predictable thickening time, high resistance to salt contaminations and no adverse effect on set cement strength. The drilling muds are effectively displaced by the laminar flow spacer, thus improving the cementing bond. 9 refs., 5 tabs., 6 figs.

  19. Stabilization effects of surplus soft clay with cement and GBF slag

    Institute of Scientific and Technical Information of China (English)

    LU Jiang; Chirdchanin MODMOLTIN; Katsutada ONITSUKA

    2004-01-01

    Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.

  20. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  1. The effect of hyaluronic acid on brushite cement cohesion.

    Science.gov (United States)

    Alkhraisat, M H; Rueda, C; Mariño, F T; Torres, J; Jerez, L B; Gbureck, U; Cabarcos, E L

    2009-10-01

    The improvement of calcium phosphate cement (CPC) cohesion is essential for its application in highly blood perfused regions. This study reports the effectiveness of hyaluronic acids of different molecular weights in the enhancement of brushite cement cohesion. The cement was prepared using a powder phase composed of a mixture of beta-tricalcium phosphate and monocalcium phosphate monohydrate, whereas the liquid phase was formed by 0.5M citric acid solution modified by the addition of hyaluronic acid of different molecular weights. It was found that medium and high molecular weight hyaluronic acid enhances the cement cohesion and scarcely affects the cement mechanical properties. However, concentrations >0.5% (w/v) were less efficient to prevent the cement disintegration. It is concluded that hyaluronic acid could be applied efficiently to reduce brushite cement disintegration.

  2. Development of monetite-nanosilica bone cement: a preliminary study.

    Science.gov (United States)

    Zhou, Huan; Luchini, Timothy J F; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2014-11-01

    In this paper, we reported the results of our efforts in developing DCPA/nanosilica composite orthopedic cement. It is motivated by the significances of DCPA and silicon in bone physiological activities. More specifically, this paper examined the effects of various experimental parameters on the properties of such composite cements. In this work, DCPA cement powders were synthesized using a microwave synthesis technique. Mixing colloidal nanosilica directly with synthesized DCPA cement powders can significantly reduce the washout resistance of DCPA cement. In contrast, a DCPA-nanosilica cement powder prepared by reacting Ca(OH)2 , H3 PO4 and nanosilica together showed good washout resistance. The incorporation of nanosilica in DCPA can improve compressive strength, accelerate cement solidification, and intensify surface bioactivity. In addition, it was observed that by controlling the content of NaHCO3 during cement preparation, the resulting composite cement properties could be modified. Allowing for the development of different setting times, mechanical performance and crystal features. It is suggested that DCPA-nanosilica composite cement can be a potential candidate for bone healing applications.

  3. Development of fluorapatite cement for dental enamel defects repair.

    Science.gov (United States)

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  4. The contemporary cement cycle of the United States

    Science.gov (United States)

    Kapur, A.; Van Oss, H. G.; Keoleian, G.; Kesler, S.E.; Kendall, A.

    2009-01-01

    A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000-2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement. ?? 2009 Springer Japan.

  5. Effect of silica gel on the cohesion, properties and biological performance of brushite cement.

    Science.gov (United States)

    Alkhraisat, Mohammad Hamdan; Rueda, Carmen; Jerez, Luis Blanco; Tamimi Mariño, Faleh; Torres, Jesus; Gbureck, Uwe; Lopez Cabarcos, Enrique

    2010-01-01

    The cohesion of calcium phosphate cements can be improved by the addition of substances to either the solid or liquid phase during the setting reaction. This study reports the effect of silica gel on brushite cement cohesion. The cement was prepared using a mixture of beta-tricalcium phosphate (beta-TCP) and monocalcium phosphate monohydrate as the solid phase, while the liquid phase comprised carboxylic acids silica gel. This cement presents a shorter final setting time (FST), better cohesion and higher amount of unreacted beta-TCP than the cement prepared without silica gel. Furthermore, in vivo experiments using rabbits as an animal model showed that after 8 weeks of implantation cements modified with silica gel showed a similar new bone formation volume and more remaining graft in comparison with unmodified cements. Thus, the silica gel could be efficiently applied to reduce cement disintegration and to decrease the resorption rate of brushite cements.

  6. Investigating Rheological Properties of High Performance Cement System for Oil Wells

    Directory of Open Access Journals (Sweden)

    Khalil Rehman Memon

    2013-10-01

    Full Text Available The main purpose of designing cement slurry for extreme and deep environment (HPHT wells is to develop high performance cement system in well bore to achieve zonal isolation. The primary objective of cement slurry is to improve rheological properties and displacement efficiency of cement system. Oil well slurries depend on its homogeneity of additive concentrations, quality and quantity to contribute the placement and success of a well drilling cementing operation. This research study is focused on the laboratory study of the High Performance Cement System (HPCS. This investigation of cement slurry was prepared with Silica Fume (SF and excess amount of water to decrease the slurry density in order to observe the rheological properties above 120C at different concentration of SF. Results indicates that the designed cement rheological properties are directly influenced by the shear rate and shear stress on the pump-ability of the cement with the increase of the SF concentration for the rheological improvement.

  7. Sodium diethyldithiocarbamate as accelerator of the rate of copper cementation

    Directory of Open Access Journals (Sweden)

    Abeer A. El-Saharty

    2015-12-01

    Full Text Available The effects of Cu2+ ion concentration and temperature on the cementation rate of copper from copper sulphate on zinc and the effect of additives of the organic compound “sodium diethyldithiocarbamate” (NaDDC were studied. It was noticed that the cementation increases significantly by increasing the concentrations of NaDDC. The rate of cementation increased by 58.58−100.31%. Our data showed that sodium diethyldithiocarbamate reacts with the Cu2+ solution giving a complex of copper diethyldithiocarbamate, which enhances the rate of cementation.

  8. Low-cycle fatigue of surgical cements

    Directory of Open Access Journals (Sweden)

    A. Balin

    2007-01-01

    Full Text Available Purpose: In case when surgical cement is used to fix endoprostheses of joints the fatigue character of mechanicalinterraction in the cement seems to be a significant importance. The paper suggests to adapt the research methodof low cycle fatigue for modelling the loads on surgical cements in an artificial hip joint. Surgical cements havealso been modified in order to improve their functional properties.Design/methodology/approach: Low cycle fatigue tests were conducted on samples made from Palamedcement without an addition and on samples modified with glassy carbon and titanium. The tests were conductedon a servohydraulic fatigue testing machine, MTS-810, with displacement control.Findings: Fatigue tests proved viscoelastic character of all the tested materials. During the fatigue tests, thephenomenon of stress cyclic relaxation was observed.Research limitations/implications: Modelling the loadings of cement in endoprostheses of joints with the lowcycle fatigue method takes into account all high value stresses, while cement is being used for endoprosthesesfor many years in the conditions of random stress and deformation courses. Therefore the obtained stress anddeformation values are bigger than those which would have been obtained in real conditions in the same time.Practical implications: The low cycle fatigue tests carried out showed how important is the factor of timefor the behavior of surgical cement in the conditions of changeable loadings. This fact is essential to assessits usability for endoprosthesoplasty of joints, specially of a hip joint. Post deformation return which is acharacteristic feature for material viscoelasticity enables its regeneration conditioning expected durability ofendoprosthesis of joints.Originality/value: Low cycle fatigue testing method for modelling of loads on surgical cement in artificial hipjoint enables to carry out the tests in a shorter period of time.

  9. Characteristics of Portland blast-furnace slag cement containing cement kiln dust and active silica

    Directory of Open Access Journals (Sweden)

    A. Abdel Rahman

    2016-09-01

    Full Text Available This investigation dealt with the effect of active silica, silica fume (SF or rice husk ash (RHA, on the mechanical and physico-chemical characteristics of the hardened blended cement pastes made of Portland blast-furnace slag cement (PSC containing cement kiln dust (CKD cured under normal conditions. Two blends made of PSC and CKD, improved by SF and two blends made of PSC and CKD improved by RHA were investigated. Hardened blended cement pastes were prepared from each cement blend by using water/cement ratio (W/C of 0.30 by weight and hydrated for various curing ages of 1, 3, 7, 28 and 90 days at the normal curing conditions under tap water at room temperature. Each cement paste was tested for its physico-chemical and mechanical characteristics; these characteristics include: compressive strength and kinetics of hydration. The phase composition of the formed hydration products was identified using X-ray diffraction (XRD and differential thermal analysis (DTA. It was found that the partial substitution of PSC by 10% and 15% of CKD is associated with an increase in the rate of hydration and a subsequent improvement of compressive strength of hardened PSC–CKD pastes. In addition, the replacement of PSC, in PSC–CKD blends, by 5% active silica was accompanied by further improvement of the physico-mechanical characteristics of the hardened PSC–CKD pastes.

  10. Structure and Property Characterization of Oyster Shell Cementing Material

    Institute of Scientific and Technical Information of China (English)

    钟彬杨; 周强; 单昌锋; 于岩

    2012-01-01

    Oyster shell powder was used as the admixture of ordinary portland cement.The effects of different addition amounts and grinding ways on the strength and stability of cement mortar were discussed and proper addition amount of oyster shell powder was determined.The structure and property changes of cementing samples with different oyster shell powder contents were tested by XRD and SEM means.The results revealed that compressive and rupture strengths of the sample with 10% oyster shell powder was close to those of the original one without addition.Stability experiment showed that the sample prepared by pat method had smooth surface without crack and significant expansion or shrinkage after pre-curing and boiling,which indicated that cementing material dosed with oyster shell powder had fine stability.XRD and SEM observation showed that oyster shell independently exists in the cementing material.

  11. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  12. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Y.C.P RAMANA BABU

    2013-04-01

    Full Text Available India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO and carbon dioxide (CO2 are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green house gases (i.e., CO and CO2 and also saves lot of money in the long run process. A small amount of these gases in environment can cause major problems over time. Use of white cement in composite pavement design where there is heavy traffic loads are acting as well as number of vehicles are more such as junctions, bus stops, check posts etc., can perform better and acts asenvironment friendly. Its light colour reflects more than bituminous pavement so that it can be easily identified and avoid accidents to some extent. White cement helps to lower the average bus stop, junction temperature providing comfort to the people because it has high solar reflectance there by reducing “urban heat island” effect. In addition to this it has some more advantages which increase the sustainability, durability and workability of the pavements.

  13. Tympanoplasty with ionomeric cement

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those...... of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy...

  14. Cement and concrete

    Science.gov (United States)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  15. POZZOLAN AND CEMENTS WITH POZZOLAN

    OpenAIRE

    Hasan KAPLAN; Hanifi BİNİCİ

    1995-01-01

    Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, ce...

  16. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  17. Beta-tricalcium phosphate release from brushite cement surface.

    Science.gov (United States)

    Alkhraisat, M Hamdan; Mariño, F Tamimi; Retama, J Rubio; Jerez, L Blanco; López-Cabarcos, E

    2008-03-01

    Different in vivo studies demonstrated that brushite cements are biocompatible, bioresorbable, and osteoconductive. However, the decay of brushite cements has been scarcely studied even though it may be of great concern for clinical applications in highly blood-perfused regions. This work was elaborated to elucidate factors that determine brushite cement surface disintegration. For that, brushite cements were modified using in their preparation different aqueous solutions of phosphoric, glycolic, tartaric, and citric acids in concentrations that were reported to improve the cement properties. Two-viscosity enhancing polysaccharides, chondroitin-4 sulfate and hyaluronic acid, were also assayed. Thereafter, pre- and set cement samples were immersed in distilled water for 24 h. The cement-solid weight loss, microstructure, liquid phase viscosity, mean size of the released particles, and zeta potential were analyzed using X-ray diffraction, FTIR spectroscopy, light scattering, scanning electron microscopy and optical microscopy. It was found that the particles released from the cement surface were beta-TCP, and their amount depends on the carboxylic acid used in the preparation of the cement. The addition of hyaluronic acid and chondroitin-4 sulfate decreased the amount of released particles from the surface of the set brushite cement made with citric acid. Furthermore, the hyaluronic acid increased significantly the viscosity of the citric acid solution and the cement paste prepared with this liquid phase showed a pronounced step down in particle release. In this study, we showed that the water solubility of calcium carboxylate and the viscosity of mixing liquid may dictate the superficial disintegration of brushite cements.

  18. SODIUM CITRATE INFLUENCE ON FORMATION OF CEMENT STONE IN THE ALUMINOUS BINDER

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2016-01-01

    Full Text Available The paper deals with the effect of sodium citrate on the formation of a cement stone in the aluminous binder. Formation of cement stone framework in cement hydraulic binder is accompanied with complicated physical and chemical processes of interphase interactions and dispersion, these processes are predicated on qualitative and quantitative composition of the cement mortar, continuous changes in its properties from preparation stage till curing. Addition of sodium citrate to tempering water enhances hydration of both Portland cement and calcium aluminate cement. Process pertaining to an increase of cement hydration rate is considered as a consequence of destruction in surface formations and exclusion of damping effect in respect of hydration rate and hydrolysis of products resulted from interaction of clinker material with tempering. It has been established that sodium citrate makes it possible to control processes of hydration, hydrolysis, binding and curing for cement mass. High degree of hydration of aluminous cement in the presence of sodium citrate provides fast binding and curing of binder, low porosity and rather high compression breaking strength of cement stone for all curing stages. An increase in concentration of sodium citrate in cement mixture up to 10 % of the cement mass exerts an influence not only on the process of cement mortar liquefaction, reduction of time for cement mass setting and hardening but also increases compression strength of cement stone. An analysis of the structure for cleavage surface of cement stone gives ground to declare that the addition of sodium citrate provides cement stone sealing and reduces its water absorption.

  19. Factors affecting bond cement across casing leak zones in oil and gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Mohamed; Edbeib, Said [Al-Fateh University, Tripoli (Libyan Arab Jamahiriya). Dept. of Petroleum Engineering

    2004-07-01

    Casing leaks have been a major concern to the oil industry because of their effect on lowering the production rate in many oil and gas wells. The leaks are the result of deterioration of the casing in the well, which is caused by severe corrosion due to the contact of the casing with high salinity foreign fluid. The objective of this study is to determine the factors influencing the mechanical properties of the hardened cement opposite the casing leak zones. This study is conducted by laboratory measurements of the compressive strength of the hardened cement when the cement slurry was mixed with different percentages of formation water and different concentrations of different cement additives. The results of this study indicate that the compressive strength readings obtained from the cement bond log and the cement evaluation tool against the casing leak zones are lower than those readings recorded in adjacent formations. The low cement compressive strength values observed across casing leak zones are due to the contamination of the cement with saline water present in these formations which, in turn, effects the hardening properties of the cement. The experimental results indicated that the salinity of the formation water when mixed with the cement slurry in the presence of cement additives, decreased the compressive strength of the bond cement and also decreased the thickening time of the cement slurry. It is concluded that casing leaks found in many wells observed in oil fields in Libya were due to the mixing of the cement with high salinity formation water present in the lost circulation zones. The high water salinity in these zones effects the setting time of the cement slurry which, therefore, decreased the hardening properties of the bond cement and caused cracks and channels in the hardened cement across lost circulation zones. (author)

  20. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  1. Test on Embankment Built with Hydraulic Filled Geotextile Bags of Sea Sludge with Cement Additive%吹填海泥掺水泥充灌模袋筑堤试验

    Institute of Scientific and Technical Information of China (English)

    吴月龙; 朱方方; 陈东东; 张红

    2014-01-01

    Embankment construction is an essential part of the reclamation ,using geotextile bags filled with reclamation sea sludge for embanking is a new method .In the field test geotextile bags filled with sea sludge which was mixed with cement was used to build the embankment .The monitoring data of the settlement ,lateral displacement and pore pressure could meet the design requirements .At the same time ,the drainage characteristics of geotextile bags and strength proper-ties of the mixture of reclamation sea sludge and cement were analyzed through model tests of different sludge weights and different cement ratio .The test results indicate that embankment using geotextile bags filled with the mixture solidifies and consolidates faster with obvious effects than that of other methods .%围堤建设是围海造陆工程中必不可少的一部分,采用充淤泥模袋筑堤是一种新兴施工方法。现场试验采用吹填海泥掺加一定比例固化剂(水泥)充填入土工模袋进行筑堤,沉降、侧向位移及孔压等监测数据均能满足设计要求。同时,通过不同泥浆比重、不同水泥掺入比的模型试验分析了模袋的排水特性、掺固化剂海泥的强度特性。试验结果显示,吹填海泥掺水泥充灌模袋筑堤工法筑堤淤泥固结快,效果明显。

  2. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  3. Influence of Temporary Cements on the Bond Strength of Self-Adhesive Cement to the Metal Coronal Substrate.

    Science.gov (United States)

    Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida

    2015-01-01

    This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (pcementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar.

  4. EVALUATION OF CEMENT THIXOTROPY FOR THE CEMENT OF OIL WELLS IN AREAS WITH LOSSES: EFFECT OF PLASTER AND DAIRY OF HIGH FURNACES

    Directory of Open Access Journals (Sweden)

    T. Bouziani

    2010-12-01

    Full Text Available Cementing of oil and gas wells can be a very delicate operation. Among the concerns of service companies, during this operation are the nature and conditions of the formations in well. This is the case of cementing operations in southern Algeria, specifically on the fields of In-Amen, where the formations in lost zones are naturally weak and highly permeable. In these areas, drilling fluids (muds and cements pumped will be, completely or partially lost, what we call "lost circulation". Thixotropic cements are useful to overcome lost circulation problems. They are characterized by a special rheological behavior, allowing it to plug lost zones when they are pumped. Our work aims to assess the thixotropy of cements perapred with two types of cement (class G Asland cement and CEM I 42.5 portland cement with the plaster, using a viscometer with coaxial cylinder (couette type. Moreover, the effect of blast furnace slag (LHF on the properties and thixotropic mixtures prepared was also studied. The results show that portland cement (available locally can produce mixes with higher and more stable thixotropy than the class G cement (from importation, which is a practical and economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster.

  5. 掺高 fCaO物料的水泥抗硫酸盐性的初步研究%Preliminary study on the property of sulfate resistance of cement with the addition of high f- CaO materials

    Institute of Scientific and Technical Information of China (English)

    范付忠; 冯涛; 施惠生; 赖振宇

    2001-01-01

    测试了掺入不同量的高钙粉煤灰、高 fCaO熟料、钢渣及石膏的试样抗蚀系数、质量增量和强度,结果表明,掺高 fCaO物料的水泥抗硫酸盐性与引入的 fCaO量、浸渍的硫酸盐种类和浓度有关,掺高 fCaO熟料和钢渣的水泥抗硫酸盐性优于掺高钙粉煤灰的水泥,适量石膏的掺入可改善试样的抗硫酸盐性,在实际应用中可通过控制引入的 fCaO量和掺入适量石膏来提高掺高 fCaO物料的水泥抗硫酸盐性。%Parameters as corrosion resistance ratio, the increment in quantity and strength of cement with different addition of high calcium pfa, high fCaO clinker, steel slag and gypsum were tested. The results indicate that the property of sulfate resistance of cement is associated with the amount of fCaO and the type and concentration of sulfate in the corrosive agent. The addition of high fCaO clinker and steel slag in cement possesses higher performance in the sulfate resistance compared with the addition of pfa. The introduction of proper quantity of gypsum can improve the sulfate resistance property. This property can be improved in practice through the proper introduction of fCaO and gypsum.

  6. Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions

    Institute of Scientific and Technical Information of China (English)

    熊良宵; 虞利军

    2015-01-01

    To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation, and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the 420th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.

  7. Cementing challenge in low fracture gradient zones in the San Jorge Basin Comodoro Rivadavia - Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Mercedes [Pan American Energy (Argentina); Quevedo, Manuel; Lopez, Rodrigo [Halliburton Argentina SA, Buenos Aires (Argentina)

    2008-07-01

    It is a challenge to achieve higher columns of cement to isolate low fracture gradient zones where the pore pressure has decreased. In addition, it is necessary to maintain the integrity of wells by isolating freshwater zones. This prevents fluid migration to surface and maintains the integrity of casing-cement and cement-formation bonds to prevent future corrosion. Cementing to the surface in a single-stage operation is the preferred method because it eliminates the risk of leakage from a stage tool and the possibility of insufficient linear and radial coverage by a top job. Primary cementing is a practical business investment because this can reduce the need for remedial cementing operations during the life of the well. After a technical-economic evaluation of the cement slurries, the use of lighter density cement preserving API properties is recommended to isolate the productive formations containing oil and gas. (author)

  8. White spot formation under orthodontic bands cemented with glass ionomer with or without Fluor Protector.

    Science.gov (United States)

    van der Linden, R P; Dermaut, L R

    1998-06-01

    The purpose of this study was to determine whether an additional application of Fluor Protector before band cementation with glass ionomer cement reduces white spot formation compared with band cementation with glass ionomer cement. In the in vitro study, 80 premolars were divided in half, creating a control and a test group. All specimens were divided into four different groups to simulate different clinical situations and stored in a demineralizing solution to induce white spot formation. In the in vivo investigation, 18 orthodontic patients were incorporated in the study. One lower and one upper first molar band (randomly selected) were coated with Fluor Protector and then cemented with a glass ionomer cement (test group). The other two uncoated first molars were cemented with glass ionomer cement and served as the control group. The application of Fluor Protector in combination with Aquacem did not contribute to a reduction of white spot formation underneath molar bands compared with the use of Aquacem for banding.

  9. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  10. Chloride ingress in cement paste and mortar

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O.M.; Hansen, P.F.; Coats, A.M.; Glasser, F.P.

    1999-09-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature). The measurements are modelled on Fick's law modified by a term for chloride binding. Inclusion of chloride binding significantly improves the profile shape of the modelled ingress profiles. The presence of fine aggregate and formation of interfacial transition zones at paste-aggregate boundaries does not significantly affect diffusion rates.

  11. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.

    Science.gov (United States)

    Aghyarian, Shant; Rodriguez, Lucas C; Chari, Jonathan; Bentley, Elizabeth; Kosmopoulos, Victor; Lieberman, Isador H; Rodrigues, Danieli C

    2014-11-01

    Calcium phosphate fillers have been shown to increase cement osteoconductivity, but have caused drawbacks in cement properties. Hydroxyapatite and Brushite were introduced in an acrylic two-solution cement at varying concentrations. Novel composite bone cements were developed and characterized using rheology, injectability, and mechanical tests. It was hypothesized that the ample swelling time allowed by the premixed two-solution cement would enable thorough dispersion of the additives in the solutions, resulting in no detrimental effects after polymerization. The addition of Hydroxyapatite and Brushite both caused an increase in cement viscosity; however, these cements exhibited high shear-thinning, which facilitated injection. In gel point studies, the composite cements showed no detectable change in gel point time compared to an all-acrylic control cement. Hydroxyapatite and Brushite composite cements were observed to have high mechanical strengths even at high loads of calcium phosphate fillers. These cements showed an average compressive strength of 85 MPa and flexural strength of 65 MPa. A calcium phosphate-containing cement exhibiting a combination of high viscosity, pseudoplasticity and high mechanical strength can provide the essential bioactivity factor for osseointegration without sacrificing load-bearing capability.

  12. Performance of cemented coal gangue backfill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; WANG Xin-min

    2007-01-01

    Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong,and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars.The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue higher middle and long term comprehensive strength.

  13. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  14. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  15. Evolución de la Porosidad de Pastas de Cemento Portland por la Incorporación de una Puzolana Natural Evolution of Porosity in Portland Cement Pastes by addition of Natural Pozzolan

    Directory of Open Access Journals (Sweden)

    J.L. Fernández

    2004-01-01

    Full Text Available Se ha determinado la evolución que se produce en la porosidad de las pastas elaboradas con cemento Portland para uso general (CPN IRAM 50000, al incorporarle una puzolana natural de la región, en distintas proporciones y en función del tiempo de curado. El ensayo de porosidad se realiza según Norma API-RP-40, basada en la ley de Boyle, por la cual se determina el volumen de los vacíos de las pastas. Este se determina por diferencia entre el volumen total del gas a una presión P1 de 6.9.10(5 Pa y el volumen calibrado de una celda donde se encuentra la muestra a presión atmosférica P0. Posteriormente, se ingresa en la curva de calibración del porosímetro y se obtienen los volúmenes de sólido de las mezclas. Como conclusión se demuestra que la porosidad de las pastas disminuye con el aumento de la cantidad de cemento reemplazado y del tiempo de curadoA determination was made of the evolution of porosity in Portland cement pastes for general usage (CPN IRAM 50000 by incorporating different proportions of natural pozzolan from the region, and as a function of curing time. The API-RP-40 norm based on Boyle´s law was used to measure the porosity, determining the paste effective void volume. This is done by calculating the difference between the total gas space at a pressure P1 of 6,9 .10(5 Pa and the calibrated volume of the cell at atmospheric pressure P0. Then the paste volume was obtained by porosimeter calibration curves. In conclusion, this study demonstrates that the porosity of pastes decreases as a function of the amount of cement replaced and time of cure

  16. Effect of supplementary cementing materials on the concrete corrosion control

    Energy Technology Data Exchange (ETDEWEB)

    Mejia de Gutierrez, R.

    2003-07-01

    Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs.

  17. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  18. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  19. Hidration kinetics study of tlie mixed cements

    Directory of Open Access Journals (Sweden)

    Duque Fernández, Gabriel . L

    1993-09-01

    Full Text Available A study of the hydration process of cements with 10% and 20% addition of a tuff from "Las Carolinas" quarry (Cienfuegos, Cuba by different methods was done. The results obtained by different methods showed a good agreement. It was proved an increment of the hydration products, an acceleration of alite hydration and a swelling of the fixed water in mixed cements. The resistance of the cement with 10% addition is similar to that of the pure cement for ages of 28 days, whereas with 20% addition they were similar only after 180 days.

    Se hizo un estudio por diferentes métodos de la hidratación de cementos con 10% y 20% de adición de una toba del yacimiento "Las Carolinas", en la provincia de Cien fuegos (Cuba. Hubo una buena correspondencia entre las diferentes técnicas de análisis utilizadas, comprobándose que en los cementos mezclados se incrementan los productos de hidratación, se acelera la hidratación de la alita, aumenta el contenido de agua fija, así como que la resistencia del cemento, con hasta 10% de adición, es similar al cemento puro para tiempos de curado de 3 y 28 días, mientras que con 20% de adición sólo se igualan después de los 180 días.

  20. Macrodefect-free cements: chemistry and impact of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M.; Galikova, L.; Mojumdar, S.C. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry

    2002-07-01

    To control and improve the moisture resistance is a long felt necessity of the MDF cements, chemical approaches together with material science contribute to the progress. Present results support our previous hypothesis about the impregnation or barier effect of poly-P on the MDF cements and enlarge the validity of this hypothesis to the blends of SAFB clinker, Portland cement and HPMC or poly-P. Compactness of Al(Fe)-O-P cross-links increases the intrinsic density and, consequently, impregnates the system against the uptake of moisture. In a sense of the theory of functional polymers, the intensity of grafting of polymer chains to the surface of grains increases if poly-P is used and with the prolonged processing. The scope of moisture attack on MDF cements synthesized from the blends of SAFB clinker, Portland cement and HPMC or poly-P, as quantified using mass changes as measure of moisture resistance, is strongly affected by the nature of polymer. The addition of Portland cement in the raw mix improves the moisture resistance of MDF cements. Thermal analysis shows: (i) the irreversible mass gain of 3 - 10% is arisen from carbonation and secondary hydration of cement grains and (ii) the Al(Fe)-O-C(P) cross-links remain intact in the moist environment at either ambient or extreme levels of humidity. (orig.)

  1. Preparation and mechanical properties of graphene oxide: cement nanocomposites.

    Science.gov (United States)

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1-2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.

  2. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  3. UTILIZATION OF AGARWOOD DISTILLATION WASTE IN OILWELL CEMENT AND ITS EFFECT ON FREE WATER AND POROSITY

    Directory of Open Access Journals (Sweden)

    Arina Sauki

    2013-10-01

    Full Text Available The intent of this research is to utilize the waste produced by distillation process of Agarwood oil and convert it into a profitable oilwell cement additive. Common problem during oilwell cementing is free wáter separation. This problem could weaken cement at the top, gas migration problem and non uniform density of cement slurry that are even worst in cementing deviated well. Another concern on cementing design is the porosity of the hardened cement. If the cement is too porous, it can lead to gas migration and casing corrosion. All tests were conducted according to API Specification-10B. Free water test was determined at different concentrations of Agarwood Waste Additive (AWA, different inclination angles and different temperatures. Based on the findings, it was observed that zero free water was produced when 2% BWOC of AWA was used at all angles. The findings also revealed that AWA can maintain good thermal stability as it could maintain zero free water at increased temperature up to 60˚C.  The porosity of AWA cement was comparable with standard API neat cement as the porosity did not differ much at 2% BWOC of AWA. Therefore, it can be concluded that the AWA is suitable to  be used as an additive in oil well cement (OWC  with 2% BWOC is taken as the optimum concentration.

  4. 水泥基整体防水复合材料在弯曲应力作用下渗透性研究%Study on the permeability of cement-based materials addition of silane emulsion under crack environment

    Institute of Scientific and Technical Information of China (English)

    赵炜; 马志鸣; 黄巍林

    2014-01-01

    It was prepared within the cement-based materials specimen addition with silane emulsion.Through the four-point bending test,the specimen was measured at different stress,different strain resistant to water resistance.The result shows that the cement-based ma-terials specimen addition with silane emulsions have a good performance on penetration resistance compared with the blank sample.Even though under the high strain environment,the sample could resistance to water penetration,which promotes the durability of the concrete.%向水泥基复合材料中添加硅烷乳液制备整体防水试件,通过四点弯曲试验,测定试件在不同应力、应变的多缝开裂环境下抗水渗透性能。试验结果表明:对比未掺入硅烷乳液的空白试件,水泥基整体防水试件具有良好的抗水渗透性能,即使在较高的应变环境下,仍能有效的抵抗水分的侵入,从而提高了试件的耐久性能。

  5. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  6. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  7. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  8. Gas migration through cement slurries analysis: A comparative laboratory study

    Directory of Open Access Journals (Sweden)

    Arian Velayati

    2015-12-01

    Full Text Available Cementing is an essential part of every drilling operation. Protection of the wellbore from formation fluid invasion is one of the primary tasks of a cement job. Failure in this task results in catastrophic events, such as blow outs. Hence, in order to save the well and avoid risky and operationally difficult remedial cementing, slurry must be optimized to be resistant against gas migration phenomenon. In this paper, performances of the conventional slurries facing gas invasion were reviewed and compared with modified slurry containing special gas migration additive by using fluid migration analyzer device. The results of this study reveal the importance of proper additive utilization in slurry formulations. The rate of gas flow through the slurry in neat cement is very high; by using different types of additives, we observe obvious changes in the performance of the cement system. The rate of gas flow in neat class H cement was reported as 36000 ml/hr while the optimized cement formulation with anti-gas migration and thixotropic agents showed a gas flow rate of 13.8 ml/hr.

  9. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  10. Cementing a wellbore using cementing material encapsulated in a shell

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  11. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  12. Cement og politik

    DEFF Research Database (Denmark)

    Lund, Joachim

    2012-01-01

    as well as in the public sphere. Most of the extensive job creating measures he carried out as a minister for public works necessarily involved the use of great amounts of cement – the primary produce of F.L. Smidth & Co. Gunnar Larsen thus became an easy target for Communist propaganda, picturing him...... of the Soviet Union (including an F.L. Smidth & Co. cement plant in former Estonia). He spent the last 15 months of the occupation in Sweden and was arrested after having returned to Copenhagen in May, 1945. Although a Copenhagen city court prison sentence for economic collaboration was reversed, he had...

