WorldWideScience

Sample records for cellulose triacetate based

  1. Cellulose triacetate based novel optical sensor for uranium estimation

    International Nuclear Information System (INIS)

    A cellulose triacetate (CTA) based optode has been developed by immobilizing tricapryl-methyl ammonium chloride (Aliquat 336) as the extractant and 2-(5-bromo-2-pyridylazo)-5- diethyl-aminophenol (Br-PADAP) as the chromophore. The optode changes color (from yellow to magenta) due to uranium uptake in bicarbonate medium (∼10-4 M) at pH 7-8 in the presence of triethanolamine (TEA) buffer. The detection limit of the optode film (dimension: 3 cm x 1 cm) was determined to be ∼0.3 μg/mL for a 15 mL pure uranium sample at pH 7-8 (in TEA buffer). The effects of experimental parameters have been evaluated in terms of maximum uptake of U(VI), minimum response time, and reproducibility and stability of the Br-PADAP-U(VI ) complex formed in the optode matrix. The applicability of the optimized optode has been examined in the effluent samples obtained during magnesium diuranate precipitation step following the TBP purification cycle. (authors)

  2. Mortality of workers exposed to methylene chloride employed at a plant producing cellulose triacetate film base.

    OpenAIRE

    Tomenson, J A; Bonner, S M; Heijne, C G; Farrar, D G; Cummings, T F

    1997-01-01

    OBJECTIVE: To study mortality among 1785 employees of a factory that produced cellulose triacetate film base at Brantham in the United Kingdom. Also, to investigate patterns of mortality after exposure to methylene chloride; in particular, mortality from liver and biliary tract cancer, lung cancer, pancreatic cancer, and cardiovascular disease. SUBJECTS AND METHODS: All male employees with a record of employment at the film factory in 1946-88. A total of 1473 subjects worked in jobs that enta...

  3. Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films

    Directory of Open Access Journals (Sweden)

    Laura Alicia Manjarrez Nevárez, Lourdes Ballinas Casarrubias, Alain Celzard, Vanessa Fierro, Vinicio Torres Muñoz, Alejandro Camacho Davila, José Román Torres Lubian and Guillermo González Sánchez

    2011-01-01

    Full Text Available We have prepared all-biopolymer nanocomposite films using lignin as a filler and cellulose triacetate (CTA as a polymer matrix, and characterized them by several analytical methods. Three types of lignin were tested: organosolv, hydrolytic and kraft, with or without acetylation. They were used in the form of nanoparticles incorporated at 1 wt% in CTA. Self-supported films were prepared by vapor-induced phase separation at controlled temperature (35–55 °C and relative humidity (10–70%. The efficiency of acetylation of each type of lignin was studied and discussed, as well as its effects on film structure, homogeneity and mechanical properties. The obtained results are explained in terms of intermolecular filler-matrix interaction at the nanometer scale, for which the highest mechanical resistance was reached using hydrolytic lignin in the nanocomposite.

  4. The study of using tinted cellulose triacetate as a routine dosimeter

    International Nuclear Information System (INIS)

    Full text: Tinted cellulose triacetate films are prepared by mixing cellulose triacetate with pH indicators to serve as a dosimeter to monitor the exposure to gamma irradiation. The response of cellulose triacetate films exposed to 1-70 kGy of gamma irradiation was analyzed by UV-VIS Spectrophotometer. Results demonstrated that cellulose triacetate films tinted with quinaldine red showed the best response to gamma irradiation as the color changed from dark to pale pink. Using UV-VIS Spectrophotometer, the absorbance of the cellulose triacetate film before gamma irradiation was relatively stable for two months. After irradiation, the stability decreased to 6 days when films were stored in darkroom and 3 hours in UV protection room. In conclusion, tinted cellulose triacetate films showed good response to gamma irradiation and can be used as a routine dosimeter

  5. Cellulose triacetate doped with ionic liquids for membrane gas separation

    Science.gov (United States)

    Lam, Benjamin Fatt Soon

    The doping of cellulose triacetate (CTA) with imidazolium based ionic liquids (ILs) is investigated in order to reduce the polymer crystallinity and enhance the affinity with CO2, thus increasing CO2 permeability and CO2/light gas selectivity. CTA membranes doped with [emim] BF4 or [emim] DCA were prepared, and the effect of the ILs loading on properties, such as crystallinity, density, degradation temperature, glass transition temperature, and gas transport properties, has been determined. In general, doping with IL reduces the crystallinity in CTA, increasing gas solubility, diffusivity and permeability. The ILs doping also increases CO 2/CH4 solubility selectivity and CO2/N2 permeability selectivity, due to the affinity of these ILs with CO2, instead of light gases such as CH4 and N2. This study provides a mechanistic understanding of interaction of ILs and CTA, and demonstrates an effective route in manipulating the morphology and gas transport properties of semi crystalline polymers by doping with ILs.

  6. Spatial distribution of defects created along the trajectory of an ion in cellulose triacetate

    International Nuclear Information System (INIS)

    The study of the triacetate as a solid trace detector shows the importance of the morphology of the trace (latent and/or revealed). The spatial distribution of defects created along the trajectory of an ion is demonstrated by electron microscopy and by the proposition of a theoretical model based on the study of the cellulose radicals created. Then the structure of the zone perturbed by an ion is given

  7. Determination of Calibration Factor of Cellulose Triacetate (CTA) as Film Dosimeter in ALURTRON

    International Nuclear Information System (INIS)

    Determination of calibration curve run for each new film to authorize the use of reaction factor in order to fulfill the specifications. This time, this determination was done using the old film coil( CTA200901) as well as a new film coil( CTA201101) made of cellulose triacetate with nominal thickness, 125μm. Approximately, 30 pieces of sample CTA200901 CTA film was cut shortly into 18 pieces same as CTA201101 as used as a comparison. These samples were tested under 1-3 MeV electron-powered and using as low as 1 mA that brings into 20-100 kGy. Distance from Irradiation Window to sample was set at 20 cm and 30 cm. Dose uptake obtained is analyzed using a UV spectrophotometer for optical density. Optical density value is obtained later and graph was plotted in order to get their gradient. This gradient finally compared with graph gradient, k factor, 0.0063. Adjustments will be made based on the acquisition of k factors is that the data is obtained in analyzes using the film of the same curve gives a more precise value. (author)

  8. Uranium removal from water using cellulose triacetate membranes added with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos-Rodriguez, R. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Montero-Cabrera, M.E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Esparza-Ponce, H.E.; Herrera-Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Ballinas-Casarrubias, M.L. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Nuevo Campus s/n, Chihuahua, Chih. (Mexico)

    2012-05-15

    Ultrafiltration removal of uranium from water, with composite activated carbon cellulose triacetate membranes (AC-CTA), was investigated. The filtrate was provided by uraninite dissolution with pH=6-8. Removal efficiencies were calculated measuring solutions' radioactivities. Membranes were mainly characterized by microscopy analysis, revealing iron after permeation. Uranyl removal was 35{+-}7%. Chemical speciation indicates the presence of (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -}, UO{sub 2}CO{sub 3}, UO{sub 2}(CO{sub 3}){sub 2}{sup 2-} and Fe{sub 2}O{sub 3}(s) as main compounds in the dissolution, suggesting co-adsorption of uranium and iron by the AC during filtration, as the leading rejection path. - Highlights: Black-Right-Pointing-Pointer Cellulose triacetate (CTA) and activated carbon (AC) composite membranes were suitable for uranium removal. Black-Right-Pointing-Pointer Up to 35% of uranium from low concentrated solutions was rejected by ultrafiltration. Black-Right-Pointing-Pointer Rejection is performed by a hybrid mechanism regulated by AC adsorption. Black-Right-Pointing-Pointer Uranium and iron speciation and predominance determines the adsorption in the membrane.

  9. Uranium removal from water using cellulose triacetate membranes added with activated carbon

    International Nuclear Information System (INIS)

    Ultrafiltration removal of uranium from water, with composite activated carbon cellulose triacetate membranes (AC-CTA), was investigated. The filtrate was provided by uraninite dissolution with pH=6–8. Removal efficiencies were calculated measuring solutions' radioactivities. Membranes were mainly characterized by microscopy analysis, revealing iron after permeation. Uranyl removal was 35±7%. Chemical speciation indicates the presence of (UO2)2CO3(OH)3−, UO2CO3, UO2(CO3)22− and Fe2O3(s) as main compounds in the dissolution, suggesting co-adsorption of uranium and iron by the AC during filtration, as the leading rejection path. - Highlights: ► Cellulose triacetate (CTA) and activated carbon (AC) composite membranes were suitable for uranium removal. ► Up to 35% of uranium from low concentrated solutions was rejected by ultrafiltration. ► Rejection is performed by a hybrid mechanism regulated by AC adsorption. ► Uranium and iron speciation and predominance determines the adsorption in the membrane.

  10. The effect of UV radiation on the thermal degradation of cellulose triacetate

    International Nuclear Information System (INIS)

    The effect of UV radiation on the thermal degradation of cellulose triacetate (CTA) has been investigated. Simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been performed on CTA samples of 0.25 mm thickness. These samples were exposed to different energy fluences of UV in the range 2.3-113 kJ/cm2. The specific heat capacity, Cp, has been evaluated for unexposed and exposed CTA samples using DSC method. The results indicate that the transition temperatures, onset temperatures of evaporation, specific heat capacity and the thermal activation energy of decomposition, Ea are affected by the UV energy fluence owing to the simultaneous processes of degradation and crosslinking

  11. Ion Transport across a Polyelectrolyte-Adsorbed Cellulose Triacetate Membrane in the Multicomponent Ionic Systems.

    Science.gov (United States)

    Murata; Tanioka

    1999-01-15

    The effects of polyelectrolyte adsorption by cellulose triacetate (CTA) membrane on ionic transport are investigated in two systems: the three-ionic-component system and the multicomponent-ionic system. In the three-ionic-component system, the permeabilities of two anions are affected by the competitive ion. Especially in the case of the albumin-adsorbed CTA membrane, there exists much greater specificity for the permeability of SO2-4 than in the case of the lysozyme-adsorbed membrane. On the other hand, in the case of the PAS-H(10L)(polydiallyldimethylammonium chloride)-adsorbed membrane, the permeability coefficient of HPO2-4 increases, though there exists the effect of a competitive ion. In a multicomponent-ionic system, the logarithmic permeability coefficient ratios (rP) of each ion in an adsorbed membrane to that in a nonadsorbed membrane decreased by PAS-H(10L) adsorption for all cations. The rP of bivalent cations decreased more than those of univalent cations because of the rejection from the positively charged adsorbed layer. On the other hand, the permeabilities slightly increase because of the attraction from the PAS-H(10L)-adsorbed layer when competitive anions exist among them. Furthermore, the increase in the HPO2-4 permeability is confirmed by PAS-H(10L)-adsorption on a CTA membrane for a case very similar to the actual anion multicomponent system. These are the most important results in the application for an approach to phosphate extraction from blood across an artificial kidney membrane. Copyright 1999 Academic Press. PMID:9885263

  12. Reliable dn/dc Values of Cellulose, Chitin, and Cellulose Triacetate Dissolved in LiCl/N,N-Dimethylacetamide for Molecular Mass Analysis.

    Science.gov (United States)

    Ono, Yuko; Ishida, Takashi; Soeta, Hiroto; Saito, Tsuguyuki; Isogai, Akira

    2016-01-11

    Freeze-dried microfibrillated cellulose (MFC) was directly dissolved in 8.0% w/w lithium chloride/N,N-dimethylacetamide (LiCl/DMAc), and MFC/LiCl/DMAc solutions with accurate MFC concentrations were prepared. The different MFC solutions were diluted to 1.0% and 0.5% w/v LiCl/DMAc, and subjected to size-exclusion chromatography with multiangle laser-light scattering and refractive index analyses (SEC/MALLS/RI), and off-line RI analysis to determine their refractive index increments (dn/dc). Chitin, cellulose triacetate, a poly(styrene) standard, and cellobiose were used for comparison. Each of the two determination methods gave different dn/dc values for MFC and chitin but similar dn/dc values for cellulose triacetate and poly(styrene). The anomalously small dn/dc values of MFC and chitin were explainable in terms of stable cellulose-LiCl and chitin-LiCl structures (i.e., formation of apparent covalent bonds between hydroxyl groups and LiCl) in the solutions. Thus, the SEC/MALLS/RI method provides reliable molecular mass parameters for cellulose and chitin. PMID:26618937

  13. Resolution of Dialyzer Membrane-Associated Thrombocytopenia with Use of Cellulose Triacetate Membrane: A Case Report

    OpenAIRE

    Feyisayo Olafiranye; Win Kyaw; Oladipupo Olafiranye

    2011-01-01

    Blood and dialyzer membrane interaction can cause significant thrombocytopenia through the activation of complement system. The extent of this interaction determines the biocompatibility of the membrane. Although the newer synthetic membranes have been shown to have better biocompatibility profile than the cellulose-based membranes, little is known about the difference in biocompatibility between synthetic membrane and modified cellulose membrane. Herein, we report a case of a patient on hemo...

  14. Cellulose triacetate films obtained from sugarcane bagasse: Evaluation as coating and mucoadhesive material for drug delivery systems.

    Science.gov (United States)

    Ribeiro, Sabrina Dias; Guimes, Rodrigues Filho; Meneguin, Andréia Bagliotti; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cury, Beatriz Stringhetti Ferreira; Gremião, Maria Palmira Daflon

    2016-11-01

    Cellulose triacetate (CTA) films were produced from cellulose extracted from sugarcane bagasse. The films were characterized using scanning electron microscopy (SEM), water vapor permeability (WVP), mechanical properties (MP), enzymatic digestion (ED), and mucoadhesive properties evaluation (MPE). WVP showed that more concentrated films have higher values; asymmetric films had higher values than symmetric films. MP showed that symmetric membranes are more resistant than asymmetric ones. All films presented high mucoadhesiveness. From the WVP and MP results, a symmetric membrane with 6.5% CTA was selected for the coating of gellan gum (GG) particles incorporating ketoprofen (KET). Thermogravimetric analysis (TGA) showed that the CTA coating does not influence the thermal stability of the particles. Coated particles released 100% of the KET in 24h, while uncoated particles released the same amount in 4h. The results highlight the CTA potential in the development of new controlled oral delivery systems. PMID:27516328

  15. Transport of lanthanide ions through cellulose triacetate membranes containing hinokitiol and flavonol as carriers. [beta-isopropyltropolone and 3-hydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, Masaaki (National Chemical Lab. for Industry, Ibaraki (Japan))

    Fluxes of trivalent lanthanide ions across cellulose triacetate membranes were determined by using hinokitiol (HIPT) and flavonol (HFL) as carriers. The transport of the lanthanides was coupled to flow of hydrogen ions. The effects added anion and the pH in the source phase, and the plasticizer incorporated in the membrane on the lanthanide flux, were examined. In the case of HIPT, the fluxes for the lanthanides from samarium to lutetium were much higher than those for lanthanum to neodymium. In the transport using HFL, the flux increased with decreasing ionic radius of the lanthanide species. The addition of perchlorate of thiocyanate ions to the source phase resulted in a rise in the lanthanide flux. With decreased in pH difference between the aqueous phases, the fluxes using HIPT decreased gradually while those using HFL decreased rapidly. The flux was affected by the type of plasticizer added to the membrane.

  16. Study of the properties of cellulose triacetate foils used as solid-state track detectors for neutrons

    International Nuclear Information System (INIS)

    The properties of cellulose triacetate foils have been studied in connection with the use as solid-state track detectors for neutrons. For determining the sensitivity it is necessary to know the energy losses in the detector material, the track etching rate, and the angular dependence of the particle tracks. The critical energy loss for α particles was 160 KeV/μm, the mean etching rate of the α particle tracks was 12.5 μm/h, and the critical value of the angle between the detector surface and the α particle tracks was 32.20. The registration probability of neutron-induced α particles from the LiF radiator was 0.68

  17. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules.

    Science.gov (United States)

    Gu, Yangshuo; Wang, Yi-Ning; Wei, Jing; Tang, Chuyang Y

    2013-04-01

    Fouling of cellulose triacetate (CTA) and thin-film composite (TFC) forward osmosis (FO) membranes by organic macromolecules were studied using oppositely charged lysozyme (LYS) and alginate (ALG) as model foulants. Flux performance and foulant deposition on membranes were systematically investigated for a submerged membrane system. When an initial flux of 25 L/m(2)h was applied, both flux reduction and foulant mass deposition were severe for feed water containing the mixture of LYS and ALG (e.g., 50% LYS and 50% ALG at a total foulant concentration of 100 mg/L). In comparison, fouling was much milder for feed water containing either LYS or ALG alone. Compared to the CTA FO membrane, the TFC FO membrane showed greater fouling propensity under mild FO fouling conditions due to its much rougher surface. Nevertheless, under severe FO fouling conditions, fouling was dominated by foulant-deposited-foulant interaction and membrane surface properties played a less important role. Furthermore, when the feed water contained both LYS and ALG in sufficient amount, the deposited cake layer foulant composition (i.e., the LYS/ALG mass ratio) was not strongly affected by membrane types (CTA versus TFC) nor testing modes (pressure-driven NF mode versus osmosis-driven FO mode). In contrast, solution chemistry such as pH and calcium concentration had remarkable effect on the cake layer composition due to their effects on foulant-foulant interaction. PMID:23384517

  18. Effect of polyoxyethylene n-alkyl ethers on carrier-mediated transport of lanthanide ions through cellulose triacetate membranes

    International Nuclear Information System (INIS)

    Fluxes of 14 kinds of lanthanides across cellulose triacetate membranes were determined by using mixtures of o-nitrophenyl n-octyl ether and a series of polyoxythylene n-alkyl ethers (POE ethers) as plasticizers, and hinokitiol as carrier. Effects of alkyl and polyoxyethylene (POE) chains of POE ether on the flux were demonstrated. The transport of the lanthanides was coupled to a flow of hydrogen ions. The POE ethers used [CnH2n+1(OCH2CH2)xOH, referred to as CnEx] were C10E3, C12E3, C14E3, C16E3, C12E2, C12E4, C12E6 and C12E8, In all cases, high fluxes were observed for the lanthanides from samarium to lutetium. On the contrary, the fluxes for lanthanum to neodymium were extremely low. In experiments testing the effect of the alkyl chain, the order of the POE ethers in the lanthanide flux for samarium to lutetium was C12E3 > C10E3 > C14E3 >C16E3. In experiments testing the effect of the POE chain, the flux decreased with an increase in the chain length

  19. Uridine Triacetate

    Science.gov (United States)

    ... much of chemotherapy medications such as fluorouracil or capecitabine (Xeloda) or who develop certain severe or life-threatening toxicities within 4 days of receiving fluorouracil or capecitabine. Uridine triacetate is in a class of medications ...

  20. High-energy-ion-irradiation effects on polymer materials: Pt. 3. The sensitivity of cellulose triacetate and poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    The changes in sensitivity of a cellulose triacetate (CTA) film dosimeter is reported as a function of linear energy transfer (LET). The change in molecular weight of poly(methyl methacrylate) (PMMA) is also reported. For both materials, little or no LET effect was observed up to a threshold LET, but the sensitivity or radiation yield decreased with increasing LET above this threshold level. The threshold LET level was similar for both polymers, occurring at around a few hundreds of MeV cm2 g-1, with this level probably corresponding to the overlapping of spurs along the ion's path. (Author)

  1. Testing zinc chloride as a new catalyst for direct synthesis of cellulose di- and tri-acetate in a solvent free system under microwave irradiation.

    Science.gov (United States)

    El Nemr, Ahmed; Ragab, Safaa; El Sikaily, Amany

    2016-10-20

    This research demonstrates the effect of ZnCl2 as a catalyst on the esterification of commercial cotton cellulose using acetic anhydride in order to obtain di- and tri-cellulose acetates under microwave irradiation. It was discovered that microwave irradiation significantly increased the yield and reduced the reaction time. It was found that the maximum yield for cellulose triacetates was 95.83% under the reaction conditions that were as follows: 3min reaction time, 200mg of ZnCl2 catalyst and 20ml of Ac2O for 5g cellulose. However, the cellulose acetate obtained in this manner had the highest DS (2.87). The cellulose di-acetate was produced with the maximum yield of 89.97% and with the highest DS (2.69) using 25ml Ac2O, 200mg of ZnCl2 for 5g cellulose and in 3min reaction time. The effect of some factors such as the amount of used catalyst, the quantity of acetic acid anhydride and the reaction time of the esterification process have been investigated. The production of di- and tri-cellulose acetate and the degree of substitution were confirmed using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR). The thermal stability was investigated using thermo gravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The molecular weight and the degree of polymerization were obtained using Gel Permeation Chromatography (GPC). The analysis confirmed the successful synthesis of di- and tri-cellulose acetate without degradation during the reaction; these results were found to be in contrast to some recent studies. The present study reveals that ZnCl2 is a new catalyst; it is effective as well as inexpensive and is a low toxicity catalyst for usage in cellulose esterification. PMID:27474655

  2. Preparation and properties of cellulose triacetate forward osmosis membrane%三乙酸纤维素正渗透膜的制备与性能

    Institute of Scientific and Technical Information of China (English)

    解利昕; 辛婧; 解奥

    2014-01-01

    Cellulose triacetate based membranes for forward osmosis were prepared by immersion precipitation. The polymer solution consisted of cellulose triacetate as the membrane material, 1,4-dioxane and acetone as solvent,methanol and lactic acid as additives. Casting composition and preparation conditions-1,4-dioxane/acetone ratio,lactic acid content,evaporation time,casting thickness and annealing temperature-were tested for their effects on membrane performance. The optimized membrane showed 14.10L/(m2·h) water flux and 0.031mol/(m2·h) reverse solute flux using a feed solution of pure water and draw solution of 0.56mol/L CaCl2. When 0.1mol/L NaCl was used as the feed solution and 4mol/L glucose was used as the draw solution,water flux was above 5L/(m2·h) and rejection for NaCl was above 99%. The optimized membrane had a more hydrophilic surface, higher water flux,higher salt resistance and better membrane performance than the HTI membrane.%以三乙酸纤维素(CTA)为膜材料,1,4-二氧六环、丙酮为溶剂,甲醇、乳酸为添加剂,采用相转换法制备了三乙酸纤维素正渗透膜。研究了不同1,4-二氧六环/丙酮配比、添加剂乳酸含量、挥发时间、膜厚度、热处理温度条件下正渗透膜性能的变化规律。研究表明,当采用纯水为原料液,0.56mol/L CaCl2为汲取液时,优化制备的CTA正渗透膜的水通量达到14.10L/(m2·h),溶质反扩散量为0.031mol/(m2·h);采用0.1mol/L NaCl为原料液,4mol/L葡萄糖为汲取液时,优化制备的CTA正渗透膜的水通量保持在5L/(m2·h)以上,对NaCl的截留率大于99%。CTA正渗透膜相比于HTI膜,具有较高的亲水性、水通量、截留率,稳定性更好。

  3. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.

    Science.gov (United States)

    Wang, Xinhua; Zhao, Yanxiao; Yuan, Bo; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-02-01

    There are two types of popular forward osmosis (FO) membrane materials applied for researches on FO process, cellulose triacetate (CTA) and thin film composite (TFC) polyamide. However, performance and fouling mechanisms of commercial TFC FO membrane in osmotic membrane bioreactors (OMBRs) are still unknown. In current study, its biofouling behaviors in OMBRs were investigated and further compared to the CTA FO membrane. The results indicated that β-D-glucopyranose polysaccharides and microorganisms accounted for approximately 77% of total biovolume on the CTA FO membrane while β-D-glucopyranose polysaccharides (biovolume ratio of 81.1%) were the only dominant biofoulants on the TFC FO membrane. The analyses on the biofouling structure implied that a tighter biofouling layer with a larger biovolume was formed on the CTA FO membrane. The differences in biofouling behaviors including biofoulants composition and biofouling structure between CTA and TFC FO membranes were attributed to different membrane surface properties. PMID:26700758

  4. Cellulose based conductive polymers

    OpenAIRE

    Lin, Haishu

    2015-01-01

    Conductive fibers show potential applications in different areas. In this thesis, cellulose and its derivatives, including carboxymethyl cellulose, cellulose acetate as well as methyl cellulose were used to produce fibers via wet spinning. Different conductive materials were also introduced in an attempt to obtain cellulose-derived conductive fibers. Different conductive fillers (Zelec, carbon black, conductive polymers) were evaluated. Among them, PEDOT and PPy conductive polymers showed...

  5. Biocompatibility of Bacterial Cellulose Based Biomaterials

    OpenAIRE

    Omar P. Troncoso; Solene Commeaux; Torres, Fernando G.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received...

  6. Biocompatibility of Bacterial Cellulose Based Biomaterials

    Directory of Open Access Journals (Sweden)

    Omar P. Troncoso

    2012-12-01

    Full Text Available Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed.

  7. Cellulose

    Science.gov (United States)

    Cellulose properties and structure are reviewed, with a primary focus on crystal structure and polymorphy. This focus highlights the conversion from cellulose I to cellulose II, which converts the molecules to being all parallel to each other in the crystal to being antiparallel. This has been co...

  8. A facile route to prepare cellulose-based films.

    Science.gov (United States)

    Xu, Qin; Chen, Chen; Rosswurm, Katelyn; Yao, Tianming; Janaswamy, Srinivas

    2016-09-20

    Cellulose is the most abundant renewable and biodegradable material available in nature. Its insoluble character in water as well as common organic and inorganic liquids, however, curtails the wholesome utility. The continuous rise for biodegradable products based on cellulose coupled with its intrinsic ability to form a viable substitute for the petroleum-based materials necessitates the critical need for solubilizing the cellulose. Herein, we demonstrate the feasibility of ZnCl2 solutions, especially the 64-72% concentrations, to dissolve cellulose. FTIR results suggest that Zn(2+) ions promote Zn⋯O3H interactions, which in-turn weaken the intrinsic O3H⋯O5 hydrogen bonds that are responsible for strengthening the cellulose chains. Interestingly, Ca(2+) ions promote interactions among the Zn-cellulose chains leading to the formation of nano fibrils and yield gelling solutions. The tensile strength of the Ca(2+) added Zn-cellulose films increases by around 250% compared to the Zn-cellulose films. Overall, utilization of inorganic salt solutions to solubilize and crosslink cellulose is cost-effective, recyclable and certainly stands out tall among the other available systems. More importantly, the proposed protocol is simple and is a "green" process, and thus its large-scale adaptability is quite feasible. We strongly believe that the outcome opens up a new window of opportunities for cellulose in the biomedical, pharmaceutical, food and non-food applications. PMID:27261751

  9. Functionalization of cellulose acetate fibers with engineered cutinases

    OpenAIRE

    Matamá, Maria Teresa; Araújo, Rita; Gübitz, Georg M.; Casal, Margarida; Paulo, Artur Cavaco

    2009-01-01

    In the present work, we describe for the first time the specific role of cutinase on surface modification of cellulose acetate fibers. Cutinase exhibits acetyl esterase activity on diacetate and triacetate of 0.010 U and 0.007 U, respectively. An increase on the hydroxyl groups at the fiber surface of 25% for diacetate and 317% for triacetate, after a 24 h treatment, is estimated by an indirect assay. Aiming at further improvement of cutinase affinity toward cellulose acetate, chimeric cutina...

  10. Cellulose-Based Membranes for Solutes Fractionation

    Science.gov (United States)

    Anokhina, T. S.; Yushkin, A. A.; Volkov, V. V.; Antonov, S. V.; Volkov, A. V.

    This work was focused on investigation of industrial cellophane film as a membrane material for solvent nanofiltration. The effect of conditioning of cellophane membranes by stepwise changing of composition of ethanol-water binary mixtures (from ethanol to water and from water to ethanol) was studied. It was shown that such treatment leads to an increase of ethanol permeability more than two orders of magnitude over initial untreated film samples. Treated cellophane membranes possess the ethanol permeability coefficient comparable with the values for highly permeability glassy polymers. Investigation of cellophane swelling in water ethanol solutions allowed to conclude that during the treatment formation of porous in the film takes place due to increase of inter chain distances. Observed high ethanol permeability connected with the fact that formed porous structure remains after the replacement of water with ethanol. Also it was shown that rejection coefficients of a number of dyes (MW 350) were in good agreement with the degree of hydrophobicity/hydrophilicity and ability of the solvent to form hydrogen bonding with the solute molecules. It was demonstrated that cellulose-based membranes can be complimentary for other type of the membranes in fractionation of multi-components solutions.

  11. Novel transparent nanocomposite films based on chitosan and bacterial cellulose

    OpenAIRE

    Fernandes, Susana C. M.; Oliveira, Lúcia; Freire, Carmen S. R.; Silvestre, Armando J. D.; Neto, Carlos Pascoal; Gandini, Alessandro; Desbriéres, Jacques

    2009-01-01

    New nanocomposite films based on different chitosan matrices (two chitosans with different DPs and one water soluble derivative) and bacterial cellulose were prepared by a fully green procedure by casting a water based suspension of chitosan and bacterial cellulose nanofibrils. The films were characterized by several techniques, namely SEM, AFM, X-ray diffraction, TGA, tensile assays and visible spectroscopy. They were highly transparent, flexible and displayed better mechanical properties th...

  12. Composite edible films based on hydroxypropyl methyl cellulose reinforced with microcrystalline cellulose nanoparticles

    Science.gov (United States)

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of th...

  13. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  14. POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers

    International Nuclear Information System (INIS)

    Nanocomposite polymer electrolytes based on high-molecular weight poly(oxyethylene) (POE) were prepared from high aspect ratio cellulosic whiskers and lithium trifluoromethyl sulfonyl imide (LiTFSI). Prior to the polymer electrolyte characterization, the polymer/whiskers nanocomposites were characterized using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Interactions between cellulose and POE were evidenced. The main effect of the filler was a thermal stabilization of the storage modulus for the composites above the melting point of the complexes POE/LiTFSI. The ionic conductivity was quite consistent with the specifications of lithium batteries

  15. Production of Cellulosic Polymers from Agricultural Wastes

    OpenAIRE

    Israel, A. U.; I. B. Obot; Umoren, S. A.; Mkpenie, V.; Asuquo, J. E.

    2008-01-01

    Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis), raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri), stem and cob of maize plant (Zea mays), fruit fiber from coconut fruit (Cocos nucifera), sawdusts from cotton tree (Cossypium hirsutum), pear wood (Manilkara obovata), stem of Southern gamba green (Andropogon tectorus), sugarcane baggase (Sac...

  16. Cellulose-Rich Nanofiber-Based Functional Nanoarchitectures.

    Science.gov (United States)

    Li, Shun; Huang, Jianguo

    2016-02-10

    Surface self-assembly of functional molecules or nanoscale building blocks is an effective strategy for the syntheses of advanced materials. Natural cellulose-rich substances have unique macro-to-nano hierarchical structural features. The fabrication of nanoarchitectures, employing specific guest species on the surfaces of the fine structures of such substances, results in corresponding artificial nanomaterials that possess the chemical functionalities and physical properties of both sides. Metal oxide thin film coatings with nanometer precision on the nanofibers of bulk cellulose-rich substances not only yield replicas of nanostructured materials, but also make it possible for further assemblies of functional units on the surfaces. Hence, nanostructured metal oxides and further composites, as well as surface-functionalized cellulose-based composites are fabricated by employing cellulose-rich substances as templates or scaffolds. The three-dimensional cross-linked porous structures, with the high surface area of the resultant nanomaterials or composites, lead to superior performance when employed as photocatalysts, electrode materials, and sensing matrices, on which this report is focused. PMID:26598324

  17. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets.

    Science.gov (United States)

    Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping

    2016-09-01

    The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation. PMID:27185125

  18. 2-Dimensional Assembly of Cellulose-Based Materials

    OpenAIRE

    Niinivaara, Elina

    2016-01-01

    The objective of this thesis was to systematically investigate the two dimensional assembly of cellulose-based materials and the two dimensional response to various external stimuli. The motivation of studying such materials is the ever increasing trend in materials science to substitute synthetic polymers for greener materials. Studies such as the one presented here are essential to understand the fundamental behaviours and characteristics of bio-based polymers and to be able to utilize them...

  19. Unfolding type gastroretentive film of Cinnarizine based on ethyl cellulose and hydroxypropylmethyl cellulose.

    Science.gov (United States)

    Verma, Shakuntla; Nagpal, Kalpana; Singh, S K; Mishra, D N

    2014-03-01

    The present work was based on the development and characterization of unfolding type gastro retentive dosage form appropriate for controlled release of Cinnarizine (CNZ), a drug with narrow therapeutic window. The drug loaded polymer film of biological macromolecules, i.e., ethyl cellulose (EC) and hydroxypropylmethyl cellulose (HPMC K15) was folded into hard gelatin capsules. The film was folded in different patterns for characterizing their unfolding behavior. The polymeric film revealed a fast release during the first hour followed by a more gradual drug release during a 12-h period following a non-Fickian diffusion process. Tensile strength of polymeric film was optimized using different amount (0.2-0.7 ml) of polyethylene glycol (PEG 400). Various physical parameters were studied for evaluating their performance as a gastroretentive dosage form. Drug and polymers were found to be compatible as revealed by differential scanning calorimetry (DSC) study and scanning electron micrograph (SEM) study revealed uniform dispersion of CNZ in polymeric matrices. The results indicate that unfolding type gastro retentive drug delivery system holds lots of potential for drug having stability problems in alkaline pH or are which mainly absorbed in acidic pH. PMID:24370473

  20. Preparation of carboxymethyl cellulose based microgels for cell encapsulation

    OpenAIRE

    Ke, Y; Liu, G.S.; Wang, J H; Xue, W; Du, C.; Wu, G.

    2014-01-01

    Biocompatible and biodegradable carboxymethyl cellulose (CMC) has been modified with 4-hydroxybenzylamine (CMC-Ph) in order to prepare CMC-based microgels through the horseradish peroxidise/hydrogen peroxide enzymatic reaction. CMC-Ph was identified as a blend, and the amount of the grafted 4-hydroxybenzylamine per 100 units of CMC was between 17 and 23 according to the molecular weight of CMC. Through a special designed co-flowing microfluidic device, CMC-Ph microgels were prepared with the ...

  1. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  2. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  3. Cellulose-based composites as functional conductive materials for printed electronics

    OpenAIRE

    Barras, Raquel Alexandra Antunes

    2015-01-01

    In this work, cellulose-based electro and ionic conductive composites were developed for application in cellulose based printed electronics. Electroconductive inks were successfully formulated for screen-printing using carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) as conductive functional material and cellulose derivatives working as binder. The formulated inks were used to fabricate conductive flexible and disposable electrodes on paper-based substrates. Interesting results ...

  4. Synthesis and properties of N-hexadecyl ethylenediamine triacetic acid.

    Science.gov (United States)

    Wang, Xixin; Zhao, Jianling; Yao, Xingzhi; Chen, Wentao

    2004-11-15

    A new kind of surfactant named N-hexadecyl ethylenediamine triacetic acid (HED3A) was synthesized from anhydrous ethylenediamine, 1-bromohexadecane, and chloroacetic acid. Testing showed stability of HED3A in hard water, wetting power, dispersing power, and surface tension increased along with pH value. Stability in hard water of trisodium N-hexadecyl ethylenediamine triacetate (3NaHED3A) was at level 4, which was better than that of sodium dodecylsulfate (SDS) and sodium dodecylbenzene sulfonate (LAS). Other properties of 3NaHED3A including wetting power, dispersing power, emulsifying power, and surface tension had intermediate value between SDS, LAS, AES, peregal-O, and cetyltrimethylammonium chloride (CTAC). The ethylenediamine triacetic acid (ED3A) group in 3NaHED3A can chelate many kinds of metal ions, which indicates a promising application prospect in many fields including metal anticorrosion, corrosion control agent, additives in electroplating solution, and ore selection and solid surface treatment. PMID:15464823

  5. Characterization of cellulose acetate obtained from sugarcane bagasse by {sup 1}H-NMR; Caracterizacao de acetato de celulose obtido a partir do bagaco de cana-de-acucar por {sup 1}H-RMN

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, Daniel A.; Rodrigues Filho, Guimes, E-mail: d.a.cerqueira@gmail.co [Universidade Federal de Uberlendia (IQ/UFU), MG (Brazil). Inst. de Quimica; Carvalho, Rui A. [Universidade de Coimbra (UC) (Portugal). Dept. de Bioquimica; Valente, Artur J.M. [Universidade de Coimbra (UC) (Portugal). Dept. de Quimica

    2009-07-01

    Cellulose from sugarcane bagasse was used for synthesizing cellulose acetate with different degrees of substitution, which were characterized by {sup 1}H-NMR through the relationship between the peak areas of the hydrogen atoms present at the acetate groups (-(C=O)OCH{sub 3} ) and the peaks of the hydrogen bonded to the carbon atoms of the glycosidic rings. Suppression was carried out in order to remove the peak of residual water in the materials and the peak related to impurities in cellulose triacetate. Degree of substitution values obtained through the resonance deconvolution were compared to those obtained by chemical determination through an acid-base titration. The determined degrees of substitution of the cellulose samples were 2.94 and 2.60. (author)

  6. Development of wet-dry reversible reverse osmosis membrane with high performance from cellulose acetate and cellulose triactate blend

    NARCIS (Netherlands)

    Vasarhelyi, K.; Ronner, J.A.; Mulder, M.H.V.; Smolders, C.A.

    1987-01-01

    Wet-dry reversible membrane were prepared bt a two-step coagulation procedure. A cast film containing a blend of cellulose triacetate as polymers, dioxane and acetone as solvents and maleic acid and methanol as additives was immersed consecutively in two aqueous coagulation baths, the first bath bei

  7. Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber

    OpenAIRE

    Mohd Saiful Asmal Rani; Siti Rudhziah; Azizan Ahmad; Nor Sabirin Mohamed

    2014-01-01

    A cellulose derivative, carboxymethyl cellulose (CMC), was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4) were prepared by the solution-casting technique. The biopolymer-based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the CMC–CH3COONH4 complexes. Electrochemical impedance spectros...

  8. Cellulose-Based Bio- and Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Susheel Kalia

    2011-01-01

    Full Text Available Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.

  9. Cellulose based soft gel like actuator for reconfigurable lens array

    Science.gov (United States)

    Sadasivuni, Kishor Kumar; Yadav, Mithilesh; Gao, Xiaoyuan; Mun, Seongcheol; Kim, Jaehwan

    2014-04-01

    Reconfigurable lens is biomimetic as it mimics human eye and is a transparent actuating material that can change its curvature in the presence of external stimuli. Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present lens system which makes use of an inline, transparent electro active polymer actuator. This paper reports the preliminary development we have achieved in reconfigurable lens systems made with cellulose nanocrystals (CNC) using the principle of Kerr effect. Preparation of the hydrophobic CNC solution as well as the optical properties of the lens has been discussed. This soft gel actuator was analyzed by measuring the electric birefringence in the pulse field of constant and sinusoidal voltage based on the use of modulation of elliptic light polarization.

  10. 36 CFR 1237.30 - How do agencies manage records on nitrocellulose-base and cellulose-acetate base film?

    Science.gov (United States)

    2010-07-01

    ... film as specified in Department of Transportation regulations (49 CFR 172.101, Hazardous materials... records on nitrocellulose-base and cellulose-acetate base film? 1237.30 Section 1237.30 Parks, Forests... and cellulose-acetate base film? (a) The nitrocellulose base, a substance akin to gun cotton,...

  11. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging.

    Science.gov (United States)

    Ummartyotin, S; Pechyen, C

    2016-05-20

    Cellulose based composite was successfully designed as active packaging with additional feature of microwavable properties. Small amount of cellulose with 10 μm in diameter was integrated into polypropylene matrix. The use of maleic anhydride was employed as coupling agent. Thermal and mechanical properties of cellulose based composite were superior depending on polypropylene matrix. Crystallization temperature and compressive strength were estimated to be 130 °C and 5.5 MPa. The crystal formation and its percentage were therefore estimated to be 50% and it can be predicted on the feasibility of microwavable packaging. Morphological properties of cellulose based composite presented the good distribution and excellent uniformity. It was remarkable to note that cellulose derived from cotton can be prepared as composite with polypropylene matrix. It can be used as packaging for microwave application. PMID:26917383

  12. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior

    Science.gov (United States)

    Shah, Rushita; Vyroubal, Radek; Fei, Haojei; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-04-01

    Bacterial cellulose (BC) based hydrogels have been prepared in blended with carboxymethylcellulose and polyvinyl pyrrolidone by using heat treatment. The properties of BC-CMC and BC-PVP hydrogels were compared with pure BC, CMC and PVP hydrogels. These hydrogels were investigated by measuring their structural, morphological and viscoelastic properties. Through the morphological images, alignment of the porous flake like structures could be seen clearly within the inter-polymeric network of the hydrogels. Also, the detail structure analysis of the polymers blended during the hydrogel formation confirms their interactions with each other were studied. Further, the viscoelastic behavior of all the hydrogels in terms of elastic and viscous property was studied. It is observed that at 1% strain, including CMC and PVP hydrogels, all the BC based hydrogels exhibited the linear trend throughout. Also the elastic nature of the material remains high compared to viscous nature. Moreover, the changes could be noticed in case of blended polymer based hydrogels. The values of complex viscosity (η*) decreases with increase in angular frequency within the range of ω = 0.1-100 rad.s-1.

  13. Cellulose based transition metal nano-composites : structuring and development

    OpenAIRE

    Glatzel, Stefan

    2013-01-01

    Cellulose is the most abundant biopolymer on earth. In this work it has been used, in various forms ranging from wood to fully processed laboratory grade microcrystalline cellulose, to synthesise a variety of metal and metal carbide nanoparticles and to establish structuring and patterning methodologies that produce highly functional nano-hybrids. To achieve this, the mechanisms governing the catalytic processes that bring about graphitised carbons in the presence of iron have been investigat...

  14. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood.

    Science.gov (United States)

    Nyström, Gustav; Mihranyan, Albert; Razaq, Aamir; Lindström, Tom; Nyholm, Leif; Strømme, Maria

    2010-04-01

    It is demonstrated that it is possible to coat the individual fibers of wood-based nanocellulose with polypyrrole using in situ chemical polymerization to obtain an electrically conducting continuous high-surface-area composite. The experimental results indicate that the high surface area of the water dispersed material, to a large extent, is maintained upon normal drying without the use of any solvent exchange. Thus, the employed chemical polymerization of polypyrrole on the microfibrillated cellulose (MFC) nanofibers in the hydrogel gives rise to a composite, the structure of which-unlike that of uncoated MFC paper-does not collapse upon drying. The dry composite has a surface area of approximately 90 m(2)/g and a conductivity of approximately 1.5 S/cm, is electrochemically active, and exhibits an ion-exchange capacity for chloride ions of 289 C/g corresponding to a specific capacity of 80 mAh/g. The straightforwardness of the fabrication of the present nanocellulose composites should significantly facilitate industrial manufacturing of highly porous, electroactive conductive paper materials for applications including ion-exchange and paper-based energy storage devices. PMID:20205378

  15. Evaluation of Several Procedures for Immobilizing Cholesterol Oxidase Based on Cellulose Acetate Membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Immobilized cholesterol oxidase (COD) membrane with higher catalytic activity is important for biosensor. In this paper, several procedures for immobilizing COD based on cellulose acetate (CA) membrane are studied. Reasons causing different catalytic activities are also discussed.

  16. Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking.

    Science.gov (United States)

    Nkansah, Michael K; Thakral, Durga; Shapiro, Erik M

    2011-06-01

    Biodegradable, superparamagnetic microparticles and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated, and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into microparticles and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt % for PLGA and 69.6 wt % for cellulose). While PLGA and cellulose nanoparticles displayed highest r 2* values per millimole of iron (399 sec(-1) mM(-1) for cellulose and 505 sec(-1) mM(-1) for PLGA), micron-sized PLGA particles had a much higher r 2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r 2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r 2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for noninvasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long-term (cellulose-based particles) experiments. PMID:21404328

  17. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS

    International Nuclear Information System (INIS)

    We report a high-performance electro-active hybrid actuator based on freeze-dried bacterial cellulose and conducting polymer electrodes. The freeze-dried bacterial cellulose, which has a sponge form, can absorb a much greater amount of ionic liquid, which is a prerequisite for dry-type and high-performance electro-active polymers. In addition, the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting layers are deposited on the top and bottom surfaces of the freeze-dried bacterial cellulose using a simple dipping and drying method. The results show that the freeze-dried bacterial cellulose actuator with conducting polymer electrodes has a much larger tip displacement under electrical stimuli than pure bacterial cellulose actuators with metallic electrodes. The large bending displacement of the freeze-dried bacterial cellulose actuator under low input voltage is due to the synergistic effects of the ion migration of the dissociated ionic liquids inside the bacterial cellulose and the electrochemical doping processes of the PEDOT:PSS electrode layers. (paper)

  18. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS

    Science.gov (United States)

    Kim, Si-Seup; Jeon, Jin-Han; Kee, Chang-Doo; Oh, Il-Kwon

    2013-08-01

    We report a high-performance electro-active hybrid actuator based on freeze-dried bacterial cellulose and conducting polymer electrodes. The freeze-dried bacterial cellulose, which has a sponge form, can absorb a much greater amount of ionic liquid, which is a prerequisite for dry-type and high-performance electro-active polymers. In addition, the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting layers are deposited on the top and bottom surfaces of the freeze-dried bacterial cellulose using a simple dipping and drying method. The results show that the freeze-dried bacterial cellulose actuator with conducting polymer electrodes has a much larger tip displacement under electrical stimuli than pure bacterial cellulose actuators with metallic electrodes. The large bending displacement of the freeze-dried bacterial cellulose actuator under low input voltage is due to the synergistic effects of the ion migration of the dissociated ionic liquids inside the bacterial cellulose and the electrochemical doping processes of the PEDOT:PSS electrode layers.

  19. Characterisation of Flax Fibres and Flax Fibre Composites. Being cellulose based sources of materials

    DEFF Research Database (Denmark)

    Aslan, Mustafa

    growing interest among composite manufacturers for such low-cost and low-weight cellulosic fibre composites. In addition, wood and plant fibre based composites with thermoplastic polymeric matrices are recyclable, and they are cost attractive alternatives to oil based fibre reinforced polymer composites......Cellulosic fibres, like wood and plant fibres, have the potential for use as load-bearing constituents in composite materials due to their attractive properties such as high stiffness-to-weight ratio that makes cellulosic fibre composites ideal for many structural applications. There is thus a...... that currently have the largest market share for composite applications. However, the most critical limitation in the use of cellulosic fibre composites for structural applications is the lack of well described fibre properties, in particular, the tensile strength. This is due to variations in fibre...

  20. Soybean meal-based adhesive reinforced with cellulose nano-whiskers

    OpenAIRE

    Qiang Gao,; Jianzhang Li; Sheldon Q. Shi; Kaiwen Liang; Xiumei Zhang

    2012-01-01

    Cellulose nano-whiskers were used to enhance the performance of soybean meal-based adhesive. Soybean meal flour, cellulose nano-whiskers (CNW), sodium hydroxide (NaOH), and polyethylene glycol (PEG) were used to develop different adhesive formulations. The effect of adhesive components on water resistance of the adhesive was measured on the three-ply plywood (three cycle soak test). The viscosity and solid content of the adhesive were measured. The cross section of the cured adhesives was eva...

  1. Optically transparent membrane based on bacterial cellulose/polycaprolactone

    Directory of Open Access Journals (Sweden)

    H. S. Barud

    2013-01-01

    Full Text Available Optically transparent membranes from bacterial cellulose (BC/polycaprolactone (PCL have been prepared by impregnation of PCL acetone solution into dried BC membranes. UV-Vis measurements showed an increase on transparency in BC/PCL membrane when compared with pristine BC. The good transparency of the BC/PCL can be related to the presence of BC nanofibers associated with deposit of PCL nano-sized spherulites which are smaller than the wavelength of visible light and practically free of light scattering. XRD results show that cellulose type I structure is preserved inside the BC/PCL membrane, while the mechanical properties suggested indicated that PCL acts as a plasticizer for the BC membrane. The novel BC/PCL membrane could be used for preparation of fully biocompatible flexible display and biodegradable food packaging.

