WorldWideScience

Sample records for cellulosic pulps fibres

  1. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  2. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  3. Processing pineapple pulp into dietary fibre supplement | Ackom ...

    Processing pineapple pulp into dietary fibre supplement. ... The pasting characteristics or properties of wheat flour fortified with the product up to 20 ... of some popular foods to help increase the fibre intake and health of the general population.

  4. Method for Forming Pulp Fibre Yarns Developed by a Design-driven Process

    Tiia-Maria Tenhunen

    2016-01-01

    Full Text Available A simple and inexpensive method for producing water-stable pulp fibre yarns using a deep eutectic mixture composed of choline chloride and urea (ChCl/urea was developed in this work. Deep eutectic solvents (DESs are eutectic mixtures consisting of two or more components that together have a lower melting point than the individual components. DESs have been previously studied with respect to cellulose dissolution, functionalisation, and pre-treatment. This new method uses a mixture of choline chloride and urea, which is used as a swelling and dispersing agent for the pulp fibres in the yarn-forming process. Although the pulp seemed to form a gel when dispersed in ChCl/urea, the ultrastructure of the pulp was not affected. To enable water stability, pulp fibres were crosslinked by esterification using polyacrylic acid. ChCl/urea could be easily recycled and reused by distillation. The novel process described in this study enables utilisation of pulp fibres in textile production without modification or dissolution and shortening of the textile value chain. An interdisciplinary approach was used, where potential applications were explored simultaneously with material development from process development to the early phase prototyping.

  5. Evaluating pulp stiffness from fibre bundles by ultrasound

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  6. Environmental impact assessment of man-made cellulose fibres

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    Man-made cellulose fibres have played an important role in the production of textile products for more than 70 years. The purpose of this study is to assess the environmental impact of man-made cellulose fibres. Life cycle assessment (LCA) was conducted for three types of fibres (i.e. Viscose, Modal

  7. Natural Composites: Cellulose Fibres and the related Performance of Composites

    Lilholt, Hans; Madsen, Bo

    2014-01-01

    Biobased materials are becoming of increasing interest as potential structural materials for the future. A useful concept in this context is the fibre reinforcement of materials by stiff and strong fibres. The biobased resources can contribute with cellulose fibres and biopolymers. This offers th...... in stiffness, on the packing ability of cellulose fibres and the related maximum fibre volume fraction in composites, on the moisture sorption of cellulose fibres and the related mass increase and (large) hygral strains induced, and on the mechanical performance of composites....

  8. Retention of Cationic Starch onto Cellulose Fibres

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  9. Surface chemistry of cellulose : from natural fibres to model surfaces

    Kontturi, E.J.

    2005-01-01

    The theme of the thesis was to link together the research aspects of cellulose occurring in nature (in natural wood fibres) and model surfaces of cellulose. Fundamental changes in cellulose (or fibre) during recycling of paper was a pragmatic aspect which was retained throughout the thesis with

  10. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J., E-mail: rosemarymj@lifecarehll.com

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  11. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J.

    2016-01-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  12. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. All-cellulose composites of regenerated cellulose fibres by surface selective dissolution

    Soykeabkaew, N.; Nishino, T.; Peijs, Ton

    2009-01-01

    All-cellulose composites of Lyocell and high modulus/strength cellulose fibres were successfully prepared using a surface selective dissolution method. The effect of immersion time of the fibres in the solvent during composite's preparation and the effect of the starting fibre's structure on their

  14. Nanofibrillated cellulose as paper additive in Eucalyptus pulps

    Israel González

    2012-11-01

    Full Text Available In this work, the physical and mechanical properties of bleached Eucalyptus pulp reinforced with nanofibrillated cellulose (NFC are compared with those of traditional beaten pulp used in the making of writing/printing and offset printing papers. For this purpose, three different types of hardwood slurries were prepared: beaten pulps, unbeaten pulps reinforced with NFC, and slightly beaten pulps also reinforced with NFC. Physical and mechanical tests were performed on handsheets from these different slurries. The results showed that adding NFC to unbeaten pulps results in physical and mechanical properties similar to those in pulps used for printing/writing papers. Nevertheless, the best results were obtained in slurries previously beaten at slight conditions and subsequently reinforced with NFC. These results demonstrate that the addition of NFC allows a reduction in beating intensity without decreasing the desired mechanical properties for this specific purpose.

  15. Life Cycle Assessment of man-made cellulose fibres

    Shen, L.; Patel, M.K.

    2010-01-01

    The production of textile materials has undergone dramatic changes in the last century. Man-made cellulose fibres have played an important role for more than 70 years. Today, the man-made cellulose fibre industry is the worldwide second largest biorefinery (next to the paper industry). In the last

  16. Development of Cellulose Nano fibre (CNF) Derived From Kenaf Bast Fibre and Its Potential in Enzyme Immobilization Support

    Safwan Sulaiman; Mohd Noriznan Mokhtar; Mohd Nazli Naim; Azhari Samsu Baharuddin

    2016-01-01

    This research mainly focuses on developing a natural cellulose nano fibre (CNF) from kenaf bast fibre and its potential for enzyme immobilization support. CNF was isolated by using a combination between chemical and mechanical treatments such as alkaline process and high-intensity ultrasonication process to increase the efficiency of hemicelluloses and lignin removal, and to reduce its size into nano-order. The morphological study was carried out by using scanning electron microscope (SEM), indicating most of CNF diameter in range of 50-90 nm was obtained. The result of chemical analysis shows that cellulose content of raw bast fibre, bleached pulp fibre and CNF are 66.4 %, 83.7 % and 90.0 %, respectively. By decreasing the size of cellulose fibre, it increases the number of (O-H) group on the surface that plays as important role in enzyme immobilization. Covalent immobilization of cyclodextrin glucanotransferase (CGTase) onto CNF support resulted in about 95.0 % of protein loading with 69.48 % of enzyme activity, indicating high immobilization yield of enzyme. The enzymatic reaction of immobilized CGTase was able to produce more than 40 % yield of α-CD. Reusability profile of immobilized CGTase resulted in more than 60 % of retained activity up to 7 cycles. Therefore, the CNF is highly potential to be applied as enzyme immobilization support. (author)

  17. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  18. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    Valente, Marco, E-mail: marco.valente@uniroma1.it; Tirillò, Jacopo; Quitadamo, Alessia, E-mail: alessia.quitadamo@uniroma1.it [University of Rome La Sapienza Dep. of Chemical and Material Engineering (Italy); Santulli, Carlo [University of Camerino, School of Architecture and Design (Italy)

    2016-05-18

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  19. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    Valente, Marco; Tirillò, Jacopo; Quitadamo, Alessia; Santulli, Carlo

    2016-01-01

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  20. Measurement of cellulose content, Kraft pulp yield and basic density ...

    Previous descriptions of multisite and multispecies near infra-red (NIR) spectroscopic calibrations for predicting cellulose content (CC) and Kraft pulp yield (KPY) in eucalypt woodmeal demonstrated that large, single calibrations provide precise predictions for a wide range of sites and species. These have since been used ...

  1. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties.

    De Silva, Rasike; Byrne, Nolene

    2017-10-15

    Cotton accounts for 30% of total fibre production worldwide with over 50% of cotton being used for apparel. In the process from cotton bud to finished textile product many steps are required, and significant cotton waste is generated. Typically only 30% of pre consumer cotton is recycled. Here we use cotton waste lint to produce regenerated cellulose fibres (RCF). We find the RCF from waste cotton lint had increased mechanical properties compared to RCF produced from wood pulp. We show that this is likely linked to the higher degree of polymerization (DP) of waste cotton lint. An ionic liquid is used to dissolve the cotton lint and the rheology of the spinning is measured. The properties of the RCF are characterized and compared to wood pulp RCF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Structural and morphological characterization of cellulose pulp

    Ocwelwang, A

    2015-09-01

    Full Text Available Understanding the structure of cellulose is of utmost importance in order to enhance its accessibility and reactivity to chemical processing. Therefore, the aim of this study was to evaluate the effect of ultrasound pretreatment on the structure...

  3. Microfibrillated cellulose from bamboo pulp and its properties

    Zhang, Junhua; Song, Hainong; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Liu, Shijie

    2012-01-01

    Microfibrillated cellulose (MFC) was obtained by disintegrating bleached kraft bamboo (Phyllostachys pubescens) pulp with a procedure of chemical pretreatment and high-pressure homogenization. The influences of sodium hydroxide dosage and homogenization times were evaluated by water retention value (WRV) of MFC. The properties, such as the surface morphology, rheological property and carboxyl acid content of MFC were also characterized using scanning electron microscope (SEM), rheometer and headspace gas chromatography (HS-GC) separately.

  4. An XPS round robin investigation on analysis of wood pulp fibres and filter paper

    Johansson, Leena-Sisko; Campbell, J. M.; Fardim, Pedro; Hultén, Anette Heijnesson; Boisvert, Jean-Philippe; Ernstsson, Marie

    2005-06-01

    X-ray photoelectron spectroscopy (XPS) has been applied to pulp and paper research for decades. However, there has been no attempt to standardise or even systematically compare experimental and analysis procedures, even though it is known that fibrous, nature-derived and insulating fibre materials pose remarkable challenges to reliable surface analysis. The experimental problems are mainly linked with neutralisation, energy resolution, contamination and X-ray induced degradation. We have tested applicability, reliability and reproducibility of XPS analysis on real pulp samples with varying lignin and extractives contents in a small round robin investigation. We also tested the instrumental set-ups with an acetone-extracted filter paper, used as a reference sample. The data, collected at four different laboratories with state-of-the-art instruments indicate that reproducible results can be obtained, despite minor differences in experimental and analysis procedures. However, we found that a specified sample handling procedure and limited X-ray exposure are crucial for reproducible, reliable data. Based on the round robin data we recommend dose restricted monochromatic measurements, a cellulosic in situ reference and a consistent sample handling procedure. The data confirms that a paper-based reference material and the correlation of high-resolution C 1s data with O/C atomic ratios can be used in testing instruments and experimental set-ups for pulp and paper materials.

  5. Cellulose Fibre-Reinforced Biofoam for Structural Applications

    Jasmina Obradovic

    2017-06-01

    Full Text Available Traditionally, polymers and macromolecular components used in the foam industry are mostly derived from petroleum. The current transition to a bio-economy creates demand for the use of more renewable feedstocks. Soybean oil is a vegetable oil, composed mainly of triglycerides, that is suitable material for foam production. In this study, acrylated epoxidized soybean oil and variable amounts of cellulose fibres were used in the production of bio-based foam. The developed macroporous bio-based architectures were characterised by several techniques, including porosity measurements, nanoindentation testing, scanning electron microscopy, and thermogravimetric analysis. It was found that the introduction of cellulose fibres during the foaming process was necessary to create the three-dimensional polymer foams. Using cellulose fibres has potential as a foam stabiliser because it obstructs the drainage of liquid from the film region in these gas-oil interfaces while simultaneously acting as a reinforcing agent in the polymer foam. The resulting foams possessed a porosity of approximately 56%, and the incorporation of cellulose fibres did not affect thermal behaviour. Scanning electron micrographs showed randomly oriented pores with irregular shapes and non-uniform pore size throughout the samples.

  6. Cynara cardunculus L. alkaline pulps: alternatives fibres for paper and paperboard production.

    Abrantes, S; Amaral, M E; Costa, A P; Duarte, A P

    2007-11-01

    The pulping of Cynara cardunculus L. (cardoon) was performed under conditions for kraft, kraft-AQ and soda-AQ processes. The best results in terms of delignification degree, expressed as kappa number, pulp viscosity and screened yield, were obtained for the kraft-AQ process with 0.20% of anthraquinone (AQ). The papermaking potential of the selected pulp was studied attending to biometric fibre characterisation, refining aptitude, optical and strength properties. All properties were compared against a Eucalyptus globulus pulp at different refining degrees. The cardoon pulp was also evaluated concerning its potential to board manufacture, alone and in mixtures with pine pulp, giving rise to promising results for liner manufacture.

  7. Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing

    Nusheng Chen; Junyong Zhu; Zhaohui Tong

    2016-01-01

    This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...

  8. Dynamic rheology behavior of electron beam-irradiated cellulose pulp/NMMO solution

    Zhou Ruimin; Deng Bangjun; Hao Xufeng; Zhou Fei; Wu Xinfeng; Chen Yongkang

    2008-01-01

    The rheological behavior of irradiated cellulose pulp solution by electron beam was investigated. Storage modulus G', loss modulus G'', the dependence of complex viscosity η* and frequency ω of cellulose solutions were measured by DSR-200 Rheometer (Rheometrics co., USA). The molecular weight of irradiated cellulose was measured via the intrinsic viscosity measurement using an Ubbelohde capillary viscometer. The crystalline structure was studied by FTIR Spectroscopy. The results congruously showed that the molecular weight of pulp cellulose decrease and the molecular weight distribution of cellulose become narrow with increase in the irradiation dose. Moreover, the crystalline structure of the cellulose was destroyed, the force of the snarl between the cellulose molecules weakens and the accessibility of pulp spinning is improved. The study supplies some useful data for spinnability of irradiated cellulose and technical data to the filature industry

  9. Comparison the physicochemical properties of bunch press fibre cellulose and cyclone fibre cellulose of waste from industry Crude Palm Oil (CPO

    Irfan Gustian

    2013-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Study on comparison the physicochemical properties of bunch press fibre cellulose (Bpfc and cyclone fibre cellulose (Cfc wastes from industry Crude Palm oil (CPO have been performed. The physicochemical properties both of celluloses have been done such as the average degree of polymerization (DP, solubility properties, functional group analysis, thermal properties and X-ray diffraction patterns. The average degrees of polymerization (DP have been obtained 2195 and 567 for Bpfc and Cfc. Bunch press fibre cellulose and cyclone fibre cellulose were soluble in cupriethylenediamine (CED. FT-IR analysis showed the same pattern of spectrum but different intensities. Thermal stability of bunch press fibre cellulose and cyclone fibre cellulose remains stable up to a temperature of 250 °C. Glass transition bunch press fibre cellulose greater than the glass transition cyclone fibre cellulose and X-ray diffraction pattern shows the same pattern and intensity varies.

  10. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-21

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω□(-1) and a conductivity of 11.6 S m(-1). The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF(6)) displays a high capacity of 252 F g(-1) at a current density of 1 A g(-1) with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.

  11. Cellulosic pulps of cereal straws as raw material for the manufacture of ecological packaging

    Vargas González, Fátima; González, Zoilo; Sánchez, Rafael; Jiménez, Luis; Rodríguez Pascual, Alejandro

    2012-01-01

    The aim of this work was to study the potential application of four types of cereal straws: oats, maize, rapeseed, and barley, in order to obtain cellulose pulp through the Specel® process for use in the manufacture of 100% biodegradable and ecological packaging. Raw materials were chemically characterized to determine alcohol-extractives, ash, lignin, holocellulose, and α-cellulose. Cellulosic pulps obtained from raw materials were characterized to determine yield, Kappa number, and viscosit...

  12. Electron beam processing technology for modification of different types of cellulose pulps for production of derivatives

    Iller, E.; Kukielka, A.; Mikolajczyk, W.; Starostka, P.; Stupinska, H.

    2002-01-01

    Institute of Nuclear Chemistry and Technology, Pulp and Paper Research Institute and Institute of Chemical Fibers carry out a joint research project in order to develop the radiation methods modification of cellulose pulps for production of cellulose derivatives such as carbamate (CC), carboxymethyl cellulose (CMC) and methylcellulose (MC). Three different types of textile pulps: Alicell (A); Borregaard (B), Ketchikan (K) and Kraft softwood (PSS) and hardwood (PSB) pulps have been irradiated with 10 MeV electron beam from LAE 13/9 linear accelerator with doses of 5, 10, 15, 20, 25 and 50 kGy. After electron beam treatment the samples of cellulose pulps have been examined by using of structural and physico-chemical methods. Electron paramagnetic resonance spectroscopy (EPR), gel permeation chromatography (GPC) and infrared spectroscopy (IRS) were applied for determination of structural changes in irradiated cellulose pulps. By means of analytical methods, such parameters as: viscosity, average degree of polymerization (DP) and α-cellulose contents were evaluated. Based on EPR and GPC investigations the relationship between concentrations of free radicals and decreasing polymerization degrees in electron beam treatment pulps has been confirmed. The carboxymethylcellulose, methylcellulose and cellulose carbamate were prepared using the raw material of radiation modified pulps. Positive results of investigations will allow for determination of optimum conditions for electron beam modification of selected cellulose paper and textile pulps. Such procedure leads to limit the amounts of chemical activators used in methods for preparation cellulose derivatives. The proposed electron beam technology is new approaches in technical solution and economic of process of cellulose derivatives preparation. (author)

  13. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. LCA Study for Pilot Scale Production of Cellulose Nano Crystals (CNC) from Wood Pulp

    Hongmei Gu; Richard Reiner; Richard Bergman; Alan Rudie

    2015-01-01

    Interest in cellulose nanocrystals (CNC)/cellulose nanofibrils (CNF) made from woody biomass has been growing rapidly with close attention from pulp and paper industry, governments, universities, and research institutes. Many new products development with CNCs have been studied intensively. However, little life-cycle analysis (LCA) has been conducted for the...

  15. Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp

    Cellulose nanocrystals (CNCs) were extracted from Eucalyptus kraft pulp by sulfuric acid hydrolysis, and esterified with maleic anhydride (CNCMA). The incorporation of sulfate ester groups on the cellulose surface resulted in higher stability of the nanoparticles in aqueous suspensions and lower the...

  16. Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps

    Stelte, Wolfgang; Sanadi, Anand R.

    2009-01-01

    The aim of this work was to study the mechanical fibrillation process for the preparation of cellulose nanofibers from two commercial hard- and softwood cellulose pulps. The process consisted of initial refining and subsequent high-pressure homogenization. The progress in fibrillation was studied...

  17. On the determination of crystallinity and cellulose content in plant fibres

    Thygesen, Anders; Oddershede, Jette; Lilholt, Hans

    2005-01-01

    A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent...... determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose I beta followed by integration of the crystalline...... and 60 - 70 g/ 100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production....

  18. Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases.

    Aracri, Elisabetta; Fillat, Amanda; Colom, José F; Gutiérrez, Ana; Del Río, José C; Martínez, Angel T; Vidal, Teresa

    2010-11-01

    Flax and sisal pulps were treated with two laccases (from Pycnoporus cinnabarinus, PcL and Trametes villosa, TvL, respectively), in the presence of different phenolic compounds (syringaldehyde, acetosyringone and p-coumaric acid in the case of flax pulp, and coniferaldehyde, sinapaldehyde, ferulic acid and sinapic acid in the case of sisal pulp). In most cases the enzymatic treatments resulted in increased kappa number of pulps suggesting the incorporation of the phenols into fibres. The covalent binding of these compounds to fibres was evidenced by the analysis of the treated pulps, after acetone extraction, by pyrolysis coupled with gas chromatography/mass spectrometry in the absence and/or in the presence of tetramethylammonium hydroxide (TMAH) as methylating agent. The highest extents of phenol incorporation were observed with the p-hydroxycinnamic acids, p-coumaric and ferulic acids. The present work shows for the first time the use of analytical pyrolysis as an effective approach to study fibre functionalization by laccase-induced grafting of phenols. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Cellulose fibril aggregation studies of eucalyptus dissolving pulps using atomic force microscopy

    Chunilall, Viren

    2006-11-01

    Full Text Available STUDIES OF Eucalyptus DISSOLVING PULPS USING ATOMIC FORCE MICROSCOPY V. Chunilall1, J.Wesley-Smith2, T. Bush1 1CSIR, Forestry and Forest Product Research Centre, P.O. Box 17001, Congella, 4013, South Africa. 2Electron Microscope Unit, University of Kwa... pulp using atomic force microscopy (AFM) have reported increased cellulose fibril aggregation during processing, and a concomitant decrease in surface area available for chemical reaction1,2. These findings were subsequently confirmed...

  20. Application of cellulosic nanofibers to replace with imported long- fiber pulps in paper made from bagasse

    Reza ghofran

    2017-02-01

    Full Text Available In this research, different additives of cellulose nanofibers, cationic starch and polyacrylamide to bagasse pulp and their impact on the handsheet strengths were investigated aiming to replace with imported long-fiber softwood pulp in Pars paper factory. For this purpose, first 3% bleached bagasse cellulose nanofibers, 3% unbleached nano-lignocellulosic fibers, 0.5, 0.7 and 1% cationic starch, and 0.03, 0.05 and 0.1% cationic polyacrylamide were added separately to bagasse pulp. In the next stage,3% bleached bagasse cellulose nanofibers and 3% unbleached nano-lignocellulosic fibers along with 0.5% cationic starch or 0.05% cationic polyacrylamide were used. The results showed, adding nano-cellulose fibers along with cationic polyacrylamide or starch have increased handsheet strengths significantly. Yet, the best treatment was the addition of 3% nano-lignocellulose along with 0.5% cationic starch which resulted in the higher tensile and burst strengths and lower tear and fold strengths than that of adding 12.5% long fibers to bagasse pulp. So that, comparing with paper made from pure bagasse pulp it showed the increase of 16.57% in tensile index, 8.47% in burst index, 9.77% in tear index, and 168.85% in folding strength.

  1. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William George Tycho

    2014-01-01

    -cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide......Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non...... localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being...

  2. Natural composites: Strength, packing ability and moisture sorption of cellulose fibres, and the related performance of composites

    Lilholt, Hans; Madsen, Bo

    2012-01-01

    Biobased materials are becoming of increasing interest as potential structural materials for the future. A useful concept in this context is the fibre reinforcement of materials by stiff and strong fibres. The bio-resources can contribute with cellulose fibres and (bio) polymers from hemicelluloses...... in stiffness, on the packing ability of cellulose fibres and the related maximum fibre volume fraction in composites, on the moisture sorption of cellulose fibres and the related mass increase and (large) hygral strains induced, and on the mechanical performance of composites....

  3. Dehydrated chicory pulp as an alternative soluble fibre source in diets for growing rabbits

    L. Maertens

    2014-06-01

    Full Text Available Soluble fibre (SF is an important nutrient to enhance fermentative activity and gut health in rabbits. The main source of SF in rabbit diets is sugar beet pulp (SBP, whereas, due to its high content of SF (34%, dried chicory pulp (ChP could be an alternative to SBP. In a fattening trial with 192 hybrid weanlings 32 d old weighing 837±45 g, chicory pulp was used in replacement of SBP to study effects on production performances and slaughter characteristics. Rabbits were fed one of 4 iso-energetic (9.65 MJ digestible energy/kg and isonitrogenous (15.6% crude protein diets: a negative control (NC diet with a low dietary SF content (7.3%, a positive control diet with quite a high SBP level (13.5% and SF content (10.6% and 2 diets with respectively 10% and 20% of chicory pulp (ChP10: 9.9% SF and ChP20: 13.7% SF. The SF content was measured as the difference between total dietary fibre and neutral detergent fibre, the latter corrected for ash and protein content. Each dietary treatment consisted of 12 replicates of 4 rabbits. Weight gain was high (on av. 54 g/d and comparable for the NC, SBP and ChP diets. However, feed conversion ratio was improved (P<0.05 with the ChP20 diet compared to the NC diet (2.88 vs. 2.97. Mortality was low and not influenced by the dietary treatment. Slaughter data were very similar and no effect of the SF level on caecal weight or slaughter yield was observed. It was concluded that chicory pulp is a good alternative soluble fibre source in balanced diets for rabbits and can be used at least up to 20% inclusion rate.

  4. Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp.

    Jiménez, L; Ramos, E; Rodríguez, A; De la Torre, M J; Ferrer, J L

    2005-06-01

    The influence of temperature (150-170 degrees C), pulping time (15-45 min) and soda concentration (5-10%) in the pulping of abaca on the yield, kappa, viscosity, breaking length, stretch and tear index of pulp and paper sheets, was studied. Using a factorial design to identify the optimum operating conditions, equations relating the dependent variables to the operational variables of the pulping process were derived that reproduced the former with errors lower than 25%. Using a high temperature, and a medium time and soda concentration, led to pulp that was difficult to bleach (kappa 28.34) but provided acceptable strength-related properties (breaking length 4728 m; stretch 4.76%; tear index 18.25 mN m2/g), with good yield (77.33%) and potential savings on capital equipment costs. Obtaining pulp amenable to bleaching would entail using more drastic conditions than those employed in this work.

  5. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles.

    Pivec, Tanja; Hribernik, Silvo; Kolar, Mitja; Kleinschek, Karin Stana

    2017-05-01

    This study introduces a novel green in-situ procedure for introduction of silver nanoparticles (Ag NPs) on and into cellulose fibres in a three-stage process. First-stage of the process includes the activation of cellulose fibres in alkaline solution, followed by reduction of silver nitrate to Ag NPs in the second stage, while the last stage of process involves washing and neutralization of fibres. Efficiency of the method towards incorporation of silver particles into the fibres' internal structure was characterized; the coatings' morphology and determination of spatial presence of Ag particles were imagining by the scanning electron microscopy and accompanying energy dispersive x-ray spectroscopy analysis; prepared fibres have superior durability of particles' coating against washing and excellent antimicrobial activity even after 20 washing cycles. Additionally, the water retention of silver treated fibres was improved, while the mechanical properties were not significantly impaired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of inulin, carrot and cellulose fibres on the properties of raw ...

    The effects of inulin, carrot, and cellulose fibres (3%, 6%, and 9%) on raw and fried chicken meatballs were studied. Meatball pH, thiobarbituric acid reactive substances (TBARS), and colour values were determined for raw samples in refrigerated storage on the 1st, 5th and 10th days. The effects of fibres and their various ...

  7. Reinforcing Natural Rubber with Cellulose Nanofibrils Extracted from Bleached Eucalyptus Kraft Pulp

    Chunmei Zhang; Tianliang Zhai; Ronald Sabo; Craig Clemons; Yi Dan; Lih-Sheng Turng

    2014-01-01

    Reinforced natural rubber (NR) nanocomposites were prepared by solution mixing, casting, and evaporation of pre-vulcanized natural rubber latex and an aqueous suspension of cellulose nanofibrils (CNFs) extracted from bleached eucalyptus kraft pulp. Scanning electron microscopy (SEM) images showed that there were no micro-scaled aggregates observed in the nanocomposites...

  8. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation

    Q.Q. Wang; J.Y. Zhu; R. Gleisner; T.A. Kuster; U. Baxa; S.E. McNeil

    2012-01-01

    This study reports the production of cellulose nanofibrils (CNF) from a bleached eucalyptus pulp using a commercial stone grinder. Scanning electronic microscopy and transmission electronic microscopy imaging were used to reveal morphological development of CNF at micro and nano scales, respectively. Two major structures were identified (1) highly kinked, naturally...

  9. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  10. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    Alamri, H.; Low, I.M.

    2013-01-01

    . The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd

  11. Using Py-GC/MS to detect and measure silicone defoamers in pulp fibres and mill deposits

    Sithole, Bruce

    2013-09-01

    Full Text Available in deposits. In this work, for the first time, Py-GC/MS has been used to analyse for silicone defoamers in pulp and paper matrices. This work demonstrates that the technique is ideal for analysis and characterisation of silicone defoamers on pulp fibres...

  12. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.

    Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars

    2013-01-30

    The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view

    Chinga-Carrasco Gary

    2011-01-01

    Full Text Available Abstract During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC. In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1 nanofibrils, (2 fibrillar fines, (3 fibre fragments and (4 fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

  14. Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view.

    Chinga-Carrasco, Gary

    2011-06-13

    During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC). In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.

  15. Review on hygroscopic aging of cellulose fibres and their biocomposites

    Mokhothu, Thabang h

    2015-06-01

    Full Text Available This review presents critical literature on effects of humidity and temperature on the properties of natural fibres and its composites. The drawback of moisture absorption on the mechanical properties of natural fibre and its composites is evaluated...

  16. Resistant-hemicelluloses toward successive chemical treatment during cellulose fibre extraction

    Naqiya, F. M. Z.; Ahmad, I.; Airianah, O. B.

    2018-04-01

    Lignocellulosic materials have high demand bio-polymers industries as it is rich in cellulose but other residues that still remain in the extracted cellulose might influence the ability of cellulose-rich material to interact with other polymers. In this study, cellulose fibre was extracted from oil palm frond (OPF) using alkali and bleaching treatment. The morphological changes of each sample after every treatment was observed using Scanning Electron Microscope (SEM) and was further chemically extracted and quantitatively evaluated via spectrophotometric method. The non-cellulosic component was found predominantly contained hemicelluloses and these remaining hemicelluloses were hydrolysed and the monosaccharides of hemicelluloses were visualised by Thin Layer Chromatography (TLC). Xylose, arabinose, mannose and glucose were detected and therefore, it is suggested that the plausible type of resistant-hemicelluloses in OPF extracted fibre are arabinoxylan, glucomannan and/or glucan.

  17. New and improved method of investigation using thermal tools for characterization of cellulose from eucalypts pulp

    Lengowski, Elaine Cristina, E-mail: elainelengowski@yahoo.com.br [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Magalhães, Washington Luiz Esteves, E-mail: washington.magalhaes@embrapa.br [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil); Programa de Pós Graduação em Engenharia de Materiais – PIPE Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Nisgoski, Silvana, E-mail: silnis@yahoo.com [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Muniz, Graciela Inês Bolzon de, E-mail: graciela.ufpr@gmail.com [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Satyanarayana, Kestur Gundappa [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil); Lazzarotto, Marcelo, E-mail: marcelo.lazzarotto@embrapa.br [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil)

    2016-08-20

    Highlights: • Cellulose was treated to modify its crystallinity. • Cellulose was characterized by X-ray diffraction to evaluate Segal’s index. • TGA and DTA with chemometric tools were used to predict Segal’s index. • MLR model was applied to predict XRD cellulose Segal’s index from TGA curves. • MLR model was applied to predict XRD cellulose Segal’s index from DTA curves. - Abstract: Despite cellulose being the most abundant biopolymer on earth and an important commodity, there is a lack of deeper knowledge about its structure as well as faster and more efficient characterization techniques. This paper presents preparation of nanocellulose from bleached cellulose pulp of Eucalyptus by chemical and mechanical pre-treatments, while the cellulose was given treatment to obtain a great range of crystallinity index. The nanocellulose is characterized by X-ray diffraction to evaluate Segal’s index while chemometric tools by TGA and DTA were used to predict Segal’s index. DTA curves, along with multivariate statistical model, presented better result than TGA. The coefficient of variation and standard error of prediction for the proposed models using external validation samples were in the range of 0.91–0.96 and 4.18–8.71, respectively. These successful mathematical models are discussed by correlating them with the observed characteristics of cellulose.

  18. New and improved method of investigation using thermal tools for characterization of cellulose from eucalypts pulp

    Lengowski, Elaine Cristina; Magalhães, Washington Luiz Esteves; Nisgoski, Silvana; Muniz, Graciela Inês Bolzon de; Satyanarayana, Kestur Gundappa; Lazzarotto, Marcelo

    2016-01-01

    Highlights: • Cellulose was treated to modify its crystallinity. • Cellulose was characterized by X-ray diffraction to evaluate Segal’s index. • TGA and DTA with chemometric tools were used to predict Segal’s index. • MLR model was applied to predict XRD cellulose Segal’s index from TGA curves. • MLR model was applied to predict XRD cellulose Segal’s index from DTA curves. - Abstract: Despite cellulose being the most abundant biopolymer on earth and an important commodity, there is a lack of deeper knowledge about its structure as well as faster and more efficient characterization techniques. This paper presents preparation of nanocellulose from bleached cellulose pulp of Eucalyptus by chemical and mechanical pre-treatments, while the cellulose was given treatment to obtain a great range of crystallinity index. The nanocellulose is characterized by X-ray diffraction to evaluate Segal’s index while chemometric tools by TGA and DTA were used to predict Segal’s index. DTA curves, along with multivariate statistical model, presented better result than TGA. The coefficient of variation and standard error of prediction for the proposed models using external validation samples were in the range of 0.91–0.96 and 4.18–8.71, respectively. These successful mathematical models are discussed by correlating them with the observed characteristics of cellulose.

  19. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp

    Anand Kumar Veeramachineni

    2016-06-01

    Full Text Available Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA, Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC and Field Emission Scanning Electronic Microscopy (FESEM. The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient.

  20. Effect of Mixing Temperature of CMP Pulp and Cellulose Nanofiber on Paper Properties

    Sahba Alinia

    2013-06-01

    Full Text Available Several processing parameters affect the function of cellulose nanofiber as an environmentally friend cellulosic reinforcer. One of the potential parameters can be the mixing temperature of pulp and cellulose nanofiber that has been investigated in this study. In order to study the influence of this parameter, mixing drainage velocity and the air permeability and strength properties of resulting paper were measured. A mixture of chemi-mechanical pulp suspensions (with concentration of 0.2 wt% and freeness of 250 ml, CSF containing 5 wt% cellulose nanofiber were prepared. This mixture was then stirred at 25, 50, and 70 ◦C using a magnetic stirrer for 1 hour followed by draining using vacuum filtration to make wet handsheet. The wet handsheet was first pressed, and then dried in oven at 100 ◦C for 24 hours. The test’ results showed that the increase of mixing temperature led to decreasing drainage time and air permeability. The strength properties of paper reinforced by nanofibers were positively affected by mixing temperature (i.e. the more mixing temperature, the higher strength. The data of tensile strength index was considerably increased. The tear strength of paper increased approximately by 200% over rising mixing temperature.

  1. The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper.

    Okwonna, Okumneme O

    2013-10-15

    Microcrystalline cellulose (MCC) powder was isolated from three grades of waste paper: book, Groundwood/Newsprint and paperboard, through the processes of pulping and hydrolysis. Pulping treatment on these grades of waste paper was done using varying concentrations of caustic soda. Effects of the concentration of the pulping medium on the thermal and kinetic properties were investigated. Also determined were the effects of this on the physico-chemical properties. The chemical structure was characterized using an infrared spectroscopy (FTIR). Results showed these properties to be affected by the concentration of the pulping medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  3. Eucalyptus kraft pulp production: Thermogravimetry monitoring

    Barneto, Agustin G.; Vila, Carlos; Ariza, Jose

    2011-01-01

    Highlights: → Thermogravimetric analysis can be used to monitor the pulping process in a pulp mill. → ECF bleaching process affects the crystalline cellulose volatilization. → The fibre size has an influence on composition and thermal behavior of pulp. - Abstract: Under oxidative environment the thermal degradation of lignocellulosic materials like wood or pulp is sensitive to slight composition changes. For this, in order to complement the chemical and X-ray diffraction results, thermogravimetric analyses (TGA) were used to monitor pulp production in a modern pulp mill. Runs were carried out on crude, oxygen delignified and bleached pulps from three eucalyptus woods from different species and geographical origins. Moreover, with the modeling of thermogravimetric data, it was possible to obtain an approximate composition of samples which includes crystalline and amorphous cellulose. TGA results show that pulping has an intensive effect on bulk lignin and hemicellulose, but it has limited influence on the removal of these substances when they are linked to cellulose microfibril. The stages of oxygen delignification and bleaching, based in chlorine dioxide and hydrogen peroxide, increase the crystalline cellulose volatilization rate. These changes are compatible with a more crystalline microfibril. The influence of the fibre size on pulp composition, crystallinity and thermal degradation behavior was observed.

  4. Research on Wheat Straw Pulping with Ionic Liquid 1-Ethyl-3-Methylimidazole Bromide

    Wei Song

    2016-12-01

    Full Text Available In this paper, the pulping process of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium bromide ([Emim]Br as the digestion liquor is presented. The influence of pulping conditions on the pulp yield are analysed by single-factor and orthogonal experiments, and optimum pulping conditions are obtained. The average pulp yield reaches 44 %, and the average recovery rate of ionic liquid is 93.5 %. The XRD pattern shows no obvious change in the crystal structure of the wheat straw cellulose. Additionally, the SEM image illustrates that there are many fine fibres in the pulp and the spaces between the fibres are large.

  5. Characterisation of Flax Fibres and Flax Fibre Composites. Being cellulose based sources of materials

    Aslan, Mustafa

    -melting temperature polyethylene terephthalate (LPET) filaments were aligned in assemblies of different fibre weight fractions in the range 0.24 to 0.83 to manufacture unidirectional composites using two different consolidation pressures of 1.67 and 4.10 MPa. The maximum attainable fibre volume fraction is found...... to be 47% for the low pressure composites, whereas it is found to be 60% for the high pressure composites. The stiffness of the flax fibre/LPET composites is measured to be in the range 16 to 33 GPa depending on the volumetric composition of the composites. The high pressure composites are found to have...... a similar microstructure at low fibre weight fractions. However, when the fibre content is increased, a difference in porosity content can be observed from the composite cross sections. The nominal tensile strength of the unidirectional flax fibre/LPET composites is measured in the range 180 to 340 MPa...

  6. Fractionation of high Kappa number kraft pulps of the South African softwoods and sulfonating of coarse fibre enriched fraction for production of sack paper

    Johakimu, Jonas K

    2011-03-01

    Full Text Available properties except tear strength: Tensile index (54%), TEA index (104%), Burst index (65%) and sheet density (23%). A tear index decrease (30%) could be attrib- uted to a high proportion of short and fine fibres in the accept stream. The reject stream... gave pulp samples with inferior strength properties with exception of tear strength. This may be due to high proportion of coarse fibres which have limited fibre collapsibility. Poor fibre collapsibility leads to a limited fibre bond- ing ability...

  7. The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process.

    Oelerich, Jens; Bijleveld, Marijn; Bouwhuis, Gerrit H.; Brinks, Ger J.

    2017-10-01

    Recycling of cotton waste into high value products is a longstanding goal in textile research. The SaXcellTM process provides a chemical recycling route towards virgin fibres. In this study a Life cycle assessment (LCA) is conducted to measure the impact of the chemical recycling of cotton waste on the environment. Pure cotton waste and cotton containing 10 % of polyester are elaborated. The results show that chemical recycling via the SaXcellTM process can have a lower impact on climate change and other impact category than comparable pulping technologies.

  8. LCA single score analysis of man-made cellulose fibres

    Shen, L.; Patel, M.K.

    2010-01-01

    In this study, the LCA report “Life Cycle assessment of man-made cellulose fibres” [3] is extended to the single score analysis in order to provide an additional basis for decision making. The single score analysis covers 9 to 11 environmental impact categories. Three single score methods (Single

  9. Porous structure evolution of cellulose carbon fibres during heating in the initial activation stage

    Babel, Krzysztof [Institute of Chemical Wood Technology, Agricultural Academy of Poznan, Ul. Wojska Polskiego 38/42, 60-637 Poznan (Poland)

    2004-01-15

    This paper is focused on the description of changes in the porous structure during fast heating to the activation temperature of the viscose fibres, pyrolysed to different final temperatures. Standard regenerated cellulose fibre structures were tested. Fabrics were subjected to pyrolysis, the samples being heated to final temperatures of 400, 600 and 850 C. Carbon fibres were subsequently heated to activation temperature (850 C) at a rate of 100 C/min, and then the samples were cooled down. The characteristics of obtained carbon preparations were examined. We have defined a level of restructuring and internal ordering of fibres which originated during slow pyrolysis as well as the range of temperature differences of pyrolysis and activation where fast increase of carbon fibre temperature before activation is advantageous for the development of porous structure. It allows for partial release of pores and fast rebuilding of structure accompanied by a considerable number of defects in the carbon matrix with higher reactivity to oxidiser which, in turn, promotes the development of pores in active carbon during oxidation. Temperature difference for viscose carbon fibres is approximately 150-300 C at pyrolysis temperature of 550-700 C.

  10. Implementation of recycled cellulosic fibres into cement based composites and testing their influence on resulting properties

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, the application of raw materials from renewable sources such as wood, plants and waste paper to building materials preparing has gained a significant interest in this research area. The aim of this paper is to investigate the impact of the selected plasticizer on properties of fibres composites made of cellulosic fibres coming from recycled waste paper and cement. Investigations were performed on specimens with 0.5 wt. % of fibre addition without and with plasticizer. A comparative study did not show positive influence of plasticizer on the density and thermal conductivity of 28 days hardened composite. The specimens after 1, 3 and 7 days of hardening with plasticizer exhibited the highest impact on compressive strength in comparison to composite without plasticizer but 28 days hardened specimens reached the same value of strength characteristic (41 MPa).

  11. Controlled Morphology and Mechanical Characterisation of Electrospun Cellulose Acetate Fibre Webs

    B. Ghorani

    2013-01-01

    Full Text Available The purpose was to interpret the varying morphology of electrospun cellulose acetate (CA fibres produced from single and binary solvent systems based on solubility parameters to identify processing conditions for the production of defect-free CA fibrous webs by electrospinning. The Hildebrand solubility parameter ( and the radius of the sphere in the Hansen space ( of acetone, acetic acid, water, N,N-dimethylacetamide (DMAc, methanol, and chloroform were examined and discussed for the electrospinning of CA. The Hildebrand solubility parameter ( of acetone and DMAc were found to be within an appropriate range for the dissolution of CA. The suitability of the binary solvent system of acetone: DMAc (2 : 1 for the continuous electrospinning of defect-free CA fibres was confirmed. Electrospun webs exhibited improved tensile strength and modulus after heat and alkali treatment (deacetylation of the as-spun material, and no major fibre morphological degradation occurred during the deacetylation process.

  12. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization

    Wangxia Wang; Ronald C. Sabo; Michael D. Mozuch; Phil Kersten; J. Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase (Ph-GH5) from the archaeon Pyrococcus horikoshii and a commercial endoglucanase (FR) were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNF) and subsequently to CNF films. TEM imaging indicated that Ph-GH5 produced longer and more entangled CNF than FR with the same number...