  13. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.

    Science.gov (United States)

    Huan, Zhiguang; Chang, Jiang

    2009-05-01

    Bioactive composite bone cements were obtained by incorporation of tricalcium silicate (Ca3SiO5, C3S) into a brushite bone cement composed of beta-tricalcium phosphate [beta-Ca3(PO4)2, beta-TCP] and monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM], and the properties of the new cements were studied and compared with pure brushite cement. The results indicated that the injectability, setting time and short- and long-term mechanical strength of the material are higher than those of pure brushite cement, and the compressive strength of the TCP/MCPM/C3S composite paste increased with increasing aging time. Moreover, the TCP/MCPM/C3S specimens showed significantly improved in vitro bioactivity in simulated body fluid and similar degradability in phosphate-buffered saline as compared with brushite cement. Additionally, the reacted TCP/MCPM/C3S paste possesses the ability to stimulate osteoblast proliferation and promote osteoblastic differentiation of the bone marrow stromal cells. The results indicated that the TCP/MCPM/C3S cements may be used as a bioactive material for bone regeneration, and might have significant clinical advantage over the traditional beta-TCP/MCPM brushite cement.

  14. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  15. Effects of Cement Addition on the Slag Resistance of Alumina-spinel Castables%水泥对刚玉-尖晶石浇注料抗侵蚀性影响研究

    Institute of Scientific and Technical Information of China (English)

    贾全利; 叶方保; 钟香崇

    2011-01-01

    以板状刚玉为骨料,电熔白刚玉、电熔尖晶石、Al2O3微粉和纯铝酸钙水泥为基质,研究了纯铝酸钙水泥加入量对刚玉-尖晶石浇注料抗侵蚀性能的影响.结果表明:纯铝酸钙水泥加入量为4%时,浇注料的侵蚀、渗透指数最大,抗渣侵蚀性能最差;水泥含量≥6%时抗渣侵蚀、渗透指数明显下降,抗渣性逐渐改善.水泥加入量影响浇注料的抗侵蚀性能主要与基质中的物相组成和显微结构有关.随水泥加入量的增加,水泥中的CaO与Al2O3反应形成六铝酸钙,基质中刚玉的含量减少;渣中的CaO与刚玉颗粒反应形成六铝酸钙,产生体积膨胀堵塞气孔,抑制了渣的渗透,使得抗渣侵蚀性能得到改善.%Alumina-spinel castables were prepared by using tabular alumina as aggregates, fused white corundum, fused spinel, ultra-fine alumina and calcium aluminate cement (CAC) as matrix. Effect of calcium aluminate cement on the slag resistance of alumina-spinel castables was investigated. The results show that the penetration and corrosion index of specimens increase with increas in CAC content from 2% to 4% ,indicating that slag resistance of specimens deteriorated. Slag resistance of castables is improved with increase in GAG content from 4% to 10%. The influence of CAC on the slag resistance of specimens is mainly correlated to the phase compositions and mierostructure of matrix in castables. The calcium hexaluminate(CA6) formed by CaO reacting with Al203 ,which leads to decrease the content of alumina in the matrix; CaO in slag reacts with alumina aggregates to form GA6, which results in volume expansion and pore size reduction, and consequently prevent slag penetration into the matrix.

  16. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  17. EVALUATION OF CHEMICALS INCORPORATED WOOD FIBRE CEMENT MATRIX PROPERTIES

    Directory of Open Access Journals (Sweden)

    MST. SADIA MAHZABIN

    2013-08-01

    Full Text Available Wood fibre cement (WFC boards are well established commercially and widely used in many developed countries. The combination of the properties of two important materials, i.e., cement, and previously treated fibrous materials like wood or agricultural residues; which made up the board, contributed in the performance of the board as building material. In this work, the WFC matrix (WFCM samples are produced to determine the physical properties of WFCM such as the density and water absorption. The wood fibres are incorporated/treated with three different chemical additives; calcium formate (Ca(HCOO2, sodium silicate (Na2.SiO3 and magnesium chloride (MgCl2 prior to mixing with cement. The mechanical properties of the WFCM, with or without chemicals treatment of fibres, such as the compressive strength and flexural strength are evaluated. Three wood/cement ratios (50:50, 40:60, 30:70 are used and the percentages of water and accelerator were 80% and 3% based on the cement weight, respectively. Three moisture-conditioned samples; accelerated aging, dry and wet conditions are used for flexural test. The results reveal that the wood/cement ratio, chemical additives and moisture content had a marked influence on the physical and mechanical properties of the matrix. Finally, it has been shown that the 40:60 wood/cement ratio samples with prior chemicals treatment of the fibres that undergo accelerated aging conditioning achieve higher strength then dry and wet-conditioned boards.

  18. Global warming impact on the cement and aggregates industries

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, J. (Cordi-Geopolymere SA, Saint-Quentin (France). Geopolymer Inst.)

    1994-06-01

    CO[sub 2] related energy taxes are focusing essentially on fuel consumption, not on actual CO[sub 2] emission measured at the chimneys. Ordinary Portland cement, used in the aggregates and industries, results from the calcination of limestone and silica. The production of 1 ton of cement directly generates 0.55 tons of chemical-CO[sub 2] and requires the combustion of carbon-fuel to yield an additional 0.40 tons of CO[sub 2]. The 1987 1 billion metric tons world production of cement accounted for 1 billion metric tons of CO[sub 2], i.e., 5% of the 1987 world CO[sub 2] emission. A world-wide freeze of CO[sub 2] emission at the 1990 level as recommended by international institutions, is incompatible with the extremely high cement development needs of less industrialized countries. Present cement production growth ranges from 5% to 16% and suggests that in 25 years from now, world cement CO[sub 2] emissions could equal 3,500 million tons. Eco-taxes when applied would have a spectacular impact on traditional Portland cement based aggregates industries. Taxation based only on fuel consumption would lead to a cement price increase of 20%, whereas taxation based on actual CO[sub 2] emission would multiply cement price by 1.5 to 2. A 25--30% minor reduction of CO[sub 2] emissions may be achieved through the blending of Portland cement with replacement materials such as coal-fly ash and iron blast furnace slag.

  19. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  20. Cements with low Clinker Content

    Science.gov (United States)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  1. Chromium speciation in hazardous, cement-based waste forms

    Science.gov (United States)

    Lee, J. F.; Bajt, S.; Clark, S. B.; Lamble, G. M.; Langton, C. A.; Oji, L.

    1995-02-01

    XANES and EXAFS techniques were used to determine the oxidation states and local structural environment of Cr in cement-based waste forms. Results show that Cr in untreated Portland cement formulations remains as toxic Cr 6+, while slag additives to the cement reduce Cr 6+ to the less toxic, less mobile Cr 3+ species. EXAFS analysis suggests that the Cr 6+ species is surrounded by four nearest oxygen atoms, while the reduced Cr 3+ sp ecies is surrounded by six oxygen atoms. The fitted CrO bond lengths for Cr 6+ and Cr 3+ species are around 1.66 and 1.98 Å, respectively.

  2. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  3. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  4. Activated blended cement containing high volume coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Shi, C.J.; Qian, J.S. [CJS Technology Inc., Burlington, ON (Canada)

    2001-10-01

    This study investigated the strength and equilibrium water extraction of blended cement containing high volume coal fly ash and activator CaCl{sub 2}. The addition of CaCl{sub 2} increased the strength of cement very significantly. Equilibrium water extraction indicated that the addition of CaCl{sub 2} decreased the pH of the pore solution, but accelerated the pozzolanic reactions between coal fly ash and lime, which became more obvious when the volume of fly ash in the cement was increased from 50-70%. Results from both strength and water extraction testing could conclude that CaCl{sub 2} is a good activator for the activation of pozzolanic reactivity of fly ash and for the improvement of early properties of fly ash cement and concrete.

  5. Hydrothermal Characteristics of Blended Cement Pastes Containing Silica Sand Using Cement Kiln Dust as an Activator

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The hydrothermal reactivity of silica sand was studied using cement kiln dust (CKD) as an activator in addition to the Portlandcement fraction of El-Karnak cement (a blend of ordinary Portland cement and ground sand). Autoclaved El-Karnak cementpastes were studied at pressures of 0.507, 1.013 and 1.520 MPa of saturated steam with respect to their compressive strength,kinetics of hydrothermal reaction and the phase composition of the formed hydrates. The role of CKD in affecting thephysicochemical and mechanical properties of El-Karnak cement pastes was studied by autoclaving of several pastes containing5, 7.5, 10 and 20% CKD at a pressure of 1.013 MPa of saturated steam. CKD was added either as a raw CKD (unwashed) orafter washing with water (washed CKD). The results of these physicochemical studies obtained could be related as much aspossible to the role of CKD (raw or washed) in affecting the hydrothermal reactivity of silica sand in El-Karnak cement pastes.

  6. High-temperature cementing materials for completion of geothermal wells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalyoncu, R.S.; Snyder, M.J.

    1981-05-01

    Several portland cement types, oil well cements, and various additives and admixtures were evaluated during the course of development of a number of promising compositions suitable for geothermal applications. Among the cements and various materials considered were portland cement Types I, III, and V; oil well cement Classes G, H, and J; and additives such as silica flour, blast furnace slags, pozzolan, hydrated lime, perlite, and aluminum phosphate. Properties of interest in the study were thickening time, compressive strength, cement-to-metal bond strength, and effects of the cements on the corrosion of steel well casings. Testing procedures and property data obtained on a number of compositions are presented and discussed. Several cementing compositions comprised of Class J oil well cement, pozzolan, blast furnace slags, and silica flour were found to possess properties which appear to make them suitable for use in geothermal well completions. Five of the promising cementing compositions have been submitted to the National Bureau of Standards for additional testing.

  7. Performance analysis of magnesium phosphate cement mortar containing grinding dust

    OpenAIRE

    2009-01-01

    Magnesium phosphate cement materials are formed by reacting magnesium oxide with water-soluble phosphates such as monoammonium dihydrogen phosphate (ADP), which solidifies at ambient temperature through the formation of hydrated phases in the material. Cylindrical specimens of magnesium phosphate cement were molded and varying amounts (0 to 30% weight) of grinding dust were added to the ceramic matrices. The influence of the addition of grinding dust on the characteristics of the mortars in t...

  8. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  9. Mechanical and fracture behavior of calcium phosphate cements

    Science.gov (United States)

    Jew, Victoria Chou

    compared to in water. Based on observed trends, mechanisms of stress corrosion cracking are considered. Strengthening methods using proteins as second phase additions to HA cement were also investigated. Critical flexure strength of these composites increases to a limited extent, primarily due to bridging of the fracture surfaces by organic phases. Despite the increase for critical values, stress corrosion crack growth of cement-albumin composites remains similar to unreinforced cement. This discrepancy between critical and subcritical behavior is discussed.

  10. Plastic and free shrinkages cracking of blended white cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, A.M.; White, T.; Ariaratnam, S.; Knutson, K. [Housing and Building National Research Center, Cairo (Egypt)

    2007-07-01

    This paper presented the results of a study that investigated the plastic and free shrinkages of white portland cement concrete, concrete incorporating silica fume (SF) and concrete incorporating metakaolin (MK) compared to regular plain gray portland cement concrete. An experimental program was designed to investigate the plastic and free shrinkage of concrete containing gray and white blended cement. The paper discussed the experimental details including materials and cement types such as SF, MK, aggregate, and superplasticizer as well as concrete mixtures and specimen preparation including mixture proportions, preparation and curing of concrete specimens, and test specimens. It also presented the determination of concrete properties such as slump of fresh concrete, plastic shrinkage, and dry shrinkage. Test results and discussion of results were also provided. It was concluded that plain white portland cement concrete showed less number of plastic cracks but slightly higher average crack width compared to other concrete mixtures with MK or SF. In addition, free shrinkage behavior of plain white cement and plain gray cement matrix was comparable. 23 refs.

  11. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  12. Porous and adsorption properties of hydrated cement paste

    Directory of Open Access Journals (Sweden)

    Marina Biljana S.

    2004-01-01

    Full Text Available Adsorption isotherms of benzene on hydrated cement pastes prepared by cement ground with and without the addition of grinding aids, triethanol amine (TEA and ethylene glycol (EG were investigated. The adsorption isotherms were interpreted by means of the Dubinin-Astakhov (DA and Dubinin-Radushkevich-Stoeckli (DRS equations. The microporous structure of cement gel (C-S-H in the cement pastes, and changes in the Gibbs free energy of adsorption were determined. The mechanical properties of the cement pastes were also measured. It was evident that pastes with additives had different parameters of the DRS and DA equations: the volume and dimensions of the gel pores, the distribution of the dimensions, the characteristic energy of adsorption, and the change in the Gibbs free energy of adsorption. The mechanical properties were also different. The dispersity of the additive-containing ground cements had a favorable effect on the hydration processes. When applying TEA, it was also necessary to analyze its influence on the chemical behavior of hydration in the starting period.

  13. DESIGN OF CEMENT COMPOSITES WITH INCREASED IMPERMEABILITY

    Directory of Open Access Journals (Sweden)

    Fedyuk Roman Sergeevich

    2016-05-01

    Full Text Available The paper deals with the development of composite binders for producing concrete with improved characteristics of gas, water and vapor permeability. The authors investigate the processes of composite materials formation in order of decreasing scale levels from macro to nanostructures. The criteria for optimization of the volume of dispersed additives in concrete are offered. The authors theoretically studied the technological features of the formation of hydrated cement stone structure. A positive effect of nanodispersed additives on the structure and physico-mechanical properties of cement composite materials are predicted. Thanks to its improved features, such as good ratio of strength and body density, high density and lifetime, the modified concrete may be used when solving various practical tasks of the construction branch.

  14. Advances in Glass Ionomer Cements

    OpenAIRE

    KAYA, Dt. Tuğba; TİRALİ, Yard. Doç. Dr. Resmiye Ebru

    2013-01-01

    In recent years there have been a number of innovations and developments with respect to glass ionomer cements and their applications in clinical dentistry. This article considers some of the recent outstanding studies regarding the field of glass ionomer cement applications, adhesion and setting mechanisms, types, advantage and disadvantages among themselves and also to enhance the physical and antibacterial properties under the title of 'Advances in Glass Ionomer Cements'. As their biologic...

  15. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  16. Development of LiCl-containing calcium aluminate cement for bone repair and remodeling applications.

    Science.gov (United States)

    Acuña-Gutiérrez, I O; Escobedo-Bocardo, J C; Almanza-Robles, J M; Cortés-Hernández, D A; Saldívar-Ramírez, M M G; Reséndiz-Hernández, P J; Zugasti-Cruz, A

    2017-01-01

    The effect of LiCl additions on the in vitro bioactivity, hemolysis, cytotoxicity, compressive strength and setting time of calcium aluminate cements was studied. Calcium aluminate clinker (AC) was obtained via solid state reaction from reagent grade chemicals of CaCO3 and Al2O3. Calcium aluminate cements (CAC) were prepared by mixing the clinker with water or aqueous LiCl solutions (0.01, 0.0125 or 0.015M (M)) using a w/c ratio of 0.4. After 21days of immersion in a simulated body fluid (SBF) at physiological conditions of temperature and pH, a Ca-P rich layer, identified as hydroxyapatite (HA), was formed on the cement without LiCl and on the cement prepared with 0.01M of LiCl solution. This indicates the high bioactivity of these cements. The cements setting times were significantly reduced using LiCl. The measured hemolysis percentages, all of them lower than 5%, indicated that the cements were not hemolytic. The compressive strength of the cements was not negatively affected by the LiCl additions. The obtained cement when a solution of LiCl 0.010M was added, presented high compressive strength, appropriated bioactivity, no cytotoxicity and low setting time, making this material a potentially bone cement.

  17. Utilization of Eucalyptus Oil Refineries Waste for Cement Particle Board

    Directory of Open Access Journals (Sweden)

    Rudi Setiadji

    2012-11-01

    Full Text Available Utilization of eucalyptus oil refinery waste in the manufacture of building material component of cement particle board is expected to reduce the price of housing units. This research used laboratory experimental methods, eucalyptus oil waste in the form of branches an twigs from eucalyptus tree. The variation of the testing were mixtures composition of the particle : cement, additives as accelerators, cold press load during manufacture of cement particle board. Cold press duration of cement board was 24 hours. The size of particle boards were (40 x 40 cm2 and 13 mm thick. The samples were tested for its density, water content, water absorption, flexural strength, thickness swelling, adhesion strength, and the nails pull out strength.

  18. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate Bone Cement

    Directory of Open Access Journals (Sweden)

    Lucas C. Rodriguez

    2014-09-01

    Full Text Available Powder-liquid poly (methyl methacrylate (PMMA bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best

  19. Effects of Silicon on Osteoclast Cell Mediated Degradation, In Vivo Osteogenesis and Vasculogenesis of Brushite Cement

    OpenAIRE

    2015-01-01

    Calcium phosphate cements (CPCs) are being widely used for treating small scale bone defects. Among the various CPCs, brushite (dicalcium phosphate dihydrate, DCPD) cement is widely used due to its superior solubility and ability to form new bone. In the present study, we have studied the physical, mechanical, osteoclast-like-cells differentiation and in vivo osteogenic and vasculogenic properties of silicon (Si) doped brushite cements. Addition of Si did not alter the phase composition of fi...

  20. Mechanical and In Vitro Biocompatibility of Brushite Cement Modified by Polyethylene Glycol

    OpenAIRE

    2012-01-01

    Brushite (dicalcium phosphate dihydrate, DCPD) cement, owing to its high solubility in physiological condition and ability to guide new bone formation, is widely used to treat bone defects. In the present study, we have evaluated the effects of poly ethylene glycol (PEG) addition on the setting time, compressive strength and in vitro biocompatibility of brushite cement. The brushite cements were prepared by mixing β-tricalcium phosphate [β-TCP, Ca3(PO4)2] and monocalcium phosphate monohydrate...

  1. The Effect Of Pozzolan Surface Properties On Physical And Mechanical Properties Of Cement Mortars

    OpenAIRE

    KOÇAK, YILMAZ; DORUM, Atila; Bülent YILMAZ; UCAR, Ali

    2010-01-01

    This study aims to determine mutual influence on blast furnace slag, fly ash and cement with added trass with Portland cement. For this purpose, physical, chemical, XRD, FT-IR, zeta (electrokinetic) potential and standard cement tests were applied to materials. In this study, it is shown that physical characteristics of pozzolan mostly depend on their molecular structures. Properties of molecular structure, in addition to its chrystal and amorphous character, change based on the existence of ...

  2. Effect of different mixing methods on the physical properties of Portland cement

    OpenAIRE

    Shahi, Shahriar; Ghasemi, Negin; Rahimi, Saeed; Yavari, Hamidreza; Samiei, Mohammad; Jafari, Farnaz

    2016-01-01

    Background The Portland cement is hydrophilic cement; as a result, the powder-to-liquid ratio affects the properties of the final mix. In addition, the mixing technique affects hydration. The aim of this study was to evaluate the effect of different mixing techniques (conventional, amalgamator and ultrasonic) on some selective physical properties of Portland cement. Material and Methods The physical properties to be evaluated were determined using the ISO 6786:2001 specification. One hundred ...

  3. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  4. Phosphate based oil well cements

    Science.gov (United States)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  5. The effect of composition on mechanical properties of brushite cements.

    Science.gov (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan

    2014-01-01

    Due to a fast setting reaction, good biological properties, and easily available starting materials, there has been extensive research within the field of brushite cements as bone replacing material. However, the fast setting of brushite cement gives them intrinsically low mechanical properties due to the poor crystal compaction during setting. To improve this, many additives such as citric acid, pyrophosphates, and glycolic acid have been added to the cement paste to retard the crystal growth. Furthermore, the incorporation of a filler material could improve the mechanical properties when used in the correct amounts. In this study, the effect of the addition of the two retardants, disodium dihydrogen pyrophosphate and citric acid, together with the addition of β-TCP filler particles, on the mechanical properties of a brushite cement was investigated. The results showed that the addition of low amounts of a filler (up to 10%) can have large effects on the mechanical properties. Furthermore, the addition of citric acid to the liquid phase makes it possible to use lower liquid-to-powder ratios (L/P), which strongly affects the strength of the cements. The maximal compressive strength (41.8MPa) was found for a composition with a molar ratio of 45:55 between monocalcium phosphate monohydrate and beta-tricalcium phosphate, an L/P of 0.25ml/g and a citric acid concentration of 0.5M in the liquid phase.

  6. Influence of water content on hardening and handling of a premixed calcium phosphate cement.

    Science.gov (United States)

    Engstrand, Johanna; Aberg, Jonas; Engqvist, Håkan

    2013-01-01

    Handling of calcium phosphate cements is difficult, where problems often arise during mixing, transferring to syringes, and subsequent injection. Via the use of premixed cements the risk of handling complications is reduced. However, for premixed cements to work in a clinical situation the setting time needs to be improved. The objective of this study is to investigate the influence of the addition of water on the properties of premixed cement. Monetite-forming premixed cements with small amounts of added water (less than 6.8 wt.%) were prepared and the influence on injectability, working time, setting time and mechanical strength was evaluated. The results showed that the addition of small amounts of water had significant influence on the properties of the premixed cement. With the addition of just 1.7 wt.% water, the force needed to extrude the cement from a syringe was reduced from 107 (±15) N to 39 (±9) N, the compression strength was almost doubled, and the setting time decreased from 29 (±4) min to 19 (±2) min, while the working time remained 5 to 6h. This study demonstrates the importance of controlling the water content in premixed cement pastes and how water can be used to improve the properties of premixed cements.

  7. Advantages of using glycolic acid as a retardant in a brushite forming cement.

    Science.gov (United States)

    Mariño, Faleh Tamimi; Torres, Jesús; Hamdan, Mohammad; Rodríguez, Carmen Rueda; Cabarcos, Enrique López

    2007-11-01

    In this study we have compared the effect of using acetic, glycolic, and citric acids on the brushite cement setting reaction and the properties of the resultant cement. The cement solid phase was made by mixing beta-tricalcium phosphate (beta-TCP), monocalcium dihydrogen phosphate anhydrate (MCPA), and sodium pyrophosphate, whereas the cement liquid phase consisted of aqueous solutions of carboxy acids at concentrations ranging from 0.5 to 3.5M. Cements were prepared by mixing the solid phase with the liquid phase to form a workable paste. The cement setting time was longer for glycolic and citric acids. The best mechanical properties in dry environments were obtained using glycolic and citric acid liquid phases. In a wet environment at 37 degrees C, the cement set with glycolic acid was the strongest one. Brushite cement diametral tensile strength seems to be affected by the calcium-carboxyl phase produced in the setting reaction. The acceptable setting time and mechanical properties of cements set in glycolic acid solutions are attributed to the additional hydrophilic groups in the carboxylic acid and the low solubility in water of the calcium salt produced in the reaction. Moreover, at high concentrations, carboxylic acids add chemically to the cement matrix becoming reactants themselves.

  8. Combined effect of strontium and pyrophosphate on the properties of brushite cements.

    Science.gov (United States)

    Alkhraisat, M Hamdan; Mariño, F Tamimi; Rodríguez, C Rueda; Jerez, L Blanco; Cabarcos, E López

    2008-05-01

    In this study we report the synthesis of strontium-containing brushite cement with good cohesion and a diametral tensile strength (DTS) of 5 MPa. The cement powder, composed of beta-tricalcium phosphate (beta-TCP) and monocalcium phosphate, was adjusted by different concentrations of strontium and pyrophosphate ions. The cement liquid phase was 2M phosphoric acid solution. The cement cohesion and mechanical properties were measured after being aged in water for 24h at 37 degrees C. It was found that at low concentration both strontium and pyrophosphate ions inhibit the cement setting reaction. However, the final setting time was significantly reduced when SrCl2 increased from 5 to 10 wt.% at pyrophosphate concentrations equal to or higher than 2.16 wt.%. The incorporation of strontium ions did not increase the DTS of brushite cements significantly. In contrast, the addition of pyrophosphate ions did increase the DTS of brushite cements significantly. When both ions were added simultaneously, the brushite cement with a Sr2+ content of 5 wt.% had the highest DTS value. Nevertheless, the DTS values of Sr-containing cements were significantly reduced if the pyrophosphate concentration was higher than 2.16 wt.%. The Sr2+ ions had a negative effect on brushite cement cohesion, although the solid weight loss started to decrease at Sr2+ concentrations higher than 5 wt.%.

  9. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  10. Scrap tire ashes in portland cement production

    Directory of Open Access Journals (Sweden)

    Mónica Adriana Trezza

    2009-01-01

    Full Text Available Scrap tires are not considered harmful waste, but their stocking and disposal are a potential health and environmental risk. Properly controlled calcinations at high temperatures make tire combustion an interesting alternative due to its high calorific power, comparable to that of fuel-oil. Consequently, using them as an alternative combustible material in cement kilns makes it possible to give it a valuable use. However, it remains to be assured whether the impurities added to the clinker through these fuels do not affect its structure or properties.This paper shows the studies carried out on different clinkers under laboratory conditions with different levels of addition of scrap tire ashes, added by partially replacing traditional fuel in cement kilns.

  11. Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete

    Science.gov (United States)

    Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.

    2016-06-01

    This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.

  12. Cemented total hip arthroplasty with Boneloc bone cement.

    Science.gov (United States)

    Markel, D C; Hoard, D B; Porretta, C A

    2001-01-01

    Boneloc cement (WK-345, Biomet Inc, Warsaw, Ind) attempted to improve cement characteristics by reducing exotherm during polymerization, lowering residual monomer and solubility, raising molecular weight, and lowering airborne monomer and aromatic amines. To study the efficacy of this cement, a selected group of 20 patients were prospectively enrolled and followed up after hip arthroplasty. All components were cemented. During the enrollment period, approximately 70 other hip arthroplasties were performed. Clinical evaluation was based on the Harris hip score. Radiographic evaluation was based on assessment of position of the components, subsidence, and/or presence of radiolucencies. Patients had follow-up for an average of 42 months (11 to 58 months); 1 was lost to follow-up. Of these, 7 (35%) had failure at last follow-up. Despite its initial promise, Boneloc cement had an unacceptably high failure rate over a relatively short follow-up period and is not recommended for use. Despite the longevity and odor toxicity problems with conventional bone cement, new cement technologies must be approached with caution.

  13. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  14. Cement stabilized red earth as building block and structural pavement layer

    Directory of Open Access Journals (Sweden)

    G.V. RAMA SUBBARAO

    2014-12-01

    Full Text Available Red Earth is most commonly used as material in the building and road construction. Many a times, the red earth found in various quarries is found not suitable for construction. Cement of 4 and 8% of dry mass of red earth was added to improve its suitability as building block and structural pavement material. To know the influence of waste plastic fiber on cement stabilized red earth, 1% fiber was also added to the mixture. It is shown that the compressive strength of cement stabilized red earth blocks was improved with seven days of curing. The addition of cement to red earth enhanced soaked CBR value. The soaked CBR value of fiber reinforced cement stabilized red earth was about 1.3 to 1.5 times that of unreinforced cement stabilized red earth.

  15. Isotropic Compression Behaviour of Fibre Reinforced Cemented Sand

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2013-07-01

    Full Text Available Fibre-reinforced cemented sands have many applications in improving the response of soils. In this paper, an experimental investigation for the analysis of fiber-reinforced cemented sand in the framework of isotropic compression is presented. The experimental investigations were carried out using a high pressure triaxial apparatus having the capacity of 64 MPa of confining pressure. Tests have been conducted on Portaway sand specimens reinforced with randomly oriented discrete polypropylene fibers with different percentages of fiber and cement contents. Results are presented in the form of e-logp` curves as well as SEM (Scanning Electron Microscopy micrographs. The effects of the addition of fibre in sand and cemented sand for different initial void ratios were investigated. The results demonstrate that the influence of fibre is not significant in both cemented and uncemented sand during the isotropic compression stage. Moreover, from the SEM micrographs it could be seen that there is breakage of sand particles and cement bonds. The fiber threads were seen pinched and found rarely broken in the specimen exhumed after isotropic compression.

  16. Minimally invasive maxillofacial vertical bone augmentation using brushite based cements.

    Science.gov (United States)

    Tamimi, Faleh; Torres, Jesus; Lopez-Cabarcos, Enrique; Bassett, David C; Habibovic, Pamela; Luceron, Elena; Barralet, Jake E

    2009-01-01

    An ideal material for maxillofacial vertical bone augmentation procedures should not only be osteoconductive, biocompatible and mechanically strong, but should also be applied using minimally invasive procedures and remain stable with respect to the original bone surfaces. This way, implant exposure and infection might be reduced and good mechanical stability may be achieved. Calcium phosphate cements are proven biocompatible and osteoconductive materials that can be injected using minimally invasive procedures. Among these cements, brushite based cements have the added advantage of being biodegradable in vivo. Therefore, this material has the potential for use in the aforementioned procedures. An in vivo study was performed in rabbits to evaluate the potential use of brushite cements in minimally invasive maxillofacial vertical bone augmentation procedures. In this study, we injected self-setting brushite cements on the subperiosteal bone surface using a minimally invasive tunnelling technique. The cement pastes were stable on the bone surface and hardened soon after they were injected thereby negating the need for additional supports such as membranes or meshes. The animals were sacrificed 8 weeks after the intervention and histological observations revealed signs of successful vertical bone augmentation. Therefore, we have demonstrated a minimally invasive vertical bone augmentation procedure that is an attractive alternative to current surgical procedures in terms of increased simplicity, reduced trauma, and lower cost of surgery.

  17. Scavenging effect of Trolox released from brushite cements.

    Science.gov (United States)

    Mestres, Gemma; Santos, Carlos F; Engman, Lars; Persson, Cecilia; Ott, Marjam Karlsson

    2015-01-01

    In this study a brushite cement was doped with the chain-breaking antioxidant Trolox. The effect of the antioxidant on the physical properties of the cement was evaluated and the release of Trolox was monitored by UV spectroscopy. The ability of the Trolox set free to scavenge reactive oxygen species (ROS) released by macrophages was determined in vitro using a luminol-amplified chemiluminescence assay. Trolox did not modify the crystalline phases of the set cement, which mainly formed crystalline brushite after 7 days in humid conditions. The setting time, compressive strength and morphology of the cement also remained unaltered after the addition of the antioxidant. Trolox was slowly released from the cement following a non-Fickian transport mechanism and nearly 64% of the total amount was released after 3 days. Moreover, the capacity of Trolox to scavenge the ROS released by macrophages increased in a dose-dependent manner. Trolox-loaded cements are expected to reduce some of the first harmful effects of acute inflammation and can thus potentially protect the surrounding tissue during implantation of these as well as other materials used in conjunction.

  18. Development of nanosilica bonded monetite cement from egg shells.

    Science.gov (United States)

    Zhou, Huan; Luchini, Timothy J F; Boroujeni, Nariman Mansouri; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5±1 min. The compressive strength after 24h of incubation was approximately 8.45±1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10±1 min) process by about 2.5 min and improve compressive strength (20.16±4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics.