  2. Cellulose-based materials as scaffolds for tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Novotná, Katarína; Havelka, P.; Sopuch, T.; Kolářová, K.; Vosmanská, V.; Lisá, Věra; Švorčík, V.; Bačáková, Lucie

    2013-01-01

    Roč. 20, č. 5 (2013), s. 2263-2278. ISSN 0969-0239 R&D Projects: GA ČR(CZ) GAP108/12/1168; GA MPO(CZ) 2A-1TP1/073 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : polysacharide materials * oxidized cellulose * vascular smooth muscle cells * chitosan Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.033, year: 2013

  3. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils

    OpenAIRE

    B. Deepa; Eldho Abraham; Pothan, Laly A; Nereida Cordeiro; Marisa Faria; Sabu Thomas

    2016-01-01

    Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF) into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt %) on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further...

  4. A Nanocellulose Polypyrrole Composite Based on Tunicate Cellulose

    OpenAIRE

    Dawei Zhang; Qing Zhang; Xin Gao; Guangzhe Piao

    2013-01-01

    The water-dispersed conductive polypyrrole (PPy) was prepared via the in situ oxidative chemical polymerization by using ammonium persulfate (APS) as oxidant and tunicate cellulose nanocrystals (T-CNs) as a dopant and template for tuning the morphologies of PPy nanoparticles. Highly flexible paper-like materials of PPy/T-CNs nanocomposites with high electrical conductivity values and good mechanical properties were prepared. The structure of nanocomposites of PPy/T-CNs was investigated by usi...

  5. Detection of cellulose with improved specificity using laser-based instruments

    International Nuclear Information System (INIS)

    Specific detection of cellulose has not been possible using laser based instruments such as laser scanning confocal microscopes (LSCM) and fluorescently activated cell sorters (FACS). Common cellulose dyes are nonspecific and/or nonexcitable with common lasers. Furthermore, many lasers emit wavelengths that overlap with autofluorescence from chlorophyll and other plant molecules. We demonstrate that a cellulase and an isolated bacterial cellulose binding domain (CBD) conjugated to fluorescent dyes can be used for laser detection of cellulose with improved specificity. Cell walls of differentiating tracheary elements and spores of Dictyostelium discoideum were tested in this study. For double labeling, autofluorescence interfering with the rhodamine signal was eliminated by collecting each excitation channel separately followed by computer recombination or by using a narrow band pass barrier filter allowing simultaneous channel collection. Using these methods, cellulose and microtubules tagged with a monoclonal antibody to alpha-tubulin were effectively colocalized in chlorophyll-containing tracheary elements using a LSCM. Also, Dictyostelium discoideum spores labeled or unlabeled with CBD-FITC were separated into two populations by FACS indicating that this tag should be useful in future mutagenesis experiments. Therefore, the presence or absence of cellulose can now be analyzed using common lasers

  6. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho

    2014-06-01

    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  7. Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde.

    Science.gov (United States)

    Keshk, Sherif M A S; Ramadan, Ahmed M; Bondock, Samir

    2015-08-20

    The synthesis of two novel Schiff's bases (cellulose-2,3-bis-[(4-methylene-amino)-benzene-sulfonamide] (5) & cellulose-2,3-bis-[(4-methylene-amino)-N-(thiazol-2-yl)-benzenesulfonamide] (6) via condensation reactions of periodate oxidized developed bacterial cellulose ODBC (2) with sulfa drugs [sulfanilamide (3) & sulfathiazole (4)] was reported. The physicochemical characterization of the condensation products was performed using FTIR, (1)H NMR, (13)C NMR spectral analyses, X-ray diffraction and DTA. The ODBC exhibited the highest degree of oxidation based on the aldehyde group number percentage (82.9%), which confirms the highest reactivity of developed bacterial cellulose [DBC (1)]. The X-ray diffractograms indicated an increase in the interplanar distance of the cellulose Schiff base (6) compared to ODBC (2) due to sulfathiazole (4) inclusion between ODBC (2) sheets corresponding to the 1 1 0 plane. In addition, the aldehyde content of Schiff base (6) was (20.8%) much lower than that of Schiff base (5) (41.5%). These results confirmed the high affinity of sulfathiazole (4) to the ODBC (2) chain, and the substantial changes in the original properties of ODBC were due to these chemical modifications rather than the sulfanilamide (3). PMID:25965481

  8. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  9. Formulation and Physical Characterization of Microemulsions Based Carboxymethyl Cellulose as Vitamin C Carrier

    International Nuclear Information System (INIS)

    The main purpose of this research is to develop a cellulose derivative based microemulsion for transdermal delivery system. In this research, cellulose derivative used is carboxymethyl cellulose (CMC) that was converted from cellulose by etherification reaction and analysed by FTIR instrument. The degree of substitution (DS) for carboxymethyl cellulose is 0.492. Microemulsion system consists of oleic acid as oil phase, Tween 20 as surfactant and propylene glycol as co-surfactant. The active ingredient used in this system is vitamin C. Determination of microemulsion area in the ternary phase diagram was done by titration method. From the result, microemulsion system with surfactant/co-surfactant ratio (Km=3:1) produced the largest surface area in the ternary phase diagram. Microemulsions with and without vitamin C and CMC were characterized using dynamic light scattering (DLS), electrical conductivity and rheometer. For size particle analysis, system without vitamin C and CMC have microemulsion droplet size between 20-200 nm. Based on the electrical conductivity and viscosity test, phase transition occurred in the microemulsion system from water-in-oil (w/o) to bicontinuous phase at 20 wt. % water percentage. The stability test showed microemulsion systems with the percentage of water up to 30 wt. % were stable at temperatures 4, 25 and 40 degree Celsius upon three weeks storage. (author)

  10. Present status and applications of bacterial cellulose-based materials for skin tissue repair.

    Science.gov (United States)

    Fu, Lina; Zhang, Jin; Yang, Guang

    2013-02-15

    Bacterial cellulose (BC, also known as microbial cellulose, MC) is a promising natural polymer which is biosynthesized by certain bacteria. This review focused on BC-based materials which can be utilized for skin tissue repair. Firstly, it is illustrated that BC has unique structural and mechanical properties as compared with higher plant cellulose, and is thus expected to become a commodity material. Secondly, we summarized the basic properties and different types of BC, including self-assembled, oriented BC, and multiform BC. Thirdly, composites prepared by using BC in conjunction with other polymers are explored, and the research on BC for application in skin tissue engineering is addressed. Finally, experimental results and clinical treatments assessing the performance of wound healing materials based on BC were examined. With its superior mechanical properties, as well as its excellent biocompatibility, BC was shown to have great potential for biomedical application and very high clinical value for skin tissue repair. PMID:23399174

  11. Cellulose oligomers production and separation for the synthesis of new fully bio-based amphiphilic compounds.

    Science.gov (United States)

    Billès, Elise; Onwukamike, Kelechukwu N; Coma, Véronique; Grelier, Stéphane; Peruch, Frédéric

    2016-12-10

    Cellulose oligomers are water-soluble, on the contrary to cellulose, which greatly increase their application range. In this study, cellulose oligomers were obtained from the acidic hydrolysis of cellulose with phosphoric acid. The global yield in water-soluble oligomers was around 23% with polymerization degree (DP) ranging from 1 to 12. The cellulose oligomers DP distribution was successfully reduced by differential solubilisation in methanol as one of the goals of this work was to avoid the use of a time-consuming full chromatographic separation. The methanol-soluble oligomers were mainly low DP (≤3). The oligomers of higher molar mass, composed of 42% of cellotetraose and 36% of cellopentaose, were then functionalized and coupled with stearic acid through azide-alkyne click chemistry to obtain amphiphilic compounds. The self-assembly of these new bio-based compounds was finally investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and their critical micellar concentration (CMC) was found to be in the same range as alkylmaltosides and alkylglucosides. PMID:27577903

  12. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes

    Directory of Open Access Journals (Sweden)

    Maria Assunta Navarra

    2015-11-01

    Full Text Available Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity.

  13. Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber

    Directory of Open Access Journals (Sweden)

    Mohd Saiful Asmal Rani

    2014-09-01

    Full Text Available A cellulose derivative, carboxymethyl cellulose (CMC, was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4 were prepared by the solution-casting technique. The biopolymer-based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the CMC–CH3COONH4 complexes. Electrochemical impedance spectroscopy was conducted to obtain their ionic conductivities. The highest conductivity at ambient temperature of 5.77 × 10−4 S cm−1 was obtained for the electrolyte film containing 20 wt% of CH3COONH4. The biopolymer electrolyte film also exhibited electrochemical stability up to 2.5 V. These results indicated that the biopolymer electrolyte has great potential for applications to electrochemical devices, such as proton batteries and solar cells.

  14. Nanocomposite polymer electrolytes based on poly(oxyethylene and cellulose whiskers

    Directory of Open Access Journals (Sweden)

    My Ahmed Saïd Azizi Samir

    2005-06-01

    Full Text Available Solid lithium-conducting nanocomposite polymer electrolytes based on poly(oxyethylene (POE were prepared from high aspect ratio cellulosic whiskers and lithium imide salt, LiTFSI. The cellulosic whiskers were extracted from tunicate -a sea animal- and consisted of slender parallelepiped rods that have an average length around 1 µm and a width close to 15 nm. High performance nanocomposite electrolytes were obtained. The filler provided a high reinforcing effect while a high level of ionic conductivity was retained with respect to unfilled polymer electrolytes. Cross-linking and plasticizing of the matrix as well as preparation of the composites from an organic medium were also investigated.

  15. Dosimetric characterisation of a low energy electron beam machine using cellulose triacetate (CTA) film

    International Nuclear Information System (INIS)

    Every new electron beam accelerator has to be dosimetrically characterised. This paper reports the dosimetric characterizations of newly installed low every electron beam machine using two types of CTA film thickness i.e. 125μ and 38μ . Data on dose rate, lateral and depth dose distribution, and the relationship between energy, current, conveyor speed and dose per pass are established

  16. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    International Nuclear Information System (INIS)

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution

  17. A route to uniaxially oriented ribbons of bacterial cellulose nanocrystals based on isomalt spun sacrificial template

    OpenAIRE

    Bizot, Herve; Cathala, Bernard

    2014-01-01

    We have carried out orientation of bacterial cellulose nanocrystals (BCNC) by implementing a process based on mechanical shearing BCNC dispersed in a viscous temporary isomalt glass. After the orientation, the isomalt matrix was selectively solubilized to afford uniaxially highly oriented BCNC ribbons as demonstrated by SEM and X-Ray studies. The 2D WAXS determined Herman's order parameter reached 0.85.

  18. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hakam, Adil; Lazim, Azwan Mat [UKM-MIMOS Laboratory, School of Chemical Sciences and Food Technology, National University of Malaysia (UKM) (Malaysia); Abdul Rahman, I. Irman [Laboratory of Gamma Radiation Instrument, Science Nuclear Program, School of Applied Physics, National University of Malaysia (UKM) (Malaysia)

    2013-11-27

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  19. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    Science.gov (United States)

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-01

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  20. A Nanocellulose Polypyrrole Composite Based on Tunicate Cellulose

    Directory of Open Access Journals (Sweden)

    Dawei Zhang

    2013-01-01

    Full Text Available The water-dispersed conductive polypyrrole (PPy was prepared via the in situ oxidative chemical polymerization by using ammonium persulfate (APS as oxidant and tunicate cellulose nanocrystals (T-CNs as a dopant and template for tuning the morphologies of PPy nanoparticles. Highly flexible paper-like materials of PPy/T-CNs nanocomposites with high electrical conductivity values and good mechanical properties were prepared. The structure of nanocomposites of PPy/T-CNs was investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy analyses of the composites revealed that PPy consisted of nanoparticles about 2.5 nm in mean size to form a continuous coating covered on the T-CNs. The diameters of the PPy nanoparticles increased from 10 to 100 nm with the increasing pyrrole amount. Moreover, electrical properties of the obtained PPy/T-CNs films were studied using standard four-probe technique and the electrical conductivity could be as high as 10−3 S/cm.

  1. Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone.

    Science.gov (United States)

    Frei, Christopher S; Wang, Zhiqing; Qian, Shuai; Deutsch, Samuel; Sutter, Markus; Cirino, Patrick C

    2016-04-01

    The Escherichia coli regulatory protein AraC regulates expression of ara genes in response to l-arabinose. In efforts to develop genetically encoded molecular reporters, we previously engineered an AraC variant that responds to the compound triacetic acid lactone (TAL). This variant (named "AraC-TAL1") was isolated by screening a library of AraC variants, in which five amino acid positions in the ligand-binding pocket were simultaneously randomized. Screening was carried out through multiple rounds of alternating positive and negative fluorescence-activated cell sorting. Here we show that changing the screening protocol results in the identification of different TAL-responsive variants (nine new variants). Individual substituted residues within these variants were found to primarily act cooperatively toward the gene expression response. Finally, X-ray diffraction was used to solve the crystal structure of the apo AraC-TAL1 ligand-binding domain. The resolved crystal structure confirms that this variant takes on a structure nearly identical to the apo wild-type AraC ligand-binding domain (root-mean-square deviation 0.93 Å), suggesting that AraC-TAL1 behaves similar to wild-type with regard to ligand recognition and gene regulation. Our results provide amino acid sequence-function data sets for training and validating AraC modeling studies, and contribute to our understanding of how to design new biosensors based on AraC. PMID:26749125

  2. Inedible cellulose-based biomass resist material amenable to water-based processing for use in electron beam lithography

    International Nuclear Information System (INIS)

    An electron beam (EB) lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm2, a resist thickness uniformity of less than 0.4 nm on a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process

  3. Controlled release of drugs from cellulose acetate matrices produced from sugarcane bagasse: monitoring by square-wave voltammetry.

    Science.gov (United States)

    Rodrigues Filho, Guimes; Almeida, Flávia; Ribeiro, Sabrina D; Tormin, Thiago F; Muñoz, Rodrigo A A; Assunção, Rosana M N; Barud, Hernane

    2016-07-01

    In this paper, cellulose triacetate (CTA) was produced from sugarcane bagasse and used as matrices for controlled release of paracetamol. Symmetric and asymmetric membranes were obtained by formulations of CTA/dichloromethane/drug and CTA/dichloromethane/water/drug, respectively, and they were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Different morphologies of membranes were observed by SEM, and the incorporation of paracetamol was confirmed by lowering of the glass transition temperature (Tg) in the DSC curves. This indicates the existence of interactions between the matrix and the drug. The evaluation of drug release was based on the electrochemical monitoring of paracetamol through its oxidation at a glassy carbon electrode surface using square-wave voltammetry (SWV), which provides fast, precise and accurate in situ measurements. The studies showed a content release of 27% and 45% by the symmetric and asymmetric membranes, respectively, during 8 h. PMID:26596497

  4. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  5. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  6. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  7. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).

    Science.gov (United States)

    Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo

    2015-01-27

    A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration. PMID:25525956

  8. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids.

    Science.gov (United States)

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Qing, Yan; Wu, Yiqiang

    2015-03-01

    Rheological and filtration characteristics of drilling fluids are considered as two critical aspects to ensure the success of a drilling operation. This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs). CNCs were isolated from MFC through sulfuric acid hydrolysis. In comparison with MFC, the resultant CNCs had much smaller dimensions, more negative surface charge, higher stability in aqueous solutions, lower viscosity, and less evident shear thinning behavior. These differences resulted in the distinctive microstructures between MFC/BT- and CNC/BT-WDFs. A typical "core-shell" structure was created in CNC/BT-WDFs due to the strong surface interactions among BT layers, CNCs, and immobilized water molecules. However, a similar structure was not formed in MFC/BT-WDFs. As a result, CNC/BT-WDFs had superior rheological properties, higher temperature stability, less fluid loss volume, and thinner filter cakes than BT and MFC/BT-WDFs. Moreover, the presence of polyanionic cellulose (PAC) further improved the rheological and filtration performances of CNC/BT-WDFs, suggesting a synergistic effect between PAC and CNCs. PMID:25679499

  9. Suite of activity-based probes for cellulose-degrading enzymes.

    Science.gov (United States)

    Chauvigné-Hines, Lacie M; Anderson, Lindsey N; Weaver, Holly M; Brown, Joseph N; Koech, Phillip K; Nicora, Carrie D; Hofstad, Beth A; Smith, Richard D; Wilkins, Michael J; Callister, Stephen J; Wright, Aaron T

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome-producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry and to increase enzyme active site inclusion for liquid chromatography-mass spectrometry (LC-MS) analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose-degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose-degrading systems and facilitates a greater understanding of the organismal role associated with biofuel development. PMID:23176123

  10. Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes.

    Science.gov (United States)

    Bansal, Monica; Chauhan, Ghanshyam S; Kaushik, Anupama; Sharma, Avantika

    2016-10-01

    The work reported in this paper involves synthesis of a nanocellulose/chitosan composite and its further modification to antimicrobial films. Bagasse, an easily available biowaste, was used as source to extract nanocellulose fibres (CNFs) by subjecting it to mechanical and chemical treatments including alkaline steam explosion and high shear homogenization. The CNFs were subjected to periodate oxidation to obtain nanocellulose dialdehyde (CDA). The aldehyde groups of CDA were reacted with amino groups of chitosan to form Schiff-base. The resulting CDA/chitosan composite fibres were characterized at various steps. The fibres were then cast into films using cellulose acetate as a binder. The films have good physical strength. The composite films show excellent antimicrobial properties when tested against Staphylococcus aureus and Escherichia coli. Such antimicrobial films have potential applications in the formation of antimicrobial packaging material. PMID:27316771

  11. Regenerated Cellulose-Based Denim Fabric for Tropical Regions: An Analytical Study on Making Denim Comfortable

    Directory of Open Access Journals (Sweden)

    Annu Kumari

    2016-01-01

    Full Text Available Denim is no more “work wear’’ in the present era. More than a need, it is a fashion commodity for every age group, specifically for youth. Garments with multiple permutations and combinations of denim fabric variables like fibers, yarns, and Lycra % and weaving techniques are available with differing garment design statements, but the comfort aspect is slightly ignored. To cater for the masses living in hot and humid areas, a denim fabric is being projected with varying garment constructional parameters. Regenerated cellulose-based fibers/yarns are considered as ecofriendly, cool, soft, fairly strong, and durable among other man-made and natural fiber-based yarns. The present study is an attempt to develop comfortable denim clothing using regenerated cellulose fiber derivatives, maintaining its traditional rustic look for tropical regions. Fabric performance evaluation methods were used to ascertain the performance of the newly developed clothing.

  12. Anti-crease finishing of cotton fabrics based on crosslinking of cellulose with acryloyl malic acid.

    Science.gov (United States)

    Qi, Huan; Huang, Yangen; Ji, Bolin; Sun, Gang; Qing, Feng-Ling; Hu, Chunyan; Yan, Kelu

    2016-01-01

    Maleic acid (MA) has been explored to replace formaldehyde-based dimethylol dihydroxy ethylene urea (DMDHEU) for cotton anti-crease finishing. However, the resilience of treated fabrics was not satisfactorily improved. In this study, acryloyl malic acid (AMA) was synthesized and applied on fabrics as a novel crosslinking agent. The results showed that both crease recovery angle and whiteness index of treated samples were higher than those of MA in the presence/absence of catalyst sodium hypophosphite (SHP). Chemical structure of AMA was confirmed by NMR and MS spectra. The possible crosslinking mechanism between AMA and cellulose was investigated by means of (13)C NMR, MS, FTIR and phosphorus content analyses. It was found that AMA could form ester bonds with cellulose by formation of anhydride intermediate. Meanwhile, additional reaction of double bonds on AMA with another molecule or PH of SHP residual has also contributed to the crosslinking. A reaction equation was proposed based on the analyses. PMID:26453855

  13. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture

    OpenAIRE

    Demitri, C.; F. Scalera; M. Madaghiele; A. Sannino; Maffezzoli, A.

    2013-01-01

    The present work deals with the development of a biodegradable superabsorbent hydrogel, based on cellulose derivatives, for the optimization of water resources in agriculture, horticulture and, more in general, for instilling a wiser and savvier approach to water consumption. The sorption capability of the proposed hydrogel was firstly assessed, with specific regard to two variables that might play a key role in the soil environment, that is, ionic strength and pH. Moreover, a preliminary eva...

  14. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    OpenAIRE

    Daniela Sánchez Aldana; Eduardo Duarte Villa; Miguel De Dios Hernández; Guillermo González Sánchez; Quintín Rascón Cruz; Sergio Flores Gallardo; Hilda Piñon Castillo; Lourdes Ballinas Casarrubias

    2014-01-01

    Polylactic acid (PLA) and montmorillonite (CB) as filler were studied as coatings for cellulose based packages. Amorphous (AM) and semi crystalline (SC) PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA), water vapor (WVP) and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Gre...

  15. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Chunjing Zhang; Shian Zhong; Zhengpeng Yang

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  16. Effects of microcrystalline cellulose based comilled powder on the compression and dissolution of ibuprofen.

    Science.gov (United States)

    Mallick, Subrata; Pradhan, Saroj K; Mohapatra, Rajaram

    2013-09-01

    Ibuprofen is a poorly soluble and poorly compressible drug and is unsuitable for "direct tableting". Microcrystalline cellulose (Avicel(®) PH 101) based ibuprofen powder formulations have been comilled in presence of Aerosil(®) (colloidal silicon dioxide) as lubricant, and the total compression behavior was evaluated using the Cooper-Eaton equation. Scanning electron microscopy (SEM) revealed about the damage of crystal geometry of the crystalline drug after comilling. Differential scanning calorimetry (DSC) indicated decrease of melting endotherm (partially) attributing to the decrease in crystalline intensity of ibuprofen upon comilling. Small changes in the infrared spectra such as shift of characteristic bands, reduction in intensity, and appearance of new bands are mainly related to the possible physical interaction and/or amorphization of the drug in the comilled mixtures. Increased compaction can be achieved after milling of the microcrystalline cellulose based blends. Milling decreased particle size and improved wettability of the drug and increased dissolution. Microcrystalline cellulose based comilled ibuprofen powder with improved compression and dissolution may be taken as a future scope of scale up for "direct tableting". PMID:23732329

  17. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery

    OpenAIRE

    Jianjun Zhang; Liping Yue; Qingshan Kong; Zhihong Liu; Xinhong Zhou; Chuanjian Zhang; Quan Xu; Bo Zhang; Guoliang Ding; Bingsheng Qin; Yulong Duan; Qingfu Wang; Jianhua Yao; Guanglei Cui; Liquan Chen

    2014-01-01

    A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented impro...

  18. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation

    International Nuclear Information System (INIS)

    Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe3O4 nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe3O4 nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit. - Highlights: ► Flexible magnetic film is prepared by in situ synthesis on bacterial cellulose. ► Ultrasound and PEG are used together to inhibit the nanoparticle aggregation. ► The magnetic membrane demonstrates the great superparamagnetic behavior

  19. Long-Term Stability of a Cellulose-Based Glucose Oxidase Membrane

    Directory of Open Access Journals (Sweden)

    Soichi Yabuki

    2014-01-01

    Full Text Available A cellulose-based glucose oxidase membrane was prepared on a glassy carbon (GC electrode. The current response of the electrode to glucose was measured by applying a potential of 1.0 V vs. Ag/AgCl on the base GC and was proportional to the concentration of glucose up to 1 mM. The long-term stability of the electrode was examined by measuring the daily glucose response. Over four months, the response magnitude was maintained and then gradually decreased. After 11 months, though the response magnitude decreased to 50% of the initial value, the linear response range did not change. Therefore, the electrode could be used as a glucose biosensor even after 11 months of use. The entrapment of the enzyme in the cellulose matrix promoted the stability of the enzyme, as revealed by data on the enzyme activity after the enzyme electrode was immersed in urea. Therefore, the cellulose matrix may be used to improve the performance of biosensors, bioreactors and bio-fuel cells.

  20. Cellulose-based films prepared directly from waste newspapers via an ionic liquid.

    Science.gov (United States)

    Xia, Guangmei; Wan, Jiqiang; Zhang, Jinming; Zhang, Xiaoyu; Xu, Lili; Wu, Jin; He, Jiasong; Zhang, Jun

    2016-10-20

    Waste newspapers, composed of cellulose (>60wt%), lignin (∼15wt%), hemicellulose (∼10wt%) and other additives, are one kind of low-cost, easily collected and abundant resources. In order to get value-added products from this waste, in this work an attempt was made to directly convert waste newspapers into cellulose-based films by employing an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a solvent. Most of the organic substances in this waste were dissolved quickly in AmimCl under mild conditions, and then coagulated and dried. Although containing lignin, hemicellulose and inorganic additives, the regenerated cellulose-based films were smooth, compact and semi-transparent, and exhibited good mechanical properties. If the newspaper/AmimCl solution was filtered to remove undissolved inorganic substances, the regenerated films became transparent and had a tensile strength of 80MPa. Thus, this work provides a new, simple and highly efficient way to achieve a high-valued utilization of waste newspapers for packaging and wrapping. PMID:27474561

  1. A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood

    OpenAIRE

    Nyström, Gustav; Mihranyan, Albert; Razaq, Aamir; Lindström, Tom; Nyholm, Leif; Strømme, Maria

    2010-01-01

    It is demonstrated that it is possible to coat the individual fibers of wood-based nanocellulose with polypyrrole using in situ chemical polymerization to obtain an electrically conducting continuous high-surface-area composite. The experimental results indicate that the high surface area of the water dispersed material, to a large extent, is maintained upon normal drying without the use of any solvent exchange. Thus, the employed chemical polymerization of polypyrrole on the microfibrillated...

  2. Cellulose Acetate Binder-Based LOVA Gun Propellant for Tank Guns.

    Directory of Open Access Journals (Sweden)

    A.G.S. Pillai

    1999-04-01

    Full Text Available Cellulose acetate (CA binder-based low vulnerability ammunition (LOYA gun propellant formulations with varying percentages of fine RDX as energetic ingredient have been studied. RDX percentage varied from 76 to 80 in these formulations. An optimised composition with 78 per cent RDX was then studied exhaustively. Ballistic data determined by closed vessel (CV evaluation and vulnerability aspects obtained by safety tests were then compared vis-a-vis the properties of standard triple base NQ composition. Theoretical prediction and CV test results indicated that the CA binder-based LOVA gun propellant Could satisfactorily meet the ballistic requirements for gun application.

  3. The fate of free radicals in a cellulose based hydrogel: detection by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Basumallick, Lipika; Ji, J Andrea; Naber, Nariman; Wang, Y John

    2009-07-01

    Cellulose derivatives are commonly used as gelling agents in topical and ophthalmic drug formulations. During the course of manufacturing, cellulose derivatives are believed to generate free radicals. These free radicals may degrade the gelling agent, leading to lower viscosity. Free radicals also may react with the active ingredient in the product. The formation of radicals in a 3% hydrogel of hypromellose (hydroxypropyl methylcellulose) was monitored by electron paramagnetic resonance (EPR) spectroscopy and spin trapping techniques. Radicals were trapped with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and quantitated by comparing the EPR intensity with 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL), a stable free radical. Typically, the hydrogels showed an initial increase in the radical concentration within 2 days after autoclaving, followed by a drop in radical concentration in 7 days. EDTA prevented the formation of free radicals in the hypromellose (HPMC) hydrogel, suggesting the involvement of metal ions in the generation of free radicals. The oxidizing potential of the hydrogel was estimated by measuring the rate at which methionine (a model for the protein active pharmaceutical ingredient) was degraded, and was consistent with the amount of radicals present in the gel. This study is the first report investigating the application of EPR spectroscopy in detecting and estimating free radical concentration in cellulose based hydrogels. PMID:19090570

  4. Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels.

    Science.gov (United States)

    Faroongsarng, Damrongsak; Sukonrat, Patchara

    2008-03-20

    In a polymer-water matrix, freezable water is depressed due to either porosity confinement or interaction. The aim of the study was to examine water crystallization/melting depression by sub-ambient differential scanning calorimetry. The selected starch- and cellulose-based polymers including pre-gelatinized starch (PS), sodium alginate, sodium starch glycolate, hydroxypropylmethyl cellulose (HPMC), sodium carboxymethyl cellulose, and croscarmellose sodium were employed. The pre-treated with ambient humidity (85-100% relative humidity, at 30.0+/-0.2 degrees C for 10 days) and with excess water (hydrogels) samples were subjected to between 25 and -150 degrees C cooling-heating cycle at 5.00 degrees C/min rate. The volume fractions of hydrogels were measured by light scattering technique. It was observed that all polymers but PS and HPMC with ambient humidity presented freezable water in two distinct fractions namely bound water where crystallizing/melting temperature was depressed and bulk water. The water transition in samples with various contents exhibited the pattern as a polymer solution, thus rather than confinement, the depression was due to interaction. The volume fraction-melting temperature data derived from endotherms of hydrogels were successfully fitted to Flory's model (r(2): 0.934-0.999). The Flory's interaction parameters (chi(1)) were found to vary between 0.520 and 0.847. In addition, the smaller the value of chi(1), the larger melting was depressed, i.e., stronger affinity for water. PMID:18061379

  5. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.

    Science.gov (United States)

    Bilbao-Sáinz, Cristina; Avena-Bustillos, Roberto J; Wood, Delilah F; Williams, Tina G; McHugh, Tara H

    2010-03-24

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with microcrystalline cellulose (MCC) at the nano scale level. Three sizes of MCC nanoparticles were incorporated into HPMC edible films at different concentrations. Identical MCC nanoparticles were lipid coated (LC) prior to casting into HPMC/LC-MCC composite films. The films were examined for mechanical and moisture barrier properties verifying how the addition of cellulose nanoparticles affected the water affinities (water adsorption/desorption isotherms) and the diffusion coefficients. The expected reinforcing effect of the MCC was observed: HPMC/MCC and HPMC/LC-MCC films showed up to 53% and 48% increase, respectively, in tensile strength values in comparison with unfilled HPMC films. Furthermore, addition of unmodified MCC nanoparticles reduced the moisture permeability up to 40% and use of LC-MCC reduced this value up to 50%. Water vapor permeability was mainly influenced by the differences in water solubility of different composite films since, in spite of the increase in water diffusivity values with the incorporation of MCC to HPMC films, better moisture barrier properties were achieved for HPMC/MCC and HPMC/LC-MCC composite films than for HPMC films. PMID:20187652

  6. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.

    Science.gov (United States)

    Seantier, Bastien; Bendahou, Dounia; Bendahou, Abdelkader; Grohens, Yves; Kaddami, Hamid

    2016-03-15

    Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles. PMID:26794770

  7. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films.

    Science.gov (United States)

    Oun, Ahmed A; Rhim, Jong-Whan

    2016-10-01

    Cellulose nanocrystals (CNCs) were isolated from rice straw (RS), wheat straw (WS), and barley straw (BS) by using acid hydrolysis method. They were fibrous in shape with length (L) of 120-800nm and width (W) of 10-25nm, aspect ratio (L/W) of 18, 16 and 19, crystallinity index (CI) of 0.663, 0.710, and 0.634, and yield of 64, 75, and 69wt% for RS, WS, and BS respectively. Carboxymethyl cellulose (CMC)/CNC composite films were prepared with various concentration of the CNCs. SEM results showed that the CNCs were evenly distributed in the polymer to form homogeneous films. Mechanical and water vapor barrier properties were varied depending on the type of CNCs and their concentration. Tensile strength (TS) increased by 45.7%, 25.2%, and 42.6%, and the water vapor permeability (WVP) decreased by 26.3%, 19.1%, and 20.4% after forming composite with 5wt% of CNCs obtained from RS, WS, and BS, respectively. PMID:27312629

  8. Nisin based stabilization of novel fruit and vegetable functional juices containing bacterial cellulose at ambient temperature

    OpenAIRE

    Jagannath, A.; Kumar, Manoranjan; Raju, P. S.; Batra, H. V.

    2014-01-01

    The current study reports the preparation and stabilization of novel functional drinks based on fruit and vegetable juices incorporating bacterial cellulose from Acetobacter xylinum. Pineapple, musk melon, carrot, tomato, beet root and a blend juice containing 20 % each of carrot and tomato juice with 60 % beet root juice has been studied. These juices have been stabilized over a storage period of 90 days at 28 °C, by the use of nisin and maintaining a low pH circumventing the need for any ch...

  9. French summer droughts since 1326 AD: a reconstruction based on tree ring cellulose δ18O

    Science.gov (United States)

    Labuhn, I.; Daux, V.; Girardclos, O.; Stievenard, M.; Pierre, M.; Masson-Delmotte, V.

    2015-11-01

    The reconstruction of droughts is essential for the understanding of past drought dynamics, and can help evaluate future drought scenarios in a changing climate. This article presents a reconstruction of summer droughts in France based on annually resolved, absolutely dated chronologies of oxygen isotope ratios (δ18O) in tree ring cellulose from Quercus spp. Samples were taken from living trees and timber wood from historic buildings at two sites: Fontainebleau (48° 23' N, 2° 40' E; 1326-2000 AD) and Angoulême (45° 44' N, 0° 18' E; 1360-2004 AD). Cellulose δ18O from these sites proved to be a good proxy of summer climate, as the trees were sensitive to temperature and moisture availability. However, offsets in average δ18O values between tree cohorts necessitated a correction before joining them to the final chronologies. Using the corrected δ18O chronologies, we developed models based on linear regression to reconstruct drought, expressed by the standardized precipitation evapotranspiration index (SPEI). The significant correlations between the SPEI and cellulose δ18O (r ≈ -0.70), as well as the verification of the models by independent data support the validity of these reconstructions. At both sites, recent decades are characterized by increasing drought. Fontainebleau displays dominantly wetter conditions during earlier centuries, whereas the current drought intensity is not unprecedented in the Angoulême record. While the δ18O chronologies at the two studied sites are highly correlated during the 19th and 20th century, there is a significant decrease in the correlation coefficient between 1550 and 1800 AD, which indicates either a weaker climate sensitivity of the tree ring proxies during this period, or a more heterogeneous climate in the north and the south of France. Future studies of tree ring isotope networks might reveal if the seasonality and spatial patterns of past droughts can explain this decoupling.

  10. French summer droughts since 1326 AD: a reconstruction based on tree ring cellulose δ18O

    Directory of Open Access Journals (Sweden)

    I. Labuhn

    2015-11-01

    Full Text Available The reconstruction of droughts is essential for the understanding of past drought dynamics, and can help evaluate future drought scenarios in a changing climate. This article presents a reconstruction of summer droughts in France based on annually resolved, absolutely dated chronologies of oxygen isotope ratios (δ18O in tree ring cellulose from Quercus spp. Samples were taken from living trees and timber wood from historic buildings at two sites: Fontainebleau (48° 23' N, 2° 40' E; 1326–2000 AD and Angoulême (45° 44' N, 0° 18' E; 1360–2004 AD. Cellulose δ18O from these sites proved to be a good proxy of summer climate, as the trees were sensitive to temperature and moisture availability. However, offsets in average δ18O values between tree cohorts necessitated a correction before joining them to the final chronologies. Using the corrected δ18O chronologies, we developed models based on linear regression to reconstruct drought, expressed by the standardized precipitation evapotranspiration index (SPEI. The significant correlations between the SPEI and cellulose δ18O (r ≈ −0.70, as well as the verification of the models by independent data support the validity of these reconstructions. At both sites, recent decades are characterized by increasing drought. Fontainebleau displays dominantly wetter conditions during earlier centuries, whereas the current drought intensity is not unprecedented in the Angoulême record. While the δ18O chronologies at the two studied sites are highly correlated during the 19th and 20th century, there is a significant decrease in the correlation coefficient between 1550 and 1800 AD, which indicates either a weaker climate sensitivity of the tree ring proxies during this period, or a more heterogeneous climate in the north and the south of France. Future studies of tree ring isotope networks might reveal if the seasonality and spatial patterns of past droughts can explain this decoupling.

  11. Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals.

    Science.gov (United States)

    Ning, Nanying; Wang, Zhifei; Yao, Yang; Zhang, Liqun; Tian, Ming

    2015-10-01

    To meet the growing demand of environmental protection and resource saving, it is imperative to explore bio-based elastomers as next-generation dielectric elastomers (DEs). In this study, we used a bio-based gelatin/glycerin (GG) elastomer as the DE matrix because GG exhibits high dielectric constant (ɛr). Cellulose nanocrystals (CNCs), extracted from natural cellulose fibers, were used to improve the mechanical strength of GG elastomer. The results showed that CNCs with a large number of hydroxyl groups disrupted the hydrogen bonds between gelatin molecules and formed new stronger hydrogen bonds with gelatin molecules. A good interfacial adhesion between CNCs and GG was formed, and thus a good dispersion of CNCs in GG matrix was obtained, leading to the improved mechanical strength of GG. More interestingly, the ɛr of GG elastomer was obviously increased by adding 5 wt% of CNCs, ascribed to the increase in the polarizability of gelatin chains caused by the disruption of hydrogen bonds of gelatin. As a result, a 230% increase in the actuated strain at low electric field of GG was obtained by adding 5 wt% of CNCs. Since CNCs, gelatin and glycerol are all bio-based, this study offers a new method to prepare high performance DE for its application in biological and medical fields. PMID:26076625

  12. Cotton-based Cellulose Nanomaterials for Applications in Composites and Electronics

    Science.gov (United States)

    Farahbakhsh, Nasim

    A modern society demands development of highly valued and sustainable products via innovative process technologies and utilizing bio-based alternatives for petroleum based materials. Systematic comparative study of nanocellulose particles as a biodegradable and renewable reinforcing agent can help to develop criteria for selecting an appropriate candidate to be incorporated in polymer nanocomposites. Of particular interest has been nanocellulosic materials including cellulose nanocrystal (CNC) and micro/nanofibrilated cellulose (MFC/NFC) which possess a hierarchical structure that permits an ordered structure with unique properties that has served as building blocks for the design of green and novel materials composites for applications in flexible electronics, medicine and composites. Key differences exist in nanocellulosic materials as a result the process by which the material is produced. This research demonstrates the applicability for the use of recycled cotton as promising sustainable material to be utilized as a substrate for electronic application and a reinforcing agent choice that can be produced without any intensive purification process and be applied to synthetic-based polymer nanocomposites in melt-processing. (Abstract shortened by ProQuest.).

  13. Cellulose-silica aerogels.

    Science.gov (United States)

    Demilecamps, Arnaud; Beauger, Christian; Hildenbrand, Claudia; Rigacci, Arnaud; Budtova, Tatiana

    2015-05-20

    Aerogels based on interpenetrated cellulose-silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels. PMID:25817671

  14. Synthesis and study of nano-structured cellulose acetate based materials for energy applications

    International Nuclear Information System (INIS)

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO2 supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO2 are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm-3 together with a meso-porous volume of 3,40 cm3.g-1 was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m-1.K-1. In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  15. Recent advances in cellulose and chitosan based membranes for water purification: A concise review.

    Science.gov (United States)

    Thakur, Vijay Kumar; Voicu, Stefan Ioan

    2016-08-01

    Recently membrane technology has emerged as a new promising and pervasive technology due to its innate advantages over traditional technologies such as adsorption, distillation and extraction. In this article, some of the recent advances in developing polymeric composite membrane materials for water purification from natural polysaccharide based polymers namely cellulose derivatives and chitosan are concisely reviewed. The impact of human social, demographic and industrial evolution along with expansion through environment has significantly affected the quality of water by pollution with large quantities of pesticides, minerals, drugs or other residues. At the forefront of decontamination and purification techniques, we found the membrane materials from polymers as a potential alternative. In an attempt to reduce the number of technical polymers widely used in the preparation of membranes, many researchers have reported new solutions for desalination or retention of organic yeasts, based on bio renewable polymers like cellulose derivatives and chitosan. These realizations are presented and discussed in terms of the most important parameters of membrane separation especially water flux and retention in this article. PMID:27112861

  16. Heat transfer in cellulose-based aerogels: Analytical modelling and measurements

    International Nuclear Information System (INIS)

    A simple analytical approach for estimating the total heat transfer inside new cellulose-based aerogels has been investigated. The model accounts for the characteristic solid matrix at the nanometric scale by using a cellular representation of the nanofoam porous structure. The radiation-conduction heat transfer is taken into account. Previous analytical correlation for the fluid phase is used to model the conduction heat transfer in gas. New analytical formulations based on mean free path theory combined with phonon tracking approach are proposed to model the conduction heat transfer in the solid phase at the nanometric scale. The contribution of radiation heat transfer is obtained from Rayleigh scattering approach combined to the Rosseland approximation. These analytical relations validated experimentally are expected to be useful for researchers aiming at developing new insulating organic aerogels since they permit to determine conduction-radiation equivalent conductivity as a function of cell dimensions, phonon and optical properties of cellulose. - Highlights: • Development of an original model for estimating the heat transfer in aerocellulose. • Radiation, fluid conduction and solid conduction contributions are treated separately. • Modelling takes into account the “nanoscopic effects”. • Results validated experimentally under different temperature and pressure

  17. A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    A polymer gel electrolyte with the cyanoethylated hydroxypropyl cellulose (CN-HPC) as polymer matrix was prepared and applied in dye-sensitized solar cells (DSSCs). The ionic conductivities of the gel electrolytes based on LiI/I2 and 1-methyl-3-hexylimidazolium iodide (MHII)/I2 as the I−/I3− redox couple were determined, being 2.94 mS cm−1 and 2.46 mS cm−1 with the respective diffusion constants of I3− (Dapp) of 2.54 × 10−6 cm2 S−1, 2.15 × 10−6 cm2 S−1. Under the optimized condition, the overall conversion efficiencies of quasi-solid DSSCs were determined to be 7.40% based on a triphenylamine dye (SD2) and 7.55% based on a ruthenium dye (N719), which is 94% of those with liquid electrolyte.

  18. A novel drug carrier based on functional modified nanofiber cellulose and the control release behavior

    Science.gov (United States)

    Shi, Xiangning; Zheng, Yudong; Zhang, Wei; Zhang, Zeyu; Peng, Yunling

    2013-08-01

    This study developed a novel drug carrier based on functional modified bacterial cellulose(BC) which was conjugated with Ibuprofen(IBU) by esterification. BC-Ibuprofen as the macro- molecular prodrugs and drug carrier used to improve the short half-life of the drug, and was able to control release through the hydrolysis of ester bond between the hydroxyl groups of BC with Ibuprofen under different condition. Fourier transform infrared analysis revealed that Ibuprofen had been successfully grafted onto the bacterial cellulose (BC). Thermal and morphological characterization indicated the formation of the BC-Ibuprofen system incompletely reacted maintained the bulk structure of the pristine material such as crystallinity, 3-dimentional network and so on. The drug release behaviours were affected by the ester bond hydrolysis as well as the microstructure characteristics of the modified nanofiber. The release of BC-IBU showed an apparent pH-dependent, fast in alkaline and acid solution but slow relatively in neutral. Such pH-responsiveness, in addition to its morphological characteristics, in this paper suggested a great potential of BC-IBU as a more effective, safe, and stable prodrug candidate.

  19. Thermo-responsive hydrogels from cellulose-based polyelectrolytes and catanionic vesicles for biomedical application.

    Science.gov (United States)

    Milcovich, Gesmi; Antunes, Filipe; Golob, Samuel; Farra, Rossella; Grassi, Mario; Voinovich, Dario; Grassi, Gabriele; Asaro, Fioretta

    2016-07-01

    In this study, negatively charged catanionic vesicles/hydrophobically modified hydroxyethylcellulose polymers thermo-responsive hydrogels have been fabricated. Vesicular aggregates were found to act as multifunctional junctions for networking of modified-cellulose water solutions. The contributions of the electrostatic and hydrophobic interactions were evaluated by changing either vesicles composition or the polymer hydrophobic substitution. Thermal-induced size and lamellarity of hydrogel-enclosed vesicles were detected, with further polygonal shape changes induced by cellulose-based polymer addition. The thermal transition was also found to tune hydrogel mechanical behaviour. The network formation was further assessed through molecular insights, which allow to determine the arrangement of the polymer chains on the vesicles' surface. The examined systems exhibited interesting thermo-responsive characteristics. Thus, vesicularly cross-linked hydrogels herein presented can offer a wide variety of applications, i.e. in biomedical field, as multi-drug delivery systems, thanks to their ability to provide for different environments to guest molecules, comprising bulk water, vesicles' interior and bilayers, sites on polymeric chains. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1668-1679, 2016. PMID:26939864

  20. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Yang, Jingxuan; Zheng, Weili; Wang, Xiao; Xiang, Cao; Tang, Lian; Zhang, Wen; Chen, Shiyan; Wang, Huaping, E-mail: wanghp@dhu.edu.cn

    2013-05-01

    Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe{sub 3}O{sub 4} nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe{sub 3}O{sub 4} nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit. - Highlights: ► Flexible magnetic film is prepared by in situ synthesis on bacterial cellulose. ► Ultrasound and PEG are used together to inhibit the nanoparticle aggregation. ► The magnetic membrane demonstrates the great superparamagnetic behavior.

  1. In Situ Carbonized Cellulose-Based Hybrid Film as Flexible Paper Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2016-01-20

    Flexible free-standing carbonized cellulose-based hybrid film is integrately designed and served both as paper anode and as lightweight current collector for lithium-ion batteries. The well-supported heterogeneous nanoarchitecture is constructed from Li4Ti5O12 (LTO), carbonized cellulose nanofiber (C-CNF) and carbon nanotubes (CNTs) using by a pressured extrusion papermaking method followed by in situ carbonization under argon atmospheres. The in situ carbonization of CNF/CNT hybrid film immobilized with uniform-dispersed LTO results in a dramatic improvement in the electrical conductivity and specific surface area, so that the carbonized paper anode exhibits extraordinary rate and cycling performance compared to the paper anode without carbonization. The flexible, lightweight, single-layer cellulose-based hybrid films after carbonization can be utilized as promising electrode materials for high-performance, low-cost, and environmentally friendly lithium-ion batteries. PMID:26727586

  2. The use of sodium alginate-based coating and cellulose acetate in papaya post-harvest preservation

    Directory of Open Access Journals (Sweden)

    Denise Andrade Silva

    2014-02-01

    Full Text Available This study aimed to evaluate the ripening of papaya fruit (Carica papaya L. at room temperature (±25°C and10°C with 80% relative humidity, coated with edible film based on sodium alginate (1% and cellulose acetate film (3% by dipping the fruit in the suspensions for 1 min. On the application of the treatment and every three days during 12 days of storage, fruit were evaluated for weight loss, firmness, total carotenoid content, lycopene content and vitamin C content of the pulp. The cellulose acetate film extended the shelf-life of papayas, without affecting their quality. This treatment delayed fruit ripening, whose changes in all the parameters analyzed were significantly slower than fruit treated with sodium alginate-based coating. The coating with cellulose acetate at 3% was more effective in the preservation of papaya stored for 12 days under both temperatures.

  3. Studies on Some Nitramine based Low Vulnerability Ammunition Propellants with Cellulose Acetate as a Binder

    Directory of Open Access Journals (Sweden)

    A.G.A. Pillai

    1996-04-01

    Full Text Available Several formulations of propellants based on RDX as an energetic solid ingredients and cellulose acetate (CA as a binder were processed using either dioctyl pthalate(DOP or tracetin(TA as plastisizer and a small amount of nitrocellulose(NC. The Performance of these propellants was evaluated on the basis of closed vessel firing data. The vulnerability aspects of these formulations were compared with those of conventional picrite propellant, NQ on the basis of their ignition temperatures and sensitivity to friction and impact. Triacetin was found to be better plasticizer than DOP for CA binder. Some RDX/CA/TA/NC/-based propellants were found to have energy levels comparable with NQ propellant and had less sensitivity to heat, impact and friction, and therefore have the potential for being used as low-vulnerability ammunition propellants for gun applications.