  14. INVESTIGATION OF AQUEOUS BIPHASIC SYSTEMS FOR THE SEPARATIONS OF LIGNINS FROM CELLULOSE IN THE PAPER PULPING PROCESS. (R826732)

    In efforts to apply a polymer-based aqueous biphasic system (ABS) extraction to the paper pulping process, the study of the distribution of various lignin and cellulosic fractions in ABS and the effects of temperature on system composition and solute partitioning have been inv...

  15. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements.

    Ververis, C; Georghiou, K; Danielidis, D; Hatzinikolaou, D G; Santas, P; Santas, R; Corleti, V

    2007-01-01

    Freshwater algal biomass and orange and lemon peels were assessed as tissue paper pulp supplements. Cellulose and hemicellulose contents of algal biomass were 7.1% and 16.3%, respectively, whereas for citrus peels cellulose content ranged from 12.7% to 13.6% and hemicellulose from 5.3% to 6.1%. For all materials, lignin and ash content was 2% or lower, rendering them suitable for use as paper pulp supplements. The addition of algal biomass to paper pulp increased its mechanical strength significantly. However, brightness was adversely affected by chlorophyll. The addition of citrus peels in paper pulp had no effect on breaking length, increased bursting strength and decreased tearing resistance. Brightness was negatively affected at proportions of 10%, because citrus peel particles behave as coloured pigments. The cost of both materials is about 45% lower than that of conventional pulp, resulting in a 0.9-4.5% reduction in final paper price upon their addition to the pulp.

  16. The effects of dietary fibre type on satiety-related hormones and voluntary food intake in dogs

    Bosch, Guido; Verbrugghe, Adronie; Hesta, Myriam

    2009-01-01

    were fed a low-fermentable fibre (LFF) diet containing 8.5 % cellulose or a high-fermentable fibre (HFF) diet containing 8.5 % sugarbeet pulp and 2 % inulin. Large intestinal fibre degradation was evaluated by apparent faecal digestibility of nutrients and faecal SCFA and NH3 concentrations...

  17. Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites

    Ardanuy Raso, Mònica; Claramunt Blanes, Josep; Arévalo Peces, Raquel; Parés Sabatés, Ferran; Aracri, Elisabetta; Vidal Lluciá, Teresa

    2012-01-01

    In this work, nanofibrillated cellulose (NFC) has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle), sisal, and cotton linters pulps, were initially characterized in order to assess their reinforcement capability. Sisal pulp was found to be most suitable as reinforcement for their brittle cementitious matrix. Nanofibrillated cellulose was produced by th...

  18. X-ray diffraction of modified and graft polymerised cellulose fibres

    Ouajai, S; Hodzic, A; Shanks, R A [RMIT University, Melbourne, VIC (Australia). Applied Chemistry

    2003-07-01

    Full text: The aim of this research is to modify natural cellulosic fibres in order to improve and increase consistency of their performance in biodegradable materials. Fibre modification consisted of solvent extraction and NaOH treatment in order to remove wax and lignin before grafting with acrylonitrile monomer. The mechanical properties, moisture regain and pore structures were investigated. Finally an analysis of crystalline structure was performed using quantitative FTIR, WAXD and SAXS to assess the relationship between structure and properties after modification. Materials: Hemp (Cannabis sativa), Australian Hemp Resource and Manufacture (AHRM) and Flax (Durafibre Grade 1, 95 % purity), Cargill, Canada. Pretreatments: Dewaxing by acetone extraction, alkalisation with NaOH solutions, grafting reaction with acrylonitrile and AIBN thermal initiator after absorption of the monomer. Surface and pore structure analysis using Micromeritics ASAP 2000 BET adsorption instrument, FTIR Perkin-Elmer 2000 spectrometer, wide angle X-ray diffraction, Bruker AXS D8, Ni-filtered CuK{alpha} radiation ({lambda} 0.1542 nm) at 40 kV and 35 mA. The diffractograms were recorded from 5 to 60 deg of 2 {theta} (Bragg angle) by a goniometer with a scintillation counter, scanning speed 0.02 deg/s and sampling rate of 2 data/s. The 2-D small-angle X-ray data was collected by Bruker AXS, Nanostar from 0.5 to 14 deg of 2{theta} (Bragg angle). Typical exposure time was 5 hours at 40 kV and 35 mA. Single fibre mechanical properties were carried out on a Rheometric DMTA IV at 0.03 mm/min. Moisture regain measurements were performed gravimetrically. The crystalline structure of the fibres were changed from cellulose I to cellulose II after NaOH treatment. The intensity of the 1431 cm{sup -1} band was reduced while the 898 cm{sup -1} band was increased and shifted to 893 cm{sup -1} with an increase of NaOH concentration. X-ray diffractograms of flax and hemp were obtained for each treatment

  19. X-ray diffraction of modified and graft polymerised cellulose fibres

    Ouajai, S.; Hodzic, A.; Shanks, R.A.

    2003-01-01

    Full text: The aim of this research is to modify natural cellulosic fibres in order to improve and increase consistency of their performance in biodegradable materials. Fibre modification consisted of solvent extraction and NaOH treatment in order to remove wax and lignin before grafting with acrylonitrile monomer. The mechanical properties, moisture regain and pore structures were investigated. Finally an analysis of crystalline structure was performed using quantitative FTIR, WAXD and SAXS to assess the relationship between structure and properties after modification. Materials: Hemp (Cannabis sativa), Australian Hemp Resource and Manufacture (AHRM) and Flax (Durafibre Grade 1, 95 % purity), Cargill, Canada. Pretreatments: Dewaxing by acetone extraction, alkalisation with NaOH solutions, grafting reaction with acrylonitrile and AIBN thermal initiator after absorption of the monomer. Surface and pore structure analysis using Micromeritics ASAP 2000 BET adsorption instrument, FTIR Perkin-Elmer 2000 spectrometer, wide angle X-ray diffraction, Bruker AXS D8, Ni-filtered CuKα radiation (λ 0.1542 nm) at 40 kV and 35 mA. The diffractograms were recorded from 5 to 60 deg of 2 θ (Bragg angle) by a goniometer with a scintillation counter, scanning speed 0.02 deg/s and sampling rate of 2 data/s. The 2-D small-angle X-ray data was collected by Bruker AXS, Nanostar from 0.5 to 14 deg of 2θ (Bragg angle). Typical exposure time was 5 hours at 40 kV and 35 mA. Single fibre mechanical properties were carried out on a Rheometric DMTA IV at 0.03 mm/min. Moisture regain measurements were performed gravimetrically. The crystalline structure of the fibres were changed from cellulose I to cellulose II after NaOH treatment. The intensity of the 1431 cm -1 band was reduced while the 898 cm -1 band was increased and shifted to 893 cm -1 with an increase of NaOH concentration. X-ray diffractograms of flax and hemp were obtained for each treatment. Untreated fibre shows the

  20. Preparation of micro-fibrillated cellulose based on sugar palm ijuk (Arenga pinnata) fibres through partial acid hydrolysis

    Saputro, A.; Verawati, I.; Ramahdita, G.; Chalid, M.

    2017-07-01

    The aim of this study was to isolate and characterized micro-fibrillated cellulose (MFC) from sugar palm/ijuk fibre (Arenga pinnata) by partial sulfuric acid hydrolysis. Cellulose fibre was prepared by repeated treatments with 5 wt% sodium hydroxide 2 h at 80°C, followed by bleaching with 1.7 wt% sodium chlorite for 2 h at 80°C in acidic environment under stirring. MFC was prepared by partial hydrolysis with sulfuric acid in various concentrations (30, 40, 50, and 60 % for 45 min at 45 °C) under stirring. Fourier Transform Infrared, Field Emission Scanning Electron Microscope, Thermo Gravimetric Analyzer and X-ray Diffraction characterized cellulose fibre and MFC. FTIR measurements showed that alkaline and bleaching treatments were effective to remove non-cellulosic constituents such as wax, lignin and hemicellulose. FESEM observation revealed conversion into more clear surface and defibrillation of cellulosic fibre after pre-treatments. XRD measurement revealed increase in crystallinity after pre-treatments and acid hydrolysis from 54.4 to 87.8%. Thermal analysis showed that increasing acid concentration reduced thermal stability.

  1. NANOFIBRILLATED CELLULOSE (NFC AS A POTENTIAL REINFORCEMENT FOR HIGH PERFORMANCE CEMENT MORTAR COMPOSITES

    Mònica Ardanuy,

    2012-07-01

    Full Text Available In this work, nanofibrillated cellulose (NFC has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle, sisal, and cotton linters pulps, were initially characterised in order to assess their reinforcing capability. Sisal pulp was found to be most suitable as reinforcement for the brittle cementitious matrix. Nanofibrillated cellulose was produced by the application of a high intensity refining process of the sisal pulp. It was found that 6 hours of refining time was required to obtain the desired nanofibrillation of the fibers. Cement mortar composites reinforced with both the sisal fibres and the nanofibrillated cellulose were prepared, and the mechanical properties were determined under flexural tests. The cement mortar composites reinforced with the nanofibrillated cellulose exhibited enhanced flexural properties, but lower values of fracture energy, than the ones reinforced with the conventional sisal fibres.

  2. Acid bi-sulphite pulping effects on hardwoods and a softwood revealed by atomic force microscopy

    Chunilall, Viren

    2009-12-01

    Full Text Available Wood fibres are the raw material used in the production of dissolving pulp for the manufacture of cellulose derivatives such as viscose and cellulose acetate. At the microscopic level, the wood cell wall is organised in layers with different...

  3. Preparation of micro-fibrillated cellulose from sorghum fibre through alkalization and acetylation treatments

    Ismojo; Simanulang, P. H.; Zulfia, A.; Chalid, M.

    2017-07-01

    Recently, the pollution due to non-degradable materials including plastics, has led to needs on the development of environmental-friendly material. Owing to its biodegradability nature, sorghum fibres are interesting to be modified with petro-polymer as a composite. These materials are also expected to reduce the impact of environmental pollution. Surface modification of sorghum through chemical treatment was aimed to enhanced crystalline part of micro-fibrillated cellulose, thus increased compatibility to petro-polymer, as mean to improve composite properties. The experiments were conducted by alkalization process (10% NaOH) followed by acetylation with acetic acid glacial and acetic anhydride (CH3CO2)2 with additions of 1 and 2 drops of 25% H2SO4. Fourier transform infra-red (FTIR) spectroscopy, field-emission scanning electron microscope (FE-SEM) and x-ray diffraction (XRD) were used to characterize the treated and untreated fibres. The results of investigation showed that the chemical treatments have effectively produced MFC with the smallest fibre size around 5.5 - 6.5 microns and reduced lignin and hemicellulose where the highest crystalline part up to 80.64% was obtained through acetate acid treatment of 17.4 M, followed acetic anhydride with 1 drop of H2SO4 addition. Based on the current results, it is promising that the synthesized composites can be improved for their compatibilities.

  4. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    Alamri, H.

    2013-01-01

    Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to investigate the effect of water absorption on the physical and mechanical properties of the RCF reinforced epoxy/clay nanocomposites. TEM images indicated a well-intercalated structure of nanoclay/epoxy matrix with some exfoliated regions. Water absorption was found to decrease as the clay content increased. The flexural strength, flexural modulus and fracture toughness significantly decreased as a result of water absorption. However, the properties of impact strength and impact toughness were found to increase after exposing to water. The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd. All rights reserved.

  5. Identification of cellulose fibres belonging to Spanish cultural heritage using synchrotron high resolution X-ray diffraction

    Herrera, L.K.; Justo, A.; Duran, A.; Haro, M.C.J. de; Franquelo, M.L.; Perez Rodriguez, J.L. [CSIC-Seville University, Materials Science Institute of Seville, Seville (Spain)

    2010-05-15

    A complete characterisation of fibres used in Spanish artwork is necessary to provide a complete knowledge of these natural fibres and their stage of degradation. Textile samples employed as painting supports on canvas and one sample of unprocessed plant material were chosen for this study. All the samples were investigated by synchrotron radiation X-ray diffraction (SR-XRD). Flax and cotton have the Cellulose I structure. The values of the crystalline index (CI) were calculated for both types of fibres. The structure of Cellulose IV was associated with the unprocessed plant material. The information obtained by SR-XRD was confirmed by laboratory techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). (orig.)

  6. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    Alamri, H.

    2012-10-01

    Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations. © 2012 Published by Elsevier Ltd. All rights reserved.

  7. The distribution of sorbed moisture within a partially crystalline cellulosic web of fibres (paper)

    Garvey, C.; Parker, I.H.; Simon, G.

    1999-01-01

    Full text: Paper is a hydrophilic web of partially crystalline cellulosic fibres. In conditions of changing humidity it will sorb/desorb moisture. It has been found by dielectric relaxation spectroscopy and two dimensional nuclear magnetic resonance spectroscopy that the sorption of water causes the activation of long range co-operative molecular motions by lowering the glass transition temperature into normal ambient range. Water therefore acts as a plasticiser. NMR also indicates that the water is not uniformly distributed within the paper matrix. Preliminary experiments have been performed using the AUSANS instrument to investigate the distribution of sorbed water with the eventual aim of understanding how sorbed water is mixed within the paper sheet. Samples of paper with varying polymer morphology have been selectively deuterated by allowing to equilibrate with known D 2 O humidities. The results are discussed within the context of the AUSANS instrument

  8. Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2 Nanoparticles

    Joabel Raabe

    2015-01-01

    Full Text Available Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS. Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For composites, 5% and 10% (by weight of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in 183% in relation to matrix, while moisture adsorption decreased 8.3%. Such improvements were even more effective with unmodified fibers addition. This result was mainly attributed to poor interaction between modified fibers and TPS matrix detected by SEM analysis.

  9. In Vitro Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells Seeded on Carboxymethyl Cellulose-Hydroxyapatite Hybrid Hydrogel.

    Gabriella eTeti

    2015-10-01

    Full Text Available Stem cells from human dental pulp have been considered as an alternative source of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages.Recently, polysaccharide based hydrogels have become especially attractive as matrices for the repair and regeneration of a wide variety of tissues and organs. The incorporation of inorganic minerals as hydroxyapatite nanoparticles can modulate the performance of the scaffolds with potential applications in tissue engineering. The aim of this study was to verify the osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs cultured on a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Human DPSCs were seeded on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel and on carboxymethyl cellulose hydrogel for 1, 3, 5, 7, 14 and 21 days. Cell viability assay and ultramorphological analysis were carried out to evaluate biocompatibility and cell adhesion. Real Time PCR was carried out to demonstrate the expression of osteogenic and odontogenic markers. Results showed a good adhesion and viability in cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel, while a low adhesion and viability was observed in cells cultured on carboxymethyl cellulose hydrogel. Real Time PCR data demonstrated a temporal up-regulation of osteogenic and odontogenic markers in dental pulp stem cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. In conclusion, our in vitro data confirms the ability of DPSCs to differentiate toward osteogenic and odontogenic lineages in presence of a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Taken together, our results provide evidence that DPSCs and carboxymethyl cellulose—hydroxyapatite hybrid hydrogel could be considered promising candidates for dental pulp complex and periodontal tissue engineering.

  10. The Use of Alternate Ligno-cellulosic Raw Materials Banana (Musa sapientum) Ankara (Calotropis procera ) and Pineapple (Ananas comosus ) in Handmade Paper & their Blending with Waste Paper.

    Atul Kumar

    2013-01-01

    The studies were made to established suitability of lingo-cellulosic raw materials namely leaf fibreBanana (Musa Sapientum), bast fibre Ankara (Calotropis Procera), & leaf fibre Pineapple (Ananas Comosus) for making pulps for handmade paper industry. This should help in providing a cost effective, good quality cellulosic raw material as an alternate to cost prohibitive traditionally used cotton hosiery waste traditionally used for manufacturing good quality handmade paper & it’s products. Th...

  11. A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp

    Zhouyang Xiang; Wenhua Gao; Liheng Chen; Wu Lan; Junyong Zhu; Troy Runge

    2016-01-01

    Cladophora, a fresh-water green macroalgae, has unique cellulose properties and thus may be promising for production of cellulose nanofibrils (CNFs). Cellulose was extracted from Cladophora glomerata and subjected to microfluidization with or without enzymatic hydrolysis pretreatment to produce CNFs. Increasing...

  12. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi(®) bionanocomposite.

    Nainggolan, Hamonangan; Gea, Saharman; Bilotti, Emiliano; Peijs, Ton; Hutagalung, Sabar D

    2013-01-01

    The effects of the addition of fibres of bacterial cellulose (FBC) to commercial starch of Mater-Bi(®) have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min(-1). Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young's modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (T c) and melting temperature (T m) were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

  13. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

    Hamonangan Nainggolan

    2013-05-01

    Full Text Available The effects of the addition of fibres of bacterial cellulose (FBC to commercial starch of Mater-Bi® have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min−1. Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young’s modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (Tc and melting temperature (Tm were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

  14. Effects of fibre dimension and charge density on nanocellulose gels.

    Mendoza, Llyza; Gunawardhana, Thilina; Batchelor, Warren; Garnier, Gil

    2018-04-18

    Carboxylated cellulose nanofibres can produce gels at low concentrations. The effect of pulp source on the nanocellulose fibre dimension and gel rheology are studied. It is hypothesised that fibre length and surface charge influence aspects of the gel rheological properties. TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)- mediated oxidised cellulose nanofibres from never-dried hardwood and softwood pulp and containing different charge levels were produced and characterized. Steady-state and dynamic rheological studies were performed to ascertain the effects of pulp type on gel behavior and properties. Nanocellulose fibres extracted from softwood (SW-TOCN) and hardwood (HW-TOCN) pulp exhibit similar widths but different length dimensions as shown via AFM analysis. Rheological measurements show that the dynamic moduli (G' and G'') of nanocellulose gels are independent of pulp source and are mostly influenced by fibre concentration. Differences in the steady-state behavior (i.e. viscosity) at constant surface charge can be attributed to differences in fibre length. Increasing the surface charge density influences the critical strain and the viscosity at the percolation concentration (0.1 wt%) due to higher electrostatic interactions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  15. Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

    Hajlane, A.; Miettinen, A.; Madsen, Bo

    2016-01-01

    The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro......-mechanical model. The parameters characterizing the microstructure of the composites, e.g. fibre length and orientation distributions, used as input in the model were obtained by micro-tomography. The investigation was carried out on composites with untreated and surface treated fibres with various fibre weight...

  16. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    Chen,X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B.; Chu, B.

    2006-01-01

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.

  17. Fibre Morphological Characteristics of Kraft Pulps of Acacia melanoxylon Estimated by NIR-PLS-R Models

    Helena Pereira

    2015-12-01

    Full Text Available In this paper, the morphological properties of fiber length (weighted in length and of fiber width of unbleached Kraft pulp of Acacia melanoxylon were determined using TECHPAP Morfi® equipment (Techpap SAS, Grenoble, France, and were used in the calibration development of Near Infrared (NIR partial least squares regression (PLS-R models based on the spectral data obtained for the wood. It is the first time that fiber length and width of pulp were predicted with NIR spectral data of the initial woodmeal, with high accuracy and precision, and with ratios of performance to deviation (RPD fulfilling the requirements for screening in breeding programs. The selected models for fiber length and fiber width used the second derivative and first derivative + multiplicative scatter correction (2ndDer and 1stDer + MSC pre-processed spectra, respectively, in the wavenumber ranges from 7506 to 5440 cm−1. The statistical parameters of cross-validation (RMSECV (root mean square error of cross-validation of 0.009 mm and 0.39 μm and validation (RMSEP (root mean square error of prediction of 0.007 mm and 0.36 μm with RPDTS (ratios of performance to deviation of test set values of 3.9 and 3.3, respectively, confirmed that the models are robust and well qualified for prediction. This modeling approach shows a high potential to be used for tree breeding and improvement programs, providing a rapid screening for desired fiber morphological properties of pulp prediction.

  18. Cellulose fibril aggregation studies of Eucalyptus dissolving pulps using atomic force microscopy

    Chunilall, Viren

    2006-11-01

    Full Text Available , P.T. (2006), 9th European Workshop on Lignocellulosics and Pulp, Conference Proceedings. 3. Nocanda, X. et al. (2007), Holzforschung, 61(6), 675. 4. Krässig, H. A., (1996) Polymer Monographs, 11. Figure 1. Fully bleached 92 ! (freeze dried...

  19. Cellulose-hemicellulose networks as target for in planta modification of the properties of natural fibres

    Obembe, O.; Jacobsen, E.; Visser, R.G.F.; Vincken, J.P.

    2006-01-01

    Plant cell wall polysaccharides are predominant components of fibres. Natural fibres have a wide range of industrial applications, such as in paper and textile industries. Furthermore, their demand for use as bio-composites in building and automotive applications is also increasing. For the various

  20. Functionalization of Cellulose Fibres with Oxygen Plasma and ZnO Nanoparticles for Achieving UV Protective Properties

    Katja Jazbec

    2015-01-01

    Full Text Available Low-pressure oxygen plasma created by an electrodeless radiofrequency (RF discharge was applied to modify the properties of cellulosic fibrous polymer (cotton in order to improve adsorption properties towards zinc oxide (ZnO nanoparticles and to achieve excellent ultraviolet (UV protective properties of cotton fabric. The chemical and physical surface modifications of plasma-treated cotton fabric were examined by X-ray photoelectron spectroscopy (XPS and scanning electron microscopy (SEM. The mechanical properties of plasma-treated samples were evaluated, measuring strength and elongation of the fabrics. The quantity of zinc on the ZnO-functionalized cotton samples was determined using inductively coupled plasma mass spectrometry (ICP-MS and the effectiveness of plasma treatment for UV protective properties of cotton fabrics was evaluated using UV-VIS spectrometry, measuring the UV protection factor (UPF. The results indicated that longer plasma treatment times cause higher concentration of oxygen functional groups on the surface of fibres and higher surface roughness of fibres. These two conditions are crucial in increasing the content of ZnO nanoparticles on the fibres, providing excellent UV protective properties of treated cotton, with UPF factor up to 65.93.

  1. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Surface Photochemistry: Benzophenone as a Probe for the Study of Modified Cellulose Fibres

    L. F. Vieira Ferreira

    2007-01-01

    Full Text Available This work reports the use of benzophenone, a very well characterized probe, to study new hosts (i.e., modified celluloses grafted with alkyl chains bearing 12 carbon atoms by surface esterification. Laser-induced room temperature luminescence of air-equilibrated or argon-purged solid powdered samples of benzophenone adsorbed onto the two modified celluloses, which will be named C12-1500 and C12-1700, revealed the existence of a vibrationally structured phosphorescence emission of benzophenone in the case where ethanol was used for sample preparation, while a nonstructured emission of benzophenone exists when water was used instead of ethanol. The decay times of the benzophenone emission vary greatly with the solvent used for sample preparation and do not change with the alkylation degree in the range of 1500–1700 micromoles of alkyl chains per gram of cellulose. When water was used as a solvent for sample preparation, the shortest lifetime for the benzophenone emission was observed; this result is similar to the case of benzophenone adsorbed onto the “normal” microcrystalline cellulose surface, with this latter case previously reported by Vieira Ferreira et al. in 1995. This is due to the more efficient hydrogen abstraction reaction from the glycoside rings of cellulose when compared with hydrogen abstraction from the alkyl chains of the modified celluloses. Triplet-triplet transient absorption of benzophenone was obtained in both cases and is the predominant absorption immediately after laser pulse, while benzophenone ketyl radical formation occurs in a microsecond time scale both for normal and modified celluloses.

  3. Yield-increasing additives in kraft pulping: Effect on carbohydrate retention, composition and handsheet properties

    Vaaler, David Andre Grimsoeen

    2008-07-01

    In this thesis, increased hemicellulose retention during kraft pulping has been studied. The work has been divided into three parts: i) Development of an accessible and reliable method for determination of carbohydrate composition of kraft pulps ii) Investigation of the composition and molecular mass distributions of the carbohydrates in kraft pulps with increased hemicellulose content iii) Investigation of the effect of increased hemicellulose content on the sheet properties of kraft pulps with increased hemicellulose content. A method for carbohydrate determination was developed. In this method, enzymes are used to hydrolyse the pulp into monosaccharides. A relatively mild acid hydrolysis is performed prior to detection on an HPLC with an RI-detector. The pulp is not derivatized and no pre-treatment (mechanical or chemical) is needed to determine the carbohydrate composition using the method developed here. Peak deconvolution software is used to improve the accuracy. Polysulphide and H2S primarily increase the glucomannan yield, which can be boosted by up to 7 % on o.d. wood. However, the cellulose yield is more affected by the cooking time and the maximum yield increase of cellulose is approximately 2 % on o.d. wood compared to an ordinary kraft pulp. The cooking time is influenced by sulphide ion concentration, AQ addition and the final Kappa number. The xylan yield is remarkably stable, however the alkali profile during the cook may influence the xylan yield. Surface xylan content of the fibres depends on residual alkali concentration in the black liquor. The molecular mass distributions of cellulose and hemicellulose were determined for pulps with increased hemicellulose content using size exclusion chromatography. Deconvolution by peak separation software is used to gain information about the degree of polymerization for cellulose and hemicellulose. The average DP of glucomannan in the kraft fibre was found to be 350 +- 30 and the average DP of xylan in the

  4. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Isolation of cellulose microfibrils - An enzymatic approach

    Sain, M.

    2006-11-01

    Full Text Available Isolation methods and applications of cellulose microfibrils are expanding rapidly due to environmental benefits and specific strength properties, especially in bio-composite science. In this research, we have success-fully developed and explored a novel bio-pretreatment for wood fibre that can substantially improve the microfibril yield, in comparison to current techniques used to isolate cellulose microfibrils. Microfibrils currently are isolated in the laboratory through a combination of high shear refining and cryocrushing. A high energy requirement of these procedures is hampering momentum in the direction of microfibril isolation on a sufficiently large scale to suit potential applications. Any attempt to loosen up the microfibrils by either complete or partial destruction of the hydrogen bonds before the mechanical process would be a step forward in the quest for economical isolation of cellulose microfibrils. Bleached kraft pulp was treated with OS1, a fungus isolated from Dutch Elm trees infected with Dutch elm disease, under different treatment conditions. The percentage yield of cellulose microfibrils, based on their diameter, showed a significant shift towards a lower diameter range after the high shear refining, compared to the yield of cellulose microfibrils from untreated fibres. The overall yield of cellulose microfibrils from the treated fibres did not show any sizeable decrease.

  6. Moisture management properties of plain knitted fabrics made of natural and regenerated cellulose fibres

    Novaković Milada S.

    2015-01-01

    Full Text Available Moisture management is a complicated process which is known to be influenced by a variety of fabric characteristics such as fibre nature (hydrophilic or hydrophobic, porosity and thickness. There are different aspects of the moisture management properties of textile materials since water transport in textile materials can be in the form of liquid and vapour. The ability of textile materials to transfer water vapour allows the human body to keep thermal balance due to evaporation. With stronger physical activity of a person when the body produces a large amount of heat, the skin perspiration increases (in order to regulate the body temperature and liquid sweat should be taken from the skin, otherwise it will worsen the sense of comfort. The aim of this research was to investigate the factors influencing moisture management properties of plain knitted fabrics at the three scale levels, i.e. microscopic (fibre type, mesoscopic (yarn geometry and macroscopic (fabric porosity levels. Plain knitted fabrics were produced from the two-assembled hemp, cotton and viscose yarns under controlled conditions so as to be comparable in basic construction characteristics, but varying in yarns geometry. Evaporative resistance test reflecting vapour transport and water distribution test reflecting liquid transport in the knitted fabrics were conducted. To determine the statistical importance of the results, analysis of variance (ANOVA was applied. As a consequence of the geometry and deformation behaviour of the fibres used and spinning techniques applied, the yarns differed in both packing density and surface geometry, thus determining the pore distribution. Due to loose structure of the cotton yarn, the cotton knitted fabric was characterised by the lowest free open surface (macroporosity exhibiting the lowest both water vapour and liquid permeability. Although having the highest macroporosity, the water vapour and liquid transport capability of the hemp knitted

  7. The effect of rabbit age on in vitro caecal fermentation of starch, pectin, xylan, cellulose, compound feed and its fibre.

    Lavrenčič, A

    2007-03-01

    In vitro gas production kinetics of six different substrates, pectin (PEC), xylan (XYL), starch (STA), cellulose (CEL), commercial compound feed (FEED; 201 g crude protein per kg, 155 g crude fibre per kg, 334 g neutral-detergent fibre (NDF) per kg and 190 g acid-detergent fibre (ADF) per kg) and an NDF prepared from commercial compound feed (NDFFEED) were determined using the caecum contents of weaned rabbits (36 days of age) and of rabbits at slaughter age (78 days of age) as inoculums. The cumulated gas production over 96 h of incubation was modelled with Gompertz model, and the kinetic parameters compared. The total potential gas production (parameter 'B' of the Gompertz model) was not affected (P>0.05) by the inoculum source, except with STA, where rabbits at slaughter weight had significantly higher total potential fermentability (314 ml/g dry matter (DM)) than those at weaning age (189 ml/g DM). Intensities of fermentation (maximum fermentation rate; MFR) of PEC (32.2 ml/h) and XYL (24.4 ml/h) were significantly greater in rabbits at weaning, while that of STA (45 ml/h) was significantly lower than at slaughter age (23.0, 14.3 and 14.0 ml/h for PEC, XYL and STA, respectively). The MFRs of CEL and NDFFEED were very similar between inoculum sources. In the first 10 h of fermentation which correspond to the normal retention time of the substrates in the caecum, the highest amount of gas was produced from PEC, followed by FEED and XYL. These substrates had a time of maximum fermentation rate (TMFR) at both rabbit ages short enough (8.0 and 9.5 h for PEC, 9.5 and 6.6 h for FEED, 13.7 and 14.2 h for XYL at weaning and at slaughter age, respectively) to be almost completely fermented in vivo.

  8. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp

    Claude Daneault

    2012-09-01

    Full Text Available Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., consistency, stator-rotor gap, recirculation rate and pH and determine their influences on nanocellulose production using ultrasound-assisted TEMPO-oxidation of Kraft pulp. All nanofiber gels produced in this study exhibited rheological behaviors known as shear thinning. From all the dispersion parameters, the following conditions were identified as optimal: 0.042 mm stator-rotor gap, 200 mL/min recycle rate, dispersion pH of 7 and a feed consistency of 2%. High quality cellulose gel could be produced under these conditions. This finding is surely of great interest for the pulp and paper industry.

  9. Mathematical simulation of gas pressure in fibre-reinforced concrete container at radiation and biological decomposition of cellulose, bituminized and concrete radwastes

    Kuruc, J.; Kvito, P.

    2005-01-01

    Fibre-reinforced concrete container (FRCC) are used for long-time repository of radioactive wastes. Low- and middle-active radwastes from operation of the NPPs V-1, V-2 Jaslovske Bohunice, Mochovce NPP and from decommissioned NPP A-1 (Jaslovske Bohunice) are treated in the plant SE-VYZ in Jaslovske Bohunice and after immobilisation are deposited in National Radwaste Repository Mochovce (RU RAO). After filling of the RU RAO, FRCC will be stored during 300 years. During this time the integrity of the FRCC must be guaranteed. By the influence of autoradiolysis of the cellulose and bituminized radwastes as well as in cement grout the gases are formed, mainly the hydrogen, methane and carbon dioxide. In the case of presence of available water (a w ≥ 0.63) and in presence of microbes and moulds at appropriate conditions the biological decomposition of cellulose materials may proceed with formation of H 2 , CH 4 a CO 2 . With increasing of developed gases may increase pressure in FRCC, that may initiate the loss of integrity of the FRCC with following endangering of radiation safety of the RU RAO, respectively of the territory over the repository.Authors developed the new mathematical model of pressure of gases in FRCC and in deposited barrels with cellulose and bituminized radwastes. The mathematical model is based on biological decomposition of cellulose materials as well as on radiation decomposition of cellulose, bitumen and concrete. In this mathematical model the diffusion through the walls of FRCC is the main process responsible for decreasing of the pressure. This model was developed in two basic variants: (1) Mathematical model of gas pressure in FRCC as function of dose; (2) Mathematical model of gas pressure in FRCC as function of mass of cellulose

  10. A utilização de perácidos na deslignificação e no branqueamento de polpas celulósicas The use of peracids in delignification and cellulose pulp bleaching

    Lilian Borges Brasileiro

    2001-12-01

    Full Text Available Peracids are strong oxidant species and their use is being largely studied in the delignification and cellulose pulp bleaching. Some of them has already an industrial application, specially in non-conventional bleaching sequences like ECF (Elemental chlorine free and TCF (Totally chlorine free. This review presents the main aspects of the structure, properties, preparation and reaction of peracids (peracetic acid, peroxymonosulfuric acid and their mixture with lignin, specially for peracetic acid. Information about bleaching and delignification of wood pulps with peracids and the factors affecting its efficiency are also presented.

  11. Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing

    High production costs remain the single greatest factor limiting wider use of cellulose micro/nanofibers in the industry. The objective of the present study was to investigate the potential of using a low-cost bacteria-rich digestate (liquid anaerobic digestate – AD supernatant) on milled eucalyptus...

  12. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.

    Afra, Elyas; Yousefi, Hossein; Hadilam, Mohamad Mahdi; Nishino, Takashi

    2013-09-12

    Cellulose fibers were fibrillated using mechanical beating (shearing refiner) and ultra-fine friction grinder, respectively. The fibrillated fibers were then used to make paper. Mechanical beating process created a partial skin fibrillation, while grinding turned fiber from micro to nanoscale through nanofibrillation mechanism. The partially fibrillated and nano fibrillated fibers had significant effects on paper density, tear strength, tensile strength and water drainage time. The effect of nanofibrillation on paper properties was quantitatively higher than that of mechanical beating. Paper sheets from nanofibrillated cellulose have a higher density, higher tensile strength and lower tear strength compared to those subjected to mechanical beating. Mechanical beating and nanofibrillation were both found to be promising fiber structural modifications. Long water drainage time was an important drawback of both fibrillation methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Cellulose fibers obtained by organosolv process from date palm rachis (Phoenix dactylifera L.)

    Ammar, H; Abid, M; Abid, S

    2012-01-01

    In this preliminary study, the chemical composition of Tunisian DPR was established and discussed. The main characteristic of this agri-residue was its high lignin content in comparison with that of alfa plant. CIMV process was used to selectively separate cellulose fibres, hemicelluloses and lignin at atmospheric pressure. The obtained unbleached pulp was analysed in accordance with Kappa index and degree of polymerisation and then bleached by treating successively with peroxyacids and hydrogen peroxide in basic media.

  14. ASSESSMENT OF FIBRE CHARACTERISTICS AND SUITABILITY ...

    Samuel

    HUSK AND STALK FOR PULP AND PAPER PRODUCTION. *Ekhuemelo ... Key Words: Maize, husk, stalk, pulp, and fibre length. ..... Turk. J. Agric. For. 23(3):. 589-597. Encyclopaedia Britannica, (2012). Corn ... Anatomical, structure and lignin.

  15. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    Takacs, E.; Wojnarovits, L.; Borsa, J.

    2011-01-01

    Complete text of publication follows. Sustainable development needs renewable raw materials applied wherever possible. Cellulose is the most abundant biopolymer on earth; various modifications of its properties for special uses are important issues of the research. Some contaminations in wastewaters, e.g. pesticides, are hydrophobic materials; their adsorption on hydrophilic cellulose substrates is very limited. Cotton cellulose was grafted by glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. As the figure shows on untreated sample even negative 2,4-D adsorption occurred, due to the selective adsorption of water from the solution; the adsorption did not approach its saturation value even in a 30 hours time period investigated. Saturation of phenol adsorption was achieved after 5-6 hours; adsorption equilibrium data of phenol fitted the Langmuir isotherm.

  16. A comparative study of the apparent total tract digestibility of carbohydrates in Icelandic and Danish warmblood horses fed two different haylages and a concentrate consisting of sugar beet pulp and black oats.

    Jensen, Rasmus Bovbjerg; Brokner, Christine; Knudsen, Knud Erik Bach; Tauson, Anne-Helene

    2010-10-01

    Four Icelandic (ICE) and four Danish Warmblood (DW) horses were used in a crossover study with two treatments to investigate the effect of breed and the effect of stage of maturity of haylage on the apparent total tract digestibility (ATTD) of a diet consisting of sugar beet pulp, black oats and haylage early or late cut. Fibre was analysed as crude fibre (CF), acid detergent fibre (ADF), neutral detergent fibre (NDF) and dietary fibre (DF = non-starch polysaccharides (NSP) plus lignin). In haylage all analysed fibre fractions increased with advancing stage of maturity, with the cell wall components cellulose, non-cellulosic residue, xylose and lignin causing this increase. Crude protein (CP) and sugars decreased with advancing stage of maturity. Feeding early cut haylage resulted in a significantly (p haylage. There was a significantly (p haylage. Concentrations of total short-chain fatty acids were significantly (p haylage, reflecting the higher fermentability (higher ATTD) of this diet. There was no marked effect of breed on faecal parameters. The DF analysis method gave the most appropriate differentiation of the fibre fractions and their digestibility, compared to the traditional CF, ADF and NDF analyses. A major advantage of the DF analysis is the capacity of recovering soluble fibres. The results suggested that ICE had higher ATTD of DF than DW, and this was caused by a tendency for a higher ATTD of cellulose, but further studies are required to verify that in general.

  17. THE EFFECT OF SOIL CONDITIONERS ON CELLULOSE, HEMICELLULOSE, AND THE ADL FIBRE FRACTION CONCENTRATION IN DACTYLIS GLOMERATA AND LOLIUM PERENNE

    Milena Truba

    2017-01-01

    Full Text Available Replicated three times, the research was conducted in the experimental field between 2011 and 2014. Three soil conditioners with the following trade names: UGmax, Eko-Użyźniacz, and Humus Active Papka were used in the experiment, separately or together with NPK fertilisers. They were all used on plots sown with two species of grass, Dactylis glomerata of the Bora variety and Lolium perenne of the Info variety. The plant material from both grass species was tested for the concentration of ADL fraction (% DM, cellulose (% DM, and hemicellulose (% DM. It was found that the concentration of cellulose, hemicelluloses, and the ADL fraction was significantly higher in the biomass of Dactylis glomerata than in the biomass of Lolium perenne. The grass from the plot with the UGmax soil conditioner applied had the highest amount of cellulose and hemicellulose. The lowest amount of those organic compounds was found in the grass treated with UGmax together with mineral fertilisers and in plants treated with Humus Active, together with mineral fertilisers. However, the fertilisers and conditioners did not increase the ADL content in both grass species.

  18. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds.

    Owolabi, Abdulwahab F; Haafiz, M K Mohamad; Hossain, Md Sohrab; Hussin, M Hazwan; Fazita, M R Nurul

    2017-02-01

    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. PRODUCTION OF DISSOLVING GRADE PULP FROM ALFA

    Baya Bouiri

    2010-02-01

    Full Text Available Alfa, also known as Stipa tenacissimaI or “halfa”, is grown in North Africa and south Spain. Due to its short fiber length, paper made from alfa pulp retains bulk and takes block letters well. In this study alfa was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were pulped by a conventional kraft process. One sample was taken from the original alfa material and another from alfa that had been pretreated by diluted acid. The pulp produced from the pretreated alfa was bleached by the elemental-chlorine-free sequences DEPD and DEDP. The yield, Kappa number, brightness, and α- cellulose content of bleached and unbleached pulps were evaluated. The results showed that during the chemical pulping process, treated alfa cooked more easily than the original alfa. The treated alfa pulp also showed very good bleaching, reaching a brightness level of 94.8% ISO with a yield of 93.6% at an α-cellulose content 96.8(% with a DEDP bleaching sequence, compared to 83.2% ISO brightness level, 92.8% yield, and 95.1% α-cellulose content for bleached pulp with a DEPD bleaching sequence. Therefore, this alfa material could be considered as a worthwhile choice for cellulosic fiber supply.

  20. Properties of hemp fibre polymer composites - An optimisation of fibre properties using novel defibration methods and fibre characterisation

    Thygesen, Anders

    2006-01-01

    Characterization of hemp fibres was carried out with fibres obtained with low handling damage and defibration damage to get an indication of how strong cellulose based fibres that can be produced from hemp. Comparison was made with hemp yarn producedunder traditional conditions where damage...... obtained by steam explosion of hemp fibres prior defibrated with pectin degrading enzymes. The S2 layer in the fibre wall of the hemp fibres consisted of1-4 cellulose rich and lignin poor concentric layers constructed of ca. 100 nm thick lamellae. The microfibril angle showed values in the range 0......-10° for the main part of the S2-layer and 70-90° for the S1-layer. The microfibrils that are mainly parallelwith the fibre axis explain the high fibre stiffness, which in defibrated hemp fibres reached 94 GPa. The defibrated hemp fibres had higher fibre stiffness (88-94 GPa) than hemp yarn (60 GPa), which...

  1. Morphology and physical-chemical properties of celluloses obtained by different methods

    Anpilova, A. Yu.; Mastalygina, E. E.; Mikhaylov, I. A.; Popov, A. A.; Kartasheva, Z. S.

    2017-12-01

    The morphology and structural characteristics of celluloses obtained by different methods were studied. The objects of the investigation are cellulose from pulp source, commercial celluloses produced by sodium and acid hydrolysis, laboratory produced cellulose from bleached birch kraft pulp, and cellulose obtained by thermooxidative catalytic treatment of maple leaves by peroxide. According to a complex analysis of cellulose characteristics, several types of celluloses were offered as modifying additives for polymers.