  19. Antimicrobial activity of bone cements embedded with organic nanoparticles

    Science.gov (United States)

    Perni, Stefano; Thenault, Victorien; Abdo, Pauline; Margulis, Katrin; Magdassi, Shlomo; Prokopovich, Polina

    2015-01-01

    Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic (PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin. PMID:26487803

  20. Grout cement. ; Grout cement to fill ground/grout cement to fill cracks. Chunyuyo cement. ; Jiban chunyuyo cement /hibiware chunyuyo cement

    Energy Technology Data Exchange (ETDEWEB)

    Okaue, H. (Nittetsu Cement Co. Ltd., Hokkaido (Japan))

    1991-09-01

    Ground grout cement is grouted into the ground under high pressure in high water ratio (100 to 1000%) in the form of milk differing from concrete in terms of the water-cement ratio. The grouted milk is governed by characteristics of the cement the milk itself possesses, resulting in variable grouting modes, which are divided in fracture grouting, permeation grouting and boundary grouting. Their applications include cutting off of water in dams, ground reinforcement, prevention of water gushing in tunnel excavation, natural ground reinforcement, improvement of sandy soil and prevention of its collapse, and stabilization of ground for urban civil engineering works such as subway, water supply and sewerage constructions. Grout cement to fill cracks in concrete structures is so grouted into cracks that the slurry fills up contiguous cracks to a certain level and goes upward while pushing out air or water existing in the cracks. The slurry filled into the cracks solidifies and hardens while being absorbed into the concrete, and finally integrates with the concrete. The grout cement is used to rework such concrete structures as dams, tunnels, and bridge bases. 6 figs., 4 tabs.

  1. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  2. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  3. Clean Development Mechanism: Laterite as Supplementary Cementing Material (SCM

    Directory of Open Access Journals (Sweden)

    Syed Zaighum Abbass

    2013-02-01

    replacement level of up to 15%, the quality of cement is not disturbed. In addition, the requirement of intake of energy has also decreased (~30%. Current findings indicate that by using Laterite, as SCM, cement production can be increased without consuming more energy and hence reduce GHG emissions.

  4. PHYSICO-CHEMICAL MODIFICATION OF MONOLITHIC CONCRETE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2015-10-01

    Full Text Available Purpose. The paper is aimed to the development of scientific bases of the technology of modified concrete of new generation for special facilities by managing the processes of structure formation of modified cement system in conditions of hardening. Methodology. For the achievement the goal: 1 the research of rheological characteristics of modified concrete mixes for special facilities purpose and processes of structure formation of modified cement system of natural curing concrete was conducted; 2 there were defined methods of reliable evaluation of concrete strength at the removal time of formwork and transmission of loads to the constructions where the concrete has not reached the designed strength. Findings. The author found that the structure formation process develops in the hydrating modified cement system as a result of interaction of various macroions. In this process its active parts prevail, which considerably exceed its dissipative part compared to normal conditions of hardening. Originality. There were established the regularities of structure formation of modified cement system, reinforced with synthesized, well crystallized helical filamentary crystals, mechanical grip of which is considered as a principal source of strength in combination with an additional coupling achieved due to cross-germination of crystals. Practical value. In the study the increased binding capacity of cement in high strength concretes and the use of modified cement systems in the special conditions of concreting were considered. The organo-mineral modifying complex that provides the dispersed reinforcement of concrete cement matrix which allows modifying the process of cement matrix structure formation by changing the nature of the surface of binder and modifier was developed. The temperature factor has no negative influence on the hardening concrete and complex modifier provides the improved physico-mechanical characteristics of cement matrix and concrete

  5. Thermal reactions of brushite cements.

    Science.gov (United States)

    Bohner, M; Gbureck, U

    2008-02-01

    The thermal reactions of a brushite cement made of beta-tricalcium phosphate (beta-TCP), monocalcium phosphate monohydrate (MCPM), and an aqueous solution were followed in situ with an isothermal calorimeter at 37 degrees C. The investigated parameters were the beta-TCP/MCPM weight ratio, the liquid-to-powder ratio, the synthesis route and milling duration of the beta-TCP powder, as well as the presence of sulfate, citrate, and pyrophosphate ions in the mixing liquid. The thermograms were complex, particularly for mixtures containing an excess of MCPM or additives in the mixing solution. Results suggested that the endothermic MCPM dissolution and the highly exothermic beta-TCP dissolution occurred simultaneously, thereby leading to the formation of a large exothermic peak at early reaction time. Both reactions were followed by the exothermic crystallization of brushite and in the presence of an excess of MCPM by the endothermic crystallization of monetite. Additives generally widened the main exothermic reaction peak, or in some cases with pyrophosphate ions postponed the main exothermic peak at late reaction time. Generally, the results could be well explained and understood based on thermodynamic and solubility data.

  6. Cements containing by-product gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Bensted, J. [University of Greenwich, London (United Kingdom). School of Biological and Chemical Sciences

    1995-12-31

    Chemical by-product gypsum can readily replace natural gypsum in Portland cements and in blended cements like Portland pfa cement and Portland blast furnace cement without technical detriment in many instances. Indeed, sometimes the technical performance of the cement can be enhanced. The hydration chemistry is often changed, in that where there is at least some retardation of setting, more AFT phase (ettringite) is formed during early hydration at the expense of calcium silicate hydrates. By-product gypsum can also replace natural gypsum in speciality products like calcium aluminate cement-Portland cement mixes for producing quick setting cements and in calcium sulphoaluminate-type expansive cements. However, by-products gypsum have proved to be less successful for utilization in API Classes of oilwell cements, because of the greater difficulty in obtaining batch-to-batch consistency in properties like thickening time and slurry rheology. 11 refs., 3 figs., 5 tabs.

  7. Effect of various superplasticizers on rheological properties of cement paste and mortars

    Energy Technology Data Exchange (ETDEWEB)

    Masood, I.; Agarwal, S.K. (Central Building Research Institute, Roorkee (India))

    1994-01-01

    The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cement paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.

  8. Performance analysis of magnesium phosphate cement mortar containing grinding dust

    Directory of Open Access Journals (Sweden)

    Daniel Véras Ribeiro

    2009-03-01

    Full Text Available Magnesium phosphate cement materials are formed by reacting magnesium oxide with water-soluble phosphates such as monoammonium dihydrogen phosphate (ADP, which solidifies at ambient temperature through the formation of hydrated phases in the material. Cylindrical specimens of magnesium phosphate cement were molded and varying amounts (0 to 30% weight of grinding dust were added to the ceramic matrices. The influence of the addition of grinding dust on the characteristics of the mortars in terms of microstructure (SEM, mechanical strength and capillary water absorption was verified. The results obtained proved very satisfactory for the use of this waste as an additive in magnesium phosphate mortars.

  9. Structural and phase characterization of bioceramics prepared from tetracalcium phosphate-monetite cement and in vitro osteoblast response.

    Science.gov (United States)

    Stulajterova, Radoslava; Medvecky, Lubomir; Giretova, Maria; Sopcak, Tibor

    2015-05-01

    Biphasic porous calcium phosphate ceramics was prepared by sintering of transformed tetracalcium phosphate-monetite cement. After annealing hydroxyapatite, β- or α-TCP were found as main phases in ceramic substrates and a highly microporous microstructure of cement ceramics was created without an addition of porosifier. The origin microstructure features characteristic by the presence of hollow particle agglomerates in cement were preserved in microstructure of cement ceramics after annealing but the hydroxyapatite particles rose in size up to 2 µm and obtained a more regular shape. A small decrease in compressive strength was demonstrated in ceramics sintered up to 1150 °C and enhanced osteoblast proliferation was revealed on cement ceramic substrates in comparison with cement sample and conventional ceramics. The ALP activity of osteoblasts decreased with rise in sintering temperature. The prepared cement microporous ceramics could be utilized as carrier for antibiotics, drugs, growth factors, enzymes or other substances stimulating healing process.

  10. Cementation Mechanism of Microbe Cement%微生物水泥胶结机理

    Institute of Scientific and Technical Information of China (English)

    荣辉; 钱春香; 李龙志

    2013-01-01

    采用X射线衍射、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了微生物水泥的胶结机理.SEM分析表明:微生物法诱导形成的方解石形貌呈球形或球状聚集体;化学法形成的方解石形貌呈斜方六面体;微生物法浇注的砂柱和化学法浇注的砂柱内部微观结构相近.TEM分析表明:微生物诱导形成的方解石晶体颗粒尺寸小,能把松散颗粒胶结在一起;化学法形成的方解石颗粒尺寸大,不能把松散颗粒连接在一起.%Cementation mechanism of microbe cement was investigated by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. SEM results showed that the morphology of microbially induced formation calcite was sphere and spherical aggregate, but that of chemical formation calcite was oblique hexagonal body. In addition, the microstructure of sandstone cemented by the above methods was similar. TEM results indicated that the crystal particles of microbially induced formation calcite was smaller than that of chemical formation calcite and the loose particles could be cemented by microbially induced formation calcite, however, it could not be cemented by chemical formation calcite.

  11. Mechanical property and in vitro biocompatibility of brushite cement modified by polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Mangal; DeVoe, Ken; Bandyopadhyay, Amit; Bose, Susmita, E-mail: sbose@wsu.edu

    2012-12-01

    Brushite (dicalcium phosphate dihydrate, DCPD) cement, owing to its high solubility in physiological condition and ability to guide new bone formation, is widely used to treat bone defects. In the present study, we have evaluated the effects of poly ethylene glycol (PEG) addition on the setting time, compressive strength and in vitro biocompatibility of brushite cement. The brushite cements were prepared by mixing {beta}-tricalcium phosphate [{beta}-TCP, Ca{sub 3}(PO{sub 4}){sub 2}] and monocalcium phosphate monohydrate [MCPM, Ca(H{sub 2}PO{sub 4}){sub 2} Dot-Operator H{sub 2}O]. PEG was introduced at 2.0 and 5.0 wt% with the liquid. Introduction of PEG resulted in marginal increase in both initial and final setting time, however, significantly affected the compressive strength. Effects of PEG incorporation on in vitro biocompatibility of brushite cements were studied by using human fetal osteoblast cells (hFOB) cells. Field emission scanning electron microscope (FESEM) images and immunohistochemical analysis indicated that pure and PEG incorporated brushite cement facilitates cell adhesion, proliferation and differentiation. Fewer cells expressed vinculin protein with increased PEG content in the cement. Cell proliferation was found to decrease with increased PEG concentration while the cell differentiation increased with PEG content. Our results provide a better understanding of in vitro biocompatibility of PEG added brushite cements that can be used to customize the cement compositions based on application need. - Highlights: Black-Right-Pointing-Pointer Setting time was not altered for brushite cement with PEG addition. Black-Right-Pointing-Pointer hFOB cell proliferation was found to decrease with increased PEG concentration in brushite cement. Black-Right-Pointing-Pointer Enhanced ALP activity was noticed with addition of PEG in brushite cements.

  12. Smart Behavior of Carbon Fiber Reinforced Cement-based Composite

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers.Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress andstrain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relationof thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to theincrease in the material volume resistivity during crack generation or propagation and the decrease in the resistivity duringcrack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect inthe cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage andtemperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in theconcrete structures.

  13. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  14. Magnesium substitution in brushite cements.

    Science.gov (United States)

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals.

  15. A new type of cementation flushing fluid for efficiently removing wellbore filter cake

    Directory of Open Access Journals (Sweden)

    Erding Chen

    2015-11-01

    Full Text Available For effectively removing the water-based drilling fluid filter cake and improving interfacial cementing strength and cementing quality, a new type of cementation flushing fluid (WD-C was developed based on the strong flushing principle of water soluble fiber and the oxygenolysis principle of filter cake. It is composed of 0.5% WF-H fiber, 2.2% WF-O oxidant, 0.35% FeSO4, 1.8% KCl, 3.0% swollen powder perlite and water with its density of 1.03 g/cm3. This cementation flushing fluid was systematically tested and evaluated in terms of its washing efficiency on the filter cake of water-based drilling fluid and its capacity to improve the bonding strength of cementation interface. In addition, an analysis was performed of its effect on the physical-chemical characteristics and the micro-structures of interfacial cements by means of infrared spectrum (IR, scanning electron microscope (SEM and energy dispersive X-ray detector (EDS. It is shown that the new cementation flushing fluid presents excellent washing effect on water-based drilling fluid filter cake (with washing time within 10 min. The cement particles at the cemented interface can be hydrated normally, and hydrated calcium silicate gel, Ca(OH2 and rod-shaped ettringite (AFt crystal are generated and interwoven with each other. In this way, dense network structures are formed, so the bonding strength of the second cementing interface rises significantly, and then cementing quality is improved. Based on the research results, one more technology is set up for removing the water-based drilling fluid filter cake efficiently and improving the bonding strength of the second cementing interface.

  16. High-performance binders with reduced autogenous shrinkage on the basis of fine cement

    Energy Technology Data Exchange (ETDEWEB)

    Martschuk, V. [Inst. of the Cement Industry, Dusseldorf (Germany)

    2001-07-01

    A study on the hydration of portland cement was presented. The paper presented special features of the chemical shrinkage of cement paste at high and low water-cement ratios. It also described the effect of silica fume on the deformation behaviour of cement paste, as well as on the behaviour of hardened binder paste at water-binder ratios of 0.40 and 0.25. High performance concrete has a high density and a tendency to chemically shrink because of its low water-cement ratio. The study showed that the autogenous shrinkage increases if silica fume is added. Theoretical calculations were performed and showed that the typical addition of silica fume results in an increase in total porosity, and therefore, to the deterioration of the packing density of the binder mixture. The specific surface area of the dry powder is also increased. It was concluded that replacing cement by optimized fine cements improves the theoretical packing density in binders. The hardened cement paste studies showed that this makes a cement that is denser with less tendency to shrink. 7 refs., 3 tabs., 8 figs.

  17. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen.

    Science.gov (United States)

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Khateeb-ur-Rehman; Raashid, M

    2009-09-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  18. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-09-15

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  19. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    Science.gov (United States)

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).

  20. Fabrication of Novel Biodegradable α-Tricalcium Phosphate Cement Set by Chelating Capability of Inositol Phosphate and Its Biocompatibility

    Directory of Open Access Journals (Sweden)

    Toshiisa Konishi

    2013-01-01

    Full Text Available Biodegradable α-tricalcium phosphate (α-TCP cement based on the chelate-setting mechanism of inositol phosphate (IP6 was developed. This paper examined the effect of the milling time of α-TCP powder on the material properties of the cement. In addition, biocompatibility of the result cement in vitro using osteoblasts and in vivo using rabbit models will be studied as well. The α-TCP powders were ballmilled using ZrO2 beads in pure water for various durations up to 270 minutes, with a single-phase α-TCP obtained at ballmilling for 120 minutes. The resulting cement was mostly composed of α-TCP phase, and the compressive strength of the cement was 8.5±1.1 MPa, which suggested that the cements set with keeping the crystallite phase of starting cement powder. The cell-culture test indicated that the resulting cements were biocompatible materials. In vivo studies showed that the newly formed bones increased with milling time at a slight distance from the cement specimens and grew mature at 24 weeks, and the surface of the cement was resorbed by tartrate-resistant acid phosphatase-(TRAP-positive osteoclast-like cells until 24 weeks of implantation. The present α-TCP cement is promising for application as a novel paste-like artificial bone with biodegradability and osteoconductivity.

  1. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per

  2. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  3. Deformation and mechanical properties of the expansive cements produced by inter-grinding cement clinker and MgOs with various reactivities

    OpenAIRE

    Mo, Liwu; Liu, Meng; Al-Tabbaa, Abir; Deng, Min

    2015-01-01

    This is the accepted manuscript. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S0950061815000914#. Magnesia (MgO) either intrinsically contained in cement clinker or prepared separately as expansive additive has been used to compensate for the shrinkage of cementitious materials. In this study, for improving the homogenous distribution of MgOs, the cement clinker was inter-ground with MgO expansive additives with various reactivit...

  4. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  5. Microstructure and mechanical properties of WC-Ni-Al based cemented carbides developed for engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Edmilson O.; Santos, Julio N. [Universidade Federal de Itajuba, Minas Gerais (Brazil). Inst. de Engenharia Mecanica; Klein, Aloisio N. [Universidade Federal de Santa Catarina, Florianopolis (Brazil). Dept. de Engenharia de Materiais

    2011-11-15

    In this paper the influence of the Ni binder metal and Al as an additional alloying element on the microstructure and mechanical properties of WC-based cemented carbides processed by conventional powder metallurgy was studied. Microstructural examinations of the cemented carbides with 3 and 5 wt.% of Al in the binder metal indicated the presence of a very low and evenly distributed porosity as well as the presence of islands of metal binder in the microstructure. With the cemented carbide with 7 wt.% of Al in the metal binder, the presence of brittle needle-like regions was observed. The WC particles inside these regions were rounded and had a larger mean free path. Vickers hardness and flexural strength tests indicated that the cemented carbide WC-Ni - Al with addition of 5 wt.% of Al in the binder metal presented bulk hardness similar to the conventional WC-Co cemented carbides as well as superior flexure strength and fracture toughness. (orig.)

  6. Research on the nanolevel influence of surfactants on structure formation of the hydrated Portland cement compositions

    Directory of Open Access Journals (Sweden)

    Guryanov Alexander

    2016-01-01

    Full Text Available The research of the structure formation process on a nanolevel of the samples of hydrated Portland cement compositions containing the modifying additives has been conducted with the help of small angle neutron scattering method. Carbonate and aluminum alkaline slimes as well as the complex additives containing surfactants were used as additives. The influence of slimes and surfactants on structural parameters change of Portland cement compositions of the average size of the disseminating objects, fractal dimension samples is considered. These Portland cement compositions are shown to be fractal clusters.

  7. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  8. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  9. Self-cleaning and mechanical properties of modified white cement with nanostructured TiO2.

    Science.gov (United States)

    Khataee, R; Heydari, V; Moradkhannejhad, L; Safarpour, M; Joo, S W

    2013-07-01

    In the present study, self-cleaning and mechanical properties of white Portland cement by addition of commercial available TiO2 nanoparticles with the average particle size of 80 nm were investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET were used to characterize TiO2 nanoparticles. For determination of self-cleaning properties of TiO2-modified white cement, colorimetric tests in decolorization of C.I. Basic Red 46 (BR46) in comparison to unmodified cement samples was applied. The results indicated that with increasing the amount of TiO2 nanoparticles in modified cement, self-cleaning property of the samples increased. The mechanical properties of TiO2-modified and unmodified cement samples, such as time of setting of hydraulic cement, compressive strength of hydraulic cement mortar and flexural strength of hydraulic cement mortar were examined. The results indicated that addition of TiO2 nanoparticles up to maximum replacement level of 1.0% improved compressive and flexural strength and decreased its setting time.

  10. CO2 REDUCTION OPTIONS IN CEMENT INDUSTRY - THE NOVI POPOVAC CASE

    Directory of Open Access Journals (Sweden)

    Gordana M Stefanović

    2010-01-01

    Full Text Available The cement industry contributes about 5% to global anthropogenic CO2 emissions, and is thus an important sector in CO2-emission mitigation strategies. Carbon dioxide is emitted from the calcination process of limestone, from combustion of fuels in the kiln, and from the coal combustion during power generation. Strategies to reduce these CO2 emissions include energy efficiency improvement, new processes, shift to low carbon fuels or waste fuels in cement production, increased use of additives in cement production, alternative cements, and CO2 removal from flue gases in clinker kilns. Increased use of fly ash as an additive to cement and concrete has a number of advantages, the primary being reduction of costs of fly ash disposal, resource conservation, and cost reduction of the product. Since the production of cement requires a large amount of energy (about 2.9-3.2 GJt-1, the substitution of cement by fly ash saves not only energy but also reduces the associated greenhouse gas emissions. The paper evaluates the reduction of CO2 emissions that can be achieved by these mitigation strategies, as well as by partial substitution of cement by fly ash. The latter is important because the quality of the produced concrete depends on the physical-chemical properties of the fly ash and thus partial substitution as well as the type of fly ash (e.g., the content of CaO has an effect not only on energy consumption and emissions, but also on the produced concrete quality.

  11. Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ting-Yi [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Ho, Chia-Che [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Chen, David Chan-Hen [Institute of Veterinary Microbiology, National Chung-Hsing University, Taichung 402, Taiwan (China); Lai, Meng-Heng [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Ding, Shinn-Jyh, E-mail: sjding@csmu.edu.tw [Institute of Oral Biology and Biomaterials Science, Chung-Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung-Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2010-04-15

    A bone substitute material was developed consisting of a chitosan oligosaccharide (COS) solution in a liquid phase and gelatin (GLT) containing calcium phosphate powder in a solid phase. The physicochemical and biocompatible properties of the hybrid cements were evaluated. The addition of COS to cement did not affect the setting time or diametral tensile strength of the hybrid cements, whereas GLT significantly prolonged the setting time and decreased the strength slightly. The setting reaction was inhibited by the addition of GLT to the initial mixture, but not by COS. However, the presence of GLT appreciably improved the anti-washout properties of the hybrid cement compared with COS. COS may promote the cement's biocompatibility as an approximate twofold increase in cell proliferation for 10% COS-containing cements was observed on day 3 as compared with the controls. The combination of GLT and COS was chosen due to the benefits achieved from several synergistic effects and for their clinical applications. Cement with 5% GLT and 10% COS may be a better choice among cements in terms of anti-washout properties and biological activity.

  12. Influence of particle size on hardening and handling of a premixed calcium phosphate cement.

    Science.gov (United States)

    Aberg, Jonas; Engstrand, Johanna; Engqvist, Håkan

    2013-04-01

    Premixed calcium phosphate cements (pCPC) have been developed to circumvent problems related to mixing and transfer of cements in the operating room. In addition, by using pCPC the short working times generally associated with conventional water-mixed cements are avoided. In this work, the influence of particle size on handling and hardening characteristics of a premixed monetite cement has been assessed. The cements were evaluated with respect to their injectability, setting time and compressive strength. It was found that cements with smaller particle sizes were more difficult to inject and had higher compressive strength. Regarding setting time, no clear trend could be discerned. The addition of granules made the cements easier to inject, but setting time was prolonged and lower strengths were obtained. The main findings of this work demonstrate that particle size can be used to control handling and physical properties of premixed cements and that previous knowledge from water-based CPC, regarding effects of particle size, is not directly applicable to premixed CPC.

  13. Investigation of PAT for Advanced Sulphoaluminate MDF Cement

    Institute of Scientific and Technical Information of China (English)

    HUANG Congyun; YUAN Runzhang; LONG Shizong

    2005-01-01

    The method of examining micro-pores in sulphoaluminate MDF cement by means of the Positron Annihilation Technique (PAT) was discussed.The results show that the intensity I2 of positrons annihilation with moderate life-span (τ2≈330Ps) increases regularly with the addition of the numbers of micro-pores (less than 250(A)). Therefore, the value of I2 may be used to opitomize the compactness and integrity of the MDF cement structure. At the same time, the experiment result of PAT was compared with that of Mercury Intrusion Porosimeter (MIP).

  14. Correction of abnormal setting of a hydraulic cement with additives

    Directory of Open Access Journals (Sweden)

    de Luxán, M. P.

    1973-03-01

    Full Text Available Not availableEl cemento, componente principal del hormigón, está sometido al cumplimiento riguroso de unas Normas Oficiales. Cabe introducir sustancias que modifiquen su composición, pero tal operación ha de realizarse en el momento de confeccionar el hormigón. Con ellas se pueden conseguir objetivos muy diferentes, entre los que podemos mencionar los siguientes: disminuir el calor de hidratación, aumentar su resistencia al ataque de medios agresivos, mejorar la manejabilidad, facilitar el hormigonado con temperaturas extremas de frío y calor, conseguir un mayor período de tiempo disponible entre fabricación y puesta en obra, etc. Así surge la aparición de productos que permiten acelerar o retardar, unas veces el fraguado y otras el endurecimiento.

  15. Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Carline R. G. van den Breemer

    2015-01-01

    Full Text Available Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS. Materials and Methods. An extensive literature search concerning the cementation of single-unit glass-ceramic posterior restorations was conducted in the databases of MEDLINE (Pubmed, CENTRAL (Cochrane Central Register of Controlled Trials, and EMBASE. To be considered for inclusion, in vitro and in vivo studies should compare different cementation regimes involving a “glass-ceramic/cement/human tooth” complex. Results and Conclusions. 88 studies were included in total. The in vitro data were organized according to the following topics: (microshear and (microtensile bond strength, fracture strength, and marginal gap and integrity. For in vivo studies survival and quality of survival were considered. In vitro studies showed that adhesive systems (3-step, etch-and-rinse result in the best (microshear bond strength values compared to self-adhesive and self-etch systems when luting glass-ceramic substrates to human dentin. The highest fracture strength is obtained with adhesive cements in particular. No marked clinical preference for one specific procedure could be demonstrated on the basis of the reviewed literature. The possible merits of IDS are most convincingly illustrated by the favorable microtensile bond strengths. No clinical studies regarding IDS were found.

  16. Apatite bone cement reinforced with calcium silicate fibers.

    Science.gov (United States)

    Motisuke, Mariana; Santos, Verônica R; Bazanini, Naiana C; Bertran, Celso A

    2014-10-01

    Several research efforts have been made in the attempt to reinforce calcium phosphate cements (CPCs) with polymeric and carbon fibers. Due to their low compatibility with the cement matrix, results were not satisfactory. In this context, calcium silicate fibers (CaSiO3) may be an alternative material to overcome the main drawback of reinforced CPCs since, despite of their good mechanical properties, they may interact chemically with the CPC matrix. In this work CaSiO3 fibers, with aspect ratio of 9.6, were synthesized by a reactive molten salt synthesis and used as reinforcement in apatite cement. 5 wt.% of reinforcement addition has increased the compressive strength of the CPC by 250% (from 14.5 to 50.4 MPa) without preventing the cement to set. Ca and Si release in samples containing fibers could be explained by CaSiO3 partial hydrolysis which leads to a quick increase in Ca concentration and in silica gel precipitation. The latter may be responsible for apatite precipitation in needle like form during cement setting reaction. The material developed presents potential properties to be employed in bone repair treatment.

  17. Applicability of the Waste Fibres in Cement Paste

    Directory of Open Access Journals (Sweden)

    Regina KALPOKAITĖ DIČKUVIENĖ

    2013-09-01

    Full Text Available Fibres produced from waste catalyst together with commercially available polypropylene fibres were incorporated into ordinary Portland cement paste. The effects of fibre content as well as a mix of different type of fibres on mechanical and physical properties of wet and dry samples were investigated. The results showed that presence of fibres reduced compressive strength of the plain cement in wet and dry state. Contrary, when the combination of 1.5 wt% waste and 1.5 wt% polypropylene fibres was used flexural strength of cement mixture increased by up to 9 % at the age of 28 days. It was observed that addition of 1.5 wt% of only waste fibres improved flexural strength after long hydration period as well. However, the lowest mechanical strength results showed samples with 3 wt% of waste fibres. It was also observed that higher content of waste fibres reduced porosity of the cement mixture and consequently, decreased water absorption capacity. Presence of fibres reduced drying shrinkage of samples and they were lower than plain cement after 28 days of hydration. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1992

  18. Dual-setting brushite-silica gel cements.

    Science.gov (United States)

    Geffers, Martha; Barralet, Jake E; Groll, Jürgen; Gbureck, Uwe

    2015-01-01

    The current study describes a dual-mechanism-setting cement that combines a brushite-forming cement paste with a second inorganic silica-based precursor. Materials were obtained by pre-hydrolyzing tetraethyl orthosilicate (TEOS) under acidic conditions following the addition of a calcium phosphate cement (CPC) powder mixed of β-tricalcium phosphate and monocalcium phosphate. Cement setting occurred by a dissolution-precipitation process, while changes in pH during setting simultaneously initiated the condensation reaction of the hydrolyzed TEOS. This resulted in an interpenetrating phase composite material in which the macropores of the CPC were infiltrated by the microporous silica gel, leading to a higher density and a compressive strength ∼5-10 times higher than the CPC reference. This also altered the release of vancomycin as a model drug, whereby in contrast to the quantitative release from the CPC reference, 25% of the immobilized drug remained in the composite matrix. By varying the TEOS content in the composite, the cement phase composition could be controlled to form either brushite, anhydrous monetite or a biphasic mixture of both. The composites with the highest silicate content showed a cell proliferation similar to a hydroxyapatite reference with a significantly higher activity per cell. Surprisingly, the biological response did not seem to be attributed to the released silicate ions, but to the release of phosphate and the adsorption of magnesium ions from the cell culture medium.

  19. Utilization of Palm Oil Clinker as Cement Replacement Material

    Directory of Open Access Journals (Sweden)

    Jegathish Kanadasan

    2015-12-01

    Full Text Available The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  20. Managing the maintenance inventory of a cement manufacturer

    Directory of Open Access Journals (Sweden)

    Morne Eloff

    2013-05-01

    Full Text Available Inventory management is a crucial aspect of managing a company successfully. This is even more apparent in the case of maintenance inventories for production equipment, which impact directly on production equipment efficiency. This is a typical inventory management issue for a cement manufacturer that faces the problem of managing its maintenance inventories optimally when certain maintenance items have exceptionally long lead times (100 weeks and values in excess of R500 000. An assessment of the cement manufacturer’s approach to managing its maintenance inventories indicated various shortcomings, which have resulted in a significant level of obsolescence. One approach to managing maintenance inventories efficiently is to implement a classification of the inventory items in terms of their criticality to the cement production process. The critical nature of a component could be established through a risk-based approach (minimisation of the risk of production loss and taking into account the type of maintenance (planned vs unplanned that the component is required for. A risk-based approach should form the basis of the maintenance inventory management of the cement manufacturer as this would allow the cement manufacturer to utilise other inventory management methods effectively. In addition, it is important to ensure that employees are well versed in the different inventory management approaches utilised and that high levels of integration between departments are pursued.

  1. Cementation of Glass-Ceramic Posterior Restorations : A Systematic Review

    NARCIS (Netherlands)

    van den Breemer, Carline R. G.; Gresnigt, Marco M. M.; Cune, Marco S.

    2015-01-01

    Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS). Materials and Methods. An extensive literature search conce

  2. Properties and Acceleration Mechanism of Cement Mortar Added with Low Alkaline Liquid State Setting Accelerator

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; WANG Xuebing; LIU Weiqing

    2014-01-01

    Low alkaline liquid state setting accelerator(LSA) for Portland cement was prepared in laboratory from aqueous solution of several inorganic sulfate salts and some organic chemical substances. Properties of cement with addition of LSA relating to its setting time and strength development as well as its resistance to sulfate attack for short and long term exposure were experimentally examined. The experimental results showed that 5%-7%addition of LSA significantly accelerated the initial and final setting of Portland cement in the presence or absence of the blending of mineral admixtures, the initial and final setting time being less than 3 min and 6 min respectively. Meanwhile, the early 1 day curing age compressive strength increased remarkably by 20%, while the late 28th day curing age compressive strength remained almost unchanged as compared with that of the reference accelerator free cement mortar specimen. Furthermore, mortar specimens of cement added with LSA and exposed to 5%Na2SO4 solution showed their excellent resistance to sulfate attack, with their short and long term curing age resistance coefficient to sulfate attack being around 1.04 to 1.17, all larger than 1.0. XRD analysis on hardened cement paste specimens at very early curing ages of several minutes disclosed the existence of more ettringite in specimens added with LSA than that of the reference specimens, meanwhile SEM observation also revealed the existence of well crystallized ettringite at very early hydration stage, suggesting that the accelerated setting of Portland cement can be attributed to the early and rapid formation of ettringite over the whole cement paste matrix due to the introduction of LSA. MIP measurement revealed that hardened cement paste specimens with the addition of LSA presented less medium diameter pores, more proportion of small pores and less proportion of large capillary pores, which is in a very good coincidence with the improvement of strength development of

  3. Regulatory perspective on characterization and testing of orthopedic bone cements.

    Science.gov (United States)

    Demian, H W; McDermott, K

    1998-09-01

    This paper provides a general regulatory background of acrylic bone cements, chemical composition information on several commercially available bone cements, physical and chemical methods of analyses, mechanical test methods, and risks and failure mechanisms of acrylic bone cements. Suggestions and recommendations presented in Tables 2 and 3 are not mandatory requirements but reflect data and methodologies which the FDA's Orthopedic Devices Branch (ORDB) believes to be acceptable to evaluate most pre-clinical data. FDA may require information in addition to that contained in this paper. In some instances, a sponsor may be able to sufficiently justify the omission of some tests. Although this paper describes certain administrative requirements, it does not take the place of the requirements contained in Title 21 of the Code of Federal Regulations (21 CFR) Parts 801, 807, 812, and 814 or those found in the statute.