  4. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites.

    Science.gov (United States)

    Ullah, Hanif; Wahid, Fazli; Santos, Hélder A; Khan, Taous

    2016-10-01

    Bacterial cellulose (BC) synthesized by certain species of bacteria, is a fascinating biopolymer with unique physical and mechanical properties. BC's applications range from traditional dessert, gelling, stabilizing and thickening agent in the food industry to advanced high-tech applications, such as immobilization of enzymes, bacteria and fungi, tissue engineering, heart valve prosthesis, artificial blood vessels, bone, cartilage, cornea and skin, and dental root treatment. Various BC-composites have been designed and investigated in order to enhance its biological applicability. This review focuses on the application of BC-based composites for microbial control, wound dressing, cardiovascular, ophthalmic, skeletal, and endodontics systems. Moreover, applications in controlled drug delivery, biosensors/bioanalysis, immobilization of enzymes and cells, stem cell therapy and skin tissue repair are also highlighted. This review will provide new insights for academia and industry to further assess the BC-based composites in terms of practical applications and future commercialization for biomedical and pharmaceutical purposes. PMID:27312644

  5. French summer droughts since 1326 CE: a reconstruction based on tree ring cellulose δ18O

    Science.gov (United States)

    Labuhn, Inga; Daux, Valérie; Girardclos, Olivier; Stievenard, Michel; Pierre, Monique; Masson-Delmotte, Valérie

    2016-05-01

    The reconstruction of droughts is essential for the understanding of past drought dynamics and can help evaluate future drought scenarios in a changing climate. This article presents a reconstruction of summer droughts in France based on annually resolved, absolutely dated chronologies of oxygen isotope ratios (δ18O) in tree ring cellulose from Quercus spp. Samples were taken from living trees and timber wood from historic buildings at two sites: Fontainebleau (48°23' N, 2°40' E; 1326-2000 CE) and Angoulême (45°44' N, 0°18' E; 1360-2004 CE). Cellulose δ18O from these sites proved to be a good proxy of summer climate, as the trees were sensitive to temperature and moisture availability. However, offsets in average δ18O values between tree cohorts necessitated a correction before joining them to the final chronologies. Using the corrected δ18O chronologies, we developed models based on linear regression to reconstruct drought, expressed by the standardized precipitation evapotranspiration index (SPEI). The significant correlations between the SPEI and cellulose δ18O (r ≈ -0.70), as well as the verification of the models by independent data support the validity of these reconstructions. At both sites, recent decades are characterized by increasing drought. Fontainebleau displays dominantly wetter conditions during earlier centuries, whereas the current drought intensity is not unprecedented in the Angoulême record. While the δ18O chronologies at the two studied sites are highly correlated during the 19th and 20th centuries, there is a significant decrease in the correlation coefficient between 1600 and 1800 CE, which indicates either a weaker climate sensitivity of the tree ring proxies during this period, or a more heterogeneous climate in the north and the south of France. Future studies of tree ring isotope networks might reveal if the seasonality and spatial patterns of past droughts can explain this decoupling. A regional drought reconstruction

  6. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Energy Technology Data Exchange (ETDEWEB)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan [Polymer Research Centre (PORCE), School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  7. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    International Nuclear Information System (INIS)

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10−7 Scm−1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity

  8. UV-cured Al2O3-laden cellulose reinforced polymer electrolyte membranes for Li-based batteries

    International Nuclear Information System (INIS)

    A methacrylate based plasticised polymer electrolyte membrane is prepared via a rapid and facile UV curing process, the major concerns of mechanical integrity are overcome by simply using appropriately modified cellulose handsheet laden with nano-sized acidic alumina particles as a reinforcement. The use of the cellulose handsheets greatly enhances the flexibility and mechanical properties of the membrane while the addition of alumina particles helps to maintain satisfactory conductivity values. The reinforced composite electrolyte membrane is also tested in a real lithium cell, exhibiting excellent performance which account for its use in futuristic lithium batteries having low cost, environmentally friendly and easily scalable properties

  9. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots.

    Science.gov (United States)

    You, Yaqin; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu

    2016-10-20

    Transparent sunlight conversion film based on carboxymethyl cellulose (CMC) and carbon dots (CDs) has been developed for the first time through dispersion of CDs in CMC aqueous solution. Due to the hydrogen bonds interaction, CMC can effectively absorb the CDs, whose surfaces are functionalized by lots of polar groups. The results from atomic force microscopy (AFM), scanning electron microscopy (SEM) confirm that the composite film possesses a homogeneous and compact structure. Besides, the CMC matrix neither competes for absorbing excitation light nor absorbs the emissions of CDs, which reserves the inherent optical properties of the individual CDs. The composite films can efficiently convert ultraviolet light to blue light. What's more, the film is transparent and possesses excellent mechanical properties, expected to apply in the field of agricultural planting for sunlight conversion. PMID:27474564

  10. Furfural resin-based bio-nanocomposites reinforced by reactive nanocrystalline cellulose

    Science.gov (United States)

    Wang, C.; Sun, S.; Zhao, G.; He, B.; Xiao, H.

    2009-07-01

    The work presented herein has been focused on reinforcing the furfural resins (FA) by reactive-modified nanocrystalline cellulose (NCC) in an attempt to create a bio-nanocomposite completely based on natural resources. FA prepolymers were synthesized with an acid catalyst, and NCC was rendered reactive via the grafting of maleic anhydride (MAH). The resulting NCC and nanocomposites were characterized using TEM, SEM and FT-IR. It was found that NCC appeared to be spherical in shape with diameters under 100 nm. FT-IR confirmed that there were hydrogen and esterification bonding between MAH and NCC or FA prepolymer. After solidified with paratoluenesulfonic acid, NCC-reinforced FA resin composites showed granular cross-section while FA resin with layered structures. Mechanical property tests indicated that NCC-reinforced FA resin composites possessed the improved tensile and flexural strengths, in comparison with FA resin.

  11. Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics

    Directory of Open Access Journals (Sweden)

    Suresha K Mahadeva and Jaehwan Kim

    2011-01-01

    Full Text Available A highly flexible nanocomposite was developed by coating a regenerated cellulose film with a thin layer of tin oxide (SnO2 by liquid-phase deposition. Tin oxide was crystallized in solution and formed nanocrystal coatings on regenerated cellulose. The nanocrystalline layers did not exfoliate from cellulose. Transmission electron microscopy and energy dispersive x-ray spectroscopy suggest that SnO2 was not only deposited over the cellulose surface, but also nucleated and grew inside the cellulose film. Current–voltage characteristics of the nanocomposite revealed that its electrical resistivity decreases with deposition time, with the lowest value obtained for 24 h of deposition. The cellulose–SnO2 hybrid nanocomposite can be used for biodegradable and disposable chemical, humidity and biosensors.

  12. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    Science.gov (United States)

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  13. Preliminary analysis of cellulose-based ethanol production: pathways and challenges in the Rio Grande do Sul alcohol production

    Directory of Open Access Journals (Sweden)

    André Luiz Fialho Blos

    2009-08-01

    Full Text Available The production of ethanol in Brazil has contributed towards the replacement of fossil fuels over the past few years. Among those initiatives, the production of ethanol from cellulose is one of the areas drawing the interest of different research centers in developed countries. Hence, the production of ethanol opens up new perspectives for Brazilian states. In light of this backdrop, this paper aims at characterizing and understanding the state of the art in different technological courses and production configuration alternatives present in different parts of the world regarding cellulose-based ethanol production. To that end, research was conducted at the lumber and industrial companies connected to cellulose-based ethanol production. In other parts of the globe, the ability of planned forests to provide energy is promising, given the positive energy balance and the increase in carbon dioxide sequestering, paramount in times of global warming. The association with other crops may become a source of productive diversity for small farmers residing in degraded areas or those presenting low economic dynamism. There is the need to develop new research efforts and look more deeply into the environmental issues involved, as well as further assessment on the economic and social viability of such projects.Key-words: cellulosic ethanol, biorefinery, biomass, agrienergy, bioenergy.

  14. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    Science.gov (United States)

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas. PMID:27156577

  15. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Badino, Silke Flindt; Tokin, Radina Naytchova;

    2014-01-01

    A novel electrochemical enzyme biosensor was developed for real-time detection of cellulase activity when acting on their natural insoluble substrate, cellulose. The enzyme biosensor was constructed with pyranose dehydrongease (PDH) from Agaricus meleagris that was immobilized on the surface...... jecorina (HjCel6A) on cellulosic substrates with different morphology (bacterial microcrystalline cellulose (BMCC) and Avicel). The steady-state rate of hydrolysis increased towards a saturation plateau with increasing loads of substrate. The experimental results were rationalized using a steady-state rate....... Biosensors covered with a polycarbonate membrane showed high operational stability of several weeks with daily use....

  16. Carboxymethyl Cellulose From Kenaf Reinforced Composite Polymer Electrolytes Based 49 % Poly (Methyl Methacrylate)-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Composite polymer electrolytes based 49 % poly(methyl methacrylate)-grafted natural rubber (MG49) incorporating lithium triflate (LiCF3SO3) were prepared. The study mainly focuses on the ionic conductivity performances and mechanical properties. Prior to that, carboxymethyl cellulose was synthesized from kenaf fiber. The films were characterized by electrochemical impedance (EIS) spectroscopy, linear sweep voltammetry (LSV), universal testing machine and scanning electron microscopy (SEM). The conductivity was found to increase with carboxymethyl cellulose loading. The highest conductivity value achieved was 6.5 x 10-6 Scm-1 upon addition of 6 wt % carboxymethyl cellulose. LSV graph shows the stability of this film was extended to 2.7 V at room temperature. The composition with 6 wt % carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of Young's modulus. The morphology of the electrolytes showed a smooth surface of films after addition of salt and filler indicating amorphous phase in electrolytes system. Excellent mechanical properties and good ionic conductivity are obtained, enlightening that the film is suitable for future applications as thin solid polymer electrolytes in lithium batteries. (author)

  17. Improved Cellulose and Organic-Solvents based Lignocellulosic Fractionation Pre-treatment of Organic Waste for Bioethanol Production

    OpenAIRE

    Valeriy Bekmuradov; Grace Luk; Robin Luong

    2014-01-01

    This study investigates the performance of the Cellulose and Organic-Solvents based Lignocellulosic Fractionation (COSLIF) method for the pretreatment of Source-Separated Organic (SSO) waste. An improvement on the standard method of COSLIF pre-treatment was developed based on lower enzyme loading and using an ethanol washing instead of acetone. It was demonstrated that a much higher glucose yield (90% after 72 hours) was possible with this improvement, as compared to the original method, w...

  18. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  19. A promising cellulose-based polyzwitterion with pH-sensitive charges

    OpenAIRE

    Thomas Elschner; Thomas Heinze

    2014-01-01

    A novel polyzwitterion possessing weak ionic groups could be efficiently synthesized from cellulose phenyl carbonate. Polyanion, polycation, and polyzwitterion are accessible by orthogonal removal of protecting groups. The molecular structure was proofed by FTIR- and NMR spectroscopy. Characteristic properties of the cellulose derivatives, e.g., acid dissociation constants, isoelectric point and complexation, were investigated by potentiometric titration (pH), nephelometry, rheology and dynam...

  20. Biocomposites based on poly(lactic acid) and kenaf fibers: effect of microfibrillated cellulose

    OpenAIRE

    Bogoeva-Gaceva, Gordana; Dimeski, Dimko; Srebrenkoska, Vineta

    2013-01-01

    In this work, the influence of microfibrillated cellulose (MFC) on the basic mechanical properties of PLA/kenaf fiber biocomposites has been studied. The addition of 5–15 % microfibrillated cellulose to a biocomposite premix has resulted in an increased glass transition temperature of the final product, produced by compression molding of previously melt-mixed composite components. The presence of MFC has influenced the interface-sensitive properties of the PLA/kenaf composite: at ...

  1. Development of Cellulose-Based, Nanostructured, Conductive Paper for Biomolecular Extraction and Energy Storage Applications

    OpenAIRE

    Razaq, Aamir

    2011-01-01

    Conductive paper materials consisting of conductive polymers and cellulose are promising for high-tech applications (energy storage and biosciences) due to outstanding aspects of environmental friendliness, mechanical flexibility, electrical conductivity and efficient electroactive behavior. Recently, a conductive composite paper material was developed by covering the individual nanofibers of cellulose from the green algae Cladophora with a polypyrrole (PPy) layer. The PPy-Cladophora cellulos...

  2. PREPARATION OF BIODEGRADABLE FLAX SHIVE CELLULOSE-BASED SUPERABSORBENT POLYMER UNDER MICROWAVE IRRADIATION

    OpenAIRE

    Hao Feng; Jian Li,; Lijuan Wang

    2010-01-01

    Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS) as an initiator and N,N’-methylenebisacrylamide (MBA) as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA). The ...

  3. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  4. Formulation development and characterization of cellulose acetate nitrate based propellants for improved insensitive munitions properties

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Keith LUHMANN; Steve VELARDE; Christine KNOTT; Stephanie M.PIRAINO; Kevin BOYD; Jeffrey WYCKOFF; Carlton ADAM; Eugene ROZUMOV; Kenneth KLINGAMAN; Viral PANCHAL; Joseph LAQUIDARA; Mike FAIR; John BOLOGNINI

    2014-01-01

    Cellulose acetate nitrate (CAN) was used as an insensitive energetic binder to improve the insensitive munitions (IM) properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC), but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the pro-pellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI) tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed.

  5. Formulation development and characterization of cellulose acetate nitrate based propellants for improved insensitive munitions properties

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2014-06-01

    Full Text Available Cellulose acetate nitrate (CAN was used as an insensitive energetic binder to improve the insensitive munitions (IM properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC, but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the propellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed.

  6. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology

  7. Polyvinylamine-based capsules: a mechanistic study of the formation using alginate and cellulose sulphate.

    Science.gov (United States)

    Renken, A; Hunkeler, D

    2007-06-01

    Capsules based on sodium alginate (SA) and sodium cellulose sulphate (SCS), have been prepared using polyvinylamines (PVAm) of varying intrinsic viscosities. The resulting capsules are relatively dense in nature, revealing a bursting force which is four times that observed for the classical SA/SCS/polymethylene-co-guanidine chemistry. Molar mass cutoffs were typically in the 10-70 kDa range. A mechanistic study was carried out where the reaction time, ionic strength and pH of the reaction mixture, as well as the stoichiometry of the polyanion blend and the PVAm molar mass were varied. It is postulated that both the SA-PVAm and the SCS-PVAm binary interactions contribute to the mechanical properties and the permeability of the resulting capsules. The polyvinylamine-based chemistry offers interesting alternatives to the PMCG system in that it provides a means to produce capsules at low, or zero, ionic strengths. Subtle changes in the pH, or the SA:SCS ratio, can also be used to tune the bursting force quite sensitively. The most appropriate capsules, for transplantation, would likely be formed at polyanion levels of 1.2 wt% with a PVAm molar mass below 17 kDa. PMID:17497386

  8. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Taisa R.; Pértile, Renata A.N. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900 (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil)

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology.

  9. Preparation and properties of environmental-friendly coatings based on carboxymethyl cellulose nitrate ester & modified alkyd.

    Science.gov (United States)

    Duan, Hongtao; Shao, Ziqiang; Zhao, Ming; Zhou, Zhenwen

    2016-02-10

    Amphipathic coating basic film-forming material carboxymethyl cellulose nitrate ester (CMCN) was synthesized and characterizations of CMCN with different ratio of functional groups were studied. Ratios of functional groups on each repeating units of CMCN have great importance in the decision of CMCN properties using as an amphipathic coating basic film-forming material and ratios of functional groups were the most concerned of the study. Ratios of functional groups on each repeating units of CMCN were measured by elemental analyzer and calculated. Series of experiments were conducted using different ratios of functional groups of CMCN. Thermal properties of CMCN were measured by FT-IR and TG. Densities of CMCN powders were measured. Aqueous coatings based on CMCN/alkyd (after chemical modified by coconut oil) were prepared and morphology & rheology of CMCN hydrophilic dispersions were measured using an Anton-Paar-Strasse 20A-8054 Graz analyzer. Contact angles between films based on CMCN and deionized water were recorded. Other properties of films were measured. CMCN with the etherification of carboxymethyl groups at 0.35-0.40, nitrate ester groups at 1.96-2.19 and hydroxyl groups at 0.46-0.64 per d-glucose was considered as the best film forming material. PMID:26686109

  10. Swelling/Floating Capability and Drug Release Characterizations of Gastroretentive Drug Delivery System Based on a Combination of Hydroxyethyl Cellulose and Sodium Carboxymethyl Cellulose

    OpenAIRE

    Chen, Ying-Chen; Ho, Hsiu-O; Liu, Der-Zen; Siow, Wen-Shian; Sheu, Ming-Thau

    2015-01-01

    The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various...

  11. Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity.

    Science.gov (United States)

    Tang, Lian; Han, Jinlu; Jiang, Zhenlin; Chen, Shiyan; Wang, Huaping

    2015-03-01

    Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose (BC) with amphiphobicity have been successfully prepared through in situ chemical synthesis and then infiltrated with polysiloxane solution. The results suggested that polypyrrole (PPy) nanoparticles deposited on the surface of BC formed a continuous core-shell structure by taking along the BC template. After modification with polysiloxane, the surface characteristics of the conductive BC membranes changed from highly hydrophilic to hydrophobic. The AFM images revealed that the roughness of samples after polysiloxane treatment increased along with the increase of pyrrole concentration. The contact angles (CAs) data revealed that the highest water contact angle and highest oil contact angle are 160.3° and 136.7°, respectively. The conductivity of the amphiphobic membranes with excellent flexibility reached 0.32 S/cm and demonstrated a good electromagnetic shielding effectiveness with an SE of 15 dB which could be applied in electromagnetic shielding materials with self-cleaning properties. It opened a new field of potential applications of BC materials. PMID:25498630

  12. Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites.

    Science.gov (United States)

    Mukherjee, Tapasi; Czaka, Michael; Kao, Nhol; Gupta, Rahul K; Choi, Hyoung Jin; Bhattacharya, Sati

    2014-02-15

    The production of lower cost bionanocomposites based on nanofibrillated cellulose (NFC) is a promising source to develop the next generation of light weight and high performance materials for a variety of defense, infrastructure and energy applications. In this study, a series of bio-nanocomposites were developed by reinforcing NFC from regenerated wood fiber into poly(butylene adipate-co-terephthalate) (PBAT) by injection molding. The incorporation of NFC in PBAT matrix (0.2-1 wt%) increased the storage modulus (G') and dynamic viscosity (η') as revealed by shear rheology, indicating a percolation threshold around 0.2-0.5 wt% region. DSC analysis showed similar trends with slight improvement of glass transition (Tg) and crystallization temperature (Tc). Percentage crystallinity, as calculated from heat of fusion equation and taking into account 100% crystallized PBAT data improved in overall. This is a fundamental study aimed at understanding the morphological, rheological and thermal evaluation of such nanocomposites for an improved dispersion of NFC as filler in the matrix. PMID:24507316

  13. Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties.

    Science.gov (United States)

    Braun, Birgit; Dorgan, John R; Hollingsworth, Laura O

    2012-07-01

    Successful filler dispersion and establishment of good interfacial contact with the surrounding matrix are essential for optimized reinforcement in polymeric nanocomposites. In particular, in renewable-based composites this can be challenging, where hydrophilic attractions between nanofillers facilitate aggregation. Here an innovative approach to prepare cellulosic nanowhisker (CNW) reinforced polylactide (PLA) is presented. The lactide ring-opening polymerization is initiated from CNW surface hydroxyl groups after partial acetylation to control the grafting density. Grafting of PLA chains is verified by Fourier transform infrared spectroscopy. The resulting nanocomposites display exceptional properties; a heat distortion temperature of 120 °C is achieved at 10 wt % CNW loading and can be further enhanced to reach 150 °C at 15 wt % CNW. The formation of a percolating network is verified by comparison of modulus data with an established theoretical model. Additionally, nucleation by CNWs reduces the crystallization half-time to 15 s compared with 90 s for PLA. Melt-pressed films retain transparency indicating good filler dispersion. PMID:22646309

  14. Anisotropic viscoelastic-viscoplastic continuum model for high-density cellulose-based materials

    Science.gov (United States)

    Tjahjanto, D. D.; Girlanda, O.; Östlund, S.

    2015-11-01

    A continuum material model is developed for simulating the mechanical response of high-density cellulose-based materials subjected to stationary and transient loading. The model is formulated in an infinitesimal strain framework, where the total strain is decomposed into elastic and plastic parts. The model adopts a standard linear viscoelastic solid model expressed in terms of Boltzmann hereditary integral form, which is coupled to a rate-dependent viscoplastic formulation to describe the irreversible plastic part of the overall strain. An anisotropic hardening law with a kinematic effect is particularly adopted in order to capture the complex stress-strain hysteresis typically observed in polymeric materials. In addition, the present model accounts for the effects of material densification associated with through-thickness compression, which are captured using an exponential law typically applied in the continuum description of elasticity in porous media. Material parameters used in the present model are calibrated to the experimental data for high-density (press)boards. The experimental characterization procedures as well as the calibration of the parameters are highlighted. The results of the model simulations are systematically analyzed and validated against the corresponding experimental data. The comparisons show that the predictions of the present model are in very good agreement with the experimental observations for both stationary and transient load cases.

  15. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez Aldana

    2014-09-01

    Full Text Available Polylactic acid (PLA and montmorillonite (CB as filler were studied as coatings for cellulose based packages. Amorphous (AM and semi crystalline (SC PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA, water vapor (WVP and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Grease Proof Papers 1 and 2 produced commercially. Significant differences were found and the main factors were the type and concentration of PLA. The best values were: for grease penetration, +1800 s; WVP from 161.36 to 237.8 g·µm·kPa−1·m−2·d−1 and CA from 69° to 73° for PLA–AM 0.5% and CB variable. These parameters are comparable to commercial packages used in the food industry. DSC revealed three different thermal events for PLA–SC and just Tg for PLA–AM. Crystallinity was also verified, obtaining a ΔHcrys of 3.7 J·g−1 for PLA–SC and 14 J·g−1 for PLA–SC–BC, evidencing clay interaction as a crystal nucleating agent. Differences found were explained on terms of the properties measured, where structural and chemical arrays of the coatings play a fundamental role for the barrier properties.

  16. An electrochemical sensor based on cellulose nanocrystal for the enantioselective discrimination of chiral amino acids.

    Science.gov (United States)

    Bi, Qing; Dong, Shuqing; Sun, Yaming; Lu, Xiaoquan; Zhao, Liang

    2016-09-01

    A novel electrochemical sensor based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanocrystals (TOCNCs) and l-cystines (l-Cys) modified Au electrode (TOCNC/l-Cys/Au) has been fabricated for detection and discrimination of the enantiomers of phenylalanine (Phe), leucine (Leu), and valine (Val). The three amino acids are in connection with metabolism diseases. The TOCNC/l-Cys/Au electrode exhibited obvious peak current difference for the amino acid enantiomers by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The TOCNCs on the electrode surface expressed different interactions with d- and l-amino acids, so the electrochemical recognitions of the three amino acid enantiomers were achieved. TOCNCs were characterized by Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM). The modified electrodes were characterized by SEM and electrochemical techniques. According to DPV, peak currents of the two enantiomers decreased linearly with their concentrations. Furthermore, satisfactory results were obtained when this electrode was applied to measure the d- and l-Phe mixture. The experimental results show that TOCNCs are suitable material for chiral sensor. The contrast of serum sample of healthy people and patients with type 2 diabetes also was proposed, and significant difference was exhibited on the modified electrode. This work is significant for the screening, diagnosis, and treatment of multiple metabolic diseases. PMID:27288559

  17. Formation of radical cations and dose response of alpha-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays

    CERN Document Server

    Emmi, S S; Ceroni, P; D'Angelantonio, M; Lavalle, M; Fuochi, P G; Kovács, A

    2002-01-01

    The radiation-induced UV-vis spectrum of alpha-terthiophene radical cation in solid is reported. The radical cation initiates an oligomerization in the CTA matrix producing permanently coloured conjugated polarons. The specific net absorbance at 465 nm is linearly related with dose up to 2x10 sup sup 6 sup sup G y, for electrons and gamma irradiation. The decrease of the UV typical absorption (355 nm) and of four IR bands of alpha-terthiophene is linear with dose, as well. Although sensitivity is influenced by dose rate, it turned out that a linear relationship holds between sensitivity and log dose rate, in the range from 2 to 10 sup sup 5 Gy, min. These findings suggest a potential application of the system for dosimetric purposes over a wide range of dose and dose rate.

  18. Some aspects of cellulose ethers influence on water transport and porous structure of cement-based materials

    OpenAIRE

    Pourchez, Jérémie; Ruot, Bertrand; Debayle, Johan; Rouèche-Pourchez, Emilie; Grosseau, Philippe

    2010-01-01

    International audience This paper evaluates and compares the impact of cellulose ethers (CE) on water transport and porous structure of cement-based materials in both fresh and hardened state. Investigations of the porous network (mercury intrusion porosimetry, apparent density, 2D and 3D observations) emphasize an air-entrained stabilisation depending on CE chemistry. We also highlight that CE chemistry leads to a gradual effect on characteristics of the water transport. The global tenden...

  19. Innovative Graphite Oxide-Cellulose Based Material Specific for Genomic DNA Extraction

    Science.gov (United States)

    Akceoglu, Garbis Atam; Li, Oi Lun; Saito, Nagahiro

    2015-11-01

    Extraction of genomic DNA from various types of samples is often challenging for commercial silica spin column. In this study, we proposed graphite oxide (GO)/cellulose composite as an alternative material for genomic DNA extraction. The purity of DNA and extraction efficiency were compared to that of commercial silica product. In this study, the total weight % of GO was fixed at 4.15% in GO/Cellulose composite. Chewed gum, nail clip, cigarette bud paper, animal tissue and hair sample were used as various genomic DNA sources for extraction experiments. Among all types of samples, the extraction efficiencies were 4 to 12 times higher than that of commercial silica spin column. The absorbance ratio of 260 nm to 280 nm (A260/A280) of all samples ranged between 1.6 and 2.0. The results demonstrated that GO/Cellulose composites might serve as an innovative solid support material for genomic DNA extraction.

  20. Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials.

    Science.gov (United States)

    Robles, Eduardo; Salaberria, Asier M; Herrera, Rene; Fernandes, Susana C M; Labidi, Jalel

    2016-06-25

    Cellulose nanofibers and chitin nanocrystals, two main components of agricultural and aquacultural by-products, were obtained from blue agave and yellow squat lobster industrial residues. Cellulose nanofibers were obtained using high pressure homogenization, while chitin nanocrystals were obtained by hydrolysis in acid medium. Cellulose nanofibers and chitin nanocrystals were characterized by X-ray diffraction, Atomic Force Microscopy and Infrared spectroscopy. Self-bonded composite films with different composition were fabricated by hot pressing and their properties were evaluated. Antifungal activity of chitin nanocrystals was studied using a Cellometer(®) cell count device, mechanical properties at tension were measured with a universal testing machine, water vapor permeability was evaluated with a thermohygrometer and surface tension with sessile drop contact angle method. The addition of chitin nanocrystals reduced slightly the mechanical properties of the composite. Presence of chitin nanocrystals influenced the growth of Aspergillus sp fungus in the surface of the composites as expected. PMID:27083791

  1. Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water.

    Science.gov (United States)

    Alatalo, Sara-Maaria; Pileidis, Filoklis; Mäkilä, Ermei; Sevilla, Marta; Repo, Eveliina; Salonen, Jarno; Sillanpää, Mika; Titirici, Maria-Magdalena

    2015-11-25

    Hydrothermal carbonization of cellulose in the presence of the globular protein ovalbumin leads to the formation of nitrogen-doped carbon aerogel with a fibrillar continuous carbon network. The protein plays here a double role: (i) a natural source of nitrogen functionalities (2.1 wt %) and (ii) structural directing agent (S(BET) = 38 m(2)/g). The applicability in wastewater treatment, namely, for heavy metal removal, was examined through adsorption of Cr(VI) and Pb(II) ion solely and in a mixed bicomponent aqueous solutions. This cellulose-based carbogel shows an enhanced ability to remove both Cr(VI) (∼68 mg/g) and Pb(II) (∼240 mg/g) from the targeted solutions in comparison to other carbon materials reported in the literature. The presence of competing ions showed little effect on the adsorption efficiency toward Cr(VI) and Pb(II). PMID:26540557

  2. Research Progress in Cellulose-based Absorbent Material%纤维素系吸水材料的研究现状及发展前景

    Institute of Scientific and Technical Information of China (English)

    高桂林; 沈葵忠; 房桂干; 邓拥军; 李萍; 金莉; 别士霞

    2012-01-01

    This review addressed recent progress in cellulose-based absorbent materials preparation and application Firstly, absorbent material produced directly from native cellulose (including bacterial cellulose) via cellulose dissolution are introduced. Secondly, cellulose highly absorbing polymer based on its derivatives which were obtained by physical as well as chemical cross-linking strategies was discussed. Thirdly, composite prepared by using cellulose in conjunction with other polymers through blending, formation of polyelectrolyte complexes, and interpenetrating polymer networks (IPNs) technology was addressed . Finally, cellulose-inorganic hybrid hydrogel prepared by embedding inorganic nano-partieles in cellulose matrices was described. In addition,the prospect of cellulosic absorbent materials and some problems still needed to be solved were summarized.%本文回顾了近年来纤维素系吸水材料的制备方法及其应用,具体介绍了纤维素系吸水材料的几种主要制备方法:一是直接对天然纤维素进行处理来制备;第二是利用纤维素衍生物通过物理或化学交联的方法制备;第三是将纤维素与其他聚合物进行反应形成复合树脂或聚电解质配合物,还可以采用互穿聚合网络技术进行处理;另外将无机纳米粒子嵌入纤维素矩阵中也可以制备纤维素-无机混合凝胶树脂。最后还对纤维素系高吸水材料的发展前景以及仍需解决的问题进行了总结。

  3. Novel oil resistant cellulosic materials

    OpenAIRE

    Aulin, Christian

    2009-01-01

    The aim of this study has been to prepare and characterise oil resistant cellulosic materials, ranging from model surfaces to papers and aerogels. The cellulosic materials were made oil resistant by chemical and topographic modifications, based on surface energy, surface roughness and barrier approaches. Detailed wetting studies of the prepared cellulosic materials were made using contact angle measurements and standardised penetration tests with different alkanes and oil mixtures. A signific...

  4. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja S.;

    2012-01-01

    Most secondary plant cell walls contain irregular regions known as dislocations or slip planes. Under industrial biorefining conditions dislocations have recently been shown to play a key role during the initial phase of the enzymatic hydrolysis of cellulose in plant cell walls. In this review we...... not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...

  5. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    Directory of Open Access Journals (Sweden)

    Sriburi Pensiri

    2011-02-01

    Full Text Available Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v based films plasticized with glycerol (30 g/100 g starch were characterized with respect to the effect of carboxymethyl cellulose (CMC concentrations (0, 10, 20, 30 and 40%w/w total solid and relative humidity (34 and 54%RH on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR, melting temperature by differential scanning calorimetry (DSC, and morphology by scanning electron microscopy (SEM. Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.

  6. Research progress in Cellulose-based Chiral Selectors%纤维素手性拆分剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    宋洪浪

    2013-01-01

    文章介绍了几种纤维素类手性拆分剂以及其制备方法相关分离机理,综述了纤维素手性拆分剂的分离机理及其应用,重点地介绍纤维素手性固定相和纤维素膜的应用。%In this paper, several kinds of cellulose-based chiral selectors and its preparation methods were introduced , the application and separation mechanism of cellulose-based chiral selectors were summarized, and intensively emphasized on the applications of cellulose chiral stationary phase and cellulose membrane.

  7. Anti-microbial conductive biocomposites based on nanofibrillated cellulose, polypyrrole and Ag-nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Latonen, R.-M.; Bober, Patrycja; Liu, J.; Xu, C.; Mikkonen, K.; Von Wright, A.

    Linz : Linz Institute for Organic Solar Cells, Johannes Kepler University Linz, 2014. s. 46. [International Winterschool on Bioelectronics - BioEl2014. 22.02.2014-01.03.2014, Kirchberg] Institutional support: RVO:61389013 Keywords : cellulose * nanoparticle Subject RIV: CD - Macromolecular Chemistry

  8. Surface-type humidity sensor based on cellulose-PEPC for telemetry systems

    International Nuclear Information System (INIS)

    Au/cellulose-PEPC/Au surface-type humidity sensors were fabricated by drop-casting cellulose and poly-N-epoxypropylcarbazole (PEPC) blend thin films. A blend of 2wt% of each cellulose and PEPC in benzol was used for the deposition of humidity sensing films. Blend films were deposited on glass substrates with preliminary deposited surface-type gold electrodes. Films of different thicknesses of cellulose and PEPC composite were deposited by drop-casting technique. A change in electrical resistance and capacitance of the fabricated devices was observed by increasing the relative humidity in the range of 0-95% RH. It was observed that the capacitances of the sensors increase, while their resistances decrease with increasing the relative humidity. The sensors were connected to op-amp square wave oscillators. It was observed that with increasing the relative humidity, the oscillator's frequencies were also increased in the range of 4.2-12.0 kHz for 65 μm thick film sample, 4.1-9.0 kHz for 88 μm thick film sample, and 4.2-9.0 kHz for 210 μm sample. Effects of film thickness on the oscillator's frequency with respect to humidity were also investigated. This polymer humidity sensor controlled oscillator can be used for short-range and long-range remote systems at environmental monitoring and assessment of the humidity level. (semiconductor integrated circuits)

  9. Surface-type humidity sensor based on cellulose-PEPC for telemetry systems

    Institute of Scientific and Technical Information of China (English)

    Kh. S. Karimov; M.Saleem; T. A. Qasuria; M. Farooq

    2011-01-01

    Au/cellulose-PEPC/Au surface-type humidity sensors were fabricated by drop-casting cellulose and poly-N-epoxypropylcarbazole (PEPC) blend thin films. A blend of 2wt% of each cellulose and PEPC in benzol was used for the deposition of humidity sensing films. Blend films were deposited on glass substrates with preliminary deposited surface-type gold electrodes. Films of different thicknesses of cellulose and PEPC composite were deposited by drop-casting technique. A change in electrical resistance and capacitance of the fabricated devices was observed by increasing the relative humidity in the range of 0-95% RH. It was observed that the capacitances of the sensors increase, while their resistances decrease with increasing the relative humidity. The sensors were connected to op-amp square wave oscillators. It was observed that with increasing the relative humidity, the oscillator's frequencies were also increased in the range of 4.2-12.0 kHz for 65/μm thick film sample, 4.1-9.0 kHz for 88 μm thick film sample, and 4.2-9.0 kHz for 210 μm sample. Effects of film thickness on the oscillator's frequency with respect to humidity were also investigated. This polymer humidity sensor controlled oscillator can be used for short-range and long-range remote systems at environmental monitoring and assessment of the humidity level.

  10. Vascular smooth muscle cells in cultures on biofunctionalized cellulose-based scaffolds

    Czech Academy of Sciences Publication Activity Database

    Novotná, Katarína; Bačáková, Lucie; Lisá, Věra; Havelka, P.; Sopuch, T.; Klepetář, Jan

    2009-01-01

    Roč. 12, 89-91 (2009), s. 21-24. ISSN 1429-7248 R&D Projects: GA MŠk(CZ) 2B06173; GA MPO(CZ) 2A-1TP1/073 Institutional research plan: CEZ:AV0Z50110509 Keywords : oxidized cellulose * vascular tissue engineering * biofunctionalization Subject RIV: EI - Biotechnology ; Bionics

  11. A Hemoperfusion Column Based on Activated Carbon Granules Coated with an Ultrathin Membrane of Cellulose Acetate

    NARCIS (Netherlands)

    Tijssen, Johan; Bantjes, Adriaan; Doorn , van Albert W.J.; Feijen, Jan; Dijk, van Boudewijn; Vonk, Carel R.; Dijkhuis, Ido C.

    1979-01-01

    A hemoperfusion system has been developed which makes use of activated carbon encapsulated with cellulose acetate. Studies have revealed that there are no stagnant flow regions in the column, there i? minimal particle release and the coating is 30 Å thick. The relationships between pore size, pore v

  12. Facile synthesis of ZnO nanoparticles based on bacterial cellulose

    International Nuclear Information System (INIS)

    ZnO nanoparticles with a pure wurtzite structure have been successfully synthesized through decomposing bacterial cellulose infiltrated with zinc acetate aqueous solution at high temperature. The effects of the concentration of zinc acetate aqueous solution, the calcination temperature, and the templates on the average particle size and morphology of the ZnO nanoparticles were investigated. The prepared ZnO nanoparticles were characterized by FESEM, XRD, FTIR and TG-DTA. The results suggest that bacterial cellulose plays an important role in preventing the ZnO nanoparticles from aggregating under optimized conditions. The calcination temperature has great effects on the morphologies of ZnO nanoparticles. When calcinating at 600 deg. C and using BC as the template with 1 wt.% zinc acetate aqueous solution, well-dispersed and regular ZnO nanoparticles with a narrow size distribution of 20-50 nm and high photocatalytic activity were obtained.

  13. Facile synthesis of ZnO nanoparticles based on bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weili [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Renmin North Rd. 2999, Songjiang, Shanghai 201620 (China); Chen Shiyan, E-mail: chensy@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Renmin North Rd. 2999, Songjiang, Shanghai 201620 (China); Zhou Bihui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Renmin North Rd. 2999, Songjiang, Shanghai 201620 (China); Wang Huaping, E-mail: wanghp@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Renmin North Rd. 2999, Songjiang, Shanghai 201620 (China)

    2010-06-15

    ZnO nanoparticles with a pure wurtzite structure have been successfully synthesized through decomposing bacterial cellulose infiltrated with zinc acetate aqueous solution at high temperature. The effects of the concentration of zinc acetate aqueous solution, the calcination temperature, and the templates on the average particle size and morphology of the ZnO nanoparticles were investigated. The prepared ZnO nanoparticles were characterized by FESEM, XRD, FTIR and TG-DTA. The results suggest that bacterial cellulose plays an important role in preventing the ZnO nanoparticles from aggregating under optimized conditions. The calcination temperature has great effects on the morphologies of ZnO nanoparticles. When calcinating at 600 deg. C and using BC as the template with 1 wt.% zinc acetate aqueous solution, well-dispersed and regular ZnO nanoparticles with a narrow size distribution of 20-50 nm and high photocatalytic activity were obtained.

  14. Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose.

    Science.gov (United States)

    de Dicastillo, Carol López; Navarro, Rosa; Guarda, Abel; Galotto, Maria José

    2015-01-01

    Antioxidant biocomposites have been successfully developed from cellulose acetate, eco-friendly triethyl citrate plasticizer and onion extract as a source of natural antioxidants. First, an onion extraction process was optimized to obtain the extract with highest antioxidant power. Extracts under absolute ethanol and ethanol 85% were the extracts with the highest antioxidant activity, which were the characterized through different methods, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonate)), that measure radical scavenger activity, and polyphenolic and flavonoid content. Afterwards, the extract was incorporated in cellulose acetate as polymer matrix owing to develop an active material intended to oxidative sensitive food products packaging. Different concentrations of onion extract and plasticizer were statistically studied by using response surface methodology in order to analyze the influence of both factors on the release of active compounds and therefore the antioxidant activity of these materials. PMID:26783842

  15. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.

    Science.gov (United States)

    Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin

    2016-04-15

    In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging. PMID:26616947

  16. Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose

    Directory of Open Access Journals (Sweden)

    Carol López de Dicastillo

    2015-08-01

    Full Text Available Antioxidant biocomposites have been successfully developed from cellulose acetate, eco-friendly triethyl citrate plasticizer and onion extract as a source of natural antioxidants. First, an onion extraction process was optimized to obtain the extract with highest antioxidant power. Extracts under absolute ethanol and ethanol 85% were the extracts with the highest antioxidant activity, which were the characterized through different methods, DPPH (2,2-diphenyl-1-picrylhydrazyl and ABTS (2,2ʹ-azinobis(3-ethylbenzothiazoline-6-sulphonate, that measure radical scavenger activity, and polyphenolic and flavonoid content. Afterwards, the extract was incorporated in cellulose acetate as polymer matrix owing to develop an active material intended to oxidative sensitive food products packaging. Different concentrations of onion extract and plasticizer were statistically studied by using response surface methodology in order to analyze the influence of both factors on the release of active compounds and therefore the antioxidant activity of these materials.

  17. Surface-Based Assays for Enzyme Adsorption and Activity on Model Cellulose Films

    OpenAIRE

    Maurer, Samuel Andrew

    2012-01-01

    Transportation fuels produced by harvesting and breaking down sturdy, fast-growing prairie grasses offer a renewable alternative to diminishing fossil-fuel supplies. The rate-limiting step in the production of renewable fuels from these lignocellulosic feedstocks is the enzymatic deconstruction of solid cellulose into glucose oligomers that are subsequently processed to form transportation fuels and fuel additives. Despite continuing research interest and significant subsidy of biofuel prod...

  18. Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose

    OpenAIRE

    Carol López de Dicastillo; Rosa Navarro (Ilustradora); Abel Guarda; Maria José Galotto

    2015-01-01

    Antioxidant biocomposites have been successfully developed from cellulose acetate, eco-friendly triethyl citrate plasticizer and onion extract as a source of natural antioxidants. First, an onion extraction process was optimized to obtain the extract with highest antioxidant power. Extracts under absolute ethanol and ethanol 85% were the extracts with the highest antioxidant activity, which were the characterized through different methods, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2ʹ-a...

  19. Cellulose-based graft copolymers with controlled architecture prepared in a homogeneous phase

    Czech Academy of Sciences Publication Activity Database

    Raus, Vladimír; Štěpánek, M.; Uchman, M.; Šlouf, Miroslav; Látalová, Petra; Čadová, Eva; Netopilík, Miloš; Kříž, Jaroslav; Dybal, Jiří; Vlček, Petr

    2011-01-01

    Roč. 49, č. 20 (2011), s. 4353-4367. ISSN 0887-624X R&D Projects: GA ČR GA106/09/1348; GA ČR GAP208/10/0353 Institutional research plan: CEZ:AV0Z40500505 Keywords : atom transfer radical polymer ization (ATRP) * cellulose * graft copolymers Subject RIV: JI - Composite Materials Impact factor: 3.919, year: 2011

  20. Cell interaction with cellulose-based scaffolds for tissue engineering: a review

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Novotná, Katarína; Sopuch, T.; Havelka, P.

    New York: Nova Science Publishers, 2015 - (Mondal, M.), s. 341-375 ISBN 978-1-63483-553-4 R&D Projects: GA ČR(CZ) GAP108/12/1168; GA ČR(CZ) GAP108/11/1857; GA MZd(CZ) NT13297; GA TA ČR(CZ) TA04010065 Institutional support: RVO:67985823 Keywords : polysaccharides * cellulose * biomaterial * tissue engineering * regenerative medicine * cell therapy Subject RIV: EI - Biotechnology ; Bionics

  1. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases

    OpenAIRE

    Cruys-Bagger, Nicolaj; Badino, Silke Flindt; Tokin, Radina Naytchova; Gontsarik, Mark; Fathalinejad, Samin; Jensen, Kenneth; Toscano, Miguel Duarte; Sørensen, Trine Holst; Borch, Kim; Tatsumi, Hirosuke; Väljamäe, Priit; Westh, Peter

    2014-01-01

    A novel electrochemical enzyme biosensor was developed for real-time detection of cellulase activity when acting on their natural insoluble substrate, cellulose. The enzyme biosensor was constructed with pyranose dehydrongease (PDH) from Agaricus meleagris that was immobilized on the surface of a carbon paste electrode, which contained the mediator 2,6-dichlorophenolindophenol (DCIP). An oxidation current of the reduced form of DCIP, DCIPH2, produced by the PDH-catalyzed reaction with either ...

  2. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material

    International Nuclear Information System (INIS)

    Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g−1 and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. - Highlights: • Bacterial cellulose/magnetite nanocomposites with high incorporation degree of nanoparticles. • Magnetite nanoparticles well adhered to the surface of bacterial cellulose nanofibers. • A saturation magnetization of the nanoparticles in the BC pellicles of about 60 emu g−1. • Flexible membranes with high super-paramagnetic characteristic

  3. Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device

    Science.gov (United States)

    Charpentier, Paul A.; Maguire, Anne; Wan, Wan-kei

    2006-07-01

    The surface of medical grade polyesters was modified to impart hydrophilic character for attachment to bacterial synthesized cellulose to produce a vascular prosthetic device. The polyesters were treated with UV/ozone, air plasma, and nitrogen plasma for various lengths of time. The unmodified and modified surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and advancing contact angle measurements. The surfaces were then coated with bacterial produced cellulose to study adhesion properties through tensile testing (peel testing). UV/ozone and plasma treatment XPS results indicated an increase in the oxygen concentration in the form of C sbnd O(H) on the treated polyester surfaces. The treatment time to reach steady state in the case of air and nitrogen plasmas took the order of seconds, while 7 min and longer were required for UV/ozone treatment. Peel strength tests to measure adhesion of modified polyester to cellulose reached their maximum values when the C sbnd O(H) concentrations were at the highest level. It was also at this level that the contact angle measurements showed no further decrease.

  4. Electrocatalytic determination of nitrite based on straw cellulose/molybdenum sulfide nanocomposite.

    Science.gov (United States)

    Wang, Honggui; Wen, Fangfang; Chen, Yajie; Sun, Ting; Meng, Yao; Zhang, Ya

    2016-11-15

    Cellulose is the most abundant, renewable, biodegradable natural polymer resource on earth, which can be a good substrate for catalysis. In this work, straw cellulose has been oxidized through 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation, and then a TEMPO oxidized straw cellulose/molybdenum sulfide (TOSC-MoS2) composite has been synthesized via a hydrothermal method. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis confirm that TOSC and MoS2 have successfully composited. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show the TOSC as a carbon nanotube-like structure and edged MoS2 grows on the TOSC substrate. The TOSC-MoS2 modified glassy carbon electrode (GCE) is used as a simple and non-enzymatic electrochemical sensor. Cyclic Voltammetry (CV) result shows TOSC-MoS2 has excellent electrocatalytic activity for the oxidation of nitrite. The amperometric response result indicates the TOSC-MoS2 modified GCE can be used to determine nitrite concentration in wide linear ranges of 6.0-3140 and 3140-4200µM with a detection limit of 2.0µM. The proposed sensor has good anti-interference property. Real sample analysis and the electrocatalytic mechanism have also been presented. PMID:27258173

  5. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties.

    Science.gov (United States)

    Hambardzumyan, Arayik; Foulon, Laurence; Chabbert, Brigitte; Aguié-Béghin, Véronique

    2012-12-10

    Novel nanocomposite coatings composed of cellulose nanocrystals (CNCs) and lignin (either synthetic or fractionated from spruce and corn stalks) were prepared without chemical modification or functionalization (via covalent attachment) of one of the two biopolymers. The spectroscopic properties of these coatings were investigated by UV-visible spectrophotometry and spectroscopic ellipsometry. When using the appropriate weight ratio of CNC/lignin (R), these nanocomposite systems exhibited high-performance optical properties, high transmittance in the visible spectrum, and high blocking in the UV spectrum. Atomic force microscopy analysis demonstrated that these coatings were smooth and homogeneous, with visible dispersed lignin nodules in a cellulosic matrix. It was also demonstrated that the introduction of nanoparticles into the medium increases the weight ratio and the CNC-specific surface area, which allows better dispersion of the lignin molecules throughout the solid film. Consequently, the larger molecular expansion of these aromatic polymers on the surface of the cellulosic nanoparticles dislocates the π-π aromatic aggregates, which increases the extinction coefficient and decreases the transmittance in the UV region. These nanocomposite coatings were optically transparent at visible wavelengths. PMID:23088655

  6. PREPARATION OF BIODEGRADABLE FLAX SHIVE CELLULOSE-BASED SUPERABSORBENT POLYMER UNDER MICROWAVE IRRADIATION

    Directory of Open Access Journals (Sweden)

    Hao Feng

    2010-05-01

    Full Text Available Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS as an initiator and N,N’-methylenebisacrylamide (MBA as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA. The biodegradability in soil was measured at 32 and 40 oC. The polymer was porous, and thermal stability of the polymer was observed up to approximately 200 oC. FT-IR analysis indicated that acrylic acid in polymer was successfully grafted onto the cellulose. The graft copolymer was found to be an effective superabsorbent resin, rapidly absorbing water to almost 1000 times its own dry weight at pH around 7.3. The water absorbency in 0.9% NaCl, KCl, FeCl3 solutions and urine were 56.47 g/g, 54.71g/g, 9.89g/g and 797.21g/g, respectively. The product biologically degraded up to 40% at 40 oC in 54 days, which shows good biodegradability.