  2. Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review

    Liu, Ming; Thygesen, Anders; Summerscales, John

    2017-01-01

    . In order to achieve strong NFCs, well separated and cellulose-rich fibres are required. Hemp is taking a center stage in this regard as a source of suitable natural plant cellulose fibres because natural hemp bast fibres are long and inherently possess high strength. Classical field and water retting...... methods have been used for centuries for removal of non-cellulosic components from fibrous plant stems including from hemp, but carries a risk of reducing the mechanical properties of the fibres via damaging the cellulose. For NFCs new targeted fibre pre-treatment methods are needed to selectively...... and effectively remove non-cellulosic components from the plant fibres to produce cellulose rich fibres without introducing any damage to the fibres. A key feature for successful use of natural fibres such as hemp fibres in composite materials is optimal interfacial contact between the fibres and the hydrophobic...

  3. INFLUENCE OF CELLULOSE POLYMERIZATION DEGREE AND CRYSTALLINITY ON KINETICS OF CELLULOSE DEGRADATION

    Edita Jasiukaitytė-Grojzdek,; Matjaž Kunaver,; Ida Poljanšek

    2012-01-01

    Cellulose was treated in ethylene glycol with p-toluene sulfonic acid monohydrate as a catalyst at different temperatures. At the highest treatment temperature (150 °C) liquefaction of wood pulp cellulose was achieved and was dependant on cellulose polymerization degree (DP). Furthermore, the rate of amorphous cellulose weight loss was found to increase with cellulose degree of polymerization, while the rate of crystalline cellulose weight loss was reciprocal to the size of the crystallites. ...

  4. Effect of organosolv and soda pulping processes on the metals content of non-woody pulps.

    González, M; Cantón, L; Rodríguez, A; Labidi, J

    2008-09-01

    In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%).

  5. Organosolv pulping and test paper characterization of fiber hemp

    Zomers, F.H.A.; Gosselink, R.J.A.; Dam, van J.E.G.; Tjeerdsma, B.F.

    1995-01-01

    The autocatalyzed ethanol pulping of hemp to produce chemical-grade pulp was examined. Batch delignification conditions were developed for hemp core, hemp bast, and hemp whole stem. Although successful pulping of both hemp core and bast fibre is possible, further research is necessary.

  6. Irradiation effects in wood and cellulose

    McLaren, K.G.

    1976-01-01

    For cellulosic materials the predominant effect of high energy radiation is depolymerisation and degradation by chain scission, although there is some evidence that crosslinking or cellulose stabilisation can occur under certain conditions. When the cellulose is in the form of a natural product such as wood, where it is intimately associated with other polysaccharides, lignins, resins and gums, the effects of radiation can be significantly modified. Examination of cellulose produced by chemical pulping treatment of wood which had been previously given small doses of radiation, showed significant differences in the extent of cellulose depolymerisation with different wood species. The relevance of this work to the paper pulp industry will also be discussed. (author)

  7. Calcium binding by dietary fibre

    James, W.P.T.; Branch, W.J.; Southgate, D.A.T.

    1978-01-01

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  8. Sisal organosolv pulp as reinforcement for cement based composites

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  9. Holdup time measurement by radioactive tracers in pulp production

    Roetzer, H.; Donhoffer, D.

    1988-12-01

    A batch of pulp was to be labelled before passing two bleaching towers of a pulp plant. Activated glass fibres were used as a tracer, which contained 24-Na with a half-life of 15 hours. It was shown in laboratory tests, that the glass fibres were suitable for transport studies of wood pulp. For use in the tests the fibres were activated and suspended in water. Due to the small diameter of the fibres (2-5 micrometers) this suspension shows physical properties very similar to the pulp. For detection six scintillation probes were mounted at different positions outside the bleaching tower. Radiation protection during the test was very easy due to the low total activity of the tracer material. Residence time distributions for both towers were measured. The successful tracer experiments show, that the method of labelling is suited for investigations of material transport in the pulp and paper industry. 3 figs., 11 refs., 2 tabs. (Author)

  10. FTIR spectroscopy and X-ray powder diffraction characterization of microcrystalline cellulose obtained from alfa fibers

    Trache D.

    2013-07-01

    Full Text Available Many cereal straws have been used as raw materials for the preparation of microcrystalline cellulose (MCC. These raw materials were gradually replaced with wood products; nevertheless about 10% of the world overall pulp production is obtained from non-wood raw material. The main interest in pulp made from straw is that it provides excellent fibres for different industries with special properties, and that it is the major available source of fibrous raw material in some geographical areas. The aim of the present work was to characterize microcrystalline cellulose prepared from alfa fibers using the hydrolysis process. The products obtained are characterized with FTIR spectroscopy and X-ray powder diffraction. As a result, FTIR spectroscopy is an appropriate technique for studying changes occurred by any chemical treatment. The spectrum of alfa grass stems shows the presence of lignin and hemicelluloses. However, the cellulose spectrum indicates that the extraction of lignin and hemicellulose was effective. The X-ray analysis indicates that the microcrystalline cellulose is more crystalline than the source material.

  11. THERMOMECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES

    Sudhir Kumar Saw; Chandan Datta

    2009-01-01

    Natural fibres are partly replacing currently used synthetic fibres as reinforcement for polymer composites. Jute fibre bundles were high-cellulose-content modified by alkali treatment, while the bagasse fibre bundles were modified by creating quinones in the lignin portions of fibre surfaces and reacting them with furfuryl alcohol (FA) to increase their adhesiveness. The effects of different fibre bundle loading and modification of bagasse fibre surfaces in hybrid fibre reinforced epoxy comp...

  12. Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach

    Abraham, E

    2011-06-01

    Full Text Available (pseudo stem), jute (stem) and pineapple leaf fibre (PALF). To study the feasibility of extracting cellulose from these raw fibres we have adopted steam explosion technique along with mild chemical treatment. These processes included usual chemical...

  13. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    Robert J. Moon; Gregory T. Schueneman; John Simonsen

    2016-01-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is...

  14. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  15. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Properties of microcrystalline cellulose obtained from coconut ...

    The study revealed that the cellulose material compares favourably with Avicel PH 101 as well as official requirement specified in the British Pharmacopoeia 1993 for microcrystalline cellulose. Keywords: Coconut fruit fibre, microcrystalline cellulose, powder properties. Journal of Pharmacy and Bioresources Vol. 3 (1) 2006: ...

  17. Bioengineering cellulose-hemicellulose networks in plants

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  18. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  19. VARIATION IN THE FIBRE CHARACTERISTICS OF THE WOOD OF ...

    cani

    The study investigated the fibre characteristics and chemical composition of Vitex doniana towards determining its potentials for pulp and paper. Fibre dimensions are of great importance because of the strong correlation between it and the strength properties of wood and paper. Axial and radial examinations of fibre ...

  20. Arundo donax L. reed: new perspectives for pulping and bleaching. Part 4. Peroxide bleaching of organosolv pulps.

    Shatalov, A A; Pereira, H

    2005-05-01

    A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.

  1. Formation of Irreversible H-bonds in Cellulose Materials

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  2. Dietary fibre in foods: a review

    Dhingra, Devinder; Michael, Mona; Rajput, Hradesh; Patil, R. T.

    2011-01-01

    Dietary fibre is that part of plant material in the diet which is resistant to enzymatic digestion which includes cellulose, noncellulosic polysaccharides such as hemicellulose, pectic substances, gums, mucilages and a non-carbohydrate component lignin. The diets rich in fibre such as cereals, nuts, fruits and vegetables have a positive effect on health since their consumption has been related to decreased incidence of several diseases. Dietary fibre can be used in various functional foods li...

  3. Performance of a sisal fibre fixed-bed anaerobic digester for biogas ...

    A single stage anaerobic digester employing a sisal fibre waste fixed bed was studied for biogas production from sisal pulp waste. The fibre was colonized by microorganisms involved in biogas production. The sisal pulp waste to be digested was fed from the top and was sprinkled intermittently with recirculating leachate ...

  4. Application de la spectroscopie Raman à l’analyse de colorants sur fibres de coton dans le contexte de la criminalistique

    Lepot, Laurent

    2011-01-01

    Forensic examination of textile fibres is based on fibre morphology and on fibre material and dyes characterization. Cotton is the most frequently used fibre in textiles but also the most encountered in casework. While man-made fibres show various morphologies and materials, cotton is a natural cellulosic fibre with constant morphology. Cotton fibres examination can consequently be summarized in the characterization of fibre dyes. However forensic needs require non-destructive, fast and sensi...

  5. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    Sehaqui, H.; Perez de Larraya, Uxua; Tingaut, P.; Zimmermann, T.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby

  6. Preparation of lumen-loaded kenaf pulp with magnetite (Fe3O4)

    Zakaria, S.; Ong, B.H.; Ahmad, S.H.; Abdullah, M.; Yamauchi, T.

    2005-01-01

    Magnetic pulps were prepared from unbleached kenaf (hibiscus cannabinus L.) kraft pulps. Fe 3 O 4 or magnetite powder was used to load into the pulp's lumen and pit. Aluminum sulphate [Al 2 (SO 4 ) 3 ] (alum) and polyethylenimine (PEI), both mainly function as retention aid were used throughout the experiment and found to be beneficial in the preparation of this magnetic pulps. The ash content method was used to determine the amount of magnetite retained in the lumen and pit. The utilization of PEI up to 2% per pulp fibres was found to be the best result on lumen loading. The deposition of magnetite powder in lumen and pit is found decrease as the addition of PEI used is more than 2% per pulp fibres. Scanning electron microscope (SEM) clearly shows the distribution of magnetite deposited in the lumen. Tensile index and folding endurance of the loaded fibre decreased slightly as the percentage of loading pigment increased

  7. Isolation and characterization of microcrystalline cellulose obtained ...

    In this study, microcrystalline cellulose, coded MCC-PNF, was obtained from palm nut (Elaeis guineensis) fibres. MCC-PNF was examined for its physicochemical and powder properties. The powder properties of MCC-PNF were compared to those of the best commercial microcrystalline cellulose grade, Avicel PH 101.

  8. Effects of chemical treatments on hemp fibre structure

    Kabir, M.M., E-mail: kabirm@usq.edu.au [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Wang, H. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Lau, K.T. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Cardona, F. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2013-07-01

    In this study, hemp fibres were treated with alkali, acetyl and silane chemicals. Fibre constituents such as cellulose, hemicellulose and lignin constituents were separated from treated fibres. The chemical and thermal influences of these constituents on the treated fibres were examined by using scanning electron microscope (SEM), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Experimental results revealed that, hemicellulose was degraded faster than that of cellulose and lignin. Cellulose exhibited better thermal stability and lignin was degraded in a wide range of temperatures. The hydrophilic nature of the fibres was predominantly caused by the presence of hemicellulose and then lignin constituents. Hemicellulose and lignin were mostly removed by the alkalisation with higher concentrations of NaOH, followed by acetylation. Silane treatment could not remove the hemicellulose and lignin, rather this treatment facilitated coupling with the fibre constituents.

  9. Effects of chemical treatments on hemp fibre structure

    Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F.

    2013-01-01

    In this study, hemp fibres were treated with alkali, acetyl and silane chemicals. Fibre constituents such as cellulose, hemicellulose and lignin constituents were separated from treated fibres. The chemical and thermal influences of these constituents on the treated fibres were examined by using scanning electron microscope (SEM), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Experimental results revealed that, hemicellulose was degraded faster than that of cellulose and lignin. Cellulose exhibited better thermal stability and lignin was degraded in a wide range of temperatures. The hydrophilic nature of the fibres was predominantly caused by the presence of hemicellulose and then lignin constituents. Hemicellulose and lignin were mostly removed by the alkalisation with higher concentrations of NaOH, followed by acetylation. Silane treatment could not remove the hemicellulose and lignin, rather this treatment facilitated coupling with the fibre constituents.

  10. Crop physiology of fibre hemp (Cannabis sativa L.)

    Werf, van der H.

    1994-01-01

    Fibre hemp ( Cannabis sativa L.) may be an alternative to wood as a raw material for the production of paper pulp. The effects of enviromnental factors and cultural measures on the functioning, yield and quality of fibre hemp crops in the

  11. Pulping and paper properties of Palmyra palm fruit fibers

    Waranyou Sridach

    2010-05-01

    Full Text Available Palmyra palm fruit fibers have the properties to be used as an alternative raw material of cellulosic pulps for papermaking.Acid and alkali pulping were investigated by using nitric acid and caustic soda on a laboratory scale, with the purpose of producing printing or writing grade pulp. The chemical composition of fiber strands from palmyra palm fruits were examined, such as holocellulose, cellulose, pentosan, lignin and extractives. The yields of acid and soda pulps were below 40%. The main physical and mechanical properties of hand sheets produced from acid and soda processes were evaluated on 80 g/m2 test sheets as functions of the following parameters: tensile index, tear index, and brightness. The mechanical properties of soda pulps were developed by twin-roll press while it was not necessary to fibrillate acidic pulps through the beating step. The soda pulp sheets presented a lower brightness than that of acidic pulp sheets. The mechanicaland physical properties of the acidic and alkaline pulps verified that they were of an acceptable quality for papermaking.

  12. Sisal organosolv pulp as reinforcement for cement based composites

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  13. Cellulose-reinforced composites: from micro-to nanoscale

    Alain Dufresne

    2013-01-01

    Full Text Available This paper present the most relevant advances in the fields of: i cellulose fibres surface modification; ii cellulose fibres-based composite materials; and iii nanocomposites based on cellulose whiskers or starch platelet-like nanoparticles. The real breakthroughs achieved in the first topic concern the use of solvent-free grafting process (plasma and the grafting of the matrix at the surface of cellulose fibres through isocyanate-mediated grafting or thanks to "click chemistry". Concerning the second topic, it is worth to mention that for some cellulose/matrix combination and in the presence of adequate aids or specific surface treatment, high performance composite materials could be obtained. Finally, nanocomposites allow using the semi-crystalline nature and hierarchical structure of lignocellulosic fibres and starch granules to more deeply achieve this goal profitably exploited by Mother Nature

  14. The effects of high energy radiation on the pulping properties of Pinus radiation and Eucalyptus regnans

    McLaren, K.G.; Garland, C.P.; Higgins, H.G.

    1976-01-01

    Studies have been made of the effects of high energy radiation on the pulping behaviour of Eucalyptus regnans and Pinus radiata. Pre-irradiation of wood chips with small doses of 60 Co gamma radiation (up to about 0.2 Mrad) caused little degradation of the cellulose, and had only minor effects on the kraft pulping properties of both wood species. Pulp yield, Kappa number and strength properties of the pulps showed little change. There was also little effect on the bisulphite cooking of Pinus radiata. As the dose was increased to 1 Mrad, degradation of cellulose (as indicated by degree of polymerisation measurements) became significant, and Kraft pulp yields from both woods showed small reductions. The Kappa number and physical properties of these pulps were little affected at this dose level. A gamma radiation dose of 10 Mrad produced marked depolymerisation of the cellulose, and big reductions in kraft and neutral sulphite semi-chemical pulp yields. The kraft pulps showed a much higher lignin content. Some low dose (0.15 Mrad) irradiations on thin chips were carried out with a 1 MeV electron accelerator. In contrast to comparable gamma irradiations, this treatment produced discernible changes in kraft pulping behaviour. The pulp yield, under the same cooking conditions, appears to be slightly higher, but the Lignin content of the pulp was increased. (Author)

  15. Fibre tracking

    Gaillard, J.M.

    1994-03-01

    A large-size scintillating plastic fibre tracking detector was built as part of the upgrade of the UA2 central detector at the SPS proton-antiproton collider. The cylindrical fibre detector of average radius of 40 cm consisted of 60000 plastic fibres with an active length of 2.1 m. One of the main motivations was to improve the electron identification. The fibre ends were bunched to be coupled to read-out systems of image intensifier plus CCD, 32 in total. The quality and the reliability of the UA2 fibre detector performance exceeded expectations throughout its years of operation. A few examples of the use of image intensifiers and of scintillating fibres in biological instrumentation are described. (R.P.) 11 refs., 15 figs., 2 tabs

  16. [Vital pulp therapy of damaged dental pulp].

    Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li

    2017-08-01

    The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.

  17. Dietary fibre in foods: a review.

    Dhingra, Devinder; Michael, Mona; Rajput, Hradesh; Patil, R T

    2012-06-01

    Dietary fibre is that part of plant material in the diet which is resistant to enzymatic digestion which includes cellulose, noncellulosic polysaccharides such as hemicellulose, pectic substances, gums, mucilages and a non-carbohydrate component lignin. The diets rich in fibre such as cereals, nuts, fruits and vegetables have a positive effect on health since their consumption has been related to decreased incidence of several diseases. Dietary fibre can be used in various functional foods like bakery, drinks, beverages and meat products. Influence of different processing treatments (like extrusion-cooking, canning, grinding, boiling, frying) alters the physico- chemical properties of dietary fibre and improves their functionality. Dietary fibre can be determined by different methods, mainly by: enzymic gravimetric and enzymic-chemical methods. This paper presents the recent developments in the extraction, applications and functions of dietary fibre in different food products.

  18. Hemp fibres: Enzymatic effect of microbial processing on fibre bundle structure

    Thygesen, Anders; Liu, Ming; Meyer, Anne S.

    2013-01-01

    The effects of microbial pretreatment on hemp fibres were evaluated after microbial retting using the white rot fungi Ceriporiopsis subvermispora and Phlebia radiata Cel 26 and water retting. Based on chemical composition, P. radiata Cel 26 showed the highest selectivity for pectin and lignin...... degradation and lowest cellulose loss (14%) resulting in the highest cellulose content (78.4%) for the treated hemp fibres. The pectin and lignin removal after treatment with P. radiata Cel 26 were of the order 82% and 50%, respectively. Aligned epoxy-matrix composites were made from hemp fibres defibrated...... with the microbial retting to evaluate the effects on their ultrastructure. SEM microscopy of the composites showed low porosity on the fibre surfaces after defibration with P. radiata Cel 26 and C. subvermispora indicating good epoxy polymer impregnation. In contrast, fibres treated by water retting and the raw...

  19. Effect of ionizing radiation on starch and cellulose

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  20. Application of thermophilic enzymes and water jet system to cassava pulp.

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Endurance of high molecular weight carboxymethyl cellulose in corrosive environments

    Murodov, M. M.; Rahmanberdiev, G. R.; Khalikov, M. M.; Egamberdiev, E. A.; Negmatova, K. C.; Saidov, M. M.; Mahmudova, N.

    2012-07-01

    Lignin obtained from the waste cooking liquor, formed after soda pulping process, is used as an inhibitor of NaCMC thermo oxidative degradation in presence of in extreme conditions during drilling oil wells. In this paper the schematic process of obtaining NaCMC by the principle of "monoapparat" on the basis of cellulose produced by non-wood cellulose materials is presented.

  2. PROCESS FOR THE PRODUCTION OF DISSOLVING PULP FROM TREMA ORIENTALIS (NALITA) BY PREHYDROLYSIS KRAFT AND SODA-ETHYLENEDIAMINE (EDA) PROCESS

    M. A. Quaiyyum; A. Noori; Labooni Ahsan; M. Sarwar Jahan

    2008-01-01

    This paper presents a preliminary study for the production of dissolving pulp from Trema orientalis (Nalita). Water prehydrolysis kraft and soda-ethylenediamine (EDA) pulping for the production of dissolving pulp from T. orientalis was investigated. Prehydrolysis at 150 and 170 oC did not produce pulp with high α-cellulose content when using the kraft process. But addition of 0.25 % H2SO4 in prehydrolysis liquor increased the purity of the pulp with the sacrifice of pulp yield and viscosity. ...

  3. The tensile properties of single sugar palm (Arenga pinnata) fibre

    Bachtiar, D.; Sapuan, S. M.; Zainudin, E. S.; Khalina, A.; Dahlan, K. Z. M.

    2010-05-01

    This paper presents a brief description and characterization of the sugar palm fibres, still rare in the scientific community, compared to other natural fibres employed in polymeric composites. Sugar palm fibres are cellulose-based fibres extracted from the Arenga pinnata plant. The characterization consists of tensile test and the morphological examination. The average tensile properties results of fibres such as Young's modulus is equal to 3.69 GPa, tensile strength is equal to 190.29 MPa, and strain at failure is equal to 19.6%.

  4. The tensile properties of single sugar palm (Arenga pinnata) fibre

    Bachtiar, D; Sapuan, S M; Zainudin, E S; Khalina, A; Dahlan, K Z M

    2010-01-01

    This paper presents a brief description and characterization of the sugar palm fibres, still rare in the scientific community, compared to other natural fibres employed in polymeric composites. Sugar palm fibres are cellulose-based fibres extracted from the Arenga pinnata plant. The characterization consists of tensile test and the morphological examination. The average tensile properties results of fibres such as Young's modulus is equal to 3.69 GPa, tensile strength is equal to 190.29 MPa, and strain at failure is equal to 19.6%.

  5. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  6. Integrated chemical plants at the pulp mill

    Ehtonen, P.; Hurme, M.; Jaervelaeinen, M.

    1995-12-31

    The goal of this paper is to present how the chemical plants can be integrated to the pulp mill. The integration renders possible to balance the chemical consumptions. The total mass balance of a pulp mill with the incoming fuel material and the outgoing waste and flue gases are discussed. The balance figures are presented for the chemicals of the modern fibre line, which will produce fully bleached softwood pulp with an improved effluent quality. The main benefits are lower chemical and transportation costs. The principal over-all plant process block diagrams and process descriptions are presented. The presented info system provides real time information on process and production status at overall mill and department levels. (author)

  7. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  8. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.

    Long, Lingfeng; Tian, Dong; Hu, Jinguang; Wang, Fei; Saddler, Jack

    2017-11-01

    Although biological pretreatment of cellulosic fiber based on endoglucanases has shown some promise to facilitate cellulose nanofibrillation, its efficacy is still limited. In this study, a xylanase-aided endoglucanase pretreatment was assessed on the bleached hardwood and softwood Kraft pulps to facilitate the downstream cellulose nanofibrillation. Four commercial xylanase preparations were compared and the changes of major fiber physicochemical characteristics such as cellulose/hemicellulose content, gross fiber properties, fiber morphologies, cellulose accessibility/degree of polymerization (DP)/crystallinity were systematically evaluated before and after enzymatic pretreatment. It showed that the synergistic cooperation between endoglucanase and certain xylanase (Biobrite) could efficiently "open up" the hardwood Kraft pulp with limited carbohydrates degradation (cellulose nanofibrillation during mild sonication process (90Wh) with more uniform disintegrated nanofibril products (50-150nm, as assessed by scanning electron microscopy and UV-vis spectroscopy). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fractographic observations of the microstructural characteristics of flax fibre composites

    Madsen, Bo; Asian, Mustafa; Lilholt, Hans

    2016-01-01

    Natural fibre composites possess a number of special microstructural characteristics, which need to be documented to aid in the further development of these materials. Using field emission scanning electron microscopy, fractographic observations of the microstructural characteristics of aligned f...... novel observations, measurements and interpretations to be used in the further analysis and understanding of the properties of natural fibre composites. (C) 2015 Elsevier Ltd. All rights reserved.......Natural fibre composites possess a number of special microstructural characteristics, which need to be documented to aid in the further development of these materials. Using field emission scanning electron microscopy, fractographic observations of the microstructural characteristics of aligned...... flax fibre/thermoplastic composites are presented. The findings are presented in relation to the three operational parts in composites: fibres, matrix and fibre/matrix interface. For the flax fibres, the striated structure on the fibre surface is shown to consist of cellulose macrofibrils oriented...

  10. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.

    Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam

    2016-06-28

    Research in cats has shown that increased fermentation-derived propionic acid and its metabolites can be used as alternative substrates for gluconeogenesis, thus sparing amino acids for other purposes. This amino acid sparing effect could be of particular interest in patients with kidney or liver disease, where this could reduce the kidneys'/liver's burden of N-waste removal. Since dogs are known to have a different metabolism than the obligatory carnivorous cat, the main objective of this study was to assess the possibility of altering amino acid metabolism through intestinal fermentation in healthy dogs. This was studied by supplementing a low-protein diet with fermentable fibres, hereby providing an initial model for future studies in dogs suffering from renal/liver disease. Eight healthy dogs were randomly assigned to one of two treatment groups: sugar beet pulp and guar gum mix (SF: soluble fibre, estimated to mainly stimulate propionic acid production) or cellulose (IF: insoluble fibre). Treatments were incorporated into a low-protein (17 %) extruded dry diet in amounts to obtain similar total dietary fibre (TDF) contents for both diets (9.4 % and 8.2 % for the SF and IF diet, respectively) and were tested in a 4-week crossover feeding trial. Apparent faecal nitrogen digestibility and post-prandial fermentation metabolites in faeces and plasma were evaluated. Dogs fed the SF diet showed significantly higher faecal excretion of acetic and propionic acid, resulting in a higher total SCFA excretion compared to IF. SF affected the three to six-hour postprandial plasma acylcarnitine profile by significantly increasing AUC of acetyl-, propionyl-, butyryl- + isobutyryl-, 3-OH-butyryl-, 3-OH-isovaleryl- and malonyl-L-carnitine. Moreover, the amino acid plasma profile at that time was modified as leucine + isoleucine concentrations were significantly increased by SF, and a similar trend for phenylalanine and tyrosine's AUC was found. These results indicate

  11. Production of Cellulosic Polymers from Agricultural Wastes

    A. U. Israel

    2008-01-01

    Full Text Available Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis, raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri, stem and cob of maize plant (Zea mays, fruit fiber from coconut fruit (Cocos nucifera, sawdusts from cotton tree (Cossypium hirsutum, pear wood (Manilkara obovata, stem of Southern gamba green (Andropogon tectorus, sugarcane baggase (Saccharium officinarum and plantain stem (Musa paradisiaca. They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate. The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

  12. Investigation of pulping and paper making potential of weeds

    omid Ghaffarzadeh Mollabashi

    2017-08-01

    Full Text Available Increasing use of wood products accompanying with resource constraint has revealed the importance of nonwood based material. In this study, pulping and papermaking potential of three varieties of weeds including Xanthium spinosum, Carthamus tinctorius and Cyperus papyrus have been considered. At first, chemical components of the samples i.e. cellulose, lignin and extractives have been measured following TAPPI standard test methods. Afterwards, pulping process based as soda and Kraft has been carried out and the pulp properties i.e. screen yield and reject, kappa number, caliper, bust index, tear index, brightness have been considered. According to the results, the amount cellulose, lignin and extractives have been measured for the Xanthium spinosum %38.15, %13.5 and 4.72, respectively. Theses parameters have been estimated about %38.25, %10.3 and % 2.95 for Carthamus tinctorius and %38.8, %19.2 and 4.4 in case of papyrus. The yield of soda and Kraft pulp of the papyrus was more than Xanthium spinosum and Carthamus tinctorius. Among all treatments, the highest screen yield related to soda pulping of Cyperus papyrus by %39.8 which has been obtained by 175 centigrade as a maximum temperature, L/W: 6/1, active alkaline: %30 and 90 minutes as the time at temperature. The lowest and highest amounts of the tear index were related to soda pulp sample of the Carthamus tinctorius and Kraft pulp sample of Xanthium spinosum by 2.49 and 8.1, respectively. In addition, the lowest and highest amounts of the bursting index were related to soda pulp sample of the Cyperus papyrus and Kraft pulp sample of Xanthium spinosum by 0.61and 2.48, respectively. Meanwhile, soda pulp sample of the Cyperus papyrus showed the highest amount of brightness with %45 ISO.

  13. Radiation -adsorption treatment of pesticides by using wood pulp and bagasse pulp

    Abd El-Aal, S.E.; Sokker, S.S.; Dessooki, A.M.

    2005-01-01

    Alkaline pulping of pulp wood and bagasse using sodium hydroxide resulted in the reduction of lignin from the wood and bagasse fibers and consequently increase adsorption of the pesticide pollutants to these fibers. Three different types of pesticides were used in this study namely, metalaxyl, dicloran and arelon. which were irradiated at a dose of 4 kGy before adsorption treatment.The results show that moderate adsorption was observed for all pesticides when adsorption was carried out without alkaline pulping and irradiation. This is due to the presence of lignin which retard the adsorption process. Batch sorption experiments at different pH values (3, 7, 9) for the retention of these pesticides by pulp wood and pulp bagasse fibers indicated that sorption is governed by the interaction of the ionized form of these compounds with the polyhydroxyl structure of cellulose. The study shows that alkaline pulping of pulpwood and bagasse improves its ability towards adsorption of the radiation degraded pesticide molecules

  14. The use of near-infrared scanning for the prediction of pulp yield and ...

    Calibration models to predict pulp yield, cellulose and lignin content were developed by applying chemometrics and partial least squares regression. Validation and determination of prediction accuracy of the models were performed using independent data. The prediction of cellulose and lignin were acceptable with ...

  15. Isolation and characterization of pulp from sugarcane bagasse and rice straw

    Saiful Azhari, S.; Suhardy, D.; Kasim, F.H; Nazry Saleh, M.

    2007-01-01

    The amount of sugarcane bagasse and rice straw in the state of Perlis (Malaysia) is abundant while its utilization is still limited. One of the alternatives for the bagasse and straw utilization is as pulp raw material. This paper reviews on pulp from sugarcane bagasse and rice straw and its suitability for paper production. In this study, the pulp was extracted by the Soxhlet extraction method. The objective of this study was to investigate the cellulose, lignin and silica content of the pulp from sugarcane bagasse and rice straw. For rice straw, the presence of large amount of pentosanes in the pulp and black liquors, which also contain silica were decreased the using of straw in the paper industry. Therefore, formic acid pulping and NaOH treatment are studied to reduce or prevent silica. The isolated pulp samples were further characterized by Scanning Electron Microscope (SEM) to investigate their fiber dimensions. (Author)

  16. The cellulose resource matrix.

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  17. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls

    Thygesen, Lisbeth Garbrecht; Hidayat, Budi Juliman; Johansen, Katja Salomon

    2011-01-01

    The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes ...... the initial part of enzymatic hydrolysis of cellulose. The implications of this phenomenon have not yet been recognized or explored within cellulosic biofuels....

  18. Improvement in Dissolution of Cotton Pulp with Ionic liquid by the Electron Beam Treatment

    Lee, Won Sil; Jung, Wong Gi; Sung, Yong Joo

    2013-01-01

    Electron beam treatment was applied for improving dissolution of cotton pulp with ionic liquids. Two ionic liquids, 1-allyl-3-methylimidazolium chloride ([Amim]Cl]: AC) and 1,3-dimethylimidzolium methlphosphite ([Dmim][(MeO)(H)PO2]: Me) were used for this experiment. Treatment with electron beams up to dose of 400 kGy resulted in the increase of hot water extract and alkali extract of cotton pulp and the great reduction in the molecular weight of cellulose. For the dissolution of cotton pulp with two ionic liquids, the electron beam treated samples showed faster dissolution. The dissolved cellulose with Me ionic liquid were regenerated with Acetonitrile and the structure of regenerated cellulose showed distinct difference depending on the electron beam treatment. Those results provide the electron beam pre-treatment could be applied as an energy efficient and environmentally benign method to increase the dissolution of cotton pulp with ionic liquids

  19. fibre separator

    ISHIOMA

    sharp edged spiral worm and four fixed blades, a pair of adjustable blades, ... energy and/or for the production of other products. ... 388 Afr. J. Environ. Sci. Technol. Figure 1. Layers of the palm fruit. planting. ... a skeleton of hard fibre running lengthwise through the ... maximum temperature of 28 - 32°C which is peculiar to.

  20. Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder

    Chuanshuang Hu; Yu Zhao; Kecheng Li; J.Y. Zhu; Roland Gleisner

    2015-01-01

    The fibrillation of a bleached kraft eucalyptus pulp was investigated by means of a laboratory-scale disk grinder for the production of cellulose nanofibrils (CNF), while the parameters disk rotating speed, solid loading, and fibrillation duration were varied. The cumulative energy consumption was monitored during fibrillation. The degree of polymerization (DP) and...

  1. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Ana Moral

    2015-01-01

    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  2. Three-Dimensional Microstructural Properties of Nanofibrillated Cellulose Films

    Arttu Miettinen

    2014-04-01

    Full Text Available Nanofibrillated cellulose (NFC films have potential as oxygen barriers for, e.g., food packaging applications, but their use is limited by their hygroscopic characteristics. The three-dimensional microstructure of NFC films made of Pinus radiata (Radiata Pine kraft pulp fibres has been assessed in this study, considering the structural development as a function of relative humidity (RH. The surface roughness, micro-porosity, thickness and their correlations were analyzed using X-ray microtomography (X–μCT and computerized image analysis. The results are compared to those from scanning electron microscopy and laser profilometry. Based on a series of films having varying amounts of 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO-mediated oxidated nanofibrils, it was demonstrated that X–μCT is suitable for assessing the surface and bulk 3D microstructure of the cellulose films. Additionally, one of the series was assessed at varying humidity levels, using the non-destructive capabilities of X–μCT and a newly developed humidity chamber for in-situ characterization. The oxygen transmission rate (OTR of the films (20 g=m2 was below 3:7mLm-2 day-1 at humidity levels below 60% RH. However, the OTR increased considerably to 12:4mLm-2 day-1 when the humidity level increased to 80% RH. The increase in OTR was attributed to a change of the film porosity, which was reflected as an increase in local thickness. Hence, the characterization techniques applied in this study shed more light on the structures of NFC films and how they are affected by varying humidity levels. It was demonstrated that in increasing relative humidity the films swelled and the oxygen barrier properties decreased.

  3. Effect of Flotation Time on the Deinking Process and Properties of Deinked Pulp

    Sami İmamoğlu

    2012-11-01

    Full Text Available This paper discusses the influence of flotation time on the ink removal and physical properties of resulting deinked pulp. Flotation deinking of high quality office paper, printed in a digital duplicating machine based on screen-printing system, was studied using a laboratory cell with a nominal capacity of 10 L. Formamidine sulfinic acid was used in a pulper and pulping conditions such as temperature, retention time, chemical dosage and consistency were held constant prior to flotation process. During the flotation process while pulp consistency, agitation speed, air flow rate and other conditions keeping constant, only flotation time were analyzed in terms of physical properties of resulting pulp quality, pulp yield, filler and fibre balance and waste water quality aspects at 0, 3, 6, 9, 12 and 15 minutes. Increased flotation time substantially affected optical properties of pulp up to some point then became steady. Yield losses increased as might be expected with increasing flotation time by the 9th minute as flotation sludge skimmed off on top of the flotation cell. Filler content of flotation sludge increased with increasing flotation time while fibre content was decreasing to a certain extent. Thanks to removal of ink and filler materials from pulp physical properties of evaluated handsheets enhanced. The overall results demonstrate that increasing flotation time increased physical and optical properties of resulting pulp. On the other hand flotation time should be increased up to critical point. Exceeding critical point increased yield losses, consumed time and energy without gaining significant pulp qualities.

  4. Scale up of ethanol production using pulp mill wastewater sludge by cellulase and saccharomyces cerevisiae

    Kunchada Sangasintu; Petchporn Chawakitchareon

    2010-01-01

    This study aimed to evaluate the potential use of pulp mill wastewater sludge as substrate in ethanol production. The simultaneous saccharification and fermentation process was conducted by using Saccharomyces cerevisiae TISTR 5339 under optimum proportion of cellulase and pulp mill wastewater sludge. The ethanol production from cellulosic materials in simultaneous saccharification and fermentation needs cooperation between cellulase and yeast. The cellulase hydrolyzes cellulose to sugar while yeast utilizes sugar to produce ethanol. The pulp mill wastewater sludge has an average content of 73.3 % hemi cellulose, 67.1 % alpha cellulose, 4.7 % beta cellulose and 1.4 % gamma cellulose. The experimental results indicated that the volume of the ethanol tend to increase with time, providing the maximum ethanol yield of 0.69 g/g on the 7"t"h day, the last day of the experiment. The ethanol production was scaled up in 5 L fermentor under optimum proportion and increased the fermentation period. It was found that the ethanol production gave the maximum ethanol yield of 1.14 g/g on the 9"t"h day of the totally 13 days experimentation. These results showed that the cellulose from pulp mill wastewater sludge was as effective substrate for ethanol production and alternative energy for the future. (author)

  5. FTIR characterization ans chemo-mechanical distinction of reted kenaf fibres

    Emannuel Omenna

    2017-12-01

    Full Text Available Inadequate information on the binding characteristics of kenaf biomass at the molecular level has adversely affected the modifications of its cellulose-hemicellulose-lignin structure. This study was undertaken to assess the characteristic features and chemo-mechanical properties of kenaf fibres retted under three different media namely: tank, stream and ribbon. Fourier transform infra-red (FTIR spectra analysis as well as the ASTM standard for tensile tests were applied. The results showed that the broad bands occurred at the range of 3312- 3420 cm−1 for all the retted fibres were due to the presence of hydroxyl (–OH group while the peaks were obtained at 1635.76, 1635.34, and 1730.69 cm−1 for stream, tank and ribbon retted fibres respectively. However, tank retted fibres had the most broad band intensity at 3419.78cm-1 while ribbon fibres had the highest absorption peak of 1730.69cm-1 corresponding to C=O stretching of the acetyl group in hemi-cellulose. Stream retted Kenaf fibres had the highest tensile strength followed by the tank retted fibres while ribbon fibres had the least. Furthermore, there was no significant difference between stream and tank retted Kenaf fibres in terms of tensile modulus and this was significantly higher than that of ribbon fibre. The α-cellulose content of stream retted fibres was slightly higher than that of ribbon fibres while tank retted fibres had the least. From the results, tank retted Kenaf fibre was ranked as ‘the best fibre’ with the most intensive broad bands and least in lignin and hemi-cellulose content which were regarded as the impurities, gummy and waxy materials, responsible for an easy deformation of the fibre cellular networks.

  6. Fibres and energy from wheat straw by simple practice

    Leponiemi, A.

    2011-06-15

    The overall purpose of this work is to evaluate the possibilities of wheat straw for fibre and energy production and address the question of whether or not it is possible to develop a cost-effective process for producing good quality pulp from wheat straw for current paper or paperboard products. In addition, in light of the green energy boom, the question of whether fibre production could give added value to energy production using wheat straw is addressed. Due to the logistics of the bulky raw material, the process should be applied on a small scale that determines the requirements for the process. The process should be simple, have low chemical consumption and be environmentally safe. The processes selected for the study were based on an initial hot water treatment. Actual defibration in the 'chemical' approach was then performed using a subsequent alkaline peroxide bleaching process or in the 'mechanical' approach through mechanical refining. In both approaches, energy can be produced from lower quality material such as dissolved solids or fines. In this work, one of the primary aims besides the development of the above-mentioned process is to investigate the chemical storage of wheat straw which decays easily between harvesting periods and examine its effects on pulping and pulp properties. In addition, the aim of this work is to determine the market potential for non-wood pulp and evaluate non-wood pulp production. The results showed that the 'chemical' approach produced fibres for printing and writing. The quality of the pulp was relatively good, but the chemical consumption at the target brightness of 75% was high, indicating that a chemical recovery would be needed unless the brightness target could be significantly reduced. The 'mechanical' approach produced unbleached fibres for fluting and the energy production from fines and dissolved solids generated additional income. The results also showed that it is possible

  7. Scintillating fibres

    Nahnhauer, R.

    1990-01-01

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry

  8. Scintillating fibres

    Nahnhauer, R. [IHEP Zeuthen (Germany)

    1990-11-15

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry.

  9. Vitellaria paradoxa Wood as a Potential Source of Dietary Fibre

    Abdullahi Alanamu ABDULRAHAMAN

    2012-02-01

    Full Text Available In the tropical developing countries, diseases such as diabetes, tuberculosis, cancer, obesity have been a continuous cause of mortality. In recent times, nutrition experts have come up with new ideas for food recipe, with a view to improving human health. One of these ideas is to enhance dietary fibre content to improve food digestibility and bowel movement. In this study the effect of the processed insoluble wood fibres on the blood system of albino rats was studied by feeding the rats with the processed Vitellaria paradoxa wood fibres added to the animals� normal diet for a period of 28 days across four treatments namely the control, 10%, 15% and 20% processed wood fibres.. These cellulosic materials incorporated into normal diet of the albino rats did not cause a reduction in the live weight of the experimental animals. A paired sample t- test conducted on the two sets of data indicated no significant difference (P = 0.8390 > 0.05 in the mean difference between mean initial and final haematocrit. Therefore the wood fibre supplemented diet did not have had any deleterious effects on the quality and quantity of the rats� blood. Thus there is also a possibility that the cellulosic fibres did not reduce the plasma cholesterol level concentrations of the rats. Processed wood was also used in baking bread. The addition of cellulosic fibres did not negatively affect the physical, chemical and baking properties of bread, but it prolonged the shelf-life of the bread.

  10. Vitellaria paradoxa Wood as a Potential Source of Dietary Fibre

    Abdullahi Alanamu ABDULRAHAMAN

    2012-02-01

    Full Text Available In the tropical developing countries, diseases such as diabetes, tuberculosis, cancer, obesity have been a continuous cause of mortality. In recent times, nutrition experts have come up with new ideas for food recipe, with a view to improving human health. One of these ideas is to enhance dietary fibre content to improve food digestibility and bowel movement. In this study the effect of the processed insoluble wood fibres on the blood system of albino rats was studied by feeding the rats with the processed Vitellaria paradoxa wood fibres added to the animals normal diet for a period of 28 days across four treatments namely the control, 10%, 15% and 20% processed wood fibres.. These cellulosic materials incorporated into normal diet of the albino rats did not cause a reduction in the live weight of the experimental animals. A paired sample t- test conducted on the two sets of data indicated no significant difference (P = 0.8390 > 0.05 in the mean difference between mean initial and final haematocrit. Therefore the wood fibre supplemented diet did not have had any deleterious effects on the quality and quantity of the rats blood. Thus there is also a possibility that the cellulosic fibres did not reduce the plasma cholesterol level concentrations of the rats. Processed wood was also used in baking bread. The addition of cellulosic fibres did not negatively affect the physical, chemical and baking properties of bread, but it prolonged the shelf-life of the bread.