  4. Cement: a two thousand year old nano-colloid.

    Science.gov (United States)

    Ridi, Francesca; Fratini, Emiliano; Baglioni, Piero

    2011-05-15

    Since Roman times, cement is one of the synthetic materials with the largest production and usage by mankind. Its properties allowed the expansion of the Roman Empire and the building of still fascinating works. In spite of the diverse use of cement and the abundant literature accumulated during a century of systematic scientific research on this material, the understanding of its properties is still far from complete. Several issues are still open, ranging from the understanding of the hydration kinetics and the influence of the modern industrial additives, to the deep comprehension of the atomic arrangement and nanostructure of disordered hydrated calcium silicate phase (C-S-H) formed by hydration. This feature article briefly summarizes recent results in the field, highlighting the necessity for a colloidal model of the cement microstructure that, combined with the layer-like structure of the colloidal units, is the most effective approach to fully describe the characteristics of this peculiar material.

  5. Pollution and Prevention of Pb during Cement Calcination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Emission pollution and prevention measures of Pb during cement calcination were discussed. The content of Pb and the variation of composition were explored by means of atomic absorption spectroscopy (AAS) and X-ray diffraction. The results show that a number of Pb emits during cement calcination, F and C1 promote the emission of Pb, and Pb is enriched in kiln dust. The smaller the particle of kiln dust, the higher the content of Pb. When utilizing the raw materials with a high content of Pb, a more efficient dust collector should be used and the kiln dust should be used as the addition of cement. Pb in clinker is enriched in the intermediate phase. The reduction of silica modulus is useful to increase the solidification content of Pb in clinker. The solidification content of Pb in calcium sulphoaluminate mineral is higher than that in calcium aluminate mineral.

  6. Modeling of properties of fiber reinforced cement composites

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica

    2008-01-01

    Full Text Available This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.

  7. Seebeck effect in carbon fiber-reinforced cement

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S.; Chung, D.D.L.

    1999-12-01

    The Seebeck effect in carbon fiber-reinforced cement paste was found to involve electrons from the cement matrix and holes from the biers. The two contributions were equal at the percolation threshold, with a fiber content between 0.5 and 1.0% by mass of cement. The hole contribution increased monotonically with increasing fiber content below and above the percolation threshold. The fiber addition increased the linearity and reversibility of the Seebeck effect. Silica fume and latex as admixtures had minor influence on the Seebeck effect. The Seebeck effect in concrete is of interest because it gives the concrete the ability to sense its own temperature. No attached or embedded sensor is needed since the concrete itself is the sensor. This means low cost, high durability, large sensing volume, and absence of mechanical property degradation due to embedded sensors. As the temperature affects the performance and reliability of concrete, its detection is valuable.

  8. INFLUENCE OF POZZOLANA ON THE HYDRATION OF C4AF RICH CEMENT IN CHLORIDE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    IRMANTAS BARAUSKAS

    2013-03-01

    Full Text Available This study investigated the influence of natural pozzolana - opoka additive on the hydration of C4AF rich cement and the effects of chloride ions on the hydrates formed. In the samples, 25 % (by weight of the sintered C4AF rich cement and OPC was replaced with pozzolana. The mixtures were hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months at 20°C. It was estimated that under normal conditions, pozzolana additive accelerates the hydration of calcium silicates and initiates the formation of CO32- - AFm in the Brownmillerite rich cement. However, the hydration of Brownmillerite cement with opoka additive is still slower to compare with hydration of Portland cement. Also, opoka decreases total porosity and threshold pore diameter of Brownmillerite cement paste after two days of hydration. After 28 days of hydration threshold pore diameter became smaller even to compare with threshold pore diameter of Portland cement. Opoka additive promotes the formation of Friedel’s salt in Brownmillerite samples treated in saturated NaCl solution, because CO32-–AFm affected by saturated NaCl solution become unstable and takes part in reactions producing Friedel’s salt.

  9. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  10. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... Portland Cement and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the... antidumping duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... the Commission are contained in USITC Publication 4281 (December 2011), entitled Gray Portland...

  11. Silver nanoparticles in resin luting cements: Antibacterial and physiochemical properties

    Science.gov (United States)

    Moreira, Francine-Couto-Lima; Alves, Denise-Ramos-Silveira; Estrela, Cyntia-Rodrigues-Araújo; Estrela, Carlos; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Lopes, Lawrence-Gonzaga

    2016-01-01

    Background Silver has a long history of use in medicine as an antimicrobial and anti-inflammatory agent. Silver nanoparticles (NAg) offer the possibility to control the formation oral biofilms through the use of nanoparticles with biocidal, anti-adhesive, and delivery abilities. This study aims to evaluate the antibacterial effect of resin luting cements with and without NAg, and their influence on color, sorption and solubility. Material and Methods NAg were incorporated to two dual-cured resin cements (RelyX ARC (RA) color A1 and RelyX U200 (RU) color A2) in two concentrations (0.05% and 0.07%, in weight), obtaining six experimental groups. Disc specimens (1x6mm) were obtained to verify the antibacterial effect against Streptococcus mutans in BHI broth after immersion for 1min, 5min, 1h, 6h, and 24h (n=3), through optical density readings. Specimens were evaluated for color changes after addition of NAg with a spectrophotometer (n=10). Sorption and solubility tests were also performed, considering storage in water or 75% ethanol for 28 days (n=5), according to ISO 4049:2010. Data were subjected to statistical analysis with ANOVA and Tukey (p=0.05). Results The optical density of the culture broths indicated bacterial growth, with and without NAg. NAg produced significant color change on the resin cements, especially in RA. Solubility values were very low for all groups, while sorption values raised with NAg. The cements with NAg did not show antibacterial activity against S. mutans. They also showed perceptible color change and higher sorption than the materials without NAg. Conclusions The resin luting cements with NAg addition did not show antibacterial activity against SS. mutans. They also showed perceptible color change and higher sorption than the materials without NAg. Key words:Silver, resin cements, products with antimicrobial action, solubility, color perception tests. PMID:27703610

  12. Antibacterial potential of contemporary dental luting cements.

    Science.gov (United States)

    Daugela, Povilas; Oziunas, Rimantas; Zekonis, Gediminas

    2008-01-01

    The aims of this investigation were to evaluate the antibacterial activities of different types of dental luting cements and to compare antibacterial action during and after setting. Agar diffusion testing was used to evaluate the antibacterial properties of seven types of dental luting cements (glass ionomer cements (GICs), resin modified GICs, resin composite, zinc oxide eugenol, zinc oxide non-eugenol, zinc phosphate, zinc polycarboxylate cements) on Streptococcus mutans bacteria. Instantly mixed zinc phosphate cements showed the strongest antibacterial activity in contrast to the non-eugenol, eugenol and resin cements that did not show any antibacterial effects. Non-hardened glass ionomer, resin modified and zinc polycarboxylate cements exhibited moderate antibacterial action. Hardened cements showed weaker antibacterial activities, than those ones applied right after mixing.

  13. Freezing resistance of high iron phoasphoaluminate cement

    Science.gov (United States)

    Zhang, S. X.; Lu, L. C.; Wang, S. D.; Zhao, P. Q.; Gong, C. C.

    2017-03-01

    The influence of freeze-thaw cycle on the mechanical properties of high iron phoasphoaluminate cement was investigated in the present study. The visual examination was conducted to evaluate the surface damage. The deterioration considering the weight loss, modulus loss of relative dynamic elastic and strength loss of mortar were also investigated. The morphology of hydration products were analysed by SEM. Compared with ordinary Portland cement and sulphoaluminate cement, the frost resistance of high iron phosphoraluminate cement is better. Hydration products of high iron phoasphoaluminate cement contain sheet crystals, and a lot of gel form a dense three-dimensional network structure, which results in a lower porosity. Different from ordinary Portland cement, the hydration product of high iron phoasphoaluminate cement does not contain Ca(OH)2, and low alkalinity reduces its osmotic pressure. The lower porosity and osmotic pressure are the two main reasons which causes in the higher frost resistance of high iron phoasphoaluminate cement.

  14. Concrete with the addition of a high level of fly ash and effect of the additive on the concrete

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo Lorente, A.J.

    1986-12-01

    Flyash is usually considered an acceptable substitute for Portland cement in concrete mixtures. However, this article is studying a type of concrete in which flyash makes up between 40 and 80% of the total weight of the conglomerate material, being considered as an additional ingredient to Portland cement, aggregates and water as well as requiring different proportions. 42 refs., 9 figs., 7 tabs.

  15. Antimicrobial activity of bone cements embedded with organic nanoparticles

    Directory of Open Access Journals (Sweden)

    Perni S

    2015-10-01

    Full Text Available Stefano Perni,1,2 Victorien Thenault,1 Pauline Abdo,1 Katrin Margulis,3 Shlomo Magdassi,3 Polina Prokopovich1,2 1School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; 2Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; 3Casali Institute, Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, IsraelAbstract: Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate [PMMA], hydroxyapatite, and brushite and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No ­detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial

  16. Effect of metakaolin on strength and efflorescence quantity of cement-based composites.

    Science.gov (United States)

    Weng, Tsai-Lung; Lin, Wei-Ting; Cheng, An

    2013-01-01

    This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight.

  17. Long-term modeling of glass waste in portland cement- and clay-based matrices

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, H.W.; Nagy, K.L. [Sandia National Labs., Albuquerque, NM (United States); Morris, C.E. [Wollongong Univ., NSW (Australia). Dept. of Civil and Mining Engineering

    1995-12-01

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  18. Influence of curing conditions on durability of alkali-resistant glass fibres in cement matrix

    Indian Academy of Sciences (India)

    Arabi Nourredine

    2011-07-01

    Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in cement matrix. Test results show that even alkali resistant fibres treated with zirconium oxide present the same degradation phenomenon. They also show that the nature of the cement has a large influence on the protection of the fibres: the Portland CEM II is less damaging than the CEM I. The substitutions of a part of cement by silica fume gave no substantial improvements to the mechanical strength of the glass fibre reinforced cement (GFRC). However, the observed microstructures in the samples show that the degradation is weakened with the addition of silica fumes. The analytical techniques used in this study are scanning electron microscope (SEM) and X-ray diffraction.

  19. Effect of bitumen emulsion on setting, strength, soundness and moisture resistance of oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; T N Ojha; R N Yadav

    2001-06-01

    Addition of bitumen emulsion to the matrix has been found to improve strength and soundness of the product while decreasing the initial setting periods. Thus, bitumen emulsion as an admixture in magnesia cement is a moisture proofing and strengthening material.

  20. 76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...

    Science.gov (United States)

    2011-05-02

    ... COMMISSION Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States... determine whether revocation of the antidumping duty order on gray portland cement and cement clinker...

  1. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Science.gov (United States)

    2011-08-12

    ... COMMISSION Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United... cement and cement clinker from Japan would be likely to lead to continuation or recurrence of...

  2. Sealing of cracks in cement using microencapsulated sodium silicate

    Science.gov (United States)

    Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.

    2016-08-01

    Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.

  3. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  4. Effects of Using Pozzolan and Portland Cement in the Treatment of Dispersive Clay

    Directory of Open Access Journals (Sweden)

    A. H. Vakili

    2013-01-01

    Full Text Available Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.

  5. Mechanical and In Vitro Biocompatibility of Brushite Cement Modified by Polyethylene Glycol.

    Science.gov (United States)

    Roy, Mangal; Devoe, Ken; Bandyopadhyay, Amit; Bose, Susmita

    2012-12-01

    Brushite (dicalcium phosphate dihydrate, DCPD) cement, owing to its high solubility in physiological condition and ability to guide new bone formation, is widely used to treat bone defects. In the present study, we have evaluated the effects of poly ethylene glycol (PEG) addition on the setting time, compressive strength and in vitro biocompatibility of brushite cement. The brushite cements were prepared by mixing β-tricalcium phosphate [β-TCP, Ca(3)(PO(4))(2)] and monocalcium phosphate monohydrate [MCPM, Ca(H(2)PO(4))(2). H(2)O]. PEG was introduced at 2.0 and 5.0 wt% with the liquid. Introduction of PEG resulted in marginal increase in both initial and final setting time; however, significantly affected the compressive strength. Effects of PEG incorporation on in vitro biocompatibility of brushite cements were studied by using human fetal osteoblast cells (hFOB) cells. Field emission scanning electron microscope (FESEM) images and immunohistochemical analysis indicated that pure and PEG incorporated brushite cement facilitates cell adhesion, proliferation and differentiation. Fewer cells expressed vinculin protein with increased PEG content in the cement. Cell proliferation was found to decrease with increased PEG concentration while the cell differentiation increased with PEG content. Our results provide a better understanding of in vitro biocompatibility of PEG added brushite cements that can be used to customize the cement compositions based on application need.

  6. The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites.

    Science.gov (United States)

    Schnieders, Julia; Gbureck, Uwe; Vorndran, Elke; Schossig, Michael; Kissel, Thomas

    2011-11-01

    The influence of porosity on release profiles of antibiotics from calcium phosphate composites was investigated to optimize the duration of treatment. We hypothesized, that by the encapsulation of vancomycin-HCl into biodegradable microspheres prior admixing to calcium phosphate bone cement, the influence of porosity of the cement matrix on vancomycin release could be reduced. Encapsulation of vancomycin into a biodegradable poly(lactic co-glycolic acid) copolymer (PLGA) was performed by spray drying; drug-loaded microparticles were added to calcium phosphate cement (CPC) at different powder to liquid ratios (P/L), resulting in different porosities of the cement composites. The effect of differences in P/L ratio on drug release kinetics was compared for both the direct addition of vancomycin-HCl to the cement liquid and for cement composites modified with vancomycin-HCl-loaded microspheres. Scanning electron microscopy (SEM) was used to visualize surface and cross section morphology of the different composites. Brunauer, Emmett, and Teller-plots (BET) was used to determine the specific surface area and pore size distribution of these matrices. It could be clearly shown, that variations in P/L ratio influenced both the porosity of cement and vancomycin release profiles. Antibiotic activity during release study was successfully measured using an agar diffusion assay. However, vancomycin-HCl encapsulation into PLGA polymer microspheres decreased porosity influence of cement on drug release while maintaining antibiotic activity of the embedded substance.

  7. Use of waste brick as a partial replacement of cement in mortar.

    Science.gov (United States)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  8. Effects of using pozzolan and Portland cement in the treatment of dispersive clay.

    Science.gov (United States)

    Vakili, A H; Selamat, M R; Moayedi, H

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.

  9. Hydrocarbon-Derived Carbonate Cements of Subsurface Origin in the Vulcan Sub-Basin, Timor Sea

    Directory of Open Access Journals (Sweden)

    Shou-Yeh Gong

    2010-01-01

    Full Text Available Localized carbonate cementation occurs in the Eocene Grebe Sandstone of the Vulcan Sub-basin, Timor Sea, Australia. The cements have been previously interpreted as originating from microbial methane oxidation and sulfate reduction in a shallow subsurface environment and were related to hydrocarbon leakage. Here we reassess these localized carbonate cements in the Grebe Sandstone, and reported new findings. Petrography shows that there are two facies of sands in the Grebe Sandstone: (1 cemented, mostly fine-grained sands; and (2 loose, often coarse-grained sands. In addition, two types of carbonate matrix occur in the Grebe Sandstone: (1 spars to microspars in calcareous, fine-grained sandstones; and (2 micritic to microsparry matrix associated with limestone grains. Stable carbon isotopic values reveal that only the cements associated with sandstones were probably hydrocarbon-derived, and the resultant mineral is mainly calcite. Petrographic attributes and Mn+2 and Co+2 compositions of these cements differ significantly from those of modern cold-seep carbonates at or near the sea floor. Moreover, the hydrocarbon-derived carbonate mineralization only occurs in the fine-grained sands, not in the coarse-grained sands. In other word, the cementation was not only dependent on hydrocarbon leakage but also on the lithofacies of the host rock. We propose that the extent of hydrocarbon-related cementation alone cannot be used to evaluate the trap integrity as has been previously suggested.

  10. Characterization and restoration of historic Rosendale cement mortars for the purpose of restoration

    Science.gov (United States)

    Hart, Stephanie Anne

    Mortar was a very common building material in today's historic sites. Before Portland cement was manufactured at a global level, Rosendale cement was commonly used in these mortars. Over time, these mortars in historic sites have begun to break down and wear away. With Rosendale cement in production again, measures can be taken to restore and repair the historic mortars. However, little testing has been done to establish durability of modern Rosendale cement mortars. This presentation highlights the common mix techniques used at the time, and undergoes experiments to establish general properties and predict future durability. Six different mortar mixes were tested with varying cement content and using various lime additions. Properties observed include compressive strength, absorption, porosity, permeability, and bond strength. Ion chromatography was used on seawater-soaked samples to determine how the Rosendale cement mortar would react with the seawater. Relationships between these properties were also addressed. It was found that cement content played a large role in compressive strength, while lime content had an effect on bond strength. Ion chromatography was used on seawater-soaked samples to determine how the Rosendale cement mortar would react with the seawater. Magnesium sulfates, and chloride were taken up into the mortars, indicating that Rosendale would be venerable to salt attack.

  11. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  12. 21 CFR 872.3275 - Dental cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  13. Cementation in adhesive dentistry: the weakest link

    NARCIS (Netherlands)

    Jongsma, L.A.

    2012-01-01

    Het succesvol bevestigen van tandrestauraties is een belangrijke en veeleisende procedure. Met behulp van cement wordt het restauratiemateriaal aan de tandstructuur verbonden. Op die manier worden twee hechtvlakken gecreëerd: het raakvlak tussen tand en cement, en het raakvlak tussen cement en resta

  14. Hydration Study of Ordinary Portland Cement in the Presence of Lead(II) Oxide

    OpenAIRE

    Barbir, D.; Dabić, P.; Krolo, P.

    2013-01-01

    The aim of this work was to investigate the effect of the addition of lead(II) oxide on hydration heat and specific conductivity of a CEM I Portland cement. The heat released during hydration was determined by differential microcalorimetry up to 48 hours of hydration and the specific conductivity by a digital conductometer. Thermogravimetric analysis was employed in the characterization of the cement structure. The hydration heat results show that the addition of lead(II) oxide affects the...

  15. Reinforcing graphene oxide/cement composite with NH$_2$ functionalizing group

    Indian Academy of Sciences (India)

    M EBRAHIMIZADEH ABRISHAMI; V ZAHABI

    2016-08-01

    In this study, pure and NH$_2$-functionalized graphene oxide (GO) nanosheets have been added to the cement mortar with different weight percents (0.05, 0.10, 0.15, 0.20 and 0.25 wt%). In addition, the effects of functionalizing GO on the microstructure and mechanical properties (flexural/compressive strengths) of cement composite have been investigated for the first time. Scanning electron microscopy (SEM) images showed that GO filledthe pores and well dispersed in concrete matrix, whereas exceeding GO additive from 0.10 wt% caused the formation of agglomerates and microcracks. In addition, mercury intrusion porosimetry confirmed the significant effects of GO and functionalizing groups on filling the pores. NH2-functionalizing helped to improve the cohesion between GO nanosheets and cement composite. Compressive strengths increased from 39 MPa for the sample without GO to54.23 MPa for the cement composites containing 0.10 wt% of NH$_2$-functionalized GO. Moreover, the flexural strength increased to 23.4 and 38.4% by compositing the cement paste with 0.10 wt% of pure and NH$_2$-functionalized GO, compared to the sample without GO, respectively. It was shown that functionalizing considerably enhanced the mechanical properties of GO/cement composite due to the interfacial strength between calcium silicatehydrates (C-S-H) gel and functionalized GO nanosheets as observed in SEM images. The morphological results were in good agreement with the trend obtained in mechanical properties of GO/cement composites.

  16. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  17. The influence of pluronic P123 micelles on corrosion behaviour of steel in cement extract and bulk matrix properties of cement paste

    OpenAIRE

    Koleva, D. A.; Denkova, A. .G.; Hu, J; Breugel, K. van

    2012-01-01

    The influence of Pluronic P123 (PEO20-PPO20-PEO70) micelles (of 10 nm size) on the corrosion behaviour of low carbon steel in cement extract (CE) was studied using electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarisation (PDP). Additionally, mercury intrusion porosimetry (MIP) was emplo ed to derive the impact of admixed micelles on porosity and pore-size distribution of cement paste. The motivation for carrying out this investigation has two main aspects: first, previou...

  18. Fine-grained concrete with organomineral additive

    Directory of Open Access Journals (Sweden)

    Solovyov Vitaly

    2016-01-01

    Full Text Available The article deals with the issues concerning the formation of the structure and properties of fine-grained concrete with organomineral additive produced through mechanochemical activation of thermal power plant fly ash together with superplasticizer. The additive is produced in a high-speed activator at the collision particles’ speed of about 80 m/s. The use of the additive in fine-grained concrete in the amounts of 0.5-1% increased the strength by 30-50% and reduced the size and volume of pores. The cement consumption in such concrete is close to the cement consumption in common concrete of equal resistance.

  19. Farklı Puzolanik Katkıların Çimento Harçlarının Mekanik Özelikleri Üzerine Etkisi = The Effect of Different Puzzolanic Additives on Mechanical Properties of Cement Mortars

    Directory of Open Access Journals (Sweden)

    H. Aygül YEPREM

    2004-06-01

    Full Text Available In this study, cement mortar samples containing fly ash obtained from Soma Power Plant, two different types of natural pozzolan supplied from Yenişehir and Bilecik and silica fume from Antalya Ferrocrom Industry partial replacement of cement clinker. The strength of the mortars prepared by these mixtures were investigated. The mixtures were prepared by using 10% fly ash and 5% silica fume and the trass contents varied as 30%, 35%, and 40%. Chemical analyses of these mixtures were carried out and Blaine specific surface area values were measured. In performed tests, the highest strength values were noticed in mortars containing natural puzzolan from Bilecik which has high fineness.

  20. Factor ten emission reductions : the key to sustainable development and economic prosperity for the cement and concrete industry

    Energy Technology Data Exchange (ETDEWEB)

    Horton, R. [Alchemix Corp., Pittsburgh, PA (United States)

    2001-07-01

    This paper proposes that the negative environmental effects of current cement/concrete production can be reduced by a factor of 10 by using cement blends with minimum portland cement and maximum pozzolanic loading. In addition to extending the longevity of concrete, such cement blends also avoid the huge cost of repairs and replacement cycles. Market forces will drive this transition toward sustainable development in the concrete and cement industry. The economic advantages of improving the quality of the concrete are great. Even if improving the concrete doubles the price of the highest quality cement, this would only add 2 per cent to the cost of the overall construction project, but the service life of the structure would give a many-fold return on this added investment. Also, regulations on carbon dioxide emissions in the near future will assume economic importance in the manufacturing of cement and concrete. While portland cements have dominated the construction industry for more than 150 years, new blended cements priced on a performance basis will become the standard in the twenty first century. Currently, the typical cement formulation in the United States, if it contains fly ash, contains 15 to 20 per cent fly ash by weight of the total cementitious material. This paper states that soon the number will be 50 to 60 per cent ash. Fly ash will be widely acknowledged for improving critical performance characteristics of concrete such as workability, impermeability and durability. Carbon dioxide credits will also be a major economic factor that will drive the cement industry toward a factor ten environmental improvement. The Kyoto Protocol calls for the trading of greenhouse gas credits which includes carbon dioxide credits. Under the new system, cement producers will be taxed on excess emissions, while those using pozzolans in their cements will earn credits to offset these penalties. 10 refs.

  1. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    Science.gov (United States)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  2. Research Of The Influence Of Reftinskii SDPP’S Ash On The Processes Of Cement Stone’S Structure Forming

    Science.gov (United States)

    Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.

    2017-01-01

    The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.

  3. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials

    Science.gov (United States)

    Nochaiya, Thanongsak; Chaipanich, Arnon

    2011-01-01

    The porosity and microstructure of a Portland cement-multi-walled carbon nanotube composite were investigated. Multi-walled carbon nanotubes (CNTs), up to 1 wt.% of cement, synthesized by infusion chemical vapor deposition, and Portland cement type I (PC) were used to produce pastes with a water to cement ratio of 0.5. Mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) were used to characterize Portland cement-CNTs systems. MIP analysis of the results indicates that total porosity of the mixes with CNTs was found to decrease with increasing CNTs content. Moreover, an important effect of additional CNTs was a reduction in the number of mesopores, while SEM technique showed dispersion of CNTs between the hydration phases of Portland cement pastes.

  4. Resistência mecânica a quente de concretos refratários aluminosos zero-cimento auto-escoantes contendo adições de microssílica e microssílica coloidal High temperature mechanical strength of self-flow zero-cement high-alumina castables containing microsilica and microsilica with coloidal silica additions

    Directory of Open Access Journals (Sweden)

    M. V. Gerotto

    2000-06-01

    order to confirm this, high alumina castables were prepared containing various amounts of microsilica; the castables were free of cement, transition aluminas (rho -Al2O3 or any hydraulic binder. In addition, castable compositions containing colloidal silica and microsilica, as a means to increase the packing density and the matrix reactivity to assist mullite formation, were prepared. Castables viability for technological uses are discussed.

  5. Full factorial design analysis of carbon nanotube polymer-cement composites

    Directory of Open Access Journals (Sweden)

    Fábio de Paiva Cota

    2012-08-01

    Full Text Available The work described in this paper is related to the effect of adding carbon nanotubes (CNT on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CNT weight addition and water/cement ratio. The response parameters of the full factorial design were the bulk density, apparent porosity, compressive strength and elastic modulus of the polymer-cement-based nanocomposites. All the factors considered in this analysis affected significantly the bulk density and apparent porosity of the composites. The compressive strength and elastic modulus were affected primarily by the cross-interactions between polymeric phase and CNT additions, and the water/cement ratio with polymeric phase factors.

  6. Thoughts on the Current Cement Industry Development

    Institute of Scientific and Technical Information of China (English)

    Gan Zhihe

    2003-01-01

    According to the analysis of cement capacity andits relations with macro economy running index, the mainreasons for the present rapid development of cement capacityare the rapid development of economy and the shot up ofwhole society fixed asset investment. According to the presentspeed of economy development, cement still enjoys a po-tential increase, So here has not been an overall excessivepopularity of cement industry. The best way to prevent lowlevel repeated construction is to promote the development ofnew dry- process cement as well as try to get rid of blindness.

  7. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  8. Understanding cement mechanical behavior in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zahacy, T. A. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but it can cause cracks in the cement sheath. These cracks are the result of high steam temperatures and thermal expansion. In order to mitigate this risk, improved well designs are required. The aim of this paper is to present the mechanical behavior of the cement sheath during the heating phase. An analysis of the impact of design and operating parameters was conducted through thermal hydraulic and thermal mechanical analyses to assess cement integrity. These analyses were then performed on an example of an SAGD project in the southern part of the Athabasca oilsands region to assess the performance of the cement sheath. Results showed that potential damage to the cement can be reduced by slow heating and a lower Young's modulus cement blend. This paper makes recommendations for optimizing cement design in thermal recovery wells.

  9. Radioactive wastes dispersed in stabilized ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  10. Some durability aspects of hybrid alkaline cements

    Directory of Open Access Journals (Sweden)

    Donatello S.

    2014-04-01

    Full Text Available Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C, resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements

  11. Utilization of waste heat from rotary kiln for burning clinker in the cement plant

    OpenAIRE

    2016-01-01

    Cement subsector next to the glass industry is counted among one of the most energy-intensive industries, which absorbs approx. 12-15% of the total energy consumed by the industry. In the paper various methods of energy consumption reduction of in the cement industry are discussed. Cement production carries a very large emissions of greenhouse gases, where CO2 emissions on a global scale with the industry than approx. 5%. Great opportunity in CO2 emissions reduction in addition to the recover...

  12. Experimental Study for Improving the Toughness of Harden Cement Using Carbon Fiber%碳纤维改善水泥石韧性实验研究

    Institute of Scientific and Technical Information of China (English)

    步玉环; 程荣超; 王瑞和; 曹祥元

    2005-01-01

    Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential for fractures in set cement in slim holes. Therefore, it is necessary to improve the toughness of the cement mantle. Results obtained from experiments show that carbon fiber, with a concentration of 0.12%-0.19% in cement and a length of 700 to 1,400 μm, plays an important role in improving cement quality. Addition of carbon fiber can improve the bending strength of set cement by up to 30%. At the same time, the increase in fiber concentration can lower the elastic modulus and increase the Poisson's ratio of set cement. Thin-section analysis shows that fiber can effectively prevent the propagation of fractures and enhance the plasticity of the matrix and the ability to prevent fracture.

  13. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Science.gov (United States)

    Strigáč, Július

    2015-11-01

    The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I -SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  14. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Directory of Open Access Journals (Sweden)

    Strigáč Július

    2015-11-01

    Full Text Available The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I –SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  15. Retention of long-term interim restorations with sodium fluoride enriched interim cement

    Science.gov (United States)

    Strash, Carolyn

    Purpose: Interim fixed dental prostheses, or "provisional restorations", are fabricated to restore teeth when definitive prostheses are made indirectly. Patients undergoing extensive prosthodontic treatment frequently require provisionalization for several months or years. The ideal interim cement would retain the restoration for as long as needed and still allow for ease of removal. It would also avoid recurrent caries by preventing demineralization of tooth structure. This study aims to determine if adding sodium fluoride varnish to interim cement may assist in the retention of interim restorations. Materials and methods: stainless steel dies representing a crown preparation were fabricated. Provisional crowns were milled for the dies using CAD/CAM technology. Crowns were provisionally cemented onto the dies using TempBond NE and NexTemp provisional cements as well as a mixture of TempBond NE and Duraphat fluoride varnish. Samples were stored for 24h then tested or thermocycled for 2500 or 5000 cycles before being tested. Retentive strength of each cement was recorded using a universal testing machine. Results: TempBond NE and NexTemp cements performed similarly when tested after 24h. The addition of Duraphat significantly decreased the retention when added to TempBond NE. NexTemp cement had high variability in retention over all tested time periods. Thermocycling for 2500 and 5000 cycles significantly decreased the retention of all cements. Conclusions: The addition of Duraphat fluoride varnish significantly decreased the retention of TempBond NE and is therefore not recommended for clinical use. Thermocycling significantly reduced the retention of TempBond NE and NexTemp. This may suggest that use of these cements for three months, as simulated in this study, is not recommended.

  16. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    Science.gov (United States)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  17. Research of magnesium phosphosilicate cement

    Science.gov (United States)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  18. Macroscopic and Microscopic Mechanisms of Cement-Stabilized Soft Clay Mixed with Seawater by Adding Ultrafine Silica Fume

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2014-01-01

    Full Text Available The strength of the cement-stabilized soil can be improved by the use of seawater. Compressive strength test results show that the strength of cement-stabilized soil mixed with seawater is 50% greater than that mixed with freshwater at the 90th day. However, the application is limited because the expansion of the cement-stabilized soil mixed with seawater increases significantly. A kind of ultrafine silica fume was added into the cement-stabilized soil to inhibit swelling of the cement-stabilized soil with seawater. The expansion of cement-stabilized soil mixed with seawater by adding ultrafine silica fume is close to that of cement-stabilized soil mixed with freshwater. With the addition of ultrafine silica fume, the unconfined compressive strength increases by close to 6.5% compared with seawater alone at the 90th day. The mechanisms of adding ultrafine silica fume into the cement-stabilized soil mixed with seawater are revealed by several physical and chemical characterization parameters, such as specific gravity, unbound water content, surface morphology seen with SEM, and crystal products by X-ray diffraction tests. The results show that the crystal growth is an important factor, affecting the strength and expansion of cement-stabilized soil mixed with seawater.