  7. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure

    Science.gov (United States)

    Nakagaito, A. N.; Yano, H.

    2005-01-01

    A completely new kind of high-strength composite was manufactured using microfibrillated cellulose (MFC) derived from kraft pulp. Because of the unique structure of nano-order-scale interconnected fibrils and microfibrils greatly expanded in the surface area that characterizes MFC, it was possible to produce composites that exploit the extremely high strength of microfibrils. The Young’s modulus (E) and bending strength (σb) of composites using phenolic resin as binder achieved values up to 19 GPa and 370 MPa, respectively, with a density of 1.45 g/cm2, exhibiting outstanding mechanical properties for a plant-fiber-based composite.

  8. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)

    OpenAIRE

    S. Faraji, E. Danesh, D. J. Tate, M. L. Turner, L. A. Majewski

    2016-01-01

    Low voltage organic field-effect transistors (OFETs) using solution-processed cyanoethyl cellulose (CEC) and CEC-based nanocomposites as the gate dielectric are demonstrated. Barium strontium titanate (BST) nanoparticles are homogeneously dispersed in CEC to form the high-k (18.0 ± 0.2 at 1 kHz) nanocomposite insulator layer. The optimised p-channel DPPTTT OFETs with BST-CEC nanocomposite as the gate dielectric operate with minimal hysteresis, display field-effect mobilities in excess of 1 cm...

  9. Novel solid – solid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  10. Evaluation of the permeability of modified cellulose acetate propionate membranes for use in biosensors based on hydrogen peroxide detection

    OpenAIRE

    Guiomar, A. Jorge; Stephen D. Evans; Guthrie, James

    2001-01-01

    Phase inversion cellulose acetate propionate membranes showed lowpermeability to hydrogen peroxide aqueous solutions. Their permeability wasincreased by alkaline hydrolysis of the ester linking units. However, thepermeability remained lower than that of an unsubstituted cellulose membrane.The inclusion of hydroxypropyl cellulose in the membrane formulation, followedby an alkaline hydrolysis step, increased permeability to hydrogen peroxideaqueous solutions to 29% of that of an unsubstituted c...

  11. Synthesis and study of nano-structured cellulose acetate based materials for energy applications; Synthese et etude de materiaux nanostructures a base d'acetate de cellulose pour applications energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F

    2006-12-15

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO{sub 2} supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO{sub 2} are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm{sup -3} together with a meso-porous volume of 3,40 cm{sup 3}.g{sup -1} was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m{sup -1}.K{sup -1}. In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  12. Key product development based on cyclo olefin polymer for LCD-TV

    Science.gov (United States)

    Konishi, Yuichiro; Kobayashi, Masahi; Arakawa, Kouhei

    2006-09-01

    Cyclo Olefin Polymer (COP), which was developed by Zeon Corporation, is well known and used as an optical plastic in optical markets, having unique properties such as high light transmission, low water absorption, low birefringence etc. Optes Inc, who is ZEON CORPORATION's affiliate optical parts manufacturer, has succeeded in the development of high performance optical base films. These are used for retardation and polarizing films in LCD's (Liquid Crystal Displays), made from Cyclo Olefin Polymer with own film extrusion technologies. The Optical base film developed by Optes Inc has superior properties compared with those of existing products such as polycarbonate (PC), polyethylene terephthalate (PET) and Triacetate Cellulose (TAC) base in terms of low birefringence, high optical isotropy and high dimensional stability under high humidity and temperature conditions.

  13. TEMPO-oxidized cellulose nanofibers

    Science.gov (United States)

    Isogai, Akira; Saito, Tsuguyuki; Fukuzumi, Hayaka

    2011-01-01

    Native wood celluloses can be converted to individual nanofibers 3-4 nm wide that are at least several microns in length, i.e. with aspect ratios >100, by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and successive mild disintegration in water. Preparation methods and fundamental characteristics of TEMPO-oxidized cellulose nanofibers (TOCN) are reviewed in this paper. Significant amounts of C6 carboxylate groups are selectively formed on each cellulose microfibril surface by TEMPO-mediated oxidation without any changes to the original crystallinity (~74%) or crystal width of wood celluloses. Electrostatic repulsion and/or osmotic effects working between anionically-charged cellulose microfibrils, the ζ-potentials of which are approximately -75 mV in water, cause the formation of completely individualized TOCN dispersed in water by gentle mechanical disintegration treatment of TEMPO-oxidized wood cellulose fibers. Self-standing TOCN films are transparent and flexible, with high tensile strengths of 200-300 MPa and elastic moduli of 6-7 GPa. Moreover, TOCN-coated poly(lactic acid) films have extremely low oxygen permeability. The new cellulose-based nanofibers formed by size reduction process of native cellulose fibers by TEMPO-mediated oxidation have potential application as environmentally friendly and new bio-based nanomaterials in high-tech fields.

  14. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell

    International Nuclear Information System (INIS)

    In this work, carboxymethyl kappa-carrageenan was used as the principle host for developing new biopolymer electrolytes based on the blend of carboxymethyl kappa-carrageenan/carboxymethyl cellulose. The blending of carboxymethyl cellulose into carboxymethyl kappa-carragenan was found to be a promising strategy to improve the material properties such as conductive properties. The electrolyte samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, ionic transference number measurement and linear sweep voltammetry in order to investigate their structural, thermal and electrochemical properties. Impedance study showed that the ionic conductivity increased with the increment of ammonium iodide concentration. The highest room temperature ionic conductivity achieved was 2.41 × 10−3 S cm−1 at 30 wt% of the salt. The increment of conductivity was due to the increase of formation of transient cross-linking between the carboxymethyl kappa-carrageenan/carboxymethyl cellulose chains and the doping salt as indicated the Tg trend. The conductivity was also attributed by the increase in the number of charge carriers in the biopolymer electrolytes system. The interactions between polymers and salt were confirmed by FTIR study. The transference number measurements showed that the conductivity was predominantly ionic. Temperature dependent conductivity study showed that conductivity increased with the reciprocal of temperature. The conductivity-temperature plots suggested that the conductivity obeyed the Vogel–Tammann–Fulcher relation and the activation energy for the best conducting sample was 0.010 eV. This system was used for the fabrication of dye sensitized solar cells, FTO/TiO2-dye/CMKC/CMCE-NH4I + I2/Pt. The fabricated cell showed response under light intensity of 100 mW cm−2 with efficiency of 0.13% indicating that the blend biopolymer system has

  15. Field based measurements of albedo for two candidate perennial cellulosic feedstocks and row crops in Central Illinois

    Science.gov (United States)

    Miller, J. N.; VanLoocke, A.; Bernacchi, C. J.

    2012-12-01

    The production of perennial cellulosic feedstocks for bioenergy present the potential to diversify regional economies and the national energy supply, while also serving as a climate 'regulators' due to a number of biogeochemical and biophysical differences relative to row crops. Numerous observationally and modeling based approaches, including life cycle analyses have investigated biogeochemical tradeoffs, such as increased carbon sequestration and biophysical increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biophysical changes associated with the difference in albedo, which will alter the local energy balance and could cause a local to regional cooling several times larger than that associated with offsetting carbon. To address this factor an experiment consisting of paired fields of Miscanthus and Switchgrass, two of the leading perennial cellulosic feedstock candidates, and traditional row crops was established in central Illinois. Data from the first two growing seasons indicate that this effect is most pronounced during the spring and fall as perennial biofuel crops green up earlier and senesce later than common annual row crops. The albedo of the perennials converges to that of the row crops during the growing season as the canopies develop. During the early winter, before the perennial crops are harvested, the albedo over fallow soybean and maize fields can vary greatly depending on snowfall and, to a lesser extent, soil moisture, whereas perennials show less variation. Thus, perennial biofuel crops also have the potential to buffer the local environment against short-term variations in climate. These factors should be considered when evaluating the tradeoffs and climate-regulation services associated with large-scale planting of bioenergy crops.

  16. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Jéssica A., E-mail: Jessica.amarins@gmail.com [Universidade Federal do Rio de Janeiro/ Instituto de Macromoléculas, Centro de Tecnologia, Rio de Janeiro, RJ (Brazil); Soares, Bluma G., E-mail: bluma@ima.ufrj.br [Universidade Federal do Rio de Janeiro/ Instituto de Macromoléculas, Centro de Tecnologia, Rio de Janeiro, RJ (Brazil); Barud, Hernane S.; Ribeiro, Sidney J.L. [Universidade Estadual Paulista, Instituto de Química, UNESP, Araraquara, SP (Brazil)

    2013-10-15

    Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe{sub 3}O{sub 4} nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g{sup −1} and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. - Highlights: • Bacterial cellulose/magnetite nanocomposites with high incorporation degree of nanoparticles. • Magnetite nanoparticles well adhered to the surface of bacterial cellulose nanofibers. • A saturation magnetization of the nanoparticles in the BC pellicles of about 60 emu g{sup −1}. • Flexible membranes with high super-paramagnetic characteristic.

  17. Sustained Release of Amoxicillin from Ethyl Cellulose-Coated Amoxicillin/Chitosan–Cyclodextrin-Based Tablets

    OpenAIRE

    Songsurang, Kultida; Pakdeebumrung, Jatuporn; Praphairaksit, Narong; Muangsin, Nongnuj

    2010-01-01

    Sustained release mucoadhesive amoxicillin tablets with tolerance to acid degradation in the stomach were studied. The sustained-release tablets of amoxicillin were prepared from amoxicillin coated with ethyl cellulose (EC) and then formulated into tablets using chitosan (CS) or a mixture of CS and beta-cyclodextrin (CD) as the retard polymer. The effects of various (w/w) ratios of EC/amoxicillin, the particle sized of EC coated amoxicillin and the different (w/w) ratios of CS/CD for the reta...

  18. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  19. Novel carboxymethyl cellulose based nanocomposite membrane: Synthesis, characterization and application in water treatment.

    Science.gov (United States)

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed; Heydaripour, Samira; Abdouss, Majid

    2016-01-15

    Significant efforts have been made to develop composite membranes with high adsorption efficiencies for water treatment. In this study, a carboxymethyl cellulose-graft-poly(acrylic acid) membrane was synthesized in the presence of silica gel, which was used as an inorganic support. Then, different amounts of bentonite were introduced to the carboxymethyl cellulose (CMC) grafted networks as a multifunctional crosslinker, and nanocomposite membranes were prepared. The nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, and scanning electron microscopy, which revealed their compositions and surface morphologies. The novel synthesized nanocomposite membranes were utilized as adsorbents for the removal of crystal violet (CV) and cadmium (Cd (II)) ions, which were selected as representatives of a dye and a heavy metal, respectively. We explored the effects of various parameters, such as time, pH, temperature, initial concentration of adsorbate solution and amount of adsorbent, on membrane adsorption capacity. Furthermore, the kinetic, adsorption isotherm models and thermodynamic were employed for the description of adsorption processes. The maximum adsorption capacities of membranes for CV and Cd (II) ions were found to be 546 and 781 mg g(-1), respectively. The adsorption of adsorbate ions by all types of nanocomposite membranes followed pseudo-second-order kinetic model and was best fit with the Freundlich adsorption isotherm. The results indicated that the synthesized nanocomposite membrane is an efficient adsorbent for the removal of cationic dye and metal contaminants from aqueous solution during water treatment. PMID:26560638

  20. Preparation and characterization of novel wound dressing based on silver nanoparticle-impregnated bacterial cellulose and bacterial cellulose-aloe vera

    International Nuclear Information System (INIS)

    Ideal wound dressings stimulate wound healing, control unpleasant odors, and provide antimicrobial action in wounds. However, most traditional wound dressings such as gauze and biological dressings exhibit exudate leaking which increases the risk of infection and delayed wound healing of tissues. This study aims to develop and characterize a bio-composite of bacterial cellulose and aloe vera having the ideal features of a wound dressing from Acetobacter xylinum-activated culture medium supplemented with various aloe vera concentrations from )-50% (v/v) and the film which exhibits the most uniform results is used for the incorporation of silver nanoparticle as an antibacterial agent. The biopolymer composites of bacterial cellulose and aloe vera were developed by adding 0-50% aloe vera (v/v) in the A. xylinum-activated coconut water medium during biosynthesis in static cultivation for 10 days. The films obtained after drying the membranes were named as bacterial cellulose-aloe vera (BC-A) films. The moisture content of films reached 99% which indicates that the films may be suitable for providing a moist environment to facilitate wound healing fast. With the addition of aloe vera up to 30% (v/v) during BC synthesis, it resulted in a significant improvement in the water absorption capacity of the films showing a WAC ration of 36.46 (r.s.d.= 12.17%, n=3) compared to the unmodified film having a ratio of 9.03 (r.s.d.= 13.95%, n=3). However, the addition of aloe vera at a concentration greater than 30% (v/v) resulted in a decrease in pellicle formation which can be observed from the very weak properties of the films. The BC-A (30%) displayed significantly improved in comparison to the unmodified BC film. Also, it is capable of absorbing high amount of water than its weight and can act as a potential wound dressing which reduces irritation and inflammation. (author)

  1. A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte

    International Nuclear Information System (INIS)

    Highlights: • A novel cellulose-based composite polymer gel electrolyte (PGE) membrane is prepared. • PGE exhibits excellent ionic conductivity and electrochemical stability. • PEG reduces the penetration of oxygen to lithium anode and electrolyte loss. • Non-aqueous Li/O2 battery employing PGE membrane displays good cyclic stability. - Abstract: A novel lithium-oxygen (Li-O2) battery with a polymer gel electrolyte (PGE) membrane is successfully prepared. The membrane is a blend of cellulose acetate (CA) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and is fabricated using a solution casting technique followed by impregnation with lithium bis(trifluoromethane sulfonimide) (LiTFSI) solution. We demonstrate that the PGE membrane has good electrolyte uptake and shows high ionic conductivity as well as excellent thermal and electrochemical stability. A Li-O2 battery containing our PGE as the electrolyte and separator exhibits good rate capability and enhanced cycling capacity retention compared to a battery using commercial liquid electrolyte and a polyethylene (PE) separator under the same conditions. We attribute this enhanced performance to the PGE, which maybe restrain the diffusion of oxygen from the air cathode to the Li metal anode. This study may prove valuable for resolving the problem of poor cycling stability in Li-O2 batteries caused by oxygen diffusion from cathode to anode

  2. Superhydrophobic and highly luminescent polyfluorene/silica hybrid coatings deposited onto glass and cellulose-based substrates.

    Science.gov (United States)

    de Francisco, Raquel; Hoyos, Mario; García, Nuria; Tiemblo, Pilar

    2015-03-31

    Neat poly(9,9-dioctyl-9H-fluorene) (PFO) and composites of PFO and a modified organonanosilica P(7) at weight ratios 90/10, 70/30, and 50/50 have been employed to prepare fluorescent and superhydrophobic coatings by spraying onto three different substrates: glass, Whatman paper, and a filtration membrane of mixed cellulose esters. The water repellency of the coatings and their photophysical properties are therein studied. It is found that, irrespective of the substrate and the composite composition, all coatings remain fluorescent. In some of the coatings prepared, confined morphologies are created, which fluoresce with a wavelength distribution resembling that of an ordered planar β-phase. Among the coatings prepared in this work, those with a ratio PFO/P(7) of 50/50 are the ones with the strongest chain confinement and the highest surface roughness, being highly emissive at the β-phase wavelengths and also superhydrophobic. Depending on the substrate these materials are also tough and flexible (cellulose based substrates) or display a remarkable light transmittance (glass). A final merit of these multifunctional materials is the simplicity of the preparation procedure, adequate for large surfaces and industrial applications. PMID:25747277

  3. Panthenyl triacetate transformation, stimulation of metabolic pathways, and wound-healing properties in the human skin.

    Science.gov (United States)

    Dell'Acqua, Giorgio; Schweikert, Kuno

    2012-01-01

    Vitamin B5 and its derivatives are well known in personal care applications and are often used in wound healing and soothing compositions. However, little is known about the biochemical pathways involved. A better knowledge of these pathways would help to understand some of the mechanisms of action and suggest further applications. We have investigated the transformation of D-panthenyl triacetate (PTA) into D-panthenol (PAN) and its skin diffusion on human volunteers by Raman spectroscopy. Additionally, we have utilized human skin biopsies and quantitative RT-PCR to demonstrate the effect of PTA compared to PAN on 27 metabolic markers when introduced at 2% in a cosmetic emulsion. Then we conducted a double-blind clinical study to measure the effect of PTA compared to PAN on wound healing, measured by transepidermal water loss (TEWL), when incorporated at 3% in a cosmetic emulsion. Results show de-acetylation of PTA into PAN and an increased activity of PTA compared to PNA over time in the skin. Metabolic marker analysis demonstrates stimulation of energetic pathways such as glycolysis and the citric acid cycle, but also of synthesis pathways such as isoprenoids and lipid synthesis, by PTA and PAN. Finally, the clinical study demonstrates a statistically significant effect by PTA on wound healing after 72 hours when compared to a saline treatment. Statistical significance was not achieved by PAN or a placebo treatment. Due to the differences between PTA and PAN action, different applications in personal care products can be suggested. Moreover, PTA seems more effective than PAN for a long-lasting wound healing action. PMID:22487447

  4. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  5. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N2 atmosphere, at temperatures up to 900 oC, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  6. EXAMINATION OF THE SURFACE FREE ENERGY AND ACID-BASE PROPERTIES OF CELLULOSE BY THE COLUMN WICKING TECHNIQUE AND THE CRITICAL PACKING HEIGHT/DENSITY

    Institute of Scientific and Technical Information of China (English)

    Qing Shen; Jian-feng Hu; Qing-feng Gu

    2004-01-01

    The column wicking technique was applied to estimate the surface free energy of cellulose, the importance of which is to obtain a real effective capillary radius, Reff, initially from the plot of Washburn penetration distance versus time.Since the cellulose sample could not be packed with good reproducibility, therefore, Reff can not be obtained readily from the slope of the plot. A method was developed in this paper by uniting all apparent packing heights with a unique value to deduce a real effective capillary radius. Based on the defined critical packing height related to the critical packing density, the surface free energy and acid-base properties of cellulose Sigma C8002 were estimated.

  7. Elaboration d'un composite conducteur a base de polypyrrole et de nanofibres de cellulose

    Science.gov (United States)

    Bideau, Benoit

    Le projet de production de nanocellulose à grande échelle par l'équipe de recherche du professeur Claude Daneault, ne pourra se faire sans avoir démontré sa quelconque utilité sur le marché économique. C'est dans cette optique que s'est articulé mon travail afin de mettre en avant une des voix de valorisation de ces nanocelluloses. Nous avons travaillé plus précisément sur le développement d'un nanocomposite conducteur biodégradable. Nous nous sommes proposé dans ce travail de développer une technique simple et écologique permettant la conception d'un matériau composite conducteur. Nous avons étudié l'influence des nanofibres de cellulose, du pyrrole, de la température, de la durée de polymérisation et l'ajout d'additifs dans le matériau composite. L'étude de ces paramètres nous a permis de déterminer les meilleures conditions pour le développement d'un film composite conducteur avec des propriétés mécaniques acceptables. L'ajout de ce renfort (nanofibres), au sein de la matrice de polypyrrole a permis d'obtenir des films intéressants, de part leurs propriétés mécaniques, électriques et de leur caractère biodégradable. Des comparaisons ont été effectuées avec des fibres oxydées, afin d'étudier l'apport des nanofibres de cellulose au composite. Notre étude a ensuite été élargie à l'ajout d'additifs dans les matériaux conducteurs afin d'améliorer certaines propriétés du composite. L'objectif de ce travail visait l'étude de l'incorporation des nanofibres de cellulose dans une matrice de polypyrrole en vue de son utilisation en tant que matériau conducteur biodégradable pour des applications dans le domaine énergétique. Mots Clés: Nanocellulose, polypyrrole, composite, conducteur, biodégradable, propriétés mécaniques, additifs.

  8. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Xiao, S. Y.; Yang, Y. Q.; Li, M. X.; Wang, F. X.; Chang, Z.; Wu, Y. P.; Liu, X.

    2014-12-01

    A composite polymer membrane is prepared by coating poly(vinylidene fluoride) (PVDF) on the surface of a membrane based on methyl cellulose (MC) which is environmentally friendly and cheap. Its characteristics are investigated by scanning electron microscopy, FT-IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The outer PVDF layers are porous which results in high electrolyte uptake and the lithium ion transference number is much larger than that of the pure MC. Moreover, the cell based on Li//LiFePO4 delivers high discharge capacity and good rate behavior in the range of 4.2-2.5 V when the composite membrane is used as the separator and the host of a gel polymer electrolyte, lithium as the counter and reference electrode, and LiFePO4 as cathode. The obtained results suggest that this unique composite membrane shows great attraction in the lithium ion batteries with high safety and low cost.

  9. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid

    International Nuclear Information System (INIS)

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs

  10. Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose.

    Science.gov (United States)

    Duan, Jianli; Gong, Shanshan; Gao, Yuan; Xie, Xiaolin; Jiang, Lei; Cheng, Qunfeng

    2016-04-27

    Inspired by the nacre, we demonstrated the integrated ternary artificial nacre nanocomposites through synergistic toughening of graphene oxide (GO) and nanofibrillar cellulose (NFC). In addition, the covalent bonding was introduced between adjacent GO nanosheets. The synergistic toughening effects from building blocks of one-dimensional NFC and two-dimensional GO, interface interactions of hydrogen and covalent bonding together result in the integrated mechanical properties including high tensile strength, toughness, and fatigue life as well as high electrical conductivity. These extraordinary properties of the ternary synthetic nacre nanocomposites allow the support for advances in diverse strategic fields including stretchable electronics, transportation, and energy. Such bioinspired strategy also provides a new insight in designing novel multifunctional nanocomposites. PMID:27054460

  11. Rapid Synthesis of Superabsorbent Smart-Swelling Bacterial Cellulose/Acrylamide-Based Hydrogels for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Manisha Pandey

    2013-01-01

    Full Text Available This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC on the physicochemical characteristics and drug release profile of hydrogels synthesized using biopolymers. Superabsorbent hydrogels were synthesized by graft polymerization of acrylamide on BC solubilized in an NaOH/urea solvent system and on dispersed BC by using N,N′-methylenebisacrylamide as a crosslinker under microwave irradiation. Fourier transform infrared spectroscopy analysis of the resulting hydrogels confirmed the grafting, and an X-ray diffraction pattern showed a decrease in the crystallinity of BC after the grafting process. The hydrogels exhibited pH and ionic responsive swelling behavior, with hydrogels prepared using solubilized BC (SH having higher swelling ratios. Furthermore, compared to the hydrogels synthesized using dispersed BC, the hydrogels synthesized using solubilized BC showed higher porosity, drug loading efficiency, and release. These results suggest the superiority of the hydrogels prepared using solubilized BC and that they should be explored further for oral drug delivery.

  12. A ferrocene-mediated anti-interfering glucose biosensor based on glutin and cellulose acetate

    Institute of Scientific and Technical Information of China (English)

    Wu Baoyan; Li Jing; Shi Haibin; Huang Jiadong; Anzai Jun-ichi; Osa Tetsuo; Chen Qiang

    2006-01-01

    A ferrocene-mediated glucose biosensor removing interference of ascorbic acid and uric acid was developed by coating of ferrocene, glutin and cellulose acetate on screen-printed gold electrode surface. The results show that it can detect glucose sensitively in the presence of uric acid and ascorbic acid, and also suppress the leakage velocity of ferrocene. Compared to the currents of the pretreated electrode, it decreases the current of uric acid and ascorbic acid by 99.4% and 98.8% at 400 mV, respectively, with a dynamic range of 0~30 mM for glucose, sensitivity of 30.73 nA/mM, response time of 10s, and correlation coefficient of 0.998 8.

  13. Study of the ionic conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Samsudin, A. S.; Isa, M. I. N. [Universiti Malaysia Terengganu, Terengganu (Mali)

    2014-11-15

    Biodegradable carboxymethyl cellulose (CMC) doped with various compositions of NH{sub 4}Br biopolymer electrolytes (BE) were successfully prepared via a solution-cast technique. The ionic conductivity for the CMC-NH{sub 4}Br BE system was measured by using impedance spectroscopy, and the highest ambient temperature conductivity was observed to be 1.12 x 10{sup -4} S cm{sup -1} for the sample containing 25-wt.% NH{sub 4}Br. The temperature dependence of the ionic conductivity revealed that the BE system followed an Arrhenius behavior. Jonscher's universal power law was applied to analyze the AC conductivity of the highest conducting sample in the BE system, and the results indicate that the conduction is due to small polaron hopping (SPH) caused by a non-adiabatic mechanism.

  14. Study of the ionic conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes

    International Nuclear Information System (INIS)

    Biodegradable carboxymethyl cellulose (CMC) doped with various compositions of NH4Br biopolymer electrolytes (BE) were successfully prepared via a solution-cast technique. The ionic conductivity for the CMC-NH4Br BE system was measured by using impedance spectroscopy, and the highest ambient temperature conductivity was observed to be 1.12 x 10-4 S cm-1 for the sample containing 25-wt.% NH4Br. The temperature dependence of the ionic conductivity revealed that the BE system followed an Arrhenius behavior. Jonscher's universal power law was applied to analyze the AC conductivity of the highest conducting sample in the BE system, and the results indicate that the conduction is due to small polaron hopping (SPH) caused by a non-adiabatic mechanism.

  15. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products

    Energy Technology Data Exchange (ETDEWEB)

    Benítez-Guerrero, Mónica, E-mail: monica_benitez_guerrero@yahoo.es [Departamento de Ingeniería Civil, Materiales y Fabricación, Universidad de Málaga, Escuela de Ingenierías, C/ Dr. Ortiz Ramos s/n, Campus Teatinos, 29071 Málaga (Spain); López-Beceiro, Jorge [Departamento de Ingeniería Industrial II, Escola Politécnica Superior, Universidade da Coruña, Avda. Mendizábal, 15403 Ferrol (Spain); Sánchez-Jiménez, Pedro E. [Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C/ Américo Vespucio 49, 41092 Sevilla (Spain); Pascual-Cosp, José [Departamento de Ingeniería Civil, Materiales y Fabricación, Universidad de Málaga, Escuela de Ingenierías, C/ Dr. Ortiz Ramos s/n, Campus Teatinos, 29071 Málaga (Spain)

    2014-04-01

    Highlights: • Thermal decomposition of sisal fibers has been discussed. • Decompositions of lignocellulosic components and sisal are compared by TXRD and TG-FTIR. • Hot washing reduces the temperature range in which sisal decomposition occurs. • Sisal cellulose decomposition goes by an alternative route to levoglucosan generation. - Abstract: This paper presents in a comprehensive way the thermal behavior of natural and hot-washed sisal fibers, based on the fundamental components of lignocellulosic materials: cellulose, xylan and lignin. The research highlights the influence exerted on the thermal stability of sisal fibers by other constituents such as non-cellulosic polysaccharides (NCP) and mineral matter. Thermal changes were investigated by thermal X-ray diffraction (TXRD), analyzing the crystallinity index (%Ic) of cellulosic samples, and by simultaneous thermogravimetric and differential thermal analysis coupled with Fourier-transformed infrared spectrometry (TG/DTA-FTIR), which allowed to examine the evolution of the main volatile compounds evolved during the degradation under inert and oxidizing atmospheres. The work demonstrates the potential of this technique to elucidate different steps during the thermal decomposition of sisal, providing extensible results to other lignocellulosic fibers, through the analysis of the evolution of CO{sub 2}, CO, H{sub 2}O, CH{sub 4}, acetic acid, formic acid, methanol, formaldehyde and 2-butanone, and comparing it with the volatile products from pyrolysis of the biomass components. The hydroxyacetaldehyde detected during pyrolysis of sisal is indicative of an alternative route to that of levoglucosan, generated during cellulose pyrolysis. Hot-washing at 75 °C mostly extracts non-cellulosic components of low decomposition temperature, and reduces the range of temperature in which sisal decomposition occurs, causing a retard in the pyrolysis stage and increasing Tb{sub NCP} and Tb{sub CEL}, temperatures at the

  16. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products

    International Nuclear Information System (INIS)

    Highlights: • Thermal decomposition of sisal fibers has been discussed. • Decompositions of lignocellulosic components and sisal are compared by TXRD and TG-FTIR. • Hot washing reduces the temperature range in which sisal decomposition occurs. • Sisal cellulose decomposition goes by an alternative route to levoglucosan generation. - Abstract: This paper presents in a comprehensive way the thermal behavior of natural and hot-washed sisal fibers, based on the fundamental components of lignocellulosic materials: cellulose, xylan and lignin. The research highlights the influence exerted on the thermal stability of sisal fibers by other constituents such as non-cellulosic polysaccharides (NCP) and mineral matter. Thermal changes were investigated by thermal X-ray diffraction (TXRD), analyzing the crystallinity index (%Ic) of cellulosic samples, and by simultaneous thermogravimetric and differential thermal analysis coupled with Fourier-transformed infrared spectrometry (TG/DTA-FTIR), which allowed to examine the evolution of the main volatile compounds evolved during the degradation under inert and oxidizing atmospheres. The work demonstrates the potential of this technique to elucidate different steps during the thermal decomposition of sisal, providing extensible results to other lignocellulosic fibers, through the analysis of the evolution of CO2, CO, H2O, CH4, acetic acid, formic acid, methanol, formaldehyde and 2-butanone, and comparing it with the volatile products from pyrolysis of the biomass components. The hydroxyacetaldehyde detected during pyrolysis of sisal is indicative of an alternative route to that of levoglucosan, generated during cellulose pyrolysis. Hot-washing at 75 °C mostly extracts non-cellulosic components of low decomposition temperature, and reduces the range of temperature in which sisal decomposition occurs, causing a retard in the pyrolysis stage and increasing TbNCP and TbCEL, temperatures at the maximum mass loss rate of non-cellulosic

  17. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.

    Science.gov (United States)

    Cao, Bobo; Du, Jiuyao; Du, Dongmei; Sun, Haitao; Zhu, Xiao; Fu, Hui

    2016-09-20

    Cellulose dissolution mechanism in acetate-based ionic liquids was systematically studied in Nuclear Magnetic Resonance (NMR) spectra and Density Functional Theory (DFT) methods by using cellobiose and 1-butyl-3-methylimidazolium acetate (BmimAc) as a model system. The solubility of cellulose in ionic liquid increased with temperature increase in the range of 90-140°C. NMR spectra suggested OAc(-) preferred to form stronger hydrogen bonds with hydrogen of hydroxyl in cellulose. Electrostatic potential method was employed to predict the most possible reaction sites and locate the most stable configuration. Atoms in molecules (AIM) theory was used to study the features of bonds at bond critical points and the variations of bond types. Simultaneously, noncovalent interactions were characterized and visualized by employing reduced density gradient analysis combined with Visual Molecular Dynamics (VMD) program. Natural bond orbital (NBO) theory was applied to study the noncovalent nature and characterize the orbital interactions between cellobiose and Bmim[OAc]. PMID:27261759

  18. An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment

    International Nuclear Information System (INIS)

    In this study, thermo-environmental sustainability of an oil palm-based biorefinery concept for the co-production of cellulosic ethanol and phytochemicals from oil palm fronds (OPFs) was evaluated based on exergetic life cycle assessment (ExLCA). For the production of 1 tonne bioethanol, the exergy content of oil palm seeds was upgraded from 236 MJ to 77,999 MJ during the farming process for OPFs production. Again, the high exergy content of the OPFs was degraded by about 62.02% and 98.36% when they were converted into cellulosic ethanol and phenolic compounds respectively. With a total exergy destruction of about 958,606 MJ (internal) and 120,491 MJ (external or exergy of wastes), the biorefinery recorded an overall exergy efficiency and thermodynamic sustainability index (TSI) of about 59.05% and 2.44 per tonne of OPFs' bioethanol respectively. Due to the use of fossil fuels, pesticides, fertilizers and other toxic chemicals during the production, the global warming potential (GWP = 2265.69 kg CO2 eq.), acidification potential (AP = 355.34 kg SO2 eq.) and human toxicity potential (HTP = 142.79 kg DCB eq.) were the most significant environmental impact categories for a tonne of bioethanol produced in the biorefinery. The simultaneous saccharification and fermentation (SSF) unit emerged as the most exergetically efficient (89.66%), thermodynamically sustainable (TSI = 9.67) and environmentally friendly (6.59% of total GWP) production system. -- Highlights: • Thermo-environmental sustainability of palm-based biorefinery was assessed. • OPFs' exergy content was degraded when converted into bioethanol and phytochemicals. • Exergy efficiency (59.05%) and TSI (2.44) were recorded for the biorefinery • Global warming potential of 2265.6 kg CO2 eq. was recorded for the whole biorefinery

  19. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents.

    Science.gov (United States)

    Jin, Chunde; Han, Shenjie; Li, Jingpeng; Sun, Qingfeng

    2015-06-01

    Cellulose-based aerogel (CBA) was prepared from waste newspaper (WNP) without any pretreatment using 1-allyl-3-methyimidazolium chloride (AmImCl) as a solvent via regeneration and an environmentally friendly freeze-drying method. After being treated with trimethylchlorosilane (TMCS) via a simple thermal chemical vapor deposition process, the resulting CBAs were rendered both hydrophobic and oleophilic. Successful silanization on the surface of the porous CBA was verified by a variety of techniques including scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and water contact angle (WCA) measurements. As a result, the silane-coated, interconnected CBAs not only exhibited good absorption performance for oils (e.g., waste engine oil), but also showed absorption capacity for organic solvents such as chloroform (with a representative weight gain ranging from 11 to 22 times of their own dry weight), making them diversified absorbents for potential applications including sewage purification. PMID:25843846

  20. Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose.

    Science.gov (United States)

    Chen, Ying-Chen; Ho, Hsiu-O; Liu, Der-Zen; Siow, Wen-Shian; Sheu, Ming-Thau

    2015-01-01

    The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug's release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics. PMID:25617891

  1. Polymorphy in native cellulose: recent developments

    International Nuclear Information System (INIS)

    In a number of earlier studies, the authors developed a model of cellulose structure based on the existence of two stable, linearly ordered conformations of the cellulose chain that are dominant in celluloses I and II, respectively. The model rests on extensive Raman spectral observations together with conformational considerations and solid-state 13C-NMR studies. More recently, they have proposed, on the basis of high resolution solid-state 13C-NMR observations, that native celluloses are composites of two distinct crystalline forms that coexist in different proportions in all native celluloses. In the present work, they examine the Raman spectra of the native celluloses, and reconcile their view of conformational differences with the new level of crystalline polymorphy of native celluloses revealed in the solid-state 13C-NMR investigations

  2. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. PMID:24702940

  3. New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods.

    Science.gov (United States)

    Garavand, Ali; Dadkhah Tehrani, Abbas

    2016-11-01

    Organic-inorganic functional hybrid materials play a major role in the development of advanced functional materials and recently have gained growing interest of the worldwide community. In this context, new hybrid organic-inorganic gel consisting of cellulose nanowhisker xanthate (CNWX) and S-H functionalized polypseudorotaxane (PPR) as organic parts of gel and gold nanorods (GNRs) as inorganic cross-linking agent were prepared. Firstly, thiolated α-cyclodextrin (α-CD-SH) was threaded onto poly-(ethylene glycol) bis (mercaptoethanoate ester) (PEG-SH) to give polypseudorotaxane (PPR) and then it reacted with GNRs in the presence of CNWX to give the new hybrid gel material. The new synthesized gel and its components characterized by spectroscopic measurement methods such as FT-IR, UV-vis and NMR spectroscopy. Interestingly, hybrid gel showed new polygonal plate like morphology with 45-60nm thickness and 400-600nm width. The obtained gel may have potential application in many fields especially in biomedical applications. PMID:27516265

  4. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    Science.gov (United States)

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. PMID:26794757

  5. Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes

    Science.gov (United States)

    Isa, M. I. N.; Noor, N. A. M.

    2015-12-01

    In this paper, a proton conducting solid biopolymer electrolytes (SBE) comprises of carboxymethyl cellulose (CMC) as polymer host, ammonium thiocyanate (NH4SCN) as doping salt and ethylene carbonate (EC) as plasticizer has been prepared via solution casting technique. Electrical Impedance Spectroscopy (EIS) was carried out to study the conductivity and electrical properties of plasticized CMC-NH4SCN SBE system over a wide range of frequency between 50 Hz and 1 MHz at temperature range of 303 to 353 K. Upon addition of plasticizer into CMC-NH4SCN SBE system, the conductivity increased from 10-5 to 10-2 Scm-1. The highest conductivity was obtained by the electrolyte containing 10 wt.% of EC. The conductivity of plasticized CMC-NH4SCN SBE system by various temperatures obeyed Arrhenius law where the ionic conductivity increased as the temperature increased. The activation energy, Ea was found to decrease with enhancement of EC concentration. Dielectric studies for the highest conductivity electrolyte obeyed non-Debye behavior. The conduction mechanism for the highest conductivity electrolyte was determined by employing Jonsher's universal power law and thus, can be represented by the quantum mechanical tunneling (QMT) model.

  6. Interactions of cellulose-based comb polyelectrolyte with oppositely charged surfactant dodecyl-trimethylammonium bromide.

    Science.gov (United States)

    Pan, Hong; Chen, Pei-Yao; Liu, Hai-Xue; Chen, Yu; Wei, Yu-Ping; Zhang, Ming-Jie; Cheng, Fa

    2012-07-01

    A comb ethyl cellulose-g-sodium polyacrylate (EC-g-SPA) was synthesized by atom transfer radical polymerization. The amphiphilic properties of the EC-g-SPA were determined by surface tension measurements. The interactions between EC-g-SPA and the cationic surfactant dodecyl-trimethylammonium bromide (C12TAB) were investigated by surface tension, turbidity, dynamic light scattering and transmission electron microscopy (TEM). The results revealed that the critical aggregate concentration (CAC) of the complexes was 0.8mM. When the C12TAB concentration was lower than the CAC, the hydrodynamic diameter (Dh) of the complexes decreased as the surfactant concentration was increased. As the C12TAB concentration was increased above the CAC, the Dh initially increased slightly, followed by a sharp decrease. The changes in the sizes and shapes of the aggregates were studied by TEM. The interactions between two species and the structure of the EC-g-SPA/C12TAB complexes were also discussed. PMID:24750878

  7. Bacterial cellulose/boehmite composites

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. UNESP. Instituto de Quimica de Araraquara, SP (Brazil); Caiut, Jose Mauricio A. [Universidade de Sao Paulo. Departamento de Quimica - FFCLRP/USP, Ribeirao Preto, SP (Brazil)

    2011-07-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  8. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  9. 21 CFR 177.1400 - Hydroxyethyl cellulose film, water-insoluble.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxyethyl cellulose film, water-insoluble. 177... cellulose film, water-insoluble. Water-insoluble hydroxyethyl cellulose film may be safely used for... cellulose film consists of a base sheet manufactured by the ethoxylation of cellulose under...

  10. Cultivation and utilization of specific wood biomass for synthesis of cellulose based bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fara, L.; Comaneci, D. [Polytechnic Univ. of Bucharest, Bucharest (Romania). Faculty of Applied Sciences; Cincu, C.; Hubca, G.; Zaharia, C.; Diacon, A. [Polytechnic Univ. of Bucharest, Bucharest (Romania). Faculty of Applied Chemistry; Filat, M.; Chira, D. [Forest Research and Management Inst., Ilfov (Romania); Nutescu, C. [National Wood Inst., Bucharest (Romania); Fara, S. [Inst. for Research and Design of Automation, Bucharest (Romania)

    2010-07-01

    The energetic characteristics of 6 types of poplar clones cultivated for different pedoclimatic conditions in Romania were determined. Four clones were developed in Italy and 2 in Romania. Five experimental cultures were used to analyze the plant survival rate and biomass production rate. After 2 years of study, the Italian clones were found to have very good adaptability to the pedoclimatic conditions in Romania in comparison with local clones. The Italian clones Monviso and AF-6 registered the most substantial growths and the highest resistance to disease. Bioethanol was synthesized by acidic hydrolysis of the cellulose using 2 approaches. In the first approach the lignocellulosic raw material was hydrolyzed with diluted sulfuric acid at 50 degrees C for 24 hours. After filtration, the solid residue was treated with 30 per cent H{sub 2}SO{sub 4} at 100 degrees C for 6 hours. The resulting solutions were neutralized with Ca(OH){sub 2} following another filtration and the resulted solution with pH 6.5 was subjected to fermentation with Saccharomices Cerevisiae. In the second approach the lignocellulosic raw material was subjected to hydrolysis with 10 per cent H{sub 2}SO{sub 4} at 100 degrees C for 4 hours. After filtration, the solid residue was hydrolyzed with 30 per cent H{sub 2}SO{sub 4} at 100 degrees for 6 hours. The solution was neutralized with Ca(OH){sub 2} and subjected to alcoholic fermentation with Saccharomices Cerevisiae. The fermentation took place at 25 degrees C for 72 hours. The results for the two methods were similar.

  11. A thermodynamic investigation of the cellulose allomorphs: Cellulose(am), cellulose Iβ(cr), cellulose II(cr), and cellulose III(cr)

    International Nuclear Information System (INIS)

    enthalpies of reactionΔrHw∘∗, the standard massic entropies of reaction ΔrSw∘∗, the standard massic Gibbs free energies of reaction ΔrGw∘∗, and the standard massic heat capacity ΔrCp,w∘, for the interconversion reactions of the pure (CI = 100) cellulose allomorphs, i.e., cellulose(am), cellulose I(cr), cellulose II(cr), and cellulose II(cr), at the temperature T = 298.15 K, the pressure p∘ = 0.1 MPa, and wH2O = 0.073. The “∗” denotes that the thermodynamic property pertains to pure cellulose allomorphs. Values of standard massic enthalpy differences Δ0THw∘, standard massic entropy differences Δ0TSw∘, and the standard massic thermal function Φw∘=Δ0TSw∘-Δ0THw∘/T were calculated from the measured heat capacities for the cellulose samples and for the pure cellulose allomorphs. The extensive literature pertinent to the thermodynamic properties of cellulose has been summarized and, in many cases, property values have been calculated or recalculated from previously reported data. The thermodynamic property data show that cellulose(am) is the least stable of the cellulose allomorphs considered in this study. However, due to the uncertainties in the measured property values, it is not possible to use these values to order the relative stabilities of the cellulose (I, II, and III) crystalline allomorphs with a reasonable degree of certainty. Nevertheless, based on chemical reactivity information, the qualitative order of stability for these three allomorphs is cellulose III(cr) > cellulose II(cr) > cellulose Iβ(cr) at T = 298.15 K. However, as evidenced by the fact that cellulose I(cr) can be reformed by the application of heat and water to a sample of cellulose III(cr), the differences in the stabilities of these three allomorphs appear to be small and may be temperature dependent. Standard thermodynamic formation properties as well as property values for the conversion reactions of the cellulose allomorphs to α-D-glucose(cr) have been

  12. Cellulose biosynthesis in Acetobacter xylinum

    International Nuclear Information System (INIS)

    Time-lapse video microscopy has shown periodic reversals during the synthesis of cellulose. In the presence of Congo Red, Acetobacter produces a band of fine fibrils. The direction of cell movement is perpendicular to the longitudinal axis of cell, and the rate of movement was decreased. A linear row of particles, presumably the cellulose synthesizing complexes, was found on the outer membrane by freeze-fracture technique. During the cell cycle, the increase of particles in linear row, the differentiation to four linear rows and the separation of the linear rows have been observed. A digitonin-solubilized cellulose synthase was prepared from A. xylinum, and incubated under conditions known to lead to active in vitro synthesis of 1,4-β-D-glucan polymer. Electron microscopy revealed that clusters of fibrils were assembled within minutes. Individual fibrils are 17 ± 2 angstroms in diameter. Evidence for the cellulosic composition of newly synthesized fibrils was based on incorporation of tritium from UDP-[3H] glucose binding of gold-labeled cellobiohydrolase, and an electron diffraction pattern identified as cellulose II polymorph instead of cellulose I

  13. Improved Cellulose and Organic-Solvents based Lignocellulosic Fractionation Pre-treatment of Organic Waste for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Valeriy Bekmuradov

    2014-06-01

    Full Text Available This study investigates the performance of the Cellulose and Organic-Solvents based Lignocellulosic Fractionation (COSLIF method for the pretreatment of Source-Separated Organic (SSO waste. An improvement on the standard method of COSLIF pre-treatment was developed based on lower enzyme loading and using an ethanol washing instead of acetone. It was demonstrated that a much higher glucose yield (90% after 72 hours was possible with this improvement, as compared to the original method, which yielded 70% in the same time frame. Evaluation of the enzymatic hydrolysate obtained from the modified COSLIF pretreatment was further examined by anaerobic fermentation with Zymomonas mobilis 8b strain. At 48 hours, ethanol concentration reached to 140 g/L, which is equivalent to 0.48 g of ethanol produced per gram of SSO biomass. This study demonstrated that the modified COSLIF pretreatment provides a substantial improvement over the standard method in terms of enzyme savings, glucose formation, and ethanol production.

  14. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.

    Science.gov (United States)

    Saarikoski, Eve; Rissanen, Marja; Seppälä, Jukka

    2015-03-30

    Enzymatically treated cellulose was dissolved in a NaOH/ZnO solvent system and mixed together with microfibrillated cellulose (MFC) in order to find the threshold in which MFC fibers form a percolation network within the dissolved cellulose solution and in order to improve the properties of regenerated cellulose films. In the aqueous state, correlations between the rheological properties of dissolved cellulose/MFC blend suspensions and MFC fiber concentrations were investigated and rationalized. In addition, rheological properties of diluted MFC suspensions were characterized and a correlation with NaOH concentration was found, thus partly explaining the flow properties of dissolved cellulose/MFC blend suspensions. Finally, based on results from Dynamic Mechanical Analysis (DMA), MFC addition had strengthening/plasticizing effect on regenerated cellulose films if low concentrations of MFC, below the percolation threshold (5.5-6 wt%, corresponding to 0.16-0.18 wt% of MFC in the blend suspensions), were used. PMID:25563945

  15. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)

    Science.gov (United States)

    Faraji, Sheida; Danesh, Ehsan; Tate, Daniel J.; Turner, Michael L.; Majewski, Leszek A.

    2016-05-01

    Low voltage organic field-effect transistors (OFETs) using solution-processed cyanoethyl cellulose (CEC) and CEC-based nanocomposites as the gate dielectric are demonstrated. Barium strontium titanate (BST) nanoparticles are homogeneously dispersed in CEC to form the high-k (18.0  ±  0.2 at 1 kHz) nanocomposite insulator layer. The optimised p-channel DPPTTT OFETs with BST-CEC nanocomposite as the gate dielectric operate with minimal hysteresis, display field-effect mobilities in excess of 1 cm2 V‑1 s‑1 at 3 V, possess low subthreshold swings (132  ±  8 mV dec‑1), and have on/off ratios greater than 103. Addition of a 40–50 nm layer of cross-linked poly(vinyl phenol) (PVP) on the surface of the nanocomposite layer significantly decreases the gate leakage current (<10‑7 A cm‑2 at  ±3 V) and the threshold voltage (<  ‑0.7 V) enabling operation of the OFETs at 1.5 V. The presented bilayer BST-CEC/PVP dielectrics are a promising alternative for the fabrication of low voltage, solution-processed OFETs that are suitable for use in low power, portable electronics.