  11. Factors affecting the optimal performance of a high-yield pulping operation

    Broderick, G [Noranda Technology Centre, Pointe-Claire, PQ (Canada); Paris, J [Ecole Polytechnique, Montreal, PQ (Canada); Valada, J L [Quebec Univ., Trois-Rivieres, PQ (Canada)

    1995-06-01

    Strategies for operating a chemical-mechanical pulp mill were investigated from data based on process models from some one hundred pilot scale pulping runs. Optimal values for 55 process and pulp quality variables have been calculated by applying a genetic algorithm search to a fuzzy model of the overall system. Best pulp quality was achieved and maintained when the chemical pretreatment was conducted at moderately low temperatures using a high SO{sub 2} concentration, which produced high sulphonation and high yield at the same time. By characterizing the quality of the pulp at the fibre level, optimization results were said to be more easily transferable to other high yield pulping systems. 19 refs., 6 tabs.

  12. Cellulose is not just cellulose

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...... or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose...

  13. Gamma-Ray-Initiated Graft Copolymerization on the Surface of Nylon Fibers and in the Inner Layers of Cellulosic Fibers; Amorcage par rayons gamma de la formation de copolymeres greffes a la surface de fibres de nylon et dans les couches internes de fibres cellulosiques; Sopolimerizatsionnoe narashchivanie na poverkhnosti nejlonovogo volokna i vo vnutrennikh sloyakh tsellyuloznykh volokon pod dejstviem gamma-izluchenij; Copolimerizacion por injerto radioinducida en la superficie de fibras de nylon y en las capas internas de fibras celulosicas

    Okamura, S; Iwasaki, T; Kobayashi, Y; Hayashi, K

    1960-07-15

    Crosslinks are formed as a result of the irradiation of nylon fibers in an atmosphere of nitrogen whereas degradation takes place on irradiation in air. Changes taking place on irradiation were studied by measurements of the viscosities of the irradiated fibers in sulphuric acid solutions. The tensile properties were also examined in air. If nylon fiber is irradiated in nitrogen, dipped in an aqueous solution of acrylamide and irradiated, grafting takes place only on the surface. When the preliminary irradiation is carried out in air, grafting takes place within the fiber. The location of the graft polymer is obtained by dyeing the fiber. The extent of grafting of cellulose fibers with styrene from methanol solution is very considerably increased if the cellulose fibers are swollen in a 5 - 10% solution of formamide in methanol. The effect of the concentrations of formamide and styrene in the methanolic solutions were studied and maximum grafting was found to occur at 5% formamide and 70% styrene concentrations. At dose rates of the order of 10{sup 5}r./h. it was found that the rate of grafting was diffusion controlled. (author) [French] L'irradiation de fibres de nylon dans une atmosphere d'azote provoque une reticulation tandis que l'irradiation dans l'air entraine une degradation des polymeres. Les auteurs ont etudie les modifications qui se produisent sous l'effet de l'irradiation, en mesurant la viscosite des fibres irradiees dans des solutions d'acide sulfurique. Ils ont aussi examine la resistance a la tension dans l'air. Si la fibre de nylon est d'abord irradiee dans l'azote, plongee dans une solution aqueuse d'acrylamide puis irradiee de nouveau, le greffage ne se produit qu'en surface. Lorsque l'irradiation preliminaire est faite dans l'air, le greffage se produit a l'interieur de la fibre. On localise le polymere greffe en colorant la fibre. Le greffage des fibres cellulosiques en presence de styrolene dissous dans du methanol augmente considerablement

  14. High yield CTMP fibres as a possibility of the more efficient yield of wood raw material

    Klašnja Bojana A.

    2004-01-01

    Full Text Available The evident shortage of wood as a raw material has become a limiting factor in the pulp and paper industry which is the greatest consumer of wood in Europe. The situation in our country is similar. During the few past years, the production of poplar and willow pulpwood was 220.000 m3 per year, which is insufficient for the planned increase in the production of sulphate pulp (175.000 tons till 2005. This paper deals with the aspects of the more efficient yield of raw material, based on the significantly higher yield of CTMP fibres, as well as with the significance of the lower adverse effect on the environment. It also analyses the conditions of production and the quality of the obtained fibres, as a possible substitute for chemical pulp and secondary fibres in papers of different quality. The main reasons for the production and use of CTMP fibres in our country are reported.

  15. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Rice straw pulp obtained by using various methods.

    Rodríguez, Alejandro; Moral, Ana; Serrano, Luis; Labidi, Jalel; Jiménez, Luis

    2008-05-01

    Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).

  17. In Situ Hybridization of Pulp Fibers Using Mg-Al Layered Double Hydroxides

    Carl-Erik Lange

    2015-04-01

    Full Text Available Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris. High super saturated (hss solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm. Nano-size (70 nm LDH particles were found from fibers external surface and, to a lesser degree, from the S2 cell wall after synthesis via low super saturated (lss route. The synthesis via slow urea hydrolysis (Uhyd yielded micron and clay sized LDH (2–5 μm and enabled efficient fiber densification via mineralization of S2 fiber wall layer as indicated by TEM and compliance analysis. The Uhyd method decreased fiber compliance up to 50%. Reduction in the polymerisation degree of cellulose was observed with capillary viscometry. Thermogravimetric analysis showed that the hybridization with LDH reduced the exothermic heat, indicating, that this material can be incorporated in flame retardant applications. Fiber charge was assessed by Fibers 2015, 3 104 adsorption expermients with methylene blue (MB and metanil yellow (MY. Synthesis via lss route retained most of the fibres original charge and provided the highest capacity (10 μmol/g for anionic MY, indicating cationic character of hybrid fibers. Our results suggested that mineralized fibers can be potentially used in advanced applications such as biocomposites and adsorbent materials.

  18. SURFACE MODIFICATION OF SUGARCANE BAGASSE CELLULOSE AND ITS EFFECT ON MECHANICAL AND WATER ABSORPTION PROPERTIES OF SUGARCANE BAGASSE CELLULOSE/ HDPE COMPOSITES

    Daniella Regina Mulinari

    2010-05-01

    Full Text Available Cellulose fibres from sugarcane bagasse were bleached and modified by zirconium oxychloride in order to improve the mechanical properties of composites with high density polyethylene (HDPE. The mechanical properties of the composites prepared from chemically modified cellulose fibres were found to increase compared to those of bleached fibres. Tensile strengths of the composites showed a decreasing trend with increasing filler content. However, the values for the chemically modified cellulose fibres/HDPE composites at all mixing ratios were found to be higher than that of neat HDPE. Results of water immersion tests showed that the water absorption affected the mechanical properties. The fracture surfaces of the composites were recorded using scanning electron microscopy (SEM. The SEM micrographs revealed that interfacial bonding between the modified filler and the matrix was significantly improved by the fibre modification.

  19. Morphological and Chemical Characterization of Green Bamboo (Dendrocalamopsis oldhami (Munro Keng f. for Dissolving Pulp Production

    Shilin Cao

    2014-06-01

    Full Text Available With the sustained growth of dissolving pulp demand all over the world, the search for alternative bamboo materials has come into focus in China due to the shortage of wood and the abundance of bamboo resources. In this study, to obtain updated information concerning green bamboo growing in southeastern China and to develop its processing technologies for dissolving pulp, the fiber morphology, chemical composition, elemental composition, degree of polymerization (DP of cellulose, and crystallinity index (CrI of cellulose were investigated. The experimental results show that green bamboo has potential for use as dissolving pulp because it has a lower Runkel ratio and fines content than moso bamboo, and a much lower lignin content and similar α-cellulose and hemicellulose contents compared to softwoods and hardwoods. Compared to the cortex and culm, the node had the shortest fibers and more than 30% of fines, the highest content of extractives and lignin, and the lowest α-cellulose content. As a result, a de-knotting operation prior to cooking can contribute to the production of high-grade dissolving pulp. The DP and CrI of cellulose from the node were much lower than that of cellulose from the culm and cortex. Moreover, green bamboo had the high content of ash, primarily distributed in the cortex. The concentration of Si was 4487 ppm in the cortex, nearly five times higher than that in the culm and node.

  20. Alkaline Pulping and Bleaching of Acacia auriculiformis Grown in Bangladesh

    JAHAN, M. Sarwar; SABINA, Rowshan; RUBAIYAT, Arjumand

    2014-01-01

    The physical, chemical, and morphological characteristics of Acacia auriculiformis were evaluated in terms of its suitability for papermaking. The fiber length (1.1 mm) of A. auriculiformis in this study was within the range of tropical hardwoods. The lignin content in A. auriculiformis was 19.4% and a-cellulose 44.1%, which was within the range of other acacias, but that of extractives was higher. Soda, soda-AQ, and kraft processes were studied in pulping. Screened pulp yield was increased w...

  1. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  2. Influence of accompanying substances of hemp fibres on their electric resistance

    Pejić Biljana

    2006-01-01

    Full Text Available Hemp fibres belong to the group of natural, cellulose bast fibres. These fibres have exceptional properties such as: antimicrobial effect, absence of allergy effect, extraordinary sorption properties, good electro-physical properties (small static electricity in regard to other cellulose fibres as well as high values of breaking strength (the natural fibre with the highest strength. However, hemp fibres have some defects: heterogeneous chemical composition, large quantity of accompanying substances (lignin pectins, waxes and unsatisfactory fineness and eveness. It is possible to a great extent to eliminate or reduce, the defects of hemp fibres by of appropriate modification treatments. In order to determine the appropriate modification treatment of hemp fibres, the dependences between the chemical composition, fineness and electric resistance of hemp fibres were presented in this paper. In the experimental part of the paper, by the application of a procedure for the determination of the chemical composition, the accompanying supstances of hemp fibres were gradually removed. After each phase some fibrous substrates were separated. After that the fineness and electric resistance were determined. This experiment was conducted in order to define the influence of each component of hemp fibres on the fineness and electric resistance. In this paper, hemp fibres were modified by an aqueous solution of sodium hydroxide, under different conditions of modification. The influence of modification conditions on the fineness and electric resistance were studied.

  3. Effect of banana pulp and peel flour on physicochemical properties and in vitro starch digestibility of yellow alkaline noodles.

    Ramli, Saifullah; Alkarkhi, Abbas F M; Shin Yong, Yeoh; Min-Tze, Liong; Easa, Azhar Mat

    2009-01-01

    The present study describes the utilization of banana--Cavendish (Musa acuminata L., cv cavendshii) and Dream (Musa acuminata colla. AAA, cv 'Berangan')--pulp and peel flours as functional ingredients in yellow alkaline noodles. Noodles were prepared by partial substitution of wheat flour with ripe banana pulp or peel flours. In most cases, the starch hydrolysis index, predicted glycaemic index (pGI) and physicochemical properties of cooked noodles were affected by banana flour addition. In general, the pGI values of cooked noodles were in the order; banana peel noodles banana pulp noodles peel flour was higher in total dietary fibre but lower in resistant starch contents than the pulp flour, the low pGI of banana peel noodles was mainly due to its high dietary fibre content. In conclusion, banana pulp and peel flour could be useful for controlling starch hydrolysis of yellow noodles, even though some physicochemical properties of the noodles were altered.

  4. Avoiding total reduced sulfur (TRS) emissions from sodium sulfite pulping recovery processes

    Norman, J.C.; Sell, N.J.; Ciriacks, J.C.

    1990-01-01

    This paper reports that one of the current trends in paper-making with cellulose pulping is the use of high-yield processes. With yields greater than 65%, these processes include mechanical pulps (groundwood and thermomechanical pulps or TMP), and semichemical types (chemi-TMP or CTMP). Groundwood and TMP make up about 10% of North American pulp production. Semichemical pulp makes up about 7% and is mostly used for corrugating medium. High-yield pulping for linerboard, particularly using the alkaline sulfite process, is also likely to be used in the future. High-yield pulping is based primarily on the sulfite process using mostly sodium-based chemicals. A disadvantage of this process is the unavailability of a recovery system for the inorganic pulping chemicals. Generally, mills have not accepted any particular recovery system for this process. For this and other reasons, sulfite processes constitute only 3-4% of the total North American pulp production. If high-yield processes continue to increase in popularity, a sodium sulfite chemical recovery system will be needed. A number of chemical recovery systems have been developed in the past 30 years for sodium-based sulfite pulping processes, with most of the mills successfully using this process located in Scandinavia

  5. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  6. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-01-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  7. Methods to use biomass, consisting of peat and wood material, to extract fiber substance to be used to make paper pulp and a fuel product. Saett att ur biomassa, bestaaende av torv och vedmatarial, utvinna en foer tillverkning av en pappersmassaprodukt laemplig fibermassa samt en braensleprodukt

    Lindahl, J A.I.

    1985-12-16

    Peat cut from the upper layers is used to make paper pulp of low density. The wood material of the peat is mechanically separated three times. The result is a pulp of peat fibres and wood fibres and dewatered colloidal peat to be used as a fuel. (M.B).

  8. WORKSHOP: Scintillating fibre detectors

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  9. Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals.

    Sirtori, Cesare R; Triolo, Michela; Bosisio, Raffaella; Bondioli, Alighiero; Calabresi, Laura; De Vergori, Viviana; Gomaraschi, Monica; Mombelli, Giuliana; Pazzucconi, Franco; Zacherl, Christian; Arnoldi, Anna

    2012-04-01

    The present study was aimed to evaluate the effect of plant proteins (lupin protein or pea protein) and their combinations with soluble fibres (oat fibre or apple pectin) on plasma total and LDL-cholesterol levels. A randomised, double-blind, parallel group design was followed: after a 4-week run-in period, participants were randomised into seven treatment groups, each consisting of twenty-five participants. Each group consumed two bars containing specific protein/fibre combinations: the reference group consumed casein+cellulose; the second and third groups consumed bars containing lupin or pea proteins+cellulose; the fourth and fifth groups consumed bars containing casein and oat fibre or apple pectin; the sixth group and seventh group received bars containing combinations of pea protein and oat fibre or apple pectin, respectively. Bars containing lupin protein+cellulose ( - 116 mg/l, - 4·2%), casein+apple pectin ( - 152 mg/l, - 5·3%), pea protein+oat fibre ( - 135 mg/l, - 4·7%) or pea protein+apple pectin ( - 168 mg/l, - 6·4%) resulted in significant reductions of total cholesterol levels (Ppea protein+cellulose. The present study shows the hypocholesterolaemic activity and potential clinical benefits of consuming lupin protein or combinations of pea protein and a soluble fibre, such as oat fibre or apple pectin.

  10. Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions

    Goutianos, Stergios; Mao, Rui; Peijs, Ton

    2017-01-01

    Abstract The mechanical response of cellulose nanopaper composites is investigated using a three-dimensional (3D) finite element fibrous network model with focus on the effect of inter-fibre bonds. It is found that the Young’s modulus and strength, for fixed fibre properties, are mainly controlle...

  11. Quality evaluation of dissolving pulp fabricated from banana plant stem and its potential for biorefinery.

    Das, Atanu Kumar; Nakagawa-Izumi, Akiko; Ohi, Hiroshi

    2016-08-20

    The study was conducted to evaluate the quality of dissolving pulp of Musa sapientum L. (banana) plant stem and its potential for biorefinery. Introduction of pre-hydrolysis prior to any alkaline pulping process helps to reduce the content of hemicellulose and consequently produce acceptably high content of cellulose pulp. Water pre-hydrolysis was done at 150°C for 90min. The amount of lignin, xylan and glucan in the extracted pre-hydrolysis liquor (PHL) was 1.6, 4.9 and 1.6%, respectively. Pulping of pre-extracted chips was done following soda-AQ, alkaline sulfite and kraft process. The ratio of chip to liquor was 1:7 for both pre-hydrolysis and pulping. The kraft pulping process with 20% active alkali and 25% sulfidity at 150°C for 90min showed the best result. The lowest kappa number was 26.2 with a considerable pulp yield of 32.7%. The pulp was bleached by acidic NaClO2 and the consistency was 10% based on air-dried pulp. The lowest amount of 7% NaClO2 was used for the bleaching sequence of D0ED1ED2. After D0ED1ED2 bleaching, the pulp showed that α-cellulose, brightness and ash were 91.9, 77.9 and 1.6% respectively. The viscosity was 19.9cP. Hence, there is a possibility to use banana plant stem as a raw material for dissolving grade pulp and other bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Atomic force microscopy characterization of the surface wettability of natural fibres

    Pietak, Alexis; Korte, Sandra; Tan, Emelyn; Downard, Alison; Staiger, Mark P.

    2007-01-01

    Natural fibres represent a readily available source of ecologically friendly and inexpensive reinforcement in composites with degradable thermoplastics, however chemical treatments of fibres are required to prepare feasible composites. It is desirable to characterize the surface wettability of fibres after chemical treatment as the polarity of cellulose-based fibres influences compatibility with a polymer matrix. Assessment of the surface wettability of natural fibres using conventional methods presents a challenge as the surfaces are morphologically and chemically heterogeneous, rough, and can be strongly wicking. In this work it is shown that under atmospheric conditions the adhesion force between an atomic force microscopy (AFM) tip and the fibre surface can estimate the water contact angle and surface wettability of the fibre. AFM adhesion force measurements are suitable for the more difficult surfaces of natural fibres and in addition allow for correlations between microstructural features and surface wettability characteristics

  13. What holds paper together: Nanometre scale exploration of bonding between paper fibres

    Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Bauer, Wolfgang; Schennach, Robert

    2013-01-01

    Paper, a man-made material that has been used for hundreds of years, is a network of natural cellulosic fibres. To a large extent, it is the strength of bonding between these individual fibres that controls the strength of paper. Using atomic force microscopy, we explore here the mechanical properties of individual fibre-fibre bonds on the nanometre scale. A single fibre-fibre bond is loaded with a calibrated cantilever statically and dynamically until the bond breaks. Besides the calculation of the total energy input, time dependent processes such as creep and relaxation are studied. Through the nanometre scale investigation of the formerly bonded area, we show that fibrils or fibril bundles play a crucial role in fibre-fibre bonding because they act as bridging elements. With this knowledge, new fabrication routes can be deduced to increase the strength of an ancient product that is in fact an overlooked high-tech material. PMID:23969946

  14. Simultaneous production of α-cellulose and furfural from bagasse by steam explosion pretreatment

    Vittaya Punsuvon

    2008-02-01

    Full Text Available Sugar cane bagasse was pretreated by steam explosion for the simultaneous production of furfural and α-cellulose pulp. The components of bagasse were fractionated after steam explosion. The details of the process are as follows. Bagasse was soaked in water for one night and steamed at temperatures varying between 206 and 223 C for 4 minutes. The steam exploded pulp was strained and washed with hot water to yield a liquor rich in hemicellulose-derived mono- and oligosaccharides. The remaining pulp was delignified by alkali for 120 minutes at 170C using, separately, NaOH load of 15, 20 and 25% of weight of the pulp. The delignified pulp was further bleached twice with 4% H2O2 charge of weight of the pulp to produce high α-cellulose pulp. The water liquor was evaporated and further hydrolysed and dehydrated with diluted H2SO4 in a stainless steel reactor to produce furfural. The result shows that the optimal pretreatment of steam explosion for 4 min at 218C leads to the yield of α-cellulose pulp at 193-201 g∙kg-1 of the original bagasse, and that furfural can be produced from xylose present in the liquor with a maximum conversion factor of 0.16.

  15. Electron treatment of wood pulp for the viscose process

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  16. Efeito da adição de polpa, carboximetilcelulose e goma arábica nas características sensoriais e aceitação de preparados em pó para refresco sabor laranja Effect of adding pulp, carboxymethyl cellulose and arabic gum to sensory characteristics and acceptance of powdered orange-flavored refreshments

    Valentina de Fátima Caleguer

    2007-06-01

    Full Text Available O trabalho teve como objetivo avaliar o efeito sensorial da adição de polpa, carboximetilcelulose (CMC e goma arábica (fibra nos atributos e aceitação de refrescos de laranja. Utilizou-se uma amostra padrão e outras formuladas com polpa, CMC, fibra e todos os ingredientes. Foram realizadas análises físico-químicas (pH, acidez titulável, sólidos solúveis, vitamina C, cor e turbidez, e as amostras também foram caracterizadas pela técnica de Perfil Livre. Na análise descritiva utilizou-se 14 provadores e, para a avaliação dos resultados foi empregada a Análise Procrustes Generalizada. As amostras caracterizadas como diferentes (padrão, CMC, fibra foram submetidas a teste de aceitação. Os refrescos foram caracterizados e separados com base em atributos de aparência (cor laranja e turbidez, aroma (adocicado e laranja, sabor (doce, laranja e ácido e textura (viscosidade. O padrão e a amostra com polpa, que não foram diferenciadas sensorialmente, apresentaram menor intensidade de cor laranja e turbidez, e foram consideradas menos encorpadas e mais ácidas. As amostras com CMC e fibra se diferenciaram do padrão e apresentaram comportamento intermediário. A formulação com todos os ingredientes apresentou características opostas: maior intensidade de cor e turbidez, mais encorpada e menos ácida. As amostras com CMC e fibra foram mais aceitas que o padrão.The aim of this work was to evaluate the sensory effect of adding pulp, carboxymethyl cellulose (CMC and arabic gum (fiber to characteristics and acceptance of powdered orange flavored soft drinks. A standard sample and another formulated with pulp, CMC, fiber with all the ingredients were used. Physicochemical analyses (pH, titratable acidity, soluble solids, vitamin C, color and turbidity were applied and samples were characterized by Free-Choice Profiling. Fourteen panelists were used in the descriptive analysis and the Generalized Procrustes Analysis was applied to

  17. Lipophilic extractives from several nonwoody lignocellulosic crops (flax, hemp, sisal, abaca) and their fate during alkaline pulping and TCF/ECF bleaching.

    Marques, Gisela; del Río, José C; Gutiérrez, Ana

    2010-01-01

    The fate of lipophilic extractives from several nonwoody species (flax, hemp, sisal and abaca) used for the manufacturing of cellulose pulps, was studied during soda/anthraquinone (AQ) pulping and totally chorine free (TCF) and elemental chlorine free (ECF) bleaching. With this purpose, the lipophilic extracts from the raw materials and their unbleached and bleached industrial pulps, were analyzed by gas chromatography-mass spectrometry. Aldehydes, hydroxyfatty acids and esterified compounds such as ester waxes, sterol esters and alkylferulates strongly decreased after soda/AQ pulping while alkanes, alcohols, free sterols and sterol glycosides survived the cooking process. Among the lipophilic extractives that remained in the unbleached pulps, some amounts of free sterols were still present in the TCF pulps whereas they were practically absent in the ECF pulps. Sterol glycosides were also removed after both TCF and ECF bleaching. By contrast, saturated fatty acids, fatty alcohols and alkanes were still present in both bleached pulps.

  18. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    El-Sakhawy, M.M.; Hassan, M.L.

    2005-01-01

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested

  19. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    El-Sakhawy, M M; Hassan, M L [Cellulose and Paper Dept., National Research Center, Dokki, Cairo (Egypt)

    2005-07-01

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested.

  20. Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper

    Mao, Rui; Goutianos, Stergios; Tu, Wei-Chen

    2017-01-01

    Cellulose nanopaper consists of a dense fibrous self-binding network composed of cellulose nanofibres connected by physical entanglements, hydrogen bonding, etc. Compared with conventional printing paper, cellulose nanopaper has higher strength and modulus because of stronger fibres and inter......-fibre bonding. The aim of this paper is to investigate the fracture properties of cellulose nanopaper using double edge notch tensile tests on samples with different notch lengths. It was found that strength is insensitive to notch length. A cohesive zone model was used to describe the fracture behaviour...... of notched cellulose nanopaper. Fracture energy was extracted from the cohesive zone model and divided into an energy component consumed by damage in the material and a component related to pull-out or bridging of nanofibres between crack surfaces which was not facilitated due to the limited fibre lengths...

  1. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai

    2015-01-01

    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  2. Dental pulp stem cells

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors....

  3. Optical and Physical Properties of ONP Deinked Pulp

    Iman Akbarpoor

    2012-01-01

    Full Text Available Enzymes are protein molecules with complex structures that accelerate the biochemical reactions. Activity of these chemical compounds is accomplished at limited range of pH, temperature and concentration. In this study, the effects of different concentrations of cellulose enzyme were investigated on deinking of old newsprint. Old newsprint (ONP was repulped at 5% consistency for 10 minutes in disintegrator with total revolution number of 26500. Enzymatic treatments of recycled ONP pulp were done under constant conditions (10% consistency,treatment time of 15 minutes, pH range of 5-5.5 at different cellulose concentrations of 0.025, 0.05, 0.1 and 0.2% (based on oven-dry waste paper. The optical and physical properties of the standard paper (60g/m2 made at different concentrations of cellulose were evaluated in comparison with control pulp (untreated ONP pulp with cellulase. Overall, the results achieved by comparison the optical properties of the paper produced indicated that using cellulase in deinking of ONP led to increase the brightness and the yellowness and decrease the opacity. The brightness was improved to a maximum level of 47.5 ISO %, but the yellowness was decreased to a minimum level of 11.3 ISO %, while the brightness reduced and the yellowness increased at higher concentrations than 0.05% cellulase. The highest opacity of 99.3 ISO % was achieved using 0.1% cellulase even higher than control pulp. The results gained by comparison the physical properties of the paper showed that using cellulase resulted in decrease of paper calliper, air resistance and density and improve the freeness of pulp

  4. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    Arib, R.M.N.; Sapuan, S.M.; Ahmad, M.M.H.M.; Paridah, M.T.; Zaman, H.M.D. Khairul

    2006-01-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage

  5. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    Arib, R.M.N. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapuan, S.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: sapuan@eng.upm.edu.my; Ahmad, M.M.H.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Paridah, M.T. [Faculty of Forestry, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zaman, H.M.D. Khairul [Radiation Processing Technology Division, Malaysian Institute for Nuclear Technology Research (MINT), Bangi 43000 Kajang, Selangor (Malaysia)

    2006-07-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage.

  6. The pulping of esparto grass by sodium monosulfite

    Akchiche, Omar; Messaoud, Boureghda

    2007-01-01

    Traditionally, the esparto's limbs, in the manufacturing process of the cellulosic pulps, are delignified according to the process chlorinates alkaline which alternate the action of caustic's soda and chlorine; the reason is that these sheets cannot be free from the silica which they contain that only in strongly alkaline medium. In spite of the relative simplicity of implementation of this process, it does not remain free from grievance about it: low yield, an excessive consumption of bleach...

  7. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure. © The Author(s) 2016.

  8. Mechanical and biotechnical fractionating of field biomasses into different fibre fractions; Peltobiomassojen mekaaninen ja biotekninen fraktiointi eri kuitujakeisiin

    Vilppunen, P.; Aaltonen, H.; Sohlo, J. [Oulu Univ. (Finland). Dept. of Process Engineering

    1997-12-01

    Separation processes for energy and fibre fractions, predominantly those for seed flax, using traditional pulp classifiers and the new pressure classifier process were studied in the wet-separation part of the project. A combined plant fibre further-refining process, based on mechanical and biotechnical separation, operating on the basis of fibre length, was developed on the basis of dry and wet fraction tests. (orig.)

  9. Current characterization methods for cellulose nanomaterials.

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  10. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations

    Haagensen, Frank Drøscher; Skiadas, Ioannis V.; Gavala, Hariklia N.

    2009-01-01

    potential of the olive pulp, which is the semi solid residue generated from the two-phase processing of the olives for olive oil production. Wet oxidation and enzymatic hydrolysis have been applied aiming at the enhancement of carbohydrates' bioavailability. Different concentrations of enzymes and enzymatic......, implying that wet oxidation is not a recommended pre-treatment process for olive pulp at the conditions tested. It was also showed that increased dry matter concentration did not have a negative effect on the release of sugars, indicating that the cellulose and xylan content of the olive pulp is relatively...

  11. Supra-molecular structure and chemical reactivity of cellulose I studied using CP/MAS (sup)13 C-NMR

    Chunilall, Viren

    2013-08-01

    Full Text Available There are a few traditional methods of analysing the chemical properties of cellulose I. Some of these methods include the Permanganate number determination, which is used to obtain the lignin content of the pulp [12]. The acid insoluble lignin content... – Fundamental Aspects 88 [10] Fengel D, Wegener G. Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter; 1984. [11] Uhlmann T. Ullmann's encyclopedia of industrial chemistry. Paper and Pulp. 1991; 18 (A). [12] Permanganate number of pulp, Tappi T...

  12. High-alkali low-temperature polysulfide pulping (HALT) of Scots pine.

    Paananen, Markus; Sixta, Herbert

    2015-10-01

    High-alkali low-temperature polysulfide pulping (HALT) was effectively utilised to prevent major polysaccharide losses while maintaining the delignification rate. A yield increase of 6.7 wt% on wood was observed for a HALT pulp compared to a conventionally produced kappa number 60 pulp with comparable viscosity. Approximately 70% of the yield increase was attributed to improved galactoglucomannan preservation and 30% to cellulose. A two-stage oxygen delignification sequence with inter-stage peroxymonosulphuric acid treatment was used to ensure delignification to a bleachable grade. In a comparison to conventional pulp, HALT pulp effectively maintained its yield advantage. Diafiltration trials indicate that purified black liquor can be directly recycled, as large lignin fractions and basically all dissolved polysaccharides were separated from the alkali-rich BL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  14. Utilization of agricultural cellulose wastes

    Valkanas, G N; Economidis, D G; Koukios, E G; Valkanas, C G

    1977-05-05

    Wastes, example, straw, are prehydrolyzed to convert pentosanes, starches, and hemicelluloses to monosaccharides; the remaining pulp is 50% cellulose. Thus, dry wheat straw 0.8 kg was treated with 10 L of 0.3% aqueous HCl at 5-5.5 atm and 145/sup 0/ and a space velocity of 0.55 L/min, washed with dry steam, followed by water at 120 to 130/sup 0/, and more dry steam, and compressed at 25 kg/cm/sup 2/ to yield a product containing 45 to 50 wt % water. The sugar solution obtained (1394 L) contained 1.34 wt % reducing sugars, a straw hydrolysis of 23 wt %, and comprised xylose 74.3, mannose 5.2, arabinose 11.8, glucose 5.9, galactose 2.9%, and furfural 0.16 g/L. The cellulose residue had a dry weight of 0.545 kg. a yield of 68.2 wt % and contained cellulose 53.1, hemicelluloses 12.6%, lignin 22.1, ash and extractables 12.2%. The degree of polymerization was 805 glucose units.

  15. Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites

    Liu, Ming; Ale, Marcel Tutor; Kołaczkowski, Bartłomiej

    2017-01-01

    Classical field retting and controlled fungal retting of hemp using Phlebia radiata Cel 26 (a mutant with low cellulose degrading ability) were compared with pure pectinase treatment with regard to mechanical properties of the produced fibre/epoxy composites. For field retting a classification...

  16. Biogas generation apple pulp.

    Llaneza Coalla, H; Blanco Fernández, J M; Morís Morán, M A; López Bobo, M R

    2009-09-01

    In view of the pressing problem that appears in our region (Asturias, north of Spain) with the residues from the cider production, it was decided to test this kind of material as a co-substrate joint with slaughterhouse waste in a laboratory unit. The anaerobic digestion of apple pulp was investigated for biogas production. This paper presents the results where apple pulp was co-digested with slaughterhouse waste (pig intestine and bovine stomach content) in a biogas laboratory unit (10 l CSTR reactor). The production of biogas has reached very satisfactory values during the whole test (0.8m(3)kg(-1)OTS), verifying that the process is kept in stable conditions of pH (near 8.0), and the volatile fatty acids was always underneath 3000 mg/l, when the pulp amount was lower than 100g in mesophilic conditions. The fat concentration into the digester remained always below the value that causes inhibition of the methanogenic bacteria, 500 mg/l. Finally, methane concentration (77-80%) and H(2)S concentration (400 ppm) in the biogas, they were similar to those obtained when the test was run out in the absence of apple pulp. The process efficiency with respect to COD removal was high, near 80% of the total COD. Finally, inhibitory effects of methanogenic bacteria were observed when pulp concentration was around 10% in the input material.

  17. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  18. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  19. Alkaline hemp woody core pulping : impregnation characteristics, kinetic modelling and papermaking qualities

    Groot, de B.

    1998-01-01

    The aim of this thesis is to elucidate alkaline processing of hemp woody core, supporting the development and optimization of an efficient and non-polluting pulping process. This study has been a constituent of an integral programme to study fibre hemp.

    It is known that

  20. Microgel polymer composite fibres

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  1. Mesta/Kenaf as raw material for Kraft pulping

    Saraf, V. P.; Shiveshwar, R. M.; Meshramkar, P. M.; Deb, U. K.; Jaspal, N. S.; Biyani, B. P.

    1980-03-15

    In recent years, the shortage of conventional raw materials for pulping has intensified a world-wide search for alternate raw materials. Among other cellulosic materials, attention has focused on agricultural residues and annual plants. In this category, Kenaf, also called Mesta, has been studied as a fiber source in many countries including the USA, Phillippines and India. A comprehensive study on kraft pulping of mesta was carried out where the fiber morphology, pulping, bleaching and papermaking characteristics were investigated. Black liquor properties were also determined. The results of this study are reported and compared to the conventional raw material bamboo. The investigation has shown that mesta is easily pulped and bleached and forms sheets of excellent strength properties, comparable to or better than bamboo pulps. The black liquor from mesta is similar to bamboo in calorific value but is very low in silica, which is highly desirable from the chemical recovery point of view. As with all agricultural residues and annual plants, mesta has a high bulk per unit weight. The problems arising from this, e.g., baling, transportation, proper utilization of digester capacity, have to be studied before mesta can be widely accepted in the paper industry.

  2. In vitro digestion methods to characterize the physicochemical properties of diets varying in dietary fibre source and content

    Zhou, Pan; Theil, Peter Kappel; Wu, De

    2018-01-01

    Co-products from food and agro industries – barley hulls (BH), pectin residue (PR), sugar beet pulp (SBP) and potato pulp (PP) – were collected, dried (PR, SBP, PP) and milled to pass a 1-, 2- and 4-mm screen. A total of 48 diets originating from these sources with four intended dietary fibre (DF...

  3. Cellulose Insulation

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  4. Influence of different fibre sources on digestibility and nitrogen and energy balances in growing pigs

    Hansen, Michael Jørgen; Chwalibog, André; Tauson, Anne-Helene

    2006-01-01

    The present study was undertaken to investigate how three different fibre sources, sugar beet pulp, soya bean hulls and pectin residue, constituting 15% of diets for growing pigs, influenced daily body gain, feed conversion, apparent faecal digestibility and nitrogen and energy balances. Eight......) and energy were significantly lower for the fibre diets (OM: 0.81-0.85; energy: 0.78-0.83) compared to the control diet (OM: 0.88; energy: 0.86). The apparent faecal digestibility of crude protein (CP) was lower for the fibre diets (0.71-0.78) compared to the control diet (0.83), although it was only...... significantly lower for the sugar beet pulp and pectin residue diets. The pectin residue diet, which contained the highest amount of dietary fibre, lignin and insoluble non-starch polysaccharides, had the lowest digestibility of OM, CP and energy. There was a tendency (p = 0.07) for a diet effect on retained...

  5. Fun with Optical Fibres

    Alti, Kamlesh

    2017-01-01

    Optical fibres play a very crucial role in today's technologies. Academic courses in optical fibres start at the undergraduate level. Nevertheless, student's curiosity towards optical fibres starts from the school level. In this paper, some fun experiments have been designed for both school and college students, which have some concrete…

  6. Special fibres and components

    Bunge, C.-A.; Woyessa, Getinet; Bremer, K.

    2017-01-01

    In this chapter we present more specific fibre types for particular applications. Starting with the multi-core fibre, which can be used as a substitution for ordinary SI-POF transmission fibres, but with better bending losses, over the ever increasing range of micro-structured POF for diverse sen...

  7. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre.

    Abraham, Eldho; Deepa, B; Pothen, L A; Cintil, J; Thomas, S; John, M J; Anandjiwala, R; Narine, S S

    2013-02-15

    The objective of this work was to develop an environmental friendly method for the effective utilization of coir fibre by adopting steam pre-treatment. The retting of the coconut bunch makes strong environmental problems which can be avoided by this method. Chemical characterization of the fibre during each processing stages confirmed the increase of cellulose content from raw (40%) to final steam treated fibres (93%). Morphological and dynamic light scattering analyses of the fibres at different processing stages revealed that the isolation of cellulose nano fibres occur in the final step of the process as an aqueous suspension. FT-IR and XRD analysis demonstrated that the treatments lead to the gradual removal of lignin and hemicelluloses from the fibres. The existence of strong lignin-cellulose complex in the raw coir fibre is proved by its enhanced thermal stability. Steam explosion has been proved to be a green method to expand the application areas of coir fibre. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Cellulose Perversions

    Maria H. Godinho

    2013-03-01

    Full Text Available Cellulose micro/nano-fibers can be produced by electrospinning from liquid crystalline solutions. Scanning electron microscopy (SEM, as well as atomic force microscopy (AFM and polarizing optical microscopy (POM measurements showed that cellulose-based electrospun fibers can curl and twist, due to the presence of an off-core line defect disclination, which was present when the fibers were prepared. This permits the mimicking of the shapes found in many systems in the living world, e.g., the tendrils of climbing plants, three to four orders of magnitude larger. In this work, we address the mechanism that is behind the spirals’ and helices’ appearance by recording the trajectories of the fibers toward diverse electrospinning targets. The intrinsic curvature of the system occurs via asymmetric contraction of an internal disclination line, which generates different shrinkages of the material along the fiber. The completely different instabilities observed for isotropic and anisotropic electrospun solutions at the exit of the needle seem to corroborate the hypothesis that the intrinsic curvature of the material is acquired during liquid crystalline sample processing inside the needle. The existence of perversions, which joins left and right helices, is also investigated by using suspended, as well as flat, targets. Possible routes of application inspired from the living world are addressed.

  9. Effect of process parameters on the dryness of molded pulp products

    Didone, Mattia; Tosello, Guido

    2016-01-01

    Molded pulp products are made from cellulose fibers dispersed in water then formed, drained and dried. As in the conventional papermaking process, the most energ yintensive operation (including time) is drying. To gain a better understanding of the process parameters involved and to investigate...

  10. The electro-oxidation of lignin in Sappi Saiccor dissolving pulp mill ...

    Log in or Register to get access to full text downloads. ... obtained from Sappi Saiccor (formerly South African Industrial Cellulose Corporation) dissolving pulp mill ... were identified in the electro-oxidised reaction mixtures using gas chromatography-mass spectrometry ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  11. Environmentally friendly cellulose-based polyelectrolytes in wastewater treatment.

    Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G

    2017-09-01

    Natural-based polyelectrolytes (PELs), with all the advantages coming from being produced from renewable and biodegradable sources, are a potential solution for the removal of dyes from wastewater. In this work, surplus Eucalyptus bleached cellulose fibres from a paper mill were modified to increase the charge and solubility of cellulose. First, reactive aldehyde groups were introduced in the cellulose backbone by periodate oxidation of cellulose. Further modification with alkylammonium produced positively charged cellulose-based PELs. The final products were characterized by several analytical techniques. The PEL with the highest substitution degree of cationic groups was evaluated for its performance in decolouration processes, bentonite being used as aid. This was found to be effective for colour removal of either anionic or cationic dyes. Bio-PELs can thus be considered as very favourable eco-friendly flocculation agents for decolouration of harsh effluents from several industries, considering their biodegradable nature and thus the ability to produce less sludge.

  12. Photonic Crystal Fibres

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  13. Fibre illumination system

    2012-01-01

    Source: EP2426402A The invention relates to a fibre illumination module and system for the collection and delivery of daylight for illumination purposes. The fibre illumination module comprises a plurality of collector elements, each collector element comprising an input fibre having a first end......-directional arrangement. The fibre illumination system comprises a fibre illumination module of the above-mentioned type. By the invention, daylight may be exploited for the illumination of remote interior spaces of buildings in order to save energy, and improve the well-being of users in both housing and working...

  14. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Vrije, Truus de; Budde, Miriam A.W.; Lips, Steef J.; Bakker, Robert R.; Mars, Astrid E.; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-12-15

    Hydrogen was produced from carrot pulp hydrolysate, untreated carrot pulp and (mixtures of) glucose and fructose by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana in pH-controlled bioreactors. Carrot pulp hydrolysate was obtained after enzymatic hydrolysis of the polysaccharide fraction in carrot pulp. The main sugars in the hydrolysate were glucose, fructose, and sucrose. In fermentations with glucose hydrogen yields and productivities were similar for both strains. With fructose the hydrogen yield of C. saccharolyticus was reduced which might be related to uptake of glucose and fructose by different types of transport systems. With T. neapolitana the fructose consumption rate and consequently the hydrogen productivity were low. The hydrogen yields of both thermophiles were 2.7-2.8 mol H{sub 2}/mol hexose with 10 g/L sugars from carrot pulp hydrolysate. With 20 g/L sugars the yield of T. neapolitana was 2.4 mol H{sub 2}/mol hexose while the yield of C. saccharolyticus was reduced to 1.3 mol H{sub 2}/mol hexose due to high lactate production in the stationary growth phase. C. saccharolyticus was able to grow on carrot pulp and utilized soluble sugars and, after adaptation, pectin and some (hemi)cellulose. No growth was observed with T. neapolitana when using carrot pulp in agitated fermentations. Enzymatic hydrolysis of the polysaccharide fraction prior to fermentation increased the hydrogen yield with almost 10% to 2.3 g/kg of hydrolyzed carrot pulp. (author)

  15. Biomechanical pulping of kenaf

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1999-01-01

    The objective of this study was to investigate the effect of fungal pretreatment of whole kenaf prior to refining on refiner electrical energy consumption, paper strength, and optical properties. We also explored the suitability of whole kenaf biomechanical pulp for making newsprint in terms of ISO brightness and strength properties. Kenaf was sterilized by autoclaving...