  19. Elucidation of real-time hardening mechanisms of two novel high-strength calcium phosphate bone cements.

    Science.gov (United States)

    Smirnov, Valery V; Rau, Julietta V; Generosi, Amanda; Albertini, Valerio Rossi; Ferro, Daniela; Barinov, Sergey M

    2010-04-01

    Despite the numerous literature data available in the field of calcium phosphate bone cements, the mechanism and kinetics of their hardening, both of which are of great importance for cements application, in most cases, is unknown. In this work, the mechanism and kinetics of hardening of two novel high-strength calcium phosphate bone cements were studied using the energy dispersive X-ray diffraction technique, which allows rapid collection of the patterns. The phase transformations occurring on the setting and hardening processes were monitored in situ. Containing minimal quantity of components, whose mixing leads to the formation of cements with pH close to neutral, the cements under study are simple in handling. The main component of both formulations is tetracalcium phosphate. In both cements, the effect of the addition of high- and low-molecular weight chitosan on phase development and kinetics was investigated in detail. One of the cements has the compressive strength of about 70 MPa, whereas the strength of the other, containing Ca(3)Al(2)O(6), is much higher, about 100 MPa. This latter cement could be regarded as an alternative to the common low-strength bioresorbable brushite cements.

  20. Increase of the final setting time of brushite cements by using chondroitin 4-sulfate and silica gel.

    Science.gov (United States)

    Tamimi-Mariño, F; Mastio, J; Rueda, C; Blanco, L; López-Cabarcos, E

    2007-06-01

    Chondroitin 4-sulfate (C4S) is a bioactive glycosaminoglycan with inductive properties in bone and tissue regeneration. Dicalcium phosphate dehydrate cements (known as brushite) are biocompatible and resorbable materials used in bone and dental surgery. In this study we analyzed the effect of C4S on the setting of a calcium phosphate cement and the properties of the resulting material. Brushite based cement powder was synthesised by mixing monocalcium phosphate with beta-tricalcium phosphate and sodium pyrophosphate. When the concentration of C4S, in the liquid added to the cement powder, was between 1 and 8% the cement final setting time increases. Furthermore, the cement diametral tensile strength remains unaffected when solutions with concentrations of C4S below 5% were used, but decreases at higher C4S concentrations. Calorimetric analysis showed that the cements prepared with C4S alone and in combination with silica gel have a greater content of hydrated water. We concluded from our study that the addition of small amounts of C4S increases the cement setting time without affecting its diametral tensile strength and at the same time improves the cement's hydrophilicity.

  1. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped.

    Science.gov (United States)

    Su, Ying-Fang; Lin, Chi-Chang; Huang, Tsui-Hsien; Chou, Ming-Yung; Yang, Jaw-Ji; Shie, Ming-You

    2014-09-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials.

  2. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    Directory of Open Access Journals (Sweden)

    Michał A. Glinicki

    2016-01-01

    Full Text Available The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  3. Effectiveness of the Top-Down Nanotechnology in the Production of Ultrafine Cement (~220 nm

    Directory of Open Access Journals (Sweden)

    Byung-Wan Jo

    2014-01-01

    Full Text Available The present investigation is dealing with the communition of the cement particle to the ultrafine level (~220 nm utilizing the bead milling process, which is considered as a top-down nanotechnology. During the grinding of the cement particle, the effect of various parameters such as grinding time (1–6 h and grinding agent (methanol and ethanol on the production of the ultrafine cement has also been investigated. Performance of newly produced ultrafine cement is elucidated by the chemical composition, particle size distribution, and SEM and XRD analyses. Based on the particle size distribution of the newly produced ultrafine cement, it was assessed that the size of the cement particle decreases efficiently with increase in grinding time. Additionally, it is optimized that the bead milling process is able to produce 90% of the cement particle <350 nm and 50% of the cement particle < 220 nm, respectively, after 6.3 h milling without affecting the chemical phases. Production of the ultrafine cement utilizing this method will promote the construction industries towards the development of smart and sustainable construction materials.

  4. Adição de cimento de aluminato de cálcio e seus efeitos na hidratação do óxido de magnésio Effects of calcium aluminate cement addition on magnesia hydration

    Directory of Open Access Journals (Sweden)

    R Salomão

    2010-06-01

    Full Text Available Cimento de aluminato de cálcio (CAC e óxido de magnésio (MgO são duas importantes matérias primas para a indústria de concretos refratários e apresentam grande tendência à hidratação. Os efeitos dessa reação em cada caso isolado são distintos e bem conhecidos: enquanto o CAC hidratado atua como ligante e garante a resistência mecânica do material antes da sinterização, a hidratação do MgO pode causar sua total desintegração em alguns casos. Devido ao interesse tecnológico nesses materiais, é importante investigar as peculiaridades desses processos e as potenciais interações entre eles. Neste trabalho, os efeitos da adição de diferentes teores de CAC na hidratação do MgO foram investigados em suspensões aquosas usando medidas de expansão volumétrica aparente, pH das suspensões e difração de raios X. Foi observado que os efeitos danosos da hidratação do MgO podem ser significativamente reduzidos com um controle adequado do teor de CAC nas formulações.Calcium aluminate cement (CAC and magnesium oxide (MgO are two of the most important raw materials for refractory castables industry and both present a high driving force for hydration. The effects of this reaction for each compound are well known: whereas the hydrated CAC behaves as a binder, hardening the castable, MgO hydration can cause the total disintegration of the material. Due to the technological interests involved, it is important to study the peculiarities in these processes and their potential interactions. In the present work, the effects of the addition of different CAC contents on MgO hydration were investigated in aqueous suspensions by means of apparent volumetric expansion, pH measurements and qualitative X-ray diffraction. It was found out that the deleterious effects of MgO hydration can be significantly reduced with a proper control of the CAC content for the formulations.

  5. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Water is often added to concrete placing for easy workability and finishability in construction site. The additional mixing water can help easy mixing and workability but causes increased porosity, which yields degradation of durability and structural performances. In this paper, cement mortar samples with 0.45 of W/C (water to cement ratio are prepared for control case and durability performances are evaluated with additional water from 0.45 to 0.60 of W/C. Several durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed, and they are analyzed with changed porosity. The changing ratios and patterns of durability performance are evaluated considering pore size distribution, total porosity, and additional water content.

  6. Alite-ye'elimite cement: Synthesis and mineralogical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Suhua [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China); Snellings, Ruben [Laboratory of Construction Materials, Institute of Materials, Ecole Polytechnique Fédéral de Lausanne, Station 12, CH-1015 Ecublens (Switzerland); Li, Xuerun [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China); Shen, Xiaodong, E-mail: xdshen@njut.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China); Scrivener, Karen L. [Laboratory of Construction Materials, Institute of Materials, Ecole Polytechnique Fédéral de Lausanne, Station 12, CH-1015 Ecublens (Switzerland)

    2013-03-15

    Alite-ye'elimite cement is an alternative cement that combines desirable characteristics of calcium sulfoaluminate cements and Portland cement in that it shows improved strength development at early age while retaining high portlandite contents. The key problem in the clinkering process is to produce the alite-ye'elimite phase assemblage so that both phases can co-exist. In this study, a new synthesis method is proposed to achieve the coexistence of alite and ye'elimite consisting of a secondary heat treatment step at 1250 °C after regular Portland clinker firing at 1450 °C. Quantitative X-ray powder diffraction and electron microscopy were used to analyze the phase composition of clinker before and after the secondary heat treatment. The results show that ye'elimite develops during secondary heat treatment of calcium sulphate enriched clinker by reaction of C{sub 3}A and sulphate phases. Additional ferrite is formed as result of rejection of Fe originally in solid solution with C{sub 3}A during ye'elimite formation.

  7. Leachability and strength of kaolin stabilized with cement and rubber

    Directory of Open Access Journals (Sweden)

    Meei-Hoan Ho

    2011-07-01

    Full Text Available Yearly, the disposal of used tyres is a major environmental problem for countries all over the world. This causes environmental hazards such as uncontrolled fire, consume landfill space, breeding ground for mosquitoes and contaminating the soil and vegetation. Hence, urgent steps were identified to produce new methods of recycling the waste tyres to solve this hazard. This study reviews the feasibility of using waste tyres in the form of rubber chips with cement to stabilize soft clay and the effect to the environment. The focus of this study was mainly the strength and leachability characteristics of kaolin as base clay, admixed with cement as the binder and rubber chips as an additive. Leaching test is used to evaluate the performance of cementitious materials for stabilization and solidification (S & S of hazardous materials such as waste or contaminated soil. In this study, cylindrical stabilized clay specimens were prepared with various rubber chips contents and cement, and then aged for 28 days. Cylindrical specimens were then subjected to unconfined compressive strength test (using Geocomp LoadTrac II and the specimens were later dried in oven at 105° before tested for leaching tests. These leaching methods are Acid Neutralization Capacity Test (ANC and Synthetic Precipitation Leaching Procedure (SPLP. The solidified samples were checked on six different heavy metals, namely copper, chromium, cadmium, arsenic, zinc and plumbum. Analysis was carried out by relating the effects of 0, 2 or 4 % cement as well as 0, 5, 10 and 15 % rubber chips addition to the base clay and its leachability. As observed, the curing of specimen for 28 days was in a range of 66.24 to 249.4 kPa. Specimen with 4 % cement is able to produce ANC9 of about 0.13 meq HNO3/g specimen. However specimen with 0 % and 2 % cement for different rubberchips content shows that the specimen do not have the capacity to neutralize acid at pH 9. Therefore, more cement (> 4 % is

  8. Preparation and characterization of a novel injectable strontium-containing calcium phosphate cement with collagen

    OpenAIRE

    2015-01-01

    Purpose: To develop a novel injectable strontium-containing calcium phosphate cement with collagen. Methods: A novel calcium phosphate bone cement (CPC) was prepared with the addition of strontium element, collagenⅠ, and modified starch; the injectability, solidification time, microstructure, phase composition, compressive strength, anti-collapsibility and histological properties of material were evaluated. Results: The results showed that the material could be injected with an excellen...

  9. Effects of Using Pozzolan and Portland Cement in the Treatment of Dispersive Clay

    OpenAIRE

    Vakili, A. H.; Selamat, M. R.; H. Moayedi

    2013-01-01

    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable o...

  10. The hardening of Portland cement studied by ? NMR stray-field imaging

    Science.gov (United States)

    Nunes, Teresa; Randall, E. W.; Samoilenko, A. A.; Bodart, P.; Feio, G.

    1996-03-01

    Hydration and hardening processes of Portland cement (type I) were studied by analysis of the one-dimensional projections (profiles) obtained periodically with the 0022-3727/29/3/044/img8 stray-field imaging technique over two days. The influence of additives, such as gypsum, in Portland cement (type IA) was also investigated. The decay of the signal intensity as a function of time was found to be bi-exponential for type I and mono-exponential for type IA.

  11. INVESTIGATING EFFECTS OF INTRODUCTION OF CORNCOB ASH INTO PORTLAND CEMENTS CONCRETE: MECHANICAL AND THERMAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Antonio Price

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the benefits of replacing Ordinary Portland Cement (OPC with Corncob Ash (CCA blended cements. The cement industry contributes considerable amount of Carbon Dioxide (CO2 emissions into the atmosphere. The main contribution of CO2 emissions from cement production results from the process of creating Calcium Oxide (CaO from limestone (CaCO3 commonly known as the calcination process. Blending OPC with a pozzolanic material will assist in the reduction of CO2 emissions due to calcination as well as enhance the quality of OPC. There are various pozzolanic materials such as fly ash, rice husk, silica fume and CCA that could be promising partial replacement for OPC. In this study, CCA will serve as the primary blending agent with OPC. An experiment was performed to designate an appropriate percentage replacement of CCA that would comply with specific standards of cement production. The experimental plan was designed to analyze compressive strength, workability and thermal performance of various CCA blended cements. The data from the experiment indicates that up to 10% CCA replacement could be used in cement production without compromising the structural integrity of OPC. In addition, it was found that the compressive strength and workability of the resulting concrete could be improved when CCA is added to the mixtures. Furthermore, it was shown that the introduction of 10% CCA can lead to significant reduction in thermal conductivity of the mixture.

  12. Laboratory Test on Long-Term Deterioration of Cement Soil in Seawater Environment

    Institute of Scientific and Technical Information of China (English)

    杨俊杰; 闫楠; 刘强; 张玥宸

    2016-01-01

    Laboratory tests were conducted to study the effects of curing time, cement ratio and seawater pressure on cement soil deterioration formed at simulative marine soft clay sites. Deterioration depth was determined on the basis of characteristics of penetration resistance and penetration depth curves, and the deterioration depth of cement soil with the cement ratio of 7%, reached 31.8 mm after 720 d. Results of research indicated that deterioration ex-tended quickly under seawater environment and the deterioration depth increased with the prolonging curing time. In addition, the water pressure could speed up deterioration. With the increase of cement content, the strength of cement soil increased obviously. At the same time, the deterioration depth decreased significantly. The concentra-tion of calcium ion in the cement stabilized soil increased with the increase of depth, while that of magnesium ion gradually decreased. The variations were consistent with energy dispersive spectrometer(EDS)analysis results, and the calcium concentration with depth was in a good consistency with strength distribution at long term. The results showed that the deterioration became more serious with the curing time, and it was related to calcium leaching.

  13. Damping Property of a Cement-Based Material Containing Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Wei-Wen Li

    2015-01-01

    Full Text Available This study aimed to explore the damping property of a cement-based material with carbon nanotube (CNT. In the study, the cement composites with different contents of CNT (0 wt%, 0.033 wt%, 0.066 wt%, and 0.1 wt% were investigated. Logarithmic Decrement method and Dynamic Mechanical Analysis (DMA method were utilized to study the damping property of CNT/cement composite. The influences of CNT on pore size distribution and microstructure of composite were analyzed by Mercury Intrusion Porosimetry (MIP and Scanning Electron Microscopy (SEM, respectively. The experimental results showed that CNT/cement composite presented higher flexural strength index than that of a pure cement paste. Additional CNT could improve the vibration-reduction capacity of cement paste. Furthermore, the experiments proved that CNT could bridge adjacent hydration products and support load transfer within cement matrix, which contributed to the energy dissipation during the loading process.

  14. Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite

    Directory of Open Access Journals (Sweden)

    Baomin Wang

    2016-11-01

    Full Text Available In this work, graphene nanoplatelets (GNPs were dispersed uniformly in aqueous solution using methylcellulose (MC as a dispersing agent via ultrasonic processing. Homogenous GNP suspensions were incorporated into the cement matrix to investigate the effect of GNPs on the mechanical behavior of cement paste. The optimum concentration ratio of GNPs to MC was confirmed as 1:7 by ultraviolet visible spectroscopy (UV-Vis, and the optical microscope and transmission electron microscopy (TEM images displayed remarkable dispersing performance. The GNP–cement composite exhibited better mechanical properties with the help of surface-modified GNPs. The flexural strength of cement paste increased up to 15%–24% with 0.05 wt % GNPs (by weight of cement. Meanwhile, the compressive strength of the GNP–cement composite increased up to 3%–8%. The X-ray diffraction (XRD and thermal analysis (TG/DTG demonstrated that the GNPs could accelerate the degree of hydration and increase the amount of hydration products, especially at an early age. Meanwhile, the lower porosity and finer pore size distribution of GNP–cement composite were detected by mercury intrusion porosimetry (MIP. In addition, scanning electron microscope (SEM analysis showed the introduction of GNPs could impede the development of cracks and preserve the completeness of the matrix through the plicate morphology and tortuous behavior of GNPs.

  15. Alternative Fuels in Cement Production

    OpenAIRE

    2007-01-01

    Substitutionen af fossilt med alternativt brændsel i cement produktionen er steget betydeligt i den sidste dekade. Af disse nye alternative brændsler, udgør de faste brændsler p.t. den største andel, hvor kød- og benmel, plastic og dæk i særdeleshed har været de alternative brændsler der har bidraget med mest alternativ brændsels energi til den tyske cement industri. De nye alternative brændsler er typisk karakteriseret ved et højt indhold af flygtige bestanddele og adskiller sig typisk fra t...

  16. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-01-01

    AIM: To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. MATERIALS AND METHOD: The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. RESULTS: GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. CONCLUSION: It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation. PMID:28028417

  17. Influence of the temperature on the cement disintegration in cement-retained implant restorations.

    Science.gov (United States)

    Linkevicius, Tomas; Vindasiute, Egle; Puisys, Algirdas; Linkeviciene, Laura; Svediene, Olga

    2012-01-01

    The aim of this study was to estimate the average disintegration temperature of three dental cements used for the cementation of the implant-supported prostheses. One hundred and twenty metal frameworks were fabricated and cemented on the prosthetic abutments with different dental cements. After heat treatment in the dental furnace, the samples were set for the separation to test the integration of the cement. Results have shown that resin-modified glass-ionomer cement (RGIC) exhibited the lowest disintegration temperature (pcement (ZPC) and dual cure resin cement (RC) (p>0.05). Average separation temperatures: RGIC - 306 ± 23 °C, RC - 363 ± 71 °C, it could not be calculated for the ZPC due to the eight unseparated specimens. Within the limitations of the study, it could be concluded that RGIC cement disintegrates at the lowest temperature and ZPC is not prone to break down after exposure to temperature.

  18. Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert

    2016-06-01

    Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.

  19. Center for Cement Composite Materials

    Science.gov (United States)

    1990-01-31

    pastes have shown that the matrix is microporous; mesopores are absent unless the material is allowed to dry out. This results in water adsorption at low...only to water. When subsequently dried a portion of3 the porosity is converted to larger mesopores . • Only about one third of the cement reacts in a...Frictional sliding, in this case was characterized by a decreasing slope in the loading curve followed by hysteresis in the unload/reloading curves

  20. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  1. Modifications induced by adding natural zeolitic pozzolans to cement paste

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2005-12-01

    Full Text Available Volcanic pozzolans owe their pozzolanic activity chiefly to the presence of vitreous or zeolitic material rich in SiO2, and Al20y compounds that react with the portlandite produced during cement hydration to generate amorphous gels with cementitious properties. The present study analyzes the modifications taking place in the composition, structure and micro structure of the hydra ted cement paste when 20% of the cement by weight is replaced by two finely ground zeolitic rocks from Cuban deposits. Hydrated cement pastes were prepared with a CEM I35 cement, as well as with mixes of the cement and two Cuban zeolitic rocks (20% by weight. After eight months of hydration, the pastes were characterized -mineralogically, chemically and microstructurally- with XRD, FTIR, 29Si and 27Al MAS NMR, DTA/TG, back scattered electron microscopy and mercury porosimetry techniques. The replacement of 20% by weight of the cement with two finely ground zeolitic rocks significantly modified the composition, structure, quantity and microstructure of the hydrated cement paste reaction product. The C-S-H gel formed in these pastes differed in quantity, which was larger, and composition from the original cement gel. Moreover, the gel formed in addition-free cement had a higher Ca and a lower Al content and shorter silicate chains than the C-S-H product formed in the pastes made with zeolitic rocks. Finally, the pastes with pozzolan additions had fewer and smaller pores.

    La actividad de las puzolanas de origen volcánico procede fundamentalmente de la presencia de material vitreo o zeolítico rico en SiO2 y Al2Oy que son los que reaccionan con la portlandita producida en la hidratación del cemento generando geles amorfos con propiedades cementantes. El objetivo del presente trabajo es estudiar las modificaciones que produce la sustitución del 20% en peso de cemento por dos

  2. Active Additives to Improve the Performance of Anti-Corrosion of Carbon Dioxide of Set Cement in Oil Well%活性外掺料提高油井水泥石抗二氧化碳腐蚀能力研究

    Institute of Scientific and Technical Information of China (English)

    诸华军; 姚晓; 王道正; 张祖华; 华苏东; 何玉鑫

    2011-01-01

    为提高固井水泥环的抗CO2腐蚀能力,开发了富硅铝质活性外掺料(HA).通过比较不同碳化龄期水泥石的抗压强度、分析孔结构、测定渗透率、分析碳化层的成分和显微形貌等方法,对水泥石的抗碳化性能进行了研究.结果表明,加HA水泥石抗CO2腐蚀能力明显优于净浆水泥石和掺硅灰水泥石:加HA水泥石在CO2压力2 MPa、95℃腐蚀介质中养护28和90 d后,试样的抗压强度为35.4和33.7 MPa,较同龄期盐水养护试样分别降低了3.01%和13.14%(净浆水泥石分别降低了7.750%和31.15%),试样总孔隙率分别为19.87%和21.45%(净浆水泥石分别为28.81%和31.850%),且有害孔(直径>100 nm)所占比例小;在7 MPa驱替压力下,两个腐蚀龄期的加HA水泥石均未发生渗滤(净浆水泥石的渗透率分别为1.21×10-3 μm2和1.68×10-3 μm2);碳化90 d后的加HA水泥石外层试样中CaCO3的衍射峰强度明显低于净浆水泥石,且碳化试样的产物呈连续致密,与净浆水泥石腐蚀后形成颗粒的结构明显不同.%Rich silicon-aluminum active admixture (HA) has been developed with the aim at improving the performance of anti-carbonation of oil well cement sheath. The compressive strength of set cement, its pore structure, permeability, component and micro-morphology of carbonated specimens at different ages were analyzed. The performance of anti-carbonization was investigated. The results showed that the anti-carbonation property of set cement with HA agent was higher than that of the pure cement and those containing silica fume. Under CO2 pressure of 2 Mpa and temperature of 95 ℃ ,the compressive strength of set cement with HA agent was 35. 4 Mpa and 33. 7 Mpa respectively with aging for 28 and 90 days, which decreased by 3. 01% and 13. 14% respectively compared with those samples after salt water curing (the compressive strength of pure cement was reduced by 7. 75% and 31. 15% respectively). The total

  3. Dry building mixture with complex dispersed mineral additives

    Science.gov (United States)

    Il'ina, Liliia; Mukhina, Irina; Teplov, Alexandr

    2016-01-01

    The effectiveness of the complex dispersed mineral additive consisting of diopside and limestone was provided by the following factors. Diopside, due to the high hardness, reinforces formed hardened cement paste and prevents the spread of micro-cracks in it under the action of loads. Furthermore, diopside due to the greater elastic modulus than cement paste causes redistribution of stress between the additive particles and the cement. Limestone, since it has chemical affinity with the clinker minerals and products of their hydration hardening, effects on the hydration process and the formation of the contact area between the additive particles and the cement. The optimum quantity of complex dispersed mineral additive is 7%. At the same time the strength of the solution, made of dry building mixture "rough leveler for floor", increased by 22.1%, and the strength of the solution, made of dry mortar "masonry mixture" increased by 32.7%. With the mineral additive introduction the offset of the endoeffect temperatures to higher temperatures on derivatograms is fixed. If there is a mineral additive in the hardened cement paste, which may act as substrate for the tumors crystallization, the hardened cement paste structure strengthening while the complex thermal analysis is seen.

  4. Effect of carbon fiber on calcium phosphate bone cement

    Institute of Scientific and Technical Information of China (English)

    戴红莲; 王欣宇; 黄健; 闫玉华; 李世普

    2004-01-01

    The calcium phosphate cement (α-TCP/TTCP) was reinforced with oxidation-treated carbon fibers. The effect of aspect ratio and content of carbon fiber on the compression strength and bending strength of the hardened body was discussed. The results show that the reinforcing effect is optimal as the aspect ratio is 375 and the additive amount is 0.3% (mass fraction). Under this condition, the compressive strength is increased by 55% (maximum 63.46 MPa), and the bending strength is nearly increased by 100% (maximum 11.95 MPa), respectively. However, if the additive quantity and aspect ratio are too high, the effect of the carbon fibers is limited because it can not be dispersed uniformly in the hardened body. The biological evaluation indicates that the calcium phosphate cement reinforced by carbon fibers has good biocompatibility.

  5. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  6. Pulmonary Cement Embolism following Percutaneous Vertebroplasty

    Directory of Open Access Journals (Sweden)

    Ümran Toru

    2014-01-01

    Full Text Available Percutaneous vertebroplasty is a minimal invasive procedure that is applied for the treatment of osteoporotic vertebral fractures. During vertebroplasty, the leakage of bone cement outside the vertebral body leads to pulmonary cement embolism, which is a serious complication of this procedure. Here we report a 48-year-old man who was admitted to our hospital with dyspnea after percutaneous vertebroplasty and diagnosed as pulmonary cement embolism.

  7. The influence of ultrasound on removal of prefabricated metal post cemented with different resin cements

    Directory of Open Access Journals (Sweden)

    Atiyeh Feiz

    2013-01-01

    Conclusion: Ultrasonic energy did not decrease the retention of posts cemented with Panavia or Maxcem Elite cements. Furthermore, it seems that there is no significant difference between removal force of self-etch (Panavia and the self-etch self-adhesive (Maxcem Elite resin cements.

  8. Effects of cement flue dusts from a Nigerian cement plant on air, water and planktonic quality.

    Science.gov (United States)

    Olaleye, Victor F; Oluyemi, Emmanuel A

    2010-03-01

    Effects of cement flue dust from Ewekoro cement Kilns were monitored at some aquatic receptor locations. High levels of total suspended particulates (TSPs) and atmospheric deposition rates (ADRs) were recorded within the factory compared to ancillary locations outside the factory. The TSP and ADR levels which were location dependent were significantly higher (P cement factory catchment areas.

  9. The mechanical effects of different levels of cement penetration at the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the p

  10. Characterization of vapor phase mercury released from concrete processing with baghouse filter dust added cement.

    Science.gov (United States)

    Wang, Jun; Hayes, Josh; Wu, Chang-Yu; Townsend, Timothy; Schert, John; Vinson, Tim; Deliz, Katherine; Bonzongo, Jean-Claude

    2014-02-18

    The fate of mercury (Hg) in cement processing and products has drawn intense attention due to its contribution to the ambient emission inventory. Feeding Hg-loaded coal fly ash to the cement kiln introduces additional Hg into the kiln's baghouse filter dust (BFD), and the practice of replacing 5% of cement with the Hg-loaded BFD by cement plants has recently raised environmental and occupational health concerns. The objective of this study was to determine Hg concentration and speciation in BFD as well as to investigate the release of vapor phase Hg from storing and processing BFD-added cement. The results showed that Hg content in the BFD from different seasons ranged from 0.91-1.44 mg/kg (ppm), with 62-73% as soluble inorganic Hg, while Hg in the other concrete constituents were 1-3 orders of magnitude lower than the BFD. Up to 21% of Hg loss was observed in the time-series study while storing the BFD in the open environment by the end of the seventh day. Real-time monitoring in the bench system indicated that high temperature and moisture can facilitate Hg release at the early stage. Ontario Hydro (OH) traps showed that total Hg emission from BFD is dictated by the air exchange surface area. In the bench simulation of concrete processing, only 0.4-0.5% of Hg escaped from mixing and curing BFD-added cement. A follow-up headspace study did not detect Hg release in the following 7 days. In summary, replacing 5% of cement with the BFD investigated in this study has minimal occupational health concerns for concrete workers, and proper storing and mixing of BFD with cement can minimize Hg emission burden for the cement plant.

  11. CO{sub 2} reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures

    Energy Technology Data Exchange (ETDEWEB)

    Barbara G. Kutchko; Brian R. Strazisar; Nicolas Huerta; Gregory V. Lowry; David A. Dzombak; Niels Thaulow [United States Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-05-15

    The rate and mechanism of reaction of pozzolan-amended Class H cement exposed to both supercritical CO{sub 2} and CO{sub 2}-saturated brine were determined under geologic sequestration conditions to assess the potential impact of cement degradation in existing wells on CO{sub 2} storage integrity. The pozzolan additive chosen, Type F flyash, a by-product of coal combustion, is the most common additive used in cements for well sealing in oil-gas field operations. The 35:65 and 65:35 (v/v) pozzolan-cement blends were exposed to supercritical CO{sub 2} and CO{sub 2}-saturated brine and underwent cement carbonation. Extrapolation of the carbonation rate for the 35:65 case suggests a penetration depth of 170-180 mm for both the CO{sub 2}-saturated brine and supercritical CO{sub 2} after 30 years. Despite alteration in both pozzolan systems, the reacted cement remained relatively impermeable to fluid flow after exposure to brine solution saturated with CO{sub 2}, with values well below the American Petroleum Institute recommended maximum well cement permeability of 200 {mu}D. Analyses of 50:50 pozzolan-cement cores from a production well in a sandstone reservoir exhibited carbonation and low permeability to brine solution saturated with CO{sub 2}, which are consistent with our laboratory findings. 16 refs., 4 figs., 1 tab.

  12. CO2 reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures.

    Science.gov (United States)

    Kutchko, Barbara G; Strazisar, Brian R; Huerta, Nicolas; Lowry, Gregory V; Dzombak, David A; Thaulow, Niels

    2009-05-15

    The rate and mechanism of reaction of pozzolan-amended Class H cement exposed to both supercritical CO2 and CO2-saturated brine were determined under geologic sequestration conditions to assess the potential impact of cement degradation in existing, wells on CO2 storage integrity. The pozzolan additive chosen, Type F flyash, is the most common additive used in cements for well sealing in oil-gas field operations. The 35:65 and 65:35 (v/v) pozzolan-cement blends were exposed to supercritical CO2 and CO2-saturated brine and underwent cement carbonation. Extrapolation of the carbonation rate for the 35:65 case suggests a penetration depth of 170-180 mm for both the CO2-saturated brine and supercritical CO2 after 30 years. Despite alteration in both pozzolan systems, the reacted cement remained relatively impermeable to fluid flow after exposure to brine solution saturated with CO2, with values well below the American Petroleum Institute recommended maximum well cement permeability of 200 microD. Analyses of 50: 50 pozzolan-cement cores from a production well in a sandstone reservoir exhibited carbonation and low permeability to brine solution saturated with CO2, which are consistent with our laboratory findings.

  13. Substantial global carbon uptake by cement carbonation

    Science.gov (United States)

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn; Galan, Isabel; Andrade, Carmen; Zhang, Ying; Liu, Zhu

    2016-12-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 2013. Considerable attention has been paid to quantifying these industrial process emissions from cement production, but the natural reversal of the process--carbonation--has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr-1 in 1998 to 0.25 GtC yr-1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories.

  14. Frozen delivery of brushite calcium phosphate cements.

    Science.gov (United States)

    Grover, Liam M; Hofmann, Michael P; Gbureck, Uwe; Kumarasami, Balamurgan; Barralet, Jake E

    2008-11-01

    Calcium phosphate cements typically harden following the combination of a calcium phosphate powder component with an aqueous solution to form a matrix consisting of hydroxyapatite or brushite. The mixing process can be very important to the mechanical properties exhibited by cement materials and consequently when used clinically, since they are usually hand-mixed their mechanical properties are prone to operator-induced variability. It is possible to reduce this variability by pre-mixing the cement, e.g. by replacing the aqueous liquid component with non-reactive glycerol. Here, for the first time, we report the formation of three different pre-mixed brushite cement formulations formed by freezing the cement pastes following combination of the powder and liquid components. When frozen and stored at -80 degrees C or less, significant degradation in compression strength did not occur for the duration of the study (28 days). Interestingly, in the case of the brushite cement formed from the combination of beta-tricalcium phosphate with 2 M orthophosphoric acid solution, freezing the cement paste had the effect of increasing mean compressive strength fivefold (from 4 to 20 MPa). The increase in compression strength was accompanied by a reduction in the setting rate of the cement. As no differences in porosity or degree of reaction were observed, strength improvement was attributed to a modification of crystal morphology and a reduction in damage caused to the cement matrix during manipulation.