  16. Exploring the potential of polacrilin potassium as a novel superdisintegrant in microcrystalline cellulose based pellets prepared by extrusion-spheronization

    Directory of Open Access Journals (Sweden)

    Amita K Joshi

    2011-01-01

    Full Text Available Polacrilin potassium (PP, an ion exchange resin, was used as a superdisintegrant to improve the dissolution of rifampicin, from microcrystalline cellulose (MCC based pellets prepared by extrusion-spheronization. Production of fast release pellets by extrusion-spheronization using MCC is a complicated process. In the present study, pellets were prepared containing 50% w/w rifampicin (BCS class II drug and 40% w/w MCC as extrusion-spheronization aid. Different levels of PP and lactose ratio investigated were 0:10, 2:8, 4:6, 6:4, 8:2, and 10:0. Pellets were evaluated for yield, size, size distribution, shape, porosity, friability, residual moisture, and dissolution efficiency (DE at 30 minutes. Incorporation of this novel superdisintegrant had no adverse effect on the mechanical and micromeritic characteristics of pellets. All the batches of pellets showed high yields′, ~90%; narrow particle size distribution; aspect ratio, 1.0-1.1; friability, <1%; and porosity, 45.51-49.84%. Dissolution profiles were compared using model-independent approaches; DE and similarity factor, f 2 . Addition of Polacrilin results in significant improvement in the DE of rifampicin. The dissolution profiles were significantly different from the dissolution profile of pellets formulated without PP. This preliminary study indicates that PP can serve as an effective superdisintegrant in MCC pellets prepared by extrusion-spheronization.

  17. One-pot synthesis of magnetic hybrid materials based on ovoid-like carboxymethyl-cellulose/cetyltrimethylammonium-bromide templates

    International Nuclear Information System (INIS)

    A novel one-pot synthetic procedure to obtain magnetic hybrid nanostructured materials (HNM), based on magnetic spinel-metal-oxide (SMO) nanoparticles stabilized in ovoid-like carboxymethyl-cellulose (CMC)/cetyltrimethylammonium-bromide (CTAB) templates, is reported. The HNM were synthesized from the controlled hydrolysis of inorganic salts of Fe (II) and Fe (III) into aqueous dissolutions of CMC and CTAB. The synthesized HNM were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and static magnetic measurements. The experimental evidence suggests that, due to the competition between CTAB molecules and SMO nanoparticles to occupy CMC intermolecular sites nearby to its carboxylate functional groups, the size of both, SMO nanoparticles and ovoid-like CMC/CTAB templates can be tuned, varying the CTAB:SMO weight ratio. Moreover, it was found that the magnetic response of the HNM depends on the confinement degree of the SMO nanoparticles into the CMC/CTAB template. Hence, their magnetic characteristics can be adjusted controlling the size of the template, the quantity and distribution of the SMO nanoparticles within the template and their size. - Graphical abstract: Display Omitted - Highlights: • The synthesis of magnetic hybrid materials is reported. • The hybrid materials were synthesized following a novel one-pot procedure. • The magnetic nanoparticles were stabilized in ovoid-like templates. • The size of the templates was tuned adjusting nanoparticles weight content. • The magnetic properties of hybrid materials depend on the size of the template

  18. Edible Coating for Shelf-Life Extension of Fresh Banana Fruit Based on Gamma Irradiated Plasticized Poly(vinyl alcohol)/Carboxymethyl Cellulose/Tannin Composites

    OpenAIRE

    Magdy M. H. Senna; Al-Shamrani, Khalid M.; Abdullah S. Al-Arifi

    2014-01-01

    The interest in the development of edible and biodegradable films has increased because it is every day more evident that non-degradable materials are doing much damage to the environment. Blends based on different ratios of plasticized poly(vinyl alcohol) (PVA), carboxymethyl cellulose (CMC) and Tannin compound were prepared by solution casting in the form of thin films. Then the blend films were exposed to different doses of gamma radiation. First, the effect of gamma irradiation and t...

  19. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem.

    Science.gov (United States)

    Li, Meng; Wang, Jun; Yang, Yuezhou; Xie, Guanghui

    2016-05-01

    Jerusalem artichoke (JA) has been known as a potential nonfood feedstock for biofuels. Based on systems analysis of total 59 accessions, both soluble sugar and ash could positively affect biomass digestibility after dilute sodium hydroxide pretreatment (A). In this study, one representative accession (HEN-3) was used to illustrate its enzymatic digestibility with pretreatments of ultrasonic-assisted dilute sodium hydroxide (B), alkaline peroxide (C), and ultrasonic-assisted alkaline peroxide (D). Pretreatment D exhibited the highest hexose release rate (79.4%) and total sugar yield (10.4g/L), which were 2.4 and 2.6 times higher, respectively, than those of the control. The analysis of cellulose crystalline index (CrI), cellulose degree of polymerization (DP), thermal behavior and SEM suggested that alkali-based pretreatments could distinctively extract lignin and pectin polymers, leading to significant alterations of cellulose CrI and DP for high biomass saccharification. Additionally, hydrogen peroxide (H2O2) could significant reduce the generation of fermentation inhibitors during alkali-based pretreatments. PMID:26918836

  20. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    Science.gov (United States)

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-02-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied.

  1. Application and Mechanism Study of NMMO Technology-based Natural Cellulose Membrane%NMMO工艺天然纤维素膜的应用及机理研究

    Institute of Scientific and Technical Information of China (English)

    李冬娜; 马晓军

    2013-01-01

    The preparation method and research progress of NMMO technology-based cellulose membrane at home and abroad are discussed, the application of NMMO technology-based cellulose membrane in different fields is introduced, the dissolution mechanism and film-forming mechanism of cellulose membrane are analyzed, and the application prospect of NMMO technology-based cellulose membrane is pointed out.%  论述了NMMO工艺纤维素膜的制备方法及在国内外的研究进展,介绍了NMMO工艺纤维素膜在不同领域的应用现状,分析了纤维素膜的溶解机理及成膜机理,指出了NMMO工艺纤维素膜的应用前景。

  2. Microbial Cellulose Assembly in Microgravity

    Science.gov (United States)

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  3. Anti-crease finishing of cotton fabrics based on crosslinking of cellulose with acryloyl malic acid

    OpenAIRE

    Qi, H.; Huang, Y.; Ji, B.; Sun, G.; Qing, FL; Hu, C.; Yan, K.

    2016-01-01

    © 2015 Published by Elsevier Ltd. Maleic acid (MA) has been explored to replace formaldehyde-based dimethylol dihydroxy ethylene urea (DMDHEU) for cotton anti-crease finishing. However, the resilience of treated fabrics was not satisfactorily improved. In this study, acryloyl malic acid (AMA) was synthesized and applied on fabrics as a novel crosslinking agent. The results showed that both crease recovery angle and whiteness index of treated samples were higher than those of MA in the presenc...

  4. Potential Cellulosic Ethanol Production from Organic Residues of Agro-Based Industries in Nepal

    OpenAIRE

    Ram Kailash P. Yadav; Arbindra Timilsina; Rupesh K. Yadawa; Pokhrel, Chandra P.

    2014-01-01

    With the objective of exploring the potential of bioethanol production from lignocellulosic wastes from major agro-based industries in Nepal, four types of major industries using raw materials from agriculture are selected as sources of lignocellulosic residues. They include a sugar industry, a paper industry, a tobacco industry, and a beer industry. Data from secondary/primary sources were used to record organic residues from these industries and estimates were made of potential production o...

  5. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    OpenAIRE

    Sriburi Pensiri; Wongruong Sasitorn; Mauer Lisa J; Tongdeesoontorn Wirongrong; Rachtanapun Pornchai

    2011-01-01

    Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v) based films plasticized with glycerol (30 g/100 g starch) were characterized with respect to the effect of carboxymethyl cellu...

  6. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  7. Review: current international research into cellulose nanofibres and nanocomposites

    OpenAIRE

    Eichhorn, S. J.; Dufresne, A; Aranguren, M.; Marcovich, N. E.; Capadona, J R; Rowan, S. J.; Weder, Christoph; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.

    2010-01-01

    This paper provides an overview of recent progress made in the area of cellulose nanofibre-based nanocomposites. An introduction into the methods used to isolate cellulose nanofibres (nanowhiskers, nanofibrils) is given, with details of their structure. Following this, the article is split into sections dealing with processing and characterisation of cellulose nanocomposites and new developments in the area, with particular emphasis on applications. The types of cellulose nanofibres covered a...

  8. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode

    Science.gov (United States)

    Mashuni; Ramadhan, L. O. A. N.; Jahiding, M.; Herniati

    2016-02-01

    Biosensor for analysis of diazinon pesticide using Potentiometric transducer has been developed. The basic element of this biosensor was a gold electrode modified with an immobilized acetylcholinesterase enzyme layer formed by entrapment with glutaraldehyde crosslinked-cellulose acetate. The aim of the research is to determine the composition of glutaraldehyde crosslinked-cellulose acetate in the gold electrode which provide optimum performance of biosensors of diazinon pesticide analysis on characterization include a range of working concentration, sensitivity, and detection limit. The results showed the composition of the cellulose acetate 15% and glutaraldehyde 25% that obtain optimum performance in the measurement of diazinon pesticide with a range of working concentration of 10-6 ppm to 1 ppm, the value of sensitivity 20.275 mV/decade and detection limit 10-6 ppm. The use of cellulose acetate provides highly sensitive devices allowing the efficient analysis of pesticides. The response time of electrode is on the measurement of pesticide diazinon with concentration variation of 10-6 ppm to 1 ppm with response time is about 5 minutes.

  9. Transport Selectivity of a Diethylene Glycol Dimethacrylate-Based Thymine-imprinted Polymeric Membrane over a Cellulose Support for Nucleic Acid Bases

    Institute of Scientific and Technical Information of China (English)

    QU Xiang-Jin; CHEN Chang-Bao; ZHOU Jie; WU Chun-Hui

    2007-01-01

    The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as a novel functional monomer and diethylene glycol dimethacrylate as a new cross-linker, a specific diethylene glycol dimethacrylate-based molecularly imprinted polymeric membrane was prepared over a cellulose support.Then, the resultantly polymeric membrane morphologies were visualized with scanning electron microscopy and its permselectivity was examined using thymine, uracil, cytosine, adenine and guanine as substrates. This result showed that the imprinting polymeric membrane prepared with diethylene glycol dimethacrylate exhibited higher transport capacity for the template molecule thymine and its optimal analog uracil than other nucleic acid bases. The membrane also took on higher permselectivity than the imprinted membrane made with ethylene glycol dimethacrylate as a cross-linker. When a mixture including five nucleic acid bases thymine, uracil, cytosine, adenine and guanine passed through the diethylene glycol dimethacrylate-based thymine-imprinted polymeric membrane,recognition of the membrane for the template molecule thymine and its optimal analog uracil was demonstrated. It was predicted that the molecularly imprinted membrane prepared with diethylene glycol dimethacrylate as cross-linker might be applicable to thymine assay of absolute hydrolysates of DNA or uracil assay of absolute hydrolysates of RNA in biological samples because of its high selectivity for the template molecule thymine and its optimal analog uracil.

  10. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose IB and cellulose II

    Science.gov (United States)

    The Segal method estimates the amorphous fraction of cellulose IB materials simply based on intensity at 18o 20 in an X-ray diffraction pattern and was extended to cellulose II using 16o 2O intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and th...

  11. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  12. Cellulose synthase interacting protein: A new factor in cellulose synthesis

    OpenAIRE

    Gu, Ying; Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

  13. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II.

    Science.gov (United States)

    Nam, Sunghyun; French, Alfred D; Condon, Brian D; Concha, Monica

    2016-01-01

    The Segal method estimates the amorphous fraction of cellulose Iβ materials simply based on intensity at 18° 2θ in an X-ray diffraction pattern and was extended to cellulose II using 16° 2θ intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and the degree of polymorphic conversion, we simulated the diffraction patterns of cotton celluloses (Iβ and II) and compared the simulated amorphous fractions with the Segal values. The diffraction patterns of control and mercerized cottons, respectively, were simulated with perfect crystals of cellulose Iβ (1.54° FWHM) and cellulose II (2.30° FWHM) as well as 10% and 35% amorphous celluloses. Their Segal amorphous fractions were 15% and 31%, respectively. The higher Segal amorphous fraction for control cotton was attributed to the peak overlap. Although the amorphous fraction was set in the simulation, the peak overlap induced by the increase of FWHM further enhanced the Segal amorphous intensity of cellulose Iβ. For cellulose II, the effect of peak overlap was smaller; however the lower reflection of the amorphous cellulose scattering in its Segal amorphous location resulted in smaller Segal amorphous fractions. Despite this underestimation, the relatively good agreement of the Segal method with the simulation for mercerized cotton was attributed to the incomplete conversion to cellulose II. The (1-10) and (110) peaks of cellulose Iβ remained near the Segal amorphous location of cellulose II for blends of control and mercerized cotton fibers. PMID:26453844

  14. Can Hawaii Meet Its Renewable Fuel Target? Case Study of Banagrass-Based Cellulosic Ethanol

    Directory of Open Access Journals (Sweden)

    Chinh Tran

    2016-08-01

    Full Text Available Banagrass is a biomass crop candidate for ethanol production in the State of Hawaii. This study examines: (i whether enough banagrass can be produced to meet Hawaii’s renewable fuel target of 20% highway fuel demand produced with renewable sources by 2020 and (ii at what cost. This study proposes to locate suitable land areas for banagrass production and ethanol processing, focusing on the two largest islands in the state of Hawaii—Hawaii and Maui. The results suggest that the 20% target is not achievable by using all suitable land resources for banagrass production on both Hawaii and Maui. A total of about 74,224,160 gallons, accounting for 16.04% of the state’s highway fuel demand, can be potentially produced at a cost of $6.28/gallon. Lower ethanol cost is found when using a smaller production scale. The lowest cost of $3.31/gallon is found at a production processing capacity of about 9 million gallons per year (MGY, which meets about 2% of state demand. This cost is still higher than the average imported ethanol price of $3/gallon. Sensitivity analysis finds that it is possible to produce banagrass-based ethanol on Hawaii Island at a cost below the average imported ethanol price if banagrass yield increases of at least 35.56%.

  15. Sepiolite functionalized with N-[3-(trimethoxysilylpropyl]-ethylenediamine triacetic acid trisodium salt. Part I: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    Lazarević Slavica S.

    2015-01-01

    Full Text Available Natural sepiolite from Andrici (Serbia was functionalized by covalent grafting of N-[3-(trimethoxysilylpropyl]ethylenediamine triacetic acid trisodium salt to the Si-OH sepiolite groups. The functionalized material, MSEAS, was characterized by determination of phase composition by X-ray diffraction (XRD analysis, analysis of morphological characteristics by scanning electron microscopy (SEM, using Fourier transform infrared (FTIR spectroscopy, differential thermal analyses (DTA, determination of specific surface areas and pore size distribution using B.E.T. method and point of zero charge (pHpzc determination. The crystal structure of sepiolite does not change significantly upon surface modification. FT-IR and DTA analysis confirmed that the modified sample maintained the basic structure of sepiolite and also the presence of organic groups in functionalized sepiolite sample. The point of zero charge of MSEAS in KNO3 solutions of different concentrations determination by the batch technique from was at pH 7.0 ± 0.1. [Projekat Ministarstva nauke Republike Srbije, br. III 45019, and FP7 NANOTECH FTM No. 245916

  16. Preliminary analysis of cellulose-based ethanol production: pathways and challenges in the Rio Grande do Sul alcohol production

    OpenAIRE

    André Luiz Fialho Blos; Tania Nunes da Silva; Angélica Margarete Magalhães; Roselene de Queiroz Chaves; Omar Inacio Santos Benedetti

    2009-01-01

    The production of ethanol in Brazil has contributed towards the replacement of fossil fuels over the past few years. Among those initiatives, the production of ethanol from cellulose is one of the areas drawing the interest of different research centers in developed countries. Hence, the production of ethanol opens up new perspectives for Brazilian states. In light of this backdrop, this paper aims at characterizing and understanding the state of the art in different technological courses and...

  17. Mechanical reinforcement of Bioglass (R)-based scaffolds by novel polyvinyl-alcohol/microfibrillated cellulose composite coating

    Czech Academy of Sciences Publication Activity Database

    Bertolla, Luca; Dlouhý, Ivo; Philippart, A.; Boccaccini, A. R.

    2014-01-01

    Roč. 118, MAR (2014), s. 204-207. ISSN 0167-577X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : bioactive glass * mechanical properties * scaffolds * cellulose * coatings Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.489, year: 2014

  18. Mechanical, Thermal, and Morphological Properties of Nanocomposites Based on Polyvinyl Alcohol and Cellulose Nanofiber from Aloe vera Rind

    Directory of Open Access Journals (Sweden)

    Adel Ramezani Kakroodi

    2014-01-01

    Full Text Available This work was devoted to reinforcement of polyvinyl alcohol (PVA using cellulose nanofibers from Aloe vera rind. Nanofibers were isolated from Aloe vera rind in the form of an aqueous suspension using chemimechanical technique. Mechanical characterizations showed that incorporation of even small amounts of nanofibers (as low as 2% by weight had significant effects on both the modulus and strength of PVA. Tensile modulus and strength of PVA increased, 32 and 63%, respectively, after adding 2% of cellulose nanofiber from Aloe vera rind. Samples with higher concentrations of nanofibers also showed improved mechanical properties due to a high level of interfacial adhesion and also dispersion of fibers. The results showed that inclusion of nanofibers decreased deformability of PVA significantly. Dynamic mechanical analysis revealed that, at elevated temperatures, improvement of mechanical properties due to the presence of nanofibers was even more noticeable. Addition of nanofibers resulted in increased thermal stability of PVA in thermogravimetric analysis due to the reduction in mobility of matrix molecules. Morphological observations showed no signs of agglomeration of fibers even in composites with high cellulose nanofiber contents. Inclusion of nanofibers was shown to increase the density of composites.

  19. Preparation and Characterization of All-Biomass Soy Protein Isolate-Based Films Enhanced by Epoxy Castor Oil Acid Sodium and Hydroxypropyl Cellulose

    OpenAIRE

    La Wang; Jianzhang Li; Shifeng Zhang; Junyou Shi

    2016-01-01

    All-biomass soy protein-based films were prepared using soy protein isolate (SPI), glycerol, hydroxypropyl cellulose (HPC) and epoxy castor oil acid sodium (ECOS). The effect of the incorporated HPC and ECOS on the properties of the SPI film was investigated. The experimental results showed that the tensile strength of the resultant films increased from 2.84 MPa (control) to 4.04 MPa and the elongation at break increased by 22.7% when the SPI was modified with 2% HPC and 10% ECOS. The increas...

  20. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  1. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices

    KAUST Repository

    Xu, Xuezhu

    2015-04-15

    Currently, most carbon aerogels are based on carbon nanotubes (CNTs) or graphene, which are produced through a catalyst-assisted chemical vapor deposition method. Biomass based organic aerogels and carbon aerogels, featuring low cost, high scalability, and small environmental footprint, represent an important new research direction in (carbon) aerogel development. Cellulose and lignin are the two most abundant natural polymers in the world, and the aerogels based on them are very promising. Classic silicon aerogels and available organic resorcinol-formaldehyde (RF) or lignin-resorcinol-formaldehyde (LRF) aerogels are brittle and fragile; toughening of the aerogels is highly desired to expand their applications. This study reports the first attempt to toughen the intrinsically brittle LRF aerogel and carbon aerogel using bacterial cellulose. The facile process is catalyst-free and cost-effective. The toughened carbon aerogels, consisting of blackberry-like, core-shell structured, and highly graphitized carbon nanofibers, are able to undergo at least 20% reversible compressive deformation. Due to their unique nanostructure and large mesopore population, the carbon materials exhibit an areal capacitance higher than most of the reported values in the literature. This property makes them suitable candidates for flexible solid-state energy storage devices. Besides energy storage, the conductive interconnected nanoporous structure can also find applications in oil/water separation, catalyst supports, sensors, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Degradation of cellulose by basidiomycetous fungi.

    Science.gov (United States)

    Baldrian, Petr; Valásková, Vendula

    2008-05-01

    Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and beta-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups. PMID:18371173

  3. Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis

    Directory of Open Access Journals (Sweden)

    Bojanić Vaso

    2010-01-01

    Full Text Available Optimization of cellulose acrylate synthesis by reaction with sodium cellulosate and acryloyl chloride was carried out. Optimal conditions for conducting the synthesis reaction of cellulose acrylate were as follows: the molar ratio of cellulose/potassium-t-butoxide/acryloyl chloride was 1:3:10 and the optimal reaction time was 10 h. On the basis of elemental analysis with optimal conditions for conducting the reaction of cellulose acrylate, the percentage of substitution of glucose units in cellulose Y = 80.7%, and the degree of substitution of cellulose acrylate DS = 2.4 was determined. The grafting reaction of acrylate vinyl monomers onto cellulose in acetonitrile with initiator azoisobutyronitrile (AIBN in a nitrogen atmosphere was performed, by mixing for 5 h at acetonitrile boiling temperature. Radical copolymerization of synthesized cellulose acrylate and 4-vinylpyridine, 1-vinylimidazole, 1-vinyl-2-pyrrolidinone and 9-vinylcarbazole, cellulose-poly-4-vinylpyridine (Cell-PVP, cellulose-poly-1- vinylimidazole (Cell-PVIm and cellulose-poly-1-vinyl-2-pyrrolidinone (Cell-P1V2P and cellulose-poly-9-vinylcarbazole (Cell-P9VK were synthesized. Acrylate cellulose and cellulose grafted copolymers were confirmed by IR spectroscopy, based on elementary analysis and the characteristics of grafted copolymers of cellulose were determined. The mass share of grafted copolymers, X, the relationship of derivative parts/cellulose vinyl group, Z, and the degree of grafting copolymers of cellulose (mass% were determined. In reaction of methyl iodide and cellulose-poly-4-vinylpyridine (Cell-PVP the cellulose-1-methyl-poly-4-vinylpyridine iodide (Cell-1-Me-PVPJ was synthesized. Cellulose acrylate and grafted copolymers were obtained with better thermal, electrochemical and ion-emulation properties for bonding of noble metals Au, Pt, Pd from water solutions. The synthesis optimization of cellulose acrylate was applied as a model for the synthesis of grafted

  4. Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning.

    Science.gov (United States)

    Sehaqui, Houssine; Morimune, Seira; Nishino, Takashi; Berglund, Lars A

    2012-11-12

    Nonwoven membranes based on electrospun fibers are of great interest in applications such as biomedical, filtering, and protective clothing. The poor mechanical performance is a limitation, as is some of the electrospinning solvents. To address these problems, porous nonwoven membranes based on nanofibrillated cellulose (NFC) modified by a hydroxyethyl cellulose (HEC) polymer coating are prepared. NFC/HEC aqueous suspensions are subjected to simple vacuum filtration in a paper-making fashion, followed by supercritical CO(2) drying. These nonwoven nanocomposite membranes are truly nanostructured and exhibit a nanoporous network structure with high specific surface area, as analyzed by nitrogen adsorption and FE-SEM. Mechanical properties evaluated by tensile tests show high strength combined with remarkably high strain to failure of up to 55%. XRD analysis revealed significant fibril realignment during tensile stretching. After postdrawing of the random mats, the modulus and strength are strongly increased. The present preparation route uses components from renewable resources, is environmentally friendly, and results in permeable membranes of exceptional mechanical performance. PMID:23046114

  5. Assessing nano cellulose developments using science and technology indicators

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Douglas Henrique; Amaral, Roniberto Morato do; Faria, Leandro Innocentini Lopes de; Gregolin, Jose Angelo Rodrigues, E-mail: douglasmilanez@yahoo.com.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Nucleo de Informacao Tecnologica em Materiais. Dept. de Engenharia de Materiais

    2013-11-01

    This research aims to examine scientific and technological trends of developments in nano cellulose based on scientometric and patent indicators obtained from the Science Citation Index and Derwent Innovations Index in 2001-2010. The overall nano cellulose activity indicators were compared to nanotechnology and other selected nano materials. Scientific and technological future developments in nano cellulose were forecasted using extrapolation growth curves and the main countries were also mapped. The results showed that nano cellulose publications and patent documents have increased rapidly over the last five years with an average growth rate higher than that of nanotechnology and fullerene. The USA, Japan, France, Sweden and Finland all played a significant role in nano cellulose development and the extrapolation growth curves suggested that nano cellulose scientific and technological activities are still emerging. Finally, the evidence from this study recommends monitoring nano cellulose S and T advances in the coming years. (author)

  6. Assessing nano cellulose developments using science and technology indicators

    International Nuclear Information System (INIS)

    This research aims to examine scientific and technological trends of developments in nano cellulose based on scientometric and patent indicators obtained from the Science Citation Index and Derwent Innovations Index in 2001-2010. The overall nano cellulose activity indicators were compared to nanotechnology and other selected nano materials. Scientific and technological future developments in nano cellulose were forecasted using extrapolation growth curves and the main countries were also mapped. The results showed that nano cellulose publications and patent documents have increased rapidly over the last five years with an average growth rate higher than that of nanotechnology and fullerene. The USA, Japan, France, Sweden and Finland all played a significant role in nano cellulose development and the extrapolation growth curves suggested that nano cellulose scientific and technological activities are still emerging. Finally, the evidence from this study recommends monitoring nano cellulose S and T advances in the coming years. (author)

  7. Characterization of cellulose extracted from oil palm empty fruit bunch

    Science.gov (United States)

    Sisak, Muhammad Asri Abdul; Daik, Rusli; Ramli, Suria

    2015-09-01

    Recently, cellulose has been studied by many researchers due to its promising properties such as biodegradability, biocompatibility, hydrophilicity and robustness. Due to that it is applied in many fields such as paper, film, drug delivery, membranes, etc. Cellulose can be extracted from various plants while oil palm empty fruit bunch (OPEFB) is the one of its sources. In this study, cellulose was extracted by chemical treatments which involved the use of formic acid and hydrogen peroxide to remove hemicellulose and lignin components. Maximum yield was 43.22%. Based on the FT-IR spectra, the peak of wax (1735 cm-1), hemicellulose (1375 cm-1) and lignin (1248 cm-1 and 1037 cm-1) were not observed in extracted cellulose. TGA analysis showed that the extracted cellulose starts to thermally degrade at 340 °C. The SEM analysis suggested that the cellulose extracted from OPEFB was not much different from commercial cellulose.

  8. PNIPAM改性纤维素球调控布洛芬释放%Preparation of PNIPAM-Cellulose Based Microspheres for Controlled Ibuprofen Release

    Institute of Scientific and Technical Information of China (English)

    许谦; 李爱华; 聂兆广; 李洪亮; 许元红; 刘敬权

    2015-01-01

    简要介绍了聚( N-异丙基丙烯酰胺)( PNIPAM)改性的纤维素球对药物的可控释放,该产物具有温度敏感和pH值敏感的特性。运用可逆加成-断裂链转移聚合反应,将PNIPAM链接到纤维素微球上,分别采用傅里叶变换红外光谱,扫描电子显微镜,透射电子显微镜,X射线光子能谱分析和热重分析等方法,证实了PNIPAM成功地链接到纤维素微球上。PNIPAM-纤维素微球的直径为1.2~2μm,具有良好的生物相容性,有利于用作药物载体控制药物释放。布洛芬被选择作为模型药物分子以测试PNIPAM-纤维素微球的药物负载和释放性能。结果表明,PNIPAM-纤维素球的布洛芬释放速度在25℃比在38℃快,在pH 值7.4快于pH值4.0。由于PNIPAM-纤维素微球的热敏性和pH值敏感性,使得它可以广泛应用于可控的药物释放。%Thermosensitive and pH-sensitive poly( N-isopropylacrylamide)( PNIPAM)-cellulose based microspheres were synthesized and utilized as carriers to load and release drugs in controlled modes. These microspheres were prepared using cellulose microspheres as templates to graft PNIPAM via reversible addition fragmentation chain transfer polymerization. The grafting of PNIPAM to cellulose microspheres was confirmed by Fourier-transform infrared( FTIR) spectroscopy,scanning electron microscopy ( SEM ), transmission electron microscopy ( TEM ), X - ray photon spectroscopy( XPS ) analysis and thermogravimetric analysis ( TGA ). The PNIPAM - cellulose microspheres with a diameter of 1. 2 ~2 μm were biocompatible and favorable to be utilized as drug carriers for controlling drug release. Ibuprofen was chosen as a model drug to test the drug loading and releasing properties of the PNIPAM - cellulose microspheres. It was found that the ibuprofen released from the microspheres at 25℃ was more rapidly than that at 38℃, and it released more rapidly at pH 7. 4 than that at pH 4. 0

  9. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    OpenAIRE

    Juan Du; Venkata Vepachedu; Sung Hyun Cho; Manish Kumar; B Tracy Nixon

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalyt...

  10. The Synthesis of a Novel Cellulose Physical Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2014-01-01

    Full Text Available Cellulose possessing β-cyclodextrin (β-CD was used as a host molecule and cellulose possessing ferrocene (Fc as a guest polymer. Infrared spectra, differential scanning calorimetry (DSC, ultraviolet spectroscopy (UV, and contact angle analysis were used to characterise the material structure and the inclusion behaviour. The results showed that the β-CD-cellulose and the Fc-cellulose can form inclusion complexes. Moreover, ferrocene oxidation, and reduction of state can be adjusted by sodium hypochlorite (NaClO as an oxidant and glutathione (GSH as a reductant. In this study, a physical gel based on β-CD-cellulose/Fc-cellulose was formed under mild conditions in which autonomous healing between cut surfaces occurred after 24 hours. The physical gel can be controlled in the sol-gel transition. The compressive strength of the Fc-cellulose/β-CD-cellulose gel increased with increased cellulose concentration. The host-guest interaction between the side chains of cellulose could strengthen the gel. The cellulose physical gel may eventually be used as a stimulus-responsive, healing material in biomedical applications.

  11. Evaluation of new cellulose-based chiral stationary phases Sepapak-2 and Sepapak-4 for the enantiomeric separation of pesticides by nano liquid chromatography and capillary electrochromatography.

    Science.gov (United States)

    Pérez-Fernández, Virginia; Dominguez-Vega, Elena; Chankvetadze, Bezhan; Crego, Antonio L; García, Maria Ángeles; Marina, Maria Luisa

    2012-04-20

    Two novel polysaccharide-based chiral stationary phases (CSPs), known as Sepapak-2 (cellulose tris(3-chloro-4-methylphenylcarbamate)) and Sepapak-4 (cellulose tris(4-chloro-3-methylphenylcarbamate)), have been evaluated in this work for the chiral separation of a group of 16 pesticides including herbicides, insecticides and fungicides. The optimization of the mobile phase employed in nano-liquid chromatography (nano-LC) enabled the chiral separation of seven pesticides on Sepapak-2 and of nine pesticides on Sepapak-4. Due to the fact that Sepapak-4 gave better results, this column was selected to compare nano-LC and capillary electrochromatography (CEC) under the same conditions that consisted in the use of a 90/9/1 (v/v/v) ACN/H₂O/ammonium formate (pH 2.5) background electrolyte (BGE). As expected, both the efficiency and the chiral resolution obtained in CEC experiments were higher than in nano-LC for all the analyzed compounds. The analytical characteristics of the CEC developed methodology were evaluated in terms of linearity, LODs, LOQs, precision, selectivity, and accuracy allowing its application to the quantitation of metalaxyl and its enantiomeric impurity in a commercial fungicide product marketed as enantiomerically pure (metalaxyl-M) and in soil and tap water samples after solid phase extraction (SPE). The determined amount of metalaxyl-M was found to be a 26% above the labeled content and it contained an enantiomeric impurity of a 3.7% of S-metalaxyl was determined. PMID:22321947

  12. Cellulose whisker/epoxy resin nanocomposites

    OpenAIRE

    Tang, Liming; Weder, Christoph

    2010-01-01

    New nanocomposites composed of cellulose nanofibers or “whiskers” and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of ∼10 and ∼84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185−192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtu...

  13. Genetic organization of the cellulose synthase operon in Acetobacter xylinum.

    OpenAIRE

    Wong, H C; Fear, A L; Calhoon, R D; Eichinger, G H; Mayer, R; Amikam, D; Benziman, M; Gelfand, D H; Meade, J H; Emerick, A W

    1990-01-01

    An operon encoding four proteins required for bacterial cellulose biosynthesis (bcs) in Acetobacter xylinum was isolated via genetic complementation with strains lacking cellulose synthase activity. Nucleotide sequence analysis indicated that the cellulose synthase operon is 9217 base pairs long and consists of four genes. The four genes--bcsA, bcsB, bcsC, and bcsD--appear to be translationally coupled and transcribed as a polycistronic mRNA with an initiation site 97 bases upstream of the co...

  14. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.

    Science.gov (United States)

    Shankar, Shiv; Rhim, Jong-Whan

    2016-01-01

    A facile approach has been performed to prepare nanocellulose (NC) from micro-crystalline cellulose (MCC) and test their effect on the performance properties of agar-based composite films. The NC was characterized by STEM, XRD, FTIR, and TGA. The NC was well dispersed in distilled water after sonication and their size was in the range of 100-500nm. The XRD results revealed the crystallinity of NC. The crystallinity index of NC (0.71) was decreased compared to the MCC (0.81). The effect of NC or MCC content (1, 3, 5 and 10wt% based on agar) on the mechanical, water vapor permeability (WVP), and thermal properties of the composites were studied. The NC obtained from MCC can be used as a reinforcing agent for the preparation of biodegradable composites films for their potential use in the development of biodegradable food packaging materials. PMID:26453846

  15. Rapid saccharification for production of cellulosic biofuels.

    Science.gov (United States)

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis. PMID:24607460

  16. Final report (September, 1999--February, 2002) [Public outreach and information dissemination - cellulosic and corn-based ethanol outreach project

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Jeremy; Werner, Carol

    2002-08-01

    EESI's ''Ethanol, Climate Protection, Oil Reduction'' (ECO) electr[on]ic newsletter reaches out to the environmental and agricultural communities, state/local government officials and other interested parties, and provides a forum for dialogue about ''the potential benefits of ethanol--and particularly the expanded opportunities provided by cellulosic ethanol--with a special focus on climate protection.'' Each issue features expert commentary, excerpts from recent studies about ethanol, a summary of current government activity on ethanol, and ''notable quotables.'' The newsletter is distributed primarily via email and is also posted on EESI's web site. EESI also conducts outreach on the benefits of ethanol and other biofuels by attending and speaking at conferences, meetings and workshops around the country. The 16 issues of the newsletter published through December 2001 are included as attachments.

  17. Fractal analysis of SEM images and mercury intrusion porosimetry data for the microstructural characterization of microcrystalline cellulose-based pellets

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Carracedo, A.; Alvarez-Lorenzo, C.; Coca, R.; Martinez-Pacheco, R.; Concheiro, A. [Departamento de Farmacia y Tecnologia Farmaceutica, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain); Gomez-Amoza, J.L. [Departamento de Farmacia y Tecnologia Farmaceutica, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain)], E-mail: joseluis.gomez.amoza@usc.es

    2009-01-15

    The microstructure of theophylline pellets prepared from microcrystalline cellulose, carbopol and dicalcium phosphate dihydrate, according to a mixture design, was characterized using textural analysis of gray-level scanning electron microscopy (SEM) images and thermodynamic analysis of the cumulative pore volume distribution obtained by mercury intrusion porosimetry. Surface roughness evaluated in terms of gray-level non-uniformity and fractal dimension of pellet surface depended on agglomeration phenomena during extrusion/spheronization. Pores at the surface, mainly 1-15 {mu}m in diameter, determined both the mechanism and the rate of theophylline release, and a strong negative correlation between the fractal geometry and the b parameter of the Weibull function was found for pellets containing >60% carbopol. Theophylline mean dissolution time from these pellets was about two to four times greater. Textural analysis of SEM micrographs and fractal analysis of mercury intrusion data are complementary techniques that enable complete characterization of multiparticulate drug dosage forms.

  18. Fractal analysis of SEM images and mercury intrusion porosimetry data for the microstructural characterization of microcrystalline cellulose-based pellets

    International Nuclear Information System (INIS)

    The microstructure of theophylline pellets prepared from microcrystalline cellulose, carbopol and dicalcium phosphate dihydrate, according to a mixture design, was characterized using textural analysis of gray-level scanning electron microscopy (SEM) images and thermodynamic analysis of the cumulative pore volume distribution obtained by mercury intrusion porosimetry. Surface roughness evaluated in terms of gray-level non-uniformity and fractal dimension of pellet surface depended on agglomeration phenomena during extrusion/spheronization. Pores at the surface, mainly 1-15 μm in diameter, determined both the mechanism and the rate of theophylline release, and a strong negative correlation between the fractal geometry and the b parameter of the Weibull function was found for pellets containing >60% carbopol. Theophylline mean dissolution time from these pellets was about two to four times greater. Textural analysis of SEM micrographs and fractal analysis of mercury intrusion data are complementary techniques that enable complete characterization of multiparticulate drug dosage forms

  19. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-01-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10−4 S cm−1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor. PMID:27265642

  20. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10‑4 S cm‑1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  1. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    Science.gov (United States)

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  2. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.

    Science.gov (United States)

    Soni, Bhawna; Hassan, El Barbary; Schilling, M Wes; Mahmoud, Barakat

    2016-10-20

    The development of biobased active films for use in food packaging is increasing due to low cost, environmental appeal, renewability and availability. The objective of this research was to develop an effective and complete green approach for the production of bionanocomposite films with enhanced mechanical and barrier properties. This was accomplished by incorporating TEMPO-oxidized cellulose nanofibers (2,2,6,6-tetramethylpiperidine-1-oxyl radical) into a chitosan matrix. An aqueous suspension of chitosan (100-75wt%), sorbitol (25wt%) and TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs, 0-25wt%) were cast in an oven at 40°C for 2-4days. Films were preconditioned at 25°C and 50% RH for characterization. The surface morphology of the films was revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties and crystal structure of the films were evaluated by thermogravimetric analysis (TGA-DTG) and X-ray diffraction (XRD). Incorporation of TEMPO-CNFs enhanced the mechanical strength of the films due to the high aspect ratio (3-20nm width, and 10-100nm length) of TEMPO-CNFs and strong interactions with the chitosan matrix. Oxygen and water vapor transmission rates for films that are prepared with chitosan and TEMPO-CNFs (15-25wt%) were significantly reduced. Furthermore, these bionanocomposite films had good thermal stability. Use of TEMPO-CNFs in this method makes it possible to produce bionanocomposite films that are flexible, transparent, and thus have potential in food packaging applications. PMID:27474625

  3. Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage

    International Nuclear Information System (INIS)

    Cellulose is a biologically derived material with excellent wound-healing properties. The high strength of cellulose fibers and the ability to synthesize gels with high optical transparency make these materials suitable for ocular applications. In this study, cellulose materials derived from wood pulp, cotton, and bacterial sources were dissolved in lithium chloride/N,N-dimethylacetamide to form regenerated cellulose hydrogels. Material properties of the resulting hydrogels, including water content, optical transparency, and tensile and tear strengths, were evaluated. Synthesis parameters, including activation time, dissolution time, relative humidity, and cellulose concentration, were found to impact the material properties of the resulting hydrogels. Overnight activation time improves the optical transparency of the hydrogels from 77% to 97% at 550 nm, whereas controlling cellulose concentration improves their tear strength by as much as 200%. On the basis of the measured transmittance and strength values of the regenerated hydrogels prepared via the optimized synthesis parameters, Avicel PH 101, Sigma-Aldrich microcrystalline cellulose 435236, and bacterial cellulose types were prioritized for future biocompatibility testing and potential clinical investigation. - Highlights: • Hydrogels were prepared (via LiCl/DMAc) from 7 different types of cellulose. • Synthesis parameters (activation, gelation, and concentration) were optimized. • Impact of synthesis parameters on transparency and strength was explored

  4. Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage

    Energy Technology Data Exchange (ETDEWEB)

    Patchan, M. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Graham, J.L. [Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue/Ross 720, Baltimore, MD 21205 (United States); Xia, Z.; Maranchi, J.P. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); McCally, R. [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Wilmer Eye Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287 (United States); Schein, O. [Wilmer Eye Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, MD 21287 (United States); Elisseeff, J.H. [Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue/Ross 720, Baltimore, MD 21205 (United States); Trexler, M.M., E-mail: morgana.trexler@jhuapl.edu [Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2013-07-01

    Cellulose is a biologically derived material with excellent wound-healing properties. The high strength of cellulose fibers and the ability to synthesize gels with high optical transparency make these materials suitable for ocular applications. In this study, cellulose materials derived from wood pulp, cotton, and bacterial sources were dissolved in lithium chloride/N,N-dimethylacetamide to form regenerated cellulose hydrogels. Material properties of the resulting hydrogels, including water content, optical transparency, and tensile and tear strengths, were evaluated. Synthesis parameters, including activation time, dissolution time, relative humidity, and cellulose concentration, were found to impact the material properties of the resulting hydrogels. Overnight activation time improves the optical transparency of the hydrogels from 77% to 97% at 550 nm, whereas controlling cellulose concentration improves their tear strength by as much as 200%. On the basis of the measured transmittance and strength values of the regenerated hydrogels prepared via the optimized synthesis parameters, Avicel PH 101, Sigma-Aldrich microcrystalline cellulose 435236, and bacterial cellulose types were prioritized for future biocompatibility testing and potential clinical investigation. - Highlights: • Hydrogels were prepared (via LiCl/DMAc) from 7 different types of cellulose. • Synthesis parameters (activation, gelation, and concentration) were optimized. • Impact of synthesis parameters on transparency and strength was explored.

  5. Cellulose Synthesis and Its Regulation

    OpenAIRE

    Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying

    2014-01-01

    Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the re...

  6. Green high-performance liquid chromatography enantioseparation of lansoprazole using a cellulose-based chiral stationary phase under ethanol/water mode.

    Science.gov (United States)

    Ferretti, Rosella; Zanitti, Leo; Casulli, Adriano; Cirilli, Roberto

    2016-04-01

    A simple and environmentally friendly reversed-phase high-performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose-based Chiralpak IC-3 chiral stationary phase using a green and low-toxicity ethanol-aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed-mode hydrophilic interaction liquid chromatography and reversed-phase retention mechanism operating on the IC-3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water-rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min. PMID:26910378

  7. Influence of medium acidity on the equilibrium sorption of Zn(II) and Cd(II) ions by cellulose base polymers

    International Nuclear Information System (INIS)

    Influence of medium acidity in pH range of 1-9 on sorption of Zn(II) and Cd(II) ions by oxyethylcellulose, sodium salt of carboxymethylcellulose, ethylcellulose and triacetatecellulose was considered to study sorption properties of cellulose ester base polymeric materials. It has been ascertained that the change in aqueous phase acidity from acid (pH∼1) to low-alkaline (pH∼7-9) one gives rise to increase in zinc and cadmium ions distribution by a factor of 10-12 and 15-18 respectively. A scheme of sorption equilibrium of zinc and cadmium ions in the system studied, depending on pH and considering the state of the ions in the form of cationic aquocomplexes, is suggested. It is shown that the optimal pH value during cadmium ions sorption equals 8, irrespective of polymer sorbent nature

  8. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  9. New developments of enzymatic treatments on cellulosic fibers

    OpenAIRE

    Kim, Su-Yeon; Zille, Andrea; Vasconcelos, Andreia; Paulo, Artur Cavaco

    2007-01-01

    In this review, we focused on the recent and non-conventional enzyme bioconversions of cellulosic fibers. Cellulosic fibers are the largest market of textile industry and also represent the most successful market for enzymes base processes in the textile area. The new enzyme developments presented on this paper include the strength recovering in resin-crosslinked fabrics, phosphorylation for better antiflame retardancy, coating and funcionalization of cellulosic fabrics.

  10. Cellulose Ester / Polyolefin Binary Blends : Rheology, Morphology and Impact Properties

    OpenAIRE

    Besson, François; Vanhille, Aurélie; Budtova, Tatiana

    2012-01-01

    Due to depletion of fossil resources and global environmental respect awareness, interest in biobased plastic materials is tremendously growing. Direct extraction of vegetal polymers like cellulose followed by a chemical modification to bring new properties is one of the paths to produce a bioplastic. Progressively replaced by oil-based polymers in the sixties, thermoplastic cellulose esters are now reconsidered for various materials applications. To improve mechanical weaknesses of cellulose...

  11. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  12. Cellulose fractionation with IONCELL-P.

    Science.gov (United States)

    Stepan, A M; Monshizadeh, A; Hummel, M; Roselli, A; Sixta, H

    2016-10-01

    IONCELL-P is a solvent fractionation process, which can separate pulps almost quantitatively into pure cellulose and hemicellulose fractions using IL-water mixtures. In this work the role of the molecular weight of cellulose on its solubility in ionic liquid-water mixtures is studied. The aim of this study was to understand and identify the determining factors of this IONCELL-P fractionation. Cotton linters (CL) served as model cellulose substrate and was degraded by ozone treatment to adjust the molecular weight to that of hemicelluloses and low molar mass cellulose in commercial pulps. The ozone treated CLs were subjected to the IONCELL-P process using 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) and water mixtures with a water content between 13.5 and 19wt%. Based on the molar mass distributions of dissolved and undissolved cellulose the effect of the molecular weight of cellulose in IL-water mixture appears to be a key factor in the fractionation process. PMID:27312618

  13. Isolation of cellulose microfibrils - An enzymatic approach

    Directory of Open Access Journals (Sweden)

    Sain, M.

    2006-11-01

    Full Text Available Isolation methods and applications of cellulose microfibrils are expanding rapidly due to environmental benefits and specific strength properties, especially in bio-composite science. In this research, we have success-fully developed and explored a novel bio-pretreatment for wood fibre that can substantially improve the microfibril yield, in comparison to current techniques used to isolate cellulose microfibrils. Microfibrils currently are isolated in the laboratory through a combination of high shear refining and cryocrushing. A high energy requirement of these procedures is hampering momentum in the direction of microfibril isolation on a sufficiently large scale to suit potential applications. Any attempt to loosen up the microfibrils by either complete or partial destruction of the hydrogen bonds before the mechanical process would be a step forward in the quest for economical isolation of cellulose microfibrils. Bleached kraft pulp was treated with OS1, a fungus isolated from Dutch Elm trees infected with Dutch elm disease, under different treatment conditions. The percentage yield of cellulose microfibrils, based on their diameter, showed a significant shift towards a lower diameter range after the high shear refining, compared to the yield of cellulose microfibrils from untreated fibres. The overall yield of cellulose microfibrils from the treated fibres did not show any sizeable decrease.

  14. Caracterização de acetato de celulose obtido a partir do bagaço de cana-de-açúcar por ¹H-RMN 1H-NMR characterization of cellulose acetate obtained from sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Daniel A. Cerqueira

    2010-06-01

    Full Text Available A celulose do bagaço de cana-de-açúcar foi usada para sintetizar acetato de celulose com diferentes graus de substituição, os quais foram caracterizados por ¹H-RMN através da relação entre as áreas dos picos dos átomos de hidrogênio presentes nos grupos acetato (-(C=OOCH3 e os picos dos hidrogênios ligados aos átomos de carbono dos anéis glicosídicos. A supressão de alguns sinais foi feita para remover sinais de ressonância da água residual nos materiais e também para remover sinais de impurezas no triacetato de celulose. Um método de deconvolução para o cálculo computacional do grau de substituição foi proposto. Os graus de substituição das amostras de acetato de celulose foram 2,94 e 2,60, o que está de acordo com os resultados por determinação química através de uma titulação ácido base.Cellulose from sugarcane bagasse was used for synthesizing cellulose acetate with different degrees of substitution, which were characterized by ¹H-NMR through the relationship between the peak areas of the hydrogen atoms of the acetate groups (-(C=OOCH3 and the peaks of the hydrogen bonded to the carbon atoms of the glucosidic rings. Suppression of some signals was carried out in order to remove the residual water resonance in the materials and those related to impurities in cellulose triacetate as well. A deconvolution method for the computation of the degree of substitution of acetylation is proposed. The degrees of substitution for the cellulose samples were 2.94 and 2.60, in good agreement with those obtained by chemical determination through an acid-base titration.