  16. Infection and Pulp Regeneration

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  17. ESR study of the radiolysis of cellobiose, cellulose-containing materials, and their mixtures with methyl methacrylate

    Kozlova, E.Y.; Shostenko, A.G.; Ermolaev, S.V.

    1995-01-01

    The ESR spectra of γ-irradiated cellobiose, paper waste, and cellulose extracted from paper waste and waste pulp sludge were analyzed. The kinetics of formation and decay of cellobiose radicals were investigated, and the radiation-chemical yields of the radicals formed in cellulose-containing materials were calculated. The ESR spectra of cellobiose irradiated in the presence of methyl methacrylate (MMA) were obtained. A probable mechanism of MMA grafting onto cellulose-containing matrices is considered

  18. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase

    Kosugi, Akihiko; Murata, Yoshinori; Arai, Takamitsu; Mori, Yutaka [Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 (Japan); Kondo, Akihiko [Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Nada-ku, Kobe, 657-8501 (Japan); Ueda, Mitsuyoshi [Department of Applied Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Vaithanomsat, Pilanee; Thanapase, Warunee [Nanotechnology and Biotechnology Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Chatuchak, Ladyao, Bangkok 10900 (Thailand)

    2009-05-15

    Cassava (Manihot esculenta Crantz) pulp, produced in large amounts as a by-product of starch manufacturing, is a major biomass resource in Southeast Asian countries. It contains abundant starch (approximately 60%) and cellulose fiber (approximately 20%). To effectively utilize the cassava pulp, an attempt was made to convert its components to ethanol using a sake-brewing yeast displaying glucoamylase on the cell surface. Saccharomyces cerevisiae Kyokai no. 7 (strain K7) displaying Rhizopus oryzae glucoamylase, designated strain K7G, was constructed using the C-terminal-half region of {alpha}-agglutinin. A sample of cassava pulp was pretreated with a hydrothermal reaction (140 C for 1 h), followed by treatment with a Trichoderma reesei cellulase to hydrolyze the cellulose in the sample. The K7G strain fermented starch and glucose in pretreated samples without addition of amylolytic enzymes, and produced ethanol in 91% and 80% of theoretical yield from 5% and 10% cassava pulp, respectively. (author)

  19. The effects of various sources of dietary fibre on cholesterol metabolism and colonic function in healthy subjects

    Stasse-Wolthuis, M.

    1980-01-01

    This thesis deals with the influence of several types of dietary fibre on cholesterol metabolism and colonic function in young healthy subjects. Dietary fibre has been defined as those plant polysaccharides (cellulose, hemicelluloses, pectic substances) and lignin which are resistant to hydrolysis

  20. Hot water treatment on piassava fibre (Sttalea funifera martius)

    Barros, J.J.P.; Moura, D.A.; Moreno, C.G.; Santos, E.B.C.; Fim, F.C.; Wellen, R.M.R.; Silva, L.B.

    2016-01-01

    In this study a heat treatment was performed on the piassava fibres with particle size inferior to 270 mesh to remove the impurities, the main objective was to reach adhesion with polymeric matrices. The treatment took place by magnetic stirring at two temperatures, 50 and 75 deg C, the stirring time ranged between 2 and 24 hours. Fibres were characterized by means of mass loss, optical microscopy (MO) and X-Ray diffraction (DRX). The mass loss was higher for the heat treatment at 75 deg C during 24 hours, suggesting it is the most appropriate treatment for its superficial cleaning. Fibres presented DRX peak around 22 deg related to cellulose crystalline structure. By MO images the heat treatment at 75 deg C provided the fibre superficial cleaning. (author)

  1. Preparation of lumen-loaded kenaf pulp with magnetite (Fe{sub 3}O{sub 4})

    Zakaria, S.; Ong, B.H.; Ahmad, S.H.; Abdullah, M.; Yamauchi, T

    2005-02-15

    Magnetic pulps were prepared from unbleached kenaf (hibiscus cannabinus L.) kraft pulps. Fe{sub 3}O{sub 4} or magnetite powder was used to load into the pulp's lumen and pit. Aluminum sulphate [Al{sub 2}(SO{sub 4}){sub 3}] (alum) and polyethylenimine (PEI), both mainly function as retention aid were used throughout the experiment and found to be beneficial in the preparation of this magnetic pulps. The ash content method was used to determine the amount of magnetite retained in the lumen and pit. The utilization of PEI up to 2% per pulp fibres was found to be the best result on lumen loading. The deposition of magnetite powder in lumen and pit is found decrease as the addition of PEI used is more than 2% per pulp fibres. Scanning electron microscope (SEM) clearly shows the distribution of magnetite deposited in the lumen. Tensile index and folding endurance of the loaded fibre decreased slightly as the percentage of loading pigment increased.

  2. Clean production of corn stover pulp using KOH+NH4OH solution and its kinetic during delignification

    Sun Yong; Yang Gang; Zhang Jin-Ping; Yao Ming-Shun

    2012-01-01

    The self-made KOH together with NH4OH pulping of corn stover was investigated. The combined alkaline system could effectively remove lignin during pulping. There are three stages of lignin removal during delginification. Approximately 90% of lignin could be removed after temperature reached 150ºC for over 30 minutes. The p-hydroxyl phenol groups in lignin could be completely removed during the delignification reaction. The tendency of the increase of the crystalline degree of cellulose ...

  3. Water requirements of the pulp and paper industry

    Mussey, Orville D.

    1955-01-01

    Water, of varied qualities, is used for several purposes in the manufacture of pulp and paper, as a vehicle for transporting the constituents of paper in the paper machines; as process water for cooking wood chips to make pulp; as a medium for heat transfer; and for washing the pulpwood, the woodpulp, and the machines that handle the pulp. About 3,200 million gallons of water was withdrawn from surface- and ground-water sources each day during 1950 for the use of the pulp and paper industry. This is about 4 percent of the total estimated industrial withdrawal of water in the Nation The paper industry in the United States has been growing at a rapid rate. It has increased about tenfold in the last 50 years and has doubled every 15 years. The 1950 production of paper was about 24 million tons, which amounts to about 85 percent of the domestic consumption. In 1950, the pulp mills of the country produced more than 14 million tons of woodpulp, which supplied about 85 percent of the demand by the paper mills and other industries. The remainder of the fiber for paper manufacture was obtained from imported woodpulp, from reclaimed wastepaper, and from other fibers including rags and straw. The nationwide paper consumption for 1955 has been estimated at 31,700,000 tons. Woodpulp is classified according to the process by which it is made. Every woodpulp has characteristics that are carried over into the many and diverse grades of paper. Groundwood pulp is manufactured by simply grinding up wood and refining the resulting product. Soda, sulfite, and sulfate pulps are manufactured by chemically breaking down the lignin that cements the cellulose of the wood together and removing, cleaning, and sometimes bleaching the resulting fibers. Some woodpulp is produced by other methods. Sulfate-pulp mills are increasing in number and in rated daily capacity and are manufacturing more than half of the present domestic production of woodpulp. Most of the newer and larger woodpulp mills

  4. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.

    Kadam, Kiran L; Chin, Chim Y; Brown, Lawrence W

    2008-05-01

    A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin. A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are

  5. Fibre and polyphenols of selected fruits, nuts and green leafy vegetables used in Serbian diet

    Dodevska Margarita

    2015-01-01

    Full Text Available Fruits and vegetables are known as good sources of numerous bioactive compounds among which polyphenols and dietary fibre are considered essential because of their protective health effects. The aim of this study was to characterize the quality of selected plant foods of our region regarding amount of total phenols, fibres and ratio of certain fractions of fibre. Fifteen samples of plant foods (green leafy vegetables, fruits and nuts were evaluated for total antioxidant activity, total phenolic content, total, soluble and insoluble fibre and fractions of fibre: beta-glucans, arabinoxylan, cellulose and resistant starch. Generally nuts were the richest sources of fibre and total phenols. However, when serving size was taken into consideration, it appeared that raspberry and blackberry were the richest in total, soluble fibre and cellulose. At the same time, almonds and hazelnuts were particulary rich in insoluble fibre, while walnuts had the highest polyphenol content. Analyzed plant foods were poor sources of arabinoxylan and beta-glucan. Data on resistant starch presence in cashew nut is the first confirmation that resistant starch can be found in significant amount in some nuts. The results give rare insight into the quality of selected plant foods regarding dietary fibre and polyphenols from the nutritive point of view. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  6. Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes.

    Robles, Eduardo; Fernández-Rodríguez, Javier; Barbosa, Ananda M; Gordobil, Oihana; Carreño, Neftali L V; Labidi, Jalel

    2018-03-01

    Tequila elaboration leaves two main byproducts that are undervalued (bagasse and leaves). Organosolv pulping and Total Chlorine Free bleaching were integrated to obtain cellulose fibers from agricultural waste which consisted of blue agave bagasse and leaf fibers; together they represent a green process which valorizes biomass waste. The obtained celluloses were characterized by FT-IR, colorimetry, and SEM and their extraction yields were evaluated. These celluloses were used to produce cellulose nanocrystals and cellulose nanofibers. First, an acid hydrolysis was performed in a sonication bath to induce cavitation during the reaction to produce cellulose nanocrystals. Then a high-pressure homogenization was selected to produce cellulose nanofibers. These nanocelluloses were characterized by powder XRD, Nanosizer, zeta potential, NMR, and electronic microscopy. Results showed that cellulose from organosolv pulps bleached with TCF bleaching is suitable for nanocellulose production. Moreover, the use of a new step to separate cellulose nanocrystals resulted in yields almost doubling traditional yields, while the rest of the properties remained within the expected. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Swedish Pulp Mill Biorefineries. A vision of future possibilities

    Berntsson, Thore (Chamers Univ. of Technology, Goeteborg (Sweden)); Axegaard, Peter; Backlund, Birgit; Samuelsson, Aasa; Berglin, Niklas; Lindgren, Karin (STFI-Packforsk, Stockholm (Sweden))

    2008-07-01

    Today, modern science could make it possible to develop techniques for refining almost the whole wood-matter, pulp mill side streams and bark compounds into platform chemicals, electricity, high quality fuels and structured feed-stock for chemicals and materials. The major challenge is to convert the state of basic scientific knowledge into industrial practise. Our definition of an integrated biorefinery is: 'Full utilization of the incoming biomass and other raw materials for simultaneous and economically optimized production of fibres, chemicals and energy'. Examples of products from a pulp mill biorefinery are: Chemicals and Materials (Phenols, adhesives, carbon fibres, activated carbon, binders, barriers, adhesives, antioxidants, surfactants, chelants, solvents, adhesives surfactants, descaling agents, specialty polymers, pharmaceuticals, nutraceuticals, cosmetics etc., Biofuels (pellets, lignin fuel, methanol, DME, ethanol etc), Electricity (BLGCC, condensing power etc.). The new or increased amounts of traditional products can be made from internal and/or external biomass. Three different levels can be identified: A high degree of energy saving in future mills, especially chemical pulp mills, will lead to large amounts of excess internal biomass which can be transferred to products mentioned above, Components in e.g. the black liquor, forest residues and bark can be upgraded to more valuable ones and the energy balance of the mill is kept through fuel import, wholly or partly depending on the level of mill energy efficiency. This imported fuel can be biomass or other types. External (imported) biomass (in some cases together with excess internal biomass) can be upgraded using synergy effects of docking this upgrading to a pulp mill. Electricity has been included as one of the possible biorefinery products. The electricity production in a mill can be increased in several ways which cannot be directly considered as biorefineries, e.g. recovery boiler

  8. Studies on the utilization of agricultural residues in the manufacture of pulp and paper, and industrial chemicals

    Joshi, V.S.; Kamath, G.P.; Basu, S.

    1980-03-15

    While demand for pulp and paper products in India is increasing at the annual rate of 7 to 8%, availability of cellulosic raw material to meet the ever increasing demand is becoming a serious problem. It has been estimated that bamboo, the traditional source of cellulosic raw material in India, even after ensuring the most scientific and best possible exploitation, could provide less than 50% of the requirement. In a big agricultural country like India, agri-residues like straws and bagasse, along with jute sticks, available in huge quantity, could provide substantial amount of cellulosic resources to the pulp and paper industry. Realizing the importance of agri-residue utilization in Indian economy, a series of research projects have been initiated and completed during the last 15 years to study the techno-economic feasibility of manufacturing pulp, paper, and industrial chemicals, based on rice and wheat straws, bagasse, and jute sticks. The economic advantages of the mechano-chemical pulping process, as compared to the conventional pressure, pulping process, for the conversion of agri-residues into pulp and paer is evaluated. For highlighting the importance of agri-residues in the field of useful chemical recovery possibilities, experimental data are given on the saccarification of agri-residues into reducing sugars by the simple acid hydrolysis method with the help of concentrated sulfuric acid.

  9. Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin

    Plackett, David; Anturi, Harvey; Hedenqvist, Mikael

    2010-01-01

    Two types of microfibrillated cellulose (MFC) were prepared using either a sulfite pulp containing a high amount of hemicellulose (MFC 1) or a carboxymethylated dissolving pulp (MFC 2). MFC gels were then combined with amylopectin solutions to produce solvent-cast MFC-reinforced amylopectin films....... Tensile testing revealed that MFC 2-reinforced films exhibited a more ductile behavior and that MFC 1-reinforced films had higher modulus of elasticity (E-modulus) at MFC loadings of 50 wt % or higher. Pure MFC films had relatively low oxygen permeability values when data were compared with those...

  10. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad [Food Science Program, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Ahmad, Ishak [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia)

    2013-11-27

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  11. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-01-01

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H 2 SO 4 , 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application

  12. Panel Board From Coconut Fibre And Pet Bottle

    Ngadiman, Norhayati; Kaamin, Masiri; Abd. Kadir, Aslila; Sahat, Suhaila; Zaini, Aziza; Raihana Nor Zentan, Siti; Ain Ahmad, Nur; Amran, Wan Haizatul Aisyhah Wan

    2018-03-01

    The rate of global deforestation and its impact on the environment has led particle board manufacture to search for alternative feedstock, especially in countries where wood is less available compared to other cellulosic natural product. Based on the properties of coconut fibre and PET bottle, these two materials can be recycle as raw material for manufacture of panel board. As for this study, the coconut fibre were used as the filler and PET bottle as outer lining of the panel board. Two types of coconut fibre were used which are grinding and un-grinding coconut fibre. At first, the coconut fibre are undergoes softening, grinding, drying and sieving process, while PET bottle was cleaning, shredding, sieving before compacted using hydraulic hot press machine. There are four types of testing that been carried out which are swelling, water absorption, Modulus of Elasticity (MOE) and Modulus of Rupture (MOR). The result show the conventional board has the highest value for MOE test, so it's indicate that the conventional board is less strength from the coconut fibre board. As for water absorption test, the average water absorption of coconut fibre based panel board is less than conventional board. Overall, the coconut fibre board is better than conventional panel board because coconut fibre board are less swelling, has low water absorption, high modulus of rupture and low modulus of elasticity. Based on the finding, this coconut fibre panel board has potential as a stronger and long-lasting panel board than the conventional board in the market. Other than that, the panel also have their own aesthetic value since the recycled plastic bottle used as outer lining is colourful and giving aesthetic value.

  13. Panel Board From Coconut Fibre And Pet Bottle

    Ngadiman Norhayati

    2018-01-01

    Full Text Available The rate of global deforestation and its impact on the environment has led particle board manufacture to search for alternative feedstock, especially in countries where wood is less available compared to other cellulosic natural product. Based on the properties of coconut fibre and PET bottle, these two materials can be recycle as raw material for manufacture of panel board. As for this study, the coconut fibre were used as the filler and PET bottle as outer lining of the panel board. Two types of coconut fibre were used which are grinding and un-grinding coconut fibre. At first, the coconut fibre are undergoes softening, grinding, drying and sieving process, while PET bottle was cleaning, shredding, sieving before compacted using hydraulic hot press machine. There are four types of testing that been carried out which are swelling, water absorption, Modulus of Elasticity (MOE and Modulus of Rupture (MOR. The result show the conventional board has the highest value for MOE test, so it’s indicate that the conventional board is less strength from the coconut fibre board. As for water absorption test, the average water absorption of coconut fibre based panel board is less than conventional board. Overall, the coconut fibre board is better than conventional panel board because coconut fibre board are less swelling, has low water absorption, high modulus of rupture and low modulus of elasticity. Based on the finding, this coconut fibre panel board has potential as a stronger and long-lasting panel board than the conventional board in the market. Other than that, the panel also have their own aesthetic value since the recycled plastic bottle used as outer lining is colourful and giving aesthetic value.

  14. Pulping and papermaking properties of the leaf fiber and fibrous residue from Agave tequilana

    Kurita, T.; Mitsuhashi, S.; Kanetsuna, H.; Iguchi, M.; Shirota, T.; Trujillo, J.J.; Herrera, T.

    1981-01-01

    The leaves and fibrous residue of A. tequilana had fibriles with parallel orientation and helical arrangement to the fiber axis and contained fibers in average length and width of 1.7 mm and 10.3 mu m and 0.8 mm and 25.5 mu m, respectively. The cell wall in leaves was thicker and narrower than those in fibrous residue, and leaves contained cellulose and lignin lower than fibrous residue did. Alkali sulfite cooking of leaves gave pulp, the yield of which was lower than that from fibrous residue. The H/sub 2/On retention and bulk density of leaf pulps increased rapidly on beating suggesting that an internal fibrillation in pulp occurs easily during beating. The breaking length and burst and tear factors of paper from leaf pulp were higher than those from fibrous residue.

  15. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  16. Effect of gamma rays on fibre of sida rhombifolia Linn

    Dnyansagar, V.R.

    1975-01-01

    It was reported long back that the stem fibre of Sida rhombifolia might be advantageously employed for many purposes. A study was, therefore, undertaken to study the effect of gamma rays on plants of this species raised from irradiated seeds to assess its value with reference to its fibre and as a substitute for jute. The fibres were extracted from stems of Sida rhombifolia and their characters were compared with those obtained from the plants raised from seeds irradiated at different doses of gamma rays ranging from 5,000 R to 35,000 R. The physical tests such as length and diameter of ultimate cells, intrinsic strength, elongation percentage at break were applied while the chemical tests were based on the estimation of ash, cellulose, lignin, fat and wax contents of fibres. The results indicate that the fibres of plants raised from seeds irradiated at 20,000 R, are stronger than those of control. Their strength reaches the value of those of Corchorus species and their cellulose content is more than that in Corchorus. (author)

  17. HIPPI and Fibre Channel

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  18. The effects of commercial fibres on frozen bread dough

    JELENA FILIPOVIĆ

    2010-02-01

    Full Text Available The daily intake of dietary fibres in highly industrialized countries is at a low level and, therefore, adversely affecting human health. The objective of this research was to analyze the influence of different commercial fibres (originating from sugar beet pulp fibrex, and Jerusalem artichoke inulin HPX and GR in yeast dough at a level of 5 %, on the rheological properties of dough and the quality of bread during frozen storage. Frozen dough characteristics were determined using a Brabender maturograph and test baking was followed according the AACC procedure. The dough was frozen at –18 °C and stored over a period of 60 days. The results concerning the dough (proving time and stability and bread quality (volume and crumb quality were statistically analyzed by multivariance Manova and discriminative analysis, which indicated that there was a significant difference between dough without fibres and dough with different fibres (fibrex, inulin HPX and GR. The discrimination coefficient points that the greatest influence of fibres on the final proof and proving stability is after 30 days (6.250 and after 0 days (6.158, respectively, but the greatest influence of fibres on bread volume and bread crumb quality (15.488 and 3.638, respectively can be expected on non frozen dough, due to above mention their adverse the effect on gluten network.

  19. Evaluation of the technological and sensory properties of durum wheat spaghetti enriched with different dietary fibres.

    Rakhesh, Nisha; Fellows, Christopher M; Sissons, Mike

    2015-01-01

    The incorporation of fibres, whether insoluble or soluble, in durum wheat pasta negatively impacts desirable end-use properties, especially if incorporated in significant amounts. Fibres can disrupt the starch-protein matrix of the dough during pasta preparation and can also often swell more readily with water than starch, competing with the starch for water during dough development. Similar degrees of substitution with different fibres gave markedly different impacts on firmness, stickiness, cooking loss and sensory attributes, suggesting that results obtained for one fibre cannot readily be generalized to other fibres. The in vitro starch digestibility of the pastas was significantly reduced when resistant starch, β-glucan-enriched flour, carboxymethyl cellulose or guar gum was incorporated but increased when pollard or inulin was added. In many instances, different sources of the same fibre gave dramatically different impacts on the properties of cooked durum wheat pasta. © 2014 Society of Chemical Industry.

  20. PENGGUNAAN ASAM PERASETAT PADA PROSES DELIGNIFIKASI PULP ACETOSOLV DARI AMPAS TEBU DAN BAMBU BETUNG

    Ahmad Sapta Zuidar

    2014-07-01

    Full Text Available Acetosolv process produced dark pulp because of the high lignin content.  Therefore ,  delignification  process is needed. This process uses peracetic acid to improve pulp qualities. The objective of this research was to determine the effect of different concentrations of peracetic acid against the characteristics of pulp acetosolv from bagasse and bamboo betung.  The research was arranged in a Complete Randomized Block Design with a single treatment and 4 replications.  The treatment used peracetic acid with six levels concentration (9%, 11%, 13%, 15%, 17%, 19% at a temperature of 85oC for 3 hours. The homogenity and additivity of the data were  analyzed using Bartlett and Tuckey Tests, then they were analyze for ANOVA to see if there is any difference among means, and then processed further using  Least Significant Difference at level of 1% and 5%.  The results showed that the concentration of peracetic acid had significant effect on yield, cellulose, hemicellulose, lignin, and organoleptic color pulp from bagasse and bamboo betung.  The best results showed that the concentration of peracetic acid 15% with cooking duration of  3 hours gave the best pulp. The pulp contained 85.837% of cellulose , 7.757% of hemicellulose , 1.758% of lignin , 73.048% of yield  and  the average organoleptic score for the pulp color was 4.3. Keywords:   acetosolv pulp,  baggase, bamboo,  delignification, paracetic acid

  1. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  2. The influence of irradiation of gamma-rays on the pulping and paper making, (4)

    Suzuki, Kyoji; Inoue, Kaoru; Hanamura, Norio; Mori, Kenji

    1980-01-01

    The influence of gamma-irradiation on the beating properties of unbleached kraft pulps was studied, and the changes of the mechanical and chemical properties of the sheet made from those pulps were also investigated. The results obtained were as follows: (1) When the unbeaten pulp was treated with gamma-ray, the degree of polymerization of cellulose was decreased rapidly and the formation of aldehyde and carboxyl groups in pulp was observed in addition to that the beating time of irradiated pulps was reduced comparing with non-irradiated pulp. These effects increased roughly in proportion to the radiation dose. (2) Gamma-irradiation was more effective in wet state (moisture content = 70 - 80%) than air dry state. This may be due to the degradation products of water by gamma-irradiation. (3) The mechanical properties (breaking length, tear and burst factors) of the sheets made from irradiated pulps were considerably deteriorated at 10 7 R, but there was a slight deterioration up to 10 6 R. (4) Comparing the result of the mechanical properties, the strengths of the various sheets were shown in the following order: the sheet irradiated after paper making gt the sheet irradiated before beating (air dry state) gt the sheet irradiated before beating (wet state). (author)

  3. Treatments of non-wood plant fibres used as reinforcement in composite materials

    Marie-Ange Arsène

    2013-01-01

    Full Text Available This paper presents a summary of the knowledge on fibres and pulps of non wood tropical plants used as reinforcement in cementitious composites accumulated during the recent years by Guadeloupean and Brazilian teams participating in collaborative work. Vegetable fibres represent a good alternative as non-conventional materials for the construction of ecological and sustainable buildings. The use of such renewable resources contributes to the development of sustainable technologies. The main objective of the paper is to emphasize the use of agricultural wastes in the production of cement based composites. The botanical, chemical, physical, morphological and mechanical properties of fibres from various plants are described. The effects of different treatments on physical, chemical and mechanical properties of fibres are presented. The most effective treatments in influencing the mechanical and physical properties are pyrolysis and alkaline ones, according to the type of plant. The final choice will have to consider fibre availability, and treatment costs.

  4. Obtaining of Peracetic Cellulose from Oat Straw for Paper Manufacturing

    Tetyana V. Zelenchuk

    2017-10-01

    Full Text Available Background. Development of technology for obtaining peracetic pulp from oat straw and its use in the production of one of the paper mass types. Objective. Determination of peracetic cooking technological parameters’ optimal values for oat straw peracetic cellulose quality indicators. Methods. The oat straw cooking was carried out with peracetic acid at 95 ± 1 °C from 90 to 180 min for hydromodulus 8:1 and 7:1, using a sodium tungstate catalyst. To determine the oat straw peracetic cellulose mechanical indexes, laboratory samples of paper weighing 70 g/m2 were made. Results. Technological parameters’ optimum values (temperature, cooking duration, hydromodulus, hydrogen peroxide and acetic acid concentration for the oat straw delignification process were established. It is shown that the sodium tungstate catalyst addition to the cooking solution at a rate of up to 1 % of the plant raw material weight helps to reduce the lignin content in cellulose to 15 %. A diagram of the cellulose yield dependence on its residual lignin content for various methods of non-wood plant material species delignification is constructed. The high efficiency of the peracetic method for obtaining cellulose from non-wood plant raw materials, in particular from oat straw, has been confirmed. It is determined that the obtained peracetic cellulose from oat straw has high mechanical indexes. Conclusions. Oat straw peracetic cellulose can be used for the production of paper and cardboard mass types, in particular wrapping paper.

  5. Fibre-concrete container

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  6. POLARISATION PRESERVING OPTICAL FIBRE

    2000-01-01

    . This cladding structure provides polarisation preserving properties to the optical fibre. Optical fibres using this technology may have claddings with elements placed non-periodically as well as in a two-dimensional periodic lattice - such as cladding providing Photonic Band Gap (PBG) effects....

  7. Cellulose utilization: an overview

    Bassham, J A

    1975-01-01

    To summarize, the conversion of cellulose to ethanol via hydrolysis to glucose followed by fermentation appears to be highly efficient in terms of energy conservation, yield, and quality of product, especially when reasonably high quality cellulosic waste is available.

  8. Pure chiral optical fibres.

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  9. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans.

    Lamothe, Lisa M; Srichuwong, Sathaporn; Reuhs, Bradley L; Hamaker, Bruce R

    2015-01-15

    Dietary fibre of quinoa and amaranth was analysed for its insoluble and soluble fibre content, composition, and structure. Total dietary fibre content was 10% for quinoa and 11% for amaranth. For both pseudocereals, 78% of its dietary fibre was insoluble. Insoluble fibre (IDF) from quinoa and amaranth was mainly composed of galacturonic acid, arabinose, galactose, xylose and glucose. Linkage analysis indicated that IDF was composed of homogalacturonans and rhamnogalacturonan-I with arabinan side-chains (∼55-60%), as well as highly branched xyloglucans (∼30%) and cellulose. For both pseudocereals, 22% of total dietary fibre was soluble; a higher proportion than that found in wheat and maize (∼15%). The soluble fibre (SDF) was composed of glucose, galacturonic acid and arabinose; for amaranth, xylose was also a major constituent. Xyloglucans made up ∼40-60% of the SDF and arabinose-rich pectic polysaccharides represented ∼34-55%. Copyright © 2014. Published by Elsevier Ltd.

  10. Starch and fibre intake and glucose postprandial response of dogs

    Mariana Monti

    2016-02-01

    Full Text Available ABSTRACT: Fibre has been studied to reduce the postprandial glucose response of dogs, but the results are inconsistent. Starch intake, however, was not properly considered in the published studies. The effects of starch and fibre intake on the postprandial glucose response were studied in non-obese adult dogs. Cellulose (CEL, carboxymethylcellulose (CMC, pea fibre (PE and sugarcane fibre (SCF were combined to form six diets with starch contents ranging from 33% to 42%: SCF+CEL and PE+CEL diets, both with high insoluble fibre (IF=22% and low soluble fibre (SF=2.5% content; SCF+CMC and PE+CMC diets with high SF (SF=4.5%; IF=19% content; and CMC and CEL diets with low dietary fibre (14% content. The diets were fed in two amounts, providing an intake of 9.5g or 12.5g of starch (kg0.75-1 day-1, totaling 12 treatments. Each diet was fed to six dogs conditioned to consume all of the daily food in 10min. Their plasma glucose levels were measured before and during 480min after food intake. Results of fibre and starch intake and their interactions were compared by repeated measures ANOVA and the Tukey test (P0.05. High-dose starch intake, however, induced a higher glycaemia at 180 and 240min after the meal and a greater maximal glycaemia and greater area under the glucose curve (P<0.05. A range in insoluble and soluble fibre intake does not change postprandial glucose response, and the amount of starch intake is a main factor for the postprandial glucose response of healthy non-obese dogs.

  11. Effect of Cellulases and Xylanases on Refining Process and Kraft Pulp Properties.

    Kamila Przybysz Buzała

    Full Text Available Samples of bleached kraft pine cellulosic pulp, either treated with an enzyme preparation (a Thermomyces lanuginosus xylanase, an Aspergillus sp. cellulase, and a multienzyme preparation NS-22086 containing both these activities or untreated, were refined in a laboratory PFI mill. The treatment with cellulases contained in the last two preparations significantly improved the pulp's susceptibility to refining (the target freeness value of 30°SR was achieved in a significantly shorter time, increased water retention value (WRV and fines contents while the weighted average fiber length was significantly reduced. These changes of pulp parameters caused deterioration of paper strength properties. The treatment with the xylanase, which partially hydrolyzed xylan, small amounts of which are associated with cellulose fibers, only slightly loosened the structure of fibers. These subtle changes positively affected the susceptibility of the pulp to refining (refining energy was significantly reduced and improved the static strength properties of paper. Thus, the treatment of kraft pulps with xylanases may lead to substantial savings of refining energy without negative effects on paper characteristics.

  12. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  13. Preliminary study on the potential of improving pulp quality and energy efficiency in a South African TMP mill

    Johakimu, Jonas K

    2010-09-01

    Full Text Available ). The mill’s screen fractionation process has limited efficiency. Substantial amounts of thick-walled fibres are present in the mill accept pulp samples (i.e. 66% by mass of the mill accept has a freeness of 256 ml CSF (Table 2)). The benefits of adding a...

  14. FibreBags vs. FibreCaps for acid and neutral detergent fibre analysis

    Koivisto , Jason

    2003-01-01

    International audience; A new procedure for determining acid detergent fibre and neutral detergent fibre (ADF and NDF) was developed to reduce the need for filtration and to allow for batch processing of forage samples. The FibreBag system is an economically necessary evolution of the earlier FibreCap system. The purpose of this enquiry was to determine if the FibreBag is a suitable replacement for the FibreCap. The FibreBag method produced very similar results to the FibreCap system of analy...

  15. Characterization of cellulose nanowhiskers

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia

    2015-01-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  16. Electrically conductive cellulose composite

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  17. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    Michel Goldberg

    2015-01-01

    Full Text Available The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.

  18. Preparation nanowhiskers pulp from residue of palm fiber Attalea funifera Martius

    Silva, J.B.A. da; Miranda, C.S.; Jose, N.M.; Vargas, F.P.; Druzian, J.I.

    2010-01-01

    The residue from piassava fiber is higher in cellulose and lignin. This study aimed to extract the pulp and the development of methodology for preparation nanowhiskers from residue fiber. The first step extraction of cellulose, the second step to obtain the nanoparticles by acid hydrolysis (H 2 SO 4 ). The samples were characterized by: SEM, chemical composition, TGA, FTIR and XRD. The XRD result shows that cellulose is of type I and TGA shows two events at 54 deg C and 370 deg C attributed to mass loss of water and cellulose, respectively. After hydrolysis, X-ray diffraction showed an intense reflection 2θ= 22.3 deg and an increase in the degree of crystallinity to 70% which is an indication of the formation of nanowhiskers. (author)

  19. Determination of physical characteristics, chemical composition and digestion coefficients of treated lemon pulp with Saccharomyces cerevisiae in goat diet.

    Dadvar, P; Dayani, O; Mehdipour, M; Morovat, M

    2015-02-01

    The aim of this study was to evaluate the effects of processing of lemon pulp with Saccharomyces cerevisiae on physical properties, chemical composition, digestion coefficients and blood parameters. Eight adult male Raeini goats were used in a 28-day period. The experimental design was a completely randomised design with two treatments and four replicates. The first 21 days were for adaptation, and the last 7 days were for collecting samples. The animals were housed in individual metabolic cages equipped with a urine-faeces separator and were fed with diet containing alfalfa hay (60%) and lemon pulp (40%) at the maintenance level. Collected data were subjected to analysis of completely randomised design. With diet containing processed lemon pulp, functional specific gravity, bulk density, soluble dry matter, percentage of crude protein, neutral detergent fibre (NDF), acid detergent fibre and crude ash were significantly increased and water-holding capacity, insoluble dry matter, insoluble ash percentage of dry matter, organic matter, crude fat, non-fibrous carbohydrates and nitrogen-free extract were significantly decreased (p lemon pulp (p lemon pulp, digestibility of crude protein and NDF was higher (p lemon pulp with S. cerevisiae improved the physical characteristics and increased the percentage of crude protein and the digestion coefficients of protein and NDF. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  20. Fibre optic microarrays.

    Walt, David R

    2010-01-01

    This tutorial review describes how fibre optic microarrays can be used to create a variety of sensing and measurement systems. This review covers the basics of optical fibres and arrays, the different microarray architectures, and describes a multitude of applications. Such arrays enable multiplexed sensing for a variety of analytes including nucleic acids, vapours, and biomolecules. Polymer-coated fibre arrays can be used for measuring microscopic chemical phenomena, such as corrosion and localized release of biochemicals from cells. In addition, these microarrays can serve as a substrate for fundamental studies of single molecules and single cells. The review covers topics of interest to chemists, biologists, materials scientists, and engineers.

  1. New generation of optical fibres

    Dianov, E M; Semjonov, S L; Bufetov, I A [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-01-31

    The growing need for information in contemporary society is the motivating force behind the development of fibre optics in general and optical fibre communications in particular. Intensive research effort has been concentrated on designing new types of optical fibres and extending their application field. This paper reviews results of research on new types of optical fibres: bismuthdoped active fibres, multicore fibres and hollow-core fibres, which can be used as key components of systems that ensure further increase in optical information transfer rate. (invited paper)

  2. Preparation and characterization of nanocomposites of the carboxymethyl cellulose reinforced with cellulose nanocrystals

    Flauzino Neto, Wilson P.; Silverio, Hudson A.; Vieira, Julia G.; Silva, Heden C.; Rosa, Joyce R.; Pasquini, Daniel; Assuncao, Rosana M.N.

    2011-01-01

    Nanocrystals of cellulose (NCC) isolated from Eucalyptus urograndis Kraft pulp were used to prepare nanocomposites employing carboxymethyl cellulose (CMC) as matrix. The nanocrystals were isolated by hydrolysis with H 2 SO 4 64% solution, for 20 minutes at 45 deg C. The nanocrystals were characterized by X-ray diffraction to evaluate the crystallinity of them. The amount of NCC used in the preparation of nanocomposites varied from 0 to 15%. The nanocomposites were characterized by thermal and mechanical analysis. A large reinforcing effect of NCC on the CMC matrix was observed. With the incorporation of the NCC, the tensile strength of nanocomposites was significantly improved by 107%, the elongation at break decreased by 48% and heat resistance to decomposition increased subtle. The improvement in thermo-mechanical properties are attributed to strong interactions between nanoparticles and CMC matrix. (author)

  3. Chapter 6: Prehydrolysis Pulping with Fermentation Coproducts

    T.H. Wegner; C.J. Houtman; A.W. Rudie; B.L. Illman; P.J. Ince; E.M. Bilek; T.W. Jeffries

    2013-01-01

    Although the term “integrateed biorefinery” is new, the concept has long been familiar to the pulp and paper industry, where processes include biomass boilers providing combined heat and power, and byproducts of pulping include turpentine, fatty acids and resin acids. In the dominant kraft (or sulfate) pulping process, dissolved lignin and chemicals from the pulp...

  4. Properties of foam and composite materials made o starch and cellulose fiber

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  5. Endoglucanase post-milling treatment for producing cellulose nanofibers from bleached eucalyptus fibers by a supermasscolloider

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Philip Kersten; Junyong Zhu; Yongcan Jin

    2016-01-01

    Three recombinant GH5 endoglucanases chosen for their contrasting hydrolytic activities, and a commercial endoglucanase were used to treat cellulose nanofibers (CNFs) after they were milled from bleached eucalyptus pulp with a supermasscolloider. This enzyme ‘‘post-treatment’’ resulted in different properties for the CNFs depending on enzyme treatment. The degree of...

  6. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Phil Kersten; J.Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase from the archaeon Pyrococcus honkoshii (ph-GH5) and a commercial endoglucanase FR were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNFs) through subsequent microfluidization Enzymatic treatments facilitated CNF production due to the reduced degree of polymerization (DP)...

  7. 2,4,5-trihydroxy-3-methylacetophenone: A cellulosic chromophore as a case study of aromaticity

    Nele Sophie Zwirchmayr; Thomas Elder; Markus Bacher; Andreas Hofinger-Horvath; Paul Kosma; Thomas. Rosenau

    2017-01-01

    The title compound (2,4,5-trihydroxy-3-methylacetophenone, 1) was isolated as chromophore from aged cellulosic pulps. The peculiar feature of the compound is its weak aromatic system that can be converted into nonaromatic (quinoid or cyclic aliphatic) tautomers, depending on the conditions and reaction partners. In alkaline media, the participation of quinoid canonic...

  8. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  9. Chemical and physical modification of hemp fibres by steam explosion technology

    Sutka, Anna; Kukle, Silvija; Gravitis, Janis; Berzins, Agris

    2013-01-01

    In current research attempt has been made to analyse hemp fibres treated with steam explosion (SE) technology. Disintegration of hemp fibres separated from non-retted, dew-retted and dried stems of hemp ('Purini')[1] by alkali treatment and steam explosion (SE) were investigated. An average intensive SE in combination with the hydro-thermal and alkali after-treatment allows decreasing the diameter of hemp fibres and reduce the concentration of non-celluloses components, among them hemicelluloses, lignin, pectin, waxes and water [1;2

  10. DETECTORS: scintillating fibres

    Anon.

    1994-01-01

    In the continual search for improved detection techniques, new materials are continually proving profitable. A good example is scintillating plastic fibres - tiny transparent threads sometimes finer than a human hair which transmit light. The narrowness and flexibility of these fibres was a major breakthrough for endoscopy - non-invasive techniques for viewing the otherwise inaccessible in surgery or machine inspection. In a more sophisticated form, these fibres find ready application in communications technology, where the goal is to transmit information rather than electrical power, replacing conventional and unwieldy current-carrying wire conductors. In particle physics, fibres have long been used to take the tiny scintillations produced when high energy particles hit fluorescent materials and 'conduct' them to photosensitive detectors some distance away

  11. Microstructure, quantification and control of dislocations in bast-type plant fibres

    Madsen, Bo; Lester, Catherine L.; Mortensen, Ulrich Andreas

    2016-01-01

    Bast-type plant fibres are increasingly being used for structural composite applications where high quality fibres with good mechanical properties are required. A central aspect for this application is the existence of dislocations in the cell wall of plant fibres, i.e. regions of misaligned...... cellulose microfibrils, which are believed to form weak points leading to reduced mechanical properties. In the present study, microstructural observations of dislocations are made using high-magnification scanning electron microscopy. An experimental protocol using polarized optical microscopy and image...... that this leads to a reduction in the content of dislocations. This is indicating that dislocations in the cell wall of plant fibres are changeable structures. Preliminary work is presented where plant fibres are exposed to physical treatments involving moisture and mechanical straining in order to change...