  15. Spent FCC catalyst for improving early strength Portland cement

    OpenAIRE

    Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan; Vunda, Christian; VELÁZQUEZ RODRÍGUEZ, SERGIO; Soriano Martinez, Lourdes

    2014-01-01

    Spent fluid catalytic cracking (FCC) catalyst from the petrol industry has proven to be a very active pozzolanic material. This behavior leads to an additional increase in the strength of the mortar that contains this catalyst. Pozzolanic effects tend to be considered for periods above three days, whereas in shorter times, the influence of pozzolan is usually negligible. The reactivity of FCC is so high, however, that both pozzolanic effects and acceleration of cement hydration are evident in...

  16. Composite cements containing natural pozzolan and granulated blast furnace slag

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-09-01

    Full Text Available For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20% and/or granulated blast furnace slag (up to 35% on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days, the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.Debido a las exigencias del mercado y de la producción de cemento Portland, es cada vez más frecuente la elaboración de cementos con dos o más adiciones a partir de la molienda separada de sus constituyentes, dando origen a la formulación de los cementos a medida.Cuando el contenido de adiciones es alto, la utilización de puzolana y escoria en este tipo de cementos presenta la peculiaridad de disminuir la resistencia inicial del cemento resultante. Sin embargo, si algunas o ambas adiciones se activan, este problema puede minimizarse. En este trabajo se analiza la influencia de la incorporación al cemento Portland de puzolana natural (hasta 20% activada físicamente y/o escoria granulada de alto horno (hasta 35% sobre la resistencia a flexión y a compresión de morteros. Los resultados indican que los cementos ternarios presentan un mejor comportamiento resistente que los cementos binarios. Las máximas resistencias a compresión en las primeras edades (2 y 7 díasse alcanzan con hasta 13% de puzolana natural y 5% de

  17. HYDRATION AND PROPERTIES OF BLENDED CEMENT SYSTEMS INCORPORATING INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    Heikal M.

    2013-06-01

    Full Text Available This paper aims to study the characteristics of ternary blended system, namely granulated blast-furnace slag (WCS, from iron steel company and Homra (GCB from Misr Brick (Helwan, Egypt and silica fume (SF at 30 mass % pozzolanas and 70 mass % OPC. The required water of standard consistency and setting times were measured as well as physico-chemical and mechanical characteristics of the hardened cement pastes were investigated. Some selected cement pastes were tested by TGA, DTA and FT-IR techniques to investigate the variation of hydrated products of blended cements. The pozzolanic activity of SF is higher than GCB and WCS. The higher activity of SF is mainly due to its higher surface area than the other two pozzolanic materials. On the other side, GCB is more pozzolanic than WCS due to GCB containing crystalline silica quartz in addition to an amorphous phase. The silica quartz acts as nucleating agents which accelerate the rate of hydration in addition to its amorphous phase, which can react with liberating Ca(OH2 forming additional hydration products.

  18. Light weight phosphate cements

    Science.gov (United States)

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  19. A study on provisional cements, cementation techniques, and their effects on bonding of porcelain laminate veneers.

    Science.gov (United States)

    Vinod Kumar, G; Soorya Poduval, T; Bipin Reddy; Shesha Reddy, P

    2014-03-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restoration. Determine the presence of cement debris on prepared tooth surface subsequent to the removal of provisional restoration. Determine the cement with the least residue following the cleansing procedures. Determine the effect of smear layer on the amount of residual luting cement. Eighty-four extracted natural anterior teeth were prepared for porcelain laminate veneers. For half of the teeth, the smear layer was removed before luting provisional restorations. Veneer provisional restorations were fabricated and luted to teeth with six bonding methods: varnish combined with glass ionomer cement (GIC), varnish combined with resin modified GIC, varnish, spot etching combined with dual-cure luting cement, adhesive combined with GIC, adhesive combined with resin modified GIC, and adhesive, spot etching combined with dual-cure luting cement. After removal of provisional restorations 1 week later, the tooth surface was examined for residual luting material with SEM. Traces of cement debris were found on all the prepared teeth surfaces for all six groups which were cemented with different methods. Cement debris was seen on teeth subsequent to the removal of provisional's. Dual-cure cement had the least residue following the cleansing procedures. Presence of smear layer had no statistical significance in comparison with cement residue. With the use of adhesive the cement debris was always found to be more than with the use of varnish. GIC showed maximum residual cement followed by dual-cure.

  20. Anti-biofilm Effect of Glass Ionomer Cements Incorporated with Chlorhexidine and Bioaetive Glass

    Institute of Scientific and Technical Information of China (English)

    HUANG Xueqing; YANG Tiantian; ZHAO Suling; HUANG Cui; DU Xijin

    2012-01-01

    The effect of glass ionomer cement and resin-modified glass ionomer cement incorporated with chlorhexidine and bioactive glass on antimicrobial activity and physicochemical properties were investigated.The experimental results showed that groups incorporated with 1% chlorhexidine exhibited a significant reduction of optical density values of the bacterial suspension and increased the degradation of Streptococcus mutans biofilm.However,groups incorporated with 10% bioactive glass did not affect the optical density values and the biofilm formation.The mechanical properties of the materials and the polymerization were not influenced by the addition of chlorhexidine.Nevertheless,the compressive strength was lower when the materials were incorporated with bioactive glass.It can be concluded that glass ionomer cements incorporated with chlorhexidine can maintain its mechanical properties as well as reduce early S mutans biofilm formation.Controlled release/sustained release technology may be required to optimize the antibacterial activity of glass ionomer cements incorporated with bioactive glass.

  1. Synthesis of Chitosan-Hydroxyapatite Composites and Its Effect on the Properties of Bioglass Bone Cement

    Institute of Scientific and Technical Information of China (English)

    Jingxiao Liu; Fei Shi; Ling Yu; Liting Niu; Shanshan Gao

    2009-01-01

    Chitosan-hydroxyapatite (CS-HA) composite powders were synthesized via in situ co-precipitation method, through the reaction of Ca(NO3)2 and H3PO4 in the simulated body fluid (SBF) containing appropriate amount of chitosan. The thermal evolution, microstructure and morphology were studied by TG-DTA (thermogravimetry-differential thermal analysis), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy) and TEM (transmission electron microscopy). The in vitro bioactivity test showed that the obtained CS-HA composites had higher capability of inducing calcium ions deposition. Effects of CS-HA composites on the bioactivity and compressive strength of bioglass bone cement were investigated. The results indicated that the bioactivity of bioglass bone cement could be improved further when CS-HA composite powders were added into the cement, and appropriate amount of CS-HA additive was favorable for compressive strength improvement of bioglass bone cement.

  2. Hydration Heat Evolution of Cement and Its Relation With Setting Time

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.

  3. Strength development, hydration reaction and pore structure of autoclaved slag cement with added silica fume

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Y. [China Building Materials Academy, Beijing (China); Siemer, D.D. [LITCO, Idaho Falls, ID (United States); Scheetz, B.E. [Pennsylvania State Univ., University Park, PA (United States). Materials Research Lab.

    1997-01-01

    Under continuous hydrothermal treatment the strength of portland cement paste decreases with curing time and the pore structure coarsens. It was found in this study that the compressive strength of slag cement paste containing 67.5 wt.% ggbfs also decreases with time after 24 hour hydrothermal processing, but with a small addition of silica fume to the slag cement, the cement strength increases and the pore structure densifies when processed under comparable conditions. Based on observations XRD and SEM, these changes are attributed to: (1) changes in the hydration reactions and products by highly reactive silica fume, such that amorphous products dominate and the strength reducing phase {alpha}-C{sub 2}SH does not form; (2) slower hydration of slag, partially caused by the decreased pH of the pore solution, favors the formation of a dense pore structure; and (3) the space filling properties of the micro particles of silica fume.

  4. Poly(carboxylate ether)-based superplasticizer achieves workability retention in calcium aluminate cement

    Science.gov (United States)

    Akhlaghi, Omid; Menceloglu, Yusuf Ziya; Akbulut, Ozge

    2017-01-01

    Calcium aluminate cement (CAC) suffers from loss of workability in less than an hour (~15 minutes) after first touch of water. Current superplasticizers that are utilized to modify the viscosity of cement admixtures are designed to target ordinary Portland cement (OPC). The high affinity between these superplasticizers and cement particles were found to be detrimental in CAC systems. Utilization of a monomer that, instead, facilitates gradual adsorption of a superplasticizer provides workability retention. For the first time in literature, we report a superplasticizer that caters to the properties of CAC such as high rate of surface development and surface charge. While neat CAC was almost unworkable after 1 hour, with the addition of only 0.4% of the optimized superplasticizer, 90% fluidity retention was achieved.

  5. Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles: An experimental study

    Science.gov (United States)

    Ghasabkolaei, N.; Janalizadeh, A.; Jahanshahi, M.; Roshan, N.; Ghasemi, Seiyed E.

    2016-05-01

    This study investigates the use of nanosilica to improve geotechnical characteristics of cement-treated clayey soil from the coastal area of the eastern Caspian Sea in the Golestan province, Iran. Atterberg limits, unconfined compressive strength, and California bearing ratio (CBR) tests were performed to investigate the soil plastic and strength parameters. The specimens were prepared by mixing soil with 9% cement and various contents of nanosilica. An ultrasonic bath device was used to disperse nanosilica in water. The addition of nanosilica enhanced the strength parameters of the clayey soil. Moreover, a nanosilica percentage of 1.5% by weight of cement improved the compressive strength of the cement-treated clay up to 38%, at age of 28 days. A scanning electron microscope (SEM) and an atomic force microscope (AFM) were used to evaluate specimen morphology. SEM and AFM results confirm the experimental ones. Therefore, nanosilica can be employed for soil improvement in geotechnical engineering.

  6. AIR POLLUTION CONTROL THROUGH KILN RECYCLING BY-PASS DUST IN A CEMENT FACTORY

    Directory of Open Access Journals (Sweden)

    F. Mohsenzadeh, J. Nouri, A. Ranjbar, M. Mohammadian Fazli, A. A. Babaie

    2006-01-01

    Full Text Available Air pollution is a major problem in the industrial areas. Cement dust is one of the important environmental pollutants. In this study the possibility of dust recycling especially kiln dust which has significant importance regarding air pollution in the cement plant, was examined. Tehran cement factory is one of the most important Iranian factories which is located in Tehran. This factory produces high volume of pollutants that are released to in environment. The possibility of reusing of kiln by pass returned dust has been examined in this factory. Different percentages of kiln by-pass dust of this factory were added to products and outcomes of its presence in parameters such as chemical compound, granulation, primary and final catch time, volume expansion, consumed water and resistance of mortar were surveyed. The result indicated that by adding the amounts of 3-8 dust the mortar resistance increase, but adding more than 15%, the mortar resistance has been decreased. Survey in consumed water proved that adding dust to cement, the trend for consuming water is decreased. After dust addition dust, primary and final catch time were compared in different samples and data which showed decrease in dust added samples. Cements with dust added showed increase in auto clave expansion. Overally, results proved that, the best percentage rate of dust addition to the cement was 15%.

  7. Preparation and characterization of a novel injectable strontium-containing calcium phosphate cement with collagen

    Directory of Open Access Journals (Sweden)

    Zhou Ziqiang

    2015-07-01

    Full Text Available Purpose: To develop a novel injectable strontium-containing calcium phosphate cement with collagen. Methods: A novel calcium phosphate bone cement (CPC was prepared with the addition of strontium element, collagenⅠ, and modified starch; the injectability, solidification time, microstructure, phase composition, compressive strength, anti-collapsibility and histological properties of material were evaluated. Results: The results showed that the material could be injected with an excellent performance; the modified starch significantly improved the anti-washout property of cement; with the liquid to solid ratio of 0.3, the largest compressive strength of cement was obtained (48.0 MPa ± 2.3 MPa; histological examination of repair tissue showed that the bone was repaired after 16 weeks; the degradation of cement was consistent with the new bone growth. Conclusion: A novel injectable collagen-strontium-containing CPC with excellent compressive strength and suitable setting time was prepared, with addition of modified starch. The CPC showed a good antiwashout property and the degradation time of the cement met with the new bone growing. This material is supposed to be used in orthopedic and maxillofacial surgery for bone defects.

  8. Antibiotic-eluting hydrophilized PMMA bone cement with prolonged bactericidal effect for the treatment of osteomyelitis.

    Science.gov (United States)

    Oh, Eun Jo; Oh, Se Heang; Lee, In Soo; Kwon, Oh Soo; Lee, Jin Ho

    2016-05-01

    Osteomyelitis is still considered to be one of the major challenges for orthopedic surgeons despite advanced antiseptic surgical procedures and pharmaceutical therapeutics. In this study, hydrophilized poly(methyl methacrylate) (PMMA) bone cements containing Pluronic F68 (EG79PG28EG79) as a hydrophilic additive and vancomycin (F68-VAcements) were prepared to allow the sustained release of the antibiotic for adequate periods of time without any significant loss of mechanical properties. The compressive strengths of the bone cements with Pluronic F68 compositions less than 7 wt% were not significantly different compared with the control vancomycin-loaded bone cement (VAcement). TheF68 (7 wt%)-VAcement showed sustained release of the antibiotic for up to 11 weeks and almost 100% release from the bone cement. It also prohibited the growth ofS. aureus(zone of inhibition) over six weeks (the required period to treat osteomyelitis), and it did not show any notable cytotoxicity. From an animal study using a femoral osteomyelitis rat model, it was observed that theF68 (7 wt%)-VAcement was effective for the treatment of osteomyelitis, probably as a result of the prolonged release of antibiotic from the PMMA bone cement. On the basis of these findings, it can be suggested that the use of Pluronic F68 as a hydrophilic additive for antibiotic-eluting PMMA bone cement can be a promising strategy for the treatment of osteomyelitis.

  9. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements.

    Science.gov (United States)

    Pina, S; Vieira, S I; Rego, P; Torres, P M C; da Cruz e Silva, O A B; da Cruz e Silva, E F; Ferreira, J M F

    2010-09-07

    The core aim of this study was to investigate zinc (Zn)- and zinc and strontium (ZnSr)-containing brushite-forming beta-tricalcium phosphate (TCP) cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line) as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP) activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS) as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes.

  10. Marine durability of 15 year old concrete specimens made with ordinary portland, slag, and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. In addition, the performance of these cements was also examined in another study for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. Water-to-cement ratios were 0.45 and 0.55 and the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete were evaluated. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 18 tabs., 8 figs.

  11. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements

    Directory of Open Access Journals (Sweden)

    S Pina

    2010-09-01

    Full Text Available The core aim of this study was to investigate zinc (Zn- and zinc and strontium (ZnSr-containing brushite-forming beta-tricalcium phosphate (TCP cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS® as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes.

  12. Effect of Nano-SiO₂ on the Hydration and Microstructure of Portland Cement.

    Science.gov (United States)

    Wang, Liguo; Zheng, Dapeng; Zhang, Shupeng; Cui, Hongzhi; Li, Dongxu

    2016-12-15

    This paper systematically studied the modification of cement-based materials by nano-SiO₂ particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO₂ particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO₂ in cement paste, respectively. The results showed that the reaction of nano-SiO₂ particles with Ca(OH)₂ (crystal powder) started within 1 h, and formed C-S-H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO₂, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO₂. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis showed that nano-SiO₂ promoted the formation of C-S-H gel. The results of mercury intrusion porosimetry (MIP) showed that the total porosity of cement paste with 3% nano-SiO₂ was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased.

  13. Utilization of waste heat from rotary kiln for burning clinker in the cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2016-01-01

    Full Text Available Cement subsector next to the glass industry is counted among one of the most energy-intensive industries, which absorbs approx. 12-15% of the total energy consumed by the industry. In the paper various methods of energy consumption reduction of in the cement industry are discussed. Cement production carries a very large emissions of greenhouse gases, where CO2 emissions on a global scale with the industry than approx. 5%. Great opportunity in CO2 emissions reduction in addition to the recovery of waste heat is also alternative fuels co-firing in cement kilns [1], [2]. In the cement sector interest in fitting-usable waste energy is growing in order to achieve high rates of savings and hence the financial benefits, as well as the environment ones [3]. In the process of cement production is lost irretrievably lot of energy and reduction of these losses on a global scale gives a visible saving of consumed fuel. The aim of this study is to investigate the possibility of waste heat use in Rudniki Cement Plant near to Czestochowa. After analyzing of all waste heat sources will be analyzed the heat emitted by radiation from the surface of the rotary kiln at the relevant facility. On the basis of thermal-flow calculations the most favorable radiative heat exchanger will be designed. The calculations based on available measurements provided by the cement plant, a thermal power of the heat exchanger, the heat exchange surface, the geometry of the heat exchanger, and other important parameters will be established. In addition the preliminary calculations of hydraulic losses and set directions for further work will be carried out. Direct benefits observed with the introduction of the broader heat recovery technology, is a significant increase in energy efficiency of the industrial process, which is reflected in the reduction of energy consumption and costs. Indirectly it leads to a reduction of pollution and energy consumption.

  14. The effects of utilizing silica fume in Portland Cement Pervious Concrete

    Science.gov (United States)

    Mann, Daniel Allen

    Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement's rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss.

  15. Characterization of environmentally-friendly alkali activated slag cements and ancient building materials

    Science.gov (United States)

    Sakulich, Aaron Richard

    Alternative cement technologies are an area of increasing interest due to growing environmental concerns and the relatively large carbon footprint of the cement industry. Many new cements have been developed, but one of the most promising is that made from granulated, ground blast furnace slag activated by a high-pH solution. Another is related to the discovery that some of the pyramid limestone blocks may have been cast using a combination of diatomaceous earth activated by lime which provides the high pH needed to dissolve the diatomaceous earth and bind the limestone aggregate together. The emphasis of this thesis is not on the latter---which was explored elsewhere---but on the results supplying further evidence that some of the pyramid blocks were indeed reconstituted limestone. The goal of this work is to chemically and mechanically characterize both alkali-activated slag cements as well as a number of historic materials, which may be ancient analogues to cement. Alkali activated slag cements were produced with a number of additives; concretes were made with the addition of a fine limestone aggregate. These materials were characterized mechanically and by XRD, FTIR, SEM, and TGA. Samples from several Egyptian pyramids, an 'ancient floor' in Colorado, and the 'Bosnian Pyramids' were investigated. In the cements, it has been unequivocally shown that C-S-H, the same binding phase that is produced in ordinary portland cement, has been produced, as well as a variety of mineral side products. Significant recarbonation occurs during the first 20 months, but only for the Na2CO3-activated formulae. Radiocarbon dating proves that the 'Bosnian Pyramids' and 'ancient floors' are not made from any type of recarbonated lime; however, Egyptian pyramid limestones were finite, thus suggesting that they are of a synthetic nature. XRD and FTIR results were inconclusive, while TGA results indicate the limestones are identical to naturally occurring limestones, and SEM

  16. Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis.

    Science.gov (United States)

    Korsch, Michael; Walther, Winfried; Marten, Silke-Mareike; Obst, Ursula

    2014-09-05

    The cementation of implant-supported restorations always poses the risk of excess cement retained in the peri-implant sulcus despite careful clinical control. Excess cement can become the basis of colonization by oral microorganisms. As a result of the biofilm formation peri-mucositis or peri-implantitis may develop. Complications were observed in the routine prosthetic restoration of implants when a methacrylate-based cement was used. These developed a few weeks after cementation of the suprastructure and caused bleeding on probing as well as suppuration from the peri-implant tissue. In the revision therapy, excess cement in the peri-implant sulcus was found in many cases. This excess cement was sampled from ten patients and investigated for biofilm formation. For this purpose, the cement samples were collected and analyzed for bacterial in situ colonization by 16S rDNA-based methods. In laboratory experiments, the methacrylate-based cement and two other dental cements were then investigated for their proneness to form biofilm. The results of the in situ and in vitro investigations revealed a strong tendency towards bacterial invasion of the methacrylate-based cement by opportunistic species and pathogens.

  17. Correlation between the degree of conversion and the elution of leachable components from dental resin-based cements

    Directory of Open Access Journals (Sweden)

    KOSOVKA OBRADOVIĆ-DJURIČIĆ

    2011-09-01

    Full Text Available This study examined the possible correlation between the degree of conversion (DC and the amount of substances eluted from three commercial cured resin-based cements. The DC of the various resin-based cements was measured by Raman spectroscopy, while the quantity of unreacted monomers released from the cement matrix (triethylene glycol dimethacrylate, TEGDMA, urethane dimethacrylate, UDMA, 2-hydroxyethyl methacrylate, HEMA and bisphenol A was determined by high pressure liquid chromatography (HPLC. The obtained results, after multiple statistical evaluation (one way ANOVA, LSD post hoc test, showed no significant differences in the DC values between the resin cements. On the contrary, the results of the HPLC analysis depicted statistically significant differences between the three materials with respect to the amount of leached monomers. In addition, no correlation between the DC and the amount of eluted substances from the tested cured composite cements was found.

  18. Preparation of Super Composite Cement with a Lower Clinker Content and a Larger Amount of Industrial Wastes

    Institute of Scientific and Technical Information of China (English)

    HE Zhen; LIANG Wen-quan; LI Bei-xing; LI Xiang-guo

    2002-01-01

    The effects of the grinding mode,fineness, gypsum kinds and dosage, mix proportions on properties of the composite cements consisting of slag,fly ash, limestone and a lower content clinker were investigated,respectively. The results show that when the proportions among slag, fly ash and limestone are appropriate, the grinding technology and system are reasonable, the optimized gypsums and additives are effective, the 52.5 R grade cement (52.5 R grade cement means a higher strength than 52.5 at early age ) can be prepared by clinker dosage of 50% in weight, the 42.5R or 42.5,32.5 grade composite cement containing 40% and 30% clinker also may be made, respectively. Moreover, the high performance concrete prepared from the above composite cements was studied experimentally.

  19. Copper Slag Blended Cement: An Environmental Sustainable Approach for Cement Industry in India

    Directory of Open Access Journals (Sweden)

    Jagmeet Singh

    2016-04-01

    Full Text Available Indian cement industry is facing environmental issue of emission of carbon dioxide (CO2, a greenhouse gas. Blended cements including supplementary cementitious materials are substitute of Portland cement to reduce CO2 emission. The present paper investigates theappropriateness of copper slag (CS as supplementary cementitious material. Strength properties and hydration of mixes were determined at different replacement levels of CS with cement. Compressive, flexural and tensile strength of each mix was found out at different curing periods. The hydration of cement was investigated through X-ray diffraction (XRD. The strength test results showed that substitution of up to 20% of CS can significantly replace Portland cement.XRD test results were corresponding to strength test results. The present study encourages the utilization of CS as supplementary cementitious material to make economical and environmentally sustainable blended cement

  20. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  1. Contact dermatitis in cement workers in Isfahan

    Directory of Open Access Journals (Sweden)

    Iraji Fariba

    2006-01-01

    Full Text Available BACKGROUND: Due to recent industrialization and inadequately protected workers or in other words poor supervision on constructive workers habits in our large city of Isfahan cement contact dermatitis is relatively high especially among cement factory workers and constructive personnel. PURPOSES: To investigate the prevalence rate of cement contact dermatitis in cement factory workers in Isfahan. METHODS: A case-control clinical study was carried out by randomly selecing 150 factory workders and 150 official clerks in a cement factory in Isfahan in 2001. After a complete physical examination, data was recorded in observational checklists. FINDINGS: The percentages of contact dermatitis prevalences in the first and the second groups were 22% and 5.3% respectively. About 60% of cement workers with contact dermatitis were between 30-40 years of age. There was a direct relationship with age in both groups of the workers. In the high-exposure group, the hand eczema along was 70% but in the other group the percentage of involvement was the same in exposed and unexposed anatomical areas. CONCLUSIONS: There was a direct relationship between occurrence and the severity of involvement and duration of contact in the first group. Cent percent of cement workers had contact dermatitis after 10 or less years, but the percentage among the other group was 35%. LIMITATION: Irritant contact dermatitis to cement has not been detected.

  2. A note on cement in asteroids

    Science.gov (United States)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  3. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  4. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  5. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    Science.gov (United States)

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  6. A note on cement in asteroids

    CERN Document Server

    Bilalbegovic, G

    2016-01-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 microns were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 microns.

  7. Effect of hydrogen sulfide emissions on cement mortar specimens

    Energy Technology Data Exchange (ETDEWEB)

    Idriss, A. F. [Alberta Environment, Science and Technology Branch, Edmonton, AB (Canada); Negi, S. C.; Jofriet, J. C.; Haywoard, G. L. [Guelph Univ., Guelph, ON (Canada)

    2001-07-01

    Six different cement mortar specimens used in animal buildings, where they were exposed to hydrogen sulfide generated from anaerobic fermentation of manure during a period of one year, were investigated. Primary interest was on comparing the corrosion resistance of different cement mortar specimens under long term exposure to hydrogen sulfide. The impressed voltage technique was used to test the specimens in the laboratory. Results revealed that test specimens made with eight per cent silica fume cement replacement performed best and similar Portland cement mortar specimens with a water-cement ratio of 0.55 (PC55) the poorest. All other treatments, (Portland cement with a water to cement ratio of 045, Portland cement Type 50, Portland cement with fibre mesh and Portland cement Type 10 coated with linseed oil) all with water-cement ratios of 0.45, were less effective in preventing corrosion than silica fume replacement.

  8. TECHNOLOGY AND EFFICIENCY IN USAGE OF BROWN COAL ASH FOR CEMENT AND CONCRETE MIXTURES AT THE LELCHITSKY DEPOSIT

    Directory of Open Access Journals (Sweden)

    G. D. Lyahevich

    2017-01-01

    Full Text Available Modern visions on the role of high-dispersity additives in concrete mixtures reflect a positive effect of optimal amount of ash left after combustion of solid fuel on structure and physico-mechanical characteristics of cement compositions: hardening of contact zone between cement stone and aggregates with formation of “binder – aggregate” clusters due to high surface energy of aggregate particles; reduction of total cement stone porosity in concrete while increasing volumetric concentration and aggregate dispersion; binding of calcium hydroxide by amorphized silicon of pozzolanic aggregates; increase in pozzolanic aggregate activity with its fine grinding, etc. Experimental investigations have ascertained that usage of portland cement clinker ash samples left after brown coal burning at the Lelchitsky deposit contributed to an increase of cement working life and activity. Concrete samples have been obtained that have improved physico-mechanical properties owing to introduction the following components in their composition: 2–14 % (of cement mass of ash left after brown coal burning and 1.6–2.1 % of sodium salt that is a condensation product of sulfur oxidate in aromatic hydrocarbons with formaldehyde. Efficiency of the executed work has been proved by solution of the problems pertaining to an increase of neat cement working life, cement activity, concrete strength. The paper also considers no less important problem concerning protection of the environment from contamination with ash left after burning of high-ash brown coal. 

  9. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.

    Science.gov (United States)

    Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-11-01

    Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.

  10. EFFECT OF PVA MODIFICATION ON PROPERTIES OF CEMENT COMPOSITES

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2015-02-01

    Full Text Available Polymers are used for modification of the cement-based composites and others building materials since the thirties of 20th century. Based on the conclusions of recent studies, it is assumed that even water soluble polymers could be used as an admixture for such modification. Currently, there exist and are exploited several possibilities for polymer modification of mortars, wood-based products or bituminous asphalts. Various options differ in the way of modification, which can be basically applied to the entire volume or just a surface, but also in the form of the polymer used – either in the form of solution or fibers. The aim of our study was to investigate the influence of volume modification by the water soluble polymers, such as polyvinyl alcohol (PVA, on the properties of cement paste and find an optimum additive. It turned out that the addition of PVA solution into fresh cement paste results in an increase of porosity and therefore a stiffness and compressive strength reduction. On the other hand, the bending strength of PVA-rich specimens was significantly higher and their water absorption decreased, which may consequently result in enhanced frost resistance.

  11. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    Production of cement is an energy intensive process and is the source of considerable CO2emissions. Itis estimated that the cement industry contributes around 8% of total global CO2emissions. CO2is oneof the major greenhouse gases. In the atmosphere, the CO2concentration has increased from 310...... performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof...... the carbonate looping process to the cement industry. In order to study the application of thecarbonate looping process to cement industry, the project work is divided into three scales: 1) atparticle scale (TGA), 2) at reactor scale (Fluid-bed) and 3) at process scale (process modeling Pro/II).The results from...

  12. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa......-per the shrinkage properties of cement stabilized gravel have been documented under various temperature and relative humidity conditions. Two cement contents corresponding to a 28-days compressive strength of 6.2 MPa and 12.3 MPa have been tested and compared. It is found that the coefficient of linear expansion...... for the two cement contents is 9.9 × 10-6 ⁰C-1 and 11.3 × 10-6 ⁰C-1, respectively. Furthermore, it is found that reflecting cracking can mainly be explained by temperature dependent shrinkage rather than moisture dependent shrinkage....

  13. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  14. Resistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses

    Institute of Scientific and Technical Information of China (English)

    SHUI Zhonghe; LI Chao; LIAO Weidong

    2005-01-01

    The stress-resistance relationship of carbon fiber cement was studicd. Attention has been paid to explore the improvement of the stress-resistance sensitivity under cycled stress restriction. The prismy carbon fiber cement sensors were pre-fabricated. The factors such as contents of carbon fibers, silica fume, dispersant and the w/ c were taken into account. The electrical resistance variations with the dynamic and static loads were simulated using a strain-controlled test machine. The test results show that there is an optimal fiber content, with which the compression-sensitivity achieves a high level. The addition of silica fume can improve the sensitivity. Urder the optimal test conditions, the measured resistances can greatly correspond with the changes of the load.

  15. Effect of graphene on mechanical properties of cement mortars

    Institute of Scientific and Technical Information of China (English)

    曹明莉; 张会霞; 张聪

    2016-01-01

    Functionalized graphene nano-sheets (FGN) of 0.01%−0.05% (mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.

  16. Solidification of Municipal Solid Waste Incineration Fly Ash with Cement and Its Leaching Behaviors of Heavy Metals

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The solidifying effect of cement addition on municipal solid waste incineration fly ash (MSWFA for short,collected from the gas exhaust system of MSW incinerator),the interaction of MSWFA with cement and water and the leaching of heavy metals from cement-solidified MSWFA are investigated.The main results show that:(1) when MSWFA is mixed with cement and water,H2 evolution,the formation and volume expansion of AFt will take place,the volume expansion can be reduced by ground rice husk ash addition;(2) heavy metals do leach from cement-solidified MSWFA and at lower pH more leaching will occur;(3) compared with cement-solidified fly ash,the leachate of solidified MSWFA is with higher heavy metal contents;(4) with the increment of cement addition leached heavy metals are decreased;and (5) concentrations of Zn,Mn,Cu and Cd in all the leachates can meet the relevant Standards of Japan,but as the regulations for soil and groundwater protection of Japan are concerned,precautions against the leaching of Pb,Cl- and Cr6+ and so on are needed.

  17. Food additives

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002435.htm Food additives To use the sharing features on this page, please enable JavaScript. Food additives are substances that become part of a food ...

  18. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  19. Cement compositions for cementing wells, allowing pressure gas-channeling in the cemented annulus to be controlled

    Energy Technology Data Exchange (ETDEWEB)

    Parcevaux, P.A.; Piot, B.M.; Vercaemer, C.J.