  15. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    OpenAIRE

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin

    2016-01-01

    Bacterial cellulose is a remarkable material that is malleable, biocompatible, and over 10-times stronger than plant-based cellulose. It is currently used to create materials for tissue engineering, medicine, defense, electronics, acoustics, and fabrics. We describe here a bacterial strain that is readily amenable to genetic engineering and produces high quantities of bacterial cellulose in low-cost media. To reprogram this organism for biotechnology applications, we created a set of genetic ...

  16. Biocomposite cellulose-alginate films: promising packaging materials.

    Science.gov (United States)

    Sirviö, Juho Antti; Kolehmainen, Aleksi; Liimatainen, Henrikki; Niinimäki, Jouko; Hormi, Osmo E O

    2014-05-15

    Biocomposite films based on cellulose and alginate were produced using unmodified birch pulp, microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC) and birch pulp derivate, nanofibrillated anionic dicarboxylic acid cellulose (DCC), having widths of fibres ranging from 19.0 μm to 25 nm as cellulose fibre materials. Ionically cross-linked biocomposites were produced using Ca(2+) cross-linking. Addition of micro- and nanocelluloses as a reinforcement increased the mechanical properties of the alginate films remarkably, e.g. addition of 15% of NFC increased a tensile strength of the film from 70.02 to 97.97 MPa. After ionic cross-linking, the tensile strength of the film containing 10% of DCC was increased from 69.63 to 125.31 MPa. The biocomposite films showed excellent grease barrier properties and reduced water vapour permeability (WVP) after the addition of cellulose fibres, except when unmodified birch pulp was used. PMID:24423542

  17. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed; Kiyazar, Shiva; Aghazadeh, Jamshid; Sadeghi, Ali

    2016-05-01

    Research on synthetic bioactive bone graft materials has significantly expanded in the past decade. In this study, the nanocomposite scaffold of semi-interpenetrating networks (semi-IPN) cellulose-graft-polyacrylamide/nano-hydroxyapatite was synthesized through free radical polymerization. The scaffolds were fabricated by the freeze-drying technique. The prepared semi-IPN nanocomposite scaffolds were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. In addition, the mechanical properties (i.e., elastic modulus and compressive strength) of the scaffolds were investigated. The SEM images showed that the pores of the scaffolds were interconnected, and their sizes ranged from 120μm to 190μm. Under optimum conditions, the prepared scaffolds had a compressive strength of 4.80MPa, an elastic modulus of 0.29GPa and a value of 47.37% porosity. Furthermore, the apatite-forming ability of the scaffolds was determined using simulated body fluid (SBF) for 28 days. The results revealed that the new apatite particles could grow on the surface of the scaffolds after a 14-day immersion in SBF. Finally, this study suggests that the prepared semi-IPN nanocomposites that closely mimic the properties of bone tissue could be a promising scaffold for bone tissue engineering. PMID:26836617

  18. Biopolymer Materials Based Carboxymethyl Cellulose as a Proton Conducting Biopolymer Electrolyte for Application in Rechargeable Proton Battery

    International Nuclear Information System (INIS)

    This paper presents the discovery on proton conducting biopolymer electrolyte (BPE) by incorporating various NH4Br composition (wt%) with biopolymer materials carboxymethyl cellulose (CMC) which has been prepared via solution casting method. The biopolymer–salt complex formation has been analyzed through Fourier Transform Infrared (FTIR) spectroscopy, Thermo Gravimetric Analysis (TGA), impedance and transference number measurement (TNM). The highest ionic conductivity at ambient temperature is 1.12 × 10−4 S cm−1 for sample containing 25 wt% NH4Br. It has been shown that the conducting element in this work are predominantly due to proton (H+) which was confirmed via FTIR and TNM analysis. Rechargeable proton conducting BPE battery have been fabricated with the configuration of Zn + ZnSO4.7H2O/BPE/MnO2 and produced a maximum open circuit potential (OCP) of 1.36 V at ambient temperature and showed good rechargeability. This work implies that the possible practical application of the present electrolytes as a new invention in the fabrication of electrochemical devices

  19. High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose

    Science.gov (United States)

    Yu, Wendan; Lin, Worong; Shao, Xiaofeng; Hu, Zhaoxia; Li, Ruchun; Yuan, Dingsheng

    2014-12-01

    The Ni3S2 nanoparticles have been successfully grown on the carbon nanofibers (CNFs) derived from bacterial cellulose via a hydrothermal method, which the as-prepared composite exhibited high specific capacitance (883 F g-1 at 2 A g-1), much more than CNFs (108 F g-1 at 2 A g-1), and good cycle stability. The asymmetric supercapacitor was designed to contain the CNFs coated Ni3S2 nanoparticles (Ni3S2/CNFs) as positive electrode and CNFs as negative electrode in 2 M KOH electrolyte. Due to the synergistic effects of the two electrodes, asymmetric cell showed superior electrochemical performances. The optimized asymmetric supercapacitor gave a operating potential of 1.7 V in 2 M KOH aqueous solution, exhibiting a high specific capacitance of 56.6 F g-1 at 1 A g-1 and considerably high energy density of 25.8 Wh kg-1 at a power density of 425 W kg-1. Meanwhile, Ni3S2/CNFs//CNFs asymmetric supercapacitor showed excellent cycling stability with 97% specific capacitance retained after 2500 cycles.

  20. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  1. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  2. Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-l-lactic acid with chondrocyte-like cells.

    Science.gov (United States)

    Cecen, Berivan; Kozaci, Leyla Didem; Yuksel, Mithat; Ustun, Ozcan; Ergur, Bekir Ugur; Havitcioglu, Hasan

    2016-12-01

    The current study reports the biocompatibility and biomechanical characteristics of loofah-based scaffolds combined with hydroxyapatite (HA), cellulose, poly-l-lactic acid (PLLA) with chondrocytes-like cells. Scanning electron microscope (SEM) micrographs of the scaffolds showed that the addition of PLLA usually resulted in an increase in cell's attachment on scaffolds. Mechanical and elemental analyzes were assessed using tensile test and Energy Dispersive X-ray spectrometry (EDS), respectively. In summary, we showed that the loofah+PLLA+HA scaffolds perform significantly better than other loofah-based scaffolds employed in terms of increasing a diversity of mechanical properties including tensile strength and Young's modulus. Based on the analysis of the differential scanning calorimetry (DSC) thermograms and EDS spectrums that give an idea about the calcium phosphate (CaP) ratios, the improvement in the mechanical properties could principally be recognized to the strong interaction formed between loofah, PLLA and HA. The viability of chondrocytes on loofah-based scaffolds was analyzed by XTT tests. However, none of the scaffolds have proved to be toxic in metabolic activity. The histological evaluation obtained by hematoxylin and eosin (H&E), Masson trichrome, toluidine blue and immunohistochemistry methods showed that cells in all scaffolds produced extracellular matrix that defined proteoglycan and type I-II collagens. The results of this study suggest that the loofah-based scaffold with desirable properties can be considered as an ideal candidate for cartilage tissue engineering applications. PMID:27612733

  3. Preparation of a novel PAN/cellulose acetate-Ag based activated carbon nanofiber and its adsorption performance for low-concentration SO2

    Science.gov (United States)

    Wu, Yan-bo; Bi, Jun; Lou, Ting; Song, Tie-ben; Yu, Hong-quan

    2015-04-01

    Polyacrylonitrile (PAN), PAN/cellulose acetate (CA), and PAN/CA-Ag based activated carbon nanofiber (ACNF) were prepared using electrostatic spinning and further heat treatment. Thermogravimetry-differential scanning calorimetry (TG-DSC) analysis indicated that the addition of CA or Ag did not have a significant impact on the thermal decomposition of PAN materials but the yields of fibers could be improved. Scanning electron microscopy (SEM) analysis showed that the micromorphologies of produced fibers were greatly influenced by the viscosity and conductivity of precursor solutions. Fourier transform infrared spectroscopy (FT-IR) analysis proved that a cyclized or trapezoidal structure could form and the carbon scaffold composed of C=C bonds appeared in the PAN-based ACNFs. The characteristic diffraction peaks in X-ray diffraction (XRD) spectra were the evidence of a turbostratic structure and silver existed in the PAN/CA-Ag based ACNF. Brunner-Emmett-Teller (BET) analysis showed that the doping of CA and Ag increased surface area and micropore volume of fibers; particularly, PAN/CA-Ag based ACNF exhibited the best porosity feature. Furthermore, SO2 adsorption experiments indicated that all the three fibers had good adsorption effects on lower concentrations of SO2 at room temperature; especially, the PAN/CA-Ag based ACNF showed the best adsorption performance, and it may be one of the most promising adsorbents used in the fields of chemical industry and environment protection.

  4. Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug

    Directory of Open Access Journals (Sweden)

    Abdel Rahim S

    2015-03-01

    Full Text Available Safwan Abdel Rahim,1,2 Paul A Carter,1 Amal Ali Elkordy11Department of Pharmacy, Health and Well-being, University of Sunderland, Sunderland, United Kingdom; 2Faculty of Pharmacy, Applied Science University, Amman, Jordan Abstract: The aim of this work was to design and evaluate effervescent floating gastro-retentive drug delivery matrix tablets with sustained-release behavior using a binary mixture of hydroxyethyl cellulose and sodium alginate. Pentoxifylline was used as a highly water-soluble, short half-life model drug with a high density. The floating capacity, swelling, and drug release behaviors of drug-loaded matrix tablets were evaluated in 0.1 N HCl (pH 1.2 at 37°C±0.5°C. Release data were analyzed by fitting the power law model of Korsmeyer–Peppas. The effect of different formulation variables was investigated, such as wet granulation, sodium bicarbonate gas-forming agent level, and tablet hardness properties. Statistical analysis was applied by paired sample t-test and one-way analysis of variance depending on the type of data to determine significant effect of different parameters. All prepared tablets through wet granulation showed acceptable physicochemical properties and their drug release profiles followed non-Fickian diffusion. They could float on the surface of dissolution medium and sustain drug release over 24 hours. Tablets prepared with 20% w/w sodium bicarbonate at 50–54 N hardness were promising with respect to their floating lag time, floating duration, swelling ability, and sustained drug release profile.Keywords: floating tablets, sodium alginate, pentoxifylline, dissolution, swelling, effervescent

  5. Photoresponsive Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dimitris S Argyropoulos

    2011-07-01

    Full Text Available In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO‐ oxidized CNCs via carbodiimide‐mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO‐oxidized CNCs. Finally, the reaction of surface‐modified TEMPO‐oxidized cellulose nanocrystals and azido‐bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I‐catalyzed Azide‐Alkyne Cycloaddition (CuAAC to produce highly photo‐responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side‐chains were shown to undergo UV‐induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano‐arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.

  6. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, S.

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  7. CELLULOSE BASED ADSORBENTS —GREEN AND LOW-COST MATERIALS FOR WATER TREATMENT%纤维素基吸附剂——绿色、经济的水处理材料

    Institute of Scientific and Technical Information of China (English)

    田野; 孟令蝶; 吴敏; 黄勇

    2011-01-01

    介绍了一类基于天然纤维素的水处理用吸附剂.对纤维素修饰羧基等阴离子基团,可以用来吸附水中的重金属阳离子(如cd(2+)、Cu(2+)、Hg(2+)、Ni(2+)、Pb(2+).对纤维素修饰铝铁或胺基等成分,可以吸附水中含砷阴离子、氟离子等有害阴离子.在纤维素上修饰疏水链,可以吸附水中氯苯、染料等危害健康的有机物.%This paper reviews the adsorbents based on natural cellulose for water treatment. Cellulose modified with negatively charged groups such as carboxyls can be used for the removal of heavy metal ions including Cd2+ ,Cu2+ , Hg2 +, Ni2+ and Pb2 + ff cellulose is modified with anion adsorptive components such as aluminum, iron and amino groups, it can adsorb harmful anions such as fluoride and arsenic. Cellulose can also adsorb organics such as chlorobenzene and dyes if it is modified with hydrophobic chains.

  8. Electrochemical synthesis of cellulose mesylate

    Science.gov (United States)

    Khidirov, Sh Sh; Akhmedov, M. A.; Khibiev, H. S.

    2016-04-01

    The article deal with the possibility anode modification of cellulose to form its ester - mesylate by voltametric measurement method and preparative electrosynthesis on a platinum electrode in the system cellulose - dimethyl sulfoxide - methanesulfonic

  9. Composites based on acylated cellulose fibers and low-density polyethylene: Effect of the fiber content, degree of substitution and fatty acid chain length on final properties

    OpenAIRE

    Freire, Carmen S. R.; Silvestre, Armando J. D.; Neto, Carlos Pascoal; Gandini, Alessandro; Martin, Loli; Mondragon, Iñaki

    2008-01-01

    Low-density polyethylene was filled with unmodified and fatty acid (hexanoic, dodecanoic, octadecanoic and docosanoic acids) esterified cellulose fibers. The thermal and mechanical properties, morphology and the water absorption behavior of the ensuing composites were investigated. The chemical modification of the cellulose fibers with fatty acids clearly improved the interfacial adhesion with the matrix and hence the mechanical properties of the composites and decreased their water uptake ca...

  10. Structure of cellulose acetobacter xylinum

    International Nuclear Information System (INIS)

    The data are presented on optimization of cellulose synthesis by Acetobacter xylinum (strain VKM V-880) and the structural characteristics of A. xylinum cellulose gel film synthesized during static cultivation. The structural changes caused by the removal of water from gel films are established and the structural organization of macromolecular chains in cellulose A. xylinum is studied

  11. A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ren Zhong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Liu Yuyan [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: liuyy@hit.edu.cn; Sun Kening; Zhou Xiaoliang; Zhang Naiqing [Science Reseach Center, Harbin Institute of Technology, Harbin 150001 (China)

    2009-02-15

    A gel polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and fully cyanoethylated cellulose derivative (DH-4-CN) was prepared and characterized. Thermal, mechanical, swelling, liquid electrolyte retention and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, were investigated using thermogravimetric analysis, electrochemical impedance spectroscopy, linear sweep voltammetry, and scanning electron microscopy. The results showed that the addition of DH-4-CN could obviously improve the conductivity of PVDF-HFP based electrolyte. The maximum ionic conductivity of 4.36 mS cm{sup -1} at 20 deg. C can be obtained for PVDF-HFP/DH-4-CN 14:1 in the presence of 1 M LiPF{sub 6} in EC and DMC (1:1, w/w). The dry blend membranes exhibit excellent thermal behavior. All the blend electrolytes are electrochemically stable up to about 4.8 V vs. Li/Li{sup +} for all compositions. The results reveal that the composite polymer electrolyte qualifies as a potential application in lithium-ion battery.

  12. More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites.

    OpenAIRE

    Lee, K Y; Buldum, G.; Mantalaris, A.; Bismarck, A.

    2014-01-01

    Bacterial cellulose (BC) nanofibers are one of the stiffest organic materials produced by nature. It consists of pure cellulose without the impurities that are commonly found in plant-based cellulose. This review discusses the metabolic pathways of cellulose-producing bacteria and the genetic pathways of Acetobacter xylinum. The fermentative production of BC and the bioprocess parameters for the cultivation of bacteria are also discussed. The influence of the composition of the culture medium...

  13. Surface Modification of Cellulose by Covalent Grafting and Physical Adsorption for Biocomposite Applications

    OpenAIRE

    Bruce, Carl

    2014-01-01

    There is an increasing interest to replace fossil-based materials with renewable alternatives. Cellulose fibers/nanofibrils (CNF) are sustainable options since they are biobased and biodegradable. In addition, they combine low weight with high strength; making them suitable to, for example, reinforce composites. However, to be able to use them as such, modifications are often necessary. This study therefore aimed at modifying cellulose fibers, model surfaces of cellulose and CNF. Cellulose fi...

  14. Non-traditional solutions of cellulose and it's derivatives and their processing products

    OpenAIRE

    Grinshpan, D. D.; Savitskaya, T. A.; Tsygankova, N. G.

    2003-01-01

    The main achievements of the Laboratory of cellulose solutions and their processing products in the field of the elaboration of new cellulose dissolving processes, the homogeneous synthesis of cellulose derivatives, the elaboration of the incompatible polymer solutions stabilization, the creation of new film - fabric materials and filtering equipments on their base, the preparation of hard quickly disintegrated drug forms (tablets, granules) using new water soluble cellulose derivative have b...

  15. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    Science.gov (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases. PMID:26799780

  16. CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Xiao-peng Xiong; Guang Yang; Li-na Zhang; Sen-lin Lei; Hui Lianga

    2002-01-01

    A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range of cellulose acetate membranes can be expanded.

  17. Degradation of cellulose in irradiated wood and purified celluloses

    International Nuclear Information System (INIS)

    The degradation of cellulose chains in Pinus radiata and Eucalyptus regnans given small gamma-radiation doses has been studied. Scission yields showed marked dose-dependency effects, of which some appear to be due to an inherent dose-dependency exhibited by cellulose itself, and others indicate a protective action of some natural wood constituents. A uniform treatment of viscometry data reported by various workers who have studied radiation-induced degradation of purified cellulose materials, has been used to enable their scission results to be compared with each other and with those for natural wood cellulose of various dose levels. Generally, cellulose in wood is less degraded by radiation than is purified cellulose. However, with Eucalyptus regnans remarkably high scission yields, significantly higher than expected for purified cellulose, were observed at dose levels of 0.5-1.0 x 104Gy. The relevance of these results to changes in pulp yield following irradiation of wood chips, is briefly discussed. (author)

  18. Cellulose-reinforced composites: from micro-to nanoscale

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2013-01-01

    Full Text Available This paper present the most relevant advances in the fields of: i cellulose fibres surface modification; ii cellulose fibres-based composite materials; and iii nanocomposites based on cellulose whiskers or starch platelet-like nanoparticles. The real breakthroughs achieved in the first topic concern the use of solvent-free grafting process (plasma and the grafting of the matrix at the surface of cellulose fibres through isocyanate-mediated grafting or thanks to "click chemistry". Concerning the second topic, it is worth to mention that for some cellulose/matrix combination and in the presence of adequate aids or specific surface treatment, high performance composite materials could be obtained. Finally, nanocomposites allow using the semi-crystalline nature and hierarchical structure of lignocellulosic fibres and starch granules to more deeply achieve this goal profitably exploited by Mother Nature

  19. Cysticercosis cellulose cutis

    Directory of Open Access Journals (Sweden)

    Inamadar Arun

    2001-01-01

    Full Text Available A woman aged 30 years with solitary lesion of cysticercosis cellulose cutis is reported. Cutaneous cysticerci are often a pointer to the involvement of internal organs. Our patient was a pure vegetarian so, probable mode of infection may be ingestion of contaminated vegetables, where the practice of using pig feces as manure is prevalent.

  20. Derivatives of Oxidized Cellulose

    Czech Academy of Sciences Publication Activity Database

    Taubner, T.; Sobek, Jiří; Havelka, P.; Kvasnička, F.; Synytsya, A.; Čopíková, J.

    Praha : Česká společnost chemická, 2009, s. 777. ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience 2009 /5./. Praha (CZ), 11.11.2009-13.11.2009] Institutional research plan: CEZ:AV0Z40720504 Keywords : cellulose * reaction progress * chromatography Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  1. Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis.

    Science.gov (United States)

    Liu, Zengyu; Schneider, Rene; Kesten, Christopher; Zhang, Yi; Somssich, Marc; Zhang, Youjun; Fernie, Alisdair R; Persson, Staffan

    2016-08-01

    Cellulose is the most abundant biopolymer on Earth and is the major contributor to plant morphogenesis. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Nascent cellulose microfibrils become entangled in the cell wall, and further catalysis therefore drives the CSC forward through the membrane: a process guided by cortical microtubules via the protein CSI1/POM2. Still, it is unclear how the microtubules can withstand the forces generated by the motile CSCs to effectively direct CSC movement. Here, we identified a family of microtubule-associated proteins, the cellulose synthase-microtubule uncouplings (CMUs), that located as static puncta along cortical microtubules. Functional disruption of the CMUs caused lateral microtubule displacement and compromised microtubule-based guidance of CSC movement. CSCs that traversed the microtubules interacted with the microtubules via CSI1/POM2, which prompted the lateral microtubule displacement. Hence, we have revealed how microtubules can withstand the propulsion of the CSCs during cellulose biosynthesis and thus sustain anisotropic plant cell growth. PMID:27477947

  2. Interaction of water with different cellulose ethers: a Raman spectroscopy and environmental scanning electron microscopy study.

    Science.gov (United States)

    Fechner, P M; Wartewig, S; Kiesow, A; Heilmann, A; Kleinebudde, P; Neubert, R H H

    2005-06-01

    Different non-ionic cellulose ethers like methyl cellulose (MC), hydroxypropyl cellulose (HPC) and hydroxypropylmethyl cellulose (HPMC) were investigated. The characterization of the cellulose ethers was carried out by thermogravimetry and sorption/desorption isotherms. Differences in the properties of the cellulose ether films were described by time-dependent contact angle measurements. Changes in molecular structure of the raw materials, gels and films caused by water contact were studied using Raman spectroscopy. Differences between the substitution types and changes due to the gel or film formation were observed. An environmental scanning electron microscopy (ESEM) technique was used to distinguish the morphological behaviour of the cellulose ether films in contact with water. Based on in-situ ESEM experiments, the swelling and drying behaviour of the various stages of cellulose ether films (film-hydrated film-dried film) were quantified by using image analysis. PMID:15969923

  3. Development of green nanocomposites reinforced by cellulose nanofibers extracted from paper sludge

    Science.gov (United States)

    Takagi, Hitoshi; Nakagaito, Antonio N.; Kusaka, Kazuya; Muneta, Yuya

    2015-03-01

    Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.

  4. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation

    KAUST Repository

    Alaslai, Nasser

    2016-03-22

    A novel polyimide of intrinsic microporosity (PIM-PI) was synthesized from a 9,10-diisopropyl-triptycene-based dianhydride (TPDA) and dihydroxyl-functionalized 4,6-diaminoresorcinol (DAR). The unfunctionalized TPDA-m-phenylenediamine (mPDA) polyimide derivative was made as a reference material to evaluate the effect of the OH group in TPDA-DAR on its gas transport properties. Pure-gas permeability coefficients of He, H2, N2, O2, CH4, and CO2 were measured at 35 °C and 2 atm. The BET surface area based on nitrogen adsorption of dihydroxyl-functionalized TPDA-DAR (308 m2g-1) was 45% lower than that of TPDA-mPDA (565 m2g-1). TPDA-mPDA had a pure-gas CO2 permeability of 349 Barrer and CO2/CH4 selectivity of 32. The dihydroxyl-functionalized TPDA-DAR polyimide exhibited enhanced pure-gas CO2/CH4 selectivity of 46 with a moderate decrease in CO2 permeability to 215 Barrer. The CO2 permeability of TPDA-DAR was ∼30-fold higher than that of a commercial cellulose triacetate membrane coupled with 39% higher pure-gas CO2/CH4 selectivity. The TPDA-based dihydroxyl-containing polyimide showed good plasticization resistance and maintained high mixed-gas selectivity of 38 when tested at a typical CO2 natural gas wellhead CO2 partial pressure of 10 atm.

  5. Nanomanufacturing metrology for cellulosic nanomaterials: an update

    Science.gov (United States)

    Postek, Michael T.

    2014-08-01

    The development of the metrology and standards for advanced manufacturing of cellulosic nanomaterials (or basically, wood-based nanotechnology) is imperative to the success of this rising economic sector. Wood-based nanotechnology is a revolutionary technology that will create new jobs and strengthen America's forest-based economy through industrial development and expansion. It allows this, previously perceived, low-tech industry to leap-frog directly into high-tech products and processes and thus improves its current economic slump. Recent global investments in nanotechnology programs have led to a deeper appreciation of the high performance nature of cellulose nanomaterials. Cellulose, manufactured to the smallest possible-size ( 2 nm x 100 nm), is a high-value material that enables products to be lighter and stronger; have less embodied energy; utilize no catalysts in the manufacturing, are biologically compatible and, come from a readily renewable resource. In addition to the potential for a dramatic impact on the national economy - estimated to be as much as $250 billion worldwide by 2020 - cellulose-based nanotechnology creates a pathway for expanded and new markets utilizing these renewable materials. The installed capacity associated with the US pulp and paper industry represents an opportunity, with investment, to rapidly move to large scale production of nano-based materials. However, effective imaging, characterization and fundamental measurement science for process control and characterization are lacking at the present time. This talk will discuss some of these needed measurements and potential solutions.

  6. Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil.

    Science.gov (United States)

    de Melo, Adriane Alexandre Machado; Geraldine, Robson Maia; Silveira, Miriam Fontes Araujo; Torres, Maria Célia Lopes; E Rezende, Cíntia Silva Minafra; Fernandes, Thiago Henrique; de Oliveira, Antonio Nonato

    2012-10-01

    Antimicrobial active packaging delays or inhibits microorganism growth in packed products, and it can be used in a variety of food systems. The objective of the present research was to develop packaging incorporated with natural antimicrobial agents (active film). The effects of the active film on the spoilage, pathogenic microorganism counts, pH and color of the refrigerated chicken breast cuts were analyzed. Cellulose acetate-based active films incorporating two concentrations (20% and 50%, v/w) of rosemary (Rosmarinus officinalis L.) essential oil were manufactured and placed in contact with the chicken breast cuts for six days. An analysis of variance and mean comparison tests (Tukey's test, pfilms that contained 20% essential oil and were intercalated with chicken breast samples did not demonstrate significant effects on the control of psychrotrophic or total coliform microorganisms during the storage period; however, the films incorporated with 50% essential oil demonstrated efficacy toward the control of coliforms during the storage of the samples (6 days, 2 ± 2ºC). The pH was related to the psychrotrophic microorganism count and was not influenced by the treatment. The color was not influenced by the time of storage or the treatment. The results demonstrate that active films incorporating 50% rosemary essential oil are effective at controlling certain microorganisms in chicken breast cuts. PMID:24031972

  7. Synthesis and characterization of ion-imprinted resin based on carboxymethyl cellulose for selective removal of UO₂²⁺.

    Science.gov (United States)

    Monier, M; Abdel-Latif, D A

    2013-09-12

    In this work, the surface ion-imprinting technique was employed for the preparation of surface ion-imprinted chelating microspheres resin based on modified salicylaldehyde-carboxymethyl cellulose (U-CMC-SAL) in presence of uranyl ions as a template and formaldehyde as a cross-linker. Various instrumental techniques such as elemental analysis, scanning electron microscope (SEM), FTIR and X-ray diffraction spectra were utilized for full characterization of the prepared polymeric samples. The prepared resin exhibited a higher capability for selective removal of UO₂²⁺ when compared to the non-imprinted resin (N-CMC-SAL). Also, different important parameters such as pH, temperature, time and initial metal ion concentration were examined in order to evaluate the optimum condition for the adsorption process. The results indicated that pH 5 was the best for the UO₂²⁺ uptake, in addition, the adsorption was exothermic in nature, follows the second-order kinetics and the adsorption isotherm showed the best fit with Langmuir isotherm model with maximum adsorption capacity of 180 ± 1 and 97 ± 1 mg/g for both U-CMC-SAL and N-CMC-SAL respectively. Desorption and regeneration were carried out using 0.5M HNO3 solution and the results confirmed that the resin keeps about 92% of its original efficiency after five consecutive adsorption-desorption operations. PMID:23911510

  8. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose.

    Science.gov (United States)

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-01-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm(2), a current rectification ratio up to 4 × 10(3) between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits. PMID:27357006

  9. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations.

    Science.gov (United States)

    Zhou, Chengjun; Lee, Sunyoung; Dooley, Kerry; Wu, Qinglin

    2013-12-15

    Porous nanocomposite gels were fabricated by a facile method consisting of the electrospinning and subsequent heat treatment based on partially hydrolyzed polyacrylamide (HPAM) of ultra-high molecular weight, with cellulose nanocrystals (CNCs) as crosslinker. The effects of three electrospinning parameters (i.e., solution concentration, composition of solvent mixture, and CNC loading level) on morphology and diameter of electrospun fibers were systematically investigated. The swelling properties of porous gels and their application in the removal of methylene blue dye (as a compound representative of contaminants) were evaluated. Electrospun fiber morphologies without beads, branches, and ribbons were achieved by optimizing the electrospinning solutions. The thermal crosslinking between HPAM and CNCs was realized through esterification, rendering the product nanocomposite membranes insoluble in water. Electrospun fibers of approximately 220 nm in diameter comprised the 3D porous nanocomposite gels, with porosity greater than 50%. The porous nanocomposite gels displayed a rapid swelling rate and an efficient adsorption capacity in removing methylene blue at low concentrations from aqueous solutions. PMID:23958139

  10. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    Science.gov (United States)

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-01-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits. PMID:27357006

  11. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    Science.gov (United States)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  12. Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil

    Directory of Open Access Journals (Sweden)

    Adriane Alexandre Machado de Melo

    2012-12-01

    Full Text Available Antimicrobial active packaging delays or inhibits microorganism growth in packed products, and it can be used in a variety of food systems. The objective of the present research was to develop packaging incorporated with natural antimicrobial agents (active film. The effects of the active film on the spoilage, pathogenic microorganism counts, pH and color of the refrigerated chicken breast cuts were analyzed. Cellulose acetate-based active films incorporating two concentrations (20% and 50%, v/w of rosemary (Rosmarinus officinalis L. essential oil were manufactured and placed in contact with the chicken breast cuts for six days. An analysis of variance and mean comparison tests (Tukey's test, p<0.05 were performed on the results. The films that contained 20% essential oil and were intercalated with chicken breast samples did not demonstrate significant effects on the control of psychrotrophic or total coliform microorganisms during the storage period; however, the films incorporated with 50% essential oil demonstrated efficacy toward the control of coliforms during the storage of the samples (6 days, 2 ± 2ºC. The pH was related to the psychrotrophic microorganism count and was not influenced by the treatment. The color was not influenced by the time of storage or the treatment. The results demonstrate that active films incorporating 50% rosemary essential oil are effective at controlling certain microorganisms in chicken breast cuts.

  13. Design and construction of a silver(I)-loaded cellulose-based wound dressing: trackable and sustained release of silver for controlled therapeutic delivery to wound sites.

    Science.gov (United States)

    deBoer, T R; Chakraborty, I; Mascharak, P K

    2015-10-01

    Although application of silver nitrate and silver sulfadiazine have been shown to be effective in thwarting infections at burn sites, optimization of the delivery of bioactive silver (Ag(+)) remains as an obstacle due to rapid precipitation and/or insolubility of the silver sources. To circumvent these shortcomings, we have designed a silver(I) complex [Ag(ImD)2]ClO4 (ImD = dansyl imidazole) that effectively increases the bioavailability of Ag(+) and exhibits MIC values of 2.3 and 4.7 μg/mL against E. coli and S. aureus, respectively. This fluorescent silver complex has been incorporated within a robust hydrogel derived from carboxymethyl cellulose that allows slow release of silver. A complete occlusive dressing has finally been constructed with the Ag(ImD)CMC (1% Ag loaded) pad sealed between a sterile mesh gauze (as bottom layer) and a rayon-based surgical tape (as the top layer). Such construction has afforded a dressing that displays sustained delivery of silver onto a skin and soft tissue infection model and causes effective eradication of bacterial loads within 24 h. The transfer of the bioactive silver complex is readily visualized by the observed fluorescence that overlays precisely with the kill zone. The latter feature introduces a unique feature of therapeutic trackability to this silver-donating occlusive dressing. PMID:26411439

  14. HPMC reinforced with different cellulose nanoparticles

    Science.gov (United States)

    Synthetic polymers, made almost entirely from chemicals derived from crude oil, are widely used as primary packaging in the food industry causing environmental issues. Hydroxypropyl Methyl Cellulose (HPMC) can be used as bio-based packaging material. In this study, the application of nanotechnology ...

  15. The Solubility of Natural Cellulose After DBD Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    WU Jun; ZENG Fengcai; CHEN Bingqiang

    2008-01-01

    Natural cellulose was treated by an atmospheric DBD plasma. The solubility of cel-lulose in a diluted alkaline solution after the plasma treatment was investigated. The properties were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spec-troscopy (FTIR) and scanning electron microscopy (SEM). The results indicated that the surface of cellulose treated by the argon DBD plasma was significantly etched, and the relevant force of hy-drogen bonding was decreased. This might be the essential reason for the solubility improvement of natural cellulose in the diluted alkaline solution. Through a comparison of two discharge modes, the atmospheric DBD plasma gun and the parallel plate capacitively coupled DBD plasma, it wasfound that the atmospheric DBD plasma gun was more effective in fragmentizing the cellulose due to its production of a high energy plasma based on its special structure [6] .

  16. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    International Nuclear Information System (INIS)

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  17. Interactions of microfibrillated cellulose and cellulosic fines with cationic polyelectrolytes

    OpenAIRE

    Taipale, Tero

    2010-01-01

    The overall aim of this work was to produce and characterize different types of cellulosic fines and microfibrillated cellulose; to study their interactions with high molar mass cationic polyelectrolytes; and to demonstrate novel examples of their utilization. The work was performed, and its results discussed mainly from papermaking point of view, but the results are also well applicable in other fields of industry. Cellulosic fines are an essential component of papermaking fiber suspens...

  18. Sustainable green composites of thermoplastic starch and cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2014-04-01

    Full Text Available Green composites have gained renewed interest as environmental friendly materials and as biodegradable renewable resources for a sustainable development. This review provides an overview of recent advances in green composites based on thermoplastic starch (TPS and cellulose fibers. It includes information about compositions, preparations, and properties of starch, cellulose fibers, TPS, and green composites based on TPS and cellulose fibers. Introduction and production of these recyclable composites into the material market would be important for environmental sustainability as their use can decrease the volume of petroleum derived plastic waste dumps. Green composites are comparable cheap and abundant, but further research and development is needed for a broader utilization.

  19. Processing and characterization of natural cellulose fibers/thermoset polymer composites.

    Science.gov (United States)

    Thakur, Vijay Kumar; Thakur, Manju Kumari

    2014-08-30

    Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. PMID:24815407

  20. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    Science.gov (United States)

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. PMID:26572446

  1. Essays concerning the cellulosic biofuel industry

    Science.gov (United States)

    Rosburg, Alicia Sue

    Despite market-based incentives and mandated production, the U.S. cellulosic biofuel industry has been slow to develop. This dissertation explores the economic factors that have limited industry development along with important economic tradeoffs that will be encountered with commercial-scale production. The first essay provides an overview of the policies, potential, and challenges of the biofuel industry, with a focus on cellulosic biofuel. The second essay considers the economics of cellulosic biofuel production. Breakeven models of the local feedstock supply system and biofuel refining process are constructed to develop the Biofuel Breakeven (BioBreak) program, a stochastic, Excel-based program that evaluates the feasibility of local biofuel and biomass markets under various policy and market scenarios. An application of the BioBreak program is presented using expected market conditions for 14 local cellulosic biofuel markets that vary by feedstock and location. The economic costs of biofuel production identified from the BioBreak application are higher than frequently anticipated and raise questions about the potential of cellulosic ethanol as a sustainable and economical substitute for conventional fuels. Program results also are extended using life-cycle analysis to evaluate the cost of reducing GHG emissions by substituting cellulosic ethanol for conventional fuel. The third essay takes a closer look at the economic trade-offs within the biorefinery industry and feedstock production processes. A long-run biomass production through bioenergy conversion cost model is developed that incorporates heterogeneity of biomass suppliers within and between local markets. The model builds on previous literature by treating biomass as a non-commoditized feedstock and relaxes the common assumption of fixed biomass density and price within local markets. An empirical application is provided for switchgrass-based ethanol production within U.S. crop reporting districts

  2. Cellulose biogenesis in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  3. Nanocellulose-based biosensors: design, preparation, and activity of peptide-linked cotton cellulose nanocrystals having fluorimetric and colorimetric elastase detection sensitivity

    Science.gov (United States)

    Nanocrystalline cellulose is an amphiphilic, high surface area material that can be easily functionalized and is biocom-patible and eco-friendly. It has been used singularly and in combination with other nanomaterials to optimize biosensor design. The attachment of peptides and proteins to nanocryst...

  4. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage

    International Nuclear Information System (INIS)

    Shape-stabilized fatty acid eutectics/carboxy methyl cellulose-1 composites as phase change materials (PCMs) were synthesized by absorbing liquid eutectics into the carboxy methyl cellulose-1 fibers. The chemical structure, crystalloid phase and morphology were determined by the Fourier transformation infrared spectroscope, X-ray diffractometer and scanning electronic microscope. The thermal properties and thermal stability were measured by the differential scanning calorimeter, thermogravimetric analyzer and the thermal cycling test, respectively. The results indicate that the eutectics are well adsorbed in the porous structure of the carboxy methyl cellulose-1. According to the DSC (differential scanning calorimeter) results, the composites melt at 32.2 °C with latent heat of 114.6 kJ/kg and solidify at 29.2 °C with latent heat of 106.8 kJ/kg. The thermal cycling test proves that the composites have good thermal reliability. It is envisioned that the prepared shape-stabilized PCMs have considerable potential for developing their roles in thermal energy storage. - Highlights: • The fatty acid eutectic/carboxy methyl cellulose-1 composites as PCMs were prepared. • Chemical structure and microstructure of composites were determined by FT-IR and SEM. • Thermal properties and stabilities were investigated by DSC and TGA. • The thermal cycling test confirmed that the composite has good thermal reliability

  5. Effect of cellulose nanofibers concentration on mechanical, optical, and barrier properties of gelatin-based edible films

    Directory of Open Access Journals (Sweden)

    Ricardo David Andrade-Pizarro

    2015-01-01

    Full Text Available Se evaluó el efecto de la concentración de gelatina, glicerol y nanofibras de celulosa (NFC sobre las propiedades mecánicas, permeabilidad al vapor de agua, y los parámetros de color de películas a base de gelatina. Los resultados indican que el color es influenciado sólo por la concentración de gelatina. Las pruebas mecánicas indican que al aumentar la concentración de gelatina y NFC hay un aumento en la resistencia a la tracción, mientras que un aumento en la concentración de glicerol provoca un aumento en el porcentaje de elongación, haciendo que las películas sean más flexibles. Un aumento en la concentración de gelatina y glicerol aumenta la permeabilidad al vapor de agua, mientras que un aumento en la concentración de NFC reduce esta propiedad. Finalmente, la adición de NFC en películas a base de gelatina mejora sus propiedades mecánicas y de barrera (vapor de agua sin afectar a la apariencia (color de las películas.

  6. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.

    Science.gov (United States)

    Han, Shenjie; Sun, Qingfeng; Zheng, Huanhuan; Li, Jingpeng; Jin, Chunde

    2016-01-20

    Carbon-based aerogel fabricated from waste biomass is a potential absorbent material for solving organic pollution. Herein, the lightweight, hydrophobic and porous carbon aerogels (CAs) have been synthesized through freezing-drying and post-pyrolysis by using waste newspaper as the only raw materials. The as-prepared CAs exhibited a low density of 18.5 mg cm(-3) and excellent hydrophobicity with a water contact angle of 132° and selective absorption for organic reagents. The absorption capacity of CA for organic compounds can be 29-51 times its own weight. Moreover, three methods (e.g., squeezing, combustion, and distillation) can be employed to recycle CA and harvest organic pollutants. Combined with waste biomass as raw materials, green and facile fabrication process, excellent hydrophobicity and oleophilicity, CA used as an absorbent material has great potential in application of organic pollutant solvents absorption and environmental protection. PMID:26572333

  7. Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions

    International Nuclear Information System (INIS)

    The area intensity change of C1, C4, and C6 in spectrum obtained by 13C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: “-up” and “-down” are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. - Highlight: • Samples were mercerized at various NaOH concentrations under non-cooling and cooling. • The intensity change of C1 starts immediately after that of C6 is complete. • The creation of cell-II starts when decrystallization proceeds to a certain state. • This change relates closely to the change in conformation of cellulose chains. • The above change is more clearly found for samples treated under cooling

  8. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential

    Energy Technology Data Exchange (ETDEWEB)

    Turbak, A.F.; Snyder, F.W.; Sandberg, K.R.

    1983-01-01

    A new form of cellulose, which is expanded to a smooth gel when dispersed in polar liquids, is produced by a unique, rapid, physical treatment of wood cellulose pulps. A 2% suspension of microfibrillated cellulose (MFC) in water has thixotropic viscosity properties and is a stable gel on storage, or when subjected to freeze-thaw cycles. At this concentration, MFC is an excellent suspending medium for other solids and an emulsifying base for organic liquids. In laboratory tests, microfibrillated cellulose has been demonstrated to have wide utility in the preparation of foods such as low-calorie whipped toppings, cake frostings, salad dressings, gravies, and sauces. At 0.3% cellulose concentration in ground meats, MFC helps retain juices during cooking. Tests were also conducted in formulating paints, emulsions, and cosmetics and in the use of MFC as a binder for nonwoven textiles and as a mineral suspending agent. From economic studies, it is estimated that a 2% MFC dispersion can be produced for about 1.5 cents/lb, total cost. 6 references, 9 figures, 2 tables.

  9. [Insights into engineering of cellulosic ethanol].

    Science.gov (United States)

    Yue, Guojun; Wu, Guoqing; Lin, Xin

    2014-06-01

    For energy security, air pollution concerns, coupled with the desire to sustain the agricultural sector and revitalize the rural economy, many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector. Because of abundant feedstock resources and effective reduction of green-house-gas emissions, the cellulosic ethanol has attracted great attention. With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world, it is necessary to solve engineering problems and complete the economic assessment in 2015-2016, gradually enter the commercialization stage. To avoid "competing for food with humans and competing for land with food", the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol. Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years, the main engineering application problems encountered in pretreatment, enzymes and enzymatic hydrolysis, pentose/hexose co-fermentation strains and processes, equipment were discussed from chemical engineering and biotechnology perspective. The development direction of cellulosic ethanol technology in China was addressed. PMID:25212000

  10. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.

    Science.gov (United States)

    Larsson, Per A; Berglund, Lars A; Wågberg, Lars

    2014-06-01

    Cellulosic materials have many desirable properties such as high mechanical strength and low oxygen permeability and will be an important component in a sustainable biomaterial-based society, but unfortunately they often lack the ductility and formability offered by petroleum-based materials. This paper describes the fabrication and characterization of nanocomposite films made of core-shell modified cellulose nanofibrils (CNFs) surrounded by a shell of ductile dialcohol cellulose, created by heterogeneous periodate oxidation followed by borohydride reduction of the native cellulose in the external parts of the individual fibrils. The oxidation with periodate selectively produces dialdehyde cellulose, and the process does not increase the charge density of the material. Yet the modified cellulose fibers could easily be homogenized to CNFs. Prior to film fabrication, the CNF was shown by atomic force microscopy to be 0.5-2 μm long and 4-10 nm wide. The films were fabricated by filtration, and besides uniaxial tensile testing at different relative humidities, they were characterized by scanning electron microscopy and oxygen permeability. The strength-at-break at 23 °C and 50% RH was 175 MPa, and the films could, before rupture, be strained, mainly by plastic deformation, to about 15% and 37% at 50% RH and 90% RH, respectively. This moisture plasticization was further utilized to form a demonstrator consisting of a double-curved structure with a nominal strain of 24% over the curvature. At a relative humidity of 80%, the films still acted as a good oxygen barrier, having an oxygen permeability of 5.5 mL·μL/(m(2)·24 h·kPa). These properties indicate that this new material has a potential for use as a barrier in complex-shaped structures and hence ultimately reduce the need for petroleum-based plastics. PMID:24773125

  11. On the determination of crystallinity and cellulose content in plant fibres

    DEFF Research Database (Denmark)

    Thygesen, Anders; Oddershede, Jette; Lilholt, Hans;

    2005-01-01

    A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent......-based fibres and 60 - 70 g/ 100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production....

  12. Structural and thermodynamic characterization of modified cellulose fiber-based materials and related interactions with water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Bedane, Alemayehu H., E-mail: Alemayehu.Bedane@unb.ca; Xiao, Huining, E-mail: hxiao@unb.ca; Eić, Mladen, E-mail: meic@unb.ca; Farmahini-Farahani, Madjid, E-mail: Madjid.Farahani@unb.ca

    2015-10-01

    Highlights: • Coating on paper increases the specific surface area but decreases the pore diameter. • Pore size reduction and decrease of hydrophilic property caused reduction in WVTRs. • The low monolayer moisture content of the sample is generally related to the low WVTR. • The net isosteric heats of adsorption decreased with increased sample moisture content. • FT-IR results reveal the formation of water clusters at higher relative humidities. - Abstract: In this study, the surface characteristics, water vapor interactions, and state of water adsorbed on unmodified and coated paper samples were investigated in an attempt to obtain a better understanding of the fundamental principles related to thermodynamics of this process, as well as to provide essential insight that could be used for further improvement of the papers’ barrier properties. Based on the BET measurement, the coated paper samples showed higher specific surface areas than unmodified paper; however, their mean pore diameters are smaller. The BJH method was used for pore size distribution analysis. Hydrophobic properties of the paper samples were determined from experimental isotherms, e.g., monolayer moisture content, and these results have been related to the water vapor transfer rates (WVTRs) showing a complex nature of these relations. The highest peak corresponding to the modified samples with smaller pore sizes was found to be in the range of 1–30 nm, while it was in the 30–100 nm pore size range for unmodified paper. The net isosteric heats of sorption for different unmodified and modified paper samples were determined from water vapor adsorption isotherms measured at 15, 25, and 35 °C. The net isosteric heats of sorption decreased with an increase of moisture content after reaching the maximum values at 12.53, 15.25, 14.71, 23.2, and 22.77 kJ/mol for unmodified, zein grafted, calendered coated, PLA, and PHBV coated papers, respectively. The state of adsorbed water and water

  13. Radiocarbon concentration of lake sediment cellulose from Lake Erhai in southwest China

    International Nuclear Information System (INIS)

    To improve age models for lake sediment cores without suitable 14C dating materials such as terrestrial plant fossils, we investigated the radiocarbon dating of lake sediment cellulose. The cellulose fraction in the sediments was obtained by a sequential decomposition of other organic matter, and subsequently dated by AMS. In general, 14C ages of the lake sediment cellulose obtained from a 10-m sediment core from Lake Erhai on the Yunnan-Guizhou Plateau are in agreement with 14C dates from terrestrial plant fossils. For the early Holocene, however, differences of up to 1000 14C years are observed between lake sediment cellulose and terrestrial plant fossils. This disagreement is probably caused by the contribution of 14C-depleted cellulose synthesized by aquatic plants/algae in the lake. To obtain a precise and accurate chronology based on 14C ages of lake sediment cellulose, the origin of lake sediment cellulose needs to be established

  14. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse

    Science.gov (United States)

    Wulandari, W. T.; Rochliadi, A.; Arcana, I. M.