  12. Fibre Concrete 2017

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  13. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  14. Novel materials based on chitosan, its derivatives and cellulose fibres

    Fernandes, Susana Cristina de Matos

    O presente trabalho tem como principal objectivo o desenvolvimento de novos materiais baseados em quitosano, seus derivados e celulose, na forma de nanofibras ou de papel. Em primeiro lugar procedeu-se a purificacao das amostras comerciais de quitosano e a sua caracterizacao exaustiva em termos morfologicos e fisicoquimicos. Devido a valores contraditorios encontrados na literatura relativamente a energia de superficie do quitosano, e tendo em conta a sua utilizacao como precursor de modificacoes quimicas e a sua aplicacao em misturas com outros materiais, realizou-se tambem um estudo sistematico da determinacao da energia de superficie do quitosano, da quitina e seus respectivos homologos monomericos, por medicao de ângulos de contacto Em todas as amostras comerciais destes polimeros identificaram-se impurezas nao polares que estao associadas a erros na determinacao da componente polar da energia de superficie. Apos a remocao destas impurezas, o valor da energia total de superficie (gs), e em particular da sua componente polar, aumentou consideravelmente. Depois de purificadas e caracterizadas, algumas das amostras de quitosano foram entao usadas na preparacao de filmes nanocompositos, nomeadamente dois quitosanos com diferentes graus de polimerizacao, correspondentes derivados soluveis em agua (cloreto de N-(3-(N,N,N-trimetilamonio)-2- hidroxipropilo) de quitosano) e nanofibras de celulose como reforco (celulose nanofibrilada (NFC) e celulose bacteriana (BC). Estes filmes transparentes foram preparados atraves de um processo simples e com conotacao 'verde' pela dispersao homogenea de diferentes teores de NFC (ate 60%) e BC (ate 40%) nas solucoes de quitosano (1.5% w/v) seguida da evaporacao do solvente. Os filmes obtidos foram depois caracterizados por diversas tecnicas, tais como SEM, AFM, difraccao de raio-X, TGA, DMA, ensaios de traccao e espectroscopia no visivel. Estes filmes sao altamente transparentes e apresentam melhores propriedades mecânicas e maior estabilidade termica do que os correspondentes filmes sem reforco. Outra abordagem deste trabalho envolveu o revestimento de folhas de papel de E. globulus com quitosano e dois derivados, um derivado fluorescente e um derivado soluvel em agua, numa maquina de revestimentos ('maquina de colagem') a escala piloto. Este estudo envolveu inicialmente a deposicao de 1 a 5 camadas do derivado de quitosano fluorescente sobre as folhas de papel de forma a estudar a sua distribuicao nas folhas em termos de espalhamento e penetracao, atraves de medicoes de reflectância e luminescencia. Os resultados mostraram que, por um lado, a distribuicao do quitosano na superficie era homogenea e que, por outro lado, a sua penetracao atraves dos poros do papel cessou apos tres deposicoes. Depois da terceira camada verificou-se a formacao de um filme continuo de quitosano sobre a superficie do papel. Estes resultados mostram que este derivado de quitosano fluorescente pode ser utilizado como marcador na optimizacao e compreensao de mecanismos de deposicao de quitosano em papel e outros substratos. Depois de conhecida a distribuicao do quitosano nas folhas de papel, estudou-se o efeito do revestimento de quitosano e do seu derivado soluvel em agua nas propriedades finais do papel. As propriedades morfologicas, mecânicas, superficiais, opticas, assim como a permeabilidade ao ar e ao vapor de agua, a aptidao a impressao e o envelhecimento do papel, foram exaustivamente avaliadas. De uma forma geral, os revestimentos com quitosano e com o seu derivado soluvel em agua tiveram um impacto positivo nas propriedades finais do papel, que se mostrou ser dependente do numero de camadas depositadas. Os resultados tambem mostraram que os papeis revestidos com o derivado soluvel em agua apresentaram melhores propriedades opticas, aptidao a impressao e melhores resultados em relacao ao envelhecimento do que os papeis revestidos com quitosano. Assim, o uso de derivados de quitosano soluveis em agua em processos de revestimento de papel representa uma estrategia bastante interessante e sustentavel para o desenvolvimento de novos materiais funcionais ou na melhoria das propriedades finais dos papeis. Por fim, tendo como objectivo valorizar os residuos e fraccoes menos nobres da quitina e do quitosano provenientes da industria transformadora, estes polimeros foram convertidos em poliois viscosos atraves de uma reaccao simples de oxipropilacao. Este processo tem tambem conotacao "verde" uma vez que nao requer solvente, nao origina subprodutos e nao exige nenhuma operacao especifica (separacao, purificacao, etc) para isolar o produto da reaccao. As amostras de quitina e quitosano foram pre-activadas com KOH e depois modificadas com um excesso de oxido de propileno (PO) num reactor apropriado. Em todos os casos, o produto da reaccao foi um liquido viscoso composto por quitina ou quitosano oxipropilados e homopolimero de PO. Estas duas fraccoes foram separadas e caracterizadas.

  15. Microcrystalline cellulose and sisal fibre reinforced cementitious composites

    Ferreira, Stephany Maria Vieira

    2016-01-01

    Dissertação de mestrado integrado em Engenharia Civil (área de especialização em Perfil de Construções) Nas últimas décadas tem existido um crescente interesse em métodos alternativos de reforçar compósitos cimentícios. A utilização de fibras naturais como elemento de reforço tem sido bastante explorada ao longo dos anos, sendo que origina compósitos cimentícios com uma resistência ao impacto e à fissuração superior quando comparados com compósitos cimentícios comuns. Por outro...

  16. Characterisation and functional properties of antimicrobial bio-barriers formed by natural fibres.

    Tomšič, Brigita; Ilec, Eva; Žerjav, Metka; Hladnik, Aleš; Simončič, Andrej; Simončič, Barbara

    2014-10-01

    Antimicrobial bio-barriers formed on cotton (CO), silk (SE), and woollen (WO) fabrics were prepared by the application of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC) at 11 concentrations ranging from 0.5% to 20% using an exhaustion method. The presence of the Si-QAC coating on the treated fabric samples was detected by X-ray photoelectron spectroscopy. The bromophenol blue reagent was used to determine the concentration of quaternary ammonium groups in the coating. The antimicrobial activity of the coated fibres against Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus aureus), fungi (Aspergillus niger and Chaetomium globosum), and soil microflora was assessed using standard microbiological methods. The antimicrobial protection of the fibres increased with increases in the applied concentration of Si-QAC. The fibre type strongly influenced the antimicrobial activity of Si-QAC. Si-QAC was most effective for CO fibres, less effective for WO fibres, and least effective for SE fibres, suggesting that Si-QAC is less accessible for interactions with microorganisms when applied to protein fibres than to cellulose. Although Si-QAC reduced the microbial growth, it did not significantly hinder the biodegradability or sustainability of the coated fibres when exposed to soil microflora. The extent of rotting was more influenced by the morphological and chemical properties of the fibres than by the presence of Si-QAC. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method.

    Lamaming, Junidah; Hashim, Rokiah; Leh, Cheu Peng; Sulaiman, Othman

    2017-01-20

    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  19. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  20. Internally plasticised cellulose polymers

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  1. Water-holding capacity of soluble and insoluble polysaccharides in pressed potato fibre

    Ramasamy, U.; Gruppen, H.; Kabel, M.A.

    2015-01-01

    Pressed potato fibres (PPF), a by-product of starch production, has a high water-holding capacity (WHC).In this study, it is shown that the WHC is caused by a network of mainly insoluble, non-cellulosic cellwall polysaccharides (CWPs). Despite the solubilization of one-fourth of the CWPs from PPF,

  2. Cellulose alters the expression of nuclear factor kappa B-related genes and Toll-like receptor-related genes in human peripheral blood mononuclear cells

    Vogt, Leonie M.; Boekschoten, Mark V.; de Groot, Philip J.; Faas, Marijke M.; de Vos, Paul

    2015-01-01

    The immunomodulatory and epithelial barrier effects of cellulose as a dietary fibre were studied to analyse the potential for use in health promoting functional foods. Reporter assays demonstrated cellulose-mediated activation through TLR/MyD88 dependent-, and independent pathways. Microchip

  3. Extraction and characterization of cellulose microfibrils from agricultural residue –Cocos nucifera L

    Uma Maheswari, C.; Obi Reddy, K.; Muzenda, E.; Guduri, B.R.; Varada Rajulu, A.

    2012-01-01

    The aim of this study was to extract cellulose microfibrils from the agricultural residue of coconut palm leaf sheath using chlorination and alkaline extraction process. Chemical characterization of the cellulose microfibrils confirmed that the α-cellulose mass fraction increased from 0.373 kg kg −1 to 0.896 kg kg −1 after application of several treatments including dewaxing, chlorite delignification and alkaline extraction of hemicelluloses. Similarly, the crystallinity index obtained from X-ray diffraction for leaf sheath and extracted cellulose microfibrils was found to be 42.3 and 47.7 respectively. The morphology of the cellulose microfibrils was investigated by scanning electron microscopy. The cellulose microfibrils had diameters in the range of 10–15 μm. Fourier transform infrared and Nuclear magnetic resonance spectroscopy showed that the chemical treatments removed most of the hemicellulose and lignin from the leaf sheath fibers. The thermal stability of the fibers was analyzed using thermogravimetric analysis, which demonstrated that this thermal stability was enhanced noticeably for cellulose microfibrils. This work provides a new approach for more effective utilization of coconut palm leaf sheaths to examine their potential use as pulp and paper and reinforcement fibers in biocomposite applications. -- Highlights: ► Utilization of Coconut palm leaf sheath as an alternate material for cellulose extraction. ► Using an abundant natural waste for paper pulp, biofilms and composite applications. ► Cellulose microfibrils have higher cellulose content than the leaf sheath. ► FTIR and NMR were used to study fiber structural changes during several treatments. ► Thermal stability of microfibrils is higher than their respective leaf sheath.

  4. Production and evaluation of mineral and nutrient contents, chemical composition, and sensory properties of ice creams fortified with laboratory-prepared peach fibre

    Yangılar, Filiz

    2016-01-01

    Background In the coming years, a nutraceutical food may provide both physical and mental benefits that are commonly attributed to the active components of the food. Objective In this study, we determined the nutrient and mineral contents, sensory properties, and physical and chemical characteristics of ice creams manufactured using peach fibre at different concentrations (1 and 2%). Method A total of five experimental groups were formed: two types (from peach peel and pulp) of flour, two fibre concentrations (1 and 2%), and a control group without fibres. Results Flour obtained from peach pulp and peel was found to have a significant (pice cream samples, especially the rates of Ca, K, Mg, and P, which increased in the samples depending on the content of peach fibre. Sensory ratings and acceptability of ice creams decreased significantly with increasing peach peel fibre, whereas ice creams made with C (control) and B1 (ice creams made from 1% peach pulp fibre) was the highest scored by the panellists. Conclusions Peach fibre concentrates might be used as a good source of nutraceutical ingredients. PMID:27814781

  5. Preparation of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo assisted by mechanical treatment

    Silviana, S.; Hadiyanto, H.

    2017-06-01

    The utilization of green composites by using natural fibres is developed due to their availability, ecological benefits, and good properties in mechanical and thermal. One of the potential sources is bamboo that has relative high cellulose content. This paper was focused on the preparation of sago starch-based reinforced microfribrillated cellulose of bamboo that was assisted by mechanical treatment. Microfibrillated cellulose of bamboo was prepared by isolation of cellulose with chemical treatment. Preparation of bamboo microfibrillated cellulose was conducted by homogenizers for dispersing bamboo cellulose, i.e. high pressure homogenizer and ultrasonic homogenizer. Experiments were elaborated on several variables such as the concentration of bamboo microfibrillated cellulose dispersed in water (1-3 %w) and the volume of microfibrillated cellulose (37.5-75%v). Four %w of sago starch solution was mixed with bamboo microfibrillated cellulose and glycerol with plasticizer and citric acid as cross linker. This paper provided the analysis of tensile strength as well as SEM for mechanical and morphology properties of the biocomposite. The results showed that the preparation of sago starch-based biocomposite reinforced bamboo microfibrillated cellulose by using ultrasonic homogenizer yielded the highest tensile strength and well dispersed in the biocomposite.

  6. [Influence of the cycle number in processing of cellulose from waste paper on its ability to hydrolysis by cellulases].

    Morozova, V V; Semenova, M V; Rozhkova, A M; Kondrat'eva, E G; Okunev, O N; Bekkarevich, A O; Novozhilov, E V; Sinitsin, A P

    2010-01-01

    Hydrolytic ability of laboratory enzyme preparations from fungus of the Penicillium genus was investigated using kraft pulp from nonbleached softwood and bleached hardwood cellulose as substrates. The enzyme preparations were shown to efficiently hydrolyze both softwood and hardwood cellulose. The yields of glucose and reducing sugars were 24-36 g/l and 27-37 g/l from 100 g/l of dry substrate in 48 h, respectively, and depended on the number of substrate grinding cycles.

  7. FT-Raman spectra of cellulose and lignocellulose materials : “self-absorption” phenomenon and its implications for quantitative work

    Umesh Agarwal; Nancy Kawai

    2003-01-01

    The phenomenon of “self-absorption” was found to exist in the FT-Raman spectra of cellulose and thermomechanical pulp (TMP), but not in the spectrum of milled wood lignin. For cellulose and TMP, the effect was responsible for reducing the intensity of the Raman bands in the C-H stretch region. Several factors including sampling position, sample thickness, and moisture...

  8. Glass ceramic fibres

    Blaschek, O.; Paulitsch, P.

    1983-01-01

    As the correlation between mineralogical phase and chemical composition influences the type of application at different high temperatures, we studied the mineralogical phases of nine crystal glass fibres of the temperature ranges 1 150 degrees Celsius (Type 1), 1 400 degrees Celsius (Type 2) and 1 500 degrees Celsius (Type 3) at various high temperatures. The methods used in the study were microscopy, X-ray diffraction, transmission electron microscopy and differential thermal analysis. The investigations showed that mullite forms in glassy fibres of the system Al 2 O 3 . SiO 2 from 850 degrees Celsius to 990 degrees Celsius as 2/1 mullite; 3/2 mullite appeared above 990 degrees Celsius besides the crystallization of cristobalite. Fibres with 95 per cent Al 2 O 3 include the phases delta-Al 2 O 3 and alpha- Al 2 O 3 and mullite. Delta- Al 2 O 3 is stable up to 1 100 degrees Celsius. Alpha-Al 2 O 3 and mullite are only stable phases at 1 400 degrees Celsius. These different crystal phases influence the quality of the technical fibre according to the stability field of glass and crystals. This study has determined that it is possible to identify different fibres from different productions by their mineralogical compositions and to relate them to the high temperature application

  9. Multibeam Fibre Laser Cutting

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre......-laser cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  10. Polarisation effects in fibre lasers

    Lin, J.T.; Morkel, P.R.; Reekie, L.; Payne, D.N.

    1987-01-01

    Two orthogonal polarisation eigenmodes have been observed in a single-mode fibre laser. Experimental investigation shows good agreement with theoretical analysis. Both Nd3+ and Er3+-doped single-polarisation single-mode fibre lasers have been demonstrated

  11. Modelling of photonic crystal fibres

    Knudsen, Erik

    2003-01-01

    , as well as a honeycomb bandgap fibre and the first analysis of semi-periodic layered air-hole fibres. Using the modelling framework established as a basis, we provide an analysis of microbend loss, by regarding displacement of a fibre core as a stationary stochastic process, inducing mismatch between......In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...

  12. Mineral fibres and health

    Hoskins, J.A.

    2001-01-01

    The use of inorganic fibrous materials is a comparatively new phenomenon and was uncommon before the Industrial Revolution. Humans evolved in a comparatively fibre-free environment and consequently never fully developed the defence mechanisms needed to deal with the consequences of inhaling fibres. However, the urban environment now has an airborne fibre concentration of around 1 f.l -1 , which is a tenfold increase on the natural background. Any sample of ambient air collected indoors or outdoors will probably contain some mineral fibres, but there is little evidence that these pose any risk to human health. They come from asbestos used in brakes, glass and mineral wools used as insulation and fire proofing of buildings, gypsum from plaster and a variety of types from many sources. Few of these have the potential to do any harm. Asbestos is the only fibre of note but urban levels are insignificant compared to occupational exposures. When the health of cohorts occupationally exposed to the several types of asbestos is studied the problem can be put into perspective. Studies of workers in the chrysotile industry exposed to much higher dust levels than in a factory today show no excess lung cancer or mesothelioma. By comparison those living near crocidolite mines, let alone working in them, may develop asbestos-related disease. As always, dose is the critical factor. Chrysotile is cleared from the lungs very efficiently, only the amphiboles are well retained. The only real health problem comes from the earlier use of asbestos products that may now be old, friable and damaged and made from amphibole or mixed fibre. If though, these are still in good condition, they do not pose a health problem. Asbestos-related diseases are very rare in those not occupationally exposed. Where they exist exposure has nearly always been to crocidolite. (author)

  13. Cellulose binding domain proteins

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  15. Construction materials as a waste management solution for cellulose sludge.

    Modolo, R; Ferreira, V M; Machado, L M; Rodrigues, M; Coelho, I

    2011-02-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Construction materials as a waste management solution for cellulose sludge

    Modolo, R.; Ferreira, V.M.; Machado, L.M.; Rodrigues, M.; Coelho, I.

    2011-01-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  17. Concrete workability and fibre content

    Vikan, Hedda

    2007-01-01

    Research report Parameters influencing the workability of fibre concrete and maximum fibre content are given in this state of the art report along with the range of fibre types available on today’s market. The study reveales that new placing techniques and production methods are crucial in order to increase fibre content and concrete strength. Achieving the same mechanical properties as traditionally reinforced concrete will probably also demand changes of the matrix. Finally, reco...

  18. Single-mode optical fibres

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  19. Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

    Gijo Raj

    2011-01-01

    Full Text Available The effect of alkali and enzymatic treatments on flax fibre morphology, mechanical, and adhesion properties was investigated. The multilength scale analysis allows for the correlation of the fibre's morphological changes induced by the treatments with mechanical properties to better explain the adherence properties between flax and PLA. The atomic force microscopy (AFM images revealed the removal of primary layers, upon treatments, down to cellulose microfibrils present in the secondary layers. The variation in mechanical properties was found to be dependent, apart from the crystalline content, on interaction between cellulose microfibrils and encrusting polysaccharides, pectins and hemicelluloses, in the secondary layers. Finally, microbond tests between the modified fibres and PLA emphasize the important role of the outer fibre's surface on the overall composite properties. It was observed here that gentle treatments of the fibres, down to the oriented microfibrils, are favourable to a better adherence with a PLA drop. This paper highlights the important role of amorphous polymers, hemicellulose and pectin, in the optimisation of the adhesion and mechanical properties of flax fibres in the biocomposite.

  20. Optimizing residence time, temperature and speed to improve TMP pulp properties and reduce energy

    Sabourin, M.; Xu, E.; Cort, B.; Boileau, I.; Waller, A.

    1997-04-01

    The concept of reducing energy consumption in pulp mills by increasing the disc speed of refining has been established using single disc and double disc refiners in both pilot plant and mill applications. The RTS study evaluated in this paper reviews the effect of high-speed single disc refining coupled with shortdwell-high pressure retention conditions. Coupling these variables permitted evaluation of an optimum residence time, temperature and speed (RTS) operational window. The objective of the RTS conditions to sufficiently soften the wood chips through high temperature such that the fibre is more receptive to initial defiberization at high intensity. The improved pulp from the primary refiner at high intensity could potentially demonstrate improvements in physical pulp properties at a reduced specific energy requirement. The spruce/fir RTS-TMP described here required significantly less specific energy and produced TMP with slightly improved strength properties and equivalent optical properties compared to conventional TMP pulp. Studies on the radiate pine furnish indicated that the physical pulp property/specific energy relationships could be adjusted by manipulating the residence time. 4 refs., 10 tabs., 10 figs.

  1. A novel green approach for the preparation of cellulose nanowhiskers from white coir.

    Nascimento, Diego M; Almeida, Jessica S; Dias, Amanda F; Figueirêdo, Maria Clea B; Morais, João Paulo S; Feitosa, Judith P A; de F Rosa, Morsyleide

    2014-09-22

    The aim of this work was to optimize the extraction of cellulose nanowhiskers (CNW) from unripe coconut husk fibers (CHF). The CHF was delignified using organosolv process, followed by alkaline bleaching (5% (w/w) H2O2+4% (w/w) NaOH; 50°C, 90 min). The CHF was subsequently hydrolyzed with 30% (v/v) sulfuric acid (60°C, 360 min). The process yielded a partially delignified acetosolv cellulose pulp and acetic black liquor, from which the lignin was recovered. The CNW from the acetosolv pulp exhibited an average length of 172±88 nm and a diameter of 8±3 nm, (aspect ratio of 22±8). The surface charge of the CNW was -33 mV, indicating a stable aqueous colloidal suspension. The nanocrystals presented physical characteristics close to those extracted from cellulose pulp made by CHF chlorine-pulping. This approach offers the additional advantage of extracting the lignin as an alternative to eradication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Evaluation of a value prior to pulping-thermomechanical pulp business concept. Part 2.

    Ted Bilek; Carl Houtman; Peter Ince

    2011-01-01

    Value Prior to Pulping (VPP) is a novel biorefining concept for pulp mills that includes hydrolysis extraction of hemicellulose wood sugars and acetic acid from pulpwood prior to pulping. The concept involves conversion of wood sugars via fermentation to fuel ethanol or other chemicals and the use of remaining solid wood material in the pulping process. This paper...

  3. HOLLOW FIBRE MEMBRANE

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  4. HOLLOW FIBRE MEMBRANE

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  5. Extraction and Characterization of Nanocellulose Structures from Linter Dissolving Pulp Using Ultrafine Grinder.

    Ghasemi, Somayeh; Behrooz, Rabi; Ghasemi, Ismail

    2016-06-01

    The objective of this study was to extract cellulose nanofibrils (CNFs) from Linter dissolving pulp through a simple and environmentally friendly physical method of refining pretreatment coupled with ultrafine grinder. The morphology, structure and properties of the Linter pulp and obtained NFCs were investigated using Optical Microscopy (OM), electron microscopy (SEM), Atomic Force Microscopy (AFM), Fourier transformed infrared (FTIR) spectra, X-ray diffraction (XRD) and Thermogravimetric (TG) analysis. The OM results indicate that, the Linter Pulp had length and wide mainly ranged 1.3 mm and 13 μm respectively. Based on AFM images, most of extracted nanocellulose had spherical shape and the average of nanocellulose diameter was varied between 30-70 nm when measured by AFM and SEM. Also the FTIR spectra confirmed that the basic structure of nanocellulose was maintained and no derivative was formed. The X-ray results show that by this method of extraction, the crystallinity index of Nanocellulose isolated (62%) decreased in compared to Linter Pulp (79.5%). Also Linter pulp decomposes at higher temperature (280 degrees C) than isolated nanocellulose (240 degrees C).

  6. Controlled retting of hemp fibres: Effect of hydrothermal pre-treatmen tand enzymatic retting on the mechanical properties of unidirectiona lhemp/epoxy composites

    Liu, Ming; Silva, Diogo Alexandre Santos; Fernando, Dinesh

    2016-01-01

    The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting...... produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08.Traditional...

  7. Kraft pulping of industrial wood waste

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  8. Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars

    Dawit Beyene

    2017-10-01

    Full Text Available Cellulose nanocrystals (CNCs can be extracted from cellulosic materials through the degradation of non-crystalline cellulose domains in the feedstock via acid hydrolysis. However, the sugars released from the hydrolysis process cannot be easily recovered from the acid waste stream. In this study, cellulases were used to preferentially degrade non-crystalline domains with the objectives of recovering sugars and generating a feedstock with concentrated CNC precursors for a more efficient acid hydrolysis process. Filter paper and wood pulp substrates were enzyme-treated for 2–10 h to recover 20–40 wt % glucose. Substantial xylose yield (6–12 wt % was generated from wood pulp. CNC yields from acid hydrolysis of cellulases-treated filter paper, and wood pulp improved by 8–18% and 58–86%, respectively, when compared with the original substrate. It was thought that CNC precursors accumulated in the cellulases-treated feedstock due to enzymatic digestion of the more accessible non-crystalline celluloses. Therefore, acid hydrolysis from enzyme-treated feedstock will require proportionally less water and reagents resulting in increased efficiency and productivity in downstream processes. This study demonstrates that an enzymatically-mediated process allows recovery of fermentable sugars and improves acid hydrolysis efficiency for CNC production.

  9. Comparative pulping of sunflower stalks

    Valerii Barbash

    2016-03-01

    Full Text Available The procedure of holocellulose content determination in non-wood plant raw materials was developed. The strength properties of pulp obtained from sunflower stalks by neutral-sulphite, soda, alkaline sulphite-anthraquinone-ethanol and peracetic methods of delignification were studied. Methodology of comparison of plant materials delignification methods using new lignin-carbohydrate diagram was proposed. It was shown, that the alkaline sulphite-anthraquinone-ethanol method of pulping is characterized by the highest delignification degree and is the most efficient among the studied methods

  10. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-01-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF 3 SO 3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10 −7 Scm −1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity

  11. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan [Polymer Research Centre (PORCE), School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  12. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2-10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10-7 Scm-1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  13. Investigation on anatomical, chemical and pulping characteristics of Silybum marianum stem

    Rahim Yadollahi

    2013-11-01

    Full Text Available To study the possibility of using plant Silybum marianum in paper industry, its stem yield potential, chemical properties, fiber indices and pulping was evaluated. Mean value of fiber length and diameter of Silybum marianumstem harvested in early June, were calculated 178 and 3.5 cm, respectively. Dry weight of whole stem determined 4710 kg per hectar. Mean value of fiber length, diameter, cavity diameter and wall thickness were obtained 1194, 16.06, 9.06, and 3.66 μm, respectively. Raunkel, flexibility, and slenderness ratios of its fibers were determined 80.83, 56.39, and 74.37, respectively. Results of chemical analysis showed that the stem comprises %70.35 holocellulose, %39.25 cellulose, %13.13 lignin, %3.09 acetone-soluble, %18 hot water-soluble extractives, and %11/85 ash. Soda pulp was obtained at 165 °C pulping time, 25% alkaline and 10:1 ratio of liquor to chips. Results of pulping showed that with increasing of pulping time from 30 to 210 minutes, the kappa number and yield decreased from 77.32 to 32.13 and 43.6 to 36.5, respectively; whereas accepted pulp yield (passed from 20 mesh increased from 17.4 to 35.5% paper made of pulp with kappa number 32 had 36.82 Nm/g tensile index, 3.76 km breaking length and 1.75 Kpa.m2/g burst strength. In general, achieved results have shown that the present studied species could be regarded more for papermaking because of the suitable fiber biometrical and chemical properties as compared to other non-woody plants.

  14. Sodium channel Nav1.7 immunoreactivity in painful human dental pulp and burning mouth syndrome

    Yiangou Yiangos

    2010-06-01

    Full Text Available Abstract Background Voltage gated sodium channels Nav1.7 are involved in nociceptor nerve action potentials and are known to affect pain sensitivity in clinical genetic disorders. Aims and Objectives To study Nav1.7 levels in dental pulpitis pain, an inflammatory condition, and burning mouth syndrome (BMS, considered a neuropathic orofacial pain disorder. Methods Two groups of patients were recruited for this study. One group consisted of patients with dental pulpitis pain (n = 5 and controls (n = 12, and the other patients with BMS (n = 7 and controls (n = 10. BMS patients were diagnosed according to the International Association for the Study of Pain criteria; a pain history was collected, including the visual analogue scale (VAS. Immunohistochemistry with visual intensity and computer image analysis were used to evaluate levels of Nav1.7 in dental pulp tissue samples from the dental pulpitis group, and tongue biopsies from the BMS group. Results There was a significantly increased visual intensity score for Nav1.7 in nerve fibres in the painful dental pulp specimens, compared to controls. Image analysis showed a trend for an increase of the Nav1.7 immunoreactive % area in the painful pulp group, but this was not statistically significant. When expressed as a ratio of the neurofilament % area, there was a strong trend for an increase of Nav1.7 in the painful pulp group. Nav1.7 immunoreactive fibres were seen in abundance in the sub-mucosal layer of tongue biopsies, with no significant difference between BMS and controls. Conclusion Nav1.7 sodium channel may play a significant role in inflammatory dental pain. Clinical trials with selective Nav1.7 channel blockers should prioritise dental pulp pain rather than BMS.

  15. Sodium channel Nav1.7 immunoreactivity in painful human dental pulp and burning mouth syndrome

    2010-01-01

    Background Voltage gated sodium channels Nav1.7 are involved in nociceptor nerve action potentials and are known to affect pain sensitivity in clinical genetic disorders. Aims and Objectives To study Nav1.7 levels in dental pulpitis pain, an inflammatory condition, and burning mouth syndrome (BMS), considered a neuropathic orofacial pain disorder. Methods Two groups of patients were recruited for this study. One group consisted of patients with dental pulpitis pain (n = 5) and controls (n = 12), and the other patients with BMS (n = 7) and controls (n = 10). BMS patients were diagnosed according to the International Association for the Study of Pain criteria; a pain history was collected, including the visual analogue scale (VAS). Immunohistochemistry with visual intensity and computer image analysis were used to evaluate levels of Nav1.7 in dental pulp tissue samples from the dental pulpitis group, and tongue biopsies from the BMS group. Results There was a significantly increased visual intensity score for Nav1.7 in nerve fibres in the painful dental pulp specimens, compared to controls. Image analysis showed a trend for an increase of the Nav1.7 immunoreactive % area in the painful pulp group, but this was not statistically significant. When expressed as a ratio of the neurofilament % area, there was a strong trend for an increase of Nav1.7 in the painful pulp group. Nav1.7 immunoreactive fibres were seen in abundance in the sub-mucosal layer of tongue biopsies, with no significant difference between BMS and controls. Conclusion Nav1.7 sodium channel may play a significant role in inflammatory dental pain. Clinical trials with selective Nav1.7 channel blockers should prioritise dental pulp pain rather than BMS. PMID:20529324

  16. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization

    Hong Dong; Kenneth E. Strawhecker; James A. Snyder; Joshua A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric...

  17. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis

    Yanlin Qin; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFx) as a severity factor to quantitatively...

  18. PEMUTIHAN PULP DENGAN HIDROGEN PEROKSIDA

    Ahmad M. Fuadi

    2012-01-01

    Full Text Available The use of bleaching agent has increased as the result of increasing of paper consumption. The conventional bleaching agent that commonly used is material containing of chlorine. This material is not environmentally friendly and should be replaced by environmentally benign chemical, such as H2O2. About 40 gram of dry Akasia pulp was mixed with 600 ml of distilled water was put into plastic bag heated in a water bath. When the temperature reached 630C, a solution of 4 % of H2O2 and distilled water was added to obtain 5 % consistency. This mixture was put into water bath and was heated for 2 hours. The same procedure was conducted with various concentration of H2O2, time and pH. At the end of the process, the pulp was dewatered and washed. The filtrate obtained from the initial dewatering was used to determine the residual of H2O2. The pulp was analyzed to determine brightness, fiber strength and kappa number. The maximum achievement of brightness was 62,1 % ISO, 6.86 of kappa number and 1.02 kg/15 mm of fiber strength, which are reached at16 % of the use of H2O2, pH 11 and 5 hours of bleaching time. This achievement is similar to bleaching result by the additional of 4% H2O2. Inefficient usage of H2O2 was caused by some metal ions in the pulp which facilitate the decomposition of H2O2 to produce oxygen and water which has not effect on increasing the brightness. To improve the bleach ability of H2O2, initial treatment to remove metal ions from pulp should be done. Seiring dengan meningkatnya kebutuhan kertas, kebutuhan bahan pemutih juga mengalami kenaikan. Saat ini bahan pemutih yang banyak digunakan adalah senyawa yang mengandung khlor. Senyawa ini sangat tidak ramah lingkungan, oleh karena itu, perlu dicari bahan yang ramah lingkungan untuk menggantikannya. Salah satunya adalah hidrogen peroksida. Pulp dari pohon akasia sebanyak 40 gram kering dicampur dengan 600 ml aquadest dimasukkan dalam kantung plastik dipanaskan dalam water bath

  19. Air-Cured Fiber-Cement Composite Mixtures with Different Types of Cellulose Fibers

    Ali Murat Soydan

    2018-01-01

    Full Text Available This present study was carried out to check the feasibility of different cellulose fibers obtained from cropped virgin cellulose, blenched eucalyptus, and araucaria pulps through different new environmentally friendly curing processes for fiber-cement production. The aim is to introduce the different sources of cellulose fibers with lower cost to produce the “fiber-cement without autoclave” (FCWA. The slurries used in the experiments contain approximately 8% wt. of cellulose. The influence of the waste marble powder addition to the cement mixture was also studied. The physical and mechanical properties of the products which were prepared with this method under different curing conditions were investigated. The mechanical properties of eucalyptus cellulose appear to offer the best combination, especially after longer air-cure cycles. The results showed that the production of FCWA is very economical by using waste marble powders. And moreover, two new types of cellulose fibers (eucalyptus and araucaria celluloses; EuC and ArC, resp., which provide a better density and packing in the fiber-cement leading to better modulus of rupture (MOR and modulus of elasticity (MOE values as virgin cellulose (ViC, are very usable for production of the fiber-cement in industrial scale.

  20. Electrically aligned cellulose film for electro-active paper and its piezoelectricity

    Yun, Sungryul; Jang, Sangdong; Yun, Gyu-Young; Kim, Jaehwan

    2009-01-01

    Electrically aligned regenerated cellulose films were fabricated and the effect of applied electric field was investigated for the piezoelectricity of electro-active paper (EAPap). The EAPap was fabricated by coating gold electrodes on both sides of regenerated cellulose film. The cellulose film was prepared by dissolving cotton pulp in LiCl/N,N-dimethylacetamide solution followed by a cellulose chain regeneration process. During the regeneration process an external electric field was applied in the direction of mechanical stretching. Alignment of cellulose fiber chains was investigated as a function of applied electric field. The material characteristics of the cellulose films were analyzed by using an x-ray diffractometer, a field emission scanning electron microscope and a high voltage electron microscope. The application of external electric fields was found to induce formation of nanofibers in the cellulose, resulting in an increase in the crystallinity index (CI) values. It was also found that samples with higher CI values showed higher in-plane piezoelectric constant, d 31 , values. The piezoelectricity of the current EAPap films was measured to be equivalent or better than that of ordinary PVDF films. Therefore, an external electric field applied to a cellulose film along with a mechanical stretching during the regeneration process can enhance the piezoelectricity. (technical note)

  1. Morphological changes in textile fibres exposed to environmental stresses: atomic force microscopic examination.

    Canetta, Elisabetta; Montiel, Kimberley; Adya, Ashok K

    2009-10-30

    The ability of the atomic force microscope (AFM) to investigate the nanoscopic morphological changes in the surfaces of fabrics was examined for the first time. This study focussed on two natural (cotton and wool), and a regenerated cellulose (viscose) textile fibres exposed to various environmental stresses for different lengths of times. Analyses of the AFM images allowed us to measure quantitatively the surface texture parameters of the environmentally stressed fabrics as a function of the exposure time. It was also possible to visualise at the nanoscale the finest details of the surfaces of three weathered fabrics and clearly distinguish between the detrimental effects of the imposed environmental conditions. This study confirmed that the AFM could become a very powerful tool in forensic examination of textile fibres to provide significant fibre evidence due to its capability of distinguishing between different environmental exposures or forced damages to fibres.

  2. Effect of natural fibres on the mechanical properties of thermoplastic starch

    Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Moácicki, Leszek; Mitrus, Marcin; Kupryaniuk, Karol; Kusz, Andrzej; Bartnik, Grzegorz

    2016-04-01

    This paper presents the results covering the mechanical properties of thermoplastic potato starch granules with flax, cellulose fibre, and pine bark addition. A modified single screw extrusion-cooker TS-45 with L/D = 18 and an additional cooling section of the barrel was used as the processing unit. The establishment influence of the fibre addition, as well as the extrusion-cooker screw speed, on the mechanical properties of the thermoplastic starch granules was the main objective of the investigation. The maximum force during compression to 50% of the sample diameter, elastic modulus, and compression strength were evaluated. Significant differences were noted depending on the amount of fibre used, while only an insignificant influence of screw speed on the mechanical properties of the granulate was reported. An increased amount of fibres lowered the maximum force as well as the elastic modulus and compression strength of the thermoplastic starch granulates.

  3. Autohydrolysis processing as an alternative to enhance cellulose solubility and preparation of its regenerated bio-based materials

    Gan, Sinyee, E-mail: gansinyee@hotmail.com; Zakaria, Sarani, E-mail: szakaria@ukm.edu.my; Chen, Ruey Shan; Chia, Chin Hua; Padzil, Farah Nadia Mohammad; Moosavi, Seyedehmaryam

    2017-05-01

    Kenaf core pulp has been successfully autohydrolysed using an autoclave heated in oil bath at various reaction temperature at 100, 120 and 140 °C. Membranes, hydrogels and aerogels were then prepared from autohydrolysed kenaf in urea/alkaline medium by casting on the glass plate, by using epichlorohydrin (ECH) as cross-linker via stirring and freeze-drying method, respectively. The autohydrolysis process reduced the molecular weight of cellulose and enhanced cellulose solubility and viscosity. Structure and properties of the regenerated products were measured with Field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Ultraviolet–visible (UV–Vis) spectrophotometer and swelling testing. As the autohydrolysis temperature increased, the porosity of cellulose membranes (as seen from the morphology) increased. The autohydrolysis process improved the swelling porperties and transparency of regenerated cellulose hydrogels. This finding is expected to be useful in reducing molecular weight of cellulose in order to produce regenerated bio-based cellulose materials. - Highlights: • Autohydrolysis temperature is negatively correlated to cellulose molecular weight. • Cellulose solubility and viscosity are improved after cellulose pretreatment. • Autohydrolysis improved the properties of regenerated cellulose materials.

  4. Fulton Cellulosic Ethanol Biorefinery

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  5. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper.

    Ferrer, Ana; Filpponen, Ilari; Rodríguez, Alejandro; Laine, Janne; Rojas, Orlando J

    2012-12-01

    Different cellulose pulps were produced from sulfur-free chemical treatments of Empty Palm Fruit Bunch Fibers (EPFBF), a by-product from palm oil processing. The pulps were microfluidized for deconstruction into nanofibrillated cellulose (NFC) and nanopaper was manufactured by using an overpressure device. The morphological and structural features of the obtained NFCs were characterized via atomic force and scanning electron microscopies. The physical properties as well as the interactions with water of sheets from three different pulps were compared with those of nanopaper obtained from the corresponding NFC. Distinctive chemical and morphological characteristics and ensuing nanopaper properties were generated by the EPFBF fibers. The NFC grades obtained compared favorably with associated materials typically produced from bleached wood fibers. Lower water absorption, higher tensile strengths (107-137 MPa) and elastic modulus (12-18 GPa) were measured, which opens the possibility for valorization of such widely available bioresource. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Method of saccharifying cellulose

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  7. Extraction and Characterization of Nano cellulose from Coconut Fiber

    Nor Liyana Ahmad; Ishak Ahmad

    2013-01-01

    Coconut husk fibers has been modified by some chemical treatments to extract cellulose nano crystals (CNC), which are alkali treatment, bleaching and acid hydrolysis using concentrated sulphuric acid. The effect of the treatments on the coconut husk fibers has been analysed using Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Meanwhile, the morphology observation and thermal stability of the fiber have been analysed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) respectively. The analyses show that the chemical modification could eliminate some of the lignin and hemicelluloses of the fiber. Nano cellulose extracted from acid hydrolysis has been analysed using transmission electron microscopy (TEM) to define the size of extracted nano cellulose. The cellulose nano crystals from coconut fibre has the average diameter and length in the range 13.7±6.2 nm and 172.3±8.4 nm, respectively. The obtained nano cellulose may have the potential applications in the fields of biomedical, oil adsorption, membrane, pharmaceutical and bio composites. (author)

  8. Alkaline pulping of some eucalypts from Sudan.

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  9. Optical Fibre Bundle

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  10. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  11. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  12. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration.

    Martínez-Sarrà, Ester; Montori, Sheyla; Gil-Recio, Carlos; Núñez-Toldrà, Raquel; Costamagna, Domiziana; Rotini, Alessio; Atari, Maher; Luttun, Aernout; Sampaolesi, Maurilio

    2017-07-27

    Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206 + macrophages. Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.

  13. Pulp regeneration: Current approaches and future challenges

    Jingwen eYANG

    2016-03-01

    Full Text Available Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α, basic Fibroblast Growth Factor (bFGF, Platelet Derived Growth Factor (PDGF, stem cell factor (SCF, and Granulocyte Colony-Stimulating Factor (G-CSF were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration.

  14. Effects of Molasses on the Fermentation Quality of Wheat Straw and Poultry Litter Ensiled with Citrus Pulp

    Migwi, P.K; Gallanga, J.R; Barneveld, R.J

    1999-01-01

    Studies were conducted to find out whether inclusion of molasses had any effect on the fermentation quality and potential nutritive value of silage when wheat straw and poultry litter were ensiled with citrus pulp. A 4 x 2 factorial experiment in a randomized complete block design with four treatments (T) containing wheat straw, poultry litter and citrus pulp respectively on DM basis with 0 and 5% molasses, were prepared as follows-: T1 (75:25:0); T2 (60:25:15); T3 (45:25:30) and T4 (30:25:45). For each treatment in triplicate between 5-10 kg of thoroughly mixed material were ensiled for for a period of 60 days in 20-l hard plastic container laboratory silos, lined with a double layer of polythene bags. Inclusion of 5% molasses when ensiling wheat straw and poultry litter with 0, 15, 30 and 45% citrus pulp had no significant effect on pH, neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) and in vitro OM digestibility. However, molasses resulted in a significant decrease in volatile fatty acids including N-butyric acid. There was a complete elimination of coliforms in all treatments, except in the silage that had neither molasses nor citrus pulp. There was a significant difference in titratable acidity levels between silage with 0 and 5% molasses, but this was only in silage with 30% citrus pulp. As the proportion of citrus pulp in silage increased from 0 to 45%, there was significant increase in silage acidity and also an increase in pH. However, there was no significant difference in pH between silage with 30 and 45% citrus pulp. There was a significant (P < 0.001) increase in in vitro OM digestibility from 0.33 to about 0.56 for silage with 0 and 45% citrus pulp respectively. It is concluded that when wheat straw and poultry litter are ensiled with citrus pulp, use of molasses offers no significant benefit inspite of the cost associated with its use. However, when no citrus pulp is included in the pre-mix, addition of some

  15. Licuri fibers characterization after treatment to produce cellulose nanocrystals

    Castro, E.G.; Oliveira, J.C.; Miranda, C.S.; Jose, N.M.