    1987-01-27

    The invention relates to cement compositions for cementing oil and geothermal wells. These compositions allow pressure gas-channeling to be effectively controlled up to more than about 485/sup 0/F. The compositions according to the invention comprise four essential constituents: a cement, a styrene-butadiene latex, a latex stabilizer, and water. The cement is a hydraulic cement belonging to any class among those currently used for cementing oil wells. The useful stabilizers according to the invention are anionic polyelectrolytes such as lignosulfanates and their desulfonated and/or resulfonated derivatives; sulfonated lignin-Kraft products; melamine-formaldehyde resins modified by a sulfonic acid or sulfite; formaldehyde/sulfonated naphthalene resins; or the condensation products of bi-nuclear sulfonated phenols and of formaldehyde. Preferred are the sodium salts of the condensation product of mononaphthalenesulfonic acid and of formaldehyde. The patent also includes a description of tests of various cement compositions of the invention, plus scanning electron microscope observations. 10 figs., 7 tabs.

  20. Contribution to the physical-mechanical study of cement CRS basis of dune-sand powder and other minerals

    Science.gov (United States)

    Dahmani, Saci; Kriker, Abdelouahed

    2016-07-01

    The Portland cements are increasingly used for the manufacture of cement materials (mortar or concrete). Sighting the increasing demand of the cement in the field of construction, and the wealth of our country of minerals. It is time to value these local materials in construction materials and in the manufacture of cement for the manufacture of a new type of cement or for the improvement of the cement of characteristics for several reasons either technical, or ecological or economic or to improve certain properties to the State fees or hardened. The uses of mineral additions remain associated to disadvantages on the time of solidification and the development of the mechanical resistance at the young age [8]. The objective of our work is to study the effects of the incorporation of additions minerals such the pozzolan (active addition) [3], slag of blast furnace (active addition) [4] and the sand dune powder (inert addition) on the physico-mechanical properties of compositions of mortar collaborated compositions according to different binary combinations basis of these additions. This will allow selecting of optimal dosages of these combinations the more efficient, from the point of view of mechanical resistanceas well. The results of this research work confirm that the rate of 10% of pozzolan, slag or powder of dune sand contributes positively on the development of resistance in the long term, at of this proportion time,there is a decrease in the latter except for the slag (20 - 40%) [4]Seems the more effective resistors and physical properties.

  1. Effects of Carbon Nanotubes on Mechanical and 2D-3D Microstructure Properties of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    LIU Qiaoling; SUN Wei; JIANG Hao; WANG Caihui

    2014-01-01

    To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were added into cement mortar, in which the cement-sand ratio was 1:1.5. The flexural and compressive strengths of cement mortar at the age of 3, 7, 28 and 90 d and the fracture performance at the age of 28 d were determined, its 2D micrograph was tested by means of SEM, and the 3D defects distribution was firstly determined with or without CNTs by means of XCT (X-ray computerized tomography). The results showed that 0.08 wt% of CNTs improved the compressive strength and flexural strength by 18% and 19%, respectively, and a significant improvement of its fracture property was observed. Moreover lower addition of carbon nanotubes to cement mortars can improve its microstructure and decrease the defects significantly compared to the cement mortar without CNTs. With the increase of the content of CNTs, the mechanical properties of cement mortars presented to be declined largely due to the agglomeration of CNTs.

  2. Material Mismatch Effect on the Fracture of a Bone-Composite Cement Interface.

    Science.gov (United States)

    Khandaker, M; Tarantini, S

    2012-12-01

    The interfacial mechanics at the bone-implant interface is a critical issue for implant fixation and the filling of bone defects created by tumors and/or their excision. Our previous study found that micron and nano sizes MgO particles improved the fracture toughness of bone-cement interfaces under tension loading. The strength of bonding of different types of bone with different types of implants may not be the same. The aims of this research were to determine the influences of material mismatch due to bone orientation and a magnesium oxide (MgO) filler material for PMMA bone cement on the mechanical strength between bone and bone cement specimens. This research studied the longitudinal and transverse directions bovine cortical bone as different bone materials and poly Methyl MethAcrylate (PMMA) bone cement with and without MgO additives as different implant materials. The scope of work for this study was: (1) to determine the bending strength and modulus of different bone and bone cement specimens, (2) to determine whether inclusion of MgO particles on PMMA has any influence on these mechanical properties of PMMA, and (3) to determine whether bone orientation and inclusion of MgO particles with PMMA has any influence on the interface strength between bone and PMMA. This study showed that bone orientation has statistically significant effect on the bonding strength between bone and bone cement specimens (P value0.05).

  3. [Utilizing the wastewater treatment plant sludge for the production of eco-cement].

    Science.gov (United States)

    Lin, Yi-Ming; Zhou, Shao-Qi; Zhou, De-Jun; Wu, Yan-Yu

    2011-02-01

    The aim of this paper was to study the effect on cement property by using of municipal sewage as additive in the process of clinker burning. Based on the standard sample P. 042. 5 from cement plant, the properties of eco-cement samples adding municipal sewage to unit raw material by 0%, 0.50%, 1.00%, 1.50%, 2.00%, 2.50% respectively and the standard sample from the cement plant were compared. According to the analysis of X-ray diffraction, microstructure, the particles size determination material change, the setting time, specific surface area, leaching toxicity and strength of cement mortar of the cement, respectively, it showed that the strength of the productions were similar to the P. 042.5 standard sample. The metal ion concentrations of Al, Fe, Ba, Mn and Ti in clinkers and raw material decreased, the initial and setting time increased, as well as the strength of the paste within the curing time of 3 days decreased with the increase of municipal sewage ratio. However, after the curing of 7 days, the strength was similar to non-sludge-mortar or even higher.

  4. UNIFORMITY ASSESSMENT OF CARBON FIBRES DISPERSION IN CEMENT PASTE BY IMPEDANCE MEASUREMENTS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An alternating current was applied to measure the impedance of a hardened cement paste with various contents of carbon fibres.When the free water content in the hardened cement paste is 90%-98%,and the measuring frequency 500Hz,an approximate linear relationship was found between fibre content and impedance of the composite.Based on this relationship,a new attempt was made to evaluate the dispersion uniformity of carbon fibres in cement paste by impedance measurement.The standard deviation S and the coefficient of vriation S/(X-)i of impedance of the fibre-cement specimens randomly taken locating in different points were used as main parameters for the uniformity assessment.As a case,four different mixing processes were designed for dispersing carbon fibres into the cement paste.The results demonstrate that the relative longer mixing time increases the dispersion uniformity of carbon fibres in cement paste,and the addition of the water reducer dramatically improves the uniformity due to the change of the fluidity of the paste.The ground fly ash can increase the uniformity to a certain extent.

  5. Rheological Properties of Very High-Strength Portland Cement Pastes: Influence of Very Effective Superplasticizers

    Directory of Open Access Journals (Sweden)

    Adriano Papo

    2010-01-01

    Full Text Available The influence of the addition of very effective superplasticizers, that are commercially available, employed for maximising the solid loading of very high-strength Portland cement pastes, has been investigated. Cement pastes were prepared from deionized water and a commercially manufactured Portland cement (Ultracem 52.5 R. Cement and water were mixed with a vane stirrer according to ASTM Standard C305. The 0.38 to 0.44 water/cement ratio range was investigated. Three commercial superplasticizing agents produced by Ruredil S.p.a. were used. They are based on a melamine resin (Fluiment 33 M, on a modified lignosulphonate (Concretan 200 L, and on a modified polyacrylate (Ergomix 1000. Rheological tests were performed at 25°C by using the rate controlled coaxial cylinder viscometer Rotovisko-Haake 20, system M5-osc., measuring device MV2P with serrated surfaces. The tests were carried out under continuous flow conditions. The results of this study were compared with those obtained in a previous article for an ordinary Portland cement paste.

  6. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  7. Corrosion behavior of steel in concrete made with slag-blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Dehghanian, C. [Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering

    1999-03-01

    Concretes formulated with slag as a partial replacement for cement were used to evaluate the corrosion behavior of steel embedded in concrete, resistivity, and the compressive strength of the concrete. Corrosion rates and pitting corrosion of steel in concrete with up to 30% slag and exposed to sodium chloride (NaCl) solutions decreased. Slag-blended cement concrete increased concrete resistivity. A water-to-cement ratio <0.55 and submersion in water for a period of 18 days gave the best chloride (Cl{sup {minus}}) diffusion resistance from the external salt solutions. Compressive strength of the concrete decreased with addition of slag in the early ages of the concrete. After 5 months of age, compressive strength of the concrete increased with addition of slag. This trend continued with up to 30% slag addition.

  8. Dehydration kinetics of Portland cement paste at high temperature

    NARCIS (Netherlands)

    Zhang, Q.; Ye, G.

    2012-01-01

    Portland cement paste is a multiphase compound mainly consisting of calcium-silicate-hydrate (CSH) gel, calcium hydroxide (CH) crystal, and unhydrated cement core. When cement paste is exposed to high temperature, the dehydration of cement paste leads to not only the decline in strength, but also th

  9. Murine osteoblastic and osteoclastic differentiation on strontium releasing hydroxyapatite forming cements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satish S., E-mail: sss42@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Roy, Abhijit, E-mail: abr20@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun, E-mail: bol11@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Parekh, Shrey, E-mail: smp116@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States)

    2016-06-01

    Ionic substitutions in hydroxyapatite (HA) scaffolds and self-setting cements containing Sr{sup 2+} ions incorporated are particularly of interest in bone regeneration. To date, the approach widely used to incorporate Sr{sup 2+} ions into HA cements has been the addition of Sr{sup 2+} containing salts, such as SrCO{sub 3}, SrCl{sub 2} ∙ 6H{sub 2}O, or SrHPO{sub 4}. However, this approach is dependent upon the relative solubility of Sr{sup 2+} containing salts with respect to calcium phosphate (CaP) precursors. Therefore, in the current study Sr{sup 2+} substituted dicalcium phosphate dihydrate (DCPD) was first synthesized and directly reacted with tetracalcium phosphate (TTCP) to form Sr{sup 2+} substituted HA forming cements. Rietveld refinement indicated that after one week of aging in phosphate buffered saline, cements prepared with and without Sr{sup 2+} were composed of 75% HA and 25% unreacted TTCP by weight. Cements prepared with 10% Sr{sup 2+} DCPD exhibited increased compressive strengths in comparison to unsubstituted cements. Increased MC3T3-E1 proliferation and differentiation were also observed on the cements prepared with increasing Sr{sup 2+} content. It was concluded that both the scaffold microstructure and Sr{sup 2+} ion release supported osteogenic differentiation. With respect to osteoclastic differentiation, no statistically significant differences in TRAP activity or cell morphology were observed. This suggests that the amount of Sr{sup 2+} released may have been too low to influence osteoclast formation in comparison to unsubstituted cements. The results obtained herein demonstrate that the use of Sr{sup 2+} substituted DCPD precursors rather than individually separate Sr{sup 2+} containing salts may be a useful approach to prepare Sr{sup 2+} containing HA cements. - Highlights: • Sr{sup 2+} containing HA cement was prepared by reacting TTCP with Sr{sup 2+} substituted DCPD. • Cements with increased Sr{sup 2+} supported increased

  10. An evaluation of commercial and experimental resin-modified glass-ionomer cements

    Science.gov (United States)

    Kanchanavasita, Widchaya

    Glass-ionomer cement (GIG) has become widely accepted as a restorative material due to its bonding ability and sustained release of fluoride. The cement is, however, sensitive to moisture imbalance and lacks toughness. Recently, resin-modified glass-ionomer cements (RMGIC) have been introduced. These materials contain monomeric species, such as 2-hydroxyethyl methacrylate (HEMA) in addition to the components of the conventional glass-ionomer cements. Disadvantages of RMGICs include a relatively high contraction and exotherm on polymerisation. HEMA is known to be cytotoxic, leading to problems of biocompatibility, and polyHEMA swells on exposure to water, leading to dimensional instability of the cements. Addressing these problems is important in the development of the RMGICs. Using alternative monomers to replace or reduce the amount of HEMA used in the current RMGIC formulations would be appropriate. This study was divided into two parts. Initially certain properties such as water sorption, micro-hardness, flexural strength and polymerisation exotherm of commercially available RMGICs were evaluated. Long-term storage of RMGICs in aqueous solutions resulted in their high water uptakes and solubilities and large volumetric expansions. However, the surface hardness and strengths of the restorative grade RMGICs were not affected on storage in distilled water. When the materials were immersed in artificial saliva, significantly higher water uptake were obtained; the equilibrium water uptake were not reached after 20 months. As a consequence, plastic behaviour and reduced surface hardness were observed. The RMGICs also produced high exotherm during polymerisation. The second part of the study investigated the use of an experimental resin as an alternative to HEMA. The experimental resin has the advantage of low toxicity to the pulp and relatively low polymerisation shrinkage. This study compared the polymerisations of the resin and HEMA, and of mixtures of these two

  11. Dermatoses in cement workers in southern Taiwan.

    Science.gov (United States)

    Guo, Y L; Wang, B J; Yeh, K C; Wang, J C; Kao, H H; Wang, M T; Shih, H C; Chen, C J

    1999-01-01

    Construction workers are known to have occupational dermatoses. The prevalence of such dermatoses was unknown in Taiwanese construction workers. The objective of this study was to determine the work exposure, prevalence of skin manifestations, and sensitivity to common contact allergens in cement workers of southern Taiwan. A total of 1147 current regular cement workers were telephone-interviewed about skin problems during the past 12 months, work exposure, and personal protection. Among those interviewed, 166 were examined and patch tested with common contact allergens. A high % of cement workers reported skin problems in the past 12 months. More men (13.9%) reported skin problems possibly related to work than women (5.4%). Prevalence was associated with lower use of gloves, duration of work as cement worker, and more time in jobs involving direct manual handling of cement, especially tiling. A high % of dermatitis was noted in the 166 workers examined, which correlated with reported skin problems. On patch testing, construction workers had a high frequency of sensitivity to chromate. Sensitivity to chromate or cobalt was associated with reported skin problems, or dorsal hand dermatitis on examination. These workers' dermatitis was under-diagnosed and inadequately managed. It is concluded that cement workers in southern Taiwan had a high prevalence of skin problems related to cement use. Protective measures, work practice, and physician education should be improved to prevent or manage such problems.

  12. CO2 Reaction with Hydrated Class H Well Cement under Geologic Sequestration Conditions: Effects of Flyash Admixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kutchko, Barbara G. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Strazisar, Brian R. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Huerta, Nicolas [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Texas, Austin, TX (United States); Lowry, Gregory V. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Thaulow, Niels [RJ Lee Group, Inc., Monroeville, PA (United States)

    2009-05-15

    The rate and mechanism of reaction of pozzolan-amended Class H cement exposed to both supercritical CO2 and CO2-saturated brine were determined under geologic sequestration conditions to assess the potential impact of cement degradation in existing wells on CO2 storage integrity. The pozzolan additive chosen, Type F flyash, is the most common additive used in cements for well sealing in oil-gas field operations. The 35:65 and 65:35 (v/v) pozzolancement blends were exposed to supercritical CO2 and CO2-saturated brine and underwent cement carbonation. Extrapolation of the carbonation rate for the 35:65 case suggests a penetration depth of 170-180 mm far both the CO2-saturated brine and supercritical CO2 after 30 years. Despite alteration in both pozzolan systems, the reacted cement remained relatively impermeable to fluid flow after exposure to brine solution saturated with CO2, with values well below the American Petroleum Institute recommended maximum well cement permeability of 200 mu D. Analyses of 50:50 pozzolan-cement cores from a production well in a sandstone reservoir exhibited carbonation and low permeability to brine solution saturated with CO2, which are consistent with our laboratory findings.

  13. Evaluation of Bond Strength and Quality of Fiber Posts Cemented With Two Cements in Asymmetric Dental Root Canal

    Directory of Open Access Journals (Sweden)

    Atefeh Ramezani

    2016-09-01

    Full Text Available Background and Objective:Debonding is one of the most common causes of failures in post fibers used in the root canalat interface of dentin-fiberpost. The purpose of this study is to evaluate the interface of the fibers post in the root canal with appropriate and inappropriate compliance with CBCT and its push-out bond strength with two types of resin cement used in the mandibular premolars. Materials and Methods:Forty (40Mandibular Premolarteeth which were extracted were useddue to theorthodontic problems. After endodontic, the teeth were randomly classified into two groups including teeth with post space in compliance with the fiber post and a group of posts space wider than fiber post. Thereafter,each group wassub-divided into two groups according to the used cement: panaviaF2.0 (Kuraray Medical Inc., Osaka, Japan, Rebilda DC(Voco, and Germany and finally, four groups were created [P.a:canal with appropriate adaptation + panavia F2.0, P.in:canal with inappropriate adaptation + panavia F2.0, R.a:canal with appropriate adaptation + Rebilda DC, R.in:canal with inappropriate adaptation + Rebilda DC]. Data analysis was carried out using ANOVA, Post hoc Tukey test, Chisquare test (p <0.05. Results: The bond strength was significantly affected by the analyzed root area (p-value = 0.03 and there was a significant difference between two canals with appropriate and inappropriate compliance with the same type of cement (p-value = 0.05. In addition, the bond strength was not affected by cement type (p-value = 0.67 and the area of the voids was higher in P.in groups. Nevertheless, in R.a group, no void was observed. Conclusion: The bond strength was affected by the post space but it was not affected by cementation techniques. As a result of this, applicator of Rebilda cement reduces the voids in the root canal with appropriate compliance

  14. The microstructure of Portland cement paste and its relationship to drying shrinkage: A study of blended cement paste

    Science.gov (United States)

    Olson, Rudolph Andrew, III

    1998-12-01

    The objective was to understand how the microstructure of cement paste influences its susceptibility to drying shrinkage. The strategy was to vary the microstructure via processing and relate the changes to the deformation behavior. There were many processing parameters to choose from that were capable of varying the microstructure, but one very effective way was through addition of mineral admixtures. Since the use of mineral admixtures also has the potential to address current economic, social, and environmental problems, achieving a better understanding of blended cement paste was an added benefit. Ground granulated blast furnace slag, fly ash, and silica fume were the mineral admixtures chosen for this study because they represent a wide range of reactivity. Blended cement pastes of various compositions and degrees of hydration were characterized. Calcium hydroxide, calcium silicate hydrate, pH, free water, and nitrogen surface area were the microstructural parameters chosen for analysis. Because calcium silicate hydrate is usually measured by indirect techniques which are not applicable to blended cements, a technique based on water adsorption was developed; results compared favorably with calculations from the Jennings-Tennis hydration model. The connectivity of the pore network was characterized using impedance spectroscopy. Drying shrinkage was analyzed on the macrolevel using bulk shrinkage measurements and the microstructural level using a deformation mapping technique. Several processing-microstructure-property relationships were developed. Mineral admixtures were found to significantly reduce the connectivity of the pore network and increase the nitrogen surface area of cement paste per gram of calcium silicate hydrate. The bulk drying shrinkage of blended cement pastes dried to 50% relative humidity was found to depend primarily on calcium hydroxide and calcium silicate hydrate content; shrinkage decreased with increasing amounts of calcium hydroxide

  15. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ying-Fang [Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@gmail.com [Department of Anatomy, Chung Shan Medical University, Taichung City, Taiwan (China); Huang, Tsui-Hsien; Chou, Ming-Yung [Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Yang, Jaw-Ji, E-mail: jjyang@csmu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Anatomy, Chung Shan Medical University, Taichung City, Taiwan (China)

    2014-09-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials. - Highlights: • The higher the Si in the cement, the shorter the setting time and the higher the DTS. • Si20-doped in TCP improved cell adhesion, proliferation and differentiation. • The Si ion stimulated collagen secreted from cells. • The Si released from substrate can promote osteogenic and angiogenic.

  16. Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack

    Science.gov (United States)

    Kovalcikova, M.; Estokova, A.; Luptakova, A.

    2015-11-01

    The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.

  17. Bioactive materials improve some physical properties of a MTA-like cement.

    Science.gov (United States)

    Flores-Ledesma, A; Barceló Santana, F; Bucio, L; Arenas-Alatorre, J A; Faraji, M; Wintergerst, A M

    2017-02-01

    One of the main disadvantages of MTA is its long setting time which could result in higher solubility and microleakage, producing a failed treatment. Studies have shown that the addition of bioactive glass may decrease the setting time. The aim of this study is to evaluate the compressive strength, setting time, solubility and radiopacity of a MTAlike experimental cement to which different percentage of wollastonite and bioactive glass are added. White MTA Angelus® was used as control; an experimental MTA-like cement (ExpC) was prepared using white Portland cement with 20wt% of Bi2O3; three wollastonite cement composites were prepared adding 10, 20 and 30wt% of wollastonite to ExpC, and three more adding the same proportions of bioactive glass. Compressive strength was tested according to ADA 30; radiopacity, setting time and solubility were tested according to ISO 6876. SEM observations of the surface were made after the solubility test. Compressive strength, setting time, solubility and radiopacity were reduced as the wollastonite increased; solubility increased with the addition of bioactive glass. The surfaces of MTA Angelus® and ExpC were smoother than Wollastonite and Bioactive glass groups. Addition of wollastonite and bioactive glass improved the physical properties of a MTA-like experimental cement, reducing the setting time with good solubility percentages, which would be an advantage in its clinical use.

  18. Holocene cemented beach deposits in Belize

    Science.gov (United States)

    Gischler, Eberhard; Lomando, Anthony J.

    1997-06-01

    Two types of cemented beach deposits occur on reef islands off the coast of Belize. These are (1) intertidal beachrock that is dominantly cemented by marine aragonite and high-magnesium-calcite cements, and (2) supratidal cayrock that is cemented mainly by vadose low-magnesium-calcite cements. Besides differences in position relative to present sea level and resulting early diagenesic features, beachrock and cayrock can be distinguished on the basis of differences in composition, texture, geographical position, and age. Whereas the composition of beachrock is similar to that of the adjacent marginal reef sediments, cayrock is enriched in benthic foraminifera. Intertidal beachrock is moderately to well sorted and well cemented, while supratidal cayrock is very well sorted, poorly cemented and friable. Beachrock occurs preferentially on windward beaches of sand-shingle Gays on the middle and southern barrier reefs and on the isolated platforms Glovers and Lighthouse Reefs. Cayrock only occurs on larger mangrove-sand Gays of the isolated platforms Turneffe Islands, Lighthouse Reef, and the northern barrier reef. 14C-dating of ten whole-rock and mollusk shell samples produced calibrated dates between AD 345 and AD 1435 for beachrock and between BC 1085 and AD 1190 for cayrock. The large-scale distribution of beachrock in Belize supports the contention that physical processes such as water agitation rather than biological processes control beachrock formation and distribution. Only on windward sides of cays that are close to the reef crest, where large amounts of seawater flush the beaches, considerable amounts of cements can be precipitated to produce beachrock. Cayrock forms due to cementation in the vadose zone and is only preserved on larger, stable mangrove-sand cays.

  19. Investigations of the efficiency of CaO and MgO swelling cements for deep wells. Untersuchungen zur Wirksamkeit von CaO- und MgO-Quellzementen fuer Tiefbohrungen; Abschlussbericht zur Vorphase des DGMK-Projektes 444

    Energy Technology Data Exchange (ETDEWEB)

    Ghofrani, R.; Plack, H.

    1993-02-01

    The problem of gas tightness in annular cementing of deep wells has not been comprehensively solved in conformance with present demands. It is known from practical experience, for example, that leakage may occur in cementation over short distances. Besides possible cementing failures, the problems of gas migration are also aggravated by the setting and hardening behavior of hydraulic cements and the resulting hydration volume reduction. Swelling cements, which show a real expansion of their outer dimensions, can help to solve the present problems by filling up existing void spaces in the annulus and improving the bonding at the formation/cement and cement/pipe interfaces. This applies especially to the cementing of horizontal wells, where cavities form preferentially at the top because of gravity and thus also can result in the creation of long leak channels. The object of the present work was the ascertainment of the efficiency in principle for swelling cements based on CaO and MgO additives under simulated borehole conditions. Besides the usual characteristics of cement slurries (rheological parameters, thickening time, filtrate loss) and cement stones (compressive strength, shear bond strength, permeability), special emphasis has been placed on the swelling behavior (matrix expansion, beginning and duration of the swelling phase) of such formulations. Specialized equipment has been developed and constructed for continuous measurements of the swelling behavior. With CaO cements, real expansion by up to 10 percent has been demonstrated under hydrostatic pressures up to 120 MPa. The swelling behavior depends on the timing between hydration rate of the swelling additive and the degree of hydration of the structure-forming cement. Hydration of the swelling additive generally results in increased porosity of the cement stone. However, restrained expansion led to a reduction in pore size.

  20. The interaction of pH, pore solution composition and solid phase composition of carbonated blast furnace slag cement paste activated with aqueous sodium monofluorophosphate

    NARCIS (Netherlands)

    Kempl, J.; Copuroglu, O.

    2015-01-01

    Blast Furnace Slag (BFS) is a waste product of industrial steel production and a common additive in the cement industry in Northern European countries. However, cementitious materials made from slag-rich cement, particularly CEM III /B, are very susceptible to carbonation. Recent investigations have

  1. Effect of cementing technique and cement type on thermal necrosis in hip resurfacing arthroplasty - a numerical study

    NARCIS (Netherlands)

    Janssen, D.; Srinivasan, P.; Scheerlinck, T.; Verdonschot, N.J.J.

    2012-01-01

    Femoral fractures within resurfacing implants have been associated with bone necrosis, possibly resulting from heat generated by cement polymerization. The amount of heat generated depends on cement mantle volume and type of cement. Using finite element analysis, the effect of cement type and volume

  2. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2011-01-01

    In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically im

  3. Comparison of Temperature Field Distribution between Cement Preclinkering Technology and Cement Precalcining Technology

    Institute of Scientific and Technical Information of China (English)

    XU Xun; WANG Lan

    2016-01-01

    Through the comparison of calcination conditions between cement preclinkering technology and cement precalcining technology, we studied the characteristics of temperature ifeld distribution of cement preclinkering technology systems including cyclone preheater, preclinkering furnace, and rotary kiln. We used numerical simulation method to obtain data of temperature ifeld distribution.Some results are found by system study. The ratio of tail coal of cement preclinkering technology is about 70%, and raw meal temperature can reach 1070℃. ShorterL/D kiln type of preclinkering technology can obtain more stable calcining zone temperature. The highest solid temperature of cement preclinkering technology is higher than 80℃, and high temperature region (>1450℃) length is 2 times, which is beneifcial for calcining clinker and higher clinker quality. So cement preclinkering technology can obtain more performance temperature ifled, which improves both the solid-phase reaction and liquid-phase reaction.

  4. Ternary blend cements concrete. Part II: Transport mechanism

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2007-03-01

    Full Text Available With today’s extensive use of cements containing two or more additions (blended cements, predicting concrete durability on the grounds of its strength alone leads to errors that may affect the service life of the resulting structures. Indeed, concrete of a given strength class can be made from different materials and proportions of widely varying durability. The present study evaluated water absorption, sorptivity and initial surface absorption in concrete made with unadditioned Portland, binary (limestone and ternary (limestone and granulated slag blend cement.En la actualidad con la utilización de cementos con dos o más adiciones (cementos compuestos predecir la durabilidad del hormigón a partir sólo de su resistencia conduce a cometer errores que pueden afectar la vida útil de las construcciones de hormigón. Pues es bien conocido que se pueden elaborar hormigones de una misma clase resistente con distintos materiales y proporciones, que podrán presentar un comportamiento durable totalmente diferente. En este trabajo se evalúa la absorción de agua, la capacidad de absorción, la absorción inicial superficial de hormigones elaborados con cemento Portland sin adición, cementos compuestos binario (caliza y ternario (escoria granulada y caliza.

  5. Investigation of cement based composites made with recycled rubber aggregate

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica Lj.

    2012-01-01

    Full Text Available The results of experimental investigations performed on cement based composites made with addition of recycled rubber as a partial replacement of natural river aggregate are presented in this paper. Different properties of cement based mortar were analyzed, both in fresh and in hardened state. Tested properties in the fresh state included: density, consistency and volume of entrained air. In the hardened state, the following properties were tested: density, mechanical properties (compressive and flexural strength, modulus of elasticity, adhesion to concrete substrate, water absorption, freeze-thaw resistance and ultrasonic pulse velocity. The obtained results indicate that recycled rubber can be successfully applied as a partial replacement of natural river aggregate in cement based composites, in accordance with the sustainable development concept. The investigation showed that physical-mechanical properties of cementituous composites depend to a great extent on the percentage of replacement of natural river aggregate with recycled rubber, especially when the density, strength, adhesion and freeze-thaw resistance are concerned. The best results were obtained in the freeze-thaw resistance of such composites.

  6. The influence of pluronic P123 micelles on corrosion behaviour of steel in cement extract and bulk matrix properties of cement paste

    NARCIS (Netherlands)

    Koleva, D.A.; Denkova, A. .G.; Hu, J.; van Breugel, K.

    2012-01-01

    The influence of Pluronic P123 (PEO20-PPO20-PEO70) micelles (of 10 nm size) on the corrosion behaviour of low carbon steel in cement extract (CE) was studied using electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarisation (PDP). Additionally, mercury intrusion porosimetry (MIP)

  7. INFLUENCE OF GLASS CULLET IN CEMENT PASTES

    Institute of Scientific and Technical Information of China (English)

    A.Karamberi; E.Chaniotakis; D.Papageorgiou; A.Moutsatsou

    2006-01-01

    The present study investigates glass and cement compatibility with a view to use glass as a cement replacement. Amber, flint and green glasses were chosen due to their prevalence in the Greek market as packaging materials. The factors under investigation were the pozzolanicity of the glass cullet, the hydration rate and the mechanical strength development of the cement pastes, as well as the expansion of the specimens due to alkali-silica reaction.Moreover, the potential enhancement of glass pozzolanic activity was examined. The results of the study were encouraging to show the potentiality of utilising glass cullet in cementitious products.

  8. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Nukleare Entsorgung (INE)

    2015-07-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH){sub 2}. Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  9. The mineralogy and chemistry of cement and cement raw materials In the united arab emirates

    OpenAIRE

    Nasir, Sobhi J. [صبحي جابر نصر; El Etr, H.

    1996-01-01

    The raw materials, clinkers and cements from different cement factories in the United Arab Emirates have been investigated using polarizing microscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and chemical analyses. The chemical and mineralogical analyses indicate that the local raw materials are suitable for cement industry. Geological review shows that there is a good potential for industrial-grade local occurrences of limestone, marl, gypsum and iron oxide, that may be ...

  10. Cement Manufacturing Plant Guidelines: An Approach to Reconciling the Financing of Cement with Climate Change Objectives

    OpenAIRE

    2010-01-01

    Cement manufacturing is an energy-intensive process, requiring high fuel consumption to operate cement kilns, which in turn generates carbon dioxide (CO2). These Guidelines aim to provide clear and quantitative Minimum Climate Change Performance Criteria necessary for IDB to support projects, as well as guidance on assessing and reducing the greenhouse gas (GHG) emissions of projects. The purpose of the Cement Manufacturing Plant guidelines is to set forth an approach for the financing of new...

  11. The migration of cesium-137 through cement formulations applicable to radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.

    1989-01-01

    Eighteen portland cement formulations containing three levels of cement/fly ash content (100%/0%, 85%/15%, and 60%/40%), two levels of water to cementitious solids ratio (0.33 and 0.43) and three levels of additive (none, silica fume, and latex polymer) were tested. Each formulation was molded into a solid cement specimen containing a centered well space which served as a reservoir for a {sup 137}Cs solution. After a predetermined time period, the {sup 137}Cs solution was removed and a 2-cm long by 1.27-cm diameter cement core was extracted from the monolith well bottom using a diamond core drill. Each cement core was then cut into successive horizontal slices with a diamond saw blade. The net activity of {sup 137}Cs in each slice was determined with a NaI(T1) detector connected to a single-channel analyzer. Analysis of variance (ANOVA) and regression models were used to examine the statistical relationship between different formulations in terms of the {sup 137}Cs activity in the cement slices versus the migration distance as indicated by the respective slice depths. Results indicated that mixes incorporating 5% silica fume at a low w/s ratio are relatively effective in retarding {sup 137}Cs migration when compared to the other formulations tested. Formulations with a w/s ratio of 0.33 consistently demonstrated better containment of the {sup 137}Cs solution compared to those formulations with a w/s ratio of 0.43. However, it was possible to obtain comparable {sup 137}Cs retardation at a higher w/s ratio if large amounts of fly ash were added to 5% EMSAC mixes at w/s = 0.43. The addition of 5% latex polymer did not improve the ability of cements to retard {sup 137}Cs ion migration under the curing conditions used.

  12. Influence of Incorporating Fluoroapatite Nanobioceramic on the Compressive Strength and Bioactivity of Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Khaghani M

    2016-09-01

    Full Text Available Statement of Problem: In order to increase the performance of glass ionomer cement, it is reinforced with metal powders, short fibers, bioceramics and other materials. Fluoroapatite(Ca10(PO46F2 is found in dental enamel and is usually used in dental materials due to its good chemical and physical properties. Objectives: In this study, the effects of the addition of synthesized fluoroapatite nanoceramic on the compressive strength and bioactivity of glass ionomer cement were investigated. Materials and Methods: The synthesized fluoroapatite nanoceramic particles (~ 70 nm were incorporated into as-prepared glass ionomer powder and were characterized using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Moreover, the compressive strength values of the modified glass ionomer cements with 0, 1, 3 and 5 wt% of fluoroapatite were evaluated. Results: Results showed that glass ionomer cement containing 3 wt%fluoroapatite nanoparticles exhibited the highest compressive strength (102.6± 4 compared to the other groups, including control group. Furthermore, FTIR and SEM investigations indicated that after soaking the glass ionomer cement- 3 wt% fluoroapatite composite in the simulated body fluid solution, the intensity of O-H, P-O and C-O absorption bands increased as a result of the formation of apatite layer on the surface of the sample, and the rather flat and homogeneous surface of the cement became more porous and inhomogeneous. Conclusions: Addition of synthesized nano-fluoroapatite to as-prepared glass ionomer cement enhanced the compressive strength as well as nucleation of the calcium phosphate layer on the surface of the composite. This makes it a good candidate for dentistry and orthopedic applications.

  13. Radiographic appearance of commonly used cements in implant dentistry.

    Science.gov (United States)

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  14. Slagment Cement Improve the Cement Resistance Toward Acids Attack During Acidizing Treatment

    Directory of Open Access Journals (Sweden)

    Nik Khairul Irfan Bin Nik Ab. Lah.

    2013-05-01

    Full Text Available Acidizing treatment in past experience shows several zonal isolation problems after the treatment. This study presents the effect of the acid treatment toward class G cement and slagment cement as the improvement method to improve the cement resistance toward the acid. Lab experiments were conducted by immerge the respective cement cubes into 12% HCl/3% HF solution for 40 min before several analysis were conducted. Based on the result, the mass loss and compressive strength loss of the cement cubes decrease as the curing temperature and pressure increase due to more evenly distributed cement chemical composition crystal in high curing condition as shown in Scanning Electron Microscopy (SEM analysis. From X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF analysis, only the first layer of the cement cubes shows chemical component change due to the reaction between the acid. This study found that, replacing class G cement to slagment cement can reduce the mass loss and compressive strength loss up to 72% and 82%, respectively.

  15. Cementation of wastes with boric acid; Cimentacao de rejeitos contendo acido borico

    Energy Technology Data Exchange (ETDEWEB)

    Tello, Cledola C.O.; Haucz, Maria Judite A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Alves, Lilian J.L.; Oliveira, Arno H. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2000-07-01

    In nuclear power plants (PWR) are generated wastes, such as concentrate, which comes from the evaporation of liquid radioactive wastes, and spent resins. Both have boron in their composition. The cementation process is one of the options to solidify these wastes, but the boron has a negative effect on the setting of the cement mixture. In this paper are presented the experiments that are being carried out in order to overcome this problem and also to improve the efficiency of the process. Simulated wastes were cemented using additives (clays, admixtures etc.). In the process and product is being evaluated the effect of the amount, type and addition order of the materials. The mixtures were selected in accordance with their workability and incorporated waste. The solidified products are monolithic without free water with a good mechanical resistance. (author)

  16. The Setting Chemistry of Glass Ionomer Cement

    Institute of Scientific and Technical Information of China (English)

    CHENG Hanting; LIU Hanxing; ZHANG Guoqing

    2005-01-01

    The setting chemistry of glass ionomer cement was investigated by using mechanical determination of compressive strength at predetermined intervals, and measurement of structure changes of corresponding fracture sample by means of IR spectra and differential scanning calorimetry ( DSC). Zinc polycarboxylate cement was used as a comparison sample. The compressive strength of glass ionomer cement (GIC) increases with aging. IR spectra and DSC of corresponding fracture sample show the structure changes of the matrix and interface layer comprising of silica gel during the predetermined intervals studied, however, no significant changes occur in the zinc polycarxyolate cement. Hence the structure changes of the matrix and/or interface layer are responsible for compressive strength increasing with aging. The structure changes include the crosslink density, the ratio of complex form to ionic form, the content ratio of Al-PAA to Ca-PAA, the forming and mauring process of the interface layer comprising of silica gel.

  17. Dicalcium phosphate cements: brushite and monetite.

    Science.gov (United States)

    Tamimi, Faleh; Sheikh, Zeeshan; Barralet, Jake

    2012-02-01

    Dicalcium phosphate cements were developed two decades ago and ever since there has been a substantial growth in research into improving their properties in order to satisfy the requirements needed for several clinical applications. The present paper presents an overview of the rapidly expanding research field of the two main dicalcium phosphate bioceramics: brushite and monetite. This review begins with a summary of all the different formulae developed to prepare dicalcium phosphate cements, and their setting reaction, in order to set the scene for the key cement physical and chemical properties, such as compressive and tensile strength, cohesion, injectability and shelf-life. We address the issue of brushite conversion into either monetite or apatite. Moreover, we discuss the in vivo behavior of the cements, including their ability to promote bone formation, biodegradation and potential clinical applications in drug delivery, orthopedics, craniofacial surgery, cancer therapy and biosensors.

  18. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  19. Effect of heat generation from bone cement on bone tissue in total knee arthroplasty; Jinko kansetsu okikaeji no one cement no hatsunetsu ga seitai soshiki ni oyobosu eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M.; Uchida, T. [Kobe University, Kobe (Japan); Iwatsubo, T. [Kobe University, Kobe (Japan). Faculty of Engineering; Kurosawa, M.; Hashimoto, Y. [Kobe University, Kobe (Japan). Faculty of Medicine; Fukushima, H.

    1998-01-25

    Bone cement is often applied to fix the components in a surgical operation, such as TKA (total knee arthroplasty). In this paper, we consider the effect of heat generation from bone cement on bone tissue in TKA by using numerical simulation. First, we applied an axisymmetric model of tibia to finite element method and analyzed heat generation of bone cement. To confirm the results of analysis by experiment, we measured the temperature determined by 6 points i.e., 2 points each in component-cement interface, cement and bone-cement interface. As a result, the temperature determined by analysis agrees with that determined by experiment. Next, we proposed the evaluation formula of the bone necrosis. We constructed a bone necrosis map from the simulation. From the map, we found that the bone necrosis region was about 2 mm from the bone-cement interface. In addition, the bone necrosis is severe at the base of the tibial component. 7 refs., 15 figs., 3 tabs.

  20. Promotion of in vivo degradability, vascularization and osteogenesis of calcium sulfate-based bone cements containing nanoporous lithium doping magnesium silicate

    Science.gov (United States)

    Cao, Liehu; Weng, Weizong; Chen, Xiao; Zhang, Jun; Zhou, Qirong; Cui, Jin; Zhao, Yuechao; Shin, Jung-Woog; Su, Jiacan

    2017-01-01

    Nanoporous lithium doping magnesium silicate (nl-MS) was introduced into calcium sulfate hemihydrate to prepare calcium sulfate composite (nl-MSC) bone cements. The introduction of nl-MS improved the in vitro degradability of nl-MSC cements, which could neutralize acidic degradable products of calcium sulfate and prevented the pH from dropping. The cements were implanted into the bone defects of femur bone of rabbits, and the results of histological and immunohistochemical analysis revealed that massive new bone tissue formed in the defects while the cements were degradable, indicating that the osteogenesis and degradability of the nl-MSC cements were much better than the control calcium sulfate dihydrate (CSD) cements. Furthermore, the positive expression of vascular endothelial growth factor and collagen type I for nl-MSC cements was higher than CSD, indicating that addition of nl-MS into the cements enhanced vascularization and osteogenic differentiation. The results suggested that the nl-MSC cements with good biocompatibility and degradability could promote vascularization and osteogenesis, and had great potential to treat bone defects. PMID:28260883

  1. Leaching characteristics of heavy metals during cement stabilization of fly ash from municipal solid waste incinerators

    Institute of Scientific and Technical Information of China (English)

    Shunwen LIANG; Jianguo JIANG; Yan ZHANG; Xin XU

    2008-01-01

    The leaching characteristics of heavy metals in products of cement stabilization of fly ash from a muni-cipal solid waste incinerator were investigated in this paper. The stabilization of heavy metals such as Cd, Pb, Cu, and Zn in fly ash from such incinerators was exam-ined through the national standard method in China based on the following-factors: additive quantity of cement and Na2S, curing time, and pH of leaching liquor. The results showed that as more additives were used, less heavy metals were leached except for Pb, which is sensitive to pH of the leachate, and the worse effect was observed for Cd. The mass ratio of cement to fly ash=10% is the most appropriate parameter according to the national standard method. When the hydration of cement was basically finished, stabilization of heavy metals did not vary after curing for 1 d. The mixtures of cement and fly ash had excellent adaptability to environmental pH. The pH of leachate was maintained at 7 when pH of leaching liquor varied from 3 to 11.

  2. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  3. RECYCLED WASTE-BASED CEMENT COMPOSITE PATCH MATERIALS FOR RAPID/PERMANENT ROAD RESTORATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2001-07-31

    Over the past year, KeySpan Energy sponsored a research program at Brookhaven National Laboratory (BNL) aimed at recycling boiler ash (BA) and waste water treatment sludge (WWTS) byproducts generated from Keyspan's power stations into potentially useful materials, and at reducing concurrent costs for their disposal. Also, KeySpan has an interest in developing strategies to explicitly integrate industrial ecology and green chemistry. From our collaborative efforts with Keyspan (Diane Blankenhom Project Manager, and Kenneth Yager), we succeeded in recycling them into two viable products; Pb-exchange adsorbents (PEAs), and high-performance cements (HpCs). These products were made from chemically bonded cement and ceramic (CBC) materials that were synthesized through two-step chemical reaction pathways, acid-base and hydration. Using this synthesis technology, both the WWTS and BA served in acting as solid base reactants, and sodium polyphosphate, [-(-NaPO{sub 3}-)-{sub n}], known as an intermediator of fertilizer, was employed as the acid solution reactant. In addition, two commercial cement additives, Secar No. 51 calcium aluminate cement (CAC) and Type I calcium silicate cement (CSC), were used to improve mechanical behavior and to promote the rate of acid-base reaction of the CBC materials.

  4. Production of bone cement composites: effect of fillers, co-monomer and particles properties

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: jjunior@peq.coppe.ufrj.b, E-mail: melo@peq.coppe.ufrj.b, E-mail: pinto@peq.coppe.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia. (PEQ/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano; Nele, M. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2011-04-15

    Artificial bone cements (BCs) based on poly(methyl methacrylate) (PMMA) powders and methyl methacrylate (MMA) liquid monomer also present in their formulation small amounts of other substances, including a chemical initiator compound and radiopaque agents. Because inadequate mixing of the recipe components during the manufacture of the bone cement may compromise the mechanical properties of the final pieces, new techniques to incorporate the fillers into the BC and their effect upon the mechanical properties of BC pieces were investigated in the present study. PMMA powder composites were produced in situ in the reaction vessel by addition of X-ray contrasts to the reacting MMA mixture. It is shown that this can lead to much better mechanical properties of test pieces, when compared to standard bone cement formulations, because enhanced dispersion of the radiopaque agents can be achieved. Moreover, it is shown that the addition of hydroxyapatite (HA) and acrylic acid (AA) to the bone cement recipe can be beneficial for the mechanical performance of the final material. It is also shown that particle morphology can exert a tremendous effect upon the performance of test pieces, indicating that the suspension polymerization step should be carefully controlled when optimization of the bone cement formulation is desired. (author)

  5. Dynamic properties of composite cemented clay

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 梁旭

    2004-01-01

    In this work,the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.

  6. Physical Properties of Acidic Calcium Phosphate Cements

    OpenAIRE

    2014-01-01

    The gold standard for bone replacement today, autologous bone, suffers from several disadvantages, such as the increased risk of infection due to the need for two surgeries. Degradable synthetic materials with properties similar to bone, such as calcium phosphate cements, are a promising alternative. Calcium phosphate cements are suited for a limited amount of applications and improving their physical properties could extend their use into areas previously not considered possible. For example...

  7. Cement stratigraphy: Image probes of cathodoluminescent facies.

    OpenAIRE

    Vuillemin, Aurèle; Ndiaye, Mapathe; Martini, Rossana; Davaud, Eric Jean

    2011-01-01

    Cement stratigraphy of carbonates aims to establish the chronology of processes involved in the rock diagenesis. Regional cement stratigraphy allows correlations and understanding of the petrological heterogeneities in reservoirs and aquifers, but is a long and rigorous approach. This article exposes a methodology of image analysis that facilitates the spatial correlation of diagenetic events in carbonate rocks. Based on the statistical comparison of signals extracted from the red spectrum em...

  8. Continued stabilization of Triathlon cemented TKA

    OpenAIRE

    Molt, Mats; Ryd, Leif; Toksvig-Larsen, Sören

    2016-01-01

    Background and purpose There is a general call for phased introduction of new implants, and one step in the introduction is an early evaluation of micromotion. We compared the micromotion in the Triathlon and its predecessor, the Duracon total knee prosthesis, concentrating especially on continuous migration over 5 years of follow-up. Patients and methods 60 patients were randomized to receive either a cemented Triathlon total knee prosthesis or a cemented Duracon total knee prosthesis. 3-D t...

  9. Case Study of the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  10. The long-term durability of low alkali cements. Evidence from new natural analog sites in Europe and North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, W. Russell [Bedrock Geosciences, Auenstein (Switzerland); Laine, Heini M. [Saanio and Riekkola Oy, Helsinki (Finland); Khoury, Hani [Jordan Univ., Amman (Jordan). Dept. of Geology

    2015-07-01

    reported here. In addition, a second site in Europe has been identified where natural low alkali cements exist in combination with both saline groundwaters and brines, allowing examination of saline groundwater/low alkali cement interaction. Once again, the preliminary results of the study will be reported here and a comparison between the two sites will be made, highlighting the different impact of the differing groundwaters on the cement. Although precise dates for the systems examined are not yet forthcoming, this is a focus for future efforts at both sites, allowing more precise definition of the probable longevity of low alkali cements in repository environments.

  11. The Effect of Premixed Schedule on the Crystal Formation of Calcium Phosphate Cement-chitosan Composite with Added Tetracycline

    Institute of Scientific and Technical Information of China (English)

    Jing MAO; Yan LIU; Bin ZHOU; Liyun YAO

    2008-01-01

    In this study, calcium phosphate cements (CPC) were prepared by mixing cement powders of tetracalcium phosphate (TTCP) with a cement liquid of phosphate acid saline solution. Tetracycline (TTC)-CPC, chitosan-CPC and chitosan-TTC-CPC were investigated with different premixed schedule. It was demonstrate that both TTC and chitosan worked on the phase transition and crystal characteristics. TTCP mixed with phosphate acid saline solution had similar features of Fourier transform-infrared spectrometry (FT-IR) no matter it was mixed with chitosan or TTC or both. TTC premixed with cement liquid or powder had significant different features of FT-IR and 876 cm-1seemed to be a special peak for TTC when TTC was premixed with cement liquid. This was also supported by XRD analysis, which showed that TTC premixed with cement liquid improved phase transition of TTCP to OCP. Chitosan, as organic additive, regulates the regular crystal formation and inhibits the phase transition of TTCP to OCP, except when it is mingled with cement liquid premixed with TTC in field scanning electron microscope. It was concluded that the premixed schedule influences the crystal formation and phase transition, which may be associated with its biocompatibility and bioactivities in vivo.

  12. Additivity dominance

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2009-10-01

    Full Text Available Judgments of naturalness of foods tend to be more influenced by the process history of a food, rather than its actual constituents. Two types of processing of a ``natural'' food are to add something or to remove something. We report in this study, based on a large random sample of individuals from six countries (France, Germany, Italy, Switzerland, UK and USA that additives are considered defining features of what makes a food not natural, whereas ``subtractives'' are almost never mentioned. In support of this, skim milk (with major subtraction of fat is rated as more natural than whole milk with a small amount of natural vitamin D added. It is also noted that ``additives'' is a common word, with a synonym reported by a native speaker in 17 of 18 languages, whereas ``subtractive'' is lexicalized in only 1 of the 18 languages. We consider reasons for additivity dominance, relating it to omission bias, feature positive bias, and notions of purity.

  13. Molecular mechanisms of crystallization impacting calcium phosphate cements

    Science.gov (United States)

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  14. Molecular mechanisms of crystallization impacting calcium phosphate cements.

    Science.gov (United States)

    Giocondi, Jennifer L; El-Dasher, Bassem S; Nancollas, George H; Orme, Christine A

    2010-04-28

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO(4).2H(2)O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite's excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives.

  15. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  16. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  17. Durability characteristics of cement-bonded particleboards manufac-tured from maize stalk residue

    Institute of Scientific and Technical Information of China (English)

    Ajaye Babatunde

    2011-01-01

    Cement-bonded particleboards of 6 mm in thickness were manufactured using maize stalk (Zea mays) particles of uniform sizes at three levels of board density and additive concentrations respectively.The bending strength and dimensional properties were assessed. Increase in board density and additive concentration caused increase in Modulus of rupture (MOR), Modulus of elasticity (MOE), and decrease in Thickness swelling (TS) and Water absorption (WA). The MOR, MOE and TS of the boards were significantly affected by board density except for WA,but additive concentration affected ail the boards' properties examined at p ≥ 0.05. Strong and dimensional stable cement-bonded boards could be manufactured from maize stalk particles with Portland cement as the binder after hot water treatment. Although the dimensional stability and mechanical strength properties of the boards were affected by the board density and additive concentration, the study revealed that cement-bonded particleboards could be manufactured from maize stalk (Zea mays) particles. However, the increase in board density and additive concentration could cause the increase in MOR and MOE, and cause the decrease in TS and WA of boards.

  18. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability.

    Science.gov (United States)

    Gomes, Filipa O; Pires, Ricardo A; Reis, Rui L

    2013-04-01

    Al-free glasses of general composition 0.340SiO2:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na2O:0.060P2O5 (a, b=0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25±5 MPa) and higher compressive elastic modulus (492±17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a=0.125 and b=0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment.

  19. High-volume use of self-cementing spray dry absorber material for structural applications

    Science.gov (United States)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  20. The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement.

    Science.gov (United States)

    Gutowski, C J; Zmistowski, B M; Clyde, C T; Parvizi, J

    2014-01-01

    The rate of peri-prosthetic infection following total joint replacement continues to rise, and attempts to curb this trend have included the use of antibiotic-loaded bone cement at the time of primary surgery. We have investigated the clinical- and cost-effectiveness of the use of antibiotic-loaded cement for primary total knee replacement (TKR) by comparing the rate of infection in 3048 TKRs performed without loaded cement over a three-year period versus the incidence of infection after 4830 TKRs performed with tobramycin-loaded cement over a later period of time of a similar duration. In order to adjust for confounding factors, the rate of infection in 3347 and 4702 uncemented total hip replacements (THR) performed during the same time periods, respectively, was also examined. There were no significant differences in the characteristics of the patients in the different cohorts. The absolute rate of infection increased when antibiotic-loaded cement was used in TKR. However, this rate of increase was less than the rate of increase in infection following uncemented THR during the same period. If the rise in the rate of infection observed in THR were extrapolated to the TKR cohort, 18 additional cases of infection would have been expected to occur in the cohort receiving antibiotic-loaded cement, compared with the number observed. Depending on the type of antibiotic-loaded cement that is used, its cost in all primary TKRs ranges between USD $2112.72 and USD $112 606.67 per case of infection that is prevented.

  1. Cementing of geothermal wells. Progress report No. 12, January-March, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    Work to implement the program plan for the development of improved high temperature cementing materials for geothermal wells is continuing. Results from initial tests in the Dynamic Brine Exposure Testing Apparatus (D-BETA) are available. Based upon initial data, the rate at which cement coupons undergo change in the D-BETA is between that of the static tests and the dynamic exposures at East Mesa. Several cementing compositions have been formulated with chemical, physical and mechanical properties to withstand the existing geothermal conditions. The pumpability of three formulations has been demonstrated and the materials have been submitted to NBS for additional evaluation. The effect of Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, SO/sub 3/, Na/sub 2/CO/sub 3/ and Na/sub 2/SO/sub 4/ on different binders were studied at Colorado School of Mines. The results were found to range from deleterious to beneficial. Phosphate-bonded cements have been produced at the University of Rhode Island from a glass containing 7% Na/sub 2/O, 24% CaO, 24% Al/sub 2/O/sub 3/ and 45% SiO/sub 2/. Preliminary tests indicate that the material sets in several hours and appears to have some high temperature stability. Tests performed on hydrothermal cements indicate six formulations that are pumpable as long as three hours at 316/sup 0/C. Two formulations, Al/sub 2/O/sub 3/ and ZrO/sub 2/, have been chosen for use at temperatures above 300/sup 0/C. Polymer concentrates containing cement fillers have been found to be hydrothermally stable in 300/sup 0/C brine. Recommended standards for evaluating geothermal well cements have been developed by NBS. (MHR)

  2. Hydration of ordinary portland cements made from raw mix containing transition element oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kakali, G.; Tsivilis, S.; Tsialtas, A. [National Technical Univ. of Athens (Greece)

    1998-03-01

    The use of industrial wastes, such as waste tires, waste oil, non-ferrous metal slag, or waste molding sand, as alternative raw materials and fuel in cement plants has been established from an environmental and recycling point of view and is expected to increase in the future. Cement is broadly used, among other hydraulic binders, in the solidification and stabilization of industrial and municipal wastes. This tendency to the use of wastes in the cement industry or the utilization of cement for the handling of wastes has led to the presence of several transition element compounds in the clinker and/or in the hydrated cement. The subject of this paper is the study of the hydration process in cements made from raw mixes containing transition element oxides. The oxides used are ZrO{sub 2}, V{sub 2}O{sub 5}, Ni{sub 2}O{sub 3}, CuO, Co{sub 2}O{sub 3}, MnO, Cr{sub 2}O{sub 3}, TiO{sub 2}, MoO{sub 3}, and ZnO, and their percentage in the raw mixes is 2% w/w. The cement pastes are cured in water for 24 h, 48 h, 7 days and 28 days. Hydration rate and products are studied by means of X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. As it is concluded, the added oxides provoke, in general, a retardation of the hydration reactions. The effect is stronger during the first 2 days and becomes negligible at 28 days. The addition of CuO strongly delays the hydration even after 28 days. Its action is related to the formation of Cu(OH){sub 2} during the first days of hydration.

  3. Effect of cement type on the color attributes of a zirconia ceramic

    Science.gov (United States)

    Namdari, Mahshid; Mahshid, Minoo

    2016-01-01

    PURPOSE This in vitro study evaluated the effects of four different cements on the color attributes of a zirconia ceramic. MATERIALS AND METHODS 40 zirconia ceramic disk specimens (0.5 mm thickness, 10 mm diameter, 0.1 mm cement space) were fabricated by a computer-aided design and computer-aided manufacturing system. The specimens were divided into 4 groups of 10 specimens and cemented to composite substrates using four different cements including: Glass Ionomer, Panavia F2.0, Zinc Phosphate, and TempBond. The L*, a*, and b* color attributes of the specimens were measured before and after cementation by a spectrophotometer. Additionally, ΔE values were measured to determine color changes for the groups and then compared with the perceptional threshold of ΔE = 3.3. Repeated Measures ANOVA, Tukey Post Hoc, Bonferroni, One-way ANOVA, and One-sample t-test tests were used to analyze the data. All tests were carried out at the 0.05 level of significance. RESULTS Statistically significant differences were detected in the ΔE values for Zinc Phosphate (P<.0001) and TempBond (P<.0001) groups. However, there were no statistically significant differences in this respect for Glass Ionomer (P=.99) and Panavia F2.0 (P=1) groups. The means and standard deviations of the ΔE values for Glass Ionomer, Panavia F2.0, Zinc Phosphate, and Tempbond groups were 2.11±0.66, 0.94±0.39, 5.77±0.83, and 7.50±1.16 Unit, respectively. CONCLUSION Within the limitations of this study, it was concluded that Zinc Phosphate and Tempbond cements affected the color attributes of the tested zirconia ceramic beyond the perceptional threshold. However, Glass Ionomer and Panavia F2.0 cements created acceptable color changes. PMID:28018562

  4. Compound soil-tyre chips modified by cement as a road construction material

    Directory of Open Access Journals (Sweden)

    Panu Promputthangkoon

    2013-10-01

    Full Text Available This research attempts to overcome the two problems of low-quality soil and a growing number of discarded tyres bymixing low-CBR soil with recycled tyre chips. The compound soil-tyre chips was then stabilised by Portland cement with theaim of using them as a new material in road construction in order to reduce the occurrence of shrinkage cracks. To achievethe purposes of this research three standard geotechnical testing programmes were employed: (1 modified compaction tests,(2 California Bearing Ratio tests (CBR, and (3 unconfined compression tests. The modified compaction test results provedthat for the mixtures having very low tyre chips and cement content, the behaviour is very complex. It was also observed thatthe greater the percentage of rubber added the lower the global density. However, this is predictable as the specific gravityof the rubber is much lower than that of the soil. For the relationship between the optimum moisture content (OMC and thecement content, it was observed that there is no clear pattern.For the specimens having no cement added, the CBR for unsoaked specimens was observed to be greater than that forsoaked specimens. However, when the cement was introduced the CBR test showed that the resistance to penetration for thesoaked specimens was significantly greater, indicating the effects of cement added on the strength. In addition, it was foundthat the CBR values for both soaked and unsoaked specimens gradually increased with the increase of cement content.Lastly, the unconfined compressive strength progressively increased with the increased percentage of cement.

  5. Addition of polyurethane dispersions to Portland G for oil wells steam injection submitted to vapor injection; Adicao de poliuretana em dispersao a Portland G para cimentacao de pocos de petroleo sujeitos a injecao de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.B. da; Lima, F.M. de; Martinelli, A.M.; Bezerra, U.T.; Mello, D.M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Araujo, R.G.S. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Portland cement is by far the most important binding material used in oil well cementing. The cement sheath is responsible for both the mechanical stability of the wellbore and zonal isolation. During primary cementing and the production lifespan of the well, the cement sheath is exposed to adverse thermo-mechanical conditions, which may crack the intrinsically brittle cement material. Cracking affects the mechanical integrity of the sheath resulting in the contamination of oil or gas pay zones, as well as in the increase of producing costs related to the extraction of pebble and water. This scenario is especially encountered in wells containing heavy oils, typical of the Northeastern region of Brazil. The objective of the present study was to improve the fracture toughness of hardened Special Portland Cement slurries by the addition of aqueous polyurethane to Portland-based slurries used in primary cementing, plug backs and squeeze operations, improving environmental and economical impacts. The results revealed that the addition of polyurethane increased the viscosity of the slurry but still within the limits established by oil well cement guidelines. No significant increase was observed in the compressive strength of the cement. However, the addition of polyurethane improved the toughness of the cement increasing its ability to withstand thermo-mechanical cycles typical of heavy oil recovery. In addition, significant reduction in permeability was observed as the contents of polyurethane increased, contributing to the reduction in set time and gas migration through the cement sheath. (author)

  6. Effect of supplementary cementing materials on the concrete corrosion control

    Directory of Open Access Journals (Sweden)

    Mejía de Gutiérrez, R.

    2003-12-01

    Full Text Available Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnace slag (GGBS, silica fume (SF, metakaolin (MK, fly ash (FA and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete.

    La falla del concreto en un tiempo inferior a la vida útil para la cual se diseñó puede ser consecuencia del medio ambiente al cual ha estado expuesto o de algunas otras causas de tipo interno. La incorporación de materiales suplementarios al cemento Portland tiene el propósito de mejorar la microestructura del concreto y también de contribuir a la resistencia del concreto a los ataques del medio ambiente. Diferentes minerales y subproductos tales como escorias granuladas de alto horno, humo de sílice, metacaolín, ceniza volante y otros productos han sido usados como materiales suplementarios cementantes. Este documento presenta el comportamiento del hormigón en presencia de diferentes adiciones. Los cementos adicionados, comparados con los cementos Portland muestran bajos calores de hidratación, baja permeabilidad, mayor resistencia a sulfatos y a agua de mar. Estos cementos adicionados encuentran un campo de aplicación importante cuando los requerimientos de durabilidad son

  7. Interaction between cements with different composition and superplasticizers

    Directory of Open Access Journals (Sweden)

    Ghorab, H. Y.

    2012-09-01

    Full Text Available The slump behavior of ordinary Portland-, pozzolanic (red brick powder-, sulfate resistant-, and limestone cement pastes caused by ≤ 1% additions of polycondensates and polycarboxylates superplasticizers are monitored for up to 90 minutes. With the plolycondensates, Portland- and pozzolanic cements gain fluidity at higher dosages than sulfate resistant and limestone cements. Limestone cement shows the best slump retention. The aluminate and sulfate phases play a major role in the fluidity. With the polycarboxylates, all cements gain fluidity with dosages of ≤ 0.3%. A polycarboxylate with no resonance of methyl methylene proton in the main chain identified in the NMR spectra creates good slump retention. This is explained by a low mobility of the structure and the predominance of the steric effect. The polycarboxylate shows also strong ether bands relative to the ester groups in the IR spectra and a low polydispersity observed in the elution of few low molecular weight species in the HPLC chromatogram.Se ha estudiado el efecto fluidificante (hasta 90 minutos ejercido por la incorporación de entre 0-1% de aditivos policondensados y policarboxilatos en pastas de cemento Portland, puzolánico, resistente a sulfatos y con adición de caliza. Con la incorporación de los aditivos policondensados, se produjo un incremento de la fluidez de los cementos Portland y puzolánico a mayores dosificaciones que las necesarias en los cementos resistente a sulfatos y con adición de caliza. Éste último presentó la mejor retención de la fluidez. Las fases aluminatos y sulfatos juegan un importante papel en la fluidez inducida. Todos los cementos incrementaron su fluidez con la incorporación de aditivos policarboxilatos a dosificaciones menores del 0,3%. El policarboxilato que no presenta en los espectros de RMN, resonancia asignada al protón de los grupos metil metileno, presenta buena retención de la fluidez. Esto es debido a la baja flexibilidad de

  8. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement mine