    2016-02-01

    Cellulose in nanometer range or called by nano-cellulose has attracted much attention from researchers because of its unique properties. Nanocellulose can be obtained by acid hydrolysis of cellulose. The cellulose used in this study was isolated from sugarcane bagasse, and then it was hydrolyzed by 50% sulfuric acid at 40 °C for 10 minutes. Nanocellulose has been characterized by Transmission Electron Microscope (TEM), Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Analysis of FTIR showed that there were not a new bond which formed during the hydrolysis process. Based on the TEM analysis, nano-cellulose has a spherical morphology with an average diameter of 111 nm and a maximum distribution of 95.9 nm determined by PSA. The XRD analysis showed that the crystallinity degree of nano-cellulose was higher than cellulose in the amount of 76.01%.

  15. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications.

    Science.gov (United States)

    H P S, Abdul Khalil; Saurabh, Chaturbhuj K; A S, Adnan; Nurul Fazita, M R; Syakir, M I; Davoudpour, Y; Rafatullah, M; Abdullah, C K; M Haafiz, M K; Dungani, R

    2016-10-01

    Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications. PMID:27312632

  16. Blends of dissolved cellulose with acrylic acid copolymers or microfibrillated cellulose

    OpenAIRE

    Saarikoski, Eve

    2015-01-01

    The aim of the thesis was to develop dissolved cellulose (dissolved in NaOH/ZnO) based blends with acrylic acid copolymers (poly(ethylene-co-acrylic acid) (PE-co-AA) or poly(acrylamide-co-acrylic acid) (PAA-co-AA)) or microfibrillated cellulose (MFC) in the way they could be used in injection molding or for film/coating applications. This thesis summarizes the research reported in five publications supported by some unpublished results. Rheological studies done in the contexts of this work...

  17. ACCESSIBILITY AND CRYSTALLINITY OF CELLULOSE

    Directory of Open Access Journals (Sweden)

    Michael Ioelovich

    2009-08-01

    Full Text Available The accessibility of cellulose samples having various degrees of crystallinity was studied with respect to molecules of water, lower primary alcohols, and lower organic acids. It was found that small water molecules have full access to non-crystalline domains of cellulose (accessibility coefficient α = 1. Molecules of the lowest polar organic liquids (methanol, ethanol, and formic acid have partial access into the non-crystalline domains (α<1, and with increasing diameter of the organic molecules their accessibility to cellulose structure decreases. Accessibility of cellulose samples to molecules of various substances is a linear function of the coefficient α and the content of non-crystalline domains. The relationship between crystallinity (X and accessibility (A of cellulose to molecules of some liquids has been established as A = α (1-X. The water molecules were found to have greater access to cellulose samples than the molecules of the investigated organic liquids. The obtained results permit use of accessibility data to estimate the crystallinity of cellulose, to examine the structural state of non-crystalline domains, and to predict the reactivity of cellulose samples toward some reagents.

  18. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  19. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  20. Ultrasonic dyeing of cellulose nanofibers.

    Science.gov (United States)

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  1. CARS and SHG microscopy for the characterization of bacterial cellulose

    Science.gov (United States)

    Enejder, Annika; Brackmann, Christian; Bodin, Aase; Åkeson, Madeleine; Gatenholm, Paul

    2009-02-01

    We have developed a protocol employing dual-mode non-linear microscopy for the monitoring of the biosynthesis of bacterial cellulose at a single-fiber level, with the fundamental aim to achieve a product with material properties similar to those of human blood vessels. Grown in a tubular geometry it could then be used as a natural and biocompatible source of replacement tissue in conjunction with cardiovascular surgery. The bacteria (Acetobacter xylinum) were selectively visualized based on the CH2 vibration of its organic macromolecular contents by the Coherent Anti-Stokes Raman Scattering (CARS) process and, simultaneously, the non-centrosymmetrically ordered, birefringent cellulose fibers were depicted by the Second Harmonic Generation (SHG) process. This dual-channel detection approach allows the monitoring of cellulose-fiber formation in vivo and to determine the influence of e.g. different growth conditions on fiber thickness and orientation, their assembling into higher-order structures and overall network density. The bacterial and fiber distributions were monitored in a simple microscope cultivation chamber, as well as in samples harvested during the actual fermentation process of tubular cellulose grafts. The CARS and SHG co-localization images reveal that highest bacterial population densities can be observed in the surface regions of the cellulose tissue, where the primary growth presumably takes place. The cellulose network morphology was also compared with that of human arteries and veins, from which we conclude that the cellulose matrix is comparatively homogeneous in contrast to the wavy band-like supra-formations of collagen in the native tissue. This prompts for sophisticated fermentation methods by which tunnels and pores of appropriate sizes and shapes can be introduced in the cellulose network in a controllable way. With this protocol we hope to contribute to the fundamental knowledge required for optimal production of bioengineered cellulose

  2. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization; Nanocompositos condutores de nanofibras de celulose recobertas com polianilina via polimerizacao in situ

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A. [Grupo de Polimero, Depto de Fisica e Quimica, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, SP (Brazil); Medeiros, Eliton S. de [Depto de Engenharia de Materiais, Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil); Rosa, Morsyleide F. [Embrapa Agroindustria Tropical, Fortaleza, CE (Brazil)

    2011-07-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about {approx}10{sup -1}S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  3. Chemical Modification of Microfibrillated Cellulose: Effects on Film Barrier Properties

    OpenAIRE

    Rodionova, Galina

    2011-01-01

    A global demand for environmental sustainability is a strong driving force towards the development of enhanced barrier concepts and the use of new materials, especially for packaging applications. Abundant and renewable, cellulosic fibers have been widely used as one of the main constituents in the fiber-based packaging. However, the porous and hydrophilic structure of cellulose network requires the use of barrier polymer coatings to create an additional resistance against water, water vapors...

  4. Cellulose fiber reinforced thermoplastic composites: Processing and Product Charateristics

    OpenAIRE

    Razaina Mat TAIB

    1998-01-01

    Cellulose Fiber-Reinforced Thermoplastic Composites: Process and Product Characterization Razaina Mat Taib ( Abstract ) Steam exploded fibers from Yellow Poplar (Liriodendron tulipifera) wood were assessed in terms of (a) their impact on torque during melt processing of a thermoplastic cellulose ester (plasticized CAB); (b) their fiber incorporation and dispersion characteristics in a CAB-based composite by SEM and image analysis, respectively; and (c) their impact on the me...

  5. Electrospun nanosized cellulose fibers using ionic liquids at room temperature

    OpenAIRE

    Freire, Mara G.; Teles, Ana Rita R.; Ferreira, Rute A. S.; Carlos, Luís D.; José A. Lopes-da-Silva; Coutinho, João A. P.

    2011-01-01

    Aiming at replacing the noxious solvents commonly employed, ionic-liquid-based solvents have been recently explored as novel non-volatile and non-flammable media for the electrospinning of polymers. In this work, nanosized and biodegradable cellulose fibers were obtained by electrospinning at room temperature using a pure ionic liquid or a binary mixture of two selected ionic liquids. The electrospinning of 8 wt% cellulose in 1-ethyl-3-methylimidazolium acetate medium (a low viscosity and roo...

  6. FRACTIONATION OF HYDROLYZED MICROCRYSTALLINE CELLULOSE BY ULTRAFILTRATION MEMBRANE

    OpenAIRE

    NGUYEN HUYNH THAO THY; RAJESH NITHYANANDAM

    2016-01-01

    Bioethanol process using cellulosic materials have been emerging an interesting field with a high potential of replacing petroleum-based fuel, as a future alternative. This work emphasised on improvement of enzymatic hydrolysis of alkaline NaOH-pretreated cellulose by applying an ultrafiltration membrane 10 kDa cutoff in order to minimise sugar inhibition on enzymes, reuse enzyme in hydrolysis and recover sugar for the subsequent fermentation. An improvement in the methodology of the enzymati...

  7. Impact of Layer-by-Layer Self-Assembly Clay-Based Nanocoating on Flame Retardant Properties of Sisal Fiber Cellulose Microcrystals

    OpenAIRE

    Chun Wei; Sihua Zeng; Yuyuan Tan; Wu Wang; Jian Lv; Hongxia Liu

    2015-01-01

    The renewable cationic polyelectrolyte chitosan (CH) and anionic nanomontmorillonite (MMT) layers were alternately deposited on the surface of sisal fiber cellulose microcrystals (SFCM) via layer-by-layer (LBL) self-assembly method. The structure and properties of the composites were characterized by zeta potential, thermal gravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometer (FTIR), microcalorimeter ...

  8. A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-beta-glucuronidase fused protein.

    Science.gov (United States)

    Degani, Ofir; Gepstein, Shimon; Dosoretz, Carlos G

    2004-02-01

    Cellulose-binding domains (CBDs) are characterized by their ability to strongly bind to different forms of cellulose. This study examined the use of a recombinant CBD fused to the reporter enzyme beta-glucuronidase (CBD-GUS) to determine the extent of removal of the water-repellent waxy component of cotton fiber cuticles following hydrolytic treatment, i.e., scouring. The CBD-GUS test displayed higher sensitivity and repeatability than conventional water absorb techniques applied in the textile industry. Increases in the levels of CBD-GUS bound to the exposed cellulose correlated to increases in the fabric's hydrophilicity as a function of the severity of the scouring treatment applied, clearly indicating that the amount of bound enzyme increases proportionally with the amount of available binding sites. The binding of CBD-GUS also gave measurable and repeatable results when used on untreated or raw fabrics in comparison with conventional water drop techniques. The quantitative response of the reaction as bound enzyme activity was optimized for fully wettable fabrics. A minimal free enzyme concentration-to-swatch weight ratio of 75:1 was found to be necessary to ensure enzyme saturation (i.e., a linear response), corresponding to a free enzyme-to-bound enzyme ratio of at least 3:5. PMID:14736462

  9. Hairy cellulose nanocrystalloids: a novel class of nanocellulose.

    Science.gov (United States)

    van de Ven, Theo G M; Sheikhi, Amir

    2016-08-18

    Nanomaterials have secured such a promising role in today's life that imagining the modern world without them is almost impossible. A large fraction of nanomaterials is synthesized from environmentally-dangerous elements such as heavy metals, which have posed serious side-effects to ecosystems. Despite numerous advantages of synthetic nanomaterials, issues such as renewability, sustainability, biocompatibility, and cost efficiency have drawn significant attention towards natural products such as cellulose-based nanomaterials. Within the past decade, nanocelluloses, most remarkably nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC), have successfully been used for a wide spectrum of applications spanning from nanocomposites, packaging, and mechanical and rheological property modifications, to chemical catalysis and organic templating. Yet, there has been little effort to introduce fundamentally new polysaccharide-based nanomaterials. We have been able to develop the first kind of cellulose-based nanoparticles bearing both crystalline and amorphous regions. These nanoparticles comprise a crystalline body, similar to conventional NCC, but with polymer chains protruding from both ends; therefore, these particles are called hairy cellulose nanocrystalloids (HCNC). In this article, we touch on the philosophy of HCNC synthesis, the striking superiority over existing nanocelluloses, and applications of this novel class of nanocelluloses. We hope that the emergence of hairy cellulose nanocrystalloids extends the frontiers of sustainable, green nanotechnology. PMID:27453347

  10. End-functionalization of cellulose nanocrystals

    OpenAIRE

    Lundahl, Meri

    2014-01-01

    Regioselective modification of nanocelluloses can have intriguing applications in self-assembled material synthesis. In this thesis, cellulose nanocrystals (CNC) were selectively functionalized at their reducing ends with thiol and maleimide groups. For thiol end-functionalization, a protocol was developed based on NHS/EDC-catalyzed coupling of NaClO2-oxidized CNCs with NH2 (CH2)6 SH in water. Maleimide end-functionalization was achieved by reacting end-thiolated CNCs (CNC SH) with a homobifu...

  11. Nanofibrillated Cellulose Surface Modification: A Review

    OpenAIRE

    Julien Bras,; Mohamed Naceur Belgacem; Karim Missoum

    2013-01-01

    Interest in nanofibrillated cellulose (NFC) has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key fa...

  12. Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks.

    Science.gov (United States)

    Mikkelsen, Deirdre; Flanagan, Bernadine M; Wilson, Sarah M; Bacic, Antony; Gidley, Michael J

    2015-04-13

    To identify interactions of relevance to the structure and properties of the primary cell walls of cereals and grasses, we used arabinoxylan and (1,3)(1,4)-β-glucan, major polymers in cereal/grass primary cell walls, to construct composites with cellulose produced by Gluconacetobacter xylinus. Both polymers associated prolifically with cellulose without becoming rigid or altering the nature or extent of cellulose crystallinity. Mechanical properties were modestly affected compared with xyloglucan or pectin (characteristic components of nongrass primary cell walls) composites with cellulose. In situ depletion of arabinoxylan arabinose side chains within preformed cellulose composites resulted in phase separation, with only limited enhancement of xylan-cellulose interactions. These results suggest that arabinoxylan and (1 → 3)(1 → 4)-β-d-glucan are not functional homologues for either xyloglucan or pectin in the way they interact with cellulose networks. Association of cell-wall polymers with cellulose driven by entropic amelioration of high energy cellulose/water interfaces should be considered as a third type of interaction within cellulose-based cell walls, in addition to molecular binding (enthalpic driving force) exhibited by, for example, xyloglucans or mannans, and interpenetrating networks based on, for example, pectins. PMID:25756836

  13. Direct microwave-assisted hydrothermal depolymerization of cellulose.

    Science.gov (United States)

    Fan, Jiajun; De bruyn, Mario; Budarin, Vitaliy L; Gronnow, Mark J; Shuttleworth, Peter S; Breeden, Simon; Macquarrie, Duncan J; Clark, James H

    2013-08-14

    A systematic investigation of the interaction of microwave irradiation with microcrystalline cellulose has been carried out, covering a broad temperature range (150 → 270 °C). A variety of analytical techniques (e.g., HPLC, (13)C NMR, FTIR, CHN analysis, hydrogen-deuterium exchange) allowed for the analysis of the obtained liquid and solid products. Based on these results a mechanism of cellulose interaction with microwaves is proposed. Thereby the degree of freedom of the cellulose enclosed CH2OH groups was found to be crucial. This mechanism allows for the explanation of the different experimental observations such as high efficiency of microwave treatment; the dependence of the selectivity/yield of glucose on the applied microwave density; the observed high glucose to HMF ratio; and the influence of the degree of cellulose crystallinity on the results of the hydrolysis process. The highest selectivity toward glucose was found to be ~75% while the highest glucose yield obtained was 21%. PMID:23895516

  14. Cellulose Derivatives for Water Repellent Properties

    Science.gov (United States)

    In this poster presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide h...

  15. Cellulose nanocrystals: synthesis, functional properties, and applications

    OpenAIRE

    George J.; Sabapathi SN

    2015-01-01

    Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers...

  16. Cellulose synthase complexes: structure and regulation

    Directory of Open Access Journals (Sweden)

    Lei eLei

    2012-04-01

    Full Text Available This review is to update the most recent progress on characterization of the composition, regulation, and trafficking of cellulose synthase complexes. We will highlight proteins that interact with cellulose synthases, e.g. cellulose synthase-interactive protein 1 (CSI1. The potential regulation mechanisms by which cellulose synthase interact with cortical microtubules in primary cell walls will be discussed.

  17. Pharmaceutical significance of cellulose: A review

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The amalgamation of polymer and pharmaceutical sciences led to the introduction of polymer in the design and development of drug delivery systems. Polymeric delivery systems are mainly intended to achieve controlled or sustained drug delivery. Polysaccharides fabricated into hydrophilic matrices remain popular biomaterials for controlled-release dosage forms and the most abundant naturally occurring biopolymer is cellulose; so hdroxypropylmethyl cellulose, hydroxypropyl cellulose, microcrystalline cellulose and hydroxyethyl cellulose can be used for production of time controlled delivery systems. Additionally microcrystalline cellulose, sodium carboxymethyl cellulose, hydroxypropylmethyl cellulose, hydroxyethyl cellulose as well as hydroxypropyl cellulose are used to coat tablets. Cellulose acetate phthalate and hydroxymethyl cellulose phthalate are also used for enteric coating of tablets. Targeting of drugs to the colon following oral administration has also been accomplished by using polysaccharides such as hdroxypropylmethyl cellulose and hydroxypropyl cellulose in hydrated form; also they act as binders that swell when hydrated by gastric media and delay absorption. This paper assembles the current knowledge on the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for pharmaceuticals.

  18. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  19. Thermophilic degradation of cellulosic biomass

    Science.gov (United States)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  20. 纤维素/聚硅氧烷离子液体混合气相色谱固定相的制备%Preparation of mixed stationary phase of cellulose and polysiloxane ionic liquid for gas chromatography

    Institute of Scientific and Technical Information of China (English)

    陈刚; 赵晓洁; 邢钧; 姚玉华; 郑京京

    2014-01-01

    纤维素是液相色谱中应用十分广泛的一类固定相,可是由于涂渍性能不佳,纤维素在气相色谱中的应用鲜有报道。本论文首先通过酯化反应合成了脂溶性较好的三醋酸纤维素( CTA ),然后与自制的聚硅氧烷离子液体( PIL-C12-NTf2)混配,制备了含纤维素的气相色谱固定相( CTA@ PIL-C12-NTf2),并涂渍了毛细管柱。其柱效为3165 plates/m(110℃,萘,k=4.95)。麦氏常数及溶剂化参数模型的测试结果证明,该固定相属中强极性固定相,主要作用力是氢键碱性作用和偶极作用。值得注意的是,引入纤维素可明显改善三取代芳香化合物位置异构体及壬烷( C9)同分异构体的分离选择性。此外,该固定相对正构烷烃、醇、脂肪酸酯及邻苯二甲酸酯等也具有良好的分离选择性。该研究不仅初步展现了纤维素在分离选择性上的特点,而且也为探索纤维素衍生物在气相色谱中的应用提供了一条新的途径。%Cellulose has been widely used to synthesize chiral stationary phases for liquid chro-matography,but it is still absent in the family of stationary phases of gas chromatography due to its poor film-forming property. Based on the unique dissolution characteristic,ionic liquids provide a great chance to solve this problem. In this paper,cellulose triacetate( CTA)was syn-thesized,and then mixed with the home-made polysiloxane ionic liquid(PIL-C12-NTf2)to pro-duce a novel mixed stationary phase(CTA@PIL-C12-NTf2). After that,it was used to prepare a capillary column for gas chromatography. The column efficiency was measured to be 3 165 plates/m(110 ℃,naphthalene,k=4. 95),demonstrating the excellent film-forming capability of this stationary phase,and then the solvation parameter model was employed to find out the interaction parameters of CTA@ PIL-C12-NTf2. In the aspect of selectivity,CTA was firstly demonstrated to be able to improve the

  1. Reinforced plastics and aerogels by nanocrystalline cellulose

    International Nuclear Information System (INIS)

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  2. Characterization of Cellulose Synthesis in Plant Cells

    OpenAIRE

    Samaneh Sadat Maleki; Kourosh Mohammadi; Kong-shu Ji

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the...

  3. Incorporation of Cellulose into a Chew Treat for Dogs Increases Elasticity and Chewing Time

    Directory of Open Access Journals (Sweden)

    A. C. Beynen

    2011-01-01

    Full Text Available Problem statement: We have reported earlier that administration of a treat containing a special cellulose preparation (Arbocel BWW40®, instead of a control treat without cellulose, diminishes the clinical signs of periodontal disease in dogs. Based on the physical characteristics of the cellulose preparation, we hypothesized that treats with cellulose have greater elasticity and induce longer chewing time, leading to more mechanical dental cleansing. Approach: Treats without or with cellulose were subjected to bending and pulling tests in which the threshold before fragmentation, expressed as required force, was determined. The treats were also used in an experiment with dogs to determine chewing times. Results: The addition of cellulose to the treats raised the forced needed for bending and pulling until fragmentation by 12 and 99%. The inclusion of cellulose into the treats raised chewing by dogs of medium-sized and large breeds by 16 and 11%. However, in small-breed dogs chewing time was not affected by cellulose. Conclusion: The inclusion of the cellulose preparation into the treats induces a resistant and elastic texture which promotes chewing. It is suggested that the cellulose-containing treats maintain contact with the tooth surface which provides effective mechanical cleansing, explaining the observed improvement of periodontal disease in dogs.

  4. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.

    Science.gov (United States)

    Oun, Ahmed A; Rhim, Jong-Whan

    2015-12-10

    Cellulose nanocrystals (CNCs) were prepared by acid hydrolysis of cotton linter pulp fibers and three different purification methods, i.e., without post purification (CNC1), dialyzed against distilled water (CNC2), and neutralized with NaOH (CNC3), and their effect on film properties was evaluated by preparation of agar/CNCs composite films. All the CNCs were rod in shape with diameter of 15-50 nm and length of 210-480 nm. FTIR result indicated that there was no distinctive differences in the chemical structure between CNCs and cotton linter cellulose fiber. No significant relationship was observed between the sulfate content and crystallinity index of CNCs. The CNC3 showed higher thermal stability than the other type of CNCs due to the less adverse effect on the thermal stability of sulfate groups induced by the neutralization with NaOH. The tensile strength (TS) of agar film increased by 15% with incorporation of 5 wt% of CNC3, on the contrary, it decreased by 10% and 15% with incorporation of CNC1 and CNC2, respectively. Other performance properties of agar/CNCs composite films such as optical and water vapor barrier properties showed that the CNC3 was more effective filler than the other CNCs. In the range of concentration of CNC3 tested (1-10 wt%), inclusion of 5 wt% of CNC3 was the maximum concentration for improving or maintaining film properties of the composite films. The neutralization of acid hydrolyzed cellulose using NaOH was simple and convenient for the preparation of CNC and bionanocomposite films. PMID:26428095

  5. The Flotation Response of Quartz Using Aminated Cellulose Nanocrystals And Commercial Collectors

    OpenAIRE

    Kimpimäki, S. (Saku)

    2016-01-01

    Since cellulose is renewable, biodegradable, non-toxic, and the most abundant natural polymeric source on earth, different micro- and nanocelluloses are considered as potential high-performance bio-based chemicals. Cellulose nanocrystals (CNCs) are cellulose derivates that have recently gained a lot of interest due to their versatile physico-chemical properties. In this study three CNCs with different alkyl chain length were tested as collectors in quartz flotation processes as green alternat...

  6. Preparation of integrally spun viscose sausage casings using radiation-modified cellulose

    International Nuclear Information System (INIS)

    The effect of precipitation bath parameters on the physiocomechanical properties of integrally spun sausage casings prepared using radiation-modified cellulose has been studied. It has been found that the use of radiation-modified cellulose ensures the possibility of producing a high-quality product with a reduction of the consumption of carbon disulfide in xanthation to 10-15% based on wt. of α-cellulose

  7. Novel In Vivo-Degradable Cellulose-Chitin Copolymer from Metabolically Engineered Gluconacetobacter xylinus▿ †

    OpenAIRE

    Yadav, Vikas; Paniliatis, Bruce J.; Shi, Hai; Lee, Kyongbum; Cebe, Peggy; Kaplan, David L.

    2010-01-01

    Despite excellent biocompatibility and mechanical properties, the poor in vitro and in vivo degradability of cellulose has limited its biomedical and biomass conversion applications. To address this issue, we report a metabolic engineering-based approach to the rational redesign of cellular metabolites to introduce N-acetylglucosamine (GlcNAc) residues into cellulosic biopolymers during de novo synthesis from Gluconacetobacter xylinus. The cellulose produced from these engineered cells (modif...

  8. Bacterial Cellulose From Rice Waste Water With Addition Chitosan, Glycerol, And Silver Nanoparticle

    OpenAIRE

    Eli Rohaeti; Endang WLFX; Anna Rakhmawati

    2016-01-01

    This study aimed to prepare silver nanoparticles chemically, deposite silver nanoparticles on bacterial cellulose-chitosan-glycerol composite based rice waste water, as well as test the antibacterial activity of bacterial cellulose and its composite. Preparation of silver nanoparticles was conducted by chemical reduction of silver nitrate solution, as well as trisodium citrate as the reductor. Bacterial cellulose from rice waste water is fermented by the bacteria Acetobacter xylinum for 7 day...

  9. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid; Mecanismo de la elucion del erbio en un cambiador cationico con el acido n-hidroxietil-etilen-diamono-triacetico

    Energy Technology Data Exchange (ETDEWEB)

    Amer Amezaga, S.

    1963-07-01

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs.

  10. Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII

    Science.gov (United States)

    The CRI (chromophore release and identification) method isolates well-defined chromophoric substances from different cellulosic matrices, such as highly bleached pulps, cotton linters, bacterial cellulose, viscose or lyocell fibers, and cellulose acetates. The chromophores are present only in extrem...

  11. PENYALUTAN KACANG RENDAH LEMAK MENGGUNAKAN SELULOSA ETER DENGAN PENCELUPAN UNTUK MENGURANGI PENYERAPAN MINYAK SELAMA PENGGORENGAN DAN MENINGKATKAN STABILITAS OKSIDATIF SELAMA PENYIMPANAN [Ether Cellulose Coatings by Dipping on Partially Defatted Peanuts to Reduce Oil Uptake During Frying and to Increase Oxidative Stability During Storage

    OpenAIRE

    Made Darawati1); Yudi Pranoto2)

    2010-01-01

    This research aimed to reduce oil uptake during frying and to improve the oxidative stability of a partially defatted peanuts (PDP) product by coating with ether cellulose-based substances, namely carboxymethyl cellulose (CMC), hydroxyprophyl methyl cellulose (HPMC), methyl cellulose (MC) and hydroxyprophyl cellulose by dipping method. The research was conducted through following steps: preparation of ether cellulose-based edible film and evaluation of the properties, coating application on P...

  12. Chemical and cellulose crystallite changes in Pinus radiata during torrefaction

    International Nuclear Information System (INIS)

    The impact on the chemical composition and changes to the cellulose crystallites in Pinus radiata wood chips under light (ca. 230 °C), mild (ca. 260 °C), and severe (290+ °C) torrefaction temperatures at a range of times was examined by solid state 13C CP-MAS and Dipolar Dephased NMR spectroscopy, TGA, and synchrotron based X-ray diffraction. Results indicated the decomposition of hemicelluloses into furfurals at the lowest temperature with little modification to the lignin or cellulose. De-polymerisation of lignin and cellulose was observed as torrefaction severity increased. The increased hydrophobicity under light and mild torrefaction severity was attributed to a combination of thermo-chemical modifications to hemicelluloses and lignin, along with cellulose crystal lattice changes. The observed decrease in hydrophobicity under severe torrefaction conditions was attributed to the degradation of cellulose crystallites. -- Highlights: •It was shown that the torrefaction process has an optimum temperature – time regime with respect to increased hydrophobicity. •Changes to the proportion of ether linkages in lignin after torrefaction were determined by solid state NMR. •Changes to cellulose crystallites after torrefaction were determined by X-ray diffraction. •We relate the hydrophobicity of torrefied wood to changes in wood polymer interactions

  13. Disposable chemical sensors and biosensors made on cellulose paper

    International Nuclear Information System (INIS)

    Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications. (topical review)

  14. Impact of Layer-by-Layer Self-Assembly Clay-Based Nanocoating on Flame Retardant Properties of Sisal Fiber Cellulose Microcrystals

    Directory of Open Access Journals (Sweden)

    Chun Wei

    2015-01-01

    Full Text Available The renewable cationic polyelectrolyte chitosan (CH and anionic nanomontmorillonite (MMT layers were alternately deposited on the surface of sisal fiber cellulose microcrystals (SFCM via layer-by-layer (LBL self-assembly method. The structure and properties of the composites were characterized by zeta potential, thermal gravimetric analysis (TGA, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transform infrared spectrometer (FTIR, microcalorimeter (MCC, and so forth. The zeta potential results show that the cellulose microcrystalline surface charge reversed due to the adsorption of CH and MMT nanoplatelets during multilayer deposition. MMT characteristic diffraction peaks appear in XRD patterns of SFCM(CH/MMT5 and SFCM(CH/MMT10 composites. Additionally, FESEM reveals that the SFCM(CH/MMT10 surface is covered with a layer of material containing Si, which has been verified by elemental analysis. TGA results show that the initial decomposition (weight loss of 5% temperature of SFCM(CH/MMT5 is increased by 4°C compared to that of pure SFCM. On the other hand, carbon residue percentage of SFCM(CH/MMT10 is 25.1%, higher than that of pure SFCM (5.4% by 19.7%. Eventually, it is testified by MCC measurement that CH/MMT coating can significantly reinforce the flame retardant performance of SFCM.

  15. Printed optically transparent graphene cellulose electrodes

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to high optical transparency.

  16. Acid hydrolysis of cellulose as the entry point into biorefinery schemes.

    Science.gov (United States)

    Rinaldi, Roberto; Schüth, Ferdi

    2009-01-01

    Cellulose is a major source of glucose because it is readily available, renewable, and does not compete with the food supply. Hydrolysis of cellulose is experiencing a new research and development cycle in which this reaction is carried out over solid catalysts and coupled to other reactions for increased efficiency. Cellulose is typically not soluble in conventional solvents and very resistant to chemical and biological transformations. This Review focuses on aspects related to the hydrolysis of cellulose as this process is a significant entry point into the biorefinery scheme based on carbohydrates for the production of biofuels and biochemicals. Structural features of cellulose, conventional acid-catalyzed reactions, and the use of solid acid catalysts for hydrolysis are discussed. The longterm success of the biorefinery concept depends on the development of energetically efficient processes to convert cellulose directly or indirectly into biofuels and chemicals. PMID:19950346

  17. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. - Research highlights: → The likelihood of a significant cellulosic ethanol industry in the US looks dim. → Drop-in biofuels made from cellulosic feedstocks have a more promising future. → The spatial dimension of markets for cellulosic feedstocks will be limited. → Corn ethanol will be a tough competitor for cellulosic ethanol.

  18. Effect of preswelling on radiation degradation of cotton cellulose

    International Nuclear Information System (INIS)

    Cotton cellulose was swollen in aqueous solutions of sodium hydroxide and tetramethylammonium hydroxide (TMAH), respectively, in the presence of air. Samples after neutralization and drying were irradiated in open air (3, 10, and 20 kGy) in dry form (water content about 8-10%). Degree of polymerization (DP) and FTIR spectra were determined as a function of base concentration. Decrease of DP during irradiation was restrained by base pretreatment of cellulose probably due to the crosslinks developed. This effect was observed at low concentration as well where no crystal transition occurs. In the FTIR spectra absorbances belonging to the intermolecular H bonds decreased with increasing base concentration. High-energy irradiation resulted in a further decrease of intermolecular hydrogen bonds. It was assumed that crosslinking was assisted by the increased mobility of molecular chains in the amorphous part of base-treated cellulose. Effect of preswelling was more significant for TMAH-treated samples

  19. Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials

    Directory of Open Access Journals (Sweden)

    Ahmed Salama

    2014-09-01

    Full Text Available Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis show that, depending on the reaction conditions, cellulose/hydroxyapatite, cellulose/chlorapatite, or cellulose/monetite composites form. Preliminary studies with MC3T3-E1 pre-osteoblasts show that the cells proliferate on the hybrid materials suggesting that the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies.

  20. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification i....... Based on cellulose inhibition kinetics the talk will illustrate the suitability of membrane reactor technology for improving cellulose substrate conversion efficiency.......Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification...... include high substrate conversion (maximal yields), maximal enzyme efficiency, maximal volumetric reactor productivity, minimal equipment investment, minimal size, and short reaction time. The classic batch type STR reactions used for enzymatic cellulose hydrolysis prevent these goals to be fulfilled...

  1. Self-Assembly and Intermolecular Forces When Cellulose and Water Interact Using Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Ali Chami Khazraji

    2013-01-01

    Full Text Available Cellulose chains are linear and aggregation occurs via both intra- and intermolecular hydrogen bonds. Cellulose has a strong affinity to itself and toward materials containing hydroxyls groups. Based on the preponderance of hydroxyl functional groups, cellulose is very reactive with water. At room temperature, cellulose chains will have at least a monomolecular layer of water associated to it. The formation of hydrogen bonds at the cellulose/water interface is shown to depend essentially on the adsorption site, for example, the equatorial hydroxyls or OH moieties pointing outward from the cellulose chains. The vdW forces also contribute significantly to the adsorption energy. They are a considerable cohesive energy into the cellulose network. At the surface of the cellulose chains, many intermolecular hydrogen bonds of the cellulose chains are lost. However, they are compensated by hydrogen bonds with water molecules. Electronic clouds can be distorted and create electrostatic dipoles. The large antibonding electron cloud that exists around the glucosidic bonds produces an induced polarization at the approach of water molecules. The electron cloud can be distorted and create an electrostatic dipole. It applies to the total displacement of the atoms within the material. Orbitals play a special role in reaction mechanism. Hydrophilic/hydrophobic nature of cellulose is based on its structural anisotropy. Cellulose-water interactions are exothermic reactions. These interactions may occur spontaneously and result in higher randomness of the system. They are denoted by a negative heat flow (heat is lost to the surroundings. Energy does not need to be inputted in order for cellulose-water interactions to occur.

  2. Effect of temperature on the protonation of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid in aqueous solutions: Potentiometric and calorimetric studies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingliang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Zhang, Zhicheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; Endrizzi, Francesco [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Shunzhong [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Rao, Linfeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.

    2015-06-01

    The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An3+) from trivalent lanthanides (Ln3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na+, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found to exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln3+ and An3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the

  3. Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design.

    Science.gov (United States)

    Lavoine, Nathalie; Guillard, Valérie; Desloges, Isabelle; Gontard, Nathalie; Bras, Julien

    2016-09-20

    Cellulose nanofibers (CNFs) were recently investigated for the elaboration of new functional food-packaging materials. Their nanoporous network was especially of interest for controlling the release of active species. Qualitative release studies were conducted, but quantification of the diffusion phenomenon observed when the active species are released from and through CNF coating has not yet been studied. Therefore, this work aims to model CNF-coated paper substrates as controlled release system for food-packaging using release data obtained for two model molecules, namely caffeine and chlorhexidine digluconate. The applied mathematical model - derived from Fickian diffusion - was validated for caffeine only. When the active species chemically interacts with the release device, another model is required as a non-predominantly diffusion-controlled release was observed. From caffeine modeling data, a theoretical active food-packaging material was designed. The use of CNFs as barrier coating was proved to be the ideal material configuration that best meets specifications. PMID:27261728

  4. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing. PMID:25926011

  5. Microfibrillated cellulose: morphology and accessibility

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, F.W.; Casebier, R.L.; Hamilton, J.K.; Sandberg, K.R.

    1983-01-01

    Microfibrillated cellulose (MFC) is prepared by subjecting dilute slurries of cellulose fibers to repeated high-pressure homogenizing action. A highly microfibrillated product will have a gel-like appearance at 2% concentration in water. Such gels have pseudoplastic viscosity properties and are very fluid when stirred at high shear rate. The relative viscosity of 2% MFC dispersions may be used as a measure of the degree of homogenization or microfibrillation of a given wood cellulose pulp. The water retention value of an MFC product can also be used as an indicator for degree of homogenization. Structurally, MFC appears to be a web of interconnected fibrils and microfibrils, the latter having diameters in the range 10-100 nm as observed in scanning and transmission electron micrographs. Chemical studies have revealed that MFC is only moderately degraded, while being greatly expanded in surface area. The accessibility of cellulose in MFC is only moderately degraded, while being greatly expanded in surface area. The accessibility of cellulose in MFC toward chemical reagents is greatly increased. Higher reactivity was demonstrated in dilute cupriethylenediamine solubility, triphenylmethylation, acetylation, periodate oxidation, and mineral acid and cellulase enzyme hydrolysis rates. 16 references, 8 figures, 7 tables.

  6. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Edwin R Lampugnani; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated ...

  7. Towards determination of absolute molar mass of cellulose polymer by size exclusion chromatography with mulitple angle laser light scattering detection.

    Science.gov (United States)

    Pawcenis, Dominika; Thomas, Jacob L; Łojewski, Tomasz; Milczarek, Jakub M; Łojewska, Joanna

    2015-08-28

    The study focuses on determination of a set of crucial parameters for molar mass calculation of cellulose from the results of size exclusion chromatography coupled with multiple angle laser light scattering (MALLS) and differential refractive index (DRI) detectors. In the present work, cellulose has been derivatised to obtain cellulose tricarbanilate (CTC) soluble in tetrahydrofuran (THF). The parameters of Rayleigh scattering in the MALLS detector: refractive index increment (dn/dc) and second virial coefficient (A2) of CTC in THF were determined for laser wavelength 658nm. In order to avoid errors resulting from cellulose derivatisation by-products present in the CTC solution, the so called "on-line" method of measuring dn/dc and A2 was applied. Based on the A2 determination, its influence on cellulose molar mass calculations and cellulose molecular dimensions were critically assessed. The latter includes evaluation of artificially aged cellulose towards conceivable branching by conformation plot analysis. PMID:26210115

  8. Manufacturing of robust natural fiber preforms utilizing bacterial cellulose as binder.

    Science.gov (United States)

    Lee, Koon-Yang; Shamsuddin, Siti Rosminah; Fortea-Verdejo, Marta; Bismarck, Alexander

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together. Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together. The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion. PMID:24893649

  9. SYNTHESIS AND CHARACTERIZATION OF CELLULOSE-SILICA COMPOSITE FIBER IN ETHANOL/WATER MIXED SOLVENTS

    Directory of Open Access Journals (Sweden)

    Ning Jia

    2011-04-01

    Full Text Available Cellulose-silica composite fiber samples have been successfully synthesized using cellulose solution, tetraethoxysilane, and NH3•H2O in ethanol/water mixed solvents at room temperature for 24 h. The cellulose solution was previously prepared by the dissolution of microcrystalline cellulose in a solvent mixture of N,N-dimethylacetamide (DMAc/lithium chloride (LiCl. The effect of the tetraethoxysilane concentration on the product was investigated. The products were characterized by X-ray powder diffraction (XRD, thermogravimetric analysis (TG, differential scanning calorimetric analysis (DSC, scanning electron microscopy (SEM, Fourier transform infrared spectrometry (FT-IR, energy-dispersive X-ray spectrum (EDS, and cross polarization magic angle spinning (CP/MAS solid state 13C-NMR. The morphology of the cellulose-silica composite fiber was investigated by SEM, while their composition was established from EDS measurements combined with the results of FT-IR spectral analysis and XRD patterns. The XRD, FT-IR and EDS results indicated that the obtained product was cellulose-silica composite fiber. The SEM micrographs showed that the silica particles were homogeneously dispersed in the cellulose fiber. The CP/MAS solid state 13C-NMR results indicated that the silica concentration had an influence on the crystallinity of the cellulose. This method is simple for preparation of cellulose-based composites.

  10. Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder

    Science.gov (United States)

    Lee, Koon-Yang; Shamsuddin, Siti Rosminah; Fortea-Verdejo, Marta; Bismarck, Alexander

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together. Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together. The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion. PMID:24893649

  11. Bacterial Cellulose From Rice Waste Water With Addition Chitosan, Glycerol, And Silver Nanoparticle

    Directory of Open Access Journals (Sweden)

    Eli Rohaeti

    2016-05-01

    Full Text Available This study aimed to prepare silver nanoparticles chemically, deposite silver nanoparticles on bacterial cellulose-chitosan-glycerol composite based rice waste water, as well as test the antibacterial activity of bacterial cellulose and its composite. Preparation of silver nanoparticles was conducted by chemical reduction of silver nitrate solution, as well as trisodium citrate as the reductor. Bacterial cellulose from rice waste water is fermented by the bacteria Acetobacter xylinum for 7 days. The dried bacterial cellulose was composited with chitosan and glycerol by immersion method on 2% of chitosan solution and 0.5% of glycerol solution. UV-Vis spectroscopy is used to determine the formation of silvernanoparticles and Particle Size Analyzer to test the size and particle size distribution. Characterization was conducted to bacterial cellulose and its composite included functional groups by FTIR, the mechanical properties by Tensile Tester, crystallinity by XRD, surface photograph by SEM, and antibacterial test against S. aureus and E. coli by the shake flask turbidimetry method. Silver nanoparticle characterization indicated that silver nanoparticles are formed at a wavelength of 421.80 nm, yellow, diameter particle size of 61.8 nm. SEM images showed that the surface of bacterial cellulose had deposited silver nanoparticles and antibacterial test showed an inhibitory effect of bacterial cellulose, bacterial cellulose-chitosan composite, and bacterial cellulose-chitosan-glycerol composite which are deposited silver nanoparticles against the growth of S. aureus and E. coli bacteria.

  12. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  13. Characterization of Cellulose Synthesis in Plant Cells.

    Science.gov (United States)

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-Shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  14. Low level hydrogen peroxide generation from a nonwoven fibrous pectin-cellulose blend

    Science.gov (United States)

    Fibrous pectic-cellulose (FPC) (cellulose blended with primary cell wall pectin at 2 percent by weight of pectin) is product made from naturally occurring plant fibers. FPC is a fibrous mixture of polysaccharides with a low percent by weight of pectin-based primary cell wall and lipid components att...

  15. Conducting Cellulose Fiber Networks as Flexible Substrate for Optoelectronic Applications

    International Nuclear Information System (INIS)

    Full text: Electronics based on natural materials is becoming increasingly attractive. Paper, a composite of pressed cellulose fibers, has been considered for flexible substrate in thin film electronics, but smoothed with fillers to prevent short circuits. The present study instead uses filler-free cellulose networks by surrounding individual fibers with the entire diode layer stack. Shorts are hindered and the photosensitive area multiplied. The first electrode is hereby established by interconnected silver nanowires adsorbed to the fiber surfaces. The network is subsequently wetted by semiconductor solute, followed by a second electrode. IV characteristics of the conductive paper and diodes based upon will be shown, along with associated micromorphology and optical properties. (author)

  16. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics

    International Nuclear Information System (INIS)

    This paper proposes modifications to an existing cellulose pyrolysis mechanism in order to include the effect of potassium on product yields and composition. The changes in activation energies and pre-exponential factors due to potassium were evaluated based on the experimental data collected from pyrolysis of cellulose samples treated with different levels of potassium (0–1% mass fraction). The experiments were performed in a pyrolysis reactor coupled to a molecular beam mass spectrometer (MBMS). Principal component analysis (PCA) performed on the collected data revealed that cellulose pyrolysis products could be divided into two groups: anhydrosugars and other fragmentation products (hydroxyacetaldehyde, 5-hydroxymethylfurfural, acetyl compounds). Multivariate curve resolution (MCR) was used to extract the time resolved concentration score profiles of principal components. Kinetic tests revealed that potassium apparently inhibits the formation of anhydrosugars and catalyzes char formation. Therefore, the oil yield predicted at 500 °C decreased from 87.9% from cellulose to 54.0% from cellulose with 0.5% mass fraction potassium treatment. The decrease in oil yield was accompanied by increased yield of char and gases produced via a catalyzed dehydration reaction. The predicted char and gas yield from cellulose were 3.7% and 8.4%, respectively. Introducing 0.5% mass fraction potassium treatment resulted in an increase of char yield to 12.1% and gas yield to 33.9%. The validation of the cellulose pyrolysis mechanism with experimental data from a fluidized-bed reactor, after this correction for potassium, showed good agreement with our results, with differences in product yields of up to 5%

  17. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization

    Science.gov (United States)

    Yang, Quanling; Saito, Tsuguyuki; Berglund, Lars A.; Isogai, Akira

    2015-10-01

    All-cellulose nanocomposite films containing crystalline TEMPO-oxidized cellulose nanofibrils (TOCNs) of 0-1 wt% were fabricated by mixing aqueous TOCN dispersions with alkali/urea/cellulose (AUC) solutions at room temperature. The mixtures were cast on glass plates, soaked in an acid solution, and the regenerated gel-like films were washed with water and then dried. The TOCN did not form agglomerates in the composites, and had the structure of TOCN-COOH, forming hydrogen bonds with the hydroxyl groups of the regenerated cellulose molecules. X-ray diffraction analysis revealed that the matrix cellulose molecules increased the cellulose II crystal size upon incorporation of TOCN. As a result, the TOCN/AUC composite films had high Young's modulus, tensile strength, thermal stability and oxygen-barrier properties. The TOCN/AUC composite films are promising all-cellulose nanocomposites for versatile applications as new bio-based materials.All-cellulose nanocomposite films containing crystalline TEMPO-oxidized cellulose nanofibrils (TOCNs) of 0-1 wt% were fabricated by mixing aqueous TOCN dispersions with alkali/urea/cellulose (AUC) solutions at room temperature. The mixtures were cast on glass plates, soaked in an acid solution, and the regenerated gel-like films were washed with water and then dried. The TOCN did not form agglomerates in the composites, and had the structure of TOCN-COOH, forming hydrogen bonds with the hydroxyl groups of the regenerated cellulose molecules. X-ray diffraction analysis revealed that the matrix cellulose molecules increased the cellulose II crystal size upon incorporation of TOCN. As a result, the TOCN/AUC composite films had high Young's modulus, tensile strength, thermal stability and oxygen-barrier properties. The TOCN/AUC composite films are promising all-cellulose nanocomposites for versatile applications as new bio-based materials. Electronic supplementary information (ESI) available: Fig. S1-S3 show an AFM image of TOCN, SEM

  18. Cellulose polymorphy, crystallite size, and the Segal crystallinity index

    Science.gov (United States)

    The X-ray diffraction-based Segal Crystallinity Index (CI) was calculated for simulated different sizes of crystallites for cellulose I' and II. The Mercury software was used, and different crystallite sizes were based on different input peak widths at half of the maximum peak intensity (pwhm). The ...

  19. All-biomaterial supercapacitor derived from bacterial cellulose.

    Science.gov (United States)

    Wang, Xiangjun; Kong, Debin; Zhang, Yunbo; Wang, Bin; Li, Xianglong; Qiu, Tengfei; Song, Qi; Ning, Jing; Song, Yan; Zhi, Linjie

    2016-04-28

    An all-biomaterial originated film supercapacitor has been successfully fabricated for the first time based on a unique three-dimensional bacterial cellulose (BC) derived electrode and a novel BC-based gel electrolyte. The obtained supercapacitor displays an excellent specific capacitance of 289 mF cm(-2) and an improved solution resistance of 7 Ω. PMID:27093428

  20. Regenerated bacterial cellulose microfluidic column for glycoproteins separation.

    Science.gov (United States)

    Chen, Chuntao; Zhu, Chunlin; Huang, Yang; Nie, Ying; Yang, Jiazhi; Shen, Ruiqi; Sun, Dongping

    2016-02-10

    To analysis and separate glycoproteins, a simple strategy to prepare regenerated bacterial cellulose (RBC) column with concanavalin A (Con A) lectin immobilized in microfluidic system was applied. RBC was filled into microchannel to fabricate RBC microcolumn after bacterial cellulose dissolved in NaOH-sulfourea water solution. Lectin Con A was covalently connected onto RBC matrix surface via Schiff-base formation. Lysozyme (non-glycoprotein) and transferrin (glycoprotein) were successfully separated based on their different affinities toward the immobilized Con A. Overall, the RBC microfluidic system presents great potential application in affinity chromatography of glycoproteins analysis, and this research represents a significant step to prepare bacterial cellulose (BC) as column packing material in microfluidic system. What is more, troublesome operations for lectin affinity chromatography were simplified by integrating the microfluidic chip onto a HPLC (High Performance Liquid Chromatography) system. PMID:26686130

  1. Investigation of mass transport properties of microfibrillated cellulose (MFC) films

    DEFF Research Database (Denmark)

    Minelli, Matteo; Baschetti, Marco Giacinti; Doghieri, Ferruccio;

    2010-01-01

    The structure and transport properties of a four different films based on two different generations of microfibrillated cellulose (MFC), alone or in combination with glycerol as plasticizer, were investigated through FE-SEM analysis and sorption or permeation experiments. FE-SEM revealed the exis......The structure and transport properties of a four different films based on two different generations of microfibrillated cellulose (MFC), alone or in combination with glycerol as plasticizer, were investigated through FE-SEM analysis and sorption or permeation experiments. FE-SEM revealed...... sorption experiments confirmed the hydrophilic character of these cellulosic materials and showed a dual effect of glycerol which reduced the water uptake at low water activity while enhancing it at high relative humidity. The water diffusion in dry samples was remarkably slow for a porous material...