    2014-01-01

    Cellulose nanocrystals have been widely studied in the materials area due to their high aspect ratio, which is directly related to a good performance as mechanical reinforcement. Obtaining this nanocrystals from commercial bleached pulps, as eucalyptus, or microcrystalline cellulose is well studied. Trying to find new extraction sources, exploring better the huge variety of Brazil’s natural fibers and giving the opportunity of development to small communities, the present work verifies the influence of two bleaching methodologies, sodium hypochlorite or hydrogen peroxide, on licuri fibers. Previous washing and mercerization steps were performed before bleaching. The product of each step was analysed by: DSC, TGA, XRD, SEM and FTIR. The yield of each step was also calculated. (author)

  16. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  17. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  18. FIBER OPTICS: Fibre optics: Forty years later

    Dianov, Evgenii M.

    2010-01-01

    This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed.

  19. Analysis of glass fibre sizing

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  20. Sputter etching of polymer fibres

    Carter, G.; Hill, A.E.; Nobes, M.J.; Jeffries, R.; Simmens, S.C.

    1979-01-01

    Fibres of polyamide, polyester and an aromatic polyamide (Kevlar) have been subjected to Ar + ion bombardment erosion in an ion accelerator or an rf discharge system. In the case of the former two polymers, cones are observed to develop upon the fibre surface and these are associated with etch protection resulting from the presence of particles of titanium dioxide pigment. This effect is absent in the third, unpigmented, fibre. In all cases ripple structures with a habit transverse to the fibre axes and of wavelength of approximately 1000 Angstrom are gradually developed during ion bombardment. It is suggested that this morphology results from an underlying periodicity of the fibre structure either inherent in the fibre structure or induced by the irradiation. (author)

  1. THE EFFECT OF FUMIGATION TREATMENT TOWARDS AGAVE CANTALA ROXB FIBRE STRENGTH AND MORPHOLOGY

    MUSA BONDARIS PALUNGAN

    2017-05-01

    Full Text Available The objective of this study is to reveal the morphology, physical properties and strength of the king pineapple leaf fibre (Agave Cantala Roxb after fumigation treatment. The king pineapple leaf fibres (KPLF before and after the fumigation treatment are then separated into groups. The fumigation treatment on KPLF is given in different durations, and the smoke comes from burning coconut shells. Before and after fumigation, the surface morphology, chemical content, and functional group character of KPLF were observed by SEM, XRD, and FTIR, respectively. While the physical characteristics were identified by measuring fibre density, moisture content and fibre strength were tested by a single fibre tensile strength test. The results show that chemical contents of KPLF were cellulose, hemicellulose and lignin, accounting for as much as 55.8%, 21.27%, and 7.66%, respectively. After fumigation, the KPLF surface morphology becomes rough and grooved, the fibre density increased, and the single fibre tensile strength increased notably at the base of the king pineapple leaf. With the tensile strength increase and a rough and grooved KPLF surface morphology due to fumigation, fumigated KPLF would have the potential to be used as a strengthened composite.

  2. Extraction of High Quality RNA from Cannabis sativa Bast Fibres: A Vademecum for Molecular Biologists

    Gea Guerriero

    2016-07-01

    Full Text Available In plants there is no universal protocol for RNA extraction, since optimizations are required depending on the species, tissues and developmental stages. Some plants/tissues are rich in secondary metabolites or synthesize thick cell walls, which hinder an efficient RNA extraction. One such example is bast fibres, long extraxylary cells characterized by a thick cellulosic cell wall. Given the economic importance of bast fibres, which are used in the textile sector, as well as in biocomposites as green substitutes of glass fibres, it is desirable to better understand their development from a molecular point of view. This knowledge favours the development of biotechnological strategies aimed at improving specific properties of bast fibres. To be able to perform high-throughput analyses, such as, for instance, transcriptomics of bast fibres, RNA extraction is a crucial and limiting step. We here detail a protocol enabling the rapid extraction of high quality RNA from the bast fibres of textile hemp, Cannabis sativa L., a multi-purpose fibre crop standing in the spotlight of research.

  3. Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

    Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar

    2017-12-01

    Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.

  4. CENTRAL KALIMANTAN’S FAST GROWING SPECIES: SUITABILITY FOR PULP AND PAPER

    Danang Sudarwoko Adi

    2015-04-01

    Full Text Available Recent studies of fast growing species grown in PT. Sari Bumi Kusuma, Central Kalimantan, show that based on their fiber dimensions there are five species, namely Endospermum diadenum, Dillenia spp., Adinandra dumosa, Adiandra sp., and Nauclea junghuhnii with good potential for pulp and paper production. The fiber length of those five wood species are was more than 2,200 µm on average. This paper studies the physical properties, fiber dimensions and their chemical contents to predict the paper and pulp quality. The result shows that all of the species were classified in the medium to high density category. All species were classified into the first class quality for pulp and paper. Based on chemical contents, Dillenia sp. is the most suitable species due to its high value of holocellulose and a-cellulose, low lignin content, and its fiber length is about 3,119 µm on average. A. dumosa also has good opportunities because it had the longest fiber lengths (3,137 µm on average and high value of holocellulose, even though it has the highest lignin content. While Nuclea junghuhnii is less suitable due to low values of holocellulose and a-cellulose.

  5. Fibre fortification of wheat bread: impact on mineral composition and bioaccessibility.

    Martins, Zita E; Pinto, Edgar; Almeida, Agostinho A; Pinho, Olívia; Ferreira, Isabel M P L V O

    2017-05-24

    In this work, wheat bread was fortified with fibre enriched extracts recovered from agroindustry by-products, namely, elderberry skin, pulp and seeds (EE); orange peel (OE); pomegranate peel and interior membranes (PE); and spent yeast (YE). The impact of this fortification on the total and bioaccessible mineral composition of wheat breads, estimated mineral daily intake, and the relationship between bioaccessibility and dietary fibre was evaluated. Fortification with OE, EE, and PE improved the content of essential minerals in bread when compared to control bread. The exception was bread fortified with YE, which presented a mineral content similar to control bread, but its mineral bioaccessibility was significantly higher than in all the other bread formulations. The opposite was observed for PE bread, which presented a significant reduction of bioaccessible minerals. We concluded that the origin of the fibre rich extract must be carefully selected, to avoid potential negative impact on mineral bioaccessibility.

  6. SUSTAINABLE PAPER - Biotechnical modification of mechanical pulp. Final report; KESTAeVAe PAPERI - Mekaanisen massan biotekninen muokkaus. Loppuraportti

    Pere, J.; Liukkonen, S.; Gullichsen, J.; Viikari, L.

    1997-12-31

    In this work the application of purified enzymes in mechanical pulping was studied. The aim was to gain energy savings in secondary refining of mechanical pulp by modifying pulp fractions with enzymes. One special objective was to increase the flexibility and bonding ability of long fibre fraction. The main interest was in Trichoderma reesei cellulases (CBH I, CBH II, EG I) and hemicellulases (xylanase, mannanase), but a few commercial enzyme preparations (pectinase, cellulase) were also tested. Coarse mechanical pulp (CSF 350-600 ml) or functioned reject (CSF 550-700 ml) were treated with enzymes (45 deg C. pH 5,2-16 h). After enzymatic treatment the pulps were subjected to secondary refining either with a laboratory scale disk refiner (Sprout-Waldron) or a wing defibrator. Some of the results obtained in laboratory scale were further verified in pilot scale. The accessibility of mechanical pulp to enzymatic hydrolysis was limited and therefore yield losses of raw material due to the enzymatic treatments were usually very low, < 0,6 % of original dry weight. The liberation of soluble oligosaccharides was affected by the enzyme used and also depended on the freeness level and metal composition of the pulp. Endoglucanase (EG I) and mannanase solubilized reducing sugars more efficiently than cellobiohydrolases (CBH I, CBH II). If secondary refining was performed with the atmospheric disk refiner no energy savings or improvement in pulp properties were gained with any of the enzymes tested as compared with the untreated reference. But energy savings up to 20-30 % were obtained when the pulp was pretreated with CBH I prior to secondary refining with the wing defibrator. Pretreatment of the pulp with mannanase gave small energy savings (10-20 %), too. Boosting of secondary refining with CBH I and mannanase was attained while retaining good handsheet properties of the pulp. The positive effects of CBH I on secondary refining were further verified in pilot scale. In a two

  7. Advanced Fibre Based Energy Storage

    Reid, Daniel Oliver

    New energy storage devices are required to enable future technologies. With the rise of wearable consumer and medical devices, a suitable flexible and wearable means of storing electrical energy is required. Fibre-based devices present a possible method of achieving this aim. Fibres are inherently more flexible than their bulk counterparts, and as such can be employed to form the electrodes of flexible batteries and capacitors. They also present a facile possibility for incorporation into many fabrics and clothes, further boosting their potential for use in wearable devices. Electrically conducting fibres were produced from a dispersion of carbon nanomaterials in a room temperature ionic liquid. Coagulation of this dispersion was achieved through manual injection into aqueous solutions of xanthan gum. The limitations of this method are highlighted by very low ultimate tensile strengths of these fibres, in the order of 3 MPa, with high variation within all of the fibres. Fibres were also produced via scrolling of bi-component films containing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA). Chemical treatments were employed to impart water compatibility to these fibres, and their electrochemical, physical and electrical properties were analysed. Fibres were wet spun from two PEDOT:PSS sources, in several fibre diameters. The effect of chemical treatments on the fibres were investigated and compared. Short 5 min treatment times with dimethyl sulfoxide (DMSO) on 20 mum fibres produced from Clevios PH1000 were found to produce the best overall treatment. Up to a six-fold increase in electrical conductivity resulted, reaching 800 S cm-1, with up to 40 % increase in specific capacitance and no loss of mechanical strength (55 F g-1 and 150 MPa recorded). A wet spinning system to produce PEDOT:PSS fibres containing functionalised graphenes and carbon nanotubes, as well as birnessite nanotubes was subsequently developed

  8. Influence of different fibre sources in diets for growing pigs on chemical composition of faeces and slurry and ammonia emission from slurry

    Hansen, Michael Jørgen; Chwalibog, André; Tauson, Anne-Helene

    2007-01-01

    The present study was carried out to investigate how three different fibre sources, sugar beet pulp, soya bean hulls and pectin residue, in diets for growing pigs influenced the concentration of short-chain fatty acids (SCFA) in faeces, pH-value in faeces and slurry, excretion of nitrogen in urine...

  9. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass

    Smuga-Kogut, Małgorzata; Zgórska, Kazimiera; Szymanowska-Powałowska, Daria

    2016-01-01

    In recent years, much attention has been devoted to the possibility of using lignocellulosic biomass for energy. Bioethanol is a promising substitute for conventional fossil fuels and can be produced from straw and wood biomass. Therefore, the aim of this paper was to investigate the effect of 1-ethyl-3-methylimidazolium pretreatment on the structure of cellulose and the acquisition of reducing sugars and bioethanol from cellulosic materials. Material used in the study was rye straw and microcrystalline cellulose subjected to ionic liquid 1-ethyl-3-methylimidazolium pretreatment. The morphology of cellulose fibres in rye straw and microcrystalline cellulose was imaged prior to and after ionic liquid pretreatment. Solutions of ionic liquid-treated and untreated cellulosic materials were subjected to enzymatic hydrolysis in order to obtain reducing sugars, which constituted a substrate for alcoholic fermentation. An influence of the ionic liquid on the cellulose structure, accumulation of reducing sugars in the process of hydrolysis of this material, and an increase in ethanol amount after fermentation was observed. The ionic liquid did not affect cellulolytic enzymes negatively and did not inhibit yeast activity. The amount of reducing sugars and ethyl alcohol was higher in samples purified with 1-ethyl-3-methy-limidazolium acetate. A change in the supramolecular structure of cellulose induced by the ionic liquid was also observed.

  10. Physicochemical analysis of cellulose from microalgae ...

    USER

    2016-06-15

    Jun 15, 2016 ... The extraction method of algae cellulose was a modification of ... triplicate. Characterization of cellulose. Analysis of ... The current analysis of the cellulose extracted .... Cellulose nanomaterials review: structure, properties and.

  11. Preparation And Properties Of Bionanocomposite Films Reinforced With Nanocellulose Isolated From Moroccan Alfa Fibres

    Youssef Benyoussif

    2015-09-01

    Full Text Available Nanocellulose (NC were extracted from the Moroccan Alfa plant (Stipa tenacissima L. and characterised. These Alfa cellulosic nanoparticles were used as reinforcing phase to prepare bionanocomposite films using carboxymethyl cellulose as matrix. These films were obtained by the casting/evaporation method. The crystallinity of NC was analysed by X-ray diffraction, the dimension of NC by atomic force microscopy, molecular interactions due to incorporation of NC in carboxymethyl cellulose (CMC matrix were supported by Fourier transforms infrared (FTIR spectroscopy. The properties of the ensuing bionanocomposite films were investigated using tensile tests, water vapour permeability (WVP study and thermogravimetric analysis. With the progress of purification treatment of cellulose, the crystallinity is improved compared to the untreated fibres; this can be explained by the disappearance of the amorphous areas in cellulose chain of the plant. Consequently, the tensile modulus and tensile strength of CMC film increased by 60 and 47%, respectively, in the bionanocomposite films with 10 wt% of NC, and decrease by 8.6% for WVP with the same content of NC. The NC obtained from the Moroccan Alfa fibres can be used as a reinforcing agent for the preparation of bionanocomposites, and they have a high potential for the development of completely biodegradable food packaging materials.

  12. Isolation and Characterization of Cellulose Nanofibers from Gigantochloa scortechinii as a Reinforcement Material

    Chaturbhuj K. Saurabh

    2016-01-01

    Full Text Available Cellulose nanofibers (CNF were isolated from Gigantochloa scortechinii bamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%.

  13. The Influence of Nano-Fibrillated Cellulose as a Coating Component in Paper Coating

    Yaxi Xu

    2016-03-01

    Full Text Available This work investigates nano-fibrillated cellulose (NFC as a component in mineral pigment paper coating. In this work, bleached Eucalyptus pulp was pretreated by TEMPO (2,2,6,6-tetramethyl-1-piperdinyloxy-mediated oxidation. The oxidized pulp was then isolated to obtain NFC by sonication. Aqueous coating colors consisting of calcium carbonate, clay, carboxylated butadiene-styrene latex, additives, and NFC were prepared. The rheology of the coating colors and the surface properties of paper coated with NFC containing coating colors were determined. The rheological properties allowed NFC to be used in small amounts under laboratory conditions. Nano-fibrillated cellulose was found to improve the surface strength and smoothness of the coated paper. The water resistance of coated paper, on the other hand, decreased because of the hydrophilicity of NFC.

  14. Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.)

    Nykter, M.; Kymalainen, H.R.; Thomsen, Anne Belinda

    2008-01-01

    The aim of the present study was to examine the effects of pectinase enzyme treatment followed by thermal treatments (steam explosion and dry heating) on the microbial quality and chemical composition of hemp fibres. Before these treatments, the fibres were separated manually from the stems...... materials. Dry heating had no effect on mould and bacterial counts at temperatures below 120 degrees C and durations less than 60 min. The chemical composition was affected by the enzymatic treatment due to extraction and degradation of water-soluble components, pectin and ash. Thus the cellulose content...... increased by 6% w/w to 67-70% w/w. Steam explosion of the untreated hemp fibres increased the cellulose content to 74% w/w, whereas steam explosion of enzymatically treated hemp increased the cellulose content to 78% w/w. (c) 2007 Elsevier Ltd. All rights reserved....

  15. Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions.

    Mao, Jia; Abushammala, Hatem; Pereira, Laura Barcellos; Laborie, Marie-Pierre

    2016-11-20

    1Butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) is efficient at extracting cellulose nanocrystals from pulp fibers. To shed some light on the respective contributions of swelling and hydrolysis of pulp fibers by [Bmim]HSO4, the physical, structural and morphological characteristics of hardwood Kraft pulp fibers were monitored under various conditions of temperature, water content and time. Swelling was largely compounded by hydrolysis at the highest temperatures (120°C) as evidenced by mass loss and reduced degree of polymerization (DPn) at this temperature. At 120°C only, water content appeared to play a significant role on the extent of hydrolysis. At this temperature, a heterogeneous kinetic model involving weak links and amorphous regions best described the experimental data. Hydrolysis rates were maximum at 25% water content in the aqueous ionic liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Drying kinetics of atemoya pulp

    Plúvia O. Galdino

    Full Text Available ABSTRACT This study was conducted in order to obtain drying curves of whole atemoya pulp through the foam-mat drying method. The suspension was prepared with whole atemoya pulp mixed with 2% of Emustab® and 2% of Super Liga Neutra® with mixing time of 20 min, and dried in a forced-air oven at different temperatures (60; 70 and 80 °C and thicknesses of the foam layer (0.5, 1.0 and 1.5 cm. The drying rate curves were plotted against the water content ratio and the semi-theoretical models of Henderson & Pabis, Page and Midilli were used. All tested models showed coefficient of determination (R2 above 0.993, and the Midilli model showed the best fit for all conditions. Drying curves were affected by temperature and layer thickness.

  17. Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application

    Maniruzzaman, Mohammad; Jang, Sang-Dong; Kim, Jaehwan

    2012-01-01

    Highlights: ► An organic–inorganic hybrid nanocomposite was fabricated by blending TiO 2 nanoparticles and cellulose solution. ► The hybrid nanocomposite has advantages of biodegradability and bio-compatibility of cellulose and physical properties of TiO 2 . ► Enzyme glucose oxidase (GOx) was immobilized into the hybrid nanocomposite and covalent bonding between TiO 2 and GOx was confirmed by X-ray photoelectron analysis. ► Linear response of the glucose biosensor was obtained in the range of 1–10 mM. - Abstract: This paper investigates the fabrication of titanium dioxide (TiO 2 )–cellulose hybrid nanocomposite and its possibility for a conductometric glucose biosensor. TiO 2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N,N-dimethylacetamide solvent to fabricate TiO 2 –cellulose hybrid nanocomposite. The enzyme, glucose oxidase (GOx) was immobilized into this hybrid nanocomposite by physical adsorption method. The successful immobilization of glucose oxidase into TiO 2 –cellulose hybrid nanocomposite via covalent bonding between TiO 2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of the glucose biosensor is obtained in the range of 1–10 mM. This study demonstrates that TiO 2 –cellulose hybrid nanocomposite can be a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  18. Conversion of industrial (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon

    Op de Beeck, B.; Van Lishout, J.; Jacobs, P.A.; Sels, B.F. [Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Geboers, J. [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim an der Ruhr (Germany); Van de Vyver, S. [Massachusetts Institute of Technology MIT, Massachusetts Avenue 77, Cambridge, MA 02139-4307 (United States); Snelders, J.; Courtin, C.M. [Centre for Food and Microbial Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee (Belgium); Huijgen, W.J.J. [Biomass and Energy Efficiency BEE, Energy research Centre of the Netherlands ECN, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2013-01-11

    The catalytic valorization of cellulose is currently subject of intense research. Isosorbide is among the most interesting products that can be formed from cellulose as it is a potential platform molecule and can be used for the synthesis of a wide range of pharmaceuticals, chemicals, and polymers. A promising direct route from cellulose to isosorbide is presented in this work. The strategy relies on a one-pot bifunctional catalytic concept, combining heteropoly acids, viz. H4SiW12O40, and redox catalysts, viz. commercial Ru on carbon, under H2 pressure. Starting from pure microcrystalline cellulose, a rapid conversion was observed, resulting in over 50% isosorbide yield. The robustness of the developed system is evidenced by the conversion of a range of impure cellulose pulps obtained by organosolv fractionation, with isosorbide yields up to 63%. Results were compared with other (ligno)cellulose feedstocks, highlighting the importance of fractionation and purification to increase reactivity and convertibility of the cellulose feedstock.

  19. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp.

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-01-01

    For enzymatic treatment of dissolving pulp, there is a need to improve the process to facilitate its commercialization. For this purpose, the high consistency cellulase treatment was conducted based on the hypothesis that a high cellulose concentration would favor the interactions of cellulase and cellulose, thus improves the cellulase efficiency while decreasing the water usage. The results showed that compared with a low consistency of 3%, the high consistency of 20% led to 24% increases of cellulase adsorption ratio. As a result, the viscosity decrease and Fock reactivity increase at consistency of 20% were enhanced from 510 mL/g and 70.3% to 471 mL/g and 77.6%, respectively, compared with low consistency of 3% at 24h. The results on other properties such as alpha cellulose, alkali solubility and molecular weight distribution also supported the conclusion that a high consistency of cellulase treatment was more effective than a low pulp consistency process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. [Daily practice and pulp diseases].

    Calmein, S; Claisse, A

    1990-09-01

    Constructive or destructive processes of pulp tissue depend on many factors: anatomic topography, particular physiology, or intensity and duration of infectious, mechanical and chemical aggression. Also irritation of the pulpo-dentinal complex induce histologic and physiologic changes. The positive diagnosis of hyperemia, acute or chronic pulpitis, pulpal necrosis and acute or chronic apical abscess is performed by clinical investigations which allow a differential diagnosis with other dental or extra-dental diseases. These multiple steps lead to an adapted and appropriate treatment.

  1. Creep properties of discontinuous fibre composites with partly creeping fibres

    Bilde-Soerensen, J.B.; Lilholt, H.

    1977-05-01

    In a previous report (RISO-M-1810) the creep properties of discontinuous fibre composites with non-creeping fibres were analyzed. In the present report this analysis is extended to include the case of discontinuous composites with partly creeping fibres. It is shown that the creep properties of the composite at a given strain rate, epsilonsub(c), depend on the creep properties of the matrix at a strain rate higher than epsilonsub(c), and on the creep properties of the fibres at epsilonsub(c). The composite creep law is presented in a form which permits a graphical determination of the composite creep curve. This can be constructed on the basis of the matrix and the fibre creep curves by vector operations in a log epsilon vs. log sigma diagram. The matrix contribution to the creep strength can be evaluated by a simple method. (author)

  2. Scintillating-fibre calorimetry

    Livan, M.; Vercesi, V.; Wigmans, R.

    1995-01-01

    In the past decade, calorimetry based on scintillating plastic fibres as active elements was developed from a conceptual idea to a mature detector technology, which is nowadays widely applied in particle physics experiments. This development and the performance characteristics of representative calorimeters, both for the detection of electromagnetic and hadronic showers, are reviewed. We also discuss new information on shower development processes in dense matter and its application to calorimetric principles that has emerged from some very thorough studies that were performed in the framework of this development. (orig.)

  3. Strength improvement of fibre cement product

    Waranya Sonphuak

    2013-10-01

    Full Text Available This paper presents a methodology to improve the strength or the Modulus of Rupture (MOR of fibre cement. The Six Sigma approach with the DMAIC steps was applied to a case study company. This research started from defining problem, setting the project objective and the project scope. Next, the measurement system was analyzed and the process map was set up. The potential factors of the problem was then determined. Due to there were many factors that affect the MOR, the Cause and Effect Matrix and the Failure Mode and Effect Analysis technique were then used to reduce the number of factors to be studied further. Next, three process factors, which were the pulp slurry freeness, the film-layer thickness, and the pressure step, were optimized using the results from the Box-Behnken experimental design. Other 13 remaining factors were improved by creating or revising the standard work instructions and training the operators. After that, the statistical process control and the control plan were set up to control the production processes. After improvement, the process capability index (Ppk significantly increased from 0.26 to 1.35.

  4. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  5. Characterisation of solution cast cellulose nanofibre – reinforced poly(lactic acid

    2010-01-01

    Full Text Available Cellulose nanofibres, 20 nm in diameter and 300 nm long, were prepared by acid hydrolysis of flax yarns. Composite films containing 2.5 and 5.0 wt% flax cellulose (FC fibres were prepared by solution casting of mixtures of poly(lactic acid (PLA solution and cellulose nanofibre suspension in chloroform. The resulting composite films and solution cast pure PLA film, with thickness of around 160 m, showed good transparency. For composites with 2.5 and 5.0 wt% FC, the tensile strength increased by 25 and 59% and tensile modulus by 42 and 47%, respectively, compared to pure PLA film. The composite film with 2.5 wt% FC combined high strength and ductility with tensile strength of 24.3 MPa and 70% elongation at break. Flax cellulose appeared to facilitate nucleation and subsequent crystallisation of PLA more effectively in the amorphous composites than in the crystalline composites.

  6. EVALUATION OF LINERBOARD PROPERTIES FROM MALAYSIAN CULTIVATED KENAF SODA-ANTHRAQUINONE PULPS VERSUS COMMERCIAL PULPS

    Ahmad Azizi Mossello; Jalaluddin Harun; Rushdan Ibrahim; Hossien Resalati; Seyed Rashid Fallah Shamsi; Paridah Md Tahir; Mohd Nor Mohad Yusoff

    2010-01-01

    Malaysian cultivated kenaf has been identified as a suitable raw material for linerboard production. This study examines the soda-antraquinone (soda-AQ) pulp of kenaf fibers versus old corrugated container (OCC) and unbleached softwood kraft pulps as the main sources for linerboard production. The results showed significant differences among the pulp properties. The unbleached kraft pulp with very high freeness required high beating to reach an optimized freeness and produced paper with the h...

  7. Fibre-optic temperature sensor

    Zhao Jie; Liu Zhenyuan.

    1993-04-01

    This experiment is a kind of nonfunction fibre-optic temperature sensor. It utilizes high-sensitive bimetallic strip for element of measuring temperature. The changing of bimetallic strip alterates intensity of light through fibre-optic. This equipment is simple in structure, subtle in design, extensive in application, and so on. (author). 4 refs, 6 figs, 1 tab

  8. Current status of natural fibres

    Anandjiwala, RD

    2006-12-01

    Full Text Available Fiber Selection Conference, 17-19 May 1999, Greenville, SC, USA. 16. Sankari, H.S. 2000. Comparison of bast fibre yield and mechanical fibre properties of hemp (Cannabis sativa L.) cultivars. Industrial Crops and Products (11) 1: 73-84. 17. W...

  9. Design of DFB fibre lasers

    Lauridsen, Vibeke Claudia; Povlsen, Jørn Hedegaard; Varming, Poul

    1998-01-01

    A numerical model for erbium distributed feedback (DFB) fibre lasers is presented. The model is used to optimise the location of a discrete phase-shift to obtain maximum output power. For DFB fibre lasers of up to 10cm in length it is shown that the influence of Kerr nonlinearity with respect to ...... to output power is negligible....

  10. Hydroxynortriptyline of Empty Fruit Bunches Fibre using Polyethylene glycol (PEG)

    Noreen, F.M.Z.; Sarani Zakaria

    2013-01-01

    The aim of this study was to investigate the reaction of oil palm empty fruit bunches fibre (EFBF) via chemical modification and hydroxynortriptyline method using polyethylene glycol (PEG). The first stage was the modification of EFB fibre using NaOH and isopropanol. The next stage was the preparation of hydroxypropylated-empty fruit bunches fibre (HP-EFBF), using different molecular weight of PEG (6,000, 8,000 and 10,000). The characterisation involved in this study were conducted by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), determination of kinetic activation energy (E a ), X-ray diffraction (XRD), cellulose crystallinity index (CrI) and weight increment of the HP-EFB fibre. SEM results showed the surface of HP-EFBF swelled and craters formed along the surface of the fibre. IR spectrum also showed OH stretching band in EFB without treatment is 3402 cm -1 , but after hydroxynortriptyline process, the OH stretching band in HP-EFBF (10000, 8000 and 6000) slightly shifted to 3392, 3384 and 3370 cm -1 , respectively. TGA showed the thermal stability of HP-EFBF 6,000 was lower than HP-EFBF 8,000 and 10,000. After chemical modification, the activation energy, E a increased from 32.4 to 51.9 kJ/ mol more than EFB without treatment, 12.5 kJ/ mol. XRD showed that diffraction peak (002) shifted to the smaller 2θ angle and the peaks (101, 10I) disappeared after hydroxynortriptyline process. Crystallinity index, of EFB without treatment decreased from 27 % to 25 % after chemical modification. The higher the molecular weight of the PEG, the greater the weight increment of the HP-EFBF. (author)

  11. Surface functionalization of cellulose by grafting oligoether chains

    Ly, El hadji Babacar; Bras, Julien; Sadocco, Patrizia; Belgacem, Mohamed Naceur; Dufresne, Alain; Thielemans, Wim

    2010-01-01

    Two cellulosic substrates (Whatman paper and wood fibres) were chemically modified using different oligoether chains; poly(ethylene) (POE), poly(propylene) (PPG) and poly(tetrahydrofuran) (PTHF) glycols with different lengths were first converted into mono-NCO-terminating macromolecules to allow direct grafting to the cellulose substrates. This step was achieved by reacting the chosen oligoether with 2,4-toluene diisocyanate. The prepared macromolecular grafts were then coupled with the cellulose surface and the resulting treated substrates were fully characterized by contact angle measurements, elemental analysis, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Thus, all the techniques implemented showed clear evidence of successful grafting, namely: (i) when using PPG grafts, the polar contribution to the surface energy decreased from approximately 25 to virtually 0 mJ m -2 and the wettability by water decreased, as the water contact angle shifted from around 40 to above 90 o ; (ii) nitrogen atoms were detected by elemental analysis and XPS; (iii) the aliphatic carbon contents increased from 11 to about 39-50%, depending on the oligoether used; and (iv) small spheres having about 100 nm diameter were detected by SEM. Moreover, the grafted fibres were submitted to biodegradation tests which showed that they conserved their biodegradable character, although with a slower biodegradation rate. The novelty of the present paper is the direct grafting of the polymeric matrix onto the fibre surface thanks to a new modification strategy involving the use of a diisocyanate as a mediator between the matrix and the reinforcing elements. The covalently linked polymeric chains constituting the matrix could melt under heating, thus, yielding the interdiffusion of the macromolecular grafts and forming the composite.

  12. Diabetes induces metabolic alterations in dental pulp.

    Leite, Mariana Ferreira; Ganzerla, Emily; Marques, Márcia Martins; Nicolau, José

    2008-10-01

    Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p pulps from both groups presented similar total protein concentrations and peroxidase activity. Dental pulps of diabetic rats exhibited significantly lower free, conjugated, and total sialic acid concentrations than those of control tissues. Catalase activity in diabetic dental pulps was significantly enhanced in comparison with that of control pulps. The result of the present study is indicative of oxidative stress in the dental pulp caused by diabetes. The increase of catalase activity and the reduction of sialic acid could be resultant of reactive oxygen species production.

  13. Organo mercurials in pulp and paper industry

    Bouveng, H O

    1967-01-01

    Today phenyl mercury acetate (PMA) is used in the paper and pulp industry for two purposes: slime control in paper machine systems and impregnation of wet mechanical pulp. PMA is a commonly used slimicide. It is used for slime control in such a way that a minor part (5-20% depending on mill operation) will reach the watercourse with the waste water and contaminate aquatic life. PMA used for impregnation concerns wet mechanical pulp produced for export as raw material, mostly for newsprint. Treatment of this pulp with PMA is necessary to avoid changes caused by molds and rot fungi.

  14. Pulp and paper production from Spruce wood with kraft and ...

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... optical properties of resultant paper were included to determine the properties of these pulp samples. ... pulping compounds in the kraft method are Na2S and .... Scanning electron microscope (SEM) measurement of pulp.

  15. Dental pulp stone formation during orthodontic treatment: A ...

    2015-06-21

    Jun 21, 2015 ... the presence of dental pulp stone, gender, age, tooth type and arches. Results: Dental pulp ... primary and permanent dentition.[1] Dental pulp stones .... interpretation provided training to familiarize the other observer with the ...

  16. Catalase activity in healthy and inflamed pulp tissues of permanent ...

    2015-11-02

    Nov 2, 2015 ... pulps, which is due to pulpitis in comparison to healthy dental pulp. Key words: .... human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide. J Endod ... Biology of disease: Free radicals and tissue injury.

  17. Dietary fibre concentrate from Chilean algarrobo (Prosopis chilensis (Mol.) Stuntz) pods: purification and characterization.

    Estévez, Ana María; Figuerola, Fernando; Bernuy, Enrique; Sáenz, Carmen

    2014-12-01

    Prosopis species are generally fast-growing, drought-resistant, nitrogen-fixing trees or shrubs. Fruits of Prosopis spp are indehiscent pods, where pericarp is formed by the epicarp, light brown in colour, and fibrous nature; the mesocarp known as pulp, which is rich in sugars; and the endocarp. The aim of this work was to obtain a fibre concentrate from the pods of Prosopis chilensis Mol. (Stuntz) and to determine the chemical, physical, and technological properties of the pod flour (PF) and of a fibre concentrate or pod purified flour (PPF). Acetone, ethanol, and water at different conditions of time and temperature were used in the purification process. PF showed 53.7 g/100 g of total sugar content, 4.2 g/100 g of reducing sugar content, 41.8 g/100 g of total dietary fibre, 35.8 g/100 g of insoluble fibre, and 6.0 g/100 g of soluble fibre content. The PPF has a total sugar content of 3.8 g/100 g, reducing sugar content of 2.2 g/100 g, total dietary fibre content of 80.8 g/100 g, insoluble fibre content of 75.1 g/100 g, and soluble fibre content of 5.7 g/100 g. The scanning electron microscopy analysis showed the existence of voids in the structure of PPF flour, which reveals the efficiency of the purification process with a high decrease in the total sugar content. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats.

    Parolini, Cinzia; Manzini, Stefano; Busnelli, Marco; Rigamonti, Elena; Marchesi, Marta; Diani, Erika; Sirtori, Cesare R; Chiesa, Giulia

    2013-10-01

    Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; Ppea proteins, a lower hepatic cholesterol content (Ppea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.

  19. Grafting of cellulose by fluorine-bearing silane coupling agents

    Ly, B.; Belgacem, M.N.; Bras, J.; Brochier Salon, M.C.

    2010-01-01

    The surface of model cellulose fibres, Avicell (AV), as well as that of Whatman paper (WP) was chemically modified with two fluorine-bearing alkoxysilane coupling agents, namely: 3,3,3-trifluoropropyl trimethoxysilane (TFPS) and 1H,1H,2H,2H,perfluorooctyl trimethoxysilane (PFOS). The occurrence of the grafting of soxhlet extracted modified cellulose was confirmed by the presence of silicon and fluorine atoms detected by elemental analysis, X-ray photoelectron spectroscopy and Electron Dispersion Energy/Scanning Electron Microscopy (EDS/SEM). The contact angle measurements showed that, after grafting, the surface of AV and WP samples became totally highly hydrophobic with a contact angle of 140 deg. Thus, the polar contribution to the surface energy of the modified substrates was found to be close to zero. These modified substrate could be interesting for application such as self-cleaning surface, wipes paper, grease barrier paper or for biocomposite with a polar matrix.

  20. The potential of natural fibres for automotive sector - review

    Fogorasi, MS; Barbu, I.

    2017-10-01

    discussion on the cellulosic/lignocellulosic fibre properties is conducted in order to relate their chemical composition, microstructure and mechanical properties and to understand their use and limits as reinforcements in composite materials. The variation within the mechanical properties of natural fibres is a challenge towards designing predictable components for industry since the engineers are accustomed to the precise and reproducible properties of synthetic fibres. The hydrophilic nature of lignocellulosic fibres causes poor resistance to moisture and incompatibility to hydrophobic polymer matrix. As a consequence, this incompatibility causes a weak fibre/matrix interface, which consecutively leads to diminished mechanical properties of the biocomposites. Therefore, it is important to ensure a good adhesion between matrix and fibres to enhance the mechanical strength of NFRPC. This study aims to provide an overview of the greener surface treatments without use of hazardous chemicals, with emphasize on the enzymatic surface modification of natural fibres. The effectiveness of the treatment on the mechanical properties of the resulting NFRPC is also reviewed. Environmental impact of NFRPC is another important issue addressed in this review. A comparison of the environmental impacts between the NFRPC and SFRPC applied in the automobile sector, based on LCA studies, will be traced.

  1. The cellulose resource matrix

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  2. Random distributed feedback fibre lasers

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  3. Random distributed feedback fibre lasers

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  4. Gamma and electron radiation effects on agricultural by-products with high fibre content

    Leonhardt, J.W.; Baer, M.; Nehring, K.

    1983-01-01

    Gamma and electron radiation effects on wheat straw, oat straw, barley straw, rye straw and dried green fodder are reported. In vitro and in vivo studies show that the digestibility of these agricultural by-products with high fibre content can be increased up to 80% and more at high doses. The increase of the digestibility is connected with a depolymerization of the cellulose and hemicellulose. (author)

  5. High-resolution neutron diffraction studies of biological and industrial fibres

    Langan, P; Mason, S A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Fuller, W; Forsyth, V T; Mahendrasingam, A; Shotton, M; Simpson, L [Keele Univ. (United Kingdom); Grimm, H [FZ, Juelich (Germany); Leberman, R [EMBL, (Country Unknown)

    1997-04-01

    Neutron diffraction is becoming an important tool for studying fibres due to its complementarity to X-ray diffraction. Unlike X-rays, scattering of neutrons by polymer atoms is not a function of their atomic number. In high-resolution studies (1.5-3 A) on D19 deuteration (replacing H by D) is being used to change the relative scattering power of chosen groups making them easier to locate. Recent studies on DNA and cellulose are described. (author). 6 refs.

  6. Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.

    Witztum, Allan; Wayne, Randy

    2014-04-01

    Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted. Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke. Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1-3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath

  7. In vitro penetration of bleaching agents into the pulp chamber

    Benetti, Ana Raquel; Valera, M C; Mancini, M N G

    2004-01-01

    To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures.......To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures....

  8. The use of green banana (Musa balbisiana pulp and peel flour as an ingredient for tagliatelle pasta

    Vanessa Naciuk Castelo-Branco

    2017-08-01

    Full Text Available Abstract Green banana flour shows good potential as a functional ingredient for special-purpose foods, but there are no data in the literature concerning the use of a green banana pulp and peel flour for the development of products such as pasta. The aim of the present study was to develop tagliatelle pasta substituting the wheat flour with different concentrations of a green banana mixed pulp and peel flour. The pasta formulations were prepared replacing the wheat flour by the green banana mixed pulp and peel flour in two concentrations: 15% and 30%. A control formulation with wheat flour was also prepared. The green banana mixed pulp and peel flour presented higher ash, total fibre and total phenolic compound contents than traditional wheat flour. The pasta formulation with the addition of 15% green banana flour showed the highest ash content and the best sensory acceptability of all the formulations. It was concluded that it was possible to develop a tagliatelle pasta with satisfactory acceptance replacing the wheat flour by a green banana mixed pulp and peel flour.

  9. Valorization of Tunisian alfa fibres and sumac tannins for the elaboration of biodegradable insulating panels

    Saad, Houda; Charrier, Bertrand; Ayed, Naceur; Charrier-El-Bouhtoury, Fatima

    2017-10-01

    Alfa leaves are important renewable raw materials in Tunisia where they are used basically in handcrafts and paper industry. Sumac is also an abundant species in Tunisia known for its high tannin content and is basically used in traditional medicine. To valorize these natural resources, we studied, for the first time, the possibility of making insulating panels based on alfa fibres and sumac tannins based adhesive. Firstly, alfa leaves were treated with an alkali solution as it is one of the standard procedures commonly used in the paper industry to extract cellulosic fibres. Mercerization effects were studied by characterizing fibres thermal properties and fibres surface morphology. Secondly, the sumac tannin based resin was formulated and characterized. Finally, the insulating panel was elaborated and characterized by determining its thermal conductivity. The thermal gravimetric analysis results show improvement in the thermal stability of fibres after alkali treatment. Environmental Scanning Electron Microscopy showed changes on treated alfa surface which could promote the fibre-matrix adhesion. The reactivity of sumac tannins to formaldehyde test (Stiasny number) showed the possible use of sumac tannins in wood adhesive formulation. Thermomechanical analysis and strength analysis of sumac tannin/hexamin based resin highlighted acceptable bonding properties. The thermal conductivity measurement showed an average value equal to 0.110 W/m K. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  10. Microstructured Optical Fibres

    1999-01-01

    The present invention relates to a new class of optical waveguides, in which waveguiding along one or more core regions is obtained through the application of the Photonic Bandgap (PBG) effect. The invention further relates to optimised two-dimensional lattice structures capable of providing......, which are easy to manufacture. Finally, the present invention relates to a new fabrication technique, which allows easy manufacturing of preforms for photonic crystal fibers with large void filling fractions, as well as it allows a high flexibility in the design of the cladding and core structures....... complete PBGs, which reflects light incident from air or vacuum. Such structures may be used as cladding structures in optical fibres, where light is confined and thereby guided in a hollow core region. In addition, the present invention relates to designs for ultra low-loss PBG waveguiding structures...

  11. Luminescent Solar Concentrators with Fibre Geometry

    Edelenbosch, O.Y.; Fisher, M.; Patrignani, L.; Sark, W.G.J.H.M. van; Chatten, A.J.

    2013-01-01

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear

  12. Dispersion properties of photonic crystal fibres

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  13. The Influence of Fibre Content on the Performance of Steel Fibre ...

    The Influence of Fibre Content on the Performance of Steel Fibre Refractory Concrete. ... Little information is available on the effect of fibre content on refractory performance and in particular resistance to thermal shock. This study has examined the influence of fibre content of stainless steel melt extract fibres on the ...

  14. PULP DEMAND IN THE INTERNATIONAL MARKET

    Edmilson Santos Cruz

    2003-01-01

    Full Text Available This study aimed at analyzing the international pulp market, taking into account themain exporting countries and importing regions, with the objective of estimating, for each market, theown-price and cross-price elasticity in relation to the demand of the pulp, differentiated for country oforigin. The model considers that imports are differentiated by origin; therefore they are not perfect substitutes. The demand from Europe, North America and the Rest of the World for the pulp from theUnited States,Canada, Sweden, Finland, Portugal and Brazil was inelastic. The Asian demand for thissome pulp was elastic. Europe and the Rest of the World showed negative cross-price elasticity, i. e.,and the imported pulp from other countries are complementary products. North America and Asiashowed positive crow-price elasticity, i. e., they consider the pulp produced in other countries assubstitute products. The net effect of the variation on the price of pulp in a country h, over the amountof pulp that goes to the region i depends on the matching of values related to the elasticity ofsubstitution and the price elasticity of the total demand.

  15. Characterization of sugar beet pulp derived oligosaccharides

    Leijdekkers, M.

    2015-01-01

    Abstract

    This thesis aimed at characterizing complex mixtures of sugar beet pulp derived oligosaccharides, in order to be able to monitor and optimize the enzymatic saccharification of sugar beet pulp.

    Hydrophilic interaction chromatography with on-line evaporative

  16. Pulp quality from small-diameter trees.

    G.C. Myers; S. Kumar; R.R. Gustafson; R.J. Barbour; S.M. Abubakr

    1997-01-01

    Kraft and thermomechanical (TMP) pulps were prepared and evaluated from lodgepole pine and mixed Douglas-fir/western larch sawmill residue chips; lodgepole pine, Douglas-fir, and western larch submerchantable logs; and lodgepole pine, Douglas-fir, and western larch small trees and tops. Kraft pulp from small trees and tops was identical to that from submerchantable...

  17. Enzymes improve ECF bleaching of pulp

    Lachenal, D.

    2006-07-01

    Full Text Available The delignification efficiency of different laccase enzymes was examined on the eucalyptus Kraft pulp. The laccase enzyme from Trametes versicolor showing the highest delignification efficiency was selected and used in the elemental chlorine-free bleaching sequence for improving the pulp bleachability. An appreciable reduction in chlorine dioxide consumption was also obtained. Further reduction in chlorine dioxide consumption was obtained when the same laccase treated pulp was subjected to an acid treatment after the extraction stage followed by the DEPD sequence. Elemental-chlorine free bleaching was also performed using the xylanase-laccase treated pulp. Xylanase treatment was incorporated to the laccase mediator system in the elemental-chlorine free bleaching both sequentially and simultaneously. The bleaching sequence DEPD followed and in both the cases, the reduction in chlorine dioxide consumption was greater in comparison to the control. The chlorine dioxide consumption was reduced further when xylanase-laccase treated pulp was given an additional acid treatment. The final pulp properties of the treated pulps were comparable to the control pulp.

  18. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system

    Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping

    2016-07-01

    Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.

  19. Characterization and physicochemical properties of some potential fibres derived from Averrhoa carambola.

    Chau, Chi-Fai; Chen, Chien-Hung; Lee, Mao-Hsiang

    2004-02-01

    The pomace of Averrhoa carambola (carambola) was found to possess a high level of insoluble fibre-rich fractions (FRFs) including insoluble dietary fibre, alcohol-insoluble solid, and water-insoluble solid (46.0-58.2 g/100 g of pomace). These FRFs were mainly composed of pectic substances and hemicellulose. The physicochemical properties of these FRFs (e.g., water-holding capacities, swelling properties, and cation-exchange capacities) were significantly (P < 0.05) higher than those of cellulose. The apparent abilities of these FRFs to adsorb glucose and reduce amylase activity implied that they might help control postprandial serum glucose. These results recommended the consumption and application of the insoluble FRFs as low-calorie bulk ingredients in fibre enrichment. Further investigations on the in vivo hypoglycemic effect and other physiological effects of these FRFs using animal-feeding experiments are underway.

  20. Fibre Bragg grating and no-core fibre sensors

    Daud, Suzairi

    2018-01-01

    This book focuses on the development and set-up of fibre Bragg grating (FBG) and no-core fibre (NCF) sensors. It discusses the properties of the sensors and modelling of the resulting devices, which include electronic, optoelectronic, photovoltaic, and spintronic devices. In addition to providing detailed explanations of the properties of FBG and NCF sensors, it features a wealth of instructive illustrations and tables, helping to visualize the respective devices’ functions.

  1. Aligned flax fibre/polylactate composites

    Madsen, Bo; Lilholt, Hans; Thygesen, Anders

    2008-01-01

    The potential of biocomposites in engineering applications is demonstrated by using aligned flax fibre/polylactate composites as a materials model system. The failure stress of flax fibres is measured by tensile testing of single fibres and fibre bundles. For both fibre configurations, it is found...... that failure stress is decreased by increasing the tested fibre volume. Based on two types of flax fibre preforms: carded sliver and unidirectional non-crimp fabric, aligned flax fibre/polylactate composites were fabricated with variable fibre content. The volumetric composition and tensile properties...... of the composite were measured. For composites with a fibre content of 37 % by volume, stiffness is about 20 GPa and failure stress is about 180 MPa. The tensile properties of the composites are analysed with a modified rule of mixtures model, which includes the effect of porosity. The experimental results...

  2. Effect of Soda-Anthraquinone Pulping Conditions and Beating Revolution on the Mechanical Properties of Paper made from Gigantochloa scortechinii (Semantan Bamboo)

    Nurul Husna Mohd Hassan; Suhaimi Muhammed

    2013-01-01

    The effect of soda-AQ pulping conditions and beating revolution on the mechanical properties of paper made from Semantan bamboo (Gigantochloa scortechinii) was studied. The bamboo chips were pulped using MK digester pulping unit with 10 to 20 % alkali charge and 150 to 170 degree Celsius cooking temperature. The screened yield varies from 38.7 to 48.4 %, and each yield went through beating process at 1000 or 8000 beating revolutions. The bamboo pulp was then made into 60 g/ m 2 laboratory scale papers and their mechanical properties were assessed conforming to TAPPI standards. The results revealed that tensile index, bursting index, tearing index and folding endurance ranged from 42.04 to 91.09 Nm/ g, 2.68 to 7.10 kPa.m 2 /g, 11.03 to 26.64 mN.m 2 /g and 30 to 1127 double folds, respectively. The highest paper properties were found from pulping condition of 15 % alkali charge and 150 degree Celsius cooking temperature based on the fibre bonding index, with tensile index at 87.71 Nm/g, bursting index at 6.94 kPa.m 2 / g, tearing index at 12.72 mN.m 2 / g and folding endurance at 613 double folds. Such findings indicate that comparable high strength mechanical properties of paper can be produced from Semantan bamboo pulp with more environmentally friendly pulping process compared to the kraft pulping process that had been used in bamboo pulping. (author)

  3. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  4. Physicochemical properties of prepared ion-exchangers from cellulose incorporated with different functional groups

    Nada, A.M.A.; Adel, A.M.

    2005-01-01

    Bagasse raw material and bleached bagasse pulp was used to prepare carbamoyl ethyl and Carboxylated cellulose ion exchangers. The effect of presence of lignin in the bagasse on the properties of the produced resin was estimated. The effect of crosslinking on the properties of the carbamoyl ethyl and carboxyl cellulose was investigated. The molecular structure of the produced resin is followed by using infrared spectroscopy. A new bands was seen at wavenumber 2152 cm-1 and a shoulder at 3140 cm-1 which are characteristic to the cyano group in cyanoethylated cellulose and to amino group in the carbamoyl ethyl cellulose. Also, a band was formed at 1715 cm-1 which formed by hydrolysis of cyanoethyl or carbamoyl ethyl cellulose and was characteristic to carboxyl group. A thermal gravimetric of the produced resin was investigated. The cyano group and carbamoyl group increases the resistance of cellulose toward thermal treatment. The efficiency of the produced resin toward metal ion uptake (Cu, Ni and Cr) from solution was studied

  5. The Chemical Composition of Grape Fibre

    Jolana Karovičová; Zlatica Kohajdová; Lucia Minarovičová; Veronika Kuchtová

    2015-01-01

    Dietary fibres from cereals are much more used than dietary fibres from fruits; however, dietary fibres from fruits have better quality. In recent years, for economic and environmental reasons, there has been a growing pressure to recover and exploit food wastes. Grape fibre is used to fortify baked goods, because the fibre can lower blood sugar, cut cholesterol and may even prevent colon cancer. Grape pomace is a functional ingredient in bakery goods to increase total phenolic content and di...

  6. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    Oliveira, Rafael L. de; Barud, Hernane; Ribeiro, Sidney J.L.; Messaddeq, Younes

    2011-01-01

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13 C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  7. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    Lertngim, Anantaya; Phiriyawirut, Manisara; Wootthikanokkhan, Jatuphorn; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-10-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure-properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film.

  8. Glucose production for cellulose

    Suzuki, S; Karube, I

    1977-04-16

    Glucose was produced from cellulose by passing a cellulose solution through a column of an immobilized cellulase which was prepared by coating an inorganic carrier such as macadam or stainless steel beads with collagen containing the cellulase. Thus, 4 mL of 5% cellulase T-AP (60,000 units/g) solution was dissolved in 100 g of 0.9% collagen solution and the solution mixed with 60 g of macadam (diam. = 0.5 to 1.5 mm) and stirred for 10 min. The treated beads were dried in air at 10/sup 0/ to yield an immobilized enzyme retaining 64% of its activity. Through a column (0.8 x 20 cm) packed with 3 g of the immobilized enzyme, 100 mL of 0.33% Avicel SF solution was circulated at 26.4 mL/min at 30/sup 0/ for 60 h. The Avicel SF conversion to glucose was 23%.

  9. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I.

    Fortunati, E; Puglia, D; Luzi, F; Santulli, C; Kenny, J M; Torre, L

    2013-09-12

    PVA bio-nanocomposites reinforced with cellulose nanocrystals (CNC) extracted from commercial microcrystalline cellulose (MCC) and from two types of natural fibres, Phormium tenax and Flax of the Belinka variety, were produced by solvent casting in water. Morphological, thermal, mechanical and transparency properties were studied while the respective efficiency of the extraction process of CNC from the three sources was evaluated. The effect of CNC types and content on PVA properties and water absorption capacity were also evaluated. Natural fibres offered higher levels of extraction efficiency when compared with MCC hydrolysis yield. Thermal analysis proved that CNC promotes the crystallization of the PVA matrix, while improving its plastic response. It was also clarified that all PVA/CNC systems remain transparent due to CNC dispersion at the nanoscale, while being all saturated after the first 18-24h of water absorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The effect of gamma irradiation on crude fibre NDF, ADF, and ADL of some Syrian agricultural residues

    Al-Masri, M.R.; Zarkawi, M.

    1992-07-01

    The effects of 150 KGy of gamma irradiation on crude fibre and its main components (cellulose, hemicellulose-cellulose and lignin) and on neutral detergent fibre (NDF), acid detergent lignin (ADL), and acid detergent fibre (ADF) were investigated. The results indicate that gamma irradiation decreased Cf content by 30%, 28%, 29%, and 17% for cottonwood, lentils straw, apple-tree pruning products and olive-oil cake, respectively. NDF values also decreased by 5%, 23%, 13% and 3% for, cottonwood, lentils straw, olive-oil cake and apple-tree pruning products respectively. Gamma irradiation (150 KGy) had no effects on ADF and ADL for lentils straw, apple-tree pruning products and olive-oil cake whereas, ADF decreased by 8.5% and ADL by 8.3 for cottonwood. Hemicellulose content increased by 12% for cottonwood while decreased by 54% for lentils straw and by 33% for apple-tree pruning products with no effects for olive-oil cake. Cellulose content decreased by 8.6% for cottonwood whereas no effects for the remaining residues were seen. Gamma irradiation treatment improved the nutritive value of the agriculture residues examined. The reduction in crude fibre content varies with the residue. (author). 15 refs., 5 tabs

  11. Modeling of photonic Crystal Fibres

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  12. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    Ali, Ola

    2013-01-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration

  13. Cellulose nanofiber extraction from grass by a modified kitchen blender

    Nakagaito, Antonio Norio; Ikenaga, Koh; Takagi, Hitoshi

    2015-03-01

    Cellulose nanofibers have been used to reinforce polymers, delivering composites with strength that in some cases can be superior to that of engineering plastics. The extraction of nanofibers from plant fibers can be achieved through specialized equipment that demands high energy input, despite delivering extremely low yields. The high extraction cost confines the use of cellulose nanofibers to the laboratory and not for industrial applications. This study aims to extract nanofibers from grass by using a kitchen blender. Earlier studies have demonstrated that paper sheets made of blender-extracted nanofibers (after 5 min to 10 min of blending) have strengths on par with paper sheets made from commercially available cellulose nanofibers. By optimizing the design of the blender bottle, nanofibrillation can be achieved in shorter treatment times, reducing the energy consumption (in the present case, to half) and the overall extraction cost. The raw materials used can be extended to the residue straw of agricultural crops, as an alternative to the usual pulp fibers obtained from wood.

  14. The Chemical Composition of Grape Fibre

    Jolana Karovičová

    2015-05-01

    Full Text Available Dietary fibres from cereals are much more used than dietary fibres from fruits; however, dietary fibres from fruits have better quality. In recent years, for economic and environmental reasons, there has been a growing pressure to recover and exploit food wastes. Grape fibre is used to fortify baked goods, because the fibre can lower blood sugar, cut cholesterol and may even prevent colon cancer. Grape pomace is a functional ingredient in bakery goods to increase total phenolic content and dietary fibre in nourishment. The aim of this study was to determine the chemical composition of commercial fibres, obtained from different Grape sources concerning their chemical properties such as moisture, ash, fat, protein, total dietary fibre. The chemical composition of Grape fibre is known to vary depending on the Grape cultivar, growth climates, and processing conditions. The obliged characteristics of the fibre product are: total dietary fibre content above 50%, moisture lower than 9%, low content of lipids, a low energy value and neutral flavour and taste. Grape pomace represents a rich source of various high-value products such as ethanol, tartrates and malates, citric acid, Grape seed oil, hydrocolloids and dietary fibre. Used commercial Grape fibres have as a main characteristic, the high content of total dietary fibre. Amount of total dietary fibre depends on the variety of Grapes. Total dietary fibre content (TDF in our samples of Grape fibre varied from 56.8% to 83.6%. There were also determined low contents of moisture (below 9%. In the samples of Grape fibre were determined higher amount of protein (8.6 - 10.8%, mineral (1.3 - 3.8% and fat (2.8 - 8.6%. This fact opens the possibility of using both initial by-products as ingredients in the food industry, due to the effects associated with the high total dietary fibre content.

  15. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.

    Salviati, G; Betto, R; Danieli Betto, D

    1982-01-01

    Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide 'maps' published in Cleveland. Fisch...

  16. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  17. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes

    Miguel A. Hurtado

    2011-02-01

    Full Text Available This study evaluates the pre-treatment of cellulose from kenaf plant to yield sugar precursors for the production of ethanol or butanol for use as biofuel additives. In order to convert the crystalline cellulosic form to the amorphous form that can undergo enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp samples were treated with 37.5% hydrochloric acid in the presence of FeCl3 at 50 °C or 90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C. Microwave-assisted NaOH-treatment of the cellulose was also investigated and demonstrated to be capable of producing high glucose yield without adverse environmental impact by circumventing the use of large amounts of concentrated acids i.e., 83–85% phosphoric acid employed in most digestion processes. The treated samples were digested with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was quantified using the QuantichromTM glucose bioassay for assessing the efficiency of glucose production for each of the treatment processes. The microwave-assisted alkaline pre-treatment processes conducted at 50 °C were found to be the most effective in the conversion of the crystalline cellulose to the amorphous form based on the significantly higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample.

  18. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  19. Pulp mill as an energy producer

    Kaulamo, O.

    1998-01-01

    The recovery boilers of pulp mills are today the most significant producers of wood energy. The power-to-heat ratio of the power plant process, i.e., power yield, is poor in existing applications. In the study, an alternative of improving the power yield of conventional pulp mills significantly was studied by applying solutions used in power plants to a pulp mill. Extensive conversion of wood energy into electricity is possible only in the recovery boiler of the pulp mill and in a large combustion boiler of bark, wood waste and wood chips integrated to this boiler. Hence, the harvest and transports of wood raw materials, i.e. pulp wood and energy wood, are integrated, and the fraction going to cook and the energy wood fraction are separated at the pulp mill. The method guarantees competitive supply of energy wood. As a result a SELLUPOWER mill was designed, where the recovery boiler combusting black liquor and the large power plant boiler combusting energy wood are integrated to one unit and constructed to a power plant process with a high power-to-heat ratio. Necessary technical solutions, project costs and economical feasibility compared to a conventional pulp mill were determined, and the effect of different production-economical parameters was also studied. (orig.)

  20. High-yield pulping effluent treatment technologies

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  1. Effects of process parameters of various pretreatments on enzymatic hydrolysability of Ceiba pentandra (L.) Gaertn. (Kapok) fibre: A response surface methodology study

    Tye, Ying Ying; Lee, Keat Teong; Wan Abdullah, Wan Nadiah; Leh, Cheu Peng

    2015-01-01

    Kapok fibre is a promising raw material to produce sugar by enzymatic hydrolysis. In this work, effects of water, acid and alkaline pretreatments on the enzymatic sugar yield were studied through response surface methodology (RSM) and supported by the analysis of chemical compositions and physical structure of the fibre. For water pretreatment, reaction temperature and time were the independent variables while chemical concentration was also used as the third independent variable for acid and alkaline pretreatments. For all pretreatments, the enzymatic hydrolysis conditions were kept constant. The structure of pretreated fibre was also examined using scanning electron microscope (SEM). Results showed that water and acid pretreatments effectively dissolved hemicellulose of the fibre with the latter unveiled better results. The alkaline pretreatment resulted in the highest total glucose yield (g/kg of untreated fibre) as compared to water and acid pretreatments. SEM analysis illustrated that water and acid pretreatments led severe destruction of fibre structure; however, both of these pretreatments exhibited lower enhancement of enzymatic hydrolysability of kapok fibre as compared to that observed in alkaline pretreatment. - Highlights: • Effect of pretreatments on sugar yield was studied by response surface methodology. • Glucose yield was highly related to the chemical compositions of pretreated fibers. • Pretreatments altered the physical structure of kapok fibers. • Enzymatic hydrolysability of fibre was improved the most by alkaline treatment. • Over 94% cellulose of the pretreated fibres was converted to glucose

  2. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.

    Smith, J G; Smith, A J; Shelton, R M; Cooper, P R

    2012-11-01

    The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    Weibo Zhang

    2010-01-01

    Full Text Available Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization.

  4. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Soluble fiber extracted from potato pulp is highly fermentable but hasno effect on risk markers of diabetes and cardiovasculardisease in Goto-Kakizaki rats

    Lærke, Helle Nygaard; Meyer, Anne S; Kaack, Karl Viggo

    2007-01-01

    The cholesterol-lowering and hypoglycemic effect of dietary fiber are commonly attributed to soluble fiber fractions. By enzymatic treatment of potato pulp, which is rich in cellulose and pectin, we prepared 3 fractions with different chemical composition and solubility, and compared their effects...... with commercially available crystalline cellulose (negative control) on central parameters related to risk factors of diabetes mellitus and cardiovascular disease in diabetic prone Goto-Kakizaki rats. Forty male rats were fed a semisynthetic Western-type diet containing 5% dietary fiber in the form of concentrated...

  6. The relationship between pulp calcifications and salivary gland calcifications

    Kaswan, Sumita; Patil, Santosh; Maheshwari, Sneha; Rahman, Farzan; Khandelwal, Suneet

    2014-01-01

    Aim: Pulp stones are discrete calcified bodies found in the dental pulp. Sialolithasis is the most common salivary gland disease. The aim of the present study was to determine the relationship between the pulp stones and salivary gland stones. Material and Methods: 196 patients were randomly selected from the out patient department for the study. The periapical radiographs for all patients were evaluated for the presence or absence of the narrowing of dental pulp chambers and pulp canals. The...

  7. Low Temperature Soda-Oxygen Pulping of Bagasse

    Fengxia Yue; Ke-Li Chen; Fachuang Lu

    2016-01-01

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum coo...

  8. Chemical composition of pea fibre isolates and their effect on the endogenous amino acid flow at the ileum of the pig

    Leterme, P.; Théwis, A.; Leeuwen, P. van; Monmart, T.; Huisman, J.

    1996-01-01

    Pea starch, hulls and cotyledon inner fibres, isolated from pea seeds, were incorporated in N-free diets, on a NDF-content basis, in order to study their effect on the ileal endogenous amino acid (AA) excretion in the growing pig. Maize starch and wood cellulose were selected as references. The

  9. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  10. Practical Hydrogen Loading of Air Silica Fibres

    Sørensen, Henrik Rokkjær; Jensen, Jesper Bevensee; Jensen, Jesper Bo Damm

    2005-01-01

    A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown.......A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown....

  11. Microwave-assisted ionic liquid-mediated rapid catalytic conversion of non-edible lignocellulosic Sunn hemp fibres to biofuels.

    Paul, Souvik Kumar; Chakraborty, Saikat

    2018-04-01

    Sunn hemp fibre - a cellulose-rich crystalline non-food energy crop, containing 75.6% cellulose, 10.05% hemicellulose, 10.32% lignin, with high crystallinity (80.17%) and degree of polymerization (650) - is identified as a new non-food substrate for lignocellulosic biofuel production. Microwave irradiation is employed to rapidly rupture the cellulose's glycosidic bonds and enhance glucose yield to 78.7% at 160 °C in only 46 min. The reactants - long-chain cellulose, ionic liquid, transition metal catalyst, and water - form a polar supramolecular complex that rotates under the microwave's alternating polarity and rapidly dissipates the electromagnetic energy through molecular collisions, thus accelerating glycosidic bond breakage. In 46 min, 1 kg of Sunn hemp fibres containing 756 g of cellulose produces 595 g of glucose at 160 °C, and 203 g of hydroxymethyl furfural (furanic biofuel precursor) at 180 °C. Yeast mediated glucose fermentation produces 75.6% bioethanol yield at 30 °C, and the ionic liquid is recycled for cost-effectiveness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage

    Patchan, M.; Graham, J.L.; Xia, Z.; Maranchi, J.P.; McCally, R.; Schein, O.; Elisseeff, J.H.; Trexler, M.M.

    2013-01-01

    Cellulose is a biologically derived material with excellent wound-healing properties. The high strength of cellulose fibers and the ability to synthesize gels with high optical transparency make these materials suitable for ocular applications. In this study, cellulose materials derived from wood pulp, cotton, and bacterial sources were dissolved in lithium chloride/N,N-dimethylacetamide to form regenerated cellulose hydrogels. Material properties of the resulting hydrogels, including water content, optical transparency, and tensile and tear strengths, were evaluated. Synthesis parameters, including activation time, dissolution time, relative humidity, and cellulose concentration, were found to impact the material properties of the resulting hydrogels. Overnight activation time improves the optical transparency of the hydrogels from 77% to 97% at 550 nm, whereas controlling cellulose concentration improves their tear strength by as much as 200%. On the basis of the measured transmittance and strength values of the regenerated hydrogels prepared via the optimized synthesis parameters, Avicel PH 101, Sigma-Aldrich microcrystalline cellulose 435236, and bacterial cellulose types were prioritized for future biocompatibility testing and potential clinical investigation. - Highlights: • Hydrogels were prepared (via LiCl/DMAc) from 7 different types of cellulose. • Synthesis parameters (activation, gelation, and concentration) were optimized. • Impact of synthesis parameters on transparency and strength was explored

  13. Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage

    Patchan, M. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Graham, J.L. [Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue/Ross 720, Baltimore, MD 21205 (United States); Xia, Z.; Maranchi, J.P. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); McCally, R. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Wilmer Eye Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287 (United States); Schein, O. [Wilmer Eye Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287 (United States); Elisseeff, J.H. [Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue/Ross 720, Baltimore, MD 21205 (United States); Trexler, M.M., E-mail: morgana.trexler@jhuapl.edu [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2013-07-01

    Cellulose is a biologically derived material with excellent wound-healing properties. The high strength of cellulose fibers and the ability to synthesize gels with high optical transparency make these materials suitable for ocular applications. In this study, cellulose materials derived from wood pulp, cotton, and bacterial sources were dissolved in lithium chloride/N,N-dimethylacetamide to form regenerated cellulose hydrogels. Material properties of the resulting hydrogels, including water content, optical transparency, and tensile and tear strengths, were evaluated. Synthesis parameters, including activation time, dissolution time, relative humidity, and cellulose concentration, were found to impact the material properties of the resulting hydrogels. Overnight activation time improves the optical transparency of the hydrogels from 77% to 97% at 550 nm, whereas controlling cellulose concentration improves their tear strength by as much as 200%. On the basis of the measured transmittance and strength values of the regenerated hydrogels prepared via the optimized synthesis parameters, Avicel PH 101, Sigma-Aldrich microcrystalline cellulose 435236, and bacterial cellulose types were prioritized for future biocompatibility testing and potential clinical investigation. - Highlights: • Hydrogels were prepared (via LiCl/DMAc) from 7 different types of cellulose. • Synthesis parameters (activation, gelation, and concentration) were optimized. • Impact of synthesis parameters on transparency and strength was explored.

  14. Increase of alcohol yield per ton of pulp

    Sokolov, B N

    1957-01-01

    Digestion processes of cellulose were studied under production conditions. When the digestion was carried out with acid having 5.2% total SO/sub 2/ and 0.92% CaO, the concentration of total sugars in the spent liquor was 1.8 to 2.5%. When the acidity was reduced to 4.8% total SO/sub 2/ and 0.82% CaO, all other conditions being the same, the sugar concentration in the spent liquor increased to 3.0 to 3.7%. The importance of the acid strength and CaO content of the cooking liquor was further demonstrated at the end of 1955. At that time the total SO/sub 2/ in the acid rose to 8% while the amount of CaO remained practically the same-0.85 to 0.90%. These conditions permitted an increase in the amount of ships by 25 to 30%, which further changed the ratio CaO: wood and created conditions favorable for an improved yield of sugar. The increase in the activity of the acid was reflected favorably in the degree of hydrolysis of the hemicelluloses and in the degree to which the oligosaccharides or polysaccharides were hydrolyzed to simple sugars. At that time the yield of alcohol reached 53 1/ton of unbleached pulp. The process was further improved in 1956 by the use of successive washings; at the end of the digestion period the concentrated spent liquor was piped to the alcohol unit. The yield of alcohol reached 59.4 1/ton of pulp. Sugar recovery from the tank was 92.5% of that theoretically possible. Further improvements resulted by saturating the wood chips with acid under variable pressures. As a result, the base of the cooking acid was reduced to 0.7 to 0.72% and, at the end of the process the liquor contained 0.03 to 0.06% CaO instead of 0.2 to 0.18%. The alcohol yield/ton of pulp then rose to 66.8 l.

  15. Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.)

    Nykter, Minna; Kymaelaeinen, Hanna-Riitta; Sjoeberg, Anna-Maija [Department of Agrotechnology, University of Helsinki, P.O. Box 28, FI-00014 University of Helsinki (Finland); Thomsen, Anne Belinda; Thygesen, Anders [Biosystems Department, Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark); Lilholt, Hans [Materials Research Department, Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark); Koponen, Hilkka [Department of Applied Biology, Section of Plant Pathology, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki (Finland)

    2008-05-15

    The aim of the present study was to examine the effects of pectinase enzyme treatment followed by thermal treatments (steam explosion and dry heating) on the microbial quality and chemical composition of hemp fibres. Before these treatments, the fibres were separated manually from the stems harvested after stand retting in the field before frost, after early frost or in the following spring. The enzymatic treatment of hemp promoted growth of moulds on the fibres (500-fold increase in colony-forming units (cfu)), whereas steam explosion reduced the amount of moulds to a relatively constant level of 10{sup 2} cfu/g dw. The amount of bacteria was not markedly affected by enzymatic treatment but was reduced tenfold after steam explosion. Steam explosion is thereby a potentially good process for the production of hemp fibres with low fungal contamination, which can be of importance in insulation materials. Dry heating had no effect on mould and bacterial counts at temperatures below 120 C and durations less than 60 min. The chemical composition was affected by the enzymatic treatment due to extraction and degradation of water-soluble components, pectin and ash. Thus the cellulose content increased by 6% w/w to 67-70% w/w. Steam explosion of the untreated hemp fibres increased the cellulose content to 74% w/w, whereas steam explosion of enzymatically treated hemp increased the cellulose content to 78% w/w. (author)

  16. Investigation of carryover effect of prior fibre consumption on growth, serum and tissue metabolic markers in Ossabaw pigs fed a high-fat diet.

    Almeida, V V; Yan, H; Nakatsu, C H; Ajuwon, K M

    2018-04-14

    Carryover effect of prior fibre consumption on metabolic markers was investigated. Treatments were arranged in 2 × 2 factorial with 2 fibre sources, 4% inulin or cellulose (Solka-Floc®) and fat levels (5 or 15%) for the low-fat diet (LFD) and high-fat diet (HFD) respectively. Pigs were fed the two fibre diets for the first 56d (nursery phase), and thereafter fed either the LFD or HFD containing no added fibre source from d56 to 140 (growing phase). Pigs on the HFD were heavier (p = .05) than those on LF (64.61 vs. 68.38 kg), regardless of prior fibre type consumed. Pigs that were fed cellulose during the nursery and later fed the HFD had the highest ADG (p Inulin increased (p ≤ .02) jejunal expression of SREBP-1c and CL-4, but reduced (p inulin and cellulose fed pigs at the end of the nursery and finishing phases. Therefore, inulin feeding before a HFD may lead to reduction in ADG and inflammatory markers in the small intestine of pigs, and thus prevent future metabolic disorders. © 2018 Blackwell Verlag GmbH.

  17. Radiation degradation of cellulose

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  18. Cellulose synthase complex organization and cellulose microfibril structure.

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  19. 6823 Volume 12 No. 6 October 2012 PROCESSING PINEAPPLE ...

    CRSP

    2012-10-06

    Oct 6, 2012 ... PROCESSING PINEAPPLE PULP INTO DIETARY FIBRE ... investigate the processing of pineapple pulp waste from a processing plant, into a ... classified dietary fibre chemically as cellulose, hemicellulose and lignin constituents .... drying time was shorter compared to the freeze-drying and yielded a ...

  20. 21 CFR 872.1720 - Pulp tester.

    2010-04-01

    ... battery powered device intended to evaluate the pulpal vitality of teeth by employing high frequency current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b) Classification...

  1. Process monitoring of fibre reinforced composites using optical fibre sensors

    Fernando, G.F.; Degamber, B.

    2006-04-15

    The deployment of optical fibre based sensor systems for process monitoring of advanced fibre reinforced organic matrix composites is reviewed. The focus is on thermosetting resins and the various optical and spectroscopy-based techniques that can be used to monitor the processing of these materials. Following brief consideration of the manufacturing methods commonly used in the production of thermoset based composites, a discussion is presented on sensor systems that can be used to facilitate real-time chemical process monitoring. Although the focus is on thermosets, the techniques described can be adapted for chemical monitoring of organic species in general. (author)

  2. New alternative energy pathway for chemical pulp mills: From traditional fibers to methane production.

    Rodriguez-Chiang, Lourdes; Vanhatalo, Kari; Llorca, Jordi; Dahl, Olli

    2017-07-01

    Chemical pulp mills have a need to diversify their end-product portfolio due to the current changing bio-economy. In this study, the methane potential of brown, oxygen delignified and bleached pulp were evaluated in order to assess the potential of converting traditional fibers; as well as microcrystalline cellulose and filtrates; to energy. Results showed that high yields (380mL CH 4 /gVS) were achieved with bleached fibers which correlates with the lower presence of lignin. Filtrates from the hydrolysis process on the other hand, had the lowest yields (253mL CH 4 /gVS) due to the high amount of acid and lignin compounds that cause inhibition. Overall, substrates had a biodegradability above 50% which demonstrates that they can be subjected to efficient anaerobic digestion. An energy and cost estimation showed that the energy produced can be translated into a significant profit and that methane production can be a promising new alternative option for chemical pulp mills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pyrolysis characteristic of kenaf studied with separated tissues, alkali pulp, and alkali li

    Yasuo Kojima

    2015-12-01

    Full Text Available To estimate the potential of kenaf as a new biomass source, analytical pyrolysis was performed using various kenaf tissues, i.e., alkali lignin and alkali pulp. The distribution of the pyrolysis products from the whole kenaf was similar to that obtained from hardwood, with syringol, 4-vinylsyringol, guaiacol, and 4-vinylguaiacol as the major products. The phenols content in the pyrolysate from the kenaf core was higher than that from the kenaf cuticle, reflecting the higher lignin content of the kenaf core. The ratios of the syringyl and guaiacyl compounds in the pyrolysates from the core and cuticle samples were 2.79 and 6.83, respectively. Levoglucosan was the major pyrolysis product obtained from the kenaf alkali pulp, although glycol aldehyde and acetol were also produced in high yields, as previously observed for other cellulosic materials. Moreover, the pathways for the formation of the major pyrolysis products from alkali lignin and alkali pulp were also described, and new pyrolysis pathways for carbohydrates have been proposed herein. The end groups of carbohydrates bearing hemiacetal groups were subjected to ring opening and then they underwent further reactions, including further thermal degradation or ring reclosing. Variation of the ring-closing position resulted in the production of different compounds, such as furans, furanones, and cyclopentenones.

  4. Effect of Processing Conditions on Fracture Resistance and Cohesive Laws of Binderfree All-Cellulose Composites

    Goutianos, Stergios; Arévalo, R.; Sørensen, Bent F.

    2014-01-01

    molecules during the drying process. Defibrilation of the raw cellulose material is done in wet medium in a paper-like process. Panels with different refining time were tested and it was found than an increase in fibre fibrillation results in a lower fracture resistance. © 2014 Springer Science......The fracture properties of all-cellulose composites without matrix were studied using Double Cantilever Beam (DCB) sandwich specimens loaded with pure monotonically increasing bending moments, which give stable crack growth. The experiments were conducted in an environmental scanning electron...... microscope to a) perform accurate measurements of both the fracture energy for crack initiation and the fracture resistance and b) observe the microscale failure mechanisms especially in the the wake of the crack tip. Since the mechanical behaviour of the all-cellulose composites was non-linear, a general...

  5. Cellulose binding domain fusion proteins

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  6. Synthesis and characterization of carboxymethyl cellulose from office waste paper: A greener approach towards waste management

    Joshi, Gyanesh, E-mail: joshig@icfre.org [Cellulose and Paper Division, Forest Research Institute, Dehradun 248006 (India); Naithani, Sanjay [Chemistry of Forest Products Division, Institute of Wood Science & Technology, Bangalore 560003 (India); Varshney, V.K. [Chemistry Division, Forest Research Institute, Dehradun 248006 (India); Bisht, Surendra S. [Chemistry of Forest Products Division, Institute of Wood Science & Technology, Bangalore 560003 (India); Rana, Vikas; Gupta, P.K. [Cellulose and Paper Division, Forest Research Institute, Dehradun 248006 (India)

    2015-04-15

    Highlights: • Carboxymethyl cellulose (CMC) was successfully prepared from waste paper. • CMC had maximum degree of substitution (DS) 1.07. • Rheological studies of CMC (DS, 1.07) showed non-Newtonian pseudoplastic behavior. • Characterization of CMC was done by FT-IR and NMR techniques. • Morphology of prepared CMC was studied by SEM. - Abstract: In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH{sub 2}COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH{sub 2}COONa respectively for 3 h reaction time. The rheological characteristics of 1–3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product.

  7. Synthesis and characterization of carboxymethyl cellulose from office waste paper: A greener approach towards waste management

    Joshi, Gyanesh; Naithani, Sanjay; Varshney, V.K.; Bisht, Surendra S.; Rana, Vikas; Gupta, P.K.

    2015-01-01

    Highlights: • Carboxymethyl cellulose (CMC) was successfully prepared from waste paper. • CMC had maximum degree of substitution (DS) 1.07. • Rheological studies of CMC (DS, 1.07) showed non-Newtonian pseudoplastic behavior. • Characterization of CMC was done by FT-IR and NMR techniques. • Morphology of prepared CMC was studied by SEM. - Abstract: In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH 2 COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH 2 COONa respectively for 3 h reaction time. The rheological characteristics of 1–3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product

  8. Cellulose Synthesis in Agrobacterium tumefaciens

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  9. Saccharification of cellulose by acetolysis

    Tanaka, T; Yamanaka, S; Takinami, K

    1978-01-01

    For saccharification of cellulose, an acetolysis method using assimilable acid with a microorganism was applied. Based on this method, a new method which gave totally assimilable products was established. The rigid crystalline structure of cellulose was disrupted by acetolysis with 2-2.5 times as much acetic anhydride as cellulose on a weight basis and 1 N sulfuric acid as a catalyst. Then for cleavage of O-acetyl ester and glycosidic bonds, the resulting amorphous acetolysate of cellulose could easily be hydrolyzed by heating in 1 N sulfuric acid at 120/sup 0/C for 1-1.5 h without over-disruption of glucose. Ninety-eight % of the cellulose used was recovered in the form of hydrolysate having about 30% saccharide concentration. The hydrolysate obtained was composed of 74% glucose, 13% cellobiose and 11% mono-O-acetyl glucose on a weight basis.

  10. Carbon fibre material for tomorrow

    Kartini Noorsal; Mohd Ariff Baharom

    2010-01-01

    As science and technology continue to cross boundaries of known practices, materials and manufacturing techniques and into the frontiers of new materials, environment and applications, the opportunities for research in materials in general will inevitably increase. The unique properties of carbon fibre which combines low weight and high stiffness, makes it in ever greater demand as substitutes for traditional materials. This is due to the rising costs of raw materials and energy and the necessity to reduce carbon dioxide emission. The carbon fibres produced are particularly of high standard in terms of quality and processing characteristics especially when it is designed in structural components in the aerospace and defence industries. This results in a well structured organisation in producing the fibre starting from its raw material to the final composite products. In achieving this effort, research and communication of the progress takes a fundamental role. (author)

  11. LHCb Upgrade: Scintillating Fibre Tracker

    Tobin, Mark

    2016-01-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  12. The Effects of Short Wave UV Irradiation (254-366nm on Color Values of Recycled and Bleached ONP/OMP Pulps

    Emrah Peşman

    2011-04-01

    Full Text Available ABSTRACT As it is known, mechanical pulp papers include significant amount of lignin and carbohydrates as well as cellulose. Thus, when these lignin reach papers irradiated with short wave UV light they could not protect their color. In this study, bleaching of ONP/OMG recycled pulps with hydrogen peroxide, sodium percarbonate, sodium dithyonite, sodium borohydride and formamidin sulfunic acid were performed. Then the test papers of these pulps were irradiated with 254-366nm UV light and changes in the ISO Brightness, CIE L*a*b*, yellowness (YI and whiteness (WI values were observed. At the result of study, all bleaching agents were determined as insufficient in the respect of color stability. But if they compared with each other, the two stages sodium percarbonate-sodium borohydride bleaching sequence was gave the best results against to color reversion. Keywords: Old news/old magazine papers (ONP/OMG, Bleaching, Color Stability, UV Irradiation

  13. Production of bacterial cellulose and enzyme from waste fiber sludge

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  14. Improvement in rice straw pulp bleaching effluent quality by incorporating oxygen delignification stage prior to elemental chlorine-free bleaching.

    Kaur, Daljeet; Bhardwaj, Nishi K; Lohchab, Rajesh Kumar

    2017-10-01

    Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD 3 , COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources. Graphical abstract ᅟ.

  15. EFFECTS OF POLYTHENE FIBRES ON SELECTED PROPERTIES ...

    eobe

    ABSTRACT. The aim of this study is to explore the possibility of using polythene fibres to increase the strength of sandcrete ... Polythene fibres were got from shredded sachet water bags. .... degradable waste is more of a problem than the bio-.

  16. Evolution of Lignocellulosic Macrocomponents in the Wastewater Streams of a Sulfite Pulp Mill: A Preliminary Biorefining Approach

    Tamara Llano

    2015-01-01

    Full Text Available The evolution of lignin, five- and six-carbon sugars, and other decomposition products derived from hemicelluloses and cellulose was monitored in a sulfite pulp mill. The wastewater streams were characterized and the mass balances throughout digestion and total chlorine free bleaching stages were determined. Summative analysis in conjunction with pulp parameters highlights some process guidelines and valorization alternatives towards the transformation of the traditional factory into a lignocellulosic biorefinery. The results showed a good separation of cellulose (99.64% during wood digestion, with 87.23% of hemicellulose and 98.47% lignin dissolved into the waste streams. The following steps should be carried out to increase the sugar content into the waste streams: (i optimization of the digestion conditions increasing hemicellulose depolymerization; (ii improvement of the ozonation and peroxide bleaching stages, avoiding deconstruction of the cellulose chains but maintaining impurity removal; (iii fractionation of the waste water streams, separating sugars from the rest of toxic inhibitors for 2nd generation biofuel production. A total of 0.173 L of second-generation ethanol can be obtained in the spent liquor per gram of dry wood. The proposed methodology can be usefully incorporated into other related industrial sectors.

  17. A novel role for Twist-1 in pulp homeostasis.

    Galler, K M; Yasue, A; Cavender, A C; Bialek, P; Karsenty, G; D'Souza, R N

    2007-10-01

    The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/-) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.

  18. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  19. Low Temperature Soda-Oxygen Pulping of Bagasse

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  20. Fibre Optic Communication Key Devices

    Grote, Norbert

    2012-01-01

    The book gives an in-depth description of the key devices of current and next generation fibre optic communication networks. In particular, the book covers devices such as semiconductor lasers, optical amplifiers, modulators, wavelength filters, and detectors but the relevant properties of optical fibres as well. The presentations include the physical principles underlying the various devices, the technologies used for the realization of the different devices, typical performance characteristics and limitations, and development trends towards more advanced components are also illustrated. Thus the scope of the book spans relevant principles, state-of-the-art implementations, the status of current research and expected future components.