  2. State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review

    Directory of Open Access Journals (Sweden)

    Maria-Beatrice Coltelli

    2015-12-01

    Full Text Available There is increasing research towards the substitution of petrochemicals by sustainable components. Biopolymers such as proteins, polysaccharides, and lipids derive from a variety of crop sources and most promisingly from waste streams generated during their processing by the agro food industry. Among those, proteins of different types such as whey, casein, gelatin, wheat gluten, soy protein or zein present a potential beyond the food and feed industry for the application in packaging. The general protein hydrophilicity promotes a good compatibility to polar surfaces, such as paper, and a good barrier to apolar gases, such as oxygen and carbon dioxide. The present review deals with the development of protein-based coatings and films. It includes relevant discussion for application in paper or board products, as well as an outlook on its future industrial potential. Proteins with suitable functionalities as food packaging materials are described as well as the different technologies for processing the coatings and the current state of the art about the coating formulations for selectively modulating barrier, mechanical, surface and end of life properties. Some insights onto regulations about packaging use, end of life and perspectives of such natural coating for decreasing the environmental impact of packages are given.

  3. Chemical modification of cellulose for electrospinning applications

    OpenAIRE

    Martín Ferrer, Elena

    2013-01-01

    The aim of the thesis is to develop technology for producing cellulose fatty acid esters that later will be used to produce fibrous materials by means of electrospinning. Main material of the study is cellulose-stearate which is a polymer synthesised by reaction between stearoyl chloride and cellulose. The experimental part consists of synthesis of it by chemical modification of cellulose using ionic liquid as a reaction media. In addition, ionic liquid is also synthesised from the beginning....

  4. Filtration properties of bacterial cellulose membranes

    OpenAIRE

    Lehtonen, Janika

    2015-01-01

    Bacterial cellulose has the same molecular formula as cellulose from plant origin, but it is characterized by several unique properties including high purity, crystallinity and mechanical strength. These properties are dependent on parameters such as the bacterial strain used, the cultivation conditions and post-growth processing. The possibility to achieve bacterial cellulose membranes with different properties by varying these parameters could make bacterial cellulose an interesting materi...

  5. A Molecular Description of Cellulose Biosynthesis

    OpenAIRE

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2015-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by ...

  6. 温度及pH双敏感性的新型接枝共聚物%Synthesis and Characterization of Novel Temperature and pH Responsive Hydroxylpropyl Cellulose-based Graft Copolymers

    Institute of Scientific and Technical Information of China (English)

    李小军; 尹明辉; 张国亮; 张风宝

    2009-01-01

    In this study, double-hydrophilic hydroxylpropyl cellulose (HPC) based copolymers with poly(Nisopropylaerylamide) (PNIPAM) and poly(acrylic acid) (PAA) as graft chains were synthesized and characterized. The release behavior of drug-loaded micelles was studied. The results show that the hydrophilicity of copolymers improves as the pH increases, whereas the hydrophobicity of copolymers enhances as the temperature increases, and all the phase behaviors are reversible. The diameter of micelles decreases and then increases with pH increase. It shows different micellizing behavior under acidic and basic conditions according to the temperature increase. In vitro release experiments, which used theophylline as a model drug, show that the micelles enhance pH sensitivity in the release process.

  7. The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators

    Institute of Scientific and Technical Information of China (English)

    Logan BASHLINE; Juan DU; Ying GU

    2011-01-01

    Cellulose biosynthesis is a topic of intensive research not only due to the significance of cellulose in the integrity of plant cell walls,but also due to the potential of using cellulose,a natural carbon source,in the production ot biofuels.Characterization of the composition,regulation,and trafficking of cellulose synthase complexes (CSCs) is critical to an understanding of cellulose biosynthesis as well as the characterization of additional proteins that contribute to the production of cellulose either through direct interactions with CSCs or through indirect mechanisms.In this review,a highlight of a few proteins that appear to affect cellulose biosynthesis,which includes:KORRIGAN (KOR),Cellulose Synthase-Interactive Protein 1 (CSI1),and the poplar microtubule-associated protein,PttMAP20,will accompany a description of cellulose synthase (CESA) behavior and a discussion of CESA trafficking compartments that might act in the regulation of cellulose biosynthesis.

  8. A Sorption Hysteresis Model For Cellulosic Materials

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars

    2006-01-01

    The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and....../or imply accounting for the entire history variations of every material point. This paper presents a sorption hysteresis model based on a state formulation and expressed in closed-form solutions, which makes it suitable for implementation into a numerical method....

  9. Mechanical Properties of Cellulose Microfiber Reinforced Polyolefin

    Science.gov (United States)

    Kobayashi, Satoshi; Yamada, Hiroyuki

    Cellulose microfiber (CeF) has been expected as a reinforcement of polymer because of its high modulus and strength and lower cost. In the present study, mechanical properties of CeF/polyolefin were investigated. Tensile modulus increased with increasing CeF content. On the other hand, tensile strength decreased. Fatigue properties were also investigated with acoustic emission measurement. Stiffness of the composites gradually decreased with loading. Drastic decrease in stiffness was observed just before the final fracture. Based on the Mori-Tanaka's theory, the method to calculate modulus of CeF were proposed to evaluate dispersion of CeF.

  10. Adsorption and desorption of cellulose derivatives.

    NARCIS (Netherlands)

    Hoogendam, C.W.

    1998-01-01

    Cellulose derivatives, in particular carboxymethyl cellulose (CMC) are used in many (industrial) applications. The aim of this work is to obtain insight into the adsorption mechanism of cellulose derivatives on solid-liquid interfaces.In chapter 1 of this thesis we discuss some appl

  11. Iodine catalyzed acetylation of starch and cellulose

    Science.gov (United States)

    Starch and cellulose, earth's most abundant biopolymers, are of tremendous economic importance. Over 90% of cotton and 50% of wood are made of cellulose. Wood and cotton are the major resources for all cellulose products such as paper, textiles, construction materials, cardboard, as well as such c...

  12. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  13. Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites

    Science.gov (United States)

    Nakagaito, A. N.; Iwamoto, S.; Yano, H.

    2005-01-01

    High-strength composites were produced using bacterial cellulose (BC) sheets impregnated with phenolic resin and compressed at 100 MPa. By utilizing this unique material synthesized by bacteria, it was possible to improve the mechanical properties over the previously reported high-strength composites based on fibrillated kraft pulp of plant origin. BC-based composites were stronger, and in particular the Young’s modulus was significantly higher, attaining 28 GPa versus 19 GPa of fibrillated pulp composites. The superior modulus value was attributed to the uniform, continuous, and straight nano-scalar network of cellulosic elements oriented in-plane via the compression of BC pellicles.

  14. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance.

    Science.gov (United States)

    Park, Sunkyu; Baker, John O; Himmel, Michael E; Parilla, Philip A; Johnson, David K

    2010-01-01

    Although measurements of crystallinity index (CI) have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101) support this observation. We believe that the alternative X-ray diffraction (XRD) and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful. PMID:20497524

  15. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance

    Directory of Open Access Journals (Sweden)

    Parilla Philip A

    2010-05-01

    Full Text Available Abstract Although measurements of crystallinity index (CI have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101 support this observation. We believe that the alternative X-ray diffraction (XRD and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful.

  16. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  17. Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Cellulose being an excellent biopolymer has cemented its place firmly in many industries as a coating material, textile, composites, and biomaterial applications. In the present study, we have investigated the effect of biofield treatment on physicochemical properties of cellulose and cellulose acetate. The cellulose and cellulose acetate were exposed to biofield and further the chemical and thermal properties were investigated. X-ray diffraction study asserted that the biofield treatment did...

  18. Catalytic pyrolysis of cellulose in ionic liquid [bmim]OTf.

    Science.gov (United States)

    Qu, Guangfei; He, Weiwei; Cai, Yingying; Huang, Xi; Ning, Ping

    2016-09-01

    This study discussed the catalytic cracking process of cellulose in ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim]OTF) under 180°C, 240°C and 340°C, found that [bmim]OTF is an effective catalyst which can effectively reduce the pyrolysis temperature(nearly 200°C) of the cellulose. FRIR, XRD and SEM were used to analyze the structure characterization of fiber before and after the cracking; GC-MS was used for liquid phase products analysis; GC was used to analyze gas phase products. The results showed that the cellulose pyrolysis in [bmim]OTf mainly generated CO2, CO and H2, also generated 2-furfuryl alcohol, 2,5-dimethyl-1,5-diallyl-3-alcohol, 1,4-butyrolactone, 5-methyl furfural, 4-hydroxy butyric acid, vinyl propionate, 1-acetoxyl group-2-butanone, furan formate tetrahydrofuran methyl ester liquid product, and thus simulated the evolution mechanism of cellulose pyrolysis products based on the basic model of cellulose monomer. PMID:27185153

  19. Approaches to new derivatives of cellulose as designed pharmaceutical excipients

    Directory of Open Access Journals (Sweden)

    Schwarz Brigitte

    2003-01-01

    Full Text Available Recently, our group initiated a synthetic program directed at new derivatives of cellulose intended as novel pharmaceutical excipients. With several notable exceptions, the attempted regioselective introduction of chemical functionality into natural cellulose by direct chemical modification will result in heterogeneous products that are difficult to characterize and the preparation of which is insufficiently reproduceable. Approaches to the chemical polymerization of appropriate glucose monomers are available, leading to a degree of polymerization in the order of 100. However, the nature of these processes does not readily lend itself to the preparation of products comprising regularly arranged protecting groups in defined positions. We have chosen a mixed organic chemical-enzyme catalyzed approach based on a procedure of Kobayashi, Shoda, Donnelly and Church. Fluoride derivatives of cellobiose may be polymerized, under catalysis by cellobiose hydrolase, to form cellulose oligosaccharides of different chain lengths. We describe the chemical syntheses of cellobiose fluoride derivatives comprising protecting groups in defined positions of the reducing or nonreducing glucose moieties of cellobiose. Such derivatives may be polymerized to afford cellulose derivatives with protecting groups on alternate glucose units. The processing of these protected cellulose derivatives to afford novel biomimetic polymers will be described.

  20. Polyethylenimine surface layer for enhanced virus immobilization on cellulose

    Science.gov (United States)

    Tiliket, Ghania; Ladam, Guy; Nguyen, Quang Trong; Lebrun, Laurent

    2016-05-01

    Thin regenerated cellulose films are prepared by hydrolysis of cellulose acetate (CA). A polycation, namely polyethylenimine (PEI), is then adsorbed onto the films. From QCM-D analysis, PEI readily adsorbs from a 0.1% w/v solution in NaCl 0.2 M (ca. 100 ng cm-2). Further PEI adsorption steps at higher PEI concentrations induce a linear growth of the PEI films, suggesting that free adsorption sites still exist after the initial adsorption. The adsorbed PEI chains are resistant to variations of the ionic strength up to NaCl 1 M. Promisingly, the adsorption of T4D bacteriophages are 15-fold more efficient onto the PEI-treated, compared to the native regenerated cellulose films, as measured by QCM-D. This confirms the strong affinity between the negatively charged viruses and PEI, even at low PEI concentration, probably governed by strong electrostatic attractive interactions. This result explains the remarkable improvement of the affinity of medical masks for virus droplets when one of their cellulose layers was changed by two-PEI-functionalized cellulose-based filters.

  1. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  2. Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix.

    Science.gov (United States)

    Jiang, Huixin; Tovar-Carrillo, Karla; Kobayashi, Takaomi

    2016-09-01

    Ultrasound (US) drug release system using cellulose based hydrogel films was developed as triggered to mimosa. Here, the mimosa, a fascinating drug to cure injured skin, was employed as the loading drug in cellulose hydrogel films prepared with phase inversion method. The mimosa hydrogels were fabricated from dimethylacetamide (DMAc)/LiCl solution in the presence of mimosa, when the solution was exposed to ethanol vapor. The US triggered release of the mimosa from the hydrogel matrix was carried out under following conditions of US powers (0-30W) and frequencies (23, 43 and 96kHz) for different mimosa hydrogel matrix from 0.5wt% to 2wt% cellulose solution. To release the drug by US trigger from the matrix, the better medicine release was observed in the matrix prepared from the 0.5wt% cellulose solution when the 43kHz US was exposed to the aqueous solution with the hydrogel matrix. The release efficiency increased with the increase of the US power from 5 to 30W at 43kHz. Viscoelasticity of the hydrogel matrix showed that the hydrogel became somewhat rigid after the US exposure. FT-IR analysis of the mimosa hydrogel matrixes showed that during the US exposure, hydrogen bonds in the structure of mimosa-water and mimosa-cellulose were broken. This suggested that the enhancement of the mimosa release was caused by the US exposure. PMID:27150786

  3. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose

    OpenAIRE

    Lee, K. Y.; Tammelin, T.; Schulfter, K.; Kiiskinen, H.; Samela, J.; Bismarck, A.

    2012-01-01

    This work investigates the surface and bulk properties of nanofibrillated cellulose (NFC) and bacterial cellulose (BC), as well as their reinforcing ability in polymer nanocomposites. BC possesses higher critical surface tension of 57 mN m(-1) compared to NFC (41 mN m(-1)). The thermal degradation temperature in both nitrogen and air atmosphere of BC was also found to be higher than that of NFC. These results are in good agreement with the higher crystallinity of BC as determined by XRD, meas...

  4. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  5. Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis

    International Nuclear Information System (INIS)

    Utilizing stable carbon isotope data to account for aceticlastic and non-aceticlastic pathways of methane generation, a model was created to describe laboratory batch anaerobic decomposition of cellulosic materials (office paper and cardboard). The total organic and inorganic carbon concentrations, methane production volume, and methane and CO2 partial pressure values were used for the model calibration and validation. According to the fluorescent in situ hybridization observations, three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H2/H2CO3 as well as acetate-oxidizing syntrophs, were considered. It was shown that temporary inhibition of aceticlastic methanogens by non-ionized volatile fatty acids or acidic pH was responsible for two-step methane production from office paper at 35 oC where during the first and second steps methane was generated mostly from H2/H2CO3 and acetate, respectively. Water saturated and unsaturated cases were tested. According to the model, at the intermediate moisture (150%), much lower methane production occurred because of full-time inhibition of aceticlastic methanogens. At the lowest moisture, methane production was very low because most likely hydrolysis was seriously inhibited. Simulations showed that during cardboard and office paper biodegradation at 55 oC, non-aceticlastic syntrophic oxidation by acetate-oxidizing syntrophs and hydrogenotrophic methanogens were the dominant methanogenic pathways.

  6. Determining the Optimal Location for Collocating a Louisiana Sugar Mill and a New Cellulosic Ethanol Plant

    OpenAIRE

    Darby, Paul M.; Mark, Tyler B.

    2012-01-01

    This paper examines the possibility of collocating a cellulosic ethanol processing plant with certain Louisiana sugar mills, chosen based on their strategic locations and cane grinding capacity. The prospective plants are compared based on transportation costs and overall economic performance.

  7. Production of bacterial cellulose from alternate feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  8. Production of Bacterial Cellulose from Alternate Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  9. Cationization of Alpha-Cellulose to Develop New Sustainable Products

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Papermaking has been using high quantities of retention agents, mainly cationic substances and organic compounds such as polyamines. The addition of these agents is related to economic and environmental issues, increasing contamination of the effluents. The aim of this work is to develop a cationic polymer for papermaking purposes based on the utilization of alpha-cellulose. The cationization of mercerized alpha-cellulose with 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC is governed by a pseudo-second-order reaction. The initial amorphous fraction of cellulose is reacted with CHPTAC until the equilibrium value of nitrogen substitution is reached. Nitrogen is incorporated as a quaternary ammonium group in the polymer. Also, the kinetic constant increased with decreasing crystallinity index, showing the importance of the previous alkalization stage. The use of modified natural polysaccharides is a sustainable alternative to synthetic, nonbiodegradable polyelectrolytes and thus is desirable with a view to developing new products and new processes.

  10. Enzymatic degradation of plutonium-contaminated cellulose products

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M. [Texas Tech Univ., Lubbock, TX (United States); Barnes, D.L. [Amarillo National Resource Center for Plutonium, TX (United States); Worl, L.; Avens, L. [Los Alamos National Lab., NM (United States)

    1999-03-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas.

  11. Enzymatic degradation of plutonium-contaminated cellulose products

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M. [Texas Tech Univ., Lubbock, TX (United States); Barnes, D.L. [Amarillo National Resource Center for Plutonium, TX (United States); Worl, L.A. [Los Alamos National Lab., NM (United States)

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  12. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase trademark) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas

  13. Enhanced electromechanical behaviors of cellulose ZnO hybrid nanocomposites

    Science.gov (United States)

    Mun, Seongchoel; Min, Seung-Ki; Kim, Hyun Chan; Im, Jongbeom; Geddis, Demetris L.; Kim, Jaehwan

    2015-04-01

    Inorganic-organic hybrid composite has attracted as its combined synergistic properties. Cellulose based inorganicorganic hybrid composite was fabricated with semiconductive nanomaterials which has functionality of nanomaterial and biocompatibility piezoelectricity, high transparency and flexibility of cellulose electro active paper namely EAPap. ZnO is providing semiconductive functionality to EAPap for hybrid nanocomposite by simple chemical reaction. Cellulose- ZnO hybrid nanocomposite (CEZOHN) demonstrates novel electrical, photoelectrical and electromechanical behaviors. This paper deals with methods to improve electromechanical property of CEZOHN. The fabrication process is introduced briefly, charging mechanism and evaluation is studied with measured piezoelectric constant. And its candidate application will be discussed such as artificial muscle, energy harvester, strain sensor, flexible electrical device.

  14. Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose

    Science.gov (United States)

    Olszewska, Anna; Valle-Delgado, Juan José; Nikinmaa, Miika; Laine, Janne; Österberg, Monika

    2013-11-01

    There is a growing interest to design biomimetic self-assembled composite films from renewable resources aimed at a combination of high toughness, strength and stiffness. However, the relationship between interfacial interactions of the components and the mechanical performance of the composite is still poorly understood. In this work we present evidence of the link between mechanical performance of carbohydrate-based composites with nanolubrication and with direct surface forces between the hard and soft domain in the system. Our approach was to use nanofibrillated cellulose (NFC) as the major reinforcing domain and to modify it by adsorption of a small amount of soft polyethylene glycol grafted carboxymethyl cellulose (CMC-g-PEG). The effect of the soft polymer on direct normal and friction forces in air between cellulose surfaces was evaluated using colloidal probe microscopy. The fibrillar structure of the NFC thin film affected the frictional behaviour; when decreasing load, the friction between pure cellulose surfaces increased, suggesting partial pull-out of fibrils, a phenomenon not observed for non-fibrillar cellulose substrates. Adsorption of CMC-g-PEG on both surfaces decreased the friction considerably but adhesion was still high. The symmetric system, having both cellulose substrates covered with the polymer, was compared to asymmetric systems where only one surface was covered with the polymer. Furthermore, a free standing composite film was prepared by non-ionic self-assembly of NFC and CMC-g-PEG with 99 : 1 weight-ratio; the mechanical properties of the macroscopic films were related to the nanoscaled interactions between the components. The composition studied showed excellent mechanical properties which do not follow the simple rule of mixture. Thus, a synergy in the direct surface forces and mechanical properties was found. This approach offers a robust path to aid in the efficient design of next generation biomimetic composites.There is a

  15. Elucidating the Potential Biological Impact of Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Sandra Camarero-Espinosa

    2016-07-01

    Full Text Available Cellulose nanocrystals exhibit an interesting combination of mechanical properties and physical characteristics, which make them potentially useful for a wide range of consumer applications. However, as the usage of these bio-based nanofibers increases, a greater understanding of human exposure addressing their potential health issues should be gained. The aim of this perspective is to highlight how knowledge obtained from studying the biological impact of other nanomaterials can provide a basis for future research strategies to deduce the possible human health risks posed by cellulose nanocrystals.

  16. Adsorption of Polyvinyl Alcohol on Nano-Cellulose Fibers

    OpenAIRE

    Hussain, Arif

    2010-01-01

    Nano-cellulose fibers/suspension has very high viscosity, its viscosity has to be lower before it can be applied in the paper coating recipe. For this purpose the adsorption behaviour of polyvinyl alcohol on nano-cellulose fibers were investigated using method developed by Zwick in 1960, based on the formation of PVA-iodide blue complex in the presence of boric acid. The experiments showed that the maximum adsorbed amount i.e. 0.13 g PVA/g NFC was obtained in a dispersion with 0.2 % PVA conce...

  17. Mechanistic studies of the alkaline degradation of cellulose in cement

    International Nuclear Information System (INIS)

    The alkaline degradation of cellulose-based materials under conditions simulating those of a deep underground radioactive waste repository has been investigated. A number of key degradation products, of which 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid) is the most important, have been synthesised, and the solubilities of their plutonium complexes have been determined. Analysis of leachates of anaerobically degraded cellulose has shown concentrations of organic acids which are broadly consistent with the enhanced plutonium solubilities found in these leachates. Reaction mechanisms have been identified that can lead to isosaccharinic acid production by non-oxidative transformations, which may be catalysed by some divalent cations. (Author)

  18. Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites

    International Nuclear Information System (INIS)

    By means of a simultaneous microwave-assisted method and a simple chemical reaction, cellulose/AgCl nanocomposites have been successfully synthesized using cellulose solution and AgNO3 in N,N-dimethylacetamide (DMAc) solvent. The cellulose solution was firstly prepared by the dissolution of the microcrystalline cellulose and lithium chloride (LiCl) in DMAc. DMAc acts as both a solvent and a microwave absorber. LiCl was used as the reactant to fabricate AgCl crystals. The effects of the heating time and heating temperature on the products were studied. This method is based on the simultaneous formation of AgCl nanoparticles and precipitation of the cellulose, leading to a homogeneous distribution of AgCl nanoparticles in the cellulose matrix. The experimental results confirmed the formation of cellulose/AgCl nanocomposites with high-purity, good thermal stability and antimicrobial activity. This rapid, green and environmentally friendly microwave-assisted method opens a new window to the high value-added applications of biomass. -- Highlights: ► Cellulose/AgCl nanocomposites have been synthesized by microwave method. ► Effect of heating temperature on the nanocomposites was researched. ► Thermal stability of the nanocomposites was investigated. ► Cellulose/AgCl nanocomposites had good antimicrobial activity. ► This method is based on the simultaneous formation of AgCl and cellulose.

  19. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    that the chitinase and cellulase systems of this bacterium are distinct in terms of the proteins involved and the regulation of their production. 4. Characterization of the chitinase system of C. uda. A 70,000-Mr endochitinase, designated ChiA, was purified from C. uda culture supernatant fluids and characterized. 5. Analysis of chiA, which codes for the major enzymatic component of the chitinase system of C. uda. The gene encoding the endochitinase ChiA in C. uda was cloned, its complete nucleotide sequence was determined and its implications were investigated. 6. Formation of biofilms by C. uda on cellulose and chitin. Microscopic observations indicated that, under conditions of nitrogen limitation, C. uda cells grew as a biofilm attached tightly to the surface of cellulose or chitin. 7. Development of tools for a genetic approach to studies of cellulose fermentation by cellulolytic clostridia. We have explored the potential of various techniques, and obtained evidence indicating that Tn916 mutagenesis may be particularly effective in this regard. As part of this research, we identified the presence of a plasmid in one strain, which was cloned, sequenced, and analyzed for its utility in the development of vectors for genetic studies. 8. Effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes. We determined that humic substances play an important role in the anaerobic cellulose decomposition and in the physiology of cellulose-fermenting soil bacteria. 9. Nitrogenases of cellulolytic clostridia. We described a nitrogenase gene from a cellulolytic clostridium and presented evidence, based on sequence analyses and conserved gene order, for lateral gene transfer between this bacterium and a methanogenic archaeon. 10. Characterization of Clostridium hungatei, a new N2-fixing cellulolytic species isolated from a methanogenic consortium from soil. 11. Understanding the molecular architecture of the multicomplex cellulase-xylanase system of

  20. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  1. Recobrimentos à base de carboximetilcelulose e dextrina em mangas 'Tommy Atkins' armazenada sob refrigeração Coatings based on carboximethyl cellulose and dextrin in 'Tommy Atkins' mango fruit stored under refrigeration

    Directory of Open Access Journals (Sweden)

    Andréia Amariz

    2010-10-01

    Full Text Available Objetivou-se avaliar a eficiência de recobrimentos à base de carboximetilcelulose (CMC e dextrina em manga 'Tommy Atkins' armazenada durante zero, dez e 20 dias sob refrigeração (12,4±3,1°C e 72±12% UR e, posteriormente, submetida às condições de ambiente (20,3±3,0°C e 40±7% UR por três, seis, oito e nove dias. Os recobrimentos CMC 1,0% + dextrina 0,2%, CMC 0,8% + dextrina 0,5% e CMC 0,5%+dextrina 1,0% foram comparados ao controle. O delineamento experimental foi inteiramente casualizado, em fatorial 4x7 (recobrimento x tempo de armazenamento, com quatro repetições compostas por três frutos. A aplicação de CMC 1,0% + dextrina 0,2% ou CMC 0,8% + dextrina 0,5% retardou o acúmulo de sólidos solúveis, a redução da acidez titulável e a evolução da cor da casca, com incremento no brilho superficial dos frutos, o que garantiu melhor aparência. Os efeitos indicam atraso da maturação, sendo mais evidentes no tratamento CMC 0,8% + dextrina 0,5%.It was aimed to evaluate the efficiency of coatings based on carboximethyl cellulose (CMC and dextrin applied in 'Tommy Atkins' mango fruit stored for zero, ten and 20 days under refrigeration (12.4±3.1°C and 72±12% RH and, after this period, submitted to ambient conditions (20.3±3.0°C and 40±7% RH for three, six, eight and nine days. The CMC 1.0% + dextrin 0.2%, CMC 0.8% + dextrin 0.5% and CMC 0.5% + dextrin 1.0% coatings were compared to the control. The experimental design was completely randomized in factorial 4x7 (coating x storage time, with four replicates constituted by three fruits. The application of CMC 1.0% + dextrin 0.2% or CMC 0.8% + dextrin 0.5% delayed the soluble solids accumulation, the titratable acidity reduction and the skin color evolution, increasing fruit brightness that ensured a better appearance. The responses indicate a delay on maturation that was more evident on CMC 0.8% + dextrin 0.5% treatment.

  2. Effect of a gelatin-based edible coating containing cellulose nanocrystals (CNC) on the quality and nutrient retention of fresh strawberries during storage

    Science.gov (United States)

    Fakhouri, F. M.; Casari, A. C. A.; Mariano, M.; Yamashita, F.; Innocnentini Mei, L. H.; Soldi, V.; Martelli, S. M.

    2014-08-01

    Strawberry is a non-climacteric fruit with a very short postharvest shelf-life. Loss of quality in this fruit is mostly due to its relatively high metabolic activity and sensitivity to fungal decay, meanly grey mold (Botrytis cinerea). In this study, the ability of gelatin coatings containing cellulose nanocrystals (CNC) to extend the shelf-life of strawberry fruit (Fragaria ananassa) over 8 days were studied. The filmogenic solution was obtained by the hydration of 5 g of gelatin (GEL) in 100 mL of distillated water containing different amounts of CNC dispersion (10 mg CNC/g of GEL or 50 mg of CNC/g of GEL) for 1 hour at room temperature. After this period, the solution was heated to 70 °C and maintained at this temperature for 10 minutes. The plasticizer (glycerol) (10g/100g of the GEL) was then added with constant, gentle stirring in order to avoid forming air bubbles and also to avoid gelatin denaturation until complete homogenization. Strawberries (purchased at the local market) were immersed in the filmogenic solution for 1 minute and after coated were dried at 15 °C by 24 hours. The strawberries were then kept under refrigeration and characterized in terms of their properties (weight loss, ascorbic acid content, titratable acidity, water content). The results have shown that samples covered with GEL/CNC had a significant improvement in its shelf- life. For instance, for the control sample (without coating) the weight loss after 8 days of storage was around 65%, while covered samples loss in the range of 31-36%. Edible coating was also effective in the retention of ascorbic acid (AA) in the strawberries, while control sample presented a fast decay in the AA content, covered samples showed a slow decay in the AA concentration. Moreover, the use of GEL/CNC edible coating had an antimicrobial effect in the fruits.

  3. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Science.gov (United States)

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  4. Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties.

    Science.gov (United States)

    Swain, Sarat K; Dash, Satyabrata; Behera, Chandini; Kisku, Sudhir K; Behera, Lingaraj

    2013-06-20

    A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was investigated by XRD, FESEM, and HRTEM. It was observed that the boron nitride nanoparticles were dispersed within cellulose matrix due to intercalation and partial exfoliation. The quantitative identification of nanobiocomposites was investigated by selected area electron diffraction (SAED). Thermal stabilities of the prepared nanobiocomposites were measured by thermo gravimetric analysis (TGA) and it was found that thermal stability of the nanobiocomposites was higher than the virgin cellulose. The oxygen barrier property of cellulose/BN nanobiocomposites was measured using a gas permeameter and a substantial reduction in oxygen permeability due to increase in boron nitride loading was observed. Further it was noticed that the chemical resistance of the nanobiocomposites was more than the virgin cellulose. Hence, the prepared nanobiocomposite may be widely used for insulating and temperature resistant packaging materials. PMID:23648034

  5. Reduction of the water wettability of cellulose film through controlled heterogeneous modification.

    Science.gov (United States)

    Li, Wei; Wu, Yuehan; Liang, Weiwei; Li, Bin; Liu, Shilin

    2014-04-23

    A facile method had been applied to introduce hydrophobic properties to cellulose materials by incorporation of polyurethane acrylate (PUA) prepolymers into the porous structured cellulose matrix through dip-coating; then, PUA prepolymers were cured around interconnected cellulose fibers under UV light, encapsulating a cellulose matrix with a hydrophobic polymer shell. The characterization of the composite films confirmed the success of the heterogeneous modification, and the chemical structure of the cellulose matrix was preserved. The composite films integrated the merits of cellulose and PUA resin, but the highly hydrophilic behavior of cellulose has been reduced. Contact angle measurements with water demonstrated that the composite films had obvious hydrophobic properties and an obvious reduction in the water uptake and the permeability toward water vapor gas at different relative humidity was also observed. The transmittance of the composite films at 550 nm was about 85%. The thermal and mechanical properties of the composite films were improved when compared with that of PUA resin. The obtained composite based on cellulose and UV curing technology was a good choice for the development of biomass materials with modified surface properties. PMID:24666422

  6. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. PMID:26572341

  7. Combination effect of pH and acetate on enzymatic cellulose hydrolysis

    Institute of Scientific and Technical Information of China (English)

    ROMSAIYUD Angsana; SONGKASIRI Warinthom; NOPHARATANA Annop; CHAIPRASERT Pawinee

    2009-01-01

    The productivity and efficiency of cellulase are significant in cellulose hydrolysis. With the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system is reduced. Therefore, this study will find out how the pH and the amount of acetate influence the enzymatic hydrolysis of cellulose. The effects of pH and acetate on cellulase produced from Bacillus coagulans were studied at various pH 5-8, and acetate concentrations (0-60 mmol/L). A batch kinetic model for enzymatic cellulose hydrolysis was constructed from experimental data and performed. The base hypothesis was as follows: the rates of enzymatic cellulose hydrolysis rely on pH and acetate concentration. The results showed that the suitable pH range for cellulase production and cellulose hydrolysis (represents efficiency of cellulase) was 2.6-7.5, and 5.3-8.3, respectively. Moreover, acetate in the culture medium had an effect on cellulase production (K1= 49.50 mmol/L, n=1.7) less than cellulose hydrolysis (K1=37.85 mmol/L, n=2.0). The results indicated that both the pH of suspension and acidogenic products influence the enzymatic hydrolysis of cellulose in an anaerobic environment. To enhance the cellulose hydrolysis rate, the accumulated acetate concentration should be lower than 25 mmol/L, and pH should be maintained at 7.

  8. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    Science.gov (United States)

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. PMID:26577730

  9. Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach

    OpenAIRE

    Tomé, Liliana C.; Ricardo J. B. Pinto; Trovatti, Eliane; Freire, Carmen S. R.; Silvestre, Armando J. D.; Neto, Carlos Pascoal; Gandini, Alessandro

    2011-01-01

    The preparation and characterization of biocomposite materials with improved properties based on poly(lactic acid) (PLA) and bacterial cellulose, and, for comparative purposes, vegetal cellulose fibers, both in their pristine form or after acetylation, is reported. The composite materials were obtained through the simple and green mechanical compounding of a PLA matrix and bacterial cellulose nanofibrils (or vegetable fibers), and were characterized by TGA, DSC, tensile assays, DMA, SEM and w...

  10. Assimilation of Cellulose-Derived Carbon by Microeukaryotes in Oxic and Anoxic Slurries of an Aerated Soil

    OpenAIRE

    Chatzinotas, Antonis; Schellenberger, Stefanie; Glaser, Karin; Kolb, Steffen

    2013-01-01

    Soil microeukaryotes may trophically benefit from plant biopolymers. However, carbon transfer from cellulose into soil microeukaryotes has not been demonstrated so far. Microeukaryotes assimilating cellulose-derived carbon in oxic and anoxic soil slurries were therefore examined by rRNA-based stable-isotope probing. Bacteriovorous flagellates and ciliates and, likely, mixotrophic algae and saprotrophic fungi incorporated carbon from supplemental [U-13C]cellulose under oxic conditions. A previ...

  11. Small-animal SPECT/CT and nanofibrillar cellulose hydrogels: a preclinical evaluation of a potential novel biomaterial application

    OpenAIRE

    Laurén, Patrick

    2013-01-01

    Cellulose has already been used as an industrial raw material for over a century. However, during recent years the nanostructural features of the naturally occurring biopolymer have been fully investigated and characterized through different processing methods as nanofibrillar cellulose (NFC). This has led to a rapid development of novel cellulose based nanoscale materials and advancements in the field of composite materials. NFC offers interesting specific properties that differ from man...

  12. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    that the chitinase and cellulase systems of this bacterium are distinct in terms of the proteins involved and the regulation of their production. 4. Characterization of the chitinase system of C. uda. A 70,000-Mr endochitinase, designated ChiA, was purified from C. uda culture supernatant fluids and characterized. 5. Analysis of chiA, which codes for the major enzymatic component of the chitinase system of C. uda. The gene encoding the endochitinase ChiA in C. uda was cloned, its complete nucleotide sequence was determined and its implications were investigated. 6. Formation of biofilms by C. uda on cellulose and chitin. Microscopic observations indicated that, under conditions of nitrogen limitation, C. uda cells grew as a biofilm attached tightly to the surface of cellulose or chitin. 7. Development of tools for a genetic approach to studies of cellulose fermentation by cellulolytic clostridia. We have explored the potential of various techniques, and obtained evidence indicating that Tn916 mutagenesis may be particularly effective in this regard. As part of this research, we identified the presence of a plasmid in one strain, which was cloned, sequenced, and analyzed for its utility in the development of vectors for genetic studies. 8. Effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes. We determined that humic substances play an important role in the anaerobic cellulose decomposition and in the physiology of cellulose-fermenting soil bacteria. 9. Nitrogenases of cellulolytic clostridia. We described a nitrogenase gene from a cellulolytic clostridium and presented evidence, based on sequence analyses and conserved gene order, for lateral gene transfer between this bacterium and a methanogenic archaeon. 10. Characterization of Clostridium hungatei, a new N2-fixing cellulolytic species isolated from a methanogenic consortium from soil. 11. Understanding the molecular architecture of the multicomplex cellulase-xylanase system of

  13. Surface modification of cellulose fibres

    Directory of Open Access Journals (Sweden)

    Mohamed Naceur Belgacem

    2005-06-01

    Full Text Available Several approaches to the modification of cellulose fibres are described, namely: (i physical treatments such as corona or plasma treatments under different atmospheres; (ii grafting with hydrophobic molecules using well-known sizing compounds; (iii grafting with bi-functional molecules, leaving one of the functions available for further exploitation; and (iv grafting with organometallic compounds. The modified surfaces were characterized by elemental analysis, contact angle measurements, inverse gas chromatography, X-ray photoelectron and infrared spectroscopy, wettability, etc. These different tools provided clear-cut evidence of the occurrence of chemical reactions between the grafting agent used and the hydroxy functions of the cellulose surface, as well as of the existence of covalent bonding in the ensuing composite materials between the matrix and the fibres through the use of doubly reactive coupling agents.

  14. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  15. Cell adhesion on cellulose nanofibrils

    OpenAIRE

    Liljeström, Anna

    2016-01-01

    Cellulose nanofibrils (CNF) is an emerging biomaterial suitable for medical research. CNF hydrogel has been used as a three dimensional platforms for cell culture. This thesis aims to understand how human liver carcinoma (HepG2) cells interact with CNF. Measurements were performed with Quartz crystal microbalance with dissipation in order to quantify cell adsorption on CNF. Furthermore, the effect of the cell medium on the viscoelastic properties of CNF and on cell-CNF interactions were ...

  16. Lowering costs of microbial cellulose

    OpenAIRE

    Pajuelo, María González; Bungay, Henry; Hogg, Tim; Vasconcelos, Isabel

    1997-01-01

    We have been conducting research with Acetobacter xylinium for microbial conversion of sugars to cellulose. A rotating disk biological contactor should lower costs considerably because its production rates are greater than for the usual method of surface culture. Another major cost saving comes from replacing expensive sugars in the medium with sugars derived from wastes. Extracts of spent grapes from wastes of Portuguese wine factories supply suitable sugars for good production of micr...

  17. Regulating drug release behavior and kinetics from matrix tablets based on fine particle-sized ethyl cellulose ether derivatives: an in vitro and in vivo evaluation.

    Science.gov (United States)

    Shah, Kifayat Ullah; Khan, Gul Majid

    2012-01-01

    The design and fabrication of sustained/controlled release dosage forms, employing new excipients capable of extending/controlling the release of drugs from the dosage forms over prolonged periods, has worked well in achieving optimally enhanced therapeutic levels of the drugs. In this sense, the objective of this study was to investigate the suitability of selected cellulose ether derivatives for use in direct compression (DC) and as efficient drug release controlling agents. Controlled release matrix tablets of ciprofloxacin were prepared at different drug-to-polymer (D : P) ratios by direct compression using a fine particle sized ethylcellulose ether derivative (ETHOCEL Standard Premium 7FP) as rate controlling polymer. The tablets obtained were evaluated for various physico-chemical characteristics and in-vitro drug release studies were conducted in phosphate buffer (pH 7.4) using PharmaTest dissolution apparatus at constant temperature of 37 °C ± 0.1. Similarity factor f(2) was employed to the release profiles of test formulations and were compared with marketed ciprofloxacin conventional tablets. Drug release mechanism and the kinetics involved were investigated by fitting the release profile data to various kinetic models. It was found that with increasing the proportion of ethylcellulose ether derivative in the matrix, the drug release was significantly extended up to 24 hours. The tablets exhibited zero order or nearly zero order drug transport mechanism. In vivo drug release performance of the developed controlled release tablets and reference conventional tablets containing ciprofloxacin were determined in rabbit serum according to randomized two-way crossover study design using High Performance Liquid Chromatography. Several bioavailability parameters of both the test tablets and conventional tablets including C(max⁡), T(max⁡) and AUC(0-t) were compared which showed an optimized C(max⁡) and T(max⁡) (P < 0.05). A good correlation was obtained

  18. Regulating Drug Release Behavior and Kinetics from Matrix Tablets Based on Fine Particle-Sized Ethyl Cellulose Ether Derivatives: An In Vitro and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Kifayat Ullah Shah

    2012-01-01

    Full Text Available The design and fabrication of sustained/controlled release dosage forms, employing new excipients capable of extending/controlling the release of drugs from the dosage forms over prolonged periods, has worked well in achieving optimally enhanced therapeutic levels of the drugs. In this sense, the objective of this study was to investigate the suitability of selected cellulose ether derivatives for use in direct compression (DC and as efficient drug release controlling agents. Controlled release matrix tablets of ciprofloxacin were prepared at different drug-to-polymer (D : P ratios by direct compression using a fine particle sized ethylcellulose ether derivative (ETHOCEL Standard Premium 7FP as rate controlling polymer. The tablets obtained were evaluated for various physico-chemical characteristics and in-vitro drug release studies were conducted in phosphate buffer (pH 7.4 using PharmaTest dissolution apparatus at constant temperature of 37∘C±0.1. Similarity factor 2 was employed to the release profiles of test formulations and were compared with marketed ciprofloxacin conventional tablets. Drug release mechanism and the kinetics involved were investigated by fitting the release profile data to various kinetic models. It was found that with increasing the proportion of ethylcellulose ether derivative in the matrix, the drug release was significantly extended up to 24 hours. The tablets exhibited zero order or nearly zero order drug transport mechanism. In vivo drug release performance of the developed controlled release tablets and reference conventional tablets containing ciprofloxacin were determined in rabbit serum according to randomized two-way crossover study design using High Performance Liquid Chromatography. Several bioavailability parameters of both the test tablets and conventional tablets including max, max and AUC0- were compared which showed an optimized max and max (<0.05. A good correlation was obtained between in vitro

  19. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex

    NARCIS (Netherlands)

    Vain, T.; Crowell, E.F.; Timpano, H.; Biot, E.; Desprez, T.; Mansoori Zangir, N.; Trindade, L.M.; Pagant, S.; Robert, S.; Hofte, H.; Gonneau, M.; Vernhettes, S.

    2014-01-01

    Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis

  20. Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1985-10-01

    Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O/sub 2/ (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells.

  1. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  2. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.

    Science.gov (United States)

    Liu, Zhuo; Ho, Shih-Hsin; Sasaki, Kengo; den Haan, Riaan; Inokuma, Kentaro; Ogino, Chiaki; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a "tearing" cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production. PMID:27079382

  3. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    Science.gov (United States)

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose. PMID:26572398

  4. Micromechanics and poroelasticity of hydrated cellulose networks.

    Science.gov (United States)

    Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J

    2014-06-01

    The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure. PMID:24784575

  5. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  6. CELLULOSE POWDER FROM OLIVE INDUSTRY SOLID WASTE

    Directory of Open Access Journals (Sweden)

    Othman A. Hamed,

    2012-07-01

    Full Text Available In the present work, a method for extracting cellulose from olive industry solid waste has been developed. The method involves subjecting solid olive waste to kraft pulping, followed by multistep bleaching processes. The totally free chlorine chemical bleaching sequence APEP was the most effective and gave an average cellulose yield of about 35%. The extracted cellulose was extensively characterized using FTIR, EMS, HPLC, and viscometry. Our key finding in this study is that the extracted cellulose was found to have physio-chemical properties that are similar to those of conventional microcrystalline cellulose (MCC. This is important, as our results show how lignocellulosic agricultural wastes can be utilized to produce high value cellulose powder.

  7. Electron beam processing technology for modification of different types of cellulose pulps for production of derivatives

    International Nuclear Information System (INIS)

    Institute of Nuclear Chemistry and Technology, Pulp and Paper Research Institute and Institute of Chemical Fibers carry out a joint research project in order to develop the radiation methods modification of cellulose pulps for production of cellulose derivatives such as carbamate (CC), carboxymethyl cellulose (CMC) and methylcellulose (MC). Three different types of textile pulps: Alicell (A); Borregaard (B), Ketchikan (K) and Kraft softwood (PSS) and hardwood (PSB) pulps have been irradiated with 10 MeV electron beam from LAE 13/9 linear accelerator with doses of 5, 10, 15, 20, 25 and 50 kGy. After electron beam treatment the samples of cellulose pulps have been examined by using of structural and physico-chemical methods. Electron paramagnetic resonance spectroscopy (EPR), gel permeation chromatography (GPC) and infrared spectroscopy (IRS) were applied for determination of structural changes in irradiated cellulose pulps. By means of analytical methods, such parameters as: viscosity, average degree of polymerization (DP) and α-cellulose contents were evaluated. Based on EPR and GPC investigations the relationship between concentrations of free radicals and decreasing polymerization degrees in electron beam treatment pulps has been confirmed. The carboxymethylcellulose, methylcellulose and cellulose carbamate were prepared using the raw material of radiation modified pulps. Positive results of investigations will allow for determination of optimum conditions for electron beam modification of selected cellulose paper and textile pulps. Such procedure leads to limit the amounts of chemical activators used in methods for preparation cellulose derivatives. The proposed electron beam technology is new approaches in technical solution and economic of process of cellulose derivatives preparation. (author)

  8. Method To Estimate Growth of Trichoderma reesei and Aspergillus wentii in Mixed Culture on Cellulosic Substrates

    OpenAIRE

    Panda, T.; Bisaria, V. S.; Ghose, T. K.

    1989-01-01

    A simple differential method based on measurement of an intracellular pigment of Aspergillus wentii was developed for estimation of the individual growths of two fungi, Trichoderma reesei and A. wentii, in mixed-culture fermentation of an insoluble cellulosic substrate.

  9. Size Effects of Nano-crystalline Cellulose

    Institute of Scientific and Technical Information of China (English)

    Guo Kang LI; Xiao Fang LI; Yong JIANG; Mei Zhen ZENG; En Yong DING

    2003-01-01

    Natural cellulose with the crystal form of cellulose Ⅰ, when treated with condensed lye(e.g. 18%NaOH), can change into new crystal form of cellulose Ⅱ. But the nano-crystallinecellulose(NCC) can do it when only treated with dilute lye (e.g. 1%NaOH) at room temperatureand even can dissolve into slightly concentrated lye (e.g. 4%NaOH).

  10. Bulk and interfacial properties of cellulose ethers

    OpenAIRE

    Bodvik, Rasmus

    2012-01-01

    This work summarizes several studies that all concern cellulose ethers of the types methylcellulose (MC) hydroxypropylmethylcellulose (HPMC) and ethyl(hydroxyethyl)cellulose (EHEC). They share the feature of negative temperature response, as they are soluble in water at room temperature but phase separate and sometimes form gels at high temperatures. The different types of viscosity transitions occurring in these three cellulose ethers are well-known. However, earlier studies have not solved ...

  11. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Ogata, Satoshi; Numakawa, Tetsuya; Kubo, Takuya

    2010-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  12. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Satoshi Ogata; Tetsuya Numakawa; Takuya Kubo

    2011-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  13. Cellulose biosynthesis and function in bacteria.

    OpenAIRE

    Ross, P; Mayer, R; Benziman, M

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most e...

  14. Liquid crystalline cellulose derivatives for mirrorless lasing

    OpenAIRE

    Wenzlik, Daniel

    2013-01-01

    In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned subs...

  15. Lyocell, The New Generation of Regenerated Cellulose

    OpenAIRE

    Éva Borbély

    2008-01-01

    For the majority of the last century, commercial routes to regenerated cellulosefibres have coped with the difficulties of making a good cellulose solution by using an easyto dissolve derivative (e.g. xanthane in the case of viscose rayon) or complex (e.g.cuprammonium rayon). For the purposes of this paper, advanced cellulosic fibres aredefined as those made from a process involving direct dissolution of cellulose. The firstexamples of such fibres have now been generically designaed as lyocel...

  16. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  17. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives

    OpenAIRE

    1982-01-01

    In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presen...

  18. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. PMID:27127053

  19. Carboxymethylation of Cellulose by Microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Cellulose may be readily converted into ethers involving primary and secondary alcohol groups in each monomer unit and the glycosidic bonds. However, these reactions are rather more complicated than with simple substances, because the stereochemistry of the cellulose molecule is such that the vast majority of its hydroxyl groups form intra-chain hydrogen bonds or inter-chain hydrogen bonds with contiguous molecules. Carboxymethylcellulose (CMC) has played an important part in the commercial uses of cellulose derivatives. CMC becomes alkali and water soluble. The polarity can, in fact, be increased by introduction of ionizing groups, ie carboxymethyl group. CMC is generally produced by the reaction of alkali cellulose with chloroacetic acid.

  20. